
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Learning exceptions to the rule in human and model via hippocampal encoding

Permalink
https://escholarship.org/uc/item/9g20r0hb

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43)

ISSN
1069-7977

Authors
Heffernan, Emily M.
Mack, Michael L.

Publication Date
2021
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9g20r0hb
https://escholarship.org
http://www.cdlib.org/


Learning exceptions to the rule in human and model via hippocampal encoding 

Emily M. Heffernan (emily.heffernan@mail.utoronto.ca) 
Michael L. Mack (michael.mack@utoronto.ca) 

Department of Psychology, University of Toronto 
100 St George St, Toronto, ON M5S 3G3 Canada 

 
 
 
 
 

Abstract 
We explore the impact of learning sequence on performance in 
a rule-plus-exception categorization task. Behavioural results 
indicate that exception categorization accuracy improves when 
exceptions are introduced later in learning, after exposure to 
rule-following stimuli. Simulations of this task using a neural 
network model of hippocampus and its subfields replicate these 
behavioural findings. Representational similarity analysis of 
the model’s hidden layers suggests that model representations 
are also impacted by trial sequence. These results provide novel 
computational evidence of hippocampus’s sensitivity to 
learning sequence and further support this region’s proposed 
role in category learning.  

Keywords: category learning; learning sequence; 
hippocampus; computational modelling 

Introduction 
Category learning is a mechanism by which we make sense 
of the influx of information present in our daily lives. When 
we encounter a novel object or situation, we can compare it 
to previous experiences to make inferences about its qualities. 
Research on category learning has been an active topic of 
exploration in cognitive sciences for decades, as evidenced 
by a dense body of literature that explores implicated brain 
regions, underlying neural processes, the nature of 
representations used to store categorical information, and so 
on. Although emerging work continues to shed light on the 
many facets that underlie this dynamic cognitive skill, many 
questions remain surrounding the impact of the learning 
process itself on category learning.  

Although category learning is a complex process that 
recruits multiple brain regions (for a review, see Zeithamova 
et al., 2019), recent work has implicated hippocampus in this 
cognitive process (Bowman & Zeithamova, 2018; Davis, 
Love, & Preston, 2012a, 2012b; Mack, Love, & Preston, 
2016; Schapiro, McDevitt, Rogers, Mednick, & Norman, 
2018). Notably, hippocampus forms conjunctive 
representations that bind together multiple features (O’Reilly 
& Rudy, 2001; Sutherland & Rudy, 1989), and this rapid 
formation of conjunctive representations is especially 
important when learning complex category structures. An 
example of such a problem is a rule-plus-exceptions task in 
which most stimuli adhere to a rule, but a small subset of 
exceptions violate this rule. The learner must detect general 
patterns while also distinguishing and remembering 
irregularities. Conjunctive representations are crucial to 

learning exceptions in rule-plus-exception categorization 
tasks (Davis et al., 2012a; Love & Gureckis, 2007). A wide 
body of evidence spanning several literatures indicates 
enhanced memory for these schema-violating exception 
items (e.g., Goodman, 1980; Palmeri & Nosofsky, 1995; von 
Restorff, 1933). This memory advantage may be attributed to 
the formation of more detailed neural representations (Davis 
et al., 2012a).   

The formation of distinct conjunctive representations 
adheres to traditional views of hippocampus’s role in 
episodic memory (e.g., McClelland, McNaughton, & 
O’Reilly, 1995), but recent work has implicated 
hippocampus in rapid statistical learning (Schapiro, Turk-
Browne, Botvinick, & Norman, 2017). Hippocampus’s 
ability to support these complementary processes may be 
attributed to two white matter pathways that traverse 
specialized hippocampal subfields. Dentate gyrus (DG) and 
cornu ammonis 3 (CA3) fall along the trisynaptic pathway 
(TSP) and are associated with sparse, pattern-separated 
representations; conversely, CA1, which is part of the 
monosynaptic pathway (MSP), employs dense, overlapping 
representations ideal for extracting regularity (for a review, 
see Duncan & Schlichting, 2018). The pattern separation and 
pattern detection enabled by MSP and TSP render 
hippocampus well-suited to support the divergent needs of 
rule-plus-exception learning. 

Studies on populations with limited hippocampus function 
further emphasize this brain region’s importance to rule-plus-
exception learning. Individuals with underdeveloped or 
damaged hippocampus exhibit impaired rule-plus-exception 
learning, likely due to their reduced ability to form the 
requisite conjunctive representations (Love & Gureckis, 
2007). However, limited work has explored how 
performance in a rule-plus-exception task might be 
manipulated in healthy young adults. In this work, we aim to 
explore how learning can be influenced not by the structural 
characteristics of hippocampus but rather by the order in 
which information is presented.  

Previous work on sequence manipulation has explored how 
transitions between trials impact category learning. Carvalho 
and Goldstone’s (2015) sequential attention theory (SAT) 
posits that a blocked design wherein items from one category 
are presented in succession, followed by a block of members 
from the opposing category (AAABBB), emphasizes intra-
category differences (i.e., differences between members of 
the same category), and an interleaved design that switches 
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frequently between categories (ABABAB) emphasizes inter-
category differences (differences between members of 
opposing categories). Mathy and Feldman (2009) have 
explored the impact of delaying the introduction of exception 
items from one category. They found that this rule-based 
manipulation significantly improved learning outcomes 
compared to sequences that maximized or minimized the 
similarity between stimuli in consecutive trials.  

To further explore the impact of learning sequence on 
categorization, and to test how this manipulation targets 
hippocampus, we devised a behavioural task in in which the 
introduction of exception items occurred either early in 
learning or later in learning after exposure to rule-following 
items. We predicted that learners who were introduced to 
exceptions later in learning would develop a better initial 
understanding of category structure, which in turn would 
improve their ability to detect and learn to categorize these 
“late exceptions.” To test hippocampus’s sensitivity to this 
behavioural manipulation, we next ran this task on a neural 
network model of hippocampus (Ketz, Morkonda, & 
O’Reilly, 2013; Schapiro et al., 2017). We predicted that if 
hippocampus was sensitive to our manipulation, the model 
would also be better able to categorize exception items when 
their introduction was delayed. Finally, we conducted a 
representational similarity analysis (RSA) of hidden layers of 
the neural network to explore how this manipulation 
impacted the model’s “neural” representations. Because 
surprise facilitates pattern separation (Davis et al., 2012b; 
Yamaguchi, Hale, D’Esposito, & Knight, 2004), we expected 
to observe more granular, pattern-separated representations 
of exceptions introduced later in learning.  

Behavioural Experiment and Analysis 

Methods 
Participants All participants were University of Toronto 
students who received course credit for participating. Data 
were collected in-lab and, as necessitated by COVID-19-
imposed remote study, online. There were 49 in-lab 
participants (37 females; mean age 19.1 years, SD 3.3 years) 
and 44 online participants (20 females, 2 other; mean age 
19.9, SD 1.0 years). In total, 93 participants completed the 
experiment. All procedures were conducted in accordance 
with the University of Toronto’s Research Ethics Board.  

 
Stimuli Throughout the experiment, participants viewed 10 
images of flowers. Flower stimuli had four binary features: 
outer petal colour, outer petal shape, inner petal shape, and 
central disc colour (Figure 1). The central disc was 
determined to be least salient in a norming study and as such 
was chosen to be non-diagnostic and varied randomly 
between stimuli. Outer petal shape was the most salient 
dimension. Category structure was assigned using the Type 3 
problem defined by Shepard, Hovland, and Jenkins (1961). 
Based on this structure, each stimulus was characterized as 
one of three types. Two stimuli were defined as category 
prototypes and were maximally dissimilar across all three 

diagnostic dimensions. Rule-followers differed from their 
category’s prototype by one diagnostic dimension, and 
exception stimuli differed from their category’s prototype by 
two dimensions (i.e., they were more similar to the prototypes 
of the opposite category).   

 
Figure 1. Flower stimuli had four binary features. 

 
Procedure Participants completed three learning blocks, 
each with 48 trials. Full feedback was provided after each 
trial. Participants were randomly assigned into one of two 
conditions. In the early exceptions (EE) condition, 
participants viewed exceptions in all three learning blocks, 
and in the late exceptions (LE) condition, participants were 
not exposed to exceptions until the second learning block 
(Table 1). Participants saw two times more prototypes than 
rule-followers and exceptions to anchor each category. 
Following the learning blocks, participants completed a test 
block with 48 trials.  
 

Table 1. Stimulus distribution across blocks/conditions. 
“E,” “P,” and “R” denote exceptions, rule-followers, and 

prototypes, respectively. 
 

Block EE Condition LE Condition 
Learning 1 24P/12R/12E 24P/24R/0E 
Learning 2 24P/12R/12E 24P/12R/12E 
Learning 3 24P/12R/12E 24P/0R/24E 
Test 16P/16R/16E 16P/16R/16E 

 

Results 
Participants were excluded from the analysis if they failed to 
achieve an accuracy of over 0.75 for at least one stimulus type 
in any of the learning or test blocks or if over 20% of their 
reaction times fell outside the range [0.15s, 2s]. These criteria 
were chosen a priori to exclude participants who were not 
putting effort into learning the category structure. Based on 
these criteria, 10 SONA participants and two in-lab 
participants were excluded, resulting in a total of 81 
participants who were included in further analyses. Data from 
included participants were further cleaned to exclude any 
responses less than 0.15s or greater than 2s (7.1% of all trials 
were excluded).  

For the learning blocks, effects of stimulus type (exception, 
prototype, or rule-follower), condition (LE or EE), and 
repetition on accuracy were first assessed. Here, repetition is 
defined as the number of appearances of a given stimulus 
type throughout the three learning blocks. To account for the 
higher number of prototypes versus other stimulus types, 
only the first 36 repetitions for each type were included in 

433



analysis. A general linear mixed-effects (GLME) model was 
fit to the learning data (using the lme4 package v. 1.1–26 in 
R v. 4.0.4) to predict trial-by-trial accuracy. Inputs to the 
model were trial scores (0 for incorrect, 1 for correct). This 
model included stimulus type, condition, and repetition as 
fixed effects and participant as a random effect.  

In the LE condition, there was a main effect of repetition: 
categorization accuracy for exceptions, prototypes, and rule-
followers improved significantly with repetition (Figure 2; βE 
= 0.038, P < .001, 95% CI [0.027, 0.048]; βP = 0.037, P < 
.001, 95% CI [0.0239,0.052]; βR= 0.019, P < .001, 95% CI 
[0.009, 0.030] – where subscripts e, p, and r denote 
exceptions, prototypes, and rule-followers, respectively). In 
the EE condition, categorization accuracy for prototypes 
improved significantly with repetition (βP= 0.017, P = .011, 
95% CI [0.004, 0.030]); however, categorization accuracy for 
exceptions and rule-followers showed no significant 
improvement with repetition (βE = 0.006, P = .275, 95% CI 
[-0.005, 0.016]; βR = -0.010, P = .081, 95% CI [-0.020, 
0.001]). There was also an interaction between repetition and 
condition. Categorization accuracy improved more with 
increased repetition in the late condition than in the early 
condition for all stimulus types (βE = 0.032, P = < .001, 95% 
CI [0.0173, 0.0469]; βP = 0.021, P = .036, 95% CI [0.00141, 
0.0403]; βR = 0.029, P < .001, 95% CI [0.0136, 0.0438]). 

 

 
Figure 2. Estimated marginal means from the statistical 

analysis of categorization performance in learning blocks. 
Bands indicate standard error. 

 
The test block was also analyzed using a GLME model 

(Figure 3). This model had the same predictors as the learning 
block model but without repetition as a fixed effect. In the 
test block, categorization accuracy was above chance for 
prototypes in the LE and EE conditions (β0P-LE = 2.492, P < 
.001, 95% CI [2.169, 2.835]; β0P-EE = 2.010, P < .001, 95% 
CI [1.718, 2.315]), for rule-following items in the LE and EE 
conditions (β0R-LE = 0.996, P < .001, 95% CI [0.749, 1.250]; 
β0R-EE = 0.914, P < .001, 95% CI [0.666, 1.166]), and for 
exceptions in the LE condition (β0E-LE = 0.732, P < .001, 95% 
CI [0.490, 0.980]). Performance for exceptions in the EE 
condition was not significantly above chance (β0E-EE = 0.132, 
P = .272, 95% CI [-0.107, 0.371]). Categorization accuracy 

was significantly higher in the LE condition than in the EE 
condition for prototypes (βP = 0.482, P = .034, 95% CI [0.040, 
0.931]) and exceptions (βE= 0.600, P = .001, 95% CI [0.260, 
0.944]). There was no significant difference between 
conditions for rule-followers (βR = 0.082, P = 0.645, 95% CI 
[-0.269, 0.437]).  

Preliminary Discussion 
The results from both the learning and test blocks indicate 
that manipulating trial order by delaying the introduction of 
exceptions significantly impacted categorization accuracy. 
As hypothesized, categorization accuracy for exception items 
improved more over time in the LE condition than in the EE 
condition. However, the impacts of learning sequence 
extended beyond exception stimuli. In the LE condition, 
performance improved with repetition for all stimulus types; 
conversely, in the EE condition, performance only improved 
significantly over time for prototypes, and this improvement 
was still less than improvement in prototype learning in the 
LE condition. These differences in performance were also 
apparent after learning, in the test block. Categorization 
accuracy for prototypes and exceptions was significantly 
higher for participants who had previously been exposed to 
the LE sequence. These results indicate that the opportune 
moment to introduce exceptions in a rule-plus-exception task 
seems to be after participants have been familiarized with the 
general category structure. To further explore how our 
manipulation impacted neural representations, we next 
simulated this task using a neural network model of 
hippocampus.  

 
 

 
Figure 3. Categorization accuracy in the test block. Error 

bars indicate standard error, and translucent dots indicate 
participant averages. 

Model Simulations and Analysis 

Methods 
Overview of Model Architecture To further study the 

impact of sequence on category learning, the rule-plus-
exception task described above was simulated using a neural 
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network model of hippocampus. This model was originally 
developed by Ketz, Morkonda, & O’Reilly (2013) to model 
how hippocampal subfields and white matter pathways 
support episodic memory and was later adapted by Schapiro 
et al. (2017) to study how hippocampus supports rapid 
statistical learning. In the present study, the model published 
by Schapiro et al. (2017) was run using Emergent7 v. 8.5.2 
(Aisa, Mingus, & O’Reilly, 2008). A simplified explanation 
of the model’s architecture is as follows: input patterns in the 
form of numerical arrays are presented to the model via its 
input layer, EC_in (which represents superficial layers of 
EC). During training, the model learns to replicate the pattern 
presented to EC_in in its output layer, EC_out (which 
represents deep layers of EC). The model accomplishes this 
goal by adjusting the weights of connections between its 
hidden layers, which represent DG, CA3, and CA1. Weights 
are updated using a combination of Hebbian and error-driven 
learning that mimics hippocampal theta oscillation (Ketz et 
al., 2013). Each layer of the model contains a grid of several 
units with activity levels ranging from zero to one. These 
units represent populations of neurons. Moreover, each layer 
has physiology-based properties. For example, model layers 
CA3 and DG have high within-layer inhibition, leading to the 
sparse representations characteristic of these neural subfields. 
Connections between layers mimic the flow of information 
along TSP and MSP, and the learning rate of TSP is also 
faster than that of MSP. The model has free parameters that 
allow the user to adjust the strength of connections between 
CA3 and CA1 and EC_in and CA1 to simulate white matter 
lesions. Because this study involved healthy young adults, the 
fully connected values from Schaprio et al. (2017) were used.  
The model is shown in Figure 4.  

 

 
Figure 4. The neural network model used for simulations. 

Hidden layers represent hippocampus subfields, and inter-
layer connections represent the monosynaptic and 
trisynaptic pathways (MSP and TSP, respectively). 

 
Training and Testing The flower stimuli were first 
transformed into vectorized input patterns. Each input vector 
has five pairs of units, and each pair represents a feature 
dimension. The first four pairs (units 0 to 7) correspond to the 
four binary-valued dimensions, and the final pair (units 8 and 
9) indicates category label. Each unit in a pair represents one 
of two possible values for a given dimension, so only one unit 
in a pair will be active (i.e., have a non-zero value) for a 

stimulus. For example, pointed petals may be coded as “01”, 
round petals, by “10”. In vector notation, the prototype for 
category A is therefore represented as “1010101010.” The 
vector notation for each stimulus is included in Table 2. 

 
Table 1. Vector notation for prototypes, rule-followers, 

and exceptions (P, R, and E, respectively). A and B indicate 
opposing categories. Dimensions D1–D4 match the labels in 

Figure 1. D5 is the category label. 
 

Stimulus D1 D2 D3 D4 D5 
PA_1 10 10 10 10 10 
PA_2 10 10 10 01 10 
RA_1 10 01 10 10 10 
RA_2 01 10 10 01 10 
EA 10 01 01 10 10 
PB_1 01 01 01 10 01 
PB_2 01 01 01 01 01 
RB_1 01 10 01 10 01 
RB_2 01 01 10 01 01 
EB 10 10 01 01 01 

 
Two training sequences were created for the model that 

corresponded to the EE and LE conditions of the behavioural 
experiment. The number of stimuli and trial order presented 
to the model in each condition were identical to the sequences 
of the behavioural experiment, but the learning task was not 
separated into blocks. In a training epoch (144 trials), stimuli 
were presented to EC_in sequentially. With each trial, the 
model updated its connection weights to replicate the input 
pattern in its output layer. After training, the model was 
tested: each of the 10 stimuli were presented to the model and 
its settled output activity was recorded. No network weights 
were updated during test. The LE and EE sequences were 
each simulated 500 times on randomly initialized networks.  

Simulation Results 
The model’s categorization performance was assessed by 
analyzing the activation of the EC_out units corresponding to 
category label. The cosine similarity between the activation 
of the two category label output units and the target category 
label was calculated relative to the nontarget category label 
using Luce’s choice axiom (Luce, 1977), as defined below: 

accuracy	=	
cos	(𝑜𝑢𝑡𝑝𝑢𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡)

cos(𝑜𝑢𝑡𝑝𝑢𝑡, 𝑡𝑎𝑟𝑔𝑒𝑡) + cos	(𝑜𝑢𝑡𝑝𝑢𝑡, 𝑛𝑜𝑛𝑡𝑎𝑟𝑔𝑒𝑡) 
 

The model accuracy closely aligned to accuracy in the 
behavioural test block. A general linear model with condition 
and type as fixed effects and batch as a random effect was fit 
to the data using the “stats” package in R.  

As with the behavioural results, accuracy for exceptions 
was higher in the LE condition than in the EE condition 
(Figure 5; βE = 0.047, P < .001, 95% CI [0.027, 0.067]). 
However, prototype accuracy was not significantly different 
in the LE condition (βP = -0.004, P = .550, 95% CI [-0.018, -
0.010]) and performance decreased for rule-followers in the 
LE condition (βR= -0.022, P = .003, 95% CI [-0.036, -0.008]).  
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Figure 5. Model accuracy across conditions. Error bars 

represent standard error. Translucent dots indicate batch 
averages. 

 
The model simulations capture the expected advantage for 

exception items in the LE condition. The model categorizes 
exceptions more accurately after exposure to the LE sequence 
compared to the EE sequence. This finding reinforces the 
sensitivity of the hippocampus neural network to learning 
sequence. However, the model also predicts significantly 
higher performance for rule-followers in the EE condition 
compared to the LE condition. A post-hoc analysis of trial-
by-trial accuracy for behavioural data revealed that 
participant accuracy for rule-followers did drop when 
exceptions were introduced in the late condition. This drop 
maybe reflected in the model results.  

Representational Similarity Analysis 
We next examined how the neural network model 
representations varied across conditions. During the testing 
phase, we recorded settled activation in the hidden layers of 
the network corresponding to CA1, CA3, and DG. We 
calculated the Pearson correlations between activations for 
each test item (i.e., between each of the 10 stimuli) in each 
hidden layer. The results of this analysis are depicted in 
Figure 6. Note that the qualitative analysis of model results 
that follows is speculative in nature.  

In Figure 6a, darker shades represent higher 
representational similarity. The overlapping representations 
of CA1 are reflected in the overall shade of the grids 
corresponding to this subregion, which are darker than those 
of pattern-separated CA3 and DG. The representational 
similarity of this region can also be visually clustered into 
zones: the darker lower left and upper right quadrants of the 
CA1 grids indicate higher intra-category similarity, whereas 
the lighter lower right and upper left quadrants indicate lower 
inter-category similarity. In other words, representations of 
members in the same category are more similar, whereas 
those of members in opposite categories are less similar. 
Although representations in CA3 and DG are overall more 
distinct (i.e., lighter) than those in CA1, higher intra- versus 
inter-category similarity is still evident, albeit to a lesser 
extent than in CA1. However, visually detecting 

representational differences between layers in the EE and LE 
conditions is quite difficult. To render these differences more 
apparent, Figure 6b presents the difference between 
representational similarity in the EE and LE conditions, as 
determined by subtracting the LE RSA matrix from the EE 
matrix for each of the three subfields.  

 

 
Figure 6. (a) RSA results, separated by condition and 

subfield. Rows and columns correspond to the 10 stimuli. 
Darker shades indicate higher similarity. (b) Difference in 
RSA results across conditions (EE minus LE). Red indicates 
higher similarity in the EE condition; blue, higher similarity 
in the LE condition.  

 
In Figure 6b, the colour red indicates higher similarity 

between two stimuli in the EE condition compared to the LE 
condition, and blue, higher similarity between two stimuli in 
the LE condition compared to the EE condition. In CA1, the 
red colour of the upper left and lower right quadrants (zone i) 
denotes higher levels of inter-category similarity for stimuli 
in the EE condition; that is, representations of members in 
opposite categories are more similar in the EE condition 
compared to the LE condition. A higher degree of similarity 
between members in opposing categories indicates a blurring 
of category boundaries, which may reflect the model’s 
reduced ability to distinguish exceptions, thus lowering 
exception categorization performance in the EE condition.  

Results in CA3 and DG are slightly less pronounced but 
are highlighted by zones ii–v in Figure 6b. Notably, the effect 
on the two exceptions across conditions does not seem to be 
consistent. Exception A (EA; outlined in dotted black) is 
more similar to members of its own category (red zone ii) and 
less similar to members of the opposite category (blue zone 
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iii) in the EE condition compared to the LE condition, which 
should improve categorization performance in the EE 
condition. However, the opposite is true of Exception B (EB; 
outlined in solid black), which is more similar to its own 
category members (blue zone iv) and less similar to opposing 
category members (red zone v) in the LE condition than in 
the EE condition, which should improve performance in the 
LE condition. It appears that the advantage for exceptions 
seen in the LE condition is driven by EB alone. A post-hoc 
analysis of behavioural data supports this finding: when the 
mixed-effects logistic regression model used to analyze 
performance for the test blocks of the behavioural experiment 
is altered by replacing the fixed effect “type” by “stimulus,” 
the effect of condition is opposite for each exception: the late 
condition has a positive effect on categorization accuracy for 
EA (β = 1.573, P < .001, 95% CI [1.136, 2.019]), but a 
negative effect for EB (β = -0.455, P = 0.047, 95% CI [-0.909, 
-0.004]). To fully understand the impacts of our 
manipulation, further exploration of the nature of exceptions 
is warranted.  

General Discussion 
Our aim was to explore how learning sequence impacts 
categorization performance. We provided behavioural 
evidence that delaying the introduction of exceptions 
significantly improves participants’ ability to categorize 
these items. We also used a model of hippocampus to provide 
novel computational evidence of this area’s sensitivity to trial 
order. Notably, this model replicated behavioural results for 
exceptions items, despite its lack of any direct attentional 
mechanism. Moreover, conducting an RSA on model 
representations yielded subtle but important differences in 
representations across conditions. In CA1, there were higher 
levels of inter-category representational similarity in the EE 
compared to the LE condition. As the degree of interleaving 
in each condition was equal, Carvalho and Goldstone’s 
(2015) SAT alone cannot explain these findings.  

Differences in exception representation were also seen in 
CA3 and DG. However, the two exception items exhibited 
opposite effects: one was more similar to its own category 
members and less similar to opposite category members in 
the LE condition, which one would expect to improve 
categorization performance in the LE condition, and the other 
was instead more similar to like category members and less 
similar to opposing category members in the EE condition, 
which should improve performance in the EE condition. This 
discrepancy was reflected in a post-hoc analysis of 
behavioural results: when performance for the two exception 
stimuli was analyzed separately, the behavioural data was 
consistent with RSA predictions. Asymmetries in category 
structure may have led to this result: when the non-diagnostic 
dimension is considered, EA is closer to its category rule-
followers than EB. Past work has indicated that memory for 
exception items increases as the violated rule grows more 
salient (Sakamoto & Love, 2004), and this effect may have 
translated into categorization advantages that varied between 
exceptions. Because EB was more exceptional with respect 

to the rule-followers in its category, the impact of the 
manipulation may have been stronger. Future behavioural 
and model work should explore how adjusting the non-
diagnostic dimension impacts behavioural and model results. 
Moreover, an attentional mechanism could be incorporated 
into the model to further test the impact of feature salience on 
exception categorization. An fMRI study of this task would 
allow us to test the predictions made by the neural network 
model and to explore how hippocampus works in concert 
with other brain regions during category learning problems.  

Overall, this work demonstrates that performance on a 
rule-plus-exception category learning task can be modulated 
by manipulating learning sequence. We also provide novel 
computational evidence of hippocampus’s sensitivity to this 
manipulation and use RSA analysis to explore the impact of 
trial sequence on inter- and intra-category representational 
similarity. The experiments presented here serve as a starting 
point for future studies to further explore how hippocampus 
and its white matter pathways are implicated in category 
learning tasks and in cognition more broadly.  
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