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Abstract 
 

Lithium-ion batteries provide lightweight, energy dense, and efficient power for portable 

electronics and electric vehicles. Accompanying the rise of lithium battery technology is the need 

for fast, non-destructive diagnostic techniques to determine important battery performance or 

safety parameters. Low-field NMR and relaxometry is an ideal technique to probe lithium-ion 

polymer (LiPo) batteries due to its ability to penetrate the aluminum casing of these batteries. The 

development of a few different low-field techniques are presented here to measure different battery 

parameters. This includes measuring the T1 and T2 relaxation times of LiPo batteries at differing 

states of charge, magnetic resonance imaging showing T2 as a function of position across a battery, 

and using pulsed field gradient 7Li nuclear magnetic resonance (NMR) to measure Li diffusion 

coefficients. 
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Chapter 1: Nuclear Magnetic Resonance Theory 

 

1.1 Introduction 

Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful tool for the 

spectroscopist. NMR can be used to determine molecular structure of various molecules, measure 

relaxation times, study diffusion, image a variety of samples in multi-dimensions, and has as much 

potential as one’s creativity dictates [1-4]. This collection of pages will include the theory of NMR 

using classical and quantum mechanical approaches designed to simplify the phenomenon of 

nuclear induction so that all may understand its splendor. The classical mechanics of the 

interactions between ‘spin,’ the mysterious quantum mechanical facet, and electromagnetic fields 

tends to be more easily digested, and as such, will be the start of this chapter. From there, a quantum 

mechanical view will be taken where the similarities will be highlighted between the two 

approaches. 

 

1.2 Classical Dynamics: The Bloch Equations 

Nuclei with spin values greater than zero interact with magnetic fields. In the macroscopic 

sense, these nuclei can be viewed as a collection of magnetic dipoles. The sum of the magnetic 

moment vectors, 𝜇⃑, of these dipoles in the absence of a magnetic field, 𝐵⃑⃑, results in a net zero bulk 

magnetic moment, 𝑀⃑⃑⃑, according to Eqn. 1.1. 

 

𝑴 = ∑ 𝝁𝑖𝑖          (1.1) 
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Yet, in the presence of a magnetic field, the magnetic moments of the nuclei either align with or 

against the external magnetic field to achieve thermal equilibrium as seen in Fig. 1. (This will be 

discussed in further detail in later chapters). 

 

 

Figure 1.1. Illustration depicting nuclear spins randomly aligned in the absence of an external 

magnetic field 𝐵⃑⃑ (left), and aligned parallel and antiparallel with 𝐵0, the z component of 𝐵⃑⃑ (right). 

The equations of motion that govern this process are known as the Bloch equations derived 

by Felix Bloch in 1946 as a classical and macroscopic approach to describe the lineshape of a 

simple NMR spectrum [5].  

 

The total magnetic moment of a sample, or magnetization 𝑴, is the summation over all 

individual magnetic moments in the sample as seen in Eqn. 1.1. In terms of the total spin angular 

momentum 𝑷, Eqn. 1.1 can be written as, 
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𝑴 = 𝛾𝑷         (1.2) 

 

where γ is the ratio between the magnetic moment and the angular momentum and is known as the 

gyromagnetic ratio. The interaction of an applied magnetic field and the magnetization results in 

a torque on the system which changes the angular momentum 𝑷. 

 

      
𝑑

𝑑𝑡
𝑷 = 𝑴×𝑩                    (1.3) 

 

We see that 𝑷 and 𝑴 are related by Eqn. 1.2 so we can write, 

 

    
𝑑

𝑑𝑡
𝑴 = 𝛾[𝑴 × 𝑩]         (1.4) 

 

The classical motion of the individual nuclear moments 𝝁 in a sample are described by a 

similar equation. The steady-state solution of which is a precession of the system of moments 

around the applied field direction with angular velocity 𝝎0 = 𝛾𝑩0.  This is known as the Larmor 

precession or frequency, where the frequency would be 𝛾𝐵/2𝜋.  

 When placed in a magnetic field 𝐵0, the bulk magnetic moment of the sample will change 

from a net zero moment to 𝑀0, the equilibrium value of magnetization. The equation of motion 

for the magnetization of the sample must include the Larmor precession as well as the shift to an 

equilibrium value of magnetization as it approaches thermal equilibrium. The approach to thermal 

equilibrium is known as relaxation with characteristic time constants T1 and T2. Bloch posited that 
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this relaxation decayed exponentially with components parallel and perpendicular to 𝑴0. Adding 

this relaxation phenomenon to Eqn. 1.4 gives 

 

      
𝑑

𝑑𝑡
𝑀𝑥 = 𝛾[𝑴 × 𝑩]𝑥 −

𝑀𝑥

𝑇2
 

      
𝑑

𝑑𝑡
𝑀𝑦 = 𝛾[𝑴 × 𝑩]𝑦 −

𝑀𝑦

𝑇2
        (1.5) 

      
𝑑

𝑑𝑡
𝑀𝑧 = 𝛾[𝑴 × 𝑩]𝑧 −

(𝑀𝑧−𝑀0)

𝑇1
 

 

A brief summary of relaxation is provided later in this chapter and a more extensive dive into the 

theory of relaxation occurs in Ch. 3. 

  

1.2.1 Applying a Radio Frequency Field 

Now, suppose a linearly polarized radio frequency (RF) field, 𝑩𝑟𝑓 = 𝐵1cos⁡(𝜔𝑡)𝒊̂ is 

applied to the system of spins that make up the sample. This oscillating component of the RF field 

can be resolved into two components rotating in opposite directions with an angular frequency ±ω. 

Only the component rotating in the same direction as the Larmor precession (+ω) will be 

considered. In the presence of a static magnetic field the magnetization in the transverse plane will 

be rotating around the +𝑧 direction with angular frequency ω. With the addition of the 𝑩1field, 

the 𝑩 field experienced by the sample becomes, 

 

𝑩 = 𝐵1 cos(𝜔𝑡) 𝒊̂ + 𝐵1sin(𝜔𝑡) 𝒋̂ + 𝐵0𝒌̂       (1.6) 
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where 𝒊̂, 𝒋̂, and 𝒌̂ are unit vectors in the x, y, and z directions. Now, inserting the new magnetic 

field exerted upon our spins as expressed in Eqn. 1.6 with the free precession and relaxation terms 

in Eqn. 1.5, we get the Bloch equations: 

 

                                           
𝑑

𝑑𝑡
𝑀𝑥 = 𝛾[𝐵1 sin(𝜔𝑡)𝑀𝑧 + 𝐵0𝑀𝑦] −

𝑀𝑥

𝑇2
 

                                           
𝑑

𝑑𝑡
𝑀𝑦 = −𝛾[𝐵0𝑀𝑥 − 𝐵1cos⁡(𝜔𝑡)𝑀𝑧] −

𝑀𝑦

𝑇2
                                    (1.7) 

                                  
𝑑

𝑑𝑡
𝑀𝑧 = −𝛾[𝐵1𝑀𝑥 sin(𝜔𝑡) + 𝐵1𝑀𝑦cos⁡(𝜔𝑡)] −

(𝑀𝑧−𝑀0)

𝑇1
 

 

Neglecting the relaxation terms for the moment, it is simple to show the solution to these equations 

under the condition 𝑴(𝑡) = 𝑀0𝒌, is 

 

𝑀𝑥 = 𝑀0𝑠𝑖𝑛(𝜔1𝑡)𝑠𝑖𝑛(𝜔0𝑡) 

                                                      ⁡𝑀𝑦 = 𝑀0𝑠𝑖𝑛(𝜔1𝑡)𝑐𝑜𝑠(𝜔0𝑡)        (1.8) 

𝑀𝑧 = 𝑀0𝑐𝑜𝑠(𝜔1𝑡) 

 

where 𝜔1 = 𝛾𝐵1. Eqn. 1.8 implies that when a RF field of frequency 𝜔0 is applied transverse to 

the large, static magnetic field, 𝐵0, the net magnetization vector precesses about 𝐵0 (+ z-axis) at a 

frequency 𝜔0 and about the RF field 𝐵1 at a frequency 𝜔1 as seen in Fig. 1.2. 
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Figure 1.2. The trajectory of the nuclear spin magnetization in the laboratory frame of reference 

when a transverse 𝑩1 field is applied. When 𝜔 = 𝜔0 the net magnetization precesses about both 

𝑩0 at frequency 𝜔0 and about 𝑩1 at frequency 𝜔1. 

1.2.2 The Rotating Frame of Reference 

If the frame of reference were to change to be rotating with the 𝑩1 field about 𝑩0, then 𝑩1 

would appear to be stationary and there would only be precession about 𝑩1 at a frequency of 𝜔1. 

This new frame of reference is known as the rotating frame. 

 After a small magnetic field 𝑩1 is applied transverse to the static magnetic field, the net 

magnetization will not start to precess about the z-axis in the rotating frame because the static 𝐵0 

field has been effectively removed when on resonance (𝜔0 = 𝜔). Instead, the precessional motion 

of 𝑴0 (i.e. 𝜔0 = 𝛾𝐵0) in the rotating frame is reduced to (𝜔0 − 𝜔), known as the offset frequency 

Ω, which corresponds to precession in an apparent field (𝜔0 − 𝜔)/𝛾 ≡ 𝐵0(1 − 𝜔0/𝜔). This 

means that the residual field ∆𝐵0 along the z-axis in the rotating frame is ∆𝐵0 = Ω/𝛾 which 

vanishes if 𝜔 = 𝜔0. If the resonance offset Ω⁡is non-zero, then there will be some effective field 

𝑩𝑒𝑓𝑓 in the rotating frame and 𝑴0 will precesses about 𝑩𝑒𝑓𝑓 in that frame. The motion of 
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magnetization, neglecting relaxation, in the rotating frame about an effective field can be seen in 

Figure 1.3 for two cases of offset frequency.  

 

 

Figure 1.3. Effective fields and precessional motion of the magnetization vector 𝑴0 in the rotating 

frame with an applied radio frequency pulse 𝜔1 (a) below resonance and (b) on resonance. 

To simplify the Bloch equations further, we will apply this concept of the rotating frame 

of reference to Eqn. 1.7. In a static magnetic field 𝐵0 along the z direction the transverse 

magnetization 𝑀𝑥𝑦 will rotate around the z axis with an angular velocity 𝜔0. If an observer were 

to rotate at some angular velocity ω in the same direction, then 𝑀𝑥𝑦 would appear to move as 𝜔0 −

𝜔. If the observer rotated at exactly 𝜔0 then the 𝑀𝑥𝑦 magnetization would appear stationary. We 

will let 𝑥, 𝑦, 𝑧 be the cartesian coordinates for the lab frame (or stationary frame) of reference while 

𝑥′, 𝑦′, 𝑧′ will represent the rotating frame of reference which is rotating around the z ( 𝑧 = 𝑧′) axis 
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of the lab frame at angular velocity ω. So, how does the transverse magnetization act in the rotating 

frame of reference? To find out, lets transform to the rotating frame by applying a rotation matrix 

to 𝑴. 

 

              [
cos⁡(𝜔𝑡) −sin⁡(𝜔𝑡) 0
sin⁡(𝜔𝑡) cos⁡(𝜔𝑡) 0
0 0 1

] ⋅ [

𝑀𝑥
𝑀𝑦
𝑀𝑧

] = [

𝑀𝑥 cos(𝜔𝑡) −𝑀𝑦 sin(𝜔𝑡)

𝑀𝑥 sin(𝜔𝑡) + 𝑀𝑦 cos(𝜔𝑡)

𝑀𝑧

] = [

𝑀𝑥
′

𝑀𝑦
′

𝑀𝑧
′

]             (1.9) 

 

Now, to find the equation of motion for 𝑀𝑥𝑦
′  with respect to time we will differentiate Eqn. 1.9 

and substitute in Eqn. 1.7 to reveal the Bloch equations in the rotating frame 

 

                                                        
𝑑

𝑑𝑡
𝑀𝑥
′ = Ω𝑀𝑦

′ −
𝑀𝑥
′

𝑇2
 

                                                        
𝑑

𝑑𝑡
𝑀𝑦
′ = Ω𝑀𝑥

′ −
𝑀𝑦
′

𝑇2
+ 𝜔1𝑀𝑧                                             (1.10) 

                                                        
𝑑

𝑑𝑡
𝑀𝑧
′ = −𝜔1𝑀𝑦

′ −
𝑀𝑧−𝑀0

𝑇1
 

 

where Ω is the offset frequency equal to 𝜔0 − 𝜔, 𝜔0 = 𝛾𝐵0 is the Larmor frequency precessing 

around 𝐵0, and 𝜔1 = 𝛾𝐵1 is the nutation frequency. 

 

1.2.3 Pulsed NMR 

Most modern NMR spectrometers employ pulsed magnetic resonance techniques. In 

pulsed NMR the RF field is turned on for a short period, usually anywhere from 1 μs to 60 μs, 

which is short relative to 𝑇1 and 𝑇2 times (on the order of milliseconds) and is then turned off 
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again. The 𝐵1 field applied is set sufficiently closely to the resonance frequency of the nucleus of 

interest so that the RF pulse exerts a torque on the net magnetization in the rotating frame. 

 Upon applying a RF pulse in the rotating frame of reference, the nuclear magnetization, 

𝑴0, will precess at a rate of 𝜔1 = 𝛾𝐵1⁡around the effective magnetic field (Fig. 1.3). The stronger 

the applied RF pulse, the faster the precession occurs. Eventually, the resonant RF pulse flips the 

net magnetization into the transverse plane (known as a 90° pulse) according to the equation 𝛽 =

𝜔1𝜏𝑝, where 𝛽 equals the flip angle from the +𝑧 axis (the direction of 𝑩0), 𝜔1 equals the angular 

frequency of the pulse, and 𝜏𝑝 equals the RF pulse time. After a time twice as long, the net 

magnetization will lie along the −𝑧 direction (known as a 180° pulse). By letting 𝛽 equal 
𝜋

2
 we can 

find a set value for 𝜏𝑝 (𝜏𝑝 =
𝜋

2𝛾𝐵1
) where 𝑴0 will have been turned through 90°. The use of strong 

RF pulses allows us to position the magnetization in any direction we choose without any decrease 

in magnitude of 𝑴0 as long as the RF pulse time (𝜏𝑝) is significantly smaller than 𝑇1 or 𝑇2. This 

effect can be seen in Figure 1.4. 

 



10 
 

 

Figure 1.4. The effects of a 90° RF pulse (a) and a 180° RF pulse (b) on the net magnetization 𝑴0, 

in the rotating frame of reference. 

1.2.4 Relaxation 

To this point, we have neglected the relaxation terms when describing the Bloch equations 

and when discussing RF pulses. This phenomenon will be addressed here briefly while a more 

extensive look at the theory of relaxation will be provided in Ch. 3.   

The purpose of an RF pulse is to perturb the spin system from thermal equilibrium. 

Macroscopically, this looks like applying a RF pulse to the system to shift the 𝑀0 magnetization 

away from its equilibrium position along the static magnetic field 𝐵0 direction (Fig. 1.4). After the 

pulse, the magnetization will be restored to its equilibrium position through a process called spin-

lattice or longitudinal relaxation. The phenomenological description of this process is 

 

                                                  
𝑑𝑀𝑧

𝑑𝑡
= −(𝑀𝑧 −𝑀0)/𝑇1                                              (1.11) 
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where 𝑇1 is the longitudinal relaxation time. This process is the spin system exchanging energy 

with the surrounding thermal reservoir, known as the “lattice.” Transverse, or spin-spin, relaxation 

is described by the equation 

 

                                                                      
𝑑𝑀𝑥,𝑦

𝑑𝑡
=
−𝑀𝑥,𝑦

𝑇2
⁄                                                (1.12) 

 

where 𝑇2 is the transverse relaxation time. This process is where nuclear spins come to equilibrium 

between themselves, hence “spin-spin” relaxation. In addition to this flow of energy between spins, 

the net magnetization will also start to dephase because each spin in the spin packet feels a slightly 

different magnetic field and rotates at slightly different Larmor frequencies. 𝑇1 governs the rate of 

recovery of the longitudinal magnetization back to thermal equilibrium and 𝑇2 governs the rate of 

magnetization loss in the transverse plane. 

 

1.2.5 Steady State Solution to the Bloch equations and Lineshapes 

If we solve Eqn. 1.10 for 𝑀𝑥
′ , 𝑀𝑦

′ , and 𝑀𝑧
′  with the time derivative equal to zero, we get the 

steady state solutions to the Bloch equations in the rotating frame 

 

                                                         𝑀𝑥
′ =

𝑀0𝜔1𝑇2
2Ω

𝑇2
2Ω2+1+𝑇1𝑇2𝜔1

2                                                        (1.13) 

                                                         𝑀𝑦
′ =

𝑀0𝜔1𝑇2

𝑇2
2Ω2+1+𝑇1𝑇2𝜔1

2                                                        (1.14) 

                                                         𝑀𝑧
′ =

𝑀0[1+𝑇2
2Ω2]

𝑇2
2Ω2+1+𝑇1𝑇2𝜔1

2                                                        (1.15) 
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Eqn. 1.13 is known as the dispersive mode and Eqn. 1.14 is known as the absorptive mode. The 

shape of the 𝑀𝑥
′  and 𝑀𝑦

′  signal when 𝜔1 ≪ (𝑇1𝑇2)
−1 2⁄  is shown in Figure 1.5 and are known as 

Lorentzian lineshapes.  

 

 

Figure 1.5. Lorentzian absorption and dispersion lineshapes predicted by the solutions to the Bloch 

equations (Eqn. 1.10 and 1.11.) 

When the condition 𝜔1 ≪ (𝑇1𝑇2)
−1 2⁄  is met, the absorption lineshape is proportional to  

 

                                                         𝑔(𝜈) = ⁡
2𝑇2

1+4𝜋2𝑇2
2(𝜐0−𝜐)2

                                                    (1.16) 
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where 𝑔(𝜈) is called the lineshape factor, 𝜔0 = 2𝜋𝜐0 and 𝜔 = 2𝜋𝜐 were substituted into Eqn. 

1.14 to be in frequency units. The width of the absorption line at half-height is equal to Δ𝜐1
2⁄
=

(𝜋𝑇2
∗)−1, called the apparent 𝑇2

∗. Fig. 1.5 demonstrates the shape of an ideal experiment where the 

transverse relaxation is exponential and single valued. Often, the NMR signal is not truly 

Lorentzian due to instrumental effects such as inhomogeneity broadening. This broadening occurs 

because of small variations in the magnetic field strength 𝐵0 across the dimensions of a sample. 

This variation leads to a mixture of lines with slightly different Larmor frequencies. The natural 

linewidth of the signal (𝜋𝑇2
∗)−1 is so narrow that instrumental effects can have a large effect on 

the observed linewidth. To minimize the effects of field inhomogeneity, at least at high-field, the 

cylindrical sample tube can be spun about the z-axis to seem more homogeneous about the x and 

y-axis. Shimming, or altering the position of the coils, can also be used to make the 𝐵0 field along 

the z-axis more homogeneous to reduce line broadening and allow the width of the lineshape to 

more accurately reflect the 𝑇2
∗.  

 

1.2.6 Free Induction Decay and Fourier Transform NMR 

 After a 90° pulse, the net magnetization is placed in the 𝑥′𝑦′ plane. Once the net 

magnetization is in the 𝑥𝑦′ plane, it will rotate about the 𝑩0 field (+ z-axis) at the appropriate 

Larmor frequency according to the nuclei of interest. As the transverse magnetization precesses 

about the z-axis in the transverse plane, it induces a current in the detecting coil. Plotting the 

induced current as a function of time results in a sinusoidal wave, which, inevitably decays due to 

the dephasing of the spin packets of the individual spins in the sample that all have slightly 

different Larmor frequencies. This plot is called the Free Induction Decay (FID). The Fourier 

transform (FT) of this time domain spectrum give the frequency domain equivalent. This reveals 



14 
 

to the observer how many different frequencies are summed together to produce the FID in the 

time domain.  
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Chapter 2: NMR: A Quantum Mechanical Approach 

 

2.1 Quantum Mechanical Description of an Ensemble of Spins 

 Systems observed in NMR experiments contain exceedingly large numbers of nuclear spins 

and must be treated statistically as an “ensemble.” Significant differences between the classical 

approach to NMR and the quantum mechanical is that the classical approach is only valid for a 

collection of non-interacting spins. In addition, whenever there are equivalent spin interactions, 

solving the problem of finding spin parameters becomes quantum mechanical in nature because 

atomic nuclei are characterized by states that are inherently quantum mechanical. Individual spins 

do not have associated 𝑇1 or 𝑇2 values, only interacting spins can undergo relaxation. We therefore 

need a process to be able to describe real systems with all of their nuance.  

  

2.1.1 Quantum Mechanic Basics 

 There are few necessary components of quantum mechanics to understand when describing 

nuclear magnetic resonance [1-5]. The first is the concept of a spin state which can be described 

by a discrete set of possibilities known as a basis set. For NMR, this basis set will be that of the 

angular momentum, m, measured along the z-axis. The angular momentum may take on values 

ranging from −𝐼, −𝐼 + 1, … , 𝐼 − 1, 𝐼 where I is called the angular momentum quantum number 

(sometimes known as “spin”) and can be a discrete set of integer or half-integer numbers. This 

integer is a fixed value that describes the ground state of a nucleus such as 1H having a spin 𝐼 =

1/2 or 6Li having a spin 𝐼 = 1 quantum number. In general, angular momentum has units of ℏ, 

but we will neglect explicitly writing it out unless necessary. The state of a nucleus can be written 



17 
 

in terms of a complete set of functions to describe any possible wave function of the system as a 

linear combination of basis states. 

 

   |Ψ⟩ = ∑ 𝑐𝑚𝑚 |𝑚⟩                                                        (2.1) 

 

where cm is the coefficient of the overlap integral and can be represented as a complex value with 

amplitude and phase. 

 

2.1.2 Angular Momentum and Commutation Relationships 

The second concept to understand is that of the eigenvalue equation. Using angular 

momentum for the example observable, its eigenvalue equation for determining the angular 

momentum component along the z-axis looks like 

 

                                                                 𝐼𝑧|𝑚⟩ = 𝑚|𝑚⟩                                                           (2.2) 

 

Here, 𝐼𝑧 is the ‘operator’ for angular momentum along the z-axis and m is the resultant eigenvalue. 

For a spin ½ nucleus, |𝑚⟩ has a discrete set of states which can be represented by the spin up state, 

α, and the spin down state, β. Applying the 𝐼𝑧 operator to these states results in the eigenvalues 

𝐼𝑧|α⟩ = +
1

2
|α⟩ and 𝐼𝑧|β⟩ = −

1

2
|β⟩. The Pauli matrices can be used to represent the x, y, and z 

components of spin in the |±𝑚⟩ basis for a spin ½ nucleus 

 

                                     𝐼𝑥 =
1

2
[
0 1
1 0

] , 𝐼𝑦 =
1

2
[
0 −𝑖
𝑖 0

] , and⁡𝐼𝑧 =
1

2
[
1 0
0 −1

] .                          (2.3) 
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This brings us to the third concept to understand in the pursuit of understanding NMR - 

commutation relationships. All properties of the spin operators can be deduced from commutation 

relations such as 

 

                                                           [𝐼𝑥, 𝐼𝑦] = 𝐼𝑥𝐼𝑦 − 𝐼𝑦𝐼𝑥 = 𝑖𝐼𝑧                                          

                                                           [𝐼𝑦, 𝐼𝑧] = 𝐼𝑦𝐼𝑧 − 𝐼𝑧𝐼𝑦 = 𝑖𝐼𝑥                                              (2.4) 

                                                           [𝐼𝑧 , 𝐼𝑥] = 𝐼𝑧𝐼𝑥 − 𝐼𝑥𝐼𝑧 = 𝑖𝐼𝑦. 

 

The square of the magnitude of the total angular momentum is represented by the operator 

 

                                                                  𝑰2 = 𝐼𝑥
2 + 𝐼𝑦

2 + 𝐼𝑧
2.                                                    (2.5) 

 

It can be seen from Eqn. 2.4 that the 𝐼𝑥, 𝐼𝑦, and 𝐼𝑧 operators do not commute meaning that there 

are no states that are simultaneous eigenstates of these operators. For example, if a spin function 

is in an eigenstate of 𝐼𝑧 with eigenvalue 𝑚, then an observation of the z component of angular 

momentum can be determined exactly, while the x and y components would remain uncertain. The 

𝑰2 operator (Eqn. 2.5), on the other hand, does commute with 𝐼𝑥, 𝐼𝑦, and 𝐼𝑧 which means that one 

can determine both the magnitude of angular momentum and its component in one direction 

simultaneously. To navigate between states, it is useful to introduce the raising and lowering 

operators 

 

                                                         𝐼+ = 𝐼𝑥 + 𝑖𝐼𝑦 and 𝐼− = 𝐼𝑥 − 𝑖𝐼𝑦.                                       (2.6) 
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These linear combination of 𝐼𝑥 and 𝐼𝑦 operators change a |+𝑚⟩ state into a |−𝑚⟩ state and vice 

versa. Here, we have derived the properties of the spin operators through commutation 

relationships without having to know anything about the internal structure of the nuclei.  

 

2.1.3 The Schrödinger Equation 

The last concept to introduce for a working knowledge of quantum mechanics in its relation 

to NMR is that the dynamics of the system can be completely described by the Schrödinger 

Equation 

 

                                                              𝑖ℏ
𝜕

𝜕𝑡
|Ψ(x, t)⟩ = 𝐻|Ψ(x, t)⟩                                          (2.7) 

 

where 𝐻 is the Hamiltonian (or energy) operator  

 

                                                                      𝐻 = −𝛾ℏ𝑩0𝐼𝑧.                                                     (2.8) 

 

If we consider our states to be stationary in time, we can solve the Schrödinger Equation as its first 

order differential equation to get 

 

                                                               |Ψ(x, t)⟩ = 𝑒−𝑖𝐻𝑡|Ψ(x, 0)⟩.                                         (2.9) 

 

Nuclei have a magnetic dipole moment proportional to their angular momentum, which is 

described by the nuclear gyromagnetic ratio, γ. The classical interaction energy between the 

magnetic dipole moment 𝝁 and the magnetic field 𝑩0 is 𝐸 = −𝝁 ⋅ 𝑩0, and the corresponding 
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quantum mechanical operator is the Hamiltonian above (Eqn. 2.8) where the magnetic field is 

pointing along the z-axis. This interaction is known as the Zeeman interaction. Now, consider a 

nuclear spin state |Ψ⟩ under the influence of the 𝐵0 field along the z-axis. We can see that Eqn. 

2.9 becomes |Ψ(x, t)⟩ = 𝑒−𝑖𝛾𝐵0𝐼𝑧𝑡|Ψ(x, 0)⟩. This is essentially a clockwise rotation about the z-

axis by an angle 𝛾𝐵0𝑡 where 𝛾𝐵0 = 𝜔0. Here, we see the similarity between the classical approach 

and the quantum approach to Larmor precession of a nuclei in the presence of a strong magnetic 

field 𝐵0.  

  

2.1.4 The Density Operator 

So far, our quantum mechanical treatment covered the dynamics of a single spin. In reality, 

we deal with ensembles of spins that make up our systems and may occupy different states |Ψ⟩. 

Our solution, therefore, needs to take into account the resulting ensemble averages. It is useful to 

accomplish this by introducing the spin density operator 

 

                                                                  𝜌(𝑡) = |Ψ⟩⟨Ψ|                                                        (2.10) 

 

where 𝜌 is our density operator and the overbar represents an averaging over all spins in the system. 

An important property to note about the density operator is its ability to predict the expectation 

value (average over all spins) of another operator. For example, 

 

                                         〈𝑄〉 = ⟨Ψ|𝑄|Ψ⟩ = 𝑇𝑟{|Ψ⟩⟨Ψ|Q} = 𝑇𝑟{𝜌𝑄}                                   (2.11) 

 



21 
 

where 𝑄 is our operator corresponding to some observable, and 𝑇𝑟 represents the trace of the 

matrix generated by the two operators. This is a critical component to the density operator 

formulation because we now have the expectation value for the entire system in terms of only two 

operators. If we now apply the Schrödinger equation to our density operator, we can determine its 

evolution in time. 

 

𝜕

𝜕𝑡
𝜌(𝑡) =

𝜕

𝜕𝑡
(|Ψ⟩⟨Ψ|) 

                                                                         = [−𝑖𝐻|Ψ⟩⟨Ψ| + ⁡𝑖|Ψ⟩⟨Ψ|𝐻] 

                                                                         = −𝑖[𝐻𝜌(𝑡) − 𝜌(𝑡)𝐻] 

                                                                         = −𝑖[𝐻, 𝜌(𝑡)]                                                  (2.12) 

 

This equation is known as the Liouville-von Neumann equation. The diagonal elements of the 

resulting density matrix represent the fractional populations of the spin system and the off-diagonal 

elements represent the coherence. The differences between fractional populations of the density 

matrix are the longitudinal magnetization of the system. Now, the goal is to use this awesome 

mechanic to predict the NMR experiment.  

 To do this, we will need to determine the values of the density operator. Let’s do this for a 

spin ½ using statistical mechanics.  

 

                                                                𝜌𝑚,𝑛 =⁡
𝑒
−
ℏ𝜔𝑚
𝑘𝑏𝑇

∑ 𝑒
−
ℏ𝜔𝑛
𝑘𝑏𝑇𝑛

                                                       (2.13) 
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where the exponential factors are 𝜔+ = +
1

2
𝜔0 = −

1

2
𝛾𝐵0 and 𝜔− = −

1

2
𝜔0 = +

1

2
𝛾𝐵0, and 𝑘𝑏 is 

the Boltzman constant. To simplify the math let’s let ℬ =
ℏ𝛾𝐵0

𝑘𝑏𝑇
 so that the exponentials are now 

𝑒+
1

2
ℬ

 and 𝑒−
1

2
ℬ

. Using the small angle approximation and the high-temperature limit results in the 

density operator at equilibrium, 

 

                                            𝜌 = (

1

2
+
1

4
ℬ 0

0
1

2
−
1

4
ℬ
) =

1

2
1̂ +

1

2
ℬ𝐼𝑧.                                       (2.14) 

 

The time evolution of the density operator can be obtained by applying a rotation sandwich. For 

example, applying a 90° pulse about the x-axis would look like 

 

𝜌(𝑡2) = 𝑅𝑥 (
𝜋

2
)𝜌(𝑡1)𝑅𝑥 (−

𝜋

2
) = 𝑅𝑥 (

𝜋

2
)
1

2
1̂ +

1

2
ℬ𝐼𝑧𝑅𝑥 (−

𝜋

2
) 

𝜌(𝑡2) =
1

2
𝑅𝑥 (

𝜋

2
) 1̂𝑅𝑥 (−

𝜋

2
) +

1

2
ℬ𝑅𝑥 (

𝜋

2
) 𝐼𝑧𝑅𝑥 (−

𝜋

2
) 

                                                             𝜌(𝑡2) =
1

2
1̂ −

1

2
ℬ𝐼𝑦                                                      

                                         𝜌(𝑡2) =
1

2
(
1 0
0 1

) −
1

2
ℬ
1

2𝑖
(
0 1
−1 0

) = (

1

2
−
ℬ

4𝑖
ℬ

4𝑖

1

2

).                       (2.15) 

 

We can see here how the RF pulse has equalized the diagonal elements and has introduced 

coherence into the system. This is equivalent to an RF pulse in the previous chapter using classical 

mechanics, but here, we can see how the coherence influences the system. Because we measure 

real systems of spin, including their interactions, it is useful to highlight the difference in the two 
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approaches and how the density operator can help achieve a description of a real system. The 90° 

pulse has moved the net magnetization into the −y-axis from the +z-axis and introduced coherence 

into the spin system.  

 Now let’s see what happens to the spin system after the RF pulse has ended and is only 

under the effects of the 𝐵0 field. We will use the same approach and apply the evolution operator 

to the density matrix 𝜌(𝑡2).  

𝜌(𝑡3) = 𝑅𝑧(Ω0𝜏) (
1

2
1̂ −

1

2
ℬ𝐼𝑦)𝑅𝑧(−Ω0𝜏) =

1

2
1̂ −

1

2
ℬ𝑅𝑧(Ω0𝜏)𝐼𝑦𝑅𝑧(−Ω0𝜏) 

𝜌(𝑡3) =
1

2
1̂ −

1

2
ℬ (𝐼𝑦𝑐𝑜𝑠(Ω0𝜏) − 𝐼𝑥𝑠𝑖𝑛(Ω0𝜏)) 

𝜌(𝑡3) =
1

2
1̂ −

1

2
ℬ
1

2𝑖
( 0 𝑒−iΩ0𝜏

𝑒+iΩ0𝜏 0
) 

                                                 𝜌(𝑡3) =
1

2
1̂ −

ℬ

4𝑖
𝑒−iΩ0𝜏𝐼+ +

ℬ

4𝑖
𝑒+iΩ0𝜏𝐼−                                  (2.16) 

 

where τ = 𝑡3 − 𝑡2 and Ω0 is the offset frequency. We can see that the populations did not change, 

while the coherences picked up a time-dependent phase factor.  

 At this point, one could use the tools demonstrated thus far to develop a NMR pulse 

sequence from start to finish which would describe the state of the system at any given moment. 

To summarize what has been exhibited so far: magnetization is derived from angular momentum, 

the net magnetization is the differences in fractional populations of our spin states, manipulating 

the density operator using RF pulses or the time evolution operator lead to a time-dependent 

oscillatory behavior of the transverse magnetization (coherences) which can be represented with 

angular momentum operators, and that signal detection is just the observation of the precession of 

the spins.    
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 The NMR detector is generally setup to detect the time varying signal along the x-axis. For 

this setup, the desirable observable is 〈𝐼𝑥〉 = 𝑇𝑟{𝜌𝐼𝑥}. Because 𝐼𝑥 has 𝐼+ and 𝐼− components, seen 

by rearranging Eqn. 2.6, we can discern that 〈𝐼𝑥〉 is proportional to the off-diagonal elements of 

the density matrix (off-diagonal elements can be represented by 𝜌+− and 𝜌−+). The NMR signal 

is generally detected as the -1 coherence, which is essentially the 𝜌−+ matrix element of the density 

matrix. The detectable signal is proportional to 𝑆(𝑡) = 2𝑖𝜌−+(𝑡)𝑒
−𝑖𝜙𝑟𝑒𝑐  where 𝜙𝑟𝑒𝑐 is just the 

phase that the receiver is set to. What is important here is that the precession of 𝜌−+(𝑡) can give a 

prediction of the expected signal called the Free Induction Decay (FID). For a more realistic 

prediction, we must account for relaxation, just as we did with the classical approach. The 𝜌−+(𝑡) 

coherence evolves as 𝜌−+(𝑡2) = 𝜌−+(𝑡1)𝑒
(𝑖Ω0−

1

𝑇2
)𝜏

 when adding the relaxation term. The spin 

operators evolve as 𝐼𝑥 = (𝐼𝑥 cos(Ω0𝜏) + 𝐼𝑦 sin(Ω0𝜏))𝑒
−𝜏/𝑇2 and 𝐼𝑦 = (𝐼𝑦 cos(Ω0𝜏) −

𝐼𝑥 sin(Ω0𝜏))𝑒
−𝜏/𝑇2 when including relaxation. The fractional populations evolve as 𝜌++(𝑡2) =

(𝜌++(𝑡1) − 𝜌++
𝑒𝑞 )𝑒

−𝜏 𝑇1⁄ + 𝜌++
𝑒𝑞

 and 𝜌−−(𝑡2) = (𝜌−−(𝑡1) − 𝜌−−
𝑒𝑞 )𝑒

−𝜏 𝑇1⁄ + 𝜌−−
𝑒𝑞 .  

 We now have the full picture of the quantum mechanical approach to NMR; from angular 

momentum to the spin density operator and how that generates a real signal including relaxation. 

Using the tools described in this chapter makes it possible to take a pulse sequence from start to 

finish and get a predicted signal making this quite a powerful tool for the spectroscopist.
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Chapter 3: Relaxation 

 

3.1 Introduction 

 Relaxation is the process by which nuclear spins return to equilibrium. It can essentially be 

thought of as a process by which energy is allowed to flow between spins and molecular motion. 

Relaxation occurs in a real spin system where the spins can interact with each other. You cannot 

have relaxation for an isolated spin. Equilibrium describes the state at which the populations of 

energy levels are those predicted by Boltzmann statistics. Equilibrium is also when there is no 

transverse magnetization, or more generally, no coherences present in the spin system. 

 

3.2 Origins of Spin Relaxation 

 A nucleus in a liquid will experience a random fluctuating field due to the magnetic 

moments of nuclei of other molecules as they execute Brownian motion. This randomly fluctuating 

field can be resolved by Fourier analysis into terms oscillating at different frequencies. These 

components can be further subdivided into elements parallel and perpendicular to the static 

magnetic field, 𝐵0. 
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Figure 1. A graphic of a system of spins in a static magnetic field, 𝐵0, where the magnetic moment 

vector is broken up into parallel and perpendicular components.  

 

The component perpendicular to the static field, 𝐵0⊥, which oscillates at the Larmor frequency 

induces transitions between energy levels given that the energy corresponds to the Zeeman 

splitting of the nuclei of our system. The population of the states relax back to Boltzmann 

equilibrium and is described by 𝑇1, the relaxation of the longitudinal component of the net 

magnetization, 𝑴. 

 𝐵0⊥ also affects 𝑇2 in addition to the parallel component, 𝐵0∥. To illustrate this notion, from 

the uncertainty principle we know that Δ𝐸 = ℏ Δ𝑡⁄ , where Δ𝑡 represents the lifetime of the states. 

The lifetime of the states is reduced by random fluctuations of the local magnetic field. Therefore, 

fluctuations that induce transitions between states also increase linewidth associated with the 

transverse relaxation, 𝑇2, as seen in Ch. 1 where the width at half-height is equal to Δ𝜐1
2⁄
=
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(𝜋𝑇2
∗)−1. The other contribution comes from the fluctuations in the z-direction which relate 

directly to variations in the total magnetic field in the z-direction, and hence, linewidths.  

 

3.3 Theory of Relaxation 

 If relaxation is the process by which spins return to equilibrium, then let us start by 

describing equilibrium mathematically (for a spin ½ particle). Equilibrium magnetization arises 

from the unequal populations of the two states that correspond to the α and β spin states. 𝑀𝑧 is 

proportional to the population difference, 

 

                                                          𝑀𝑧 ∝ (𝑁𝛼 − 𝑁𝛽) ∝ 𝑛                                                       (3.1) 

 

where we will let 𝑛 = 𝑁𝛼 − 𝑁𝛽 and 𝑁 = 𝑁𝛼 + 𝑁𝛽. If the populations at some time, 𝑡, are not in 

equilibrium, then for the system to reach equilibrium the populations of one state must decrease 

and that of the other must increase. This implies that there must be transitions between the two 

levels. Next, we will assume that the rate of transition is proportional to the population of the state 

and is a first-order process with rate constant, 𝑊. The rate of decreasing population for the α state 

is therefore 𝑊α and for the β state, 𝑊β. The change in population difference is then, 

 

                                                            
𝜕

𝜕𝑡
𝑛 =

𝜕

𝜕𝑡
𝑁𝛼 −

𝜕

𝜕𝑡
𝑁𝛽                                                       (3.2) 

 

and plugging in 
𝜕

𝜕𝑡
𝑁𝛼 = −𝑊𝛼𝑁𝛼 +𝑊𝛽𝑁𝛽 and 

𝜕

𝜕𝑡
𝑁𝛽 = −𝑊𝛽𝑁𝛽 +𝑊𝛼𝑁𝛼 into Eqn. 3.2 we get 
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𝜕

𝜕𝑡
𝑛 = 𝑁(𝑊β −𝑊α) − 𝑛(𝑊α +𝑊β).                                           (3.3) 

 

If we then factor out −(𝑊α +𝑊β) and let 𝑁 (
𝑊β−𝑊α

𝑊α+𝑊β
) = 𝑛0 then we get, 

 

                                                             
𝜕

𝜕𝑡
𝑛 = −

1

𝑇1
(𝑛 − 𝑛0)                                                      (3.4) 

 

where 𝑇1
−1 = 𝑊α +𝑊β and 𝑛0 represents an equilibrium magnetization. Eqn. 3.4 relates the 

change in magnetization to the longitudinal relaxation. What remains to be determined are the rate 

constants, 𝑊.  

 

3.3.1 Time Dependent Perturbation Theory 

 To help us determine the rate constants, we will turn to the ever-valuable perturbation 

theory. Suppose we have a spin system governed by the following Hamiltonian 

 

                                                                 𝐻 = 𝐻0 + 𝑉(𝑡)                                                          (3.5) 

 

where the potential function, 𝑉(𝑡), is assumed to be small relative to 𝐻0. This Hamiltonian will 

have both diagonal and off-diagonal matrix elements. Continuing with our spin ½ system with 

states |𝛼⟩ and |𝛽⟩, and energies 𝐸𝑎 and 𝐸𝑏 perturbed by the potential, 𝑉(𝑡).  The diagonal elements 

of ∫Ψ𝑖
∗𝑉Ψ𝑗

∗𝑑𝜏 = 𝑉𝑖𝑗 corresponding to 𝑉𝑎𝑎 and 𝑉𝑏𝑏 cause the time-dependent fluctuations in the 

energies 𝐸𝑎 and 𝐸𝑏 while the off-diagonal elements induce transitions between them. The time-

dependent Schrödinger Equation (Eqn. 2.7) has the solution, 
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                                              Ψ = 𝑐𝑎(𝑡)Ψ𝑎𝑒
−
𝑖𝐸𝑎𝑡

ℏ + 𝑐𝑏(𝑡)Ψ𝑏𝑒
−
𝑖𝐸𝑏𝑡

ℏ .                                         (3.6) 

 

The coefficients 𝑐𝑎 and 𝑐𝑏 satisfy the equations 

 

                                                   𝑖ℏ
𝜕

𝜕𝑡
𝑐𝑎 = 𝑓(𝑡)𝑒

𝑖(𝐸𝑎−𝐸𝑏)𝑡/ℏ𝑉𝑎𝑏𝑐𝑏                                            (3.7) 

                                                   𝑖ℏ
𝜕

𝜕𝑡
𝑐𝑏 = 𝑓(𝑡)𝑒

𝑖(𝐸𝑏−𝐸𝑎)𝑡/ℏ𝑉𝑏𝑎𝑐𝑎.                                           (3.8) 

 

Let the system be in the ground state at 𝑡 = 0 so that 𝑐𝑎(0) = 1 and 𝑐𝑏(0) = 0. Then the 

probability of a transition from state |𝛼⟩ to |𝛽⟩ at time 𝑡 > 0 is, 

 

𝑃𝑎→𝑏 = |𝑐𝑏(𝑡)|
2 

                                      = (
|𝑉𝑎𝑏|

2

ℏ2
) ∫ 𝑑𝑡′

𝑡

0
∫ 𝑑𝑡′′
𝑡

0
𝑓(𝑡′)𝑓(𝑡′′)𝑒𝑖𝑊𝑏𝑎(𝑡

′−𝑡′′)  

                                      = (
|𝑉𝑎𝑏|

2

ℏ2
) ∫ 𝑑𝑡′

𝑡

0
∫ 𝑑𝜏
𝑡−𝑡′

−𝑡′
𝑓(𝑡′ + 𝜏)𝑓(𝑡′)𝑒𝑖𝑊𝑎𝑏𝜏.                                 (3.9) 

 

𝑃𝑎→𝑏 represents the probability of a transition between the |𝛼⟩ and |𝛽⟩ states. Now the question is 

what does the ∫ 𝑑𝑡′
𝑡

0
∫ 𝑑𝜏
𝑡−𝑡′

−𝑡′
𝑓(𝑡′ + 𝜏)𝑓(𝑡′)𝑒𝑖𝑊𝑎𝑏𝜏 piece represent? For this, we will transition 

into an explanation of correlation functions. 
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3.3.2 Correlation Functions 

 The behavior of random fluctuations can be described by a correlation function. For 

random thermal motion, the ensemble average tends to zero since the function is distributed around 

zero. Yet, an important property of random functions is the correlation function, 𝐺(𝑡, 𝜏).  

 

𝐺(𝑡, 𝜏) = 𝐹1(𝑡)𝐹1
∗(𝑡 + 𝜏) + 𝐹2(𝑡)𝐹2

∗(𝑡 + 𝜏) + ⋯ 

                                                              = 𝐹(𝑡)𝐹∗(𝑡 + 𝜏)                                                        (3.10) 

 

𝐹1(𝑡) is the field experienced by spin one at time t, and 𝐹1
∗(𝑡 + 𝜏) is the field experienced at a time 

𝜏 later. Eqn. 3.10 here should look familiar since it has the same structure as the integral piece 

from Eqn. 3.9 signifying that it is, in fact, a correlation function.  

 
Figure 2. Plot of the correlation function at (a) some time 𝑡, (b) at some time 𝑡 plus some time 𝜏, 

and (c) some time 𝑡 plus a longer time 𝜏. These plots act as a visual representation of how at longer 

𝜏 times, the average of the area goes to zero. For shorter 𝜏 times, there is a non-zero area. 
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We can see here, in the limit as 𝜏 → ∞, 𝐺(𝑡, 𝜏) → 0, but for shorter time steps we have a non-zero 

area. As a note, we can also write the correlation function as just 𝐺(𝜏) for a stationary function. 

This function, 𝐺(𝜏), is a function that characterizes the “memory” that the system has of a 

particular arrangement of spins in the sample. The simplest form of 𝐺(𝜏) is 

 

                                                          𝐺(𝜏) = 𝐺(0)𝑒−|𝜏|/𝜏𝑐                                                       (3.11) 

 

where 𝜏𝑐 is the correlation time. The correlation time can be thought of as the time it takes a 

molecule to rotate through one radian.  

 

3.3.3 Spectral Density Function 

 The correlation function, 𝐺(𝜏), is a function of time and can therefore be Fourier 

transformed to achieve its equivalent in the frequency domain. The Fourier transform of the 

correlation function results in the spectral density function which gives a measure of the amount 

of motion present at different frequencies. For the simple exponential correlation function given 

in Eqn. 3.11, the corresponding spectral density function is, 

 

𝐽(𝜔) = ∫ 𝐺(𝜏)
∞

−∞

𝑒−𝑖𝜔𝜏𝑑𝜏 

                                                                𝑒−𝜏/𝜏𝑐
𝐹𝐹𝑇
→  

2𝜏𝑐

1+𝜔2𝜏𝑐
2  

                                                                  𝐽(𝜔) =
2𝜏𝑐

1+𝜔2𝜏𝑐
2.                                                       (3.12) 
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Now we have all the pieces necessary to describe the transition probability rate which in turn tells 

us what the relaxation rates are. 

 

                                                     𝑊 = 𝑃𝑎→𝑏 =
1

ℏ2
|𝑉𝑎𝑏|

2 2𝜏𝑐

1+𝜔2𝜏𝑐
2                                             (3.13) 

 

where 𝑉𝑎𝑏 = ⟨𝑏|𝑉|𝑎⟩ and 𝑉𝑎𝑏 = 𝑉𝑏𝑎
∗ from Eqn. 3.9. The math is the same for 𝑃𝑏→𝑎, so 

 

                                                       𝑇1
−1 = 2𝑊 =

2

ℏ2
|𝑉𝑎𝑏|

2𝐽(𝜔).                                             (3.14) 

 

 The 𝐵0⊥ contributions require a fluctuating field and thus depends on 𝐽(𝜔). The 𝐵0∥ 

contribution involves no energy change, so the spectral density function is 𝐽(0), leaving the 

expression 

 

                                                    𝑇2
−1 = (2𝑇1)

−1 +
1

2
|𝑉𝑎𝑏|

2𝐽(0)                                             (3.15) 
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Figure 3. Plot of 𝑇1 and 𝑇2 versus correlation time, 𝜏𝑐. Exemplifies the progression of the different 

relaxation times as the correlation time decreases. 

 

We can see in Fig. 3 that as the correlation time increases, the value of 𝑇1 decreases before 

plateauing as 𝜏𝑐 = 1/𝜔0, and then increasing again. In comparison, 𝑇2 continually decreases 

because the spectral density function is 𝐽(0) = 2𝜏𝑐, so as 𝜏𝑐 decreases, 𝑇2 decreases.  
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Chapter 4: Investigating Lithium-ion Polymer Batteries using 

Relaxometry and Magnetic Resonance Imaging 

 

Abstract  

Advancements in battery technology are important for the growth of markets such as 

portable electronics, energy storage and electric vehicles. Accompanying the rise of lithium battery 

technology is the need for fast, non-destructive diagnostic techniques to determine important 

battery parameters that will define a batteries functionality or performance. Low-field NMR is an 

ideal technique to probe lithium-ion polymer (LiPo) batteries due to the ability to penetrate the 

aluminum casing of these batteries. The development of a few different techniques are presented 

here to measure different battery parameters. This includes measuring the T1 and T2 parameters of 

LiPo batteries at differing states of charge, magnetic resonance imaging to provide images showing 

T2 as a function of position across a battery, and using pulsed field gradient 7Li nuclear magnetic 

resonance (NMR) to measure Li diffusion coefficients.    

 

4.1 Introduction  

Lithium-ion batteries (LIBs) play a critical role in the advancement of portable electronic 

technologies and have recently entered the automobile industry with the advent of electric vehicles. 

LIBs have a high volumetric energy density and a low self-discharge rate making them a desirable 

choice for any modern-day electronics [1]. Lithium-ion polymer (LiPo) batteries are a subcategory 

of LIB’s that use a polymer gel as an electrolyte instead of an aqueous liquid making them a safer 

option since there is less pressurized flammable liquid electrolyte available to ignite. The battery 

construction includes dissolving the lithium salt into a high-molecular-weight polymer such as 
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polyethylene oxide (PEO) sandwiched between the electrodes of the cell. The whole cell is held 

within a laminated aluminum casing [2]. The increasing demand for LiPo batteries has driven 

development of both electrode materials and electrolyte media in the continued search to improve 

energy capacity and performance safety.  

The electrolyte is a crucial component in battery performance since its main function is to 

conduct ions. This function dictates how quickly stored energy from the electrodes can be 

dispensed to the load. Therefore, it is important to investigate and optimize the transport properties 

of the electrolyte in a battery allowing for more current draw. Another issue of importance is 

lithium microstructure formation. Upon excess charging of the cell, lithium metal can build up on 

the anode and cause short circuiting and capacity loss. One study here will focus on investigating 

electrolyte dynamics by measuring diffusion coefficients and ion transference numbers of Li and 

F. This can be achieved by using pulsed field gradient spin echo 7Li and 19F NMR pulse sequences 

to obtain information on the lithium species in the LiPo battery. 

Pulsed field gradient-NMR (pfg-NMR) and electrochemical methods have been used to 

determine diffusion coefficients and ion transference numbers in mixed-gel electrolytes previously 

[3]. 7Li NMR has also been used on specifically deconstructed electrode or bag cell materials to 

attempt quantification of lithium microstructure formation [4,5]. However, neither of these 

investigations were applied to commercially ready LiPo batteries because the conductive metal 

casing is a barrier to all but the lowest frequencies of electromagnetic radiation. This is due to the 

attenuation of the radio frequency (RF) field through a conductive surface, such as the aluminum 

casing of a LiPo battery, shown in the skin depth equation 
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                                                                     𝛿 = √
2𝜌

𝜇𝜔
                                                      (4.1) 

 

where 𝜌is the resistivity of the metal, 𝜇⁡ = ⁡𝜇0𝜇𝑟⁡where 𝜇0is the vacuum permeability, 𝜇𝑟is the 

relative permeability of the metal (aluminum casing), 𝜔 is the frequency (rad/s) of the applied RF 

field, and 𝛿is the skin depth. Skin depth is the distance an electromagnetic wave can penetrate into 

a conductive medium before decaying to a value of 1/𝑒 of the original amplitude. Skin depth is 

inversely proportional to the frequency of the applied radio frequency field, consequently, 

operating at low frequencies results in an increased penetration depth.  

The goal of this research is to determine the most accurate values of diffusion coefficients 

and ion transference numbers by investigating LiPo batteries in action (in situ). Diffusion 

coefficients describe the ability of a species to move through a medium and the cation transference 

number (ti) is a fraction of the total current carried in the electrolyte by the cation species as seen 

in Eqn. 4.2,  

 

                                                                      𝑡𝑖 =
𝐷+

𝐷++𝐷−
                                           (4.2) 

 

where D+ is the diffusion coefficient of the cation species and D- is the diffusion coefficient of the 

anion species. As of yet, nearly all relevant data has been achieved by specially constructing bag 

cells or using solutions in tubes so the skin depth problem can be avoided. While that work 

provided good approximation, the electrolyte in a commercial pouch cell will occupy a different 

environment and therefore needs to be properly tested for the most accurate data. Pfg-NMR was 
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used on CuSO4 in water to determine ideal pulse lengths, gradient strengths and to solidify proof 

of concept measuring diffusion coefficients.  

Another facet of research accomplished in this study was using low-field NMR to 

determine relaxation times as a function of the state of charge of a LiPo battery. The low field 

which was used in this study ensures RF penetration across the metal into the battery resulting in 

detectable proton signal in relatively few scans.  The NMR relaxometry parameters T1and T2 yield 

information about the bulk macroscopic properties of a system. Here, the T1 and T2 parameters are 

used to analyze LiPo batteries at differing states of charge and magnetic resonance (MR) imaging 

is used as another method to image a LiPo battery to screen for lithium microstructure formation. 

 

4.2 Experimental  

To accommodate the unique geometry of LiPo batteries in production a customized probe 

coil was built to house the PGEB – NM053040 model LiPo battery with 3.7 V nominal voltage 

and 600 mAh capacity studied here.  

 

 

Figure 1: Probe coil containing a lithium-ion polymer battery. 
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For the experiment measuring relaxation parameters, the probe/battery setup shown in Fig. 

1 was placed into the homogeneous region of an electromagnet powered by a DANFYSIK System 

8000 Magnet Power Supply at 23.02 amps generating a 53.2 mT B0 field corresponding to a 1H 

Larmor frequency of 2.265 MHz. A Tecmag Redstone spectrometer and integrated TNMR 

software were used for the relaxation experiments.  

A free induction decay (FID) signal was recorded using a 90° pulse time of 20 μs. Obtaining 

1H signal from the FID substantiated the idea that working at 2.265 MHz 1H Larmor frequency 

offers enough skin depth penetration to reach the electrolyte (source of protons) in the LiPo battery. 

Once signal was proven attainable, T2 measurements were acquired using a Carr-Purcell-

Meiboom-Gill (CPMG) pulse sequence with 200 echoes and repeated at different states of charge. 

The resulting echo train was fit to the exponential decay 

 

                                             𝑆(𝑡) = 𝑆1𝑒
−𝑡

𝑇2,𝑠ℎ𝑜𝑟𝑡⁄
+ 𝑆2𝑒

−𝑡
𝑇2,𝑙𝑜𝑛𝑔⁄

.                                         (4.3) 

 

where S1 and S2 are the amplitudes and S(t) is the signal at any later time. T1 measurements were 

acquired using a saturation recovery pulse sequence at different states of charge and fit to 

 

                                                        ⁡𝑆(𝑡) = 𝑆0(1 − 𝑒
−𝑡

𝑇1
⁄ ).                                          (4.4) 

 

All data fitting was performed using cftool native to Matlab R2019a. 
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A spin echo sequence where the gradient was turned on along one direction was used to 

provide spatial resolution to enable imaging of the LiPo battery to set precedent. Once viable, the 

spin echo sequence was altered to a CPMG pulse sequence with a gradient which provided the 

images seen in Figure 3. The slice captured by the gradient pulse spans the distance of the battery. 

Based on the strength of the gradients, the distance across a LiPo battery can be calculated. An AE 

Techron Precision Industrial amplifier was used for the gradients.  

For the experiment to obtain 1H diffusion coefficients, the probe setup shown in Fig. 1 was 

placed into the homogeneous region of an electromagnet powered by a DANFYSIK System 8000 

Magnet Power Supply at 21.02 amps generating a 48.6 mT B0 field corresponding to a 1H Larmor 

frequency of 2.07 MHz. The Tecmag Redstone spectrometer and integrated TNMR software were 

also used for the diffusion experiments. 

As a proof of concept, a row of six 5 mm NMR tubes were filled with a 20 mM solution of 

CuSO4 in water and placed into the probe. The water diffusion data was acquired at a Larmor 

frequency of 2.07 MHz with a 90° pulse of 15.1 μs. A pulsed field gradient spin echo (PFGSE) 

sequence was used to determine the diffusion coefficient of protons in the sample. The attenuated 

signal was integrated and fit to the equation, 

 

                                                   ln (
𝑆(𝑡)

𝑆(0)
) = −𝛾2𝛿2𝑔2𝐷(∆ −

𝛿

3
)                                                               (4.5) 

 

where γ is the gyromagnetic ratio, δ is the length of the gradient pulses, ∆ is the duration time 

between the pulses, gis the gradient strength, and D is the diffusion coefficient. A plot of the natural 

log of the signal versus the gradient squared gives a slope which depends on the diffusion 
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coefficient. The gradient strength was determined using a gradient spin echo pulse sequence, 

measuring the spectrum signal width, and applying the known width of the NMR tubes. 

 

4.3 Results and Discussion  

T1 and T2 measurements as a function of the state of charge are shown in Fig. 2. The T1 

and T2 times do not vary appreciably while staying within the normal charging limits, but if the 

LiPo battery is over-discharged, a change in T1 and T2 times can be observed. 

 

 

Figure 2. Plot of T1 and T2 values at differing states of charge of a LiPo battery. T2 has a 

short and long component owing to its biexponential character. 

 

The decrease in T2 and increase in T1 suggests that the correlation time, τ𝑐, is increasing 

past that of the extreme narrowing limit. T1, however, is only inversely proportional to τ𝑐until after 

the extreme narrowing limit where it becomes directly proportional (See Fig. 3 in Ch. 3). The 
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increase in correlation time could be due to inhibition of molecular motion in the electrolyte due 

to the influx of other species of molecules from the electrodes during over-discharging. Over-

discharging can cause supersaturation of LiCoO2, leading to the formation Li2O in the electrolyte 

solution resulting in more restricted motion of the electrolyte [6]. 

The CPMG data yields the T2 parameters as a function of that position across the battery. 

Recording T2 values across a LiPo battery could provide information about the plating of lithium 

metal onto the anode during charging. If lithium ions form on an electrode, creating protruding 

formations, electrolyte in proximity would be impeded, changing the correlation time, therefore 

changing T2 times. Depending on the axis that a gradient is applied, a T2 change could be seen 

based on this microstructure formation.  

The gradient CPMG pulse sequence enabled spatially resolved determination of T2. An 

image of T2 times as a function of position along an axis of the battery is shown in Fig. 3. 
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Figure 3. Long component of the T2 times recorded as a function of position along the x, 

y, and z axis respectively of the LiPo battery.  The gray lines in each plot are 1 dimensional 1H 

images across the LiPo battery. 

The gradient strength was measured using a PGSE on the six NMR tubes. A range from 

zero to 0.8 percent of the maximum gradient strength was utilized in this experiment. The values 

for the x-axis span from 0.1835 G/cm to 1.4335 G/cm, the y-axis spans 0.3297 G/cm to 1.9754 

G/cm, and the z-axis values span from 0.1223 G/cm to 0.7187 G/cm. Pfg-NMR was then used to 

determine the diffusion coefficient of a copper sulfate solution in one dimension. A plot of the 

natural log of the normalized signal versus the gradient strength squared is shown in Figure 4. 

 



45 
 

 

Figure 4. Plot of the natural log of the signal using pfg-NMR versus the gradient squared. The 

slope is then used to determine the diffusion coefficient, D. 

Although Fig. 4 shows the linear relationship between the natural log of the signal and the 

gradient strength squared, the estimated diffusion coefficient was several orders of magnitude 

larger than expected. This is likely due to the fact that the CuSO4 concentration was too high 

forcing T1 and T2 to be on the millisecond experimental time scale. The experiments are now being 

repeated with a lower CuSO4 concentration with longer T1 and T2 values. 

 

4.4 Conclusion  

Quantifying lithium microstructure formation in commercial ready batteries has been a 

topic of interest for researchers previously with no success. Imaging LiPo batteries using a CPMG  

pulse sequence with a gradient to provide spatial resolution could produce information about 

lithium microstructure formation around the electrodes based on T2 mapping. NMR relaxometry 

can discern between a normally functioning LiPo battery and that of an over-discharged LiPo 

battery by its T1 and T2 times and their change according to an increase in correlation times.  
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Pulsed field gradient NMR at low field is suitable to investigate electrolyte transport 

properties including diffusion coefficients. These techniques can provide valuable information on 

the properties of lithium-ion polymer batteries for researchers and manufacturers alike.  
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