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Abstract

Introduction—For pediatric diseases like childhood leukemia, a short latency period points to in-

utero exposures as potentially important risk factors. Untargeted metabolomics of small molecules 

in archived newborn dried blood spots (DBS) offers an avenue for discovering early-life exposures 

that contribute to disease risks.

Objectives—The purpose of this study was to develop a quantitative method for untargeted 

analysis of archived newborn DBS for use in an epidemiological study (California Childhood 

Leukemia Study, CCLS).

Methods— Using experimental DBS from the blood of an adult volunteer, we optimized 

extraction of small molecules and integrated measurement of potassium as a proxy for blood 

hematocrit. We then applied this extraction method to 4.7-mm punches from 106 control DBS 

samples from the CCLS. Sample extracts were analyzed with liquid chromatography high 
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resolution mass spectrometry (LC-HRMS) and an untargeted workflow was used to screen for 

metabolites that discriminate population characteristics such as sex, ethnicity, and birth weight.

Results—Thousands of small molecules were measured in extracts of archived DBS. 

Normalizing for potassium levels removed variability related to varying hematocrit across DBS 

punches. Of the roughly 1,000 prevalent small molecules that were tested, multivariate linear 

regression detected significant associations with ethnicity (3 metabolites) and birth weight (15 

metabolites) after adjusting for multiple testing.

Conclusions—This untargeted workflow can be used for analysis of small molecules in 

archived DBS to discover novel biomarkers, to provide insights into the initiation and progression 

of diseases, and to provide guidance for disease prevention.

Keywords

dried blood spots; small molecules; LC-HRMS; hematocrit; metabolome

1. Introduction

Newborn dried blood spots (DBS) offer a unique resource for assessing exposures and early 

biological changes, years before diagnosis of clinical outcomes. DBS are collected on 

‘Guthrie cards’ within 24–48 hours of birth from > 98% of the newborns in the United 

States to screen for inborn errors in metabolism (Gonzales 2011). Since 1982, the State of 

California has archived residual DBS at −20°C for use in epidemiologic studies of pediatric 

outcomes (CDPH 2016). The potential utility of archived DBS for assessing in utero 

exposures and disease initiation is supported by targeted measurements of selected 

environmental contaminants and DNA modifications in such specimens (Funk et al. 2013; 

Ma et al. 2014; Wiemels et al. 1999). Furthermore, unlike most other prospective cohorts 

that utilize serum or plasma, DBS contain whole blood that provides access to potential 

biomarkers from both serum and red and white blood cells.

Untargeted metabolomics motivates a hypothesis-free approach to biomarker discovery. 

High-throughput analytical platforms such as liquid chromatography-high resolution mass 

spectrometry (LC-HRMS) can measure thousands of small molecules in a few microliters of 

blood. By comparing small-molecule profiles between diseased and non-diseased 

populations, metabolomics has been applied for discovering novel biomarkers that serve as 

indicators of disease processes. For example, Hazen and co-workers employed this approach 

to implicate joint microbial/human metabolism of the nutrient, choline, as a cause of heart 

disease (Koeth et al. 2013; Tang et al. 2013; Wang et al. 2011). Previous untargeted 

metabolomic analyses of newborn DBS have been conducted rarely, with a few examples 

being the studies of Denes et al. (2012), who screened for inborn errors of metabolism, and 

of Koulman et al. (2014) and Prentice et al. (2015) who investigated biomarkers of 

breastfeeding.

Methodologic validation is required before untargeted metabolomics can be applied to 

newborn DBS in epidemiologic studies. Measurements of small molecules in archived DBS 

can be affected by extraction methods, chromatography, MS ionization (Bruce et al. 2009; 
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Contrepois et al. 2015; Michopoulos et al. 2010; Raju et al. 2016) as well as DBS aging and 

storage (Liu et al. 2014; Pupillo et al. 2016; Vu et al. 2011). In addition, a major concern in 

untargeted analysis of DBS is the effect of blood haematocrit, which can have a strong 

impact on quantitation when less than a whole spot is available for analysis. Hematocrit 

affects the spreading of a blood drop on filter paper with higher hematocrit values leading to 

smaller, more concentrated spots; and hematocrit can affect recoveries of small molecules 

and introduce matrix effects (Abu-Rabie et al. 2015; Vu et al. 2011; Youhnovski et al. 2011).

Here, we describe an untargeted metabolomics workflow for the analysis of archived DBS 

from the California Childhood Leukemia Study (CCLS), a population-based study 

containing approximately 1,000 childhood leukemia cases and 1,200 matched controls 

(Metayer et al. 2013). We measured small molecules with LC-HRMS in archived DBS from 

106 control children in the CCLS. As validation of our methodology, we performed an 

untargeted analysis to pinpoint metabolites that were statistically associated with population 

characteristics. Our untargeted workflow includes: 1) data filtering and normalization for 

potassium levels as surrogates for hematocrit (Capiau et al. 2013; De Kesel et al. 2014), 2) 

multivariate statistical analysis to identify discriminating features, 3) manual examination of 

significant features for peak and integration quality, and 4) annotation of significant features 

with MSMS.

2. Materials and methods

2.1 Reagents and chemicals

Water (LC-MS Ultra Chromasolv), methanol (LC-MS Ultra Chromasolv), formic acid 

(eluent additive for LC-MS), acetic acid (eluent additive for LC-MS), potassium chloride 

(>99 %), and cholic-24-13C acid (>99%) were purchased from Sigma Aldrich (St. Louis, 

MO). Acetonitrile (Optima UHPLC-MS) and sodium chloride (>99%) were purchased from 

Fisher Scientific (Pittsburgh, PA). Ethanol (Koptec, 200 proof) was purchased from DLI 

(King of Prussia, PA). Cis-4,7,10,13,16,19-docosahexaenoic acid (>98%) was purchased 

from MP Biomedicals Inc. (Burlingame, CA)

2.2 Samples of DBS

2.2.1 Experimental DBS for method development—For method development, 

venous blood was collected with informed consent from an adult female volunteer in Na-

heparin tubes. It was diluted or concentrated by adding or removing plasma from the same 

subject to produce blood with low, medium (unadjusted), or high hematocrit, as described 

elsewhere (Capiau et al. 2013). Experimental DBS for validation of potassium 

measurements were prepared by aliquoting 50 μL of whole blood on Whatman 903 Guthrie 

cards (Sigma Aldrich, St. Louis, MO), which were dried under vacuum for two weeks and 

stored at −20°C prior to use (~4 months).

2.2.2 Archived newborn DBS—Archived newborn DBS for CCLS participants were 

obtained from the California birth registry (Sacramento, CA). We received single 4.7-mm 

punches (equivalent to ~8 μL whole blood) collected between 1985 and 2006 from 106 

healthy control children. An additional set of 4.7-mm punches was obtained from adjacent 
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portions of filter paper from the same Guthrie cards to use as blanks. In addition, 

information on child’s socio-demographic characteristics was obtained from the interview 

with the biological parents (mainly the mother). Summary statistics can be found in the 

supplemental material (Table S1).

2.3. Validation of potassium measurements with an ion selective electrode

Capiau et al. (2013) extensively evaluated measurements of potassium (K+) with a clinical 

chemistry analyzer as a surrogate for hematocrit in dried blood spots. In contrast to the 

clinical chemistry analyzer, which requires separate punches for K+ analysis and metabolite 

analysis, K+ measurements and LC-MS analysis can be performed with a single punch when 

a micro-ion selective electrode is used. This is particularly important for epidemiological 

studies, such as ours, where only a single punch is available. Thus, we used experimental 

DBS (sect. 2.2.1) to evaluate the reproducibility of the potassium measurements with a 

micro K+ ion selective electrode (MI-442 and MI-401 1-mm tip, Microelectrodes Inc., 

Accumet AB250 meter, Fisher Scientific). A set of duplicate 4-mm punches was obtained 

from experimental DBS that had been prepared with low, medium, and high hematocrit (6 

punches in total). Each punch was placed in a microcentrifuge tube and extracted with 100 

μL of water at room temperature for 15 min with constant agitation at 1400 rpm 

(ThermoMix, Eppendorf) (Capiau et al. 2013). Then, duplicate measurements of potassium 

were obtained for each extract with a K+ ion selective electrode following the 

manufacturer‘s instructions (12 total K+ measurements, considered 1 batch). The 

measurements were repeated an additional 3 times to yield 4 batches, with 2 measurements 

for each of the 6 punches within each batch (total of 48 K+ measurements). The batch 

variable represents the variation in measurements associated with time. Voltage readings 

were converted to concentrations with a five point semi-log calibration curve for standard 

solutions ranging from 0.001 to 0.01 N KCl that contained 0.1 N NaCl as a potentially 

interfering species. For quality assurance, a single measurement of 0.05 N KCl was obtained 

after each batch of 12 measurements to monitor K+ measurement drift. The measured K+ 

concentrations (mean ± SD) for the three hematocrit levels were: 2.15 ± 0.20 mM (low), 

3.43 ± 0.14mM (medium), and 4.95 ± 0.15 mM (high). While newborn hematocrit is 

typically higher than adult hematocrit, the range of K+ measurements used here is sufficient 

to evaluate the reproducibility of the electrode. The following mixed-effects model was 

applied to evaluate the precision of K+ measurements, after adjustment for hematocrit levels:

Y ijk = β0 + β1XH + aj + bi(j) + ek(ij), (1)

Where: Yijk represents the potassium concentration for the kth measurement (k = 1,2), from 

the ith batch (i = 1,2,3,4), in the jth punch (j = 1,2). In Equation (1), the systematic variation 

in Yijk is defined by the sum of the intercept (β0 ) and hematocrit level (β1XH), and the 

random variation by the sum of random effects representing punch (aj), batch (bi(j)), and 

measurement (ek(ij)). We used the marginal R2 for linear mixed models to describe the 

proportion of variance explained by the fixed effects in our model 1 (Nakagawa and 

Schielzeth 2013). The marginal R2 is computed as the fraction of the variance of the fixed 

effects to the total variance (sum of the variance of fixed effects, random effects and 
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residuals). After fitting Equation (1), the model had a high marginal R2 of 0.9686, indicating 

that the three random effects in the model introduced negligible variance to the observed 

potassium measurements and that this methodology is appropriate for measuring potassium 

in archived DBS.

2.4 Analysis of newborn DBS

Optimal extraction of small molecules from experimental DBS was observed with 4/1 

acetonitrile/water (see supplemental material, section 2). For analysis of newborn DBS, 

potassium measurements were integrated into the extraction protocol. Archived DBS 

punches of 4.7-mm were first extracted with 100 μL of water at room temperature for 15 min 

with agitation at 1,400 rpm. For each batch of 24 samples, a potassium calibration curve was 

obtained followed by duplicate measurements of K+ as described previously (section 2.3). A 

sample calibration curve bracketing the range of observed K+ measurements (3.33 mM 9.94 

mM) can be found in the supplemental material (Fig S1). The robust local regression method 

loess (Edmands et al. 2015) was used to adjust for measurement drift within batches, most 

likely due to sample deposits on the electrode over repeated measurements. After measuring 

potassium, 400 μL of acetonitrile was added to the aqueous solution (resulting in 4/1 

acetonitrile/water) and samples were agitated at 37°C for 1 h (Incubator Genie, Scientific 

Industries) and stored at −20°C for approximately 2 weeks until analysis. Immediately prior 

to LC-HRMS analysis, the precipitated proteins were removed by filtration (Captiva 0.2 μm, 

Agilent Technologies) and an internal standard was added (13C-cholic acid, final 

concentration = 0.06 μg/ml). Extracts were analyzed with an Agilent 1290 UHPLC system 

connected to a 6550 QTOF HRMS) (Santa Clara, US) in ESI (−) and (+) mode directly from 

the Captiva well.

Chromatography was carried out at 60°C with a 0.550 mL/min flow rate on a Zorbax SB-Aq 

analytical column (1.8 μm, 2.1 × 50 mm) with a Zorbaq-SB-C8 guard column (3.5 μm, 2.1 × 

30 mm) with the following solvents: Buffer A: 0.2% acetic acid in water, and Buffer B: 

0.2% acetic acid in methanol. A 19-min gradient was used (2–98% B in 13 min, hold at 98% 

B for 6 min), followed by a 3-min column re-equilibration phase. Samples were kept at 4°C 

in the autosampler during analysis. The total sample injection volume was 10 μL consisting 

of alternating volumes of water and sample for a total volume of 20 μL injected onto the 

column. Full mass spectra were acquired at 1.67 spectra/s in the range 50–1000 m/z 
(supplemental material, section 3). To monitor system stability, a pooled QC sample 

prepared by combining aliquots from all DBS extracts was injected after each group of 10 

samples. Due to a LC sampler thermostat malfunction during the ESI (+) mode data 

collection, only the ESI (−) data was used for further analysis.

2.5 Data processing

Raw data were converted to mzXML format for peak picking using proteoWizard software 

(Spielberg Family Center for Applied Proteomics, Los Angeles, CA). Peak detection and 

retention time alignment were performed with the XCMS package (Patti et al. 2012; C. 

Smith et al. 2006) within the R statistical programming environment (version 3.2.2, R Core 

Team 2015). Parameters for peak picking included centwave feature detection, orbiwarp 

retention time correction, minimum fraction of samples in one group to be a valid group = 
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0.25, isotopic ppm error = 10, width of overlapping m/z slices (mzwid) = 0.015, retention 

time window (bw) = 2 s, minimum peak width = 2 s, and maximum peak width=20 s. Peaks 

were grouped and filled (‘group’ and ‘fill’ function in XCMS), and the resulting peak tables 

of retention times, m/z values, and peak areas were exported for further processing. 

Subsequent analyses were also performed with the R platform.

2.6 Statistical analyses

Exported features from LC-HRMS analysis of newborn DBS were log-transformed and 

normalized prior to statistical analysis. First, the following multivariate linear regression 

models (Eq 2) were used to adjust the intensity of each tested feature for the order of 

analysis, which includes autosampler plate number and run order, and for the potassium 

concentration as a surrogate for hematocrit (note that the continuous run order variable is 

nested within the dichotomous plate variables):

Y i = β0 + β1P1 + β2P2 + β3(P1 × R) + β4(P2 × R) + β5K + εi, (2)

where Yi is a vector of logged feature intensities for the ith feature (length = 106), P1 and P2 

are binary variables indicating plate number (Pj =1 if sample is in plate j and 0 otherwise 

(j=1,2)), R is a numeric vector of run order, and K is a numeric vector of K+ concentrations. 

Then, residuals from Eq 2 were full-quantile normalized, as implemented in the limma R 

package, to make the distributions of the features comparable across all subjects (Bolstad et 

al. 2003; Ritchie et al. 2015).

The following multivariate linear regression model was fitted to the normalized residuals to 

find associations between each feature’s intensity and the subjects’ birth weight, sex, 

ethnicity, and DBS-age in years:

Y i = β0 + β1Xsex + β2Xbirth weight + β3Xethnicity + β4XDBS − age + εi, (3)

where Yi is a vector of logged intensities for the ith feature, Xsex (0=male, 1=female) and 

Xethnicity (0=Hispanic, 1=non-Hispanic) are binary vectors, and Xbirth weight and XDBS-age 

(2015-child birth year) are numeric vectors.

Three subjects were removed from the statistical analysis due to missing covariate data, 

resulting in a total of 103 subjects. Since ethnicity and sex are dichotomous variables, birth 

weight and DBS-age variables were standardized by subtracting the mean and dividing by 

the standard deviation. The DBS-age covariate was included to adjust for any changes in 

feature intensity due to storage conditions (Koulman et al. 2014; Pupillo et al. 2016). 

Estimated p-values obtained from the regression model were used to evaluate whether each 

coefficient was significantly associated with the feature abundance. These p-values should 

be interpreted with care since they depend on several parametric assumptions, which were 

not evaluated. Significance levels were adjusted for multiple testing using the Benjamini-

Hochberg (BH) procedure to control the false discovery rate (FDR) at α = 0.05 (Benjamini 

and Hochberg 1995).
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Permutation tests were then used as further, non-parametric tests of significance for the same 

associations (Anderson and Braak 2003). For each of the features, the same multivariate 

regression as in Equation 3 was used to obtain coefficients of the covariates for the original 

data set. Then, for each feature, values for a given covariate of interest (e.g. ethnicity or birth 

weight) were permuted among the 103 subjects keeping all else constant, and fit to the 

model (Equation 3). The coefficient estimate for the tested covariate was recorded for 5,000 

permutation iterations. The permutation p-value for the covariate’s coefficient was 

calculated as the proportion of the 5,000 coefficients that were greater than the original 

coefficient in absolute value. This permutation test was performed for both ethnicity and 

birth weight, and across all features. Significance was determined after correction for FDR 

using the BH method.

3. Results and discussion

3.1 Detection of metabolites

LC-HRMS analysis of the extracts from newborn DBS detected 66,096 features in ESI (−) 

mode. Filtering for features that were present in at least 75% of all DBS, with a mean fold 

change > 3 compared to filter-paper extracts, and with a CV <25% in the pooled-QC 

injections, reduced the number of features to 3,157. Additional pre-processing was 

performed with MetMSLine software (Edmands et al. 2015) to impute any remaining zero 

values with half the minimum non-zero feature abundance, to remove outliers by PCA, 

based on a tolerance of 95% beyond the Hotellings T2 ellipse, and to eliminate redundant 

signals due to in-source fragmentation and product formation (Broeckling et al. 2014). This 

reduced the total number of testable features to 1,107.

3.2 Normalization for run order and potassium

Metabolomic data require normalization to remove unwanted systematic biases so that only 

biologically relevant differences are present. It is expected that higher hematocrit levels 

would lead to a positive bias in archived DBS measurements. Thus, there should be a 

positive relationship between total usable signal (TUS), i.e. the sum of all feature peak 

integrals per subject, and hematocrit. Here, we measured K+ concentrations of DBS extracts 

as proxies for hematocrit (Capiau et al. 2013; De Kesel et al. 2014). As can be seen in Fig. 

1a, there is positive correlation (Pearson correlation coefficient 0.45) between the potassium 

level in a DBS extract, represented by the K+ concentration, and TUS. Adjusting each 

feature by only the analysis order had a modest effect on reducing this correlation (Fig. 1b, 

Pearson correlation coefficient 0.38). However, adjusting for both analytical order and K+ 

concentration (Eq. 2) eliminated the correlation between TUS and K+ (Fig. 1c, Pearson 

correlation coefficient 0.02).

As TUS was moderately correlated with K+ and requires no additional measurements, it is 

an attractive alternative to using potassium. However, TUS normalization is less precise than 

K+ normalization and sensitive to outliers. Furthermore, when K+ is replaced by logTUS 

(Equation 2), not all unwanted K+ variation is removed (Fig S2, Pearson’s correlation 

coefficient 0.112). Therefore, we caution its use without a full evaluation of its applicability.

Petrick et al. Page 7

Metabolomics. Author manuscript; available in PMC 2018 April 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Potassium measurements from stored DBS and in stored extracts were found to remain 

stable for several months even at room temperature (Capiau et al, 2013; den Burger et al. 

2015). In addition, no correlation was observed between K+ measurements and ‘age of spot’ 

(Pearson correlation coefficient −0.085), indicating that potassium measurements were not 

associated with storage conditions.

3.3 Fetal metabolome coverage

We first performed qualitative analyses to characterize the fetal blood metabolome. Small 

molecules were annotated using the compMS2Miner package (Edmands 2016) by 

comparing accurate mass and MSMS fragmentation patterns with the Human Metabolome 

Database (HMDB) (Wishart et al. 2013) and METLIN (Smith et al. 2005). The correlation 

network in Fig. 2a summarizes the annotations, where nodes are the metabolites and edges 

are the correlations between their peak integrals (Shannon et al. 2003). Metabolites that 

cluster together indicate possible shared metabolic pathways. Using a Pearson correlation 

cut-off of >0.7, 3,960 edges were drawn. Of the 1,107 metabolites, 65% of the features with 

MSMS spectral data (n = 176) were annotated by at least compound class, which included 

phospholipids, hormones and steroids, and saturated and unsaturated fatty acids. Steroid 

concentrations in newborns can be as low as 10 ng/mL (Kim et al. 2015), while 

polyunsaturated fatty acid concentrations (PUFA) in cord blood can be as high as 1 mg/mL 

(Niinivirta et al. 2011), highlighting the dynamic range of the method.

3.4 Associations with ethnicity and birth weight

To assess our ability to discriminate biologically relevant small molecules, we screened for 

differences associated with the population characteristics: sex, ethnicity, and birth weight 

using multivariate regression models (Equation 3) for each tested metabolite (n = 1,107).

Initially, 19 discriminating small molecules for ethnicity and birth weight were determined 

by their p-values after BH correction. Peak morphology and integration quality were 

assessed manually for each discriminating metabolite, and resulted in exclusion of 1 feature. 

The curated list of 18 discriminating metabolites is summarized in Table 1. All small 

molecules with statistically significant birth weight and ethnicity coefficients from the 

multivariate regression models also had significant coefficients for these variables under the 

permutation tests, providing further evidence that there is a significant association between 

birth weight or ethnicity and feature intensity for these features.

The ‘DBS age” covariate was not significantly associated with any of the discriminating 

molecules (data not shown), suggesting that these metabolites were not affected by the 

duration of DBS storage at −20°C. This is particularly important because there was an 

overall affect of spot age on DBS extraction efficiency (e.g. older spots extracted less 

efficiently). Prior to data normalization there was a weakly negative correlation between 

TUS and DBS age (Pearson’s correlation coefficient −0.17), which was enhanced after 

adjusting for run order and potassium (Pearson’s correlation coefficient = −0.28). This 

indicates that the age of spot affected extraction efficiency, and further validates the use of 

DBS age as a covariate in the statistical model (Equation 3).
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3.5 Annotation of discriminating features

For further validation of the methodology, several of the significant features from section 3.4 

were putatively annotated to ensure biological plausibility. As shown in Table 2, the 

CompMS2Miner package facilitated the annotation of 16 discriminating features based on 

accurate mass and tandem mass spectra. For example, metabolite #13338 clustered with 

PUFA in the correlation network (Fig. 2b) and had an accurate mass of m/z 327.2329 within 

−0.138 ppm of docosahexaenoic acid (DHA, [M-H]−). When compared to a commercial 

DHA standard, the observed peak eluted within 2 sec of the standard peak and showed 

excellent MSMS spectral match between major fragments of m/z 283.2421, 229.1958, 

185.0054 and 59.0156 (Fig. 3). As major nutritional sources of DHA are fish and fish oil 

supplements, it is possible that the higher levels of DHA observed in the non-Hispanic 

population is due to dietary differences associated with income status. In fact, 62% of the 

Hispanic subjects were lower income (defined as annual household income < $45,000/yr), as 

opposed to only 10% of the non-Hispanic group. DHA consumption has been found to be 

lower in low-income women during pregnancy and lactation (Nochera et al. 2011).

Although the identity of metabolite #14374 is unknown, it was moderately correlated with 

DHA (r = 0.43, insert, Fig. 4), eluted at a similar retention time (within 45 sec), and was also 

present at higher abundance in the non-Hispanic population. Feature #38341 was not 

correlated with the other distinguishing metabolites for ethnicity, was higher in the Hispanic 

population, and had multiple fragments characteristic of the inositol head group of a 

phosphatidylinositol at m/z 152.9957 and 241.0113 (Hsu and Turk 2000).

Most of the features that discriminated for birth weight contained an MSMS base fragment 

ion at m/z 96.9606, characteristic of a sulfate group. Even in the absence of distinguishable 

MSMS fragments to allow an exact annotation, these features had correlation coefficients 

ranging from 0.32 to 0.98, and clustered in the correlation network with endogenous steroids 

and hormones (Fig. 2c and 5). Two sets of isomeric metabolites were observed with accurate 

masses of m/z 399.148 (#19409, #19411, #19412, #19413) and 429.194 (#22415, #22424), 

which were all highly correlated with each other and with metabolites #16685, #16535, and 

#18138 (correlation coefficient ranging from 0.70–0.98). Based on comparison with exact 

mass, metabolites #18138, #22424, and #22415 were putatively identified as conjugated 

androgen steroids. A third set of isomeric features observed at m/z 383.116 (#17918, 

#17919) were highly correlated with each other (r = 0.94), but only moderately correlated 

with the other distinguishing features for birth weight. Metabolite #17929 was putatively 

identified as a conjugated androgen.

Several of the discriminating metabolites had accurate masses similar to conjugated forms of 

steroids previously measured in human blood or amniotic fluid. For example, 16a-

hydroxyDHEAS (C19H28O6S, #17929) has been measured in arterial cord plasma (Mitchell 

and Shackleton 1969), 5-androstrenetriol (sulfated form, C19H30O6S, #18138) has been 

measured in amniotic fluid immediately prior to delivery (Schindler and Siiteri 1968), and 

androsterone sulfate (C19H30O5S, #22415, #22424) and 16a-hydroxyDHEAS (C19H28O6S, 

#17929) have been measured in infant plasma (Sánchez-Guijo et al. 2015).
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All of the discriminating features were negatively associated with birth weight. Although 

several steroids including progesterone, 17-hydroxyprogesterone (17-OHP), cortisol, and 

growth hormones have been found to be inversely associated with infant birth weight, 

newborn hormone levels are influenced by many factors such as delivery type, gestational 

age, maternal height, maternal hormone levels, and the day of sample collection (Carlsen et 

al. 2006; Lagiou et al. 2014; Rajesh et al. 2000; Schwarz et al. 2009).

4. Conclusions

We developed an LC-HRMS method for interrogating the fetal metabolome from archived 

newborn DBS (4.7-mm punches). Control punches of DBS from the CCLS, equivalent to ~8 

μL of whole blood, were used for validation. Over 1,000 prevalent and robust features were 

measured in the blood extracts, representing all of the major subclasses of metabolites. By 

measuring potassium in each punch as a proxy for hematocrit, we were able to adjust for 

nuisance technical variation. Even with a small sample size of 103 newborn DBS, we were 

able to identify 18 biologically plausible features that could discriminate for newborn birth 

weight and ethnicity. We are currently applying this methodology to newborn DBS from the 

CCLS, to seek features that discriminate between childhood leukemia cases and controls.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Plots of potassium concentration versus total usable signal for each subject. a) No 

adjustment; b) adjustment for analytical run order; and c) adjustment for run order and 

potassium concentration
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Fig. 2. 
a) Correlation network of 1,107 fetal blood metabolites made in Cytoscape with 

uncorrelated metabolites removed for clarity. Legend: phosphatidylserine (PS), 

phosphatidylcholine (PC), sphingomyelin (SM), phosphatidylethanolamine (PE), 

phosphatidylinositol (PI), mono-unsaturated fatty acid (MUFA), poly-unsaturated fatty acid 

(PUFA), saturated fatty acid (SFA). b) Expanded view of PUFA cluster. Metabolite #13338 

clustered with PUFAs (#13338 highlighted in yellow). c) Expanded view of hormone cluster. 

Features significantly associated with birth weight clustered with hormone/steroid sulfates 

(significant features highlighted in yellow)
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Fig. 3. 
Mirror plot of observed MSMS for feature #13338 (top) and MSMS of a commercially 

purchased DHA standard analyzed under the same experimental parameters (bottom).
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Fig. 4. 
Correlation matrices and dendrogram of discriminating features for ethnicity (a) and birth 

weight (b) based on Pearson correlation and ordered using agglomerative hierarchical 

clustering calculated from complete linkage using Euclidean distance (‘hclust’ function in 

R)
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Table 1

Selected coefficients from linear model (Equation 3) for discriminating features using logged levels of the 

metabolites.

Metabolite no. Coefficient Adj. p-value Permutation adj. p-value

Ethnicity

13338 0.305 0.0277 < 0.0001

38341 −0.339 0.0432 < 0.0001

14374 0.235 0.0475 < 0.0001

Birth weight

22415 −0.176 0.0383 0.0260

18138 −0.159 0.0337 0.0158

32014 −0.205 0.0116 < 0.0001

19412 −0.226 0.0116 < 0.0001

19411 −0.230 0.0178 < 0.0001

22424 −0.156 0.0383 0.0158

17929 −0.182 0.0178 0.0158

16538 −0.214 0.0116 < 0.0001

27970 −0.130 0.0425 0.0260

17919 −0.317 0.0132 < 0.0001

19409 −0.280 0.0116 < 0.0001

29345 −0.171 0.0337 0.0158

17918 −0.322 0.0178 < 0.0001

19413 −0.255 0.0116 < 0.0001

16685 −0.226 0.0116 < 0.0001
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