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California, San Diego, La Jolla, United States

Abstract When starved, the Gram-positive bacterium Bacillus subtilis forms durable spores for

survival. Sporulation initiates with an asymmetric cell division, creating a large mother cell and a

small forespore. Subsequently, the mother cell membrane engulfs the forespore in a phagocytosis-

like process. However, the force generation mechanism for forward membrane movement remains

unknown. Here, we show that membrane migration is driven by cell wall remodeling at the leading

edge of the engulfing membrane, with peptidoglycan synthesis and degradation mediated by

penicillin binding proteins in the forespore and a cell wall degradation protein complex in the

mother cell. We propose a simple model for engulfment in which the junction between the septum

and the lateral cell wall moves around the forespore by a mechanism resembling the ‘template

model’. Hence, we establish a biophysical mechanism for the creation of a force for engulfment

based on the coordination between cell wall synthesis and degradation.

DOI: 10.7554/eLife.18657.001

Introduction
To survive starvation, the Gram-positive bacterium Bacillus subtilis forms durable

endospores (Tan and Ramamurthi, 2014). The initial step of sporulation is the formation of an asym-

metrically positioned septum (polar septation), which produces a larger mother cell and a smaller

forespore (Figure 1A). After division, the mother cell engulfs the forespore in a phagocytosis-like

manner. Engulfment entails a dramatic reorganization of the sporangium, from two cells that lie side

by side to a forespore contained within the cytoplasm of the mother cell. The internalized forespore

matures and is ultimately released to the environment upon mother cell lysis. After engulfment, the

forespore is surrounded by two membranes within the mother cell cytoplasm, sandwiching a thin

layer of peptidoglycan (PG) (Tocheva et al., 2013). While a number of molecular players for engulf-

ment have been identified, the mechanism of force generation to push or pull the mother cell mem-

brane around the forespore remains unknown (Higgins and Dworkin, 2012).

The cellular machinery for engulfment is complex, presumably to add robustness for survival

(Figure 1A, inset). First, the forespore protein SpoIIQ and the mother cell protein SpoIIIAH interact

in a zipper-like manner across the septum (Blaylock et al., 2004), and mediate the fast engulfment

observed in the absence of cell wall (Broder and Pogliano, 2006; Ojkic et al., 2014). This complex

is static and is proposed to act as a Brownian ratchet to prevent backwards movement of the engulf-

ing membrane, contributing to the robustness of engulfment in intact cells (Sun et al., 2000;

Broder and Pogliano, 2006). Second, the SpoIID, SpoIIM and SpoIIP complex (DMP) localizes at the

leading edge (LE) of the mother cell engulfing membrane and is essential and rate limiting for mem-

brane migration (Abanes-De Mello et al., 2002; Gutierrez et al., 2010). The complex contains two

enzymes that degrade PG in a processive manner: SpoIIP removes stem peptides, and SpoIID

degrades the resulting denuded glycan strands (Abanes-De Mello et al., 2002; Chastanet and
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Losick, 2007; Morlot et al., 2010; Gutierrez et al., 2010). Mutants with reduced SpoIID or SpoIIP

activity or protein levels engulf asymmetrically, with the engulfing membrane migrating faster on

one side of the forespore (Abanes-De Mello et al., 2002; Gutierrez et al., 2010). Third, blocking

PG precursor synthesis with antibiotics impairs membrane migration in mutants lacking the Q-AH

zipper, suggesting that PG synthesis at the LE of the engulfing membrane contributes to engulfment

(Meyer et al., 2010; Tocheva et al., 2013). However, the mechanistic details of membrane migra-

tion and for the coordination between PG synthesis and degradation remain unclear.

The biophysical principles of cell wall remodeling in Gram-positive bacteria are not well under-

stood. In Bacillus subtilis, the cell wall is about 20–40 nm thick, and is likely organized into multiple

(20–30) PG layers (Morlot et al., 2010; Reith and Mayer, 2011; Lee and Huang, 2013;

Misra et al., 2013; Dover et al., 2015). In contrast, cryo-electron tomography has demonstrated

that a thin PG layer is present between the septal membranes throughout engulfment, appearing to

form continuous attachments with the old cell wall (Tocheva et al., 2011, 2013). The outer cell wall

of Gram-positive bacteria also contains a significant amount of teichoic acids, important for cell mor-

phology, phosphates, and antibiotic resistance (Grant, 1979; Brown et al., 2013) but largely absent

in spores (Chin et al., 1968; Johnstone et al., 1982). Engulfment entails extensive cell wall remodel-

ing, with peptidoglycan precursors, newly synthesized PG and the sporulation specific PG degrada-

tion machinery localizing at the LE of the engulfing membrane (Meyer et al., 2010; Tocheva et al.,

2013; Abanes-De Mello et al., 2002). However, since engulfment occurs at high turgor pressure

within the cramped confines of the thick outer cell wall, we expect that membrane movement is

severely reduced by steric hindrance (Lizunov and Zimmerberg, 2006). Hence, we anticipate that

peptidoglycan remodeling is a critical step in engulfment, which may either act as a force generator

or simply create room for engulfment by the mother cell membrane.

Here, we provide a biophysical mechanism for engulfment in which PG synthesis and degradation

move the junction between the septal PG and the lateral cell wall around the forespore, making

room for the engulfing membrane to move by entropic forces. Using antibiotics that block different

steps in PG synthesis, we demonstrate that PG synthesis is essential for membrane migration in all

conditions and contributes to the localization of SpoIIDMP at the LE. We also show that components

of the PG biosynthetic machinery, including several penicillin binding proteins (PBPs) and the actin-

like proteins MreB, Mbl and MreBH track the LE of the engulfing membrane when produced in the

eLife digest Some bacteria, such as Bacillus subtilis, form spores when starved of food, which

enables them to lie dormant for years and wait for conditions to improve. To make a spore, the

bacterial cell divides to make a larger mother cell and a smaller forespore cell. Then the membrane

that surrounds the mother cell moves to surround the forespore and engulf it. For this process to

take place, a rigid mesh-like layer called the cell wall, which lies outside the cell membrane, needs to

be remodelled. This happens once a partition in the cell wall, called a septum, has formed,

separating mother and daughter cells. However, it is not clear how the mother cell can generate the

physical force required to engulf the forespore under the cramped conditions imposed by the cell

wall.

To address this question, Ojkic, López-Garrido et al. used microscopy to investigate how B.

subtilis makes spores. The experiments show that, in order to engulf the forespore, the mother cell

must produce new cell wall and destroy cell wall that is no longer needed. Running a simple

biophysical model on a computer showed that coordinating these two processes could generate

enough force for a mother cell to engulf a forespore.

Ojkic, López-Garrido et al. propose that the junction between the septum and the cell wall moves

around the forespore to make room for the mother cell’s membrane for expansion. Other spore-

forming bacteria that threaten human health – such as Clostridium difficile, which causes bowel

infections, and Bacillus anthracis, which causes anthrax – might form their spores in the same way,

but this remains to be tested. More work will also be needed to understand exactly how bacterial

cells coordinate the cell wall synthesis and cell wall degradation.

DOI: 10.7554/eLife.18657.002
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Figure 1. Peptidoglycan (PG) synthesis is essential for leading-edge (LE) migration. (A) Morphological changes during spore formation. Peptidoglycan

shown in grey, membrane in red. (1) Vegetative cell. (2) The first morphological step in sporulation is asymmetric cell division, producing a smaller

forespore and a larger mother cell. (3) The septum curves and protrudes towards the mother cell. (4) The mother cell membrane migrates towards the

forespore pole. The different modules contributing to membrane migration are shown in the inset (see Introduction for details). During engulfment, the

septal PG is extended around the forespore (Tocheva et al., 2013). (5) Fully engulfed forespore surrounded by two membranes sandwiching a thin

layer of PG. (B) Snapshots of engulfing sporangia from time-lapse movies in the absence of antibiotics, or in the presence of cephalexin or bacitracin.

Cells were stained with fluorescent membrane dye FM 4–64 and imaged in medial focal plane. In the absence of antibiotics (top) the septum curves

and grows towards the mother cell without significant forward movement of the engulfing membrane for ~20 min. After that, the LE of the engulfing

Figure 1 continued on next page
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forespore, but not when produced in the mother cell. We implement a biophysical model for PG

remodeling at the LE of the engulfing membrane, based on the ‘template mechanism’ of vegetative

cell growth and implemented by stochastic Langevin simulations. These simulations reproduce

experimentally observed engulfment dynamics, forespore morphological changes, and asymmetric

engulfment when PG synthesis or degradation is perturbed. Taken together, our results suggest that

engulfment entails coordination of PG synthesis and degradation between the two compartments of

the sporangium, with forespore-associated PBPs synthesizing PG ahead of the LE and the mother-

cell DMP complex degrading this PG to drive membrane migration.

Results

PG synthesis is essential for membrane migration
In contrast to previous studies (Meyer et al., 2010), we attempted to find conditions that

completely blocked PG synthesis in sporulating cultures (Figure 1—figure supplement 1). To esti-

mate the sporulation minimal inhibitory concentration (sMIC) of antibiotics, we monitored the per-

centage of cells that had undergone polar septation over time in batch cultures. Polar septation

depends on PG synthesis and is easy to track

visually (Pogliano et al., 1999), which makes it a

good indicator for efficient inhibition. We

assayed nine antibiotics inhibiting different steps

in the PG biosynthesis pathway, and found con-

centrations that blocked the formation of new

polar septa for seven of them (Figure 1—figure

supplement 1B,C). In most cases, the antibiotic

concentration that blocked polar septation also

inhibited completion of engulfment (Figure 1—

figure supplement 1B). Only two drugs, fosfo-

mycin and D-cycloserine, failed to completely

block polar cell division. These drugs inhibit pro-

duction of PG precursors that, during starvation

conditions, might be obtained by recycling

rather than de novo synthesis (Reith and Mayer,

2011), potentially from cells that lyse during

sporulation, as has been observed in studies of

Figure 1 continued

membrane starts migrating and reaches the forespore pole in ~1 hr. When PG precursor delivery system is blocked with bacitracin (50 mg/ml): (I) LE

migration is stopped or (II) engulfment proceeds asymmetrically. Similar results are obtained when cells are treated with cephalexin (50 mg/ml).

However, in this case the asymmetric engulfment phenotype observed at later time points is due to rotation of the engulfment cup (C) rather than to

asymmetric movement forward of the engulfing membrane (D). (E) FM 4–64 average kymograph of n = 24 engulfing cells (see Materials and methods,

Appendix 1). Average fluorescent intensity along forespore contour vs time in the mother-forespore reference frame as shown in top inset. All cells are

aligned in time based on time 0’ (0 min). Time 0’ is assigned to the onset of curving septum (Figure 1—figure supplement 3). Bottom inset is average

kymograph represented as heat map. (F–G) Average kymograph for cells treated with cephalexin (n = 18) (F) or bacitracin (n = 26). (G) When drug was

added analyzed cells had (55 ± 5)% engulfment (red arrow). The percentage of engulfment is calculated as total angle of forespore covered with mother

membrane divided by full angle. All cells had fully curved septum. Non-engulfed part of the forespore is represented as the black regions in

kymographs. (H) In untreated sporangia, gap starts to close ~20 min after onset of membrane curving. In antibiotic-treated cells gap does not close.

Sample size as in (F–G). Red arrow points when drug is added. Average ± SEM. Scale bar 1 mm.

DOI: 10.7554/eLife.18657.003

The following figure supplements are available for figure 1:

Figure supplement 1. Sporulation minimal inhibitory concentration.

DOI: 10.7554/eLife.18657.004

Figure supplement 2. Quantification of cell division events in timelapse movies.

DOI: 10.7554/eLife.18657.005

Figure supplement 3. Image analysis of non-treated cells.

DOI: 10.7554/eLife.18657.006

Video 1. Timelapse microscopy of sporulating

B. subtilis stained with the membrane dye FM 4–64.

The left panel shows untreated cells, the middle panel

cephalexin-treated cells (50 mg/ml), and the right panel

bacitracin-treated cells (50 mg/ml). Cells were imaged

in agarose pads supplemented with the appropriate

antibiotics (see Materials and methods for details).

Pictures were taken every 5 min. Total time 2.5 hr.

DOI: 10.7554/eLife.18657.007
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B. subtilis cannibalism (González-Pastor et al., 2003; Straight and Kolter, 2009; Lamsa et al.,

2012), or from cells that lyse due to antibiotic treatment (Lamsa et al., 2016). These results demon-

strate that the later stages in PG synthesis are essential for engulfment in wild type sporangia.

To investigate the role played by PG synthesis, we selected two antibiotics for further characteri-

zation: cephalexin, which inhibits PBP activity, and bacitracin, which blocks cell-wall precursor deliv-

ery (recycling of undecaprenyl phosphate). Using time-lapse microscopy (see Materials and methods

for details), we monitored membrane dynamics during engulfment in the medial focal plane using

the fluorescent membrane dye FM 4–64 (Figure 1B, Video 1). In these 2–5 hour-long movies we

observed occasional cell division events occurred with bacitracin (0.08 division events/cell after 90

min, compared to 0.28 division events/cell in untreated cultures, Figure 1—figure supplement 2),

indicating that PG synthesis was not completely blocked under these conditions. However, negligi-

ble cell divisions occurred with cephalexin, indicating that PG synthesis was indeed completely

blocked (Figure 1—figure supplement 2).

To better monitor LE dynamics we used two image analysis approaches (see Materials and meth-

ods for details). First, we created kymographs along forespore membranes (Figure 1E–G). The angu-

lar position of forespore pixels was calculated relative to the mother-forespore frame of reference

(Figure 1E, inset). All cells were aligned in time based on the onset of septum curving (Figure 1—

figure supplement 3), and for a given angle, the average fluorescence of different cells was calcu-

lated and plotted over time. Second, we measured the decrease in the distance between the two

LEs of the engulfing membrane in the focal plane (the gap arc length), in order to directly assess

movement of the LE around the forespore (Figure 1H).

These analyses demonstrated that in untreated sporangia (Figure 1B, top row), the septum

curves and the forespore grows into the mother cell without significant forward movement of the LE

for ~20 min after polar septation (at 30˚C, Figure 1H). Subsequently, the LE of the engulfing mem-

brane moves towards the forespore pole and engulfment completes within ~60 min (Figure 1E,H).

In sporangia treated with cephalexin (Figure 1B, middle row I), the septum curves and extends

towards the mother cell, but there is no forward membrane migration (Figure 1F,H). Sometimes the

LE retracted on one side while advancing slightly on the other (typically occurred after 90 min of

imaging; Figure 1B, middle row II), which appears to be the rotation of the ‘cup’ formed by the

engulfing membranes relative to the lateral cell wall (Figure 1C).

Similar to cephalexin, in most sporangia treated with bacitracin (Figure 1B, bottom row I), the

forespore extended into the mother cell without significant membrane migration (Figure 1G,H).

However, in ~20% of the sporangia, the engulfing membrane migrated asymmetrically, with one

side moving faster than the other, although usually it failed to completely surround the forespore

(Figure 1B, bottom row II; Figure 1D). The continued engulfment under bacitracin treatment might

be related to the fact that PG synthesis is not completely blocked in bacitracin-treated cells under

time-lapse conditions (Figure 1—figure supplement 2). Taken together, these results suggest that

PG synthesis is not only essential for the final stage of engulfment (membrane fission) in wild type

cells (Meyer et al., 2010), but also for migration of the LE of the engulfing membrane around the

forespore.

PBPs accumulate at the leading edge of the engulfing membrane
It has been previously shown that there is an accumulation of membrane-bound PG precursors at

the LE of the engulfing membrane (Meyer et al., 2010). Furthermore, staining with fluorescent

D-amino acids has demonstrated that new PG is synthesized at or close to the LE (Tocheva et al.,

2013). To investigate if there is a concomitant accumulation of PBPs at the LE, we stained sporangia

with BOCILLIN-FL, a commercially available derivative of penicillin V that has a broad affinity for mul-

tiple PBPs in B. subtilis (Lakaye et al., 1994; Zhao et al., 1999; Kocaoglu et al., 2012). We

observed continuous fluorescent signal around the mother cell membrane that was enriched at the

LE (Figure 2A). To better monitor localization of PBPs during engulfment, we plotted fluorescence

intensities along the forespores for the membrane and BOCILLIN-FL fluorescent signals as a function

of the engulfment stage (Figure 2B). Clearly, the LE is always enriched with PBPs throughout mem-

brane migration.
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Figure 2. PG synthesis at the LE of the engulfing membrane by forespore PBPs contribute to proper localization of the DMP complex. (A) Sporulating

cells stained with a green fluorescent derivative of penicillin V (BOCILLIN-FL). Bright foci are observed at the LE of the engulfing membrane.

Membranes were stained with FM 4–64 (red). (B) Average BOCILLIN-FL (green) and FM 4–64 (red) fluorescence intensities along forespore contours

plotted as a function of the degree of engulfment. Cells are binned according to percentage of engulfment. BOCILLIN-FL signal is enriched at the LE

throughout engulfment (n = 125). (C) Cell-specific localization of the peptidoglycan biosynthetic machinery. GFP tagged versions of different B. subtilis

PBPs and actin-like proteins (ALPs) were produced from mother cell- (MC) or forespore- (FS) specific promoters. (D) Six different localization patterns

were observed upon cell-specific localization of PBPs and ALPs. For each pair of images, left panel shows overlay of membrane and GFP fluorescence,

while the right panel only shows GFP fluorescence. Pictures of representative cells displaying the different patterns are shown (top, GFP fusion proteins

transcribed from spoIIR promoter for forespore-specific expression, and from spoIID promoter for mother cell-specific expression). The six different

patterns are depicted in the bottom cartoon and proteins assigned to each one are indicated. Membranes were stained with FM 4–64. See Figure 2—

figure supplement 1 for cropped fields of all PBPs we assayed. Transglycosylase (TG), transpetidase (TP), carboxipetidase (CP), endopeptidase (EP),

actin-like protein (ALP). (E) TIRF microscopy of forespore-produced GFP-MreB in four different forespores (i to iv). In every case, the leftmost picture is

an overlay of the forespore membranes (shown in white) and the tracks followed by individual TIRF images of GFP-MreB (color encodes time, from blue

to red). Sporangia are oriented with the forespores up. For the first sporangia (i), snapshots from TIRF timelapse experiments taken 8 s apart are shown.

Figure 2 continued on next page
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PG biosynthetic machinery tracks the leading edge of the engulfing
membrane from the forespore
One possible explanation for the requirement of PG synthesis for engulfment is that PG polymeriza-

tion by PBPs associated with the LE of the engulfing membrane creates force to pull the engulfing

membrane around the forespore. If so, we would expect the PBPs to be located in the mother cell

membrane as they polymerize PG. To test this possibility, we assessed the localization of compo-

nents of the PG biosynthetic machinery in the mother cell or forespore by producing GFP-tagged

fusion proteins from promoters that are only active in the mother cell (PspoIID) or in the forespore (the

stronger PspoIIQ and the weaker PspoIIR) after polar septation (Figure 2C,D, Figure 2—figure supple-

ment 1). One prior study tested the localisation of several PBPs during sporulation (Scheffers, 2005),

but most of them were produced before polar separation and it was not possible to determine

which cell compartment they were in. We successfully determined the cell-specific localization of 16

proteins involved in PG synthesis (Figure 2—figure supplement 1), including all class A and four

class B high-molecular-weight (HMW) PBPs, five low-molecular-weight (LMW) PBPs (four endopepti-

dases and one carboxipeptidase), and all three MreB paralogues (actin-like proteins, ALPs). Surpris-

ingly, only PonA (PBP1a/b) showed a weak enrichment at the LE of the engulfing membrane when

produced in the mother cell (Figure 2D). However, ten PBPs, including PonA and all the class B

HMW PBPs and LMW PBPs tested, and all the MreB paralogues were able to track the LE only when

produced in the forespore (Figure 2D, Figure 2—figure supplement 1). To follow the dynamics of

the forespore PG biosynthetic machinery at the LE, we monitored the movement of GFP-MreB using

TIRF microscopy (Garner et al., 2011; Domı́nguez-Escobar et al., 2011). Forespore GFP-MreB foci

rotate around the forespore, coincident with the

leading edge of the engulfing membrane, with

speeds consistent with those previously reported

(Figure 2E, Video 2).

It is unclear how the PBPs recognize the LE,

as localization of forespore produced GFP-PonA

and GFP-PbpA did not depend on candidate

proteins SpoIIB, SpoIID, SpoIIM, SpoIIP, SpoIIQ,

SpoIIIAH, SpoIVFAB, or GerM (Aung et al.,

2007; Abanes-De Mello et al., 2002;

Chastanet and Losick, 2007; Blaylock et al.,

2004; Rodrigues et al., 2016) (Figure 2—figure

supplement 2). However, these results indicate

that the forespore plays a critical role in PG syn-

thesis, and point to an engulfment mechanism

Figure 2 continued

Arrows indicate GFP-MreB foci and are color coded to match the trace shown in the left panel. Rightmost panel for each forespore shows a kymograph

representing the fluorescence intensity along the line joining the leading edges of the engulfing membrane over time (from top to bottom; total time

100 s). Average focus speed (n = 14) is indicated at the bottom. Timelapse movies of the examples presented here and additional sporangia are shown

in Video 2. (F) Localizaiton of GFP-SpoIIP in untreated sporangia, or in sporangia treated with bacitracin (50 mg/ml) or cephalexin (50 mg/ml). (G)

Fraction of GFP-SpoIIP fluorescence at LE of the engulfing membrane. Bars represent the average and standard error of 85 untreated sporangia, 38

sporangia treated with bacitracin (50 mg/ml), and 67 sporangia treated with cephalexin (50 mg/ml). (H) Model for PG synthesis and degradation at the

LE of the engulfing membrane. New PG is synthesized ahead of the LE of the engulfing membrane by forespore-associated PG biosynthetic machinery,

and is subsequently degraded but the mother-cell DMP complex. We propose that DMP has specificity for the peptide cross-links that join the newly

synthesized PG with the lateral cell wall (orange), which leads to the extension of the septal PG around the forespore. Scale bars 1 mm.

DOI: 10.7554/eLife.18657.008

The following figure supplements are available for figure 2:

Figure supplement 1. Cell-specific localization of PBPs and actin-like proteins.

DOI: 10.7554/eLife.18657.009

Figure supplement 2. Localization of forespore GFP-PonA and GFP-PbpA in different mutant backgrounds.

DOI: 10.7554/eLife.18657.010

Figure supplement 3. SpoIIDMP localization upon treatment with different antibiotics blocking PG synthesis.

DOI: 10.7554/eLife.18657.011

Video 2. Circumferential movement of forespore GFP-

MreB. The movie shows the movement forespore GFP-

MreB in eight different sporangia, determined by TIRF

microscopy. A static membrane picture is shown to the

left, and the TIRF microscopy of the corresponding

GFP-MreB is shown immediately to the right. TIRF

pictures were taken every 4 s, and the total duration of

the movie is 100 s. The first four sporangia correspond

to the examples (i) to (iv) shown in Figure 2.

DOI: 10.7554/eLife.18657.012
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that does not depend on pulling the engulfing membrane by mother cell-directed peptidoglycan

synthesis.

PG synthesis is required for SpoIIDMP localization at the leading edge
of the engulfing membrane
The observation that multiple PBPs can track the LE of the engulfing membrane from the forespore

opens the possibility that PG synthesis happens ahead of the LE, preceding PG degradation by the

mother cell DMP complex. In this context, PG synthesis might be required for proper activity and/or

localization of the DMP complex, which is the only other essential engulfment module described so

far. The DMP complex localizes at the LE throughout engulfment (Gutierrez et al., 2010). To deter-

mine if PG synthesis is required for proper localization of DMP, we studied the localization of a GFP-

SpoIIP fusion protein when PG synthesis was inhibited by different antibiotics (Figure 2F,G). GFP-

SpoIIP shows a well-defined localization at the LE, with ~70% of the total GFP fluorescence at LE in

native conditions (Figure 2F,G). However, when PG biosynthesis is inhibited, there is a delocalization

of GFP-SpoIIP, which is almost total in cells treated with bacitracin and partial when antibiotics tar-

geting later stages of PG synthesis are used (Figure 2F,G; Figure 2—figure supplement 3). Equiva-

lent results were obtained with GFP-SpoIID and GFP-SpoIIM fusions (Figure 2—figure supplement

3). These results are consistent with a model in which PG is synthesized ahead of the LE by fore-

spore-associated PBPs specify the site of PG degradation by the DMP complex (Figure 2H).

A biophysical model to describe leading edge migration
Our data indicate that engulfment proceeds through coordinated PG synthesis and degradation at

the LE. To explain how this coordination leads to engulfment, we propose a minimal biophysical

mechanism based on the ‘template mechanism’ of vegetative cell growth assuming that glycans are

oriented perpendicular to the long axis of the cell (Figure 3A) (Koch and Doyle, 1985; Höltje, 1998;

Domı́nguez-Escobar et al., 2011; Garner et al., 2011; Beeby et al., 2013; Dover et al., 2015),

without requiring any further assumptions about the outer cell wall structure of Gram-positive bacte-

ria, which is still unclear (Hayhurst et al., 2008; Beeby et al., 2013; Dover et al., 2015). In this

mechanism, a new glycan strand is inserted using both the septal glycan and leading forespore-prox-

imal glycan strand of the lateral wall as template strands to which the new PG strand is cross linked.

Subsequently, peptide cross-links between the two template strands are removed from the mother-

cell proximal side by the DMP complex. Specifically, in this complex SpoIIP has well documented

endopeptidase activity (Morlot et al., 2010). Note, similar ‘make-before-break’ mechanisms were

proposed to allow vegetative cell wall growth without reducing cell wall integrity (Koch and Doyle,

1985; Höltje, 1998). A more detailed mechanism that requires the insertion of multiple new glycan

strands to account for glycan removal by SpoIID is shown in Figure 3—figure supplement 1. In

either model, synthesis of new PG at the LE likely occurs before degradation, thereby naturally pre-

venting cell lysis during engulfment.

The coordination between PG insertion from the forespore and removal by DMP in the mother

cell could lead to movement of the junction between the septal peptidoglycan and the lateral pepti-

doglycan around the forespore to mediate successful engulfment. Based on this proposed mecha-

nism, we created a model whereby insertion and degradation happens, for simplicity, simultaneously

by an insertion-degradation complex (IDC), also reflecting the high degree of coordination sug-

gested by the template mechanism. In this model IDC recognizes the leading edge and inserts gly-

can polymers perpendicular to the long axis of the cell (Figure 3B). Additionally, the model

proposes that IDC can recognize glycan ends and initiate glycan polymerization from the end defect

with probability of repair prep. During glycan insertion, when an IDC encounters a gap in the outer

cell wall strands, it continues polymerization with probability of processivity ppro (Figure 3C). A sys-

tematic exploration of the above model parameters showed that intact spores form for prep and

ppro> 0.8 with a marginal dependence on the number of IDCs (Figure 4G, Figure 4—figure supple-

ment 1). However, to compare the model with microscopy data we require a 3D dynamic implemen-

tation of this model that reflects the stochasticity of underlying molecular events.
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Langevin simulations reproduce observed phenotypes
To simulate stochastic insertion at the leading edge we used Langevin dynamics of a coarse-grained

PG meshwork (see Materials and methods). Briefly, glycan strands are modeled as semi-flexible fila-

ments consisting of beads connected with springs, while peptide bridges are modeled as springs

connecting glycan beads (Figure 3C) (Laporte et al., 2012; Tang et al., 2014; Huang et al., 2008).

Typical length of inserted glycan polymer is ~1 mm (~1/3 cell circumference) (Hayhurst et al., 2008)

and in our model the peptide bridges between newly inserted glycan strands are in a relaxed state.

Glycan beads experience forces due to glycan elastic springs (kgly), glycan persistence length (lp),

elastic peptide links (kpep), stochastic thermal fluctuations, and pressure difference (Dp) between fore-

spore and mother cell (see Equation 1 and Appendix 2). Glycan strands in the PG layer are con-

nected with neighboring glycans by stem peptides (Figure 4A). In our model, the angle between

neighboring stem peptides that belong to the same glycan strand is assumed to be 90˚
(Nguyen et al., 2015; Huang et al., 2008). Therefore, every other stem peptide is in plane with the

glycan sheet. In our model Dp originates from the packing of the B. subtilis chromosome (~4.2 Mbp)

in the small forespore compartment (Errington, 1993; Perez et al., 2000; Bath et al., 2000;

Yen Shin et al., 2015).

To systematically explore the peptidoglycan parameters, we compared our simulations with

actual changes in forespore volume, forespore surface area, and percentage of engulfment

Figure 3. Template model for leading edge (LE) movement. (A) Cell cross-section with glycan strands in the plane

perpendicular to the long axis of the cell. One strand from old cell wall (blue) and one strand from newly

synthesized germ-cell wall (green) are used as a template for new glycan insertion. Coordination between glycan

insertion (orange arrow) and peptide cross-link degradation (black cross) drives LE forward. (B) 3D model of

stochastic glycan insertion by insertion-degradation complex (IDC) with transpeptidase and transglycosylase

activity. Probability of IDC to start inserting new glycan from old glycan end and repair end defect is prep. (C) New

inserted glycan shown in dark green. Probability of IDC to continue glycan insertion when it encounters gap in old

cell wall is probability of processivity ppro. (Inset) Horizontal (between old and new glycan strands) and vertical

(between new glycan strands) peptide links are shown in red. In our coarse-grained model glycans are simulated

as semi-flexible filaments consisting of beads (green) connected with springs (green). Peptides are simulated as

springs (red) connecting neighboring glycan beads.

DOI: 10.7554/eLife.18657.013

The following figure supplement is available for figure 3:

Figure supplement 1. Extended models that account for glycan-strand degradation.

DOI: 10.7554/eLife.18657.014
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Figure 4. Template model reproduces experimentally observed phenotypes. (A) Effective spring constants in our

model represent coarse-grained PG network. Here the angle between neighboring stem peptides that belong to

a single glycan is assumed to be 90˚. Therefore, every other stem peptide is in plane with glycan

sheet (Nguyen et al., 2015, Huang et al., 2008). The role of effective glycan persistence length on engulfment is

negligible (see Figure 4—figure supplement 3). (B) Simulations for different values of effective peptide kpep and

glycan kgly spring constants are compared with experimentally measured forespore surface area, volume and

engulfment using mutual �2 statistics (Equation 2). Arrows point to effective literature kpep and kgly (Nguyen et al.,

2015). Dark blue region corresponds to simulation parameters that best fit experimental data (Figure 4—figure

supplement 4, Video 3). For large enough kgly > 200 pN/nm mutual �2 is almost independent of kgly. (C)

Snapshots of WT simulations for parameters (kgly = 200 pN/nm, kpep = 25 pN/nm, NIDC = 5) marked with ’�’ in

panel (B) (Video 2). The thick septum is treated as outer cell wall, and is assumed degraded once IDCs move

along. (D–E) Time traces of experimentally measured engulfment, forespore surface area and forespore volume

Figure 4 continued on next page
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extracted from time-lapse movies, using �2 fitting (Figure 4B, Equation 2, Materials and methods).

Parameters that best fit experimental measurements belong to dark blue region in agreement with

molecular dynamic simulations (Nguyen et al., 2015). For a single peptide bond, the linear elasticity

regime is valid for extensions that are less than 1 nm (Nguyen et al., 2015) and this elastic regime is

maintained in the regions with low �2 (Figure 4—figure supplement 2). For large enough glycan

stiffness (kgly> 300 pN/nm) �2 becomes independent of kgly (Figure 4B). A typical simulation shown

in Figure 4C matches experimental measurements of time-dependent engulfment, volume, and sur-

face area (Figure 4D,E). PG spring constants

drastically affect forespore morphologies. By

decreasing kpep forespores elongate, while by

increasing kpep forespores shrink, as measured

along the long axis of the cell. Changing kgly has

only minor effects on volume and surface area.

However, the main effect is on forespore curva-

ture (see Figure 4—figure supplement 4): high

kgly increases the curvature of forespore ends

(making them more pointy), while low kgly

decreases the curvature of the forespore ends.

Our simulations successfully reproduce asymmet-

ric engulfment (Figure 4F,G; Video 5). For prep

and pproł 0:8 we obtained asymmetric engulf-

ment that reproduces the phenotypes observed

when PG synthesis or degradation is partially

blocked. When defects in the peptidoglycan

meshwork are not repaired, different parts of

the leading edge extend in an uncoordinated

manner, producing asymmetric engulfment.

Since our simulations correctly reproduced

engulfment dynamics we used simulation param-

eters to estimate glycan insertion velocities VIDC

of IDC (see Appendix 2). Using this method we

estimated a lower bound on product

NIDC � VIDC ~ 110 nm/s, where NIDC is the number

of insertion complexes. Similarly, by estimating

Figure 4 continued

(green) in comparison with results from a single simulation (orange). Parameters used in simulation are marked

with ’�’ in panel (B). For all other parameters see Appendix 2, Appendix-table 1. (F) Snapshots of fully engulfed

forespores for various peptidoglycan elastic constants. (G) For various values of independent parameters prep and

ppro roughness of the LE is calculated at the end of stochastic simulations (see Figure 4—figure supplement 1,

and Video 4). Here 0 roughness correspond to perfectly symmetric LE; for high enough prep ¼ ppro > 0.8 LE forms

symmetric profiles. (H) Simulation for asymmetric engulfment is obtained for same parameter as WT

except prep ¼ ppro = 0.7 (marked with ’�’ in panel (G)). Average ± SD. Scale bars 1 mm.

DOI: 10.7554/eLife.18657.015

The following figure supplements are available for figure 4:

Figure supplement 1. Simulation of the stochastic model of insertion at the leading edge (LE).

DOI: 10.7554/eLife.18657.016

Figure supplement 2. In simulations majority of peptide extensions are in the linear elastic regime.

DOI: 10.7554/eLife.18657.017

Figure supplement 3. Engulfment is unaffected by glycan persistence length.

DOI: 10.7554/eLife.18657.018

Figure supplement 4. Simulations with different peptidoglycan (PG) elastic constants.

DOI: 10.7554/eLife.18657.019

Figure supplement 5. Simulations with decoupled synthesis and degradation.

DOI: 10.7554/eLife.18657.020

Video 3. Simulations of WT (left) and asymmetric

engulfment (right). Parameters are the same (kpep = 25

pN/nm, kgly = 200 pN/nm, NIDC = 5) except for WT

engulfment prep =ppro = 1 and for asymmetric

engulfment prep=ppro = 0.7. For full exploration of

stochastic insertion parameters see Video 4 and

Figure 4—figure supplement 1. Front opening of the

forespore is not shown for clarity.

DOI: 10.7554/eLife.18657.021
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the total amount of newly inserted material in

the forespore within ~0.8 hr without any pausing

we obtain NIDC � VIDC ~ 117 nm/s. For circumfer-

entially processive PBPs (PbpA and PbpH), the

absolute velocity measured using TIRF micros-

copy is ~20–40 nm/s during vegetative cell

growth (Domı́nguez-Escobar et al., 2011;

Garner et al., 2011), which is in agreement with the speed of forespore GFP-MreB determined from

our TIRF experiments ((28 ± 8) nm/s, n = 14; Figure 2E). Using this estimate for VIDC, we obtain a

lower bound 3–6 on the number of active, highly processive PBP molecules. However, the actual

number of proteins could be higher for other nonprocessive PBPs (Domı́nguez-Escobar et al.,

2011; Garner et al., 2011).

Discussion
The results presented here suggest that engulfment involves coordinated PG synthesis and degrada-

tion processes that are segregated between different cell types: first, PG is synthesized in front of

the LE of the engulfing membrane by a forespore-associated PG biosynthetic machinery that rotates

following the LE of the engulfing membrane. Then this new PG is targeted for degradation by the

mother cell-associated PG degradation machinery comprised of the DMP complex (Figure 2H). The

delocalization of DMP when PG synthesis is inhibited with antibiotics (Figure 2, Figure 2—figure

supplement 3) indicates that the DMP either forms an actual complex with the PG biosynthetic

machinery across the septal PG (to form a single insertion degradation complex (IDC), as shown in

Figure 3) or that DMP targets the new PG synthesized at the LE of the engulfing membrane. In the

latter, DMP might specifically target the cross-links that attach the old lateral cell wall to the new PG

synthesized at the LE of the engulfing membrane (Figure 2H, orange). Since those cross-links join

old, modified PG from the lateral cell wall to newly synthesized PG at the LE, those peptide bridges

might have a unique chemical composition or structural arrangement that could be specifically rec-

ognized by DMP. Hence, either approach provides a safety mechanism during engulfment, since it

would prevent DMP from degrading the old PG of the lateral cell wall, which could lead to cell lysis.

Video 4. Simulations for different values of elastic

peptidoglycan (PG) parameters kpep and kgly. PG spring

constants drastically affect forespore morphologies. By

decreasing kpep forespores elongate, while by

increasing kpep forespores shrink, as measured along

the long axis of the cell. Changing kgly has only minor

effects on volume and surface area. The main effect is

on forespore curvature (see Figure 4—figure

supplement 4): high kgly increases the curvature of

forespore ends (making them more pointy), while low

kgly decreases the curvature of the forespore ends.

Septum is not shown for clarity.

DOI: 10.7554/eLife.18657.022

Video 5. Simulations for different values of stochastic

parameters prep and ppro. Decreasing prep and ppro

below 0.8 results in asymmetric engulfment. For full

exploration of stochastic insertion parameter see

Figure 4—figure supplement 1.

DOI: 10.7554/eLife.18657.023
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We have conceptualized these results in a biophysical model in which a PG insertion-degradation

complex (IDC), representing PBPs for PG synthesis and DMP proteins for PG degradation, catalyzes

PG remodeling at the LE of the engulfing membrane. Specifically, we propose that new glycan

strands are inserted ahead of the LE of the engulfing membrane and PG is degraded on the mother

cell proximal side to create space for forward movement of the LE (Figure 3). This is similar to the

‘make-before-break’ model of vegetative cell-wall growth, which postulates that the vegetative cell

wall is elongated by inserting new PG strands prior to degrading old strands (Koch and Doyle,

1985) (although bacteria can also make a de novo cell wall (Ranjit and Young, 2013, Kawai et al.,

2014). The make-before-break mechanism also accounts for the directional movement of the LE

towards the forespore pole, since the substrate for DMP is new PG synthesized by forespore PBPs,

which is always ahead of the LE of the engulfing membrane.

Using Langevin simulations we successfully reproduced the dynamics of engulfment, forespore

volume, and surface area. Additionally, our model correctly reproduced asymmetric engulfment

observed with reduced IDC activity, and we estimated that with only a handful of highly processive

PBP molecules are necessary to reproduce the observed LE dynamics. A more general model with-

out strong coupling between the PG biosynthetic and PG degradation machineries also leads to suc-

cessful engulfment (Appendix 2, Figure 4—figure supplement 5, Video 6). However, DMP has to

be guided to degrade only the peptide cross-links between old and new glycan strands, and should

also prevent detachment of the septal peptidoglycan from the old cell wall.

Since our simple mechanism in Figure 3A entails hydrolysis of certain peptide bonds but no gly-

can degradation, we explored additional mechanisms since the SpoIID protein of the DMP complex

shows transglycosylase activity (Morlot et al., 2010). First, it is possible that engulfment entails a

two-for-one mechanism, with two new glycan strands are added and the newly inserted glycan

strand at the LE is degraded (Höltje, 1998) (Figure 3—figure supplement 1A). Similarly, the three-

for-one mechanism would also work (Scheffers and Pinho, 2005). Second, one new glycan strand

might be added and the inner most cell-wall glycan of the thick, lateral cell wall degraded (Fig-

ure 3—figure supplement 1B). This would make the lateral cell wall thinner as the engulfing mem-

brane moves forward (Tocheva et al., 2013). Finally, it is possible that insertion and degradation are

not intimately coupled, and that there is simply a broad region in which PG is inserted ahead of the

engulfing membrane, to create multiple links between the septal PG and the lateral cell wall (as

shown in Figure 2H), and that the DMP complex has a preference for newly synthesized PG. All of

these models require the spatial coordination between cell wall degradation and synthesis to avoid

compromising cell wall integrity and inducing cell lysis, and all share a common ‘make-before-break’

strategy to promote robustness of the otherwise risky PG remodeling process (Koch and Doyle,

1985). In order to waste as little energy as possible, a more stringent ‘make-just-before-break’ strat-

egy may even apply, motivating more intimate coupling between the PG biosynthetic and degrada-

tion machineries.

Our simple biophysical mechanism postulates that engulfment does not rely on pulling or pushing

forces for membrane migration. Instead, cell wall remodeling makes room for the mother cell mem-

brane to expand around the forespore by entropic forces. During engulfment the mother-cell surface

area increases by ~2 mm2 (~25%, see Figure 1—

figure supplement 3), and this excess of mem-

brane could simply be accommodated around

the forespore by remodeling the PG at the LE.

However, our model does not include all poten-

tial contributors to engulfment. For instance, the

SpoIIQ-AH zipper, which is dispensable for

engulfment in native conditions (Broder and

Pogliano, 2006), might prevent membrane

backward movement, and might also help local-

ize the IDC components toward the LE. Interest-

ingly, SpoIIQ-AH interaction is essential for

engulfment in Clostridium difficile where the

SpoIIQ ortholog posseses endopeptidase activ-

ity (Crawshaw et al., 2014; Serrano et al.,

2016; Fimlaid et al., 2015). The model also

Video 6. Simulations with decoupled synthesis and

degradation. New glycans are released from the old

cell wall with typical delay time tdelay. Simulations for

four different values of tdelay ¼ 0, 0.9, 9, and 18 min

(from left to right). For longer tdelay the larger is

separation between synthesis and membrane leading

edge that is shown as red cylinder.

DOI: 10.7554/eLife.18657.024
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does not consider the impact of the tethering of the LE of the engulfing membrane to the forespore

via interactions between the mother cell membrane anchored DMP complex at the LE and forespore

synthesized PG. Future experiments and modeling should address the role of these and other poten-

tial contributors to LE migration, which will allow us to refine our biophysical model and obtain a

comprehensive view of membrane dynamics during engulfment. Furthermore, understanding the

cooperation between PBPs and DMP will provide valuable clues about the structure of the cell wall

in Gram-positive bacteria.

Materials and methods

Strains and culture conditions
All the strains used in this study are derivatives of B. subtilis PY79. Complete lists of strains, plas-

mids, and oligonucleotides see Appendix 3. Detailed descriptions of plasmid construction are pro-

vided in Supplementary file 1. For each experiment we had at least two biological replicas, and

each one contains at least three technical replicas. Averages of individual cells, but not the averages

of different replicas are reported. Sporulation was induced by resuspension (Sterlini and Mandel-

stam, 1969), except that the bacteria were grown in 25% LB prior to resuspension, rather than CH

medium. Cultures were grown at 37˚C for batch culture experiments, and at 30˚C for timelapse

experiments.

Fluorescence microscopy
Cells were visualized on an Applied Precision DV Elite optical sectioning microscope equipped with

a Photometrics CoolSNAP-HQ2 camera and deconvolved using SoftWoRx v5.5.1 (Applied Precision).

When appropriate, membranes were stained with 0.5 mg/ml FM 4–64 (Life

Technologies, Waltham, Massachusetts) or 1 �g/ml Mitotracker green (Life Technologies). Cells were

transferred to 1.2% agarose pads for imaging. The median focal plane is shown.

Timelapse fluorescent microscopy
Sporulation was induced at 30˚C. 1.5 hr after sporulation induction, 0.5 mg/ml FM 4–64 was added

to the culture and incubation continued for another 1.5 hr. Seven ml samples were taken 3 hr after

resuspension and transferred to agarose pads prepared as follows: 2/3 vol of supernatant from the

sporulation culture; 1/3 vol 3.6% agarose in fresh A+B sporulation medium; 0.17 mg/ml FM 4–64.

When appropriated, cephalexin (50 mg/ml) or bacitracin (50 mg/ml) was added to the pad. Pads were

partially dried, covered with a glass slide and sealed with petroleum jelly to avoid dehydration dur-

ing timelapse imaging. Petroleum jelly is not toxic and cannot be metabolized by B. subtilis, which

poses an advantage over other commonly used sealing compounds, such as glycerol, which can be

used as a carbon source and inhibit the initiation of sporulation. Pictures were taken in an environ-

mental chamber at 30˚C every 5 min for 5 hr. Excitation/emission filters were TRITC/CY5. Excitation

light transmission was set to 5% to minimize phototoxicity. Exposure time was 0.1 s.

Forespore GFP-MreB tracking experiments
MreB tracking experiments were performed using the strain JLG2411, which produced GFP-MreB in

the forespore after polar septation from spoIIQ promoter. Sporulation and agarose pads were done

as described in Timelapse fluorescent microscopy, except that FM 4–64 was only added to the aga-

rose pads and not to the sporulating cultures. A static membrane picture was taken at the beginning

of the experiment, and was used as a reference to determine the position of the GFP-MreB foci.

GFP-MreB motion at the cell surface was determined by TIRF microscopy (Garner et al., 2011;

Domı́nguez-Escobar et al., 2011), taking pictures every 4 s for 100 s. Imaging was performed at

30˚C. We used two different microscopes to perform TIRF microscopy: (i) An Applied Precision

Spectris optical sectioning microscope system equipped with an Olympus IX70 microscope, a Photo-

metrics CoolSNAP HQ digital camera and a 488 nm argon laser. To perform TIRF in this microscope,

we used an Olympus 1003 1.65 Apo objective, immersion oil n = 1.78 (Cargille Laboratories), and

sapphire coverslips (Olympus). Laser power was set to 15%, and exposure time was 200 ms. (ii) An

Applied Precision OMX Structured Illumination microscopy equipped with a Ring-TIRF system and a

UApoN 1.49NA objective, immersion oil n = 1.518. Exposure time was 150 ms.
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Images were analyzed using the ImageJ-based FIJI package. Sporangia were aligned vertically

using the rotation function in FIJI. GFP-MreB foci were tracked using the TrackMate pluging

(Tinevez et al., 2016), using the LoG detector, estimated blob diameter of 300 nm, simple LAP

tracked and linking max distance of 300 nm. Only tracks that contained more than four points were

used to determine the MreB foci speed.

Image analysis
We used the semi-automated active contour software JFilament available as ImageJ plugin to

extract fluorescently labeled membrane position over time (Smith et al., 2010). Membrane position

obtained from the medial focal plane is used in custom built Mathematica software to calculate 3D

volume and surface area by assuming rotational symmetry around the axis connecting the center of

masses of mother cell and forespore. For available code and example see Supplementary file 2 .

Kymographs as in Figure 1E were created by collecting intensities along the forespore contours.

Subsequently, pixel angles were determined using pixel position relative to the mother-forespore

frame as defined in inset of Figure 1E. Forespore fluorescent intensities along angles are normalized

and interpolated using third-order polynomials. For a given angle the population intensity average

of different cells is calculated and plotted over time. Time 0’ is the onset of septum curving.

Quantification of GFP-SpoIID, GFP-SpoIIM and GFP-SpoIIP fraction at
LE
Antibiotics were added 2 hr after resuspension, and samples were taken one hour later for imaging.

Exposure times and image adjustments were kept constant throughout the experiment. To deter-

mine the fraction of GFP signal at the LE, GFP pixel intensities of seven optical sections covering a

total thickness of 0.9 mm were summed. GFP intensities at the LE (ILE) and in the rest of the mother

cell (IMC) were determined separately by drawing polygons encompassing the LE or the MC. After

subtraction of the average background intensity, the fraction of GFP fluorescence at LE ( ILE
ILEþIMC

) was

determined for each sporangium.

Langevin dynamics
The Langevin dynamic equation of the ith bead at position ri is given by:

zi
dri

dt
¼F

spr
i þF

bend
i þF

pep
i þF

stoch
i þF

Dp
i þF

wall
i ; (1)

where the left-hand side depends on the drag coefficient zi »4phmedl0 (Howard, 2001), with hmed is

the medium viscosity and l0 equilibrium distance between neighbouring beads (see Appendix 1). On

the right-hand side of Equation 5 we have contributions of glycan elastic spring, glycan bending,

peptide elastic links, stochastic thermal fluctuations, pressure difference Dp between forespore and

mother, and excluded volume from the old cell wall, respectively.

�2 fitting of parameters
To compare simulations with experiments we measured forespore volume (Vi), forespore surface

area (Si) and engulfment (Ei) and constructed a quality-of-fit function as:

�2 ¼
X

i

�
ðVexp

i �V sim
i Þ2

s2ðVexp
i Þ

þ
ðSexpi � Ssimi Þ2

s2ðSexpi Þ
þ
ðEexp

i �Esim
i Þ2

s2ðEexp
i Þ

�
; (2)

where index i corresponds to ith time point, and s is the standard deviation (Spitzer et al., 2006).
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Appendix 1

Image analysis

Forespore volume and surface area
Forespore volume and surface area are estimated from tracked fluorescent membranes in the

medial focal plane using ImageJ plugin JFilament (Smith et al., 2010). JFilament is a semi-

automated active contour software that is used for tracking fluorescently labelled membrane

over time. The output of the software is a string of discrete membrane dots ri = (xi,yi). A

typical distance between neighbouring dots is li~1 pixel. From the positions of the

membrane dots, a costume-built Mathematica program was used to calculate the 3D volume

(V ) and surface area (S) by assuming rotational symmetry around the axis connecting the

center of mass of the forespore and mother cell. The volume is given by:

V ¼
1

2

XN

i¼1

pd2i lijt̂i êfmj; (3)

where N is the total number of dots, di is the shortest distance between ith dot and

rotational axis, li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxiþ1 � xiÞ

2 þ ðyiþ1 � yiÞ
2

q
is the distance between neighbouring dots,

and t̂i � ðriþ1 � riÞ=riþ1 � ri is the unit tangent vector, and êfm is the unit vector of the

rotational axis. Since the sum extends over all the dots we used prefactor 1

2
in order to

correct for double counting. Similarly, the surface area is:

S¼
1

2

XN

i¼1

2pdi li: (4)

Calculating gap arc length
Forespore membrane contours are extracted as described in Forespore volume and surface

area. Using a simple thresholding method (0.55 ± 0.05, relative to bright engulfing cup) the

part of forespores that is not covered with mother membrane is selected. The total arc

length is subsequently calculated for segments not covered with the mother membrane.

Analysis of cells with symmetric and asymmetric cups are included in the analysis of the main

text (Figure 1H).
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Appendix 2

Model and simulations

Stochastic leading-edge insertion
In our model insertion-degradation complexes (IDC) drive leading-edge (LE) advancement.

Glycan-strand insertion occurs exclusively at the leading edge (Figure 3). A single IDC binds

to a previously created glycan defect with probability prep (probability to repair) or anywhere

along the LE with probability (1-prep). Once bound, the IDC inserts a glycan strand of a

typical length 1 �m (Hayhurst et al., 2008). In the model IDC uses two glycan strands for

guiding the insertion as suggested by the proposed template model of vegetative cell

growth (Höltje, 1998). One template strand belongs to the elongating septal PG and other

strand to the old cell wall. During the insertion process, if IDC encounters a gap in the old

cell wall, IDC continues insertion with probability ppro (processivity probability) or terminates

insertion with probability (1-ppro). When the IDC reaches the end of the germ cell wall

template, insertion is terminated.

To explore general properties of above simple stochastic model we discretized glycan

strands in segments of 2 nm, which corresponds to a distance between two neighboring

antiparallel peptide bonds (Figure 4A, Figure 4—figure supplement 1). We simulated this

simple model assuming that the total number NIDC of IDCs is constant. Also, IDC inserts one

glycan segment per time step. Simulations are run until the LE reaches the height of 1 �m

(500 glycans). For simulated LE profiles we measured their width (2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hh2i i � hhii

2

q
) and

roughness (1 - C=C0), where h:::i is the average over LE segments, hi the height of the ith LE

segment, C the LE circumference, and C0 the cell circumference.

Langevin dynamics
Inserted glycans are equilibriated using Langevin dynamics in 3D (Laporte et al., 2012;

Tang et al., 2014; Ojkic et al., 2014). The Langevin dynamic equation of the ith glycan bead

at position ri is given by:

zi
dri

dt
¼F

spr
i þF

bend
i þF

pep
i þF

stoch
i þF

Dp
i þF

wall
i ; (5)

where the left-hand side depends on the drag coefficient zi » 4phmedl0 (Howard, 2001), with

hmed is the medium viscosity and l0 equilibrium distance between neighboring beads. On the

right-hand side of Equation 5 we have contributions from glycan elasticity, glycan bending,

peptide elasticity, thermal fluctuations, pressure difference Dp between forespore and

mother cell, and excluded volume from the old cell wall, respectively. Simulation parameters

are in Appendix 2—table 1. Below we describe each force contribution.

Glycan elastic force
The elastic force on the ith bead due to neighboring linear springs is given by:

F
spr
i ¼�

qEspr

qri
¼�

kgly

2

XN�1

j¼1

qðjrjþ1 � rjj � l0Þ
2

qri
; (6)

where N is the total number of beads in the glycan.

Glycan bending
The bending force is given by
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F
bend
i ¼�

qEbend

qri
¼
kb

l0

XN�1

j¼2

qðt̂jt̂j�1Þ

qri
; (7)

with t̂i � ðriþ1 � riÞ=riþ1 � ri is the unit tangent vector, and kb is the glycan flexural rigidity.

We further simplified Equation 7 using identity (Pasquali and Morse, 2002)

qt̂i

qrj
¼

1

l0
ðdiþ1;j� di;jÞðÎ� t̂it̂

T
i Þ; (8)

where di;j the Kroneker symbol, Î the unit matrix, and

t̂it̂
T
i �

t2i;x ti;xti;y ti;xti;z

ti;xti;y t2i;y ti;yti;z

ti;xti;z ti;yti;z t2i;z

0
BB@

1
CCA; (9)

Peptide elastic force
The force on the ith glycan bead due to peptide connections is:

F
pep
i ¼�

qEpep

qri
¼�

kpep

2

X

j

qðjrj� rij � l0pÞ
2

qri
; (10)

where the sum is over beads of neighboring glycans that have peptide connections with the

ith bead. Here l0p is the equilibrium peptide length, and kpep is the peptide spring constant.

Stochastic force
The stochastic force due to thermal noise is given by (Pasquali and Morse, 2002)

hFstoch
i F

stochT
i i ¼

2kBTzi

Dt
Î; (11)

with kBT the thermal energy and Dt the simulation time step.

Pressure force
In our model pressure difference (Dp) is due to translocated DNA

F
Dp
i ¼ DSiDp n̂i (12)

with DSi the surface segment corresponding to the ith bead, and n̂i is the unit normal vector.

Parameter Dp is estimated using the contact-value theorem of confined polymers in a

thermal equilibrium (Li et al., 2008). The osmotic pressure in the forespore compartment

due to translocated DNA is pf ¼
�
Rf�s=2

Rf

�2
c kBT , where Rf is the forespore radius, s is the

DNA cross-section diameter, and c is the number density of DNA at the forespore inner

surface. For simplicity, we assumed that DNA density is constant throughout the forespore.

Since s � Rf we neglected the numerical prefactor in the expression for osmotic pressure.

Using the same expression for the osmotic pressure in mother-cell compartment and

Vm=Vf ~ 5 at the end of engulfment (Figure 4, Figure 1—figure supplement 3) we estimated

a lower bound for the osmotic pressure difference Dp ~86.31 kPa.
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Excluded volume
Excluded volume force from the lateral old cell wall was added to each glycan bead when the

bead is within l0 of the lateral cell wall. The magnitude of excluded volume force was 70 pN

in the normal and inward direction of the lateral wall.

Simulations with decoupled synthesis and degradation
To explore the possibility that synthesis and degradation are not tightly coupled as in our IDC

model, we simulated delayed degradation of peptide bonds connecting lateral cell wall and

newly synthesized glycan strands. For this purpose, we introduced a typical delay time tdelay

of peptide degradation in our simulation (Figure 4—figure supplement 5, Video 6). As

expected, the spatial insertion-degradation separation increases with tdelay (Figure 4—figure

supplement 5A,B). As long as no errors are made, this mechanism also leads to successful

forespore engulfment.

To investigate the role of errors in cutting peptide bonds we simulated the possibility that

PG degradation also cuts neighbouring peptide bond (peptide connection in different

planes) of newly synthesized germ cell wall with probability ppcut (Figure 4—figure

supplement 5C–D). For relatively small ppcut ¼ 0.1, an irregular peptidoglycan meshwork is

formed. As long as ppcut is small, intact forespores are formed.

We also simulated dislocalized DMP degradation upon antibiotic treatment when synthesis

is stalled (Figure 2E–F, Figure 2—figure supplement 3). We explored the possibility that

dislocated DMP randomly cuts old germ cell wall peptides with constant degradation rate

prpep. In this scenario, irregular peptidoglycan networks protrude towards the mother cell

with apparent volume increase while the leading edge remains still (Figure 4—figure

supplement 5E–F). Similar phenotypes are experimentally observed about 2 hr after

antibiotic treatment (see Video 1; Figure 1—figure supplement 1A)

Numerical integration
After stochastic glycan insertion, Equation 5 was numerically integrated with time step

Dt ¼ 2 � 10�8 s. The peptidoglycan (PG) network was equilibrated with 15,000 integration

time steps. Simulations were also tested with 30,000 time steps to make sure that forespore

volume, surface area, and engulfment remained unchanged. Obtained time traces of

volume, surface area, and engulfment are subsequently rescaled in time to match

experimental measurements (Figure 4D–E). A typical rescaling factor was Det ¼ 1:8 � 105.

Since rescaling was done on fully equilibrated PG meshworks obtained relaxation dynamics

were not affected by our rescaling method. From the mass conservation of inserted glycans

we estimated NIDC � VIDC ~Nin l0 w=Det, where NIDC is the number of IDC, VIDC is the IDC

insertion velocity, Nin is the number of inserted segments, w ¼ 7 is the number of glycans

per coarse-grained glycan (Figure 4A).

Simulation parameters
Appendix 2—table 1. Model parameters.

Symbol Physical quantity
Values used in
simulation Sources / References Notes

T0 Room temperature 300 K

Appendix 2—table 1 continued on next page
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Appendix 2—table 1 continued

Symbol Physical quantity
Values used in
simulation Sources / References Notes

kpep
Peptide effective spring
constant; kpep = k0pep / 2

25 pN/nm
Figure 4—figure supplement
4, (Nguyen et al., 2015)

k0pep for a sin-
gle peptide

kgly
Glycan effective spring
constant; kgly = k0gly

5570 pN/nm
Figure 4—figure supplement
4, (Nguyen et al., 2015)

k0gly for a sin-
gle glycan

lp0 Glycan persistance length 40 nm
Figure 4—figure supplement
2,(Nguyen et al., 2015)

Dp Pressure difference 86.31 kPa Apendix (2.2)

hwat Water viscosity 0.001 Pa s

hmed Medium viscosity 1 Pa s (Spitzer et al., 2006)

l0 ¼ l0p Mesh size 0.014 �m
Our simula-
tions

Dt Time step 2 � 10�8s
Our simula-
tions

DOI: 10.7554/eLife.18657.027
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Appendix 3

Strains, plasmids and oligonucleotides
Appendix 3—table 1. Strains used in this study.

Strain Genotype or description Reference, source or construction*

PY79 Wild type (Youngman et al., 1984)

ABS49 DspoIIP::Tet
PspoIIP-GFP-spoIIP
erm (Chastanet and Losick, 2007)

ABS98 DspoIIM::spc
PspoIIM-GFP-spoIID
erm (Chastanet and Losick, 2007)

ABS325 DspoIID::kan
PspoIID-GFP-spoIID
erm (Chastanet and Losick, 2007)

JLG626 DspoIIQ::erm pJLG78 ! PY79 (Em R)

JLG1420 amyE::PspoIIQ-sfGFP-pbpF
cat pJLG213 ! PY79 (Cm R)

JLG1421 amyE::PspoIIR-sfGFP-pbpF
cat pJLG214 ! PY79 (Cm R)

JLG1422 thrC::PspoIID-sfGFP-pbpF
spc pJLG215 ! PY79 (Sp R)

JLG1425 amyE::PspoIIQ-sfGFP-pbpG
cat pJLG218 ! PY79 (Cm R)

JLG1427 amyE::PspoIIR-sfGFP-pbpG
cat pJLG219 ! PY79 (Cm R)

JLG1428 thrC::PspoIID-sfGFP-pbpG
spc pJLG220 ! PY79 (Sp R)

JLG1555 amyE::PspoIIQ-sfGFP-ponA
cat pJLG222 ! PY79 (Cm R)

JLG1556 amyE::PspoIIR-sfGFP-ponA
cat pJLG223 ! PY79 (Cm R)

JLG1557 thrC::PspoIID-sfGFP-ponA
spc pJLG230 ! PY79 (Sp R)

JLG1558 amyE::PspoIIQ-sfGFP-pbpD
cat pJLG224 ! PY79 (Cm R)

JLG1559 amyE::PspoIIR-sfGFP-pbpD
cat pJLG225 ! PY79 (Cm R)

JLG1560 thrC::PspoIID-sfGFP-pbpD
spc pJLG226 ! PY79 (Sp R)

JLG1824 amyE::PspoIIQ-sfGFP-pbpB
cat pJLG263 ! PY79 (Cm R)

JLG1825 amyE::PspoIIR-sfGFP-pbpB
cat pJLG264 ! PY79 (Cm R)

JLG1826 thrC::PspoIID-sfGFP-pbpB
spc pJLG265 ! PY79 (Sp R)

JLG1827 amyE::PspoIIQ-sfGFP-pbpH
cat pJLG266 ! PY79 (Cm R)

JLG1828 amyE::PspoIIR-sfGFP-pbpH
cat pJLG267 ! PY79 (Cm R)

JLG1829 thrC::PspoIID-sfGFP-pbpH
spc pJLG268 ! PY79 (Sp R)

JLG1830 amyE::PspoIIR-sfGFP-pbpI
cat pJLG270 ! PY79 (Cm R)

JLG1831 thrC::PspoIID-sfGFP-pbpI
spc pJLG271 ! PY79 (Sp R)

JLG1832 amyE::PspoIIQ-sfGFP-pbpA
cat pJLG272 ! PY79 (Cm R)

JLG1833 amyE::PspoIIR-sfGFP-pbpA
cat pJLG273 ! PY79 (Cm R)

JLG1834 thrC::PspoIID-sfGFP-pbpA
spc pJLG274 ! PY79 (Sp R)

JLG1835 amyE::PspoIIQ-sfGFP-pbpX
cat pJLG275 ! PY79 (Cm R)

JLG1836 amyE::PspoIIR-sfGFP-pbpX
cat pJLG276 ! PY79 (Cm R)

JLG1837 thrC::PspoIID-sfGFP-pbpX
spc pJLG277 ! PY79 (Sp R)

JLG1838 amyE::PspoIIQ-sfGFP-dacA
cat pJLG278 ! PY79 (Cm R)

JLG1839 amyE::PspoIIR-sfGFP-dacA
cat pJLG279 ! PY79 (Cm R)

JLG1840 thrC::PspoIID-sfGFP-dacA
spc pJLG280 ! PY79 (Sp R)

JLG1851 amyE::PspoIIQ-sfGFP-dacB
cat pJLG281 ! PY79 (Cm R)

JLG1852 amyE::PspoIIR-sfGFP-dacB
cat pJLG282 ! PY79 (Cm R)

JLG1853 thrC::PspoIID-sfGFP-dacB
spc pJLG283 ! PY79 (Sp R)

JLG1854 amyE::PspoIIQ-sfGFP-dacC
cat pJLG284 ! PY79 (Cm R)

JLG1855 amyE::PspoIIR-sfGFP-dacC
cat pJLG285 ! PY79 (Cm R)

Appendix 3—table 1 continued on next page
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Appendix 3—table 1 continued

Strain Genotype or description Reference, source or construction*

JLG1856 thrC::PspoIID-sfGFP-dacC
spc pJLG286 ! PY79 (Sp R)

JLG1857 amyE::PspoIIQ-sfGFP-dacF
cat pJLG287 ! PY79 (Cm R)

JLG1858 thrC::PspoIID-sfGFP-dacF
spc pJLG289 ! PY79 (Sp R)

JLG1859 amyE::PspoIIQ-sfGFP-pbpI
cat pJLG269 ! PY79 (Cm R)

JLG1860 amyE::PspoIIR-sfGFP-dacF
cat pJLG288 ! PY79 (Cm R)

JLG1861 amyE::PspoIIQ-sfGFP-pbpE
cat pJLG296 ! PY79 (Cm R)

JLG1863 amyE::PspoIIR-sfGFP-pbpE
cat pJLG298 ! PY79 (Cm R)

JLG1864 thrC::PspoIID-sfGFP-pbpE
spc pJLG299 ! PY79 (Sp R)

JLG2248 amyE::PspoIIR-sfGFP-ponA
cat DspoIIQ::erm JLG626 ! JLG1556 (Em R)

JLG2356 DgerM::kan pJLG361 ! PY79 (Km R)

JLG2359 amyE::PspoIIR-sfGFP-pbpA
cat DspoIIQ::erm JLG626 ! JLG1833 (Em R)

JLG2360 amyE::PspoIIR-sfGFP-pbpA
cat DspoIIB::erm KP343 ! JLG1833 (Em R)

JLG2366 amyE::PspoIIR-sfGFP-ponA
cat DspoIIB::erm KP343 ! JLG1556 (Em R)

JLG2367 amyE::PspoIIR-sfGFP-ponA
cat DgerM::kan JLG2356 ! JLG1556 (Km R)

JLG2368 amyE::PspoIIR-sfGFP-ponA
cat DspoIIIAG-AH::kan KP896 ! JLG1556 (Km R)

JLG2369 amyE::PspoIIR-sfGFP-ponA
cat DspoIVFAB::cat::tet KP1013 ! JLG1556 (Tet R)

JLG2370 amyE::PspoIIR-sfGFP-ponA
cat DsigE::erm KP161 ! JLG1556 (Em R)

JLG2371 amyE::PspoIIR-sfGFP-ponA
cat spoIID::Tn917
erm KP8 ! JLG1556 (Em R)

JLG2372 amyE::PspoIIR-sfGFP-ponA
cat DspoIIP::tet KP513 ! JLG1556 (Tet R)

JLG2373 amyE::PspoIIR-sfGFP-ponA
cat spoIIM::Tn917
erm KP519 ! JLG1556 (Em R)

JLG2374 amyE::PspoIIR-sfGFP-pbpA
cat DgerM::kan JLG2356 ! JLG1833 (Km R)

JLG2375 amyE::PspoIIR-sfGFP-pbpA
cat DspoIIIAG-AH::kan KP896 ! JLG1833 (Km R)

JLG2376 amyE::PspoIIR-sfGFP-pbpA
cat DspoIVFAB::cat::tet KP1013 ! JLG1833 (Tet R)

JLG2377 amyE::PspoIIR-sfGFP-pbpA
cat DsigE::erm KP161 ! JLG1833 (Em R)

JLG2378 amyE::PspoIIR-sfGFP-pbpA
cat spoIID::Tn917
erm KP8 ! JLG1833 (Em R)

JLG2379 amyE::PspoIIR-sfGFP-pbpA
cat DspoIIP::tet KP513 ! JLG1833 (Tet R)

JLG2380 amyE::PspoIIR-sfGFP-pbpA
cat spoIIM::Tn917
erm KP519 ! JLG1833 (Em R)

JLG2411 amyE::PspoIIQ-sfGFP-mreB
cat pJLG363 ! PY79 (Cm R)

JLG2412 amyE::PspoIIR-sfGFP-mreB
cat pJLG364 ! PY79 (Cm R)

JLG2413 thrC::PspoIID-sfGFP-mreB
spc pJLG365 ! PY79 (Sp R)

JLG2414 amyE::PspoIIQ-sfGFP-mbl
cat pJLG371 ! PY79 (Cm R)

JLG2415 amyE::PspoIIR-sfGFP-mbl
cat pJLG366 ! PY79 (Cm R)

JLG2416 thrC::PspoIID-sfGFP-mbl
spc pJLG367 ! PY79 (Sp R)

JLG2417 amyE::PspoIIQ-sfGFP-mreBH
cat pJLG368 ! PY79 (Cm R)

JLG2418 amyE::PspoIIR-sfGFP-mreBH
cat pJLG369 ! PY79 (Cm R)

JLG2419 thrC::PspoIID-sfGFP-mreBH
spc pJLG370 ! PY79 (Sp R)

KP8 spoIID::Tn917
erm (Sandman et al., 1987)

KP161 DsigE::erm (Kenney and Moran, 1987)

KP343 DspoIIB::erm (Margolis et al., 1993)

KP513 DspoIIP::tet (Frandsen and Stragier, 1995)

KP519 spoIIM::Tn917
erm (Sandman et al., 1987)

KP896 DspoIIIAG-AH::kan (Blaylock et al., 2004)

KP1013 DspoIVFAB::cat::tet (Aung et al., 2007)
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*Plasmid or genomic DNA employed (right side the arrow) to transform an existing strain

(left side the arrow) into a new strain are listed. The drug resistance is noted in parentheses.

DOI: 10.7554/eLife.18657.028

Appendix 3—table 2. Plasmids used in this study.

Plasmid Description

pJLG78 DspoIIQ::erm

pJLG88 amyE::PspoIIQ-pbpF
cat

pJLG89 amyE::PspoIIR-pbpF
cat

pJLG90 thrC::PspoIID-pbpF
spc

pJLG91 amyE::PspoIIQ-pbpG
cat

pJLG92 amyE::PspoIIR-pbpG
cat

pJLG93 thrC::PspoIID-pbpG
spc

pJLG213 amyE::PspoIIQ-sfGFP-pbpF
cat

pJLG214 amyE::PspoIIR-sfGFP-pbpF
cat

pJLG215 thrC::PspoIID-sfGFP-pbpF
spc

pJLG218 amyE::PspoIIQ-sfGFP-pbpG
cat

pJLG219 amyE::PspoIIR-sfGFP-pbpG
cat

pJLG220 thrC::PspoIID-sfGFP-pbpG
spc

pJLG222 amyE::PspoIIQ-sfGFP-ponA
cat

pJLG223 amyE::PspoIIR-sfGFP-ponA
cat

pJLG224 amyE::PspoIIQ-sfGFP-pbpD
cat

pJLG225 amyE::PspoIIR-sfGFP-pbpD
cat

pJLG226 thrC::PspoIID-sfGFP-pbpD
spc

pJLG230 amyE::PspoIIR-sfGFP-ponA
cat

pJLG263 amyE::PspoIIQ-sfGFP-pbpB
cat

pJLG264 amyE::PspoIIR-sfGFP-pbpB
cat

pJLG265 thrC::PspoIID-sfGFP-pbpB
spc

pJLG266 amyE::PspoIIQ-sfGFP-pbpH
cat

pJLG267 amyE::PspoIIR-sfGFP-pbpH
cat

pJLG268 thrC::PspoIID-sfGFP-pbpH
spc

pJLG269 amyE::PspoIIQ-sfGFP-pbpI
cat

pJLG270 amyE::PspoIIR-sfGFP-pbpI
cat

pJLG271 thrC::PspoIID-sfGFP-pbpI
spc

pJLG272 amyE::PspoIIQ-sfGFP-pbpA
cat

pJLG273 amyE::PspoIIR-sfGFP-pbpA
cat

pJLG274 thrC::PspoIID-sfGFP-pbpA
spc

pJLG275 amyE::PspoIIQ-sfGFP-pbpX
cat

pJLG276 amyE::PspoIIR-sfGFP-pbpX
cat

pJLG277 thrC::PspoIID-sfGFP-pbpX
spc

pJLG278 amyE::PspoIIQ-sfGFP-dacA
cat

pJLG279 amyE::PspoIIR-sfGFP-dacA
cat

pJLG280 thrC::PspoIID-sfGFP-dacA
spc

pJLG281 amyE::PspoIIQ-sfGFP-dacB
cat

pJLG282 amyE::PspoIIR-sfGFP-dacB
cat

pJLG283 thrC::PspoIID-sfGFP-dacB
spc

Appendix 3—table 2 continued on next page
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http://dx.doi.org/10.7554/eLife.18657.028Appendix&x00A0;3&x2014;table%201.Strains%20used%20in%20this%20study.%2010.7554/eLife.18657.028StrainGenotype%20or%20descriptionReference,%20source%20or%20construction&x002A;PY79Wild%20type(Youngman%20et�al.,%201984)ABS49\DeltaspoIIP::Tet\OmegaPspoIIP-GFP-spoIIP\Omegaerm(Chastanet%20and%20Losick,%202007)ABS98\DeltaspoIIM::spc\OmegaPspoIIM-GFP-spoIID\Omegaerm(Chastanet%20and%20Losick,%202007)ABS325\DeltaspoIID::kan\OmegaPspoIID-GFP-spoIID\Omegaerm(Chastanet%20and%20Losick,%202007)JLG626\DeltaspoIIQ::ermpJLG78%20\rightarrow%20PY79%20(Em%20{}^{\rm%20R})JLG1420amyE::PspoIIQ-sfGFP-pbpF\OmegacatpJLG213%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1421amyE::PspoIIR-sfGFP-pbpF\OmegacatpJLG214%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1422thrC::PspoIID-sfGFP-pbpF\OmegaspcpJLG215%20\rightarrow%20PY79%20(Sp%20{}^{\rm%20R})JLG1425amyE::PspoIIQ-sfGFP-pbpG\OmegacatpJLG218%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1427amyE::PspoIIR-sfGFP-pbpG\OmegacatpJLG219%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1428thrC::PspoIID-sfGFP-pbpG\OmegaspcpJLG220%20\rightarrow%20PY79%20(Sp%20{}^{\rm%20R})JLG1555amyE::PspoIIQ-sfGFP-ponA\OmegacatpJLG222%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1556amyE::PspoIIR-sfGFP-ponA\OmegacatpJLG223%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1557thrC::PspoIID-sfGFP-ponA\OmegaspcpJLG230%20\rightarrow%20PY79%20(Sp%20{}^{\rm%20R})JLG1558amyE::PspoIIQ-sfGFP-pbpD\OmegacatpJLG224%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1559amyE::PspoIIR-sfGFP-pbpD\OmegacatpJLG225%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1560thrC::PspoIID-sfGFP-pbpD\OmegaspcpJLG226%20\rightarrow%20PY79%20(Sp%20{}^{\rm%20R})JLG1824amyE::PspoIIQ-sfGFP-pbpB\OmegacatpJLG263%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1825amyE::PspoIIR-sfGFP-pbpB\OmegacatpJLG264%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1826thrC::PspoIID-sfGFP-pbpB\OmegaspcpJLG265%20\rightarrow%20PY79%20(Sp%20{}^{\rm%20R})JLG1827amyE::PspoIIQ-sfGFP-pbpH\OmegacatpJLG266%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1828amyE::PspoIIR-sfGFP-pbpH\OmegacatpJLG267%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1829thrC::PspoIID-sfGFP-pbpH\OmegaspcpJLG268%20\rightarrow%20PY79%20(Sp%20{}^{\rm%20R})JLG1830amyE::PspoIIR-sfGFP-pbpI\OmegacatpJLG270%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1831thrC::PspoIID-sfGFP-pbpI\OmegaspcpJLG271%20\rightarrow%20PY79%20(Sp%20{}^{\rm%20R})JLG1832amyE::PspoIIQ-sfGFP-pbpA\OmegacatpJLG272%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1833amyE::PspoIIR-sfGFP-pbpA\OmegacatpJLG273%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1834thrC::PspoIID-sfGFP-pbpA\OmegaspcpJLG274%20\rightarrow%20PY79%20(Sp%20{}^{\rm%20R})JLG1835amyE::PspoIIQ-sfGFP-pbpX\OmegacatpJLG275%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1836amyE::PspoIIR-sfGFP-pbpX\OmegacatpJLG276%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1837thrC::PspoIID-sfGFP-pbpX\OmegaspcpJLG277%20\rightarrow%20PY79%20(Sp%20{}^{\rm%20R})JLG1838amyE::PspoIIQ-sfGFP-dacA\OmegacatpJLG278%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1839amyE::PspoIIR-sfGFP-dacA\OmegacatpJLG279%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1840thrC::PspoIID-sfGFP-dacA\OmegaspcpJLG280%20\rightarrow%20PY79%20(Sp%20{}^{\rm%20R})JLG1851amyE::PspoIIQ-sfGFP-dacB\OmegacatpJLG281%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1852amyE::PspoIIR-sfGFP-dacB\OmegacatpJLG282%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1853thrC::PspoIID-sfGFP-dacB\OmegaspcpJLG283%20\rightarrow%20PY79%20(Sp%20{}^{\rm%20R})JLG1854amyE::PspoIIQ-sfGFP-dacC\OmegacatpJLG284%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1855amyE::PspoIIR-sfGFP-dacC\OmegacatpJLG285%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1856thrC::PspoIID-sfGFP-dacC\OmegaspcpJLG286%20\rightarrow%20PY79%20(Sp%20{}^{\rm%20R})JLG1857amyE::PspoIIQ-sfGFP-dacF\OmegacatpJLG287%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1858thrC::PspoIID-sfGFP-dacF\OmegaspcpJLG289%20\rightarrow%20PY79%20(Sp%20{}^{\rm%20R})JLG1859amyE::PspoIIQ-sfGFP-pbpI\OmegacatpJLG269%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1860amyE::PspoIIR-sfGFP-dacF\OmegacatpJLG288%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1861amyE::PspoIIQ-sfGFP-pbpE\OmegacatpJLG296%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1863amyE::PspoIIR-sfGFP-pbpE\OmegacatpJLG298%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG1864thrC::PspoIID-sfGFP-pbpE\OmegaspcpJLG299%20\rightarrow%20PY79%20(Sp%20{}^{\rm%20R})JLG2248amyE::PspoIIR-sfGFP-ponA\Omegacat%20\DeltaspoIIQ::ermJLG626%20\rightarrow%20JLG1556%20(Em%20{}^{\rm%20R})JLG2356\DeltagerM::kanpJLG361%20\rightarrow%20PY79%20(Km%20{}^{\rm%20R})JLG2359amyE::PspoIIR-sfGFP-pbpA\Omegacat%20\DeltaspoIIQ::ermJLG626%20\rightarrow%20JLG1833%20(Em%20{}^{\rm%20R})JLG2360amyE::PspoIIR-sfGFP-pbpA\Omegacat%20\DeltaspoIIB::ermKP343%20\rightarrow%20JLG1833%20(Em%20{}^{\rm%20R})JLG2366amyE::PspoIIR-sfGFP-ponA\Omegacat%20\DeltaspoIIB::ermKP343%20\rightarrow%20JLG1556%20(Em%20{}^{\rm%20R})JLG2367amyE::PspoIIR-sfGFP-ponA\Omegacat%20\DeltagerM::kanJLG2356%20\rightarrow%20JLG1556%20(Km%20{}^{\rm%20R})JLG2368amyE::PspoIIR-sfGFP-ponA\Omegacat%20\DeltaspoIIIAG-AH::kanKP896%20\rightarrow%20JLG1556%20(Km%20{}^{\rm%20R})JLG2369amyE::PspoIIR-sfGFP-ponA\Omegacat%20\DeltaspoIVFAB::cat::tetKP1013%20\rightarrow%20JLG1556%20(Tet%20{}^{\rm%20R})JLG2370amyE::PspoIIR-sfGFP-ponA\Omegacat%20\DeltasigE::ermKP161%20\rightarrow%20JLG1556%20(Em%20{}^{\rm%20R})JLG2371amyE::PspoIIR-sfGFP-ponA\Omegacat%20spoIID::Tn917\OmegaermKP8%20\rightarrow%20JLG1556%20(Em%20{}^{\rm%20R})JLG2372amyE::PspoIIR-sfGFP-ponA\Omegacat%20\DeltaspoIIP::tetKP513%20\rightarrow%20JLG1556%20(Tet%20{}^{\rm%20R})JLG2373amyE::PspoIIR-sfGFP-ponA\Omegacat%20spoIIM::Tn917\OmegaermKP519%20\rightarrow%20JLG1556%20(Em%20{}^{\rm%20R})JLG2374amyE::PspoIIR-sfGFP-pbpA\Omegacat%20\DeltagerM::kanJLG2356%20\rightarrow%20JLG1833%20(Km%20{}^{\rm%20R})JLG2375amyE::PspoIIR-sfGFP-pbpA\Omegacat%20\DeltaspoIIIAG-AH::kanKP896%20\rightarrow%20JLG1833%20(Km%20{}^{\rm%20R})JLG2376amyE::PspoIIR-sfGFP-pbpA\Omegacat%20\DeltaspoIVFAB::cat::tetKP1013%20\rightarrow%20JLG1833%20(Tet%20{}^{\rm%20R})JLG2377amyE::PspoIIR-sfGFP-pbpA\Omegacat%20\DeltasigE::ermKP161%20\rightarrow%20JLG1833%20(Em%20{}^{\rm%20R})JLG2378amyE::PspoIIR-sfGFP-pbpA\Omegacat%20spoIID::Tn917\OmegaermKP8%20\rightarrow%20JLG1833%20(Em%20{}^{\rm%20R})JLG2379amyE::PspoIIR-sfGFP-pbpA\Omegacat%20\DeltaspoIIP::tetKP513%20\rightarrow%20JLG1833%20(Tet%20{}^{\rm%20R})JLG2380amyE::PspoIIR-sfGFP-pbpA\Omegacat%20spoIIM::Tn917\OmegaermKP519%20\rightarrow%20JLG1833%20(Em%20{}^{\rm%20R})JLG2411amyE::PspoIIQ-sfGFP-mreB\OmegacatpJLG363%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG2412amyE::PspoIIR-sfGFP-mreB\OmegacatpJLG364%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG2413thrC::PspoIID-sfGFP-mreB\OmegaspcpJLG365%20\rightarrow%20PY79%20(Sp%20{}^{\rm%20R})JLG2414amyE::PspoIIQ-sfGFP-mbl\OmegacatpJLG371%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG2415amyE::PspoIIR-sfGFP-mbl\OmegacatpJLG366%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG2416thrC::PspoIID-sfGFP-mbl\OmegaspcpJLG367%20\rightarrow%20PY79%20(Sp%20{}^{\rm%20R})JLG2417amyE::PspoIIQ-sfGFP-mreBH\OmegacatpJLG368%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG2418amyE::PspoIIR-sfGFP-mreBH\OmegacatpJLG369%20\rightarrow%20PY79%20(Cm%20{}^{\rm%20R})JLG2419thrC::PspoIID-sfGFP-mreBH\OmegaspcpJLG370%20\rightarrow%20PY79%20(Sp%20{}^{\rm%20R})KP8spoIID::Tn917\Omegaerm(Sandman%20et�al.,%201987)KP161\DeltasigE::erm(Kenney%20and%20Moran,%201987)KP343\DeltaspoIIB::erm(Margolis%20et�al.,%201993)KP513\DeltaspoIIP::tet(Frandsen%20and%20Stragier,%201995)KP519spoIIM::Tn917\Omegaerm(Sandman%20et�al.,%201987)KP896\DeltaspoIIIAG-AH::kan(Blaylock%20et�al.,%202004)KP1013\DeltaspoIVFAB::cat::tet(Aung%20et�al.,%202007)&x002A;Plasmid%20or%20genomic%20DNA%20employed%20(right%20side%20the%20arrow)%20to%20transform%20an%20existing%20strain%20(left%20side%20the%20arrow)%20into%20a%20new%20strain%20are%20listed.%20The%20drug%20resistance%20is%20noted%20in%20parentheses.
http://dx.doi.org/10.7554/eLife.18657


Appendix 3—table 2 continued

Plasmid Description

pJLG284 amyE::PspoIIQ-sfGFP-dacC
cat

pJLG285 amyE::PspoIIR-sfGFP-dacC
cat

pJLG286 thrC::PspoIID-sfGFP-dacC
spc

pJLG287 amyE::PspoIIQ-sfGFP-dacF
cat

pJLG288 amyE::PspoIIR-sfGFP-dacF
cat

pJLG289 thrC::PspoIID-sfGFP-dacF
spc

pJLG296 amyE::PspoIIQ-sfGFP-pbpE
cat

pJLG298 amyE::PspoIIR-sfGFP-pbpE
cat

pJLG299 thrC::PspoIID-sfGFP-pbpE
spc

pJLG361 DgerM::kan

pJLG363 amyE::PspoIIQ-sfGFP-mreB
cat

pJLG364 amyE::PspoIIR-sfGFP-mreB
cat

pJLG365 thrC::PspoIID-sfGFP-mreB
spc

pJLG366 amyE::PspoIIR-sfGFP-mbl
cat

pJLG367 thrC::PspoIID-sfGFP-mbl
spc

pJLG368 amyE::PspoIIQ-sfGFP-mreBH
cat

pJLG369 amyE::PspoIIR-sfGFP-mreBH
cat

pJLG370 thrC::PspoIID-sfGFP-mreBH
spc

pJLG371 amyE::PspoIIQ-sfGFP-mbl
cat

DOI: 10.7554/eLife.18657.029

Appendix 3—table 3. Oligonucleotides used in this sudy.

Primer Sequence†

JLG-95 CATGGATTACGCGTTAACCC

JLG-96 GCACTTTTCGGGGAAATGTG

JLG-249 catacgccgagttatcacatGATGATTCAACTGACAAATCTGG

JLG-250 cacatttccccgaaaagtgcCCAAGTGACCATACGACAGG

JLG-251 gggttaacgcgtaatccatgGACAGAGTGACAAGCGATCC

JLG-252 gggttgccagagttaaaggaAAGTAAATTGCAGGGAACACC

JLG-253 TCCTTTAACTCTGGCAACCC

JLG-254 ATGTGATAACTCGGCGTATG

JLG-138 CGAAGGCAGCAGTTTTTTGG

JLG-139 ATAGAGATCCGATCAGACCAG

JLG-152 TGCGAATTGTTTCATATTCAG

JLG-153 GTTTTCTTCCTCTCTCATTGTTTC

JLG-297 TACTGTTTTTTTCATCGGTCC

JLG-299 gaaacaatgagagaggaagaaaac ATGTTTAAGATAAAGAAAAAGAAACTTTTTATAC

JLG-300 ctggtctgatcggatctctat ACCTTGTTTTAGGCAAATGG

JLG-301 ggaccgatgaaaaaaacagta ATGTTTAAGATAAAGAAAAAGAAACTTTTTATAC

JLG-302 ctgaatatgaaacaattcgca ATGTTTAAGATAAAGAAAAAGAAACTTTTTATAC

JLG-303 ccaaaaaactgctgccttcg ACCTTGTTTTAGGCAAATGG

JLG-304 gaaacaatgagagaggaagaaaac GTGGATGCAATGACAAATAAAC

Appendix 3—table 3 continued on next page

Ojkic et al. eLife 2016;5:e18657. DOI: 10.7554/eLife.18657 28 of 30

Research article Computational and Systems Biology Microbiology and Infectious Disease

http://dx.doi.org/10.7554/eLife.18657.029Appendix&x00A0;3&x2014;table%202.Plasmids%20used%20in%20this%20study.%2010.7554/eLife.18657.029PlasmidDescriptionpJLG78\DeltaspoIIQ::ermpJLG88amyE::PspoIIQ-pbpF\OmegacatpJLG89amyE::PspoIIR-pbpF\OmegacatpJLG90thrC::PspoIID-pbpF\OmegaspcpJLG91amyE::PspoIIQ-pbpG\OmegacatpJLG92amyE::PspoIIR-pbpG\OmegacatpJLG93thrC::PspoIID-pbpG\OmegaspcpJLG213amyE::PspoIIQ-sfGFP-pbpF\OmegacatpJLG214amyE::PspoIIR-sfGFP-pbpF\OmegacatpJLG215thrC::PspoIID-sfGFP-pbpF\OmegaspcpJLG218amyE::PspoIIQ-sfGFP-pbpG\OmegacatpJLG219amyE::PspoIIR-sfGFP-pbpG\OmegacatpJLG220thrC::PspoIID-sfGFP-pbpG\OmegaspcpJLG222amyE::PspoIIQ-sfGFP-ponA\OmegacatpJLG223amyE::PspoIIR-sfGFP-ponA\OmegacatpJLG224amyE::PspoIIQ-sfGFP-pbpD\OmegacatpJLG225amyE::PspoIIR-sfGFP-pbpD\OmegacatpJLG226thrC::PspoIID-sfGFP-pbpD\OmegaspcpJLG230amyE::PspoIIR-sfGFP-ponA\OmegacatpJLG263amyE::PspoIIQ-sfGFP-pbpB\OmegacatpJLG264amyE::PspoIIR-sfGFP-pbpB\OmegacatpJLG265thrC::PspoIID-sfGFP-pbpB\OmegaspcpJLG266amyE::PspoIIQ-sfGFP-pbpH\OmegacatpJLG267amyE::PspoIIR-sfGFP-pbpH\OmegacatpJLG268thrC::PspoIID-sfGFP-pbpH\OmegaspcpJLG269amyE::PspoIIQ-sfGFP-pbpI\OmegacatpJLG270amyE::PspoIIR-sfGFP-pbpI\OmegacatpJLG271thrC::PspoIID-sfGFP-pbpI\OmegaspcpJLG272amyE::PspoIIQ-sfGFP-pbpA\OmegacatpJLG273amyE::PspoIIR-sfGFP-pbpA\OmegacatpJLG274thrC::PspoIID-sfGFP-pbpA\OmegaspcpJLG275amyE::PspoIIQ-sfGFP-pbpX\OmegacatpJLG276amyE::PspoIIR-sfGFP-pbpX\OmegacatpJLG277thrC::PspoIID-sfGFP-pbpX\OmegaspcpJLG278amyE::PspoIIQ-sfGFP-dacA\OmegacatpJLG279amyE::PspoIIR-sfGFP-dacA\OmegacatpJLG280thrC::PspoIID-sfGFP-dacA\OmegaspcpJLG281amyE::PspoIIQ-sfGFP-dacB\OmegacatpJLG282amyE::PspoIIR-sfGFP-dacB\OmegacatpJLG283thrC::PspoIID-sfGFP-dacB\OmegaspcpJLG284amyE::PspoIIQ-sfGFP-dacC\OmegacatpJLG285amyE::PspoIIR-sfGFP-dacC\OmegacatpJLG286thrC::PspoIID-sfGFP-dacC\OmegaspcpJLG287amyE::PspoIIQ-sfGFP-dacF\OmegacatpJLG288amyE::PspoIIR-sfGFP-dacF\OmegacatpJLG289thrC::PspoIID-sfGFP-dacF\OmegaspcpJLG296amyE::PspoIIQ-sfGFP-pbpE\OmegacatpJLG298amyE::PspoIIR-sfGFP-pbpE\OmegacatpJLG299thrC::PspoIID-sfGFP-pbpE\OmegaspcpJLG361\DeltagerM::kanpJLG363amyE::PspoIIQ-sfGFP-mreB\OmegacatpJLG364amyE::PspoIIR-sfGFP-mreB\OmegacatpJLG365thrC::PspoIID-sfGFP-mreB\OmegaspcpJLG366amyE::PspoIIR-sfGFP-mbl\OmegacatpJLG367thrC::PspoIID-sfGFP-mbl\OmegaspcpJLG368amyE::PspoIIQ-sfGFP-mreBH\OmegacatpJLG369amyE::PspoIIR-sfGFP-mreBH\OmegacatpJLG370thrC::PspoIID-sfGFP-mreBH\OmegaspcpJLG371amyE::PspoIIQ-sfGFP-mbl\Omegacat
http://dx.doi.org/10.7554/eLife.18657


Appendix 3—table 3 continued

Primer Sequence†

JLG-306 ctggtctgatcggatctctat GGAACCATACGAATAACCCG

JLG-306 ggaccgatgaaaaaaacagta GTGGATGCAATGACAAATAAAC

JLG-307 ctgaatatgaaacaattcgca GTGGATGCAATGACAAATAAAC

JLG-308 ccaaaaaactgctgccttcg GGAACCATACGAATAACCCG

JLG-453 TGCGCTTGCGCTTGCGCTG

JLG-889 gctagcagcgcaagcgcaagcgca ATGTTTAAGATAAAGAAAAAGAAACTTTTTATAC

JLG-890 gctagcagcgcaagcgcaagcgca GTGGATGCAATGACAAATAAAC

JLG-891 gaaacaatgagagaggaagaaaac GCTAAAGGCGAAGAACTGTTTAC

JLG-892 ggaccgatgaaaaaaacagta GCTAAAGGCGAAGAACTGTTTAC

JLG-893 ctgaatatgaaacaattcgca GCTAAAGGCGAAGAACTGTTTAC

JLG-894 tgcgcttgcgcttgcgctgctagc TTTATACAGTTCATCCATGCC

JLG-977 cagcgcaagcgcaagcgca ATGTCAGATCAATTTAACAGCC

JLG-978 ctggtctgatcggatctctat TACCAAAAAAGCCATCACCC

JLG-979 ccaaaaaactgctgccttcg TACCAAAAAAGCCATCACCC

JLG-980 cagcgcaagcgcaagcgca GTGACCATGTTACGAAAAATAATC

JLG-981 ctggtctgatcggatctctat TCTGAAGTCACTCCATATCCC

JLG-982 ccaaaaaactgctgccttcg TCTGAAGTCACTCCATATCCC

JLG-1021 cagcgcaagcgcaagcgca ATGATTCAAATGCCAAAAAAG

JLG-1022 ctggtctgatcggatctctat TTTGGACAGGTAGAACGATG

JLG-1023 ccaaaaaactgctgccttcg TTTGGACAGGTAGAACGATG

JLG-1024 cagcgcaagcgcaagcgca ATGAAGCAGAATAAAAGAAAGCATC

JLG-1025 ctggtctgatcggatctctat CATTCCTTTCTACTTCGTACGG

JLG-1026 ccaaaaaactgctgccttcg CATTCCTTTCTACTTCGTACGG

JLG-1027 cagcgcaagcgcaagcgca ATGAACCTTTTTTTCCTAGCTG

JLG-1028 ctggtctgatcggatctctat CGCTAGAAAATGAGTATTCTCCTTC

JLG-1029 ccaaaaaactgctgccttcg CGCTAGAAAATGAGTATTCTCCTTC

JLG-1030 cagcgcaagcgcaagcgca ATGAAGATATCGAAACGAATGAAG

JLG-1031 ctggtctgatcggatctctat TCTGCACTCCTTTATCCCTC

JLG-1032 ccaaaaaactgctgccttcg TCTGCACTCCTTTATCCCTC

JLG-1033 cagcgcaagcgcaagcgca ATGACAAGCCCAACCCGCAG

JLG-1034 ctggtctgatcggatctctat CCATCTTAACGTTTGCAGGC

JLG-1035 ccaaaaaactgctgccttcg CCATCTTAACGTTTGCAGGC

JLG-1036 cagcgcaagcgcaagcgca ATGAGGAGAAATAAACCAAAAAAG

JLG-1037 ctggtctgatcggatctctat AAGGTTTTGTAAATCAGTGCG

JLG-1038 ccaaaaaactgctgccttcg AAGGTTTTGTAAATCAGTGCG

JLG-1039 cagcgcaagcgcaagcgca TTGAACATCAAGAAATGTAAACAG

JLG-1040 ctggtctgatcggatctctat TGGGTTTTTTCAGTATATTACGC

JLG-1041 ccaaaaaactgctgccttcg TGGGTTTTTTCAGTATATTACGC

JLG-1042 cagcgcaagcgcaagcgca ATGCGCATTTTCAAAAAAGCAG

JLG-1043 ctggtctgatcggatctctat GATCACGGTTAAACTGACCC

JLG-1044 ccaaaaaactgctgccttcg GATCACGGTTAAACTGACCC

JLG-1045 cagcgcaagcgcaagcgca ATGAAAAAAAGCATAAAGCTTTATG

JLG-1046 ctggtctgatcggatctctat CTAATTGTTGGAAGGTTCGAC
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Appendix 3—table 3 continued

Primer Sequence†

JLG-1047 ccaaaaaactgctgccttcg CTAATTGTTGGAAGGTTCGAC

JLG-1048 cagcgcaagcgcaagcgca ATGAAACGTCTTTTATCCACTTTG

JLG-1049 ctggtctgatcggatctctat ATGAATTCCTTCACCGTGAC

JLG-1050 ccaaaaaactgctgccttcg ATGAATTCCTTCACCGTGAC

JLG-1312 gggttaacgcgtaatccatgACGGATAATCAGCATATCGG

JLG-1313 gcctgagcgagggagcagaaGCAGAGGTGAGACAAGTGG

JLG-1314 gcgttgaccagtgctccctgcTCTCCAGACCATCTCAAGTG

JLG-1315 cacatttccccgaaaagtgcTCAATTCCAACAGAGATTGC

JLG-1330 cagcgcaagcgcaagcgcaATGTTTGGAATTGGTGCTAG

JLG-1331 ctggtctgatcggatctctatCACCTCTTCTATTGAACTCCC

JLG-1332 ccaaaaaactgctgccttcgCACCTCTTCTATTGAACTCCC

JLG-1333 cagcgcaagcgcaagcgcaATGTTTGCAAGGGATATTGG

JLG-1334 ctggtctgatcggatctctatCCAGTTGTCATATAGGAACGTTC

JLG-1335 ccaaaaaactgctgccttcgCCAGTTGTCATATAGGAACGTTC

JLG-1336 cagcgcaagcgcaagcgcaATGTTTCAATCAACTGAAATCG

JLG-1337 ctggtctgatcggatctctatCTCTTAGCATCTGTTTCCTCC

JLG-1338 ccaaaaaactgctgccttcgCTCTTAGCATCTGTTTCCTCC

oER421 ttctgctccctcgctcaggcggccgcATGAGAGAGGAAGAAAACGG

oER422 cagggagcactggtcaacgctagcAATTGGGACAACTCCAGTG

†In capital letters are shown the regions of the primer that anneal to the template. Homology

regions for Gibson assembly are shown in italics.
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http://dx.doi.org/10.7554/eLife.18657.030Appendix&x00A0;3&x2014;table%203.Oligonucleotides%20used%20in%20this%20sudy.%2010.7554/eLife.18657.030PrimerSequence&x2020;JLG-95CATGGATTACGCGTTAACCCJLG-96GCACTTTTCGGGGAAATGTGJLG-249catacgccgagttatcacatGATGATTCAACTGACAAATCTGGJLG-250cacatttccccgaaaagtgcCCAAGTGACCATACGACAGGJLG-251gggttaacgcgtaatccatgGACAGAGTGACAAGCGATCCJLG-252gggttgccagagttaaaggaAAGTAAATTGCAGGGAACACCJLG-253TCCTTTAACTCTGGCAACCCJLG-254ATGTGATAACTCGGCGTATGJLG-138CGAAGGCAGCAGTTTTTTGGJLG-139ATAGAGATCCGATCAGACCAGJLG-152TGCGAATTGTTTCATATTCAGJLG-153GTTTTCTTCCTCTCTCATTGTTTCJLG-297TACTGTTTTTTTCATCGGTCCJLG-299gaaacaatgagagaggaagaaaac%20ATGTTTAAGATAAAGAAAAAGAAACTTTTTATACJLG-300ctggtctgatcggatctctat%20ACCTTGTTTTAGGCAAATGGJLG-301ggaccgatgaaaaaaacagta%20ATGTTTAAGATAAAGAAAAAGAAACTTTTTATACJLG-302ctgaatatgaaacaattcgca%20ATGTTTAAGATAAAGAAAAAGAAACTTTTTATACJLG-303ccaaaaaactgctgccttcg%20ACCTTGTTTTAGGCAAATGGJLG-304gaaacaatgagagaggaagaaaac%20GTGGATGCAATGACAAATAAACJLG-306ctggtctgatcggatctctat%20GGAACCATACGAATAACCCGJLG-306ggaccgatgaaaaaaacagta%20GTGGATGCAATGACAAATAAACJLG-307ctgaatatgaaacaattcgca%20GTGGATGCAATGACAAATAAACJLG-308ccaaaaaactgctgccttcg%20GGAACCATACGAATAACCCGJLG-453TGCGCTTGCGCTTGCGCTGJLG-889gctagcagcgcaagcgcaagcgca%20ATGTTTAAGATAAAGAAAAAGAAACTTTTTATACJLG-890gctagcagcgcaagcgcaagcgca%20GTGGATGCAATGACAAATAAACJLG-891gaaacaatgagagaggaagaaaac%20GCTAAAGGCGAAGAACTGTTTACJLG-892ggaccgatgaaaaaaacagta%20GCTAAAGGCGAAGAACTGTTTACJLG-893ctgaatatgaaacaattcgca%20GCTAAAGGCGAAGAACTGTTTACJLG-894tgcgcttgcgcttgcgctgctagc%20TTTATACAGTTCATCCATGCCJLG-977cagcgcaagcgcaagcgca%20ATGTCAGATCAATTTAACAGCCJLG-978ctggtctgatcggatctctat%20TACCAAAAAAGCCATCACCCJLG-979ccaaaaaactgctgccttcg%20TACCAAAAAAGCCATCACCCJLG-980cagcgcaagcgcaagcgca%20GTGACCATGTTACGAAAAATAATCJLG-981ctggtctgatcggatctctat%20TCTGAAGTCACTCCATATCCCJLG-982ccaaaaaactgctgccttcg%20TCTGAAGTCACTCCATATCCCJLG-1021cagcgcaagcgcaagcgca%20ATGATTCAAATGCCAAAAAAGJLG-1022ctggtctgatcggatctctat%20TTTGGACAGGTAGAACGATGJLG-1023ccaaaaaactgctgccttcg%20TTTGGACAGGTAGAACGATGJLG-1024cagcgcaagcgcaagcgca%20ATGAAGCAGAATAAAAGAAAGCATCJLG-1025ctggtctgatcggatctctat%20CATTCCTTTCTACTTCGTACGGJLG-1026ccaaaaaactgctgccttcg%20CATTCCTTTCTACTTCGTACGGJLG-1027cagcgcaagcgcaagcgca%20ATGAACCTTTTTTTCCTAGCTGJLG-1028ctggtctgatcggatctctat%20CGCTAGAAAATGAGTATTCTCCTTCJLG-1029ccaaaaaactgctgccttcg%20CGCTAGAAAATGAGTATTCTCCTTCJLG-1030cagcgcaagcgcaagcgca%20ATGAAGATATCGAAACGAATGAAGJLG-1031ctggtctgatcggatctctat%20TCTGCACTCCTTTATCCCTCJLG-1032ccaaaaaactgctgccttcg%20TCTGCACTCCTTTATCCCTCJLG-1033cagcgcaagcgcaagcgca%20ATGACAAGCCCAACCCGCAGJLG-1034ctggtctgatcggatctctat%20CCATCTTAACGTTTGCAGGCJLG-1035ccaaaaaactgctgccttcg%20CCATCTTAACGTTTGCAGGCJLG-1036cagcgcaagcgcaagcgca%20ATGAGGAGAAATAAACCAAAAAAGJLG-1037ctggtctgatcggatctctat%20AAGGTTTTGTAAATCAGTGCGJLG-1038ccaaaaaactgctgccttcg%20AAGGTTTTGTAAATCAGTGCGJLG-1039cagcgcaagcgcaagcgca%20TTGAACATCAAGAAATGTAAACAGJLG-1040ctggtctgatcggatctctat%20TGGGTTTTTTCAGTATATTACGCJLG-1041ccaaaaaactgctgccttcg%20TGGGTTTTTTCAGTATATTACGCJLG-1042cagcgcaagcgcaagcgca%20ATGCGCATTTTCAAAAAAGCAGJLG-1043ctggtctgatcggatctctat%20GATCACGGTTAAACTGACCCJLG-1044ccaaaaaactgctgccttcg%20GATCACGGTTAAACTGACCCJLG-1045cagcgcaagcgcaagcgca%20ATGAAAAAAAGCATAAAGCTTTATGJLG-1046ctggtctgatcggatctctat%20CTAATTGTTGGAAGGTTCGACJLG-1047ccaaaaaactgctgccttcg%20CTAATTGTTGGAAGGTTCGACJLG-1048cagcgcaagcgcaagcgca%20ATGAAACGTCTTTTATCCACTTTGJLG-1049ctggtctgatcggatctctat%20ATGAATTCCTTCACCGTGACJLG-1050ccaaaaaactgctgccttcg%20ATGAATTCCTTCACCGTGACJLG-1312gggttaacgcgtaatccatgACGGATAATCAGCATATCGGJLG-1313gcctgagcgagggagcagaaGCAGAGGTGAGACAAGTGGJLG-1314gcgttgaccagtgctccctgcTCTCCAGACCATCTCAAGTGJLG-1315cacatttccccgaaaagtgcTCAATTCCAACAGAGATTGCJLG-1330cagcgcaagcgcaagcgcaATGTTTGGAATTGGTGCTAGJLG-1331ctggtctgatcggatctctatCACCTCTTCTATTGAACTCCCJLG-1332ccaaaaaactgctgccttcgCACCTCTTCTATTGAACTCCCJLG-1333cagcgcaagcgcaagcgcaATGTTTGCAAGGGATATTGGJLG-1334ctggtctgatcggatctctatCCAGTTGTCATATAGGAACGTTCJLG-1335ccaaaaaactgctgccttcgCCAGTTGTCATATAGGAACGTTCJLG-1336cagcgcaagcgcaagcgcaATGTTTCAATCAACTGAAATCGJLG-1337ctggtctgatcggatctctatCTCTTAGCATCTGTTTCCTCCJLG-1338ccaaaaaactgctgccttcgCTCTTAGCATCTGTTTCCTCCoER421ttctgctccctcgctcaggcggccgcATGAGAGAGGAAGAAAACGGoER422cagggagcactggtcaacgctagcAATTGGGACAACTCCAGTG&x2020;In%20capital%20letters%20are%20shown%20the%20regions%20of%20the%20primer%20that%20anneal%20to%20the%20template.%20Homology%20regions%20for%20Gibson%20assembly%20are%20shown%20in%20italics.
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