
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Scalable High-Quality 3D Scanning

Permalink
https://escholarship.org/uc/item/9dw1418t

Author
Narayan, Karthik Sankaran

Publication Date
2016
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9dw1418t
https://escholarship.org
http://www.cdlib.org/


Scalable High-Quality 3D Scanning

By
Karthik Sankaran Narayan

A Dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy
in

Computer Science
in the

Graduate Division
of the

University of California, Berkeley

Committee in charge:

Professor Pieter Abbeel, Co-chair
Professor Jitendra Malik, Co-chair

Professor Alyosha Efros
Professor Martin Banks

Fall 2016



©2016 – Karthik Sankaran Narayan
all rights reserved.



Abstract

Scalable High-Quality 3D Scanning

by

Karthik Sankaran Narayan

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Pieter Abbeel & Professor Jitendra Malik, Co-chairs

Over the past decade, vendors across fields ranging from entertainment to retail
to architecture have increasingly been shifting everyday consumable media from the
2D plane to the 3D world. Applications in these fields such as augmented/virtual
reality, online shopping, and indoor scene reconstruction all have one crucial problem
that needs to be addressed: the task of acquiring high-quality 3D models. Currently,
designing novel 3D content involves a substantial human component; indeed, most 3D
models were created via modeling software, e.g., 3DS Max, Maya, by a human with
vast expertise. Although several research communities have explored automated 3D
scanning over the course of several decades, the lack of an out-of-the-box solution has
precluded this field from permeating the industry. Prior approaches to 3D scanning
can largely be divided into image-based reconstruction (IBR) and active reconstruction
(AR). While IBR methods produce reconstructions by taking in as input a collection
of calibrated RGB images, AR methods actively project patterns onto observed scenes
during reconstruction. IBR and AR techniques each have advantages and pitfalls. State
of the art methods in 3D scanning typically fall purely within IBR or AR.

In this thesis, we outline a novel scanning approach which merges IBR and AR
methods. First, we discuss how to physically construct and calibrate a 3D scanner
using commodity hardware. We use this 3D scanner in the collection and release of the
BigBIRD dataset, which serves as a key benchmark for the algorithms in this thesis
and comprises of 600 12 MP images, 600 registered RGB-D point clouds, and several
other processed data for each of 125 objects. Next, illustrating that the advantages
and pitfalls within IBR and AR complement each other, we present a novel shape re-
construction algorithm that capitalizes on the strengths of each approach, yielding less
than 2 mm of RMS error during reconstruction. We then present a color reconstruction
algorithm, with which we produce high quality 3D color meshes of scanned objects; we
demonstrate that this color reconstruction algorithm outperforms the state of the art.
Finally, with any growing dataset, large-scale data visualization becomes increasingly
important. Although the 3D scanning world is not yet at the large scale level, it is only
a matter of time before it is. In addition, there already exists an eclectic array of fields,
including computer vision, particle physics, and botany, where large-scale visualization
techniques can benefit research. We present a novel and highly flexible GPU-based
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nonlinear dimensionality reduction technique capable of visualizing datasets with tens
of millions instances and millions of features. Our algorithm’s flexibility and speed
yield an implementation that is an order of magnitude faster than state of the art
implementations of stochastic neighbor embedding algorithms.
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1
Introduction

We used to live in a 3D world* whose inhabitants consumed content primarily in 2D.
With innovations in computing and graphics, towards the turn of the 21st century, ven-
dors in fields ranging from entertainment (augmented/virtual reality, movies, games)
to retail (online shopping and advertising) to architecture (scene reconstruction) began
shifting towards producing more 3D content. The task of acquiring novel 3D models
lies at the intersection of these applications; specifically, improvements in 3D model
acquisition speed and quality would have consequences in all of these fields.

It would be incorrect to claim that 3D models were never used in any field prior
to the 21st century. Indeed, most every day products that we consume were initially
a 3D model at one point. 3D modeling constitutes the bread and butter for most
animation and graphics studios. However, in most cases, human 3D modelers with years
of expertise typically create these models using specialized tools such as Autodesk’s
3DS Max or Maya. Even with experience, manually creating high-quality 3D models
involves a painstaking amount of work. Although research communities in computer
vision have investigated the problem of automated 3D scanning over several decades,
3D modelers continue to manually construct objects due to the lack of an out-of-the-box
solution.

A vast literature exists on the topic of 3D scanning, which can largely be divided
into (1) image-based reconstruction (IBR) and (2) active reconstruction (AR). IBR
techniques take in a collection of images as input and output either a point cloud or 3D
mesh representing the object or scene to scan. Initially, researchers run a calibration
procedure to orient the images, which are then used to perform the reconstruction task.
Active reconstruction methods typically actively project a known pattern onto a scene,
whose projection can be used to recover scene depth. Merging a collection of depth
measurements recovers the object of scene. Laser scanners and structured light-based

*plus time and possibly many other dimensions, but we won’t get into the physics of things
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sensors fall within AR.
Unfortunately, the above approaches all have major pitfalls. Multiview stereo-based

approaches rely on the presence of highly textured surfaces to recover depth; as such,
non-textured and transparent/translucent regions pose a major problem. Visual hull-
based techniques cannot recover surface concavities. Although researchers have ex-
plored hybrids of multiview stereo and visual hull-based methods, recovering concavi-
ties still poses a major problem in non-textured regions. Laser scanners and structured
light-based sensors have major difficulties in recovering transparent/translucent regions
as well as objects with significant amounts of black; in the former case, the projected
light simply passes through the surface while in the latter case, the projected light is
absorbed by the surface. However, perhaps the largest largest governing all approaches
discussed so far involves camera calibration; without high-fidelity camera calibration,
even the most sophisticated algorithms fail to recover high-resolution details.

In this thesis, we explore an approach that resolves many of the issues encountered by
previous approaches. We first discuss how to construct a scanning rig, which we name
the Big Berkeley Instance Recognition Dataset (BigBIRD) system, from commodity
sensors (a small array of RGB DSLR cameras and Kinect sensors). Our high-fidelity
calibration algorithm allows us to reconstruct objects with low RMS error (on the order
of 1-2 mm). Our algorithms are able to reconstruct ultra high-resolution features such
as barcode lines and dates of construction on bottles, features under 1 mm in size.
As our reconstruction algorithm leverages both image-based and active reconstruction
based techniques, we are able to recover concavities and transparent/translucent regions
reliably well. Our scanning setup reliably scans objects that can fit within a cubic meter
of space, although it can scan larger objects with more space. It cannot scan full scenes,
however. This thesis is organized as follows:

Chapter 1. We detail the construction and calibration of the BigBIRD system90.
Additionally, we present a high-quality, large-scale dataset of 3D object instances, with
accurate calibration information for every image. We anticipate that “solving” this
dataset will effectively remove many perception-related problems for mobile, sensing-
based robots. The contributions of this work consist of: (1) BigBIRD, a dataset of
100 objects (and growing), composed of, for each object, 600 3D point clouds and 600
high-resolution (12 MP) images spanning all views, (2) a method for jointly calibrating
a multi-camera system, (3) details of our data collection system, which collects all
required data for a single object in under 6 minutes with minimal human effort, and
(4) multiple software components, used to automate multi-sensor calibration and the
data collection process. This work was published in ICRA 201490.

Chapter 2. We describe reconstruction algorithms to synthesize the data collected
per object from the BigBIRD system into 3D models76. More generally, we consider
the problem of building high-quality 3D object models from commodity RGB and
depth sensors. Applications of such a database include instance and object recogni-
tion, robot grasping, virtual reality, graphics, and online shopping. Unfortunately,
modern reconstruction approaches have difficulties in reconstructing objects with ma-
jor transparencies (e.g., KinectFusion80) and/or concavities (e.g., visual hull). This
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paper presents a method to fuse visual hull information from off-the-shelf RGB cam-
eras and KinectFusion cues from commodity depth sensors to produce models that are
substantially better than either approach on its own. Extensive experiments on the
recently published BigBIRD dataset90 demonstrate that our reconstructions recover
more accurate shape and detail than competing approaches, particularly on challeng-
ing objects with transparencies and/or concavities. Quantitative evaluations indicate
that our approach consistently outperforms competing methods and achieves under 2
mm RMS error. This work was published in ICRA 201576.

Chapter 3. We describe an optimization-based vertex coloring algorithm to extract
high-fidelity color maps for the 3D models constructed in Chapter 274. Applications
of a database of high-quality colored meshes include object recognition in robot vision,
virtual reality, graphics, and online shopping. Most modern approaches that color a
3D object model from a collection of RGB images face problems in (1) producing re-
alistic colors for non-Lambertian surfaces and (2) seamlessly integrating colors from
multiple views. Our approach efficiently solves a non-linear least squares optimization
problem to jointly estimate the RGB camera poses and color model. We discover that
incorporating 2D texture cues, vertex color smoothing, and texture-adaptive camera
viewpoint selection into the optimization problem produces qualitatively more coher-
ent color models than those produced by competing methods. We further introduce
practical strategies to accelerate optimization. We provide extensive empirical results
on the BigBIRD dataset76,90: results from a user study with 133 participants indicate
that on all 16 objects considered, our method outperforms competing approaches74.
This work was published in IROS 201574.

Chapter 4. With any growing dataset, data visualization becomes increasingly im-
portant. Non-linear dimensionality reduction techniques have become particularly pop-
ular in data visualization. We discuss a novel data visualization algorithm that enables
us to visualize up to tens of millions of data instances, an order of magnitude larger
than competing algorithms. Although the 3D scanning world is not at this scale, it
is only a matter of time before it is; furthermore, we will soon see that there exist
several fields that would benefit from such large-scale visualization. Although recent
work in non-linear dimensionality reduction investigates multiple choices of divergence
measure during optimization112,15, little work discusses the direct effects that diver-
gence measures have on visualization. We investigate this relationship, theoretically
and through an empirical analysis over 10 datasets. Our work shows how the α and β
parameters of the generalized alpha-beta divergence can be chosen to discover hidden
macro-structures (categories, e.g. birds) or micro-structures (fine-grained classes, e.g.
toucans). Our method, which generalizes t-SNE99, allows us to discover such struc-
ture without extensive grid searches over (α, β) due to our theoretical analysis: such
structure is apparent with particular choices of (α, β) that generalize across datasets.
We also discuss efficient parallel CPU and GPU schemes which are non-trivial due to
the tree-structures employed in optimization and the large datasets that do not fully
fit into GPU memory. Our method runs 20x faster than the fastest published code103.
We conclude with detailed case studies on the following very large datasets: ILSVRC
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2012, a standard computer vision dataset with 1.2M images; SUSY, a particle physics
dataset with 5M instances; and HIGGS, another particle physics dataset with 11M in-
stances. This represents the largest published visualization attained by SNE methods.
This work was published in ICML 201575.
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2
BigBIRD: A Large-Scale 3D Database of

Object Instances

We first discuss the construction and calibration of the BigBIRD rig. We also discuss
how we collect data from the rig. Further chapters detail algorithms to extract high-
fidelity shape (Chapter 2) and color (Chapter 3) models from the collected data per
object. This work was published in ICRA 201490.

2.1 Introduction and Related Work

Object recognition, the task of identifying a given object in an image, remains an
unsolved problem in computer vision. Researchers typically dichotomize object recog-
nition into (1) category-level recognition, where various concrete objects are assigned a
single label (e.g. “Pepsi can” and “Coke can” are both assigned the label “soda can”)
and (2) instance-recognition, where each concrete object is assigned a separate label
(e.g. “Pepsi can” and “Coke can” are given separate labels). The computer vision and
robotics approaches to the recognition problem differ fundamentally in that (1) robots
in fixed environments typically need to interact with on the order of a few hundred
objects and (2) robotic perception algorithms need to successfully localize and detect
3D object poses in addition to identifying the correct object. We believe that instance
recognition suits many robotic tasks well, as joint object detection and pose estimation
are the primary components of the instance recognition problem.

Despite the advent of commodity RGB-D sensors, which provide both depth and
color channels, instance recognition systems still cannot reliably detect hundreds of ob-
jects108,96,101. We believe that the primary issue currently hampering progress towards
reliable and robust instance recognition is the lack of a large-scale dataset containing
high-quality 3D object data; this is because collecting such a dataset requires construct-
ing a reliable and high-quality 3D scanning system, which is a significant undertaking.
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(a) Ortery Photobench, Perspective

(b) Canon and Carmine Unit

(c) Ortery Photobench, Side

Figure 2.1: Our data-collection system. We place the object near the center of the turntable,
and our software takes care of the rest. Note the chessboard on the turntable to merge clouds
as the turntable moves. Sample objects from the dataset can be seen sitting on top of the
Ortery Photobench.

2.1.1 Datasets
The last decade has witnessed rapid advances in computer vision largely due to fun-
damental image datasets, such as MNIST, Caltech-101, PASCAL, Labeled Faces in
the Wild, PASCAL, ImageNet, and most recently, VQA and COCO67,33,32,46,30,28? ? .
Unfortunately, the solution to most current 2D vision datasets would not constitute
a solution to instance recognition as they currently target image retrieval tasks from
arbitrary images drawn from the web. In particular, while some of these tasks empha-
size detection, they do not directly address the problem of pose estimation, a compo-
nent crucial to attaining high performance in instance recognition and robotic tasks.
While there exist several 3D vision datasets, most datasets either (1) have few ob-
jects, (2) have low-quality objects, (3) provide only single views of objects or scenes,
(4) don’t contain calibration and pose information, or (5) provide low-resolution RGB
datasip,50,63,88,95,27. While addressing all five aspects would improve the quality of in-
stance recognition systems, aspect (5) would also provide a venue to explore synergies
and comparisons between Kinect-style and multi-view stereo approaches to 3D model
construction38,36,42.

Furthermore, although most recent instance recognition systems work with RGB-D
data, there exist high-quality instance recognition systems that use only RGB images,
such as MOPED, presented by Collet et al.25. However, these generally work with
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higher-quality RGB images than those provided by RGB-D sensors. Unfortunately,
this makes it quite difficult to compare RGB-D instance recognition systems with RGB-
only systems, as simply applying the RGB-only systems to the images from RGB-D
datasets would yield unrepresentative results. Because we provide high-quality RGB
images in addition to the RGB-D data, we can enable meaningful comparison of these
systems.

The closest work to ours is that of Kasper et al.52. They have a similar setup in
which a laser scanner collects 3D data and a stereo pair collects data from 360 points
from the viewing hemisphere. They also provide object meshes and calibrated RGB
data. However, their 3D data collection setup is only semi-automated and their image
collection setup takes an additional 20 minutes. Although they provide a relatively
large number of objects (roughly 130 at the time of writing), scaling up to thousands
may be infeasible at that speed. Our approach is fully automated after placing the
object in the system, and data collection takes less than 5 minutes per object.

2.1.2 Data Collection
The chief obstacle to collecting a high-quality large-scale object dataset involves con-
structing a reliable 3D scanning system that can provide both high-quality depth and
color information. Most commercial 3D scanners either provide only range sensor and
low-resolution color information and/or are very expensive. Recent work demonstrates
that KinectFusion variants can provide high-quality 3D reconstructions47,79,107,119.
However, some of these approaches don’t provide calibrated RGB images, which are
required by many instance recognition platforms, and those that do only provide low-
resolution RGB images from the Kinect sensor. Further, the data collection process
requires a human to slowly move a Kinect around the full object; even with an auto-
mated turntable, a single Kinect attached to an arm cannot image non-convex objects
and translucent/transparent objects due to the inherent limitations of Kinect-style
RGB-D sensors.

Using multiple Kinects and high-resolution DSLR cameras along with an automated
turntable constitutes one possible approach to jointly reducing human effort while im-
proving RGB-D mesh quality. The presence of multiple types of sensors determines
highly accurate intrinsics for each sensor as well as relative transformations between
pairs of sensors. Researchers have extensively studied this problem for both single
and multiple 2D cameras and have recently explored it for single and multiple RGB-D
sensors44,115,41,116,66,91,104. Typical approaches involve first calibrating each sensor in-
dividually to compute its intrinsics, computing stereo pairs between sensors to estimate
each sensor’s extrinsics, and then running a joint optimization procedure to refine each
sensor’s intrinsics and extrinsics. For calibrating RGB-D sensors, many approaches
require additional hardware and/or setup from what is required for 2D cameras. For
example, Herrera et al.44 present a method that requires affixing a chessboard to a
large, flat plane, whereas typical 2D approaches simply require a chessboard alone.
Our method requires a source of infrared light, but no additional hardware setup.
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Additionally, interference between IR patterns complicates constructing a data-
collection system with multiple RGB-D sensors. Butler et al.17 propose an approach for
mitigating interference from multiple depth sensors. However, their approach requires
affixing a vibrating motor to each device, which makes a static calibration procedure
impossible and also introduces more complexity into the system. We employ time-
multiplexing, another common approach, which involves turning off each camera when
it is not taking a picture. Concretely, we turn off the infrared emitter, which is roughly
two times faster than turning off the depth stream.

2.1.3 Contributions
To address the issues described above, we present the following contributions:

1. A dataset which addresses the various shortcomings of existing 2D and 3D
datasets by providing the following data per object: (1) 600 Kinect-style RGB-D
images, (2) 600 high-resolution images, (3) accurate calibration information for
every image, (4) segmented objects per image, and (5) full-object meshes. We
obtain 600 images by taking shots from 5 polar angles and 120 azimuthal angles,
the latter equally spaced by 3◦.

2. A method for jointly calibrating multiple RGB-D sensors and cameras.

3. Details of our data collection system, which can collect all required data for a
single object in under 6 minutes, where the only human effort required involves
placing an object on the turntable and running a single command.

4. Multiple software components, including software for calibrating a single depth
sensor, software for jointly calibrating multiple sensors (RGB-D and 2D RGB),
and tools to simplify the data collection process.

In addition to helping to solve the instance recognition problem, we believe that our
dataset removes many obstacles associated with large-scale 3D data and serves as a
unified dataset that bridges problems in graphics, computer vision, and robotics. Our
dataset can be used for benchmarks in multiple areas, such as 3D mesh reconstruction
(with and without RGB-D), instance recognition, and object categorization. We intend
to continually add to our dataset, inviting others to request and/or send us objects for
which we have not yet collected data. Test scenes and results will be made available
as well.

2.2 System Overview

The sensors in our system comprise of 5 high resolution (12.2 MP) Canon Rebel T3
cameras and five PrimeSense Carmine 1.08 depth sensors. We mount each Carmine to
one of the T3s using a mount designed by RGBDToolkit rgb, as shown in Figure 2.1(b).
Each T3 is then mounted to the Ortery MultiArm 3D 3000.
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We place each object on the turntable in the Ortery Photobench 260. The Pho-
tobench contains a glass turntable, which can be rotated in units of 0.5 degrees. It
also has four lights, consisting of 4000 LEDs, located at the bottom, the back wall,
the front corners, and the back corners. Using a reverse-engineered driver, we can
programmatically control the lighting and rotation of the turntable.

To obtain calibrated data, we place a chessboard on the turntable; the chessboard is
always fully visible in at least one of the cameras, specifically the Canon and Carmine
directly above the turntable (see Figure 2.1 (c)). We refer to Carmine as the reference
camera. After calibrating all of the cameras to find the transformations from each
camera to the reference camera, we can provide a good estimate of the pose for every
image.

For each object, we capture images with each camera at each turntable position. We
rotate the turntable in increments of 3 degrees, yielding a total of 600 point clouds
from the Carmines and 600 high-resolution RGB images from the Canon T3s. We then
estimate poses for each camera, segment each cloud and generate segmentation masks
for each of the 600 views, and produce a merged cloud and mesh model. Automation
and speed are crucial to enabling large-scale data collection; a significant amount of
engineering is required to make the process as fast as possible.

Our system runs the following steps when collecting data for a single object:

1. Start the depth and color stream for each Carmine. Turn off the infrared emitter
for each Carmine.

2. Repeat for each turntable orientation (every 3 degrees, 120 total orientations):

(a) Start a thread for each Canon T3 that captures an image.
(b) Start a thread for each Carmine that captures a color image.
(c) Start a single thread that loops through each Carmine, turning on the in-

frared emitter, capturing a depth map, and turning off the infrared emitter
in sequence.

(d) Once all of the above threads are done executing in parallel, rotate the
turntable by 3 degrees.

Using all Carmines simultaneously causes the projected infrared patterns to interfere,
leading to severe degradations in data quality. One option involves stopping the depth
stream for each device not taking a depth image, and restarting the depth stream
immediately before taking an image. However, stopping and starting a depth stream
takes roughly 0.5s, imposing a 5 minute minimum bound on collecting 120 images
with each of the 5 cameras. Rather than stopping the entire stream, we modified
the OpenNI2 library to allow turning off the infrared emitter while keeping the depth
stream open, which takes 0.25s. We present detailed timing breakdowns in Table 2.1.
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Step Time (s)
Startup
Ortery Photobench Startup 3.5
Carmine Startup (depth and color) 9.3

Capture at each turntable position (done 120 times)
Capture images – performed in parallel 1.82
Capture Canon T3 images (all 5 in parallel) 1.2
Capture Carmine color (all 5 in parallel) 0.07
Capture Carmine depth (all 5 in sequence) 1.82

Rotate turntable 0.48
Total capture time 276
Shutdown 0.49
Total time for one object 289

Table 2.1: Timing information for the data-collection process. Note that the three image
capture threads all run in parallel, which means that the image capture step takes as long as
the longest process.

2.3 Calibration

We now discuss how we jointly calibrate the sensors. The 10 sensors are situated in a
quarter-circular arc, with each Carmine mounted to a Canon T3, and each Canon T3
mounted to the arm. One of the overhead cameras, referred to as the reference camera,
can always see the chessboard affixed to the turntable; specifically, we use the overhead
Carmine. In order to recover the pose of all of the other sensors, we must estimate the
transformation from each sensor to the reference camera.

Kinect-style RGB-D sensor calibration involves estimating the intrinsic matrix for the
infrared (IR) camera, the intrinsic matrix for the RGB camera, and the extrinsic rigid
transform from the RGB camera to the infrared camera. Highly accurate calibration
is crucial to achieving strong depth-to-color registration. In our system, we not only
need to calibrate the intrinsics of each individual RGB-D sensor, but also the extrinsics
which yield the relative transformations between each of the 10 sensors, both RGB-D
and RGB.

Accurate calibration also enables registering depth maps to different RGB images,
including the higher-resolution 1280x1024 image provided by the Carmine (hardware
registration only works when the color stream is at the same resolution as the 640x480
depth stream). Although this is a relatively well-studied problem91,44, obtaining strong
results is still nontrivial due to multiple details about the Carmines that are not well
documented.

Our method requires an external infrared light and a calibration chessboard. At a
high level, we take pictures of the chessboard with the high-resolution RGB camera
and the RGB-D sensor’s infrared camera and RGB cameras*, as well as a depth map.
We then detect the chessboard corners in all of the images. Note that we turn off the
infrared emitter before collecting infrared images, and turn it back on before collecting
depth maps.

*It is vital that the Carmine and chessboard remain completely still while both images are
captured, as it is not possible to simultaneously take a color and infrared image.
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After collecting data, we first initialize the intrinsic matrices transformations for all
fifteen cameras (five Canon T3s, five Carmines with an RGB camera and IR camera
each) using OpenCV’s camera calibration routines, based on the simple calibration
method proposed by Zhang116. We also initialize the relative transformations between
cameras using OpenCV’s solvePnP. We then construct an optimization problem to
jointly optimize the intrinsic parameters and extrinsic parameters for all sensors.

2.3.1 Joint Optimization

We use an approach similar to that given by Le and Ng66. Their approach requires that
all sensors be grouped into 3D systems. A stereo pair of cameras (RGB or IR) yields
one kind of 3D system (a stereo system), and a RGB-D sensor’s infrared camera and
projector yield the other (a RGBD system). Each 3D system has intrinsic parameters,
used to produce 3D points, and extrinsic parameters, used to transform 3D points into
another system’s coordinate frame. We construct and solve the optimization problem
using Ceres SolverAgarwal et al..

The calibrator optimizes the intrinsic and extrinsic parameters such that 1) each 3D
system produces 3D points that match the physical characteristics of the chessboard
(e.g. the points are all planar, the points on a given chessboard row are linear, and the
distance between generated 3D points match up with the true distance on the chess-
board) and 2) all 3D systems agree with each other on the locations of the chessboard
corners.

The intrinsic parameters of a RGBD 3D system consist of the intrinsic matrix K and
distortion parameters of the sensor’s IR camera. The intrinsic parameters of a stereo
3D system consist of the intrinsic matrices and distortion parameters of each camera,
along with the rotation and translation from one camera to the other.

The loss function is given by

G =
∑
s∈S

∑
u∈U

I(s, u) +
∑

s1,s2∈S
E(s1, s2, u)

where I denotes the intrinsic cost, E denotes the extrinsic cost, S denotes the set of
all 3D systems and U denotes the calibration data (i.e. the chessboard corners).

Let Q(s, ui) be a function that produces a 3D point for the corner ui using the
intrinsic parameters of system s. For a stereo system, this entails triangulation, and
for an RGBD system, this is simply converting image coordinates to world coordinates
using the depth value provided by the sensor.
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For a 3D system, the intrinsic cost is given by

I(s, ui) =
∑
uj∈U

(||Q(s, ui)−Q(s, uj)|| − dij)
2

+
∑
l∈L

d(Q(s, ui), l)

+ d(Q(s, ui), p)

where dij is the ground-truth 3D distance between points i and j on the chessboard,
L is the set of lines that corner ui belongs to, p is the plane that corner ui belongs to,
and d(Q(s, ui), p) measures the distance from the generated 3D point to the plane.

The extrinsic cost is given by

E(s1, s2, ui) =||R12Q(s2, ui) + t12 −Q(s2, ui)||2

where R12 and t12 represent the rotation and translation needed to transform a point
from the coordinate frame of 3D system s2 to s1.

The major difference between our approach and that of Le and Ng is that we add
one additional term to the cost function for stereo pairs; specifically, we enforce that
epipolar constraints are satisfied by adding an additional term to the stereo intrinsic
cost function:

I(s, u) =||uT1 Fu2||2,

where F is the fundamental matrix implied by the current values of the stereo pair’s
intrinsic parameters, u1 are the homogeneous coordinates of the calibration datum in
the first camera, and u2 are the homogeneous coordinates of the calibration datum in
the second camera.

We obtain the depth intrinsic matrix KDepth from the infrared intrinsic matrix by
subtracting off the offset between the depth image and infrared image due to the
convolution window used by the internal algorithm. We found the values suggested
by Konolige and Mihelich57 of -4.8 and -3.9 pixels the x and y directions, respectively,
worked well. Figure 2.2 shows the results of registering the depth map to the RGB
image using our calibration and also using hardware registration.
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Figure 2.2: Comparison of hardware and software registration. The left image shows a
hardware-registered point cloud. Note the bleeding of the cardboard in the background onto
the Pringles can and the low resolution of the color data. The right image shows a software-
registered point cloud using our calibration. Most of the bleeding of the cardboard onto the
can has been fixed, and we can use higher-resolution color data.

2.4 3D Model Generation

After calibrating each camera to the reference camera, we proceed with model genera-
tion. At a high level, we:

1. Collect data from each Carmine and Canon as the turntable rotates through 120
3◦ increments.

2. Filter each Carmine depth map to remove depth discontinuities (see the next
paragraph).

3. Generate point clouds for each Carmine view using calibration intrinsics.

4. Merge the 5 point clouds for each of the 120 scenes using calibration extrinsics.

5. Segment the object from the merged cloud (Section 2.4.2).

6. Improve the object cloud quality for each of the 120 scenes through plane equal-
ization (Section 2.4.1).

7. Merge the 120 scenes together to form a single cloud using calibration extrinsics.

8. Create a mesh via Poisson Reconstruction53,24.

After collecting data from each Carmine and Canon sensor, we run a depth discontinuity
filtering step as suggested by Whelan et al.105, since depth map discontinuities tend

13



Figure 2.3: Applying depth discontinuity filtering. Pixels marked in red are considered un-
reliable due to either a discontinuity or neighboring pixels that were not measured by the
Carmine depth sensor. Before proceeding, we discard depth measurements associated with
the red pixels.

to yield imprecise depth and color measurements. To do so, we associate each 3 × 3
patch p in the depth image with a value max{(max p − pmid), (min p − pmid)} where
pmid refers to the center pixel’s depth. We keep all pixels whose associated patch has a
value lesser than some threshold. See Figure 2.3 for an example of the pixels eliminated
by depth discontinuity filtering.

2.4.1 Plane Equalization
After obtaining a preliminary 3D mesh, we produce a cleaner cloud through a pro-
cedure called plane equalization. As we collect point clouds, recall that we compute
the transform from the turntable chessboard to the reference camera via OpenCV’s
solvePnP. Experimentally, we notice slight depth ambiguities when computing these
transforms, evidenced by the non-aligned plane normals and inconsistent depths pre-
sented in Figure 2.4. Since we know that the turntable chessboard revolves about a
circle roughly horizontal to the ground, we refine each transform’s rotational compo-
nent and translational component by (1) computing a new vector normal to be shared
across all chessboards and (2) enforcing the centers of each chessboard to lie on a circle.

Concretely, given a set T = {(R1, t1), . . . , (Rn, tn)} of chessboard poses, we produce
a refined set T ′ = {(R′

1, t
′
1), . . . , (R

′
n, t

′
n)} of chessboard poses. Note that an Ri operates
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Figure 2.4: The chessboard poses for each turntable location are shown in the frame of the
reference camera. On the left, the chessboard poses are determined by solvePnP. On the
right, we refine these pose estimates using the plane equalization method described in Sec-
tion 2.4.1. The refined board poses are significantly cleaner.

on a plane with unit normal k̂ yielding a plane with unit normal Ri[3], the third column
of Ri. Ultimately, we would like all plane normals to match; to do this, we compute a
unit vector û so as to minimize

∑n
i=1(û ·Ri[3])

2. We solve for û exactly by setting it to
be the least eigenvector of the covariance of all the Ri[3]s. We then compute each R′

i

by multiplying each Ri by the transform that takes Ri[3] to û via rotation about the
axis Ri[3] × û. We next compute each t′i by projecting each ti onto the least squares
circle determined by {t1, · · · , tn}; this problem can be solved quickly by projecting
{t1, · · · , tn} onto a plane, computing the least squares circle in the plane’s basis, and
projecting each point onto the resulting circle. In practice, plane equalization runs
in negligible time (< 0.1 s) for n = 120 and yields higher quality point clouds (see
Figure 2.5).

2.4.2 Object segmentation
As discussed above, for a given turntable angle, we merge the 5 Carmine point clouds
into a single cloud using calibration extrinsics. To segment the object from this cloud,
we first discard all points outside of the Ortery PhotoBench. We then discard all
points below the turntable plane (which was identified in the previous step), and lastly
conduct agglomerative clustering to remove tiny clusters of points.
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Figure 2.5: Constructed point clouds for one object. On the left, the cloud is constructed
using the raw solvePnP poses; the cloud has multiple shifted copies of the object due to mis-
alignment. On the right, the cloud is constructed with the output of the plane equalization
procedure; the cloud is much cleaner and well-aligned.

Figure 2.6: In the left image, the 3D mesh is projected onto one of the Canon images. In the
right image, we show an example object for which Kinect-style RGB-D sensors yield poor-
quality point clouds.

16



2.4.3 Accuracy
Although we use a naive approach for building 3D models, their accuracy is better than
the models used by Xie et al.108 to obtain state-of-the-art RGBD instance recognition
results. In the left image of Figure 2.6, we give a rough idea of the accuracy of our 3D
models by projecting a representative mesh onto an image from one of the Canon cam-
eras (which is not used to build the mesh), showing that the system is well calibrated
and produces reasonable meshes. We expect that more sophisticated algorithms can
produce higher-fidelity 3D models.

2.4.4 Limitations
Our approach relies solely on point cloud data from the Carmines when building the 3D
mesh models. However, Kinect-style RGB-D sensors are known to perform poorly for
certain objects, including transparent and highly-reflective objects, such as the bottle
shown in the right image of Figure 2.6. For these objects, the 3D models may be missing
or of poor quality. However, by incorporating methods that also use RGB data, we
anticipate being able to provide high-quality 3D models for many of these objects in
the future.

2.5 Dataset Usage

The BigBIRD dataset and scanning rig has been employed as a solution towards sev-
eral related computer vision problems, including object instance and category recog-
nition? ? ? , robotics89? , scene understanding? , and 3D scanning76? . The dataset and
all code used to generate it, can be obtained at our website (http://rll.eecs.berkeley.edu/bigbird).

2.5.1 Obtaining the Dataset
Due to the large size (and many uses) of the dataset (each object has roughly three
gigabytes of data), it is impractical to provide a single downloadable file for the entire
dataset, and inconvenient to have a single downloadable file per object. On our website,
we provide an automated way to download the data for various use-cases. Instructions
for downloading the data are provided on the website. The settings can be configured
to download whichever subset of the following components are desired:

1. High-resolution (12MP) images (.jpg)

2. Low-resolution Carmine images (.jpg)

3. Raw point clouds (.pcd)

4. Depth maps (.h5)

5. Segmented point clouds (.pcd)

6. Segmentation masks (.pbm)
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7. 3D mesh model (.ply)

2.6 Conclusions

We believe this dataset will significantly accelerate progress in robotic perception, es-
pecially the instance recognition problem. We also believe it can lead to benchmarks
for a variety of areas from computer graphics, computer vision, and robotics, including
3D object reconstruction, recognition, and grasping.

All of our code and data, including calibration data, object instance data, and test
scenes are available at the following URL: http://rll.eecs.berkeley.edu/bigbird. We
plan to continue adding to our dataset; we invite others to request and/or send us
objects which we have not yet scanned.
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3
Range Sensor and Silhouette Fusion for

High-Quality 3D Scanning

We now present a 3D reconstruction algorithm that produces high-fidelity 3D models
given a collection of calibrated RGB and depth images. We use the data collected from
the BigBIRD rig, described in Chapter 1, to benchmark our results. This work was
published in ICRA 201576.

3.1 Introduction and Related Work

Variants on the recently proposed KinectFusion algorithm have become particularly
popular in reconstruction due to the method’s ability to reconstruct objects in real-
time while recovering surface details80,107. As a depth sensor receives streaming depth
images, KinectFusion (1) calibrates the current depth map using frame-to-model iter-
ative closest point (ICP), (2) updates a truncated signed distance function (TSDF)
that stores averaged depth readings, and (3) constructs a mesh using the march-
ing cubes algorithm69. Recently published variants of KinectFusion discuss meth-
ods to account for the nonlinear distortions introduced by consumer-grade depth sen-
sorsZhou & Koltun,119,92.

While KinectFusion primarily uses depth cues in reconstruction, popular stereo tech-
niques employ color cues in reconstruction. In particular, multiview stereo approaches
currently obtain state-of-the-art results in reconstruction purely from multiple cali-
brated RGB images39,20,49,61,73. Most such methods produce a 3D point cloud, which
is then used to compute a mesh representing the scene. There exist several approaches
to compute this point cloud, such as plane-sweeping26, stereo-matching94, and patch
growing87.

In reconstructing a single object, one popular approach involves constructing the
object’s visual hull and iteratively deforming the hull towards multiview-stereo-based
point clouds to extract fine details39,20,37. In particular, the visual hull attempts to
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(b) KinectFusion [22]

(c) Approach in [25] (Poisson reconstruction) (d) Color images of objects in (a)-(c)

(a) Our method

Figure 3.1: Collections of scanned objects reconstructed from (a) the method in this chap-
ter, (b) KinectFusion80, and (c) the previous approach in90, and (d) colored versions of these
objects. Back row, left to right: VO5 volumizing shapoo, Listerine, Softsoap Hand Soap (Co-
conut and Warm Ginger), red cup, Windex. Front row, left to right: Pepto Bismol, Crest
Complete Minty Fresh Toothpaste, Dove Soap. Note that this image does not represent a
scanned scene, but a collection of individually scanned objects to conserve space.

reconstruct an object purely from silhouettes captured from multiple views10. Noticing
that each object silhouette backprojects to a cone, the visual hull intersects these cones
to form a description of the real object’s shape. Because the visual hull of an object is
the envelope of all its possible circumscribed cones, the object must fully lie within its
visual hull (see86 for a proof and Figure 3.2 for a visualization in 2D).

Although multi-view stereo, visual hull, and KinectFusion-style approaches perform
well in specific settings, they have pitfalls. While multi-view stereo approaches perform
very well with highly-textured objects, the poor clouds resulting from lack of texture can
lead to sparse and inaccurate clouds39,20,49. While the visual hull can recover the rough
shape of an object even with objects with little texture, it fails to recover concavities
in an object, which cannot be represented via calibrated silhouette data86. While
KinectFusion-style approaches can perform well in the “concavity and low-texture”
regime, they fail when working with objects that are translucent, transparent, or highly
specular; the visual hull can provide better shape estimates here80,92.

Little work has been published on combining each method’s strengths. Steinbrucker
et. al.93 discuss an approach to jointly use RGB with depth data to improve camera
calibration associated with KinectFusion, resulting in higher quality scene scans. Xu et.
al.109 present an approach that closely refines an object’s depth data boundaries purely
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Camera focus
Image plane

Visual hull
True object

Visual cone

Figure 3.2: The red, green, blue, and orange have different views of the solid green object,
and thus different silhouettes. Intersecting the cones formed by the silhouettes forms the
visual hull, an approximation to the true object’s surface. Although the visual hull provides
better surface approximations as the number of cameras increases, the visual hull cannot
recover the concavity in the true object.

using silhouette information. As these approaches rely heavily on existing depth data
from the Kinect, they do not work well in reconstructing objects that are translucent,
transparent, or highly specular. Another work discusses a method to improve Kinect
depth reading fidelity by fusing stereo information from both the IR and RGB sensors;
although this approach reconstructs bits and pieces of translucent, transparent, and
specular objects, the improved data alone is not sufficient to create high quality 3D
models due to the large variances in depth estimates22.

Contributions. This chapter presents a reconstruction method that capitalizes on the
strengths of the RGB and depth modalities. Specifically, we take in as input a set of
calibrated RGB and depth images and produce a high-resolution object mesh. By fusing
silhouette and depth information, our method recovers detailed models for challenging
objects that are difficult to reconstruct using either modality alone. We evaluate our
results on the BigBIRD dataset, discussed in Chapter 1. Shown in Figure 3.1, our
method outperforms competing approaches including the original BigBIRD models90
and KinectFusion80.

3.2 Unifying Image and Range Sensor Data

At a high level, our reconstruction pipeline (1) computes object segmentations from
the high resolution RGB images (Section 3.2.1), (2) computes a visual hull using the
segmented, calibrated RGB images (Section 3.2.2, 3.2.3), (3) computes a KinectFusion
model using the calibrated depth data (Section 3.2.3), (4) refines the original raw depth
maps using the visual hull and KinectFusion models and merges these refined depth
maps into a point cloud (Sections 3.2.4, 3.2.5), and (5) forms an object mesh by fusing
this merged point cloud with the visual hull (Section 3.2.6).

Our experiments (Section 4.4) illustrate that our approach capitalizes on the strengths
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(a) Interactive 
Segmentation

(b) A&H 
Detergent

(c) VO5 
Shampoo

(d) Softsoap 
Handsoap

Figure 3.3: The interactive segmenter, (a), original images, (b-d top row), and automatically
computed segmentations learned from manual segmentations (b-d bottom row). After tiling
the image with superpixels using SLIC (separated by yellow boundaries in (a)), users can
quickly select superpixels belonging to the object (pink regions). Selecting the last orange su-
perpixel in (a) would complete the segmentation process. Although our learned background
models misclassify chessboard regions in (b-d) and produces noisy segmentations for translu-
cent objects (e.g., the Softsoap dispenser pump), our reconstruction scheme still recovers very
good object shape (Section 4.4). Best viewed in color.

of both the KinectFusion and the visual hull approaches to recover accurate shape mod-
els even for objects with concavities and translucent parts.

3.2.1 Computing Object Segmentations
Given an object, we first describe a method to extract silhouettes for each of its 600
high-resolution RGB images, which we use to compute the visual hull. We first man-
ually segment only the first view of each of the 5 Canon DSLR cameras. Specifically,
after running Simple Linear Iterative Clustering (SLIC)4 to tile an image with super-
pixels, we manually select the superpixels belonging to the object. The interface, with
a sample object, is shown in Figure 3.3(a); users select computed SLIC superpixels
(marked with yellow boundaries) belonging to the object. This process takes under 2
minutes per object (for all 5 segmentations) and is the only manual step in our pipeline.
Note that the user only has to manually segment 5 objects, and not all 600; we show
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how to automatically compute the rest of the segmentations below. In particular, we
use 5 segmentations, one per DSLR camera.

Using only 5 manually segmented images, we can recover segmentations for all views:
per manual segmentation, we construct a dataset {(pixi, yi)}i where yi = 1 denotes an
object-pixel and yi = 0 denotes a background pixel, and pixi denotes the color of
the pixel in LAB space. We run k-means (k = 20) on the background pixels, i.e.
{pixi|yi = 0}, initialized with k-means++7. For all pixels in the manual segmentation,
we store the Euclidean distance to the closest mean; next, we use the manual labels to
compute a threshold T such that pixels closer than T to a cluster center are classified
as “background” while the rest are classified as “foreground.” Specifically, we choose T
by maximizing the number of correctly predicted pixels; because the number of pixels
is on the order of a few million, we can optimally select T by considering all possible
distances that the pixels take on.

For the remaining 119 images captured from each of the 5 cameras, we then use the
corresponding background model to classify each pixel as object or background. Finally,
we mark superpixels as object-superpixels if they contain greater than 30% coverage of
object-pixels, and background-superpixels otherwise. Figures (b-d) show examples of
marked object superpixels with a magenta tint; we deliberately use a low threshold of
30% to recover object superpixels belonging to white/translucent/transparent objects.
Though this introduces false positive object superpixels (e.g. see marked chessboard
superpixels in (b-d)), the visual hull carves these regions away, as the same false-positive
superpixel rarely appears in many camera views. Armed with these silhouettes and
the calibration information per image provided in the BigBIRD dataset, we can then
construct the visual hull.

3.2.2 Computing Visual Hull Models

Many variations on computing visual hulls exist34,65,71,62,35. In this chapter, we consider
the method discussed in34, which offers good tradeoffs between speed and accuracy:
we (1) define a function F (x) = 1, if x ∈ R3 falls in all silhouettes, and 0 otherwise,
(2) compute an initial point x0 such that F (x0) = 1, i.e. an initial point that lies on
the visual hull, and (3) run an implicit surface polygonizer to recover the visual hull
mesh, using x0 as an initialization. We can compute x0 by considering the 3D back-
projections of the bounding boxes per silhouette; repeatedly sampling points within
the intersection of these bounding boxes eventually yields a valid x0 (see20 for how
to compute this intersection). For step (3), we use the publicly available Blumenthal
polygonizer with marching tetrahedra13,98.

This visual hull approach leads to excessive object carving arising from object pixels
being labeled as background pixels during segmentation (see Figure 3.4, left objects).
Such errors typically arise when the object either has bright, white colors or white
specularities near segmentation boundaries. To ameliorate this problem, we account
for silhouette noise by instead polygonizing the surface G(x) = 1 if x ∈ R3 falls in 1− ϵ
of all silhouettes, and 0 otherwise (we set ϵ = 0.1 in our experiments).
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Figure 3.4: Comparisons of the hard visual hull (left two objects), using the method in34 and
the soft visual hull, using the method in Section 3.2.2 (right two objects).

Despite being a crude approximation, the right two objects in Figure 3.4 demonstrate
that this approach works well in practice; the hard visual hull recovers finer surface
detail for the cup, but heavily over-carves the Listerine bottle due to segmentation
errors. The soft visual hull forgives the segmentation errors in the Listerine bottle that
cause excessive carving, but smooths the cup’s surface details. We use the soft visual
hull, as it generally conforms better to an object’s shape. As expected, both methods
fail to recover the cup’s concavity.

3.2.3 Computing Calibrated KinectFusion Models
We can jointly use the depth camera data to recover object concavities; since individual
depth maps are inherently noisy, we fuse the depth maps into a single mesh using
a variant of the KinectFusion algorithm. The KinectFusion algorithm assigns poses
to each incoming camera frame via frame-to-model, point-to-plane ICP80; because
KinectFusion requires slow camera pose movements, and the BigBIRD dataset has 5
cameras in relatively far away locations (see Figure 2.1c), we use the camera poses that
the BigBIRD dataset provides per Carmine rather than frame-to-model ICP. Separate
experiments indicated that the provided poses provide more reliable poses over those
provided by frame-to-model ICP (particularly in cases where depth maps have gaps due
to transparencies). The provided poses also allow us to use depth information from
all 5 cameras. We employ a CPU implementation of KinectFusion that represents the
TSDF structure using an octree; specifically, we adopt the implementation used in119.
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(a) Palmolive detergent, 
KinectFusion mesh 

vertices

(b) Red cup, 
visual hull mesh 

vertices

(c) Red cup, 
KinectFusion mesh 

vertices

Figure 3.5: Challenges associated with the depth modalities we attempt to blend. Point
clouds recovered from KinectFusion meshes can often have large gaps of missing space80.
These gaps could be misleading due to missing depth readings arising from object trans-
parencies (see (a), featuring the KinectFusion mesh vertices of the translucent Palmolive
dishwashing soap). Gaps could also be legitimate, recovering object concavities such as the
cup’s concavity in (c). Although the visual hull can fill in illegitimate gaps, it can also intro-
duce hallucinated points which cover important concavities, such as the cup’s concavity in
(b). Section 3.2.4 and 3.2.5 discuss methods to capitalize on each modality’s strengths and
reason through the inaccuracies that each modality introduces.

3.2.4 Refining the Original Depth Maps
To ultimately fuse the visual hull and KinectFusion models, we aim to construct a
dense cloud whose points lie on the surface of the object and deform the visual hull
towards this cloud. In particular, this dense cloud’s points will be a subset of the union
of the visual hull and KinectFusion mesh vertices. Selecting this subset is nontrivial,
since the visual hull introduces hallucinated vertices, e.g., the top of the red cup (Fig-
ure 3.5b). Further, KinectFusion models can contain large empty spaces in regions with
few depth readings (Figure 3.5a). Exacerbating the problem, gaps in the KinectFusion
model could either be due to legitimate gaps such as object concavities (Figure 3.5c) or
illegitimate gaps due to object transparencies (Figure 3.5a). Ultimately, we construct
the desired cloud by refining the raw depth maps.

We summarize our algorithm to fuse these depth cues in Algorithm 1. We now
explain how Algorithm 1 assigns a refined depth to a single pixel (i, j) given z-buffered
depths for the visual hull and KinectFusion maps vh and kf and a raw depth map
raw, for a single camera c in angle a. The following 4 cases correspond to the 4 cases
described in Algorithm 1.

Case 1: vh does not project onto (i, j). We assume that the recovered mesh strictly
lies within the visual hull, so if vh[i, j] =∞, we use a refined depth of∞. The remainder
of the cases assume that vh projects onto (i, j).
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(a) Object color images (b) Raw depth maps (c) KinectFusion meshes (d) Soft visual hull meshes (e) Our method

Figure 3.6: Three concrete cases of the intuition behind merging visual hull and KinectFusion
depth information. Section 3.2.4 explains how Algorithm 1 operates on (1) the red corre-
sponding points in the first row (Pepto Bismol, a simple, opaque object), (2) the red and blue
corresponding points in the second row (Palmolive dishwashing container, an object with
major translucencies), and (3) the red and blue corresponding points in the third row (black
pot, an object, an object with a major concavity). Our method takes the best pieces of the
KinectFusion and soft visual hull meshes; this is particularly evident in the third row, where
our method recovers the pot’s concavity from the KinectFusion mesh and the refined handle
from the soft visual hull.

Case 2: Either raw or kf has a missing depth at (i, j). Because vh projects onto (i, j),
Algorithm 1 interprets this case as the Carmine missing readings due to transparencies.
For example, this happens for the red point in the second row of Figure 5.2, the
translucent Palmolive dishwashing liquid, where the soft visual hull is reliable while
the KinectFusion and raw depth maps have missing depths. In this case, Algorithm 1
prescribes returning the visual hull’s depth.

For the blue point in the same row, the raw depth map returns a missing depth while
the KinectFusion mesh actually returns a depth reading; note that the KinectFusion
depth reading is spurious since the depth reading represents a point that actually lies
“inside” the object rather than on the object’s surface. Specifically, the KinectFusion
mesh returns a false depth reading here, since this point is directly visible to the
camera when it isn’t supposed to be (namely because transparent surfaces are not
reconstructed). According to Algorithm 1, we return the visual hull’s depth, as desired.

Case 3: vh and kf return readings closer than 1 mm. In this case, we opt to use
vh’s depths, since surfaces recovered by the visual hull tend to be more refined. For
example, shown in the first row of Figure 5.2, the KinectFusion and soft visual hulls
for the Pepto Bismol container are both fairly reliable. Algorithm 1 returns the visual
hull reading for the red point.

Case 4: vh and kf return readings farther than 1 mm. In this final case, we opt
to return the maximum depth between vh and kf , as this likely implies the presence
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(a) Pot, with hallucinated points (b) Pot, hallucinated points removed

(d) Cup holder, hallucinated points removed(c) Cup holder, with hallucinated points

Figure 3.7: Point clouds of a black pot (a) immediately after applying Algorithm 1 and (b)
after applying our hallucination removal scheme. We similarly show point clouds of an object
with more complex concavities (a paper cup holder) in (c) and (d). See Figure 4.7 for color
images of these objects.

of a concavity. We address this case in the third row of Figure 5.2, which presents a
black pot with a large concavity. In the red point, both KinectFusion and soft visual
hulls return valid depth readings, but these readings differ by more than 1 mm. Taking
the maximum depth reading gives us the KinectFusion depth, allowing us to properly
recover the concavity.

Algorithm 1 opts to choose vh depths for the blue point, which falls under Case 3.
This leads to a more refined handle, showing that Algorithm 1 can pick and choose
parts of vh and kf based on reliability.

3.2.5 Eliminating Hallucinated Points
Algorithm 1 has a shortcoming, namely that it always assigns a finite depth to points
that fall within vh. Due to segmentation errors and the soft visual hull threshold, it
is possible for points to fall within the soft visual hull, but not fall within the true
object. Because the Carmine and raw depth maps indicate such points to be outside
the object, Algorithm 1 treats these hallucinated points as part of Case 2, generating
hallucinated points. As an example, Algorithm 1 frequently hallucinates points where

27



Merged 
Refined Depth Cloud, 

Camera A Only
Merged Views, 
All Cameras

Merged 
Refined Depth 

Cloud, 
Camera B Only

Sample hallucinated point

Visual cone
Proof of hallucination

Camera B

Camera A

Figure 3.8: Camera A’s viewing cone does not fully carve away the visual hull, leaving a
sliver of hallucinated points; the green dot shows a sample hallucinated point (see Camera
A’s refined depth map). Discussed in Section 3.2.5, the existence of the purple dot along the
orange ray allows us to detect the green dot as a hallucinated point.

the visual hull fills in concavities (see Figure 3.7). Figure 3.8 presents a visualization
for why this happens for a cup: camera A’s cone does not fully carve away the top of
the cup, leaving the sliver of points covering the concavity.

We eliminate hallucinated points as follows: for each point P generated by the visual
hull in the cloud generated by Algorithm 1, project P onto each refined depth map D.
If P ’s depth in D’s frame is strictly smaller than the current depth value in D, then
discard P .

Figure 3.8 explains why this method works: camera A introduces a hallucinated
point at the green dot. We can use camera B to resolve this discrepancy; projecting
the green dot onto camera B’s image plane shrouds the purple point, which camera
B originally sees with Algorithm 1 (see Camera B’s refined depth map). Eliminating
this green dot resolves the contradiction that arises from the purple dot indicating free
space along the orange ray.

Because we assume that the Carmines do not usually hallucinate poins, we iterate
only through points generated by the visual hull. Further, as long as the KinectFusion
model provides depth readings in concave regions of the object, the hallucinated points
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(a) Post-decimation

(b) Pre-decimation

Figure 3.9: Zooms (a) and (b) are meshes obtained after fusing together the visual hull and
dense cloud after hallucination removal (Section 3.2.6). (b) shows the mesh triangles before
applying our decimation procedure. (a) shows the triangles afterwards. Note the substan-
tially improved triangle quality, without the loss of surface geometry quality.

that “cover up” the concavity will be eliminated. See Figure 3.7b, d for merged clouds
after hallucination removal of two sample objects. Finally, to remove stray points in
this de-hallucinated cloud, we remove all points that do not have at least 5 neighbors
within a radius of 1 mm.

3.2.6 Fusing the Unified Cloud and Soft Visual Hull
We now fuse the soft visual hull computed in Section 3.2.2 and “de-hallucinated” cloud
computed in Section 3.2.5 into a single model. Similar to the visual hull formulation,
for x ∈ R3, we define a function F (x) = 1 if x projects within all silhouettes and x’s
nearest neighbor to a point in the de-hallucinated cloud lies within a maximum distance
r = 1 mm. After finding an initial x0 on the surface by repeatedly sampling from the
intersection of the back-projected silhouette bounding boxes, we run the Bloomenthal
polygonizer to extract a mesh.

In practice, the polygonizer generates many triangles with poor aspect ratio, e.g.
slivers.* Triangles with aspect ratios close to 1 are desirable, since this leads to cleaner

*The aspect ratio of a triangle is defined as the ratio of the circumradius to twice the inradius;
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(a) Almonds Can

(b) Dove Soap Box (c) Pringles Can (d) 3M Spray

Figure 3.10: The Almonds Can, Dove Soap Box, Pringles Can, and 3M spray, which we use
for quantitative measurements. We model the Almonds, Pringles, and 3M Cans using 3 cylin-
ders: the cap, the container, and the bottom. We model the Dove Soap Box using a rectan-
gular prism.

meshes that are more easily editable in 3D software due to their connectivity properties;
this also leads to cleaner texture maps20. To improve triangle aspect ratios while
losing little surface detail, we alternate between (1) applying

√
3-subdivision without

smoothing55 and (2) applying an edge decimation procedure. Figure 3.9 shows a sample
mesh before and after two iterations of this subdivision-decimate process.

3.3 Experiments

Figure 4.7 presents reconstructions of 19 distinct objects that fall in 3 categories: (1)
simple and easy to reconstruct (relatively opaque, without concavities), (2) objects
with at least one major concavity, and (3) objects with major translucencies or trans-
parencies. Each row presents a different object category while each column presents
reconstructions obtained from a different algorithm: the Poisson reconstruction method
from90 (PR), the hard visual hull method from34 (VH), KinectFusion80 (KF), and our
approach. Images do not represent scanned scenes, but a collection of individually
scanned objects to conserve space.

3.3.1 Simple Objects
Our method outperforms the other three competing methods in reconstructing simple
objects. PR and KF tend to oversmooth surface details; further, neither method pro-
duces satisfactory reconstructions of the crayon. While PR produces closed meshes,
KF often does not, evidenced by the noisy polygons towards the bottom of the objects.

e.g., the aspect ratio of an equilateral triangle is 1.
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Although VH recovers the crayon, it overcarves the VO5 shampoo and Pepto Bismol,
and fails to reconstruct the other objects due to excessive carving.

Our approach preserves the best aspects of each method: we recover surface details
without excessive carving, evidenced by the properly reconstructed crayon and cap
details for the Pepto Bismol, spray adhesive, and shampoo, while retaining closed
meshes.

3.3.2 Objects with Concavities
In reconstructing concave objects, PR and VH miss surface details and hallucinate
polygons. PR produces hallucinated polygons that cover concavities for the red cup,
paper cup holder, carrying tote, and black pot as well as extraneous polygons around
the paper plate. Due to excessive carving, VH fails to recover the paper cup holder,
mangles the pot’s surface, and fails to recover the pot’s handle. KF and our method
both recover all concavities. However, our method produces more refined models: our
pot’s handle is more clearly defined, and the edges of our objects are not as rough due
to our closed meshes.

3.3.3 Objects with Translucencies
PR produces many hallucinations in reconstructing translucent objects in an effort to
reconstruct areas with few depth points. Unfortunately, this yields nearly unrecogniz-
able reconstructions. Again, VH overcarves objects, entirely missing 3 objects. For
the remaining 3, VH misses the top halves of the Palmolive and Windex bottles and
overcarves the Listerine bottle. KF recovers bits and pieces of all objects, but still
misses large regions due to the translucencies.

Our method recovers the majority of objects, including tiny surface details: we
recover the opening to the Palmolive bottle, indentations on the Coca-Cola bottle
where the label is present, and bottle caps of the Coca-Cola and Dragon Fruit juice
bottles, all details on the order of 1 mm or less. Further, our method properly recovers
objects that are white, with large clear regions, shown by the Softsoap Hand soap and
Bai5 Sumatra Dragon Fruit juice.

Our approach is not perfect however, as it fails to recover regions of the Windex’s pipe
and Palmolive bottle. Our automatic segmentations fail to recover the superpixels cor-
responding to these regions, as our segmentation method classifies the white/translucent
colors of the pipes as part of the background.

3.3.4 Quantitative Measurements
Quantitatively measuring errors associated with the BigBIRD dataset is nontrivial, as
there exists no ground truth data. We inspect 4 objects that can be decomposed into
a few primitives: a Pringles can, an almonds container, a Dove soap box, and a 3M
spray (Figure 3.10). We model the Pringles, almonds, and 3M spray containers using 3
cylinders stacked on each other and the Dove soap box using a rectangular prism. We
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Primitive Fitting RMS Errors (mm)
PR90 SVH KF80 Our Method

Pringles 0.566 0.541 0.850 0.563
Dove Soap 0.995 0.981 1.123 0.948
Almond Can 0.339 0.303 0.662 0.294
3M Spray 2.018 1.971 2.189 1.958

Table 3.1: RMS Errors from fitting ground truth models to reconstructions from Poisson
reconstruction (PR), the soft visual hull (SVH), KinectFusion (KF), and our method.

determined the appropriate dimensions per primitive using calipers that are accurate
to 0.1 mm. After fitting the appropriate ground truth model to each reconstructed
object via point-to-plane ICP, we obtain the RMS errors in Table I; we compare our
method to the soft rather than the hard visual hull, as the latter heavily overcarves
the Dove box and Almond Can. Thanks to our well-calibrated cameras, most RMS
errors are under 2 mm. In the case of the Dove Soap, Almond Can, and 3M spray our
method produces reconstructions with the least RMSE; with the Pringles, our method
comes in a close second place.

3.4 Conclusion

This chapter reasons through the advantages and shortcomings of the KinectFusion
and visual hull techniques, and arrives at a highly effective method to fuse these mod-
els together. Individually, the KinectFusion algorithm does poorly in reconstructing
objects with major translucencies but reconstructs concavities, while the visual hull
does poorly in reconstructing concavities but reconstructs regions with major translu-
cencies. Our method exploits the complementary nature of KinectFusion and visual
hull to produce a unified algorithm that properly recovers objects with concavities and
translucencies.
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Algorithm 1 Refining the Original Depth Maps
C ← list of depth cameras whose depth maps to refine
A← list of turntable angles per depth camera
V H ← the soft visual hull mesh
KF ← the KinectFusion mesh
cloud← empty point cloud
for c in C do

for a in A do
raw ← raw depths for camera c, angle a
vh← V H’s z-buffered depths in camera c, angle a
kf ← KF ’s z-buffered depths in camera c, angle a
nr ← number of rows in raw
nc← number of columns in raw
refined← empty array with nr rows and nc cols
for 0 ≤ i < rows do

for 0 ≤ j < cols do
if vh[i, j] =∞ then

refined[i, j] =∞ ▷ Case 1
else if raw[i, j] =∞ or kf [i, j] =∞ then

refined[i, j] = vh[i, j] ▷ Case 2
else if |vh[i, j]− kf [i, j]| < 1 mm then

refined[i, j] = vh[i, j] ▷ Case 3
else ▷ Case 4

refined[i, j] = max{vh[i, j], kf [i, j]}
end if

end for
end for
newcloud← point cloud generated from refined
cloud.appendPointsNotAtInfinity(newcloud)

end for
end for
return cloud
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(a) PR, simple

(e) PR, concave

(i) PR, translucent

(b) VH, simple (c) KF, simple (d) Ours, simple

(f) VH, concave (g) KF, concave (h) Ours, concave

(j) VH, translucent (k) KF, translucent (l) Ours, translucent

(m) Color images, simple objects (n) Color images, concave objects (o) Color images, translucent objects

Figure 3.11: Collections of scanned objects reconstructed by competing methods. Rows 1-
3 present objects that (1) are “simple”, i.e. have few concavities, and are mostly opaque),
(2) have major concavities, and (3) have major transparencies/translucencies, respectively.
Columns 1-4 present reconstructions produced by the Poisson reconstruction-based method
in the original BigBIRD 90,54 (PR), the visual hull method in34 (VH), KinectFusion80 (KF),
and our approach, respectively. Color images of simple, concave, and translucent/transparent
objects are presented in (m)-(n), respectively. Each image does not present a scanned scene,
but a collection of individually scanned objects to conserve space.
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4
Optimized Color Models for

High-Quality 3D Scanning

Now that we have an effective algorithm for reconstructing high-quality 3D meshes
given a collection of well-calibrated RGB and depth images, we consider the problem
of estimating high-quality color models of these reconstructed meshes. We continue
using the data collected from the BigBIRD rig. This work was published in IROS
201574.

4.1 Introduction and Related Work

Recovering accurate color models given a shape model and a collection of color images
has been keenly explored. Accurate color models of 3D objects have been shown to play
major roles in object and instance recognition, particularly for cluttered scenes108,97,6,70.
These approaches automatically annotate reconstructed shape models with color and
texture features computed from calibrated RGB images. Other than robot vision, ap-
plications of high quality color models include virtual reality, computer graphics, and
online shopping. In this chapter, we propose a color model reconstruction method that
outperforms competing methods.

Representing the reconstructed shape model as a mesh, a collection of triangles on
a given vertex set, several widely used methods typically involve variants on volumet-
ric blending, i.e., assigning an averaged color to each mesh vertex20,40,80,107,78,110,106.
These approaches assume provided calibration information; in tandem with the pro-
vided mesh, these approaches establish corresponding points across the images and
compute weighted averages for each mesh vertex. While some approaches advocate em-
ploying averaging with uniform weights80, others recommend assigning greater weight
to views that observe the vertex more frontally107. In an effort to combat specularity
problems and the lack of frontal views for vertices, some approaches disregard viewpoint
extrinsics and instead give higher weights to views with greater color saturation43,20.
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Figure 4.1: Arm & Hammer Detergent (top) and Softsoap Aloe Vera (bottom), reconstructed
using our method and PCL’s volumetric blending80. The BigBIRD scanning rig (Figure 2.1)
captures 600 DSLR RGB images per object90; we show two per object here. Our color mod-
els can recover very fine textural details: in the Aloe Vera soap, the “5.5 FL OZ” text is 3
mm tall; the numbers under the barcode are just over 1 mm tall. PCL’s volumetric blending
smooths away these details.

Given initial camera poses, a different set of methods explores how to locally optimize
camera poses so as to maximize color agreement82,118,81.

We jointly recover camera poses and a color model by efficiently solving a non-linear
least squares optimization problem. While Zhou et. al. detail a similar approach118,
we observe that in practice (Section 4.4), their recovered color models suffer from
specularities in RGB images and often contain ghosting and smoothed away textures.
Although Hernandez et. al.20 provide a remedy to eliminating specular highlighting
artifacts, their method does poorly in recovering sharp textures.

Contributions. We demonstrate that incorporating 2D texture cues, vertex color
smoothing, and texture-adaptive camera viewpoint selection into the optimization
problem qualitatively ameliorates these problems. Ultimately, we demonstrate that
our method produces qualitatively more coherent color models than those produced by
competing methods. Results from a user study with 133 participants indicate that our
method outperforms competing approaches, advancing the state of the art.

4.2 Problem Formulation

We take in as input a 3D mesh M, whose representation is a collection of triangles in
3D space. Mesh M consists of a vertex set P, where each p ∈ P neighbors vertices
N(p) ⊂ P. We additionally take in a collection of RGB images, {Ii}, that observe the
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original object; each image has an associated intrinsics matrix Ki ∈ R3×3 and initial
extrinsics matrix T0

i ∈ SE(3). For each p ∈ P, we wish to estimate C⃗(p), vertex p’s
color.* The collection of vertex colors, which we denote C = {C⃗(p)}, constitutes the
color model we aim to learn.

We estimate the color model C by minimizing a non-linear least squares objective
that refines the original camera extrinsics T0 = {T0

i } so as to maximize each vertex’s
color agreement. Concretely, denote V (p) ⊂ {Ii} as the subset of images that observe
vertex p without occlusion, Ti as the updated extrinsics matrix for image Ii, and
Γ⃗i(p,Ti) as the color obtained by projecting p onto image Ii using extrinsics Ti and
intrinsics Ki. For each Ii ∈ V (p), we would like the error residual ∥C⃗(p)− Γ⃗i(p,Ti)∥2
to be small. This reasoning suggests that we minimize the following objective:

J (C,T) =
1

2

∑
p∈P

∑
Ii∈V (p)

∥C⃗(p)− Γ⃗i(p,Ti)∥2 (4.1)

where T = {Ti}. The only variables to minimize are C and T. We compute Γ⃗i(p,Ti)
by composing extrinsics matrix Ti, (fixed) intrinsics matrix Ki, and a color evaluation
from Ii, which can be written as Γ⃗i(ui(g(p,Ti))). The functions g and u are defined
as:

g(p,Ti) = Tip (4.2)
u([gx, gy, gz, gw]

T ) = (cx + gxfx/gz, cy + gyfy/gz) (4.3)

where fx, fy are the focal lengths of Ii and (cx, cy) denotes the principal point of Ii;
we obtain these values from Ki. The function Γ⃗i([ux, uy]

T ) computes the bilinearly
interpolated intensity at coordinates (ux, uy) in Ii. In the following sections, we explore
objective variants that successively improve reconstructed color models qualitatively.
We delve into concrete optimization details in Section 4.3.

*All color vectors in this chapter are 4-vectors whose entries all lie between 0 and 1. The
first entry is a grayscale intensity while the second through fourth are scaled RGB intensities.
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(a) Iteration 0 (b) Iteration 200

Figure 4.2: Mesh coloring (a), before, and (b), after, optimization using our implementation
of the approach employed by Zhou et. al.118. Although this method improves texture co-
herence, the textures are still faded (particularly the Arm & Hammer logo). Further, solid
yellow regions are still blotchy.

4.2.1 Accounting for Color Constancy and Specularities
In practice, specularities and the non-Lambertian nature of objects prevent us from
achieving perfect color agreement, even after refining T. Equation (4.1) asks for C⃗(p)
to agree with projected colors Γ⃗i(p,Ti) for all views Ii ∈ V (p): as such, recovered
colors in regions with white specularities may be heavily faded away, because residuals
corresponding to images with high specularities will draw C⃗(p) towards white. Indeed,
we observe this behavior empirically. Zhou et. al. minimize a similar objective to
Equation (4.1)118.† As an example, applying this optimization problem to the Arm
& Hammer detergent bottle drawn from the BigBIRD dataset90 (692K vertices, 600

†The primary difference is that during optimization, Zhou et. al. set color vectors to only
contain grayscale values and set final RGB colors by computing a weighted average per color
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camera views), Figure 4.2 reveals that although the textures become clearer, they
remain faded.

Rather than asking for color agreement from all views V (p) for vertex p, we consider
selecting a subset. Images that present the most accurate colors for p typically have
the most head-on, frontal views: i.e., the cosine of the angle subtending Ii’s optical axis
and p’s normal is close to −1 (the optical axis and normal vectors point in opposite
directions). We consider sorting V (p) by this “foreshortening value” and retaining at
most the top N images per p. Figure 4.3 summarizes the results for N ranging from 1
to 600 (total number of views) for the Arm & Hammer detergent bottle.

Interestingly, we discover that N offers a tradeoff between sharp textures and smooth
non-textured regions. Shown in Figure 4.3, smaller N leads to rough colors on the
handle while larger N smooths out this noise. For example, when N = 1, we observe
white regions on the detergent handle because the most frontal views incorrectly bleed
onto the white background in the best viewing image (see Figure 4.1 for sample viewing
images); larger N rectify this problem. Across many objects, we found that setting
N beyond 30 does not produce visibly smoother non-textured regions. As originally
conjectured, smaller N leads to crisper textures while larger N leads to faded, washed
out textures. Looking carefully at N = 1 reveals noisy boundaries for the Arm &
Hammer logo while N = 10 provides cleaner results by averaging away this noise.

We wish to take the best of both worlds by setting N ’s value depending on whether
p is considered “textured.” To do this, we consider assigning a label tp to each p, where
tp = 1 when p is textured and 0 otherwise. With this, we employ the objective:

J (C,T) =
1

2

∑
p∈P

∑
Ii∈V ′(p;tp)

∥C⃗(p)− Γ⃗i(p,Ti)∥2 (4.4)

where V ′(p; tp) retains the top N = 30 views when tp = 1 and the top N = 10 views
otherwise. Although interpolation between N = 10, 30 based on tp is possible, we
found that this produced less smooth color models. We discuss how to compute tp in
Section 4.3.4; until then, for easier exposition, we assume that these labels have already
been computed.

4.2.2 Smoothing Speckled Regions
Although adapting N = |V ′(p, tp)| alleviates faded textures, we expect boundary arti-
facting due to the difference in the number of cameras employed in adjacent textured
and untextured regions. Figure 4.4(a) (please use digital zoom in a PDF reader to
view details) shows the colored detergent after optimizing Equation (4.4); the red dot-
ted box reveals anticipated artifacts, while the blue and green boxes reveal slightly
blotchy textures that still remain.

channel, where the weight for Ii is the cosine of the angle subtending Ii’s optical axis and p’s
normal.
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(a) N = 1 (b) N = 10 (c) N = 30 (c) N = 50 (d) N = 100 (e) N = 200 (f) N = 600

Figure 4.3: The effect of N = |V ′(p; tp)| on the sharpness of textured regions and the
smoothness of non-textured regions: smaller (larger) N yield sharper (faded) textures, but
blotchy (smooth) non-textured regions. When N = 1, we observe white regions on the deter-
gent handle because these colors incorrectly bleed onto the white turntable background in the
best viewing image; larger N rectify this problem.

We ameliorate both problems by encouraging color agreement between pairs of ver-
tices lying along edges of M. We need to be careful to not blur away sharp textures,
however: so, we only smooth edges where (1) both vertices are non-textured or (2) ex-
actly one vertex is textured. The first case allows us to eliminate blotchiness while the
second smoothly connects non-textured and textured vertices. Concretely, we consider
optimizing the new objective

J (C,T) =
1

2

∑
p∈P

∑
Ii∈V ′(p;tp)

∥C⃗(p)− Γ⃗i(p,Ti)∥2+

λ

2

∑
p∈P

∑
p′∈N(p)

(1− tptp′) · ∥C⃗(p)− C⃗(p′)∥2
(4.5)

where λ is a hyperparameter that allows us to trade off the contribution between
the smoothing and original color-agreement terms. Figure 4.4(b) shows the detergent
bottle after incorporating smoothing – shown in the blue and green boxes, non-textured
regions are much smoother and the boundary artifacts have disappeared. Because we
smooth only untextured regions and “texture to non-texture” boundaries, the detergent
bottle’s serial number is not smoothed away during optimization.
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(a) No smoothing, λ = 0 (b) Smoothing, λ = 10

Boundary 
artifacts

Boundary 
artifacts 

gone

Figure 4.4: Detergent bottle’s color model, optimized using Equation (4.4). Without smooth-
ing, solid regions remain blotchy. Also, the difference in the number of cameras employed
in textured and untextured regions leads to texture artifacts, as shown by the patchy
“HH2118,” “A2,” and “1415” in (a). Optimization using Equation (4.5), which includes
smoothing, eliminates blotchy regions while preserving textured regions; it further removes
the patchy boundaries between textured and non-textured regions. Please use digital zoom to
view details.

4.3 Optimization

We now discuss optimization algorithms to minimize the objective discussed in Sec-
tion 4.2.2. First, we discuss a naive optimization method based on the Gauss-Newton
algorithm. Demonstrating that this is computationally intractable, we introduce an
alternating optimization method which tractably minimizes the same objective. Sec-
tion 4.3.3 concludes our discussion on optimization by discussing several practical im-
provements including (1) fixes to poor Hessian conditioning and (2) accelerating learn-
ing via multiscale optimization.
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4.3.1 Gauss-Newton Optimization
Since J (C,T) is a non-linear least squares objective, we consider using the Gauss-
Newton method for minimization. Equation (4.5) features two types of residuals:

r⃗
(1)
i,p = C⃗(p)− Γ⃗i(p,Ti) (4.6)

r⃗
(2)
p,p′ = C⃗(p)− C⃗(p′) (4.7)

Let Ck and Tk denote the values of C and T at iteration k, and xk = [Ck,Tk]. We
initialize the optimization with x0 = [C0,T0] where (1) T0 is set to the provided initial
calibrated extrinsics and (2) C0(p) is set to the average of {Γ⃗i(p,T

0
i )}Ii∈V ′(p;tp). The

Gauss-Newton procedure prescribes taking steps xk+1 = xk +∆xk where we solve for
∆xk in the following linear system:

JTJ∆xk = −JT r (4.8)

where r = [r(1), r(2)] is the residual vector and J = [Jr(1) , Jr(2) ] is the Jacobian of r,
both evaluated at xk:

r(1) = [r⃗
(1)
i,p(x)|x=xk ](i,p) (4.9)

r(2) = [r⃗
(2)
i,p(x)|x=xk ](i,p) (4.10)

Jr(1) = [∇r⃗(1)i,p(x)|x=xk ](i,p) (4.11)

Jr(2) = [∇r⃗(2)i,p(x)|x=xk ](i,p) (4.12)

We notice that J has a number of rows and columns that are both linear in |P|; this
renders solving Equation (4.8) intractable, since we typically operate on meshes with
100K+ vertices.

4.3.2 Alternating Optimization
We consider optimizing J (C,T) by alternating between minimizing C and T. First, we
discuss how to minimize the objective with respect to C. We initialize the optimization
method with x0 = [C0,T0], computed as in Section 4.3.1.

Optimizing C. In minimizing J (C,T) with respect to C after fixing T, we are left
with minimizing a quadratic objective. There exist many approaches to do this – we
found that employing gradient descent with momentum and the adaptive learning rate
method described in48 offers a good tradeoff between speed and accuracy. Computing
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each gradient takes time linear in the number of edges in the mesh:

∇C⃗(p)J (C;T) =
∑

Ii∈V ′(p; tp)

[C⃗(p)− Γ⃗i(p,Ti)]+ (4.13)

λ
∑

p′∈N(p)

(1− tptp′) · [C⃗(p)− C⃗(p′)] (4.14)

Optimizing T. We minimize J (C,T) with respect to T after fixing C via Gauss-
Newton. Ignoring terms that do not depend on T, we rewrite Equation (4.5) as:

J (C,T) =
1

2

∑
Ii

∑
{p:Ii∈V ′(p; tp)}

∥r⃗(1)i,p∥
2 (4.15)

Decomposing this sum of squares across all Ii, we can now compute separate Gauss-
Newton updates for each image Ii, since rj,p does not depend on Tj for i ̸= j. We now
discuss how to perform updates for a single image Ii. Defining xk = [Ck,Tk] where
Ck is fixed, we compute J and r as follows:

r = [r⃗
(1)
i,p(x)|x=xk ](i,p) (4.16)

J = [∇r⃗(1)i,p(x)|x=xk ](i,p) (4.17)

We compute r using Equation (4.6). Computing J entails computing the partial deriva-
tives of each entry in r⃗i,p with respect to T. For notational simplicity, let r

(1)
i,p denote

the first entry of r⃗(1)i,p and Γi(p,Ti) denote the first entry of Γ⃗i(p,Ti). We parameter-
ize Ti by locally linearizing around Tk

i ; specifically, letting ξi = (αi, βi, γi, ai, bi, ci)
T

represent an incremental transform‡, we set:

Ti ≈


1 −γi βi ai
γi 1 −αi bi
−βi αi 1 ci
0 0 0 1

Tk
i (4.18)

We have that:

∇Tir
(1)
i,p = − ∂

∂ξi
(Γi(p,Ti)) = −

∂

∂ξi
(Γi(ui(g(p,Ti)))) (4.19)

= −∇Γi(u)Ju(g)Jg(ξi)|x=xk (4.20)

We use Equation (4.18) to compute Jg(ξi) and Equation (4.2) to compute Ju(g). We
evaluate ∇Γi(u) numerically: recall that we compute Γi(u) via bilinear interpolation,
so gradients are valid when u lies within Ii. After solving for ∆xk, we map the resulting

‡We use the bundle adjustment technique discussed in our previous work for initialization90,
so initializations of Ti are close to optimal – as such, incremental transforms are valid.

43



(a) Level 1, optimized (b) Level 2, optimized (b) Level 3, optimized

Figure 4.5: Multiscale optimization: level 0 optimizes a Lindstrom-Turk-decimated mesh,
level 1 optimizes the original mesh, and level 2 optimizes a

√
3-subdivided mesh.

ξi back into SE(3) and compute Tk+1
i via this update. By employing an alternating

optimization strategy, optimizing all T reduces to solving a total of |{Ii}| linear systems
with 6 variables each, which we perform in parallel; Zhou et. al. employ a similar
method in camera pose optimization118.

4.3.3 Coarse-to-Fine Levenberg-Marquardt Optimization

In making updates to each Ti, the Hessian JTJ may be poorly conditioned, leading
to updates that cause some mesh vertices p to project outside the bounds of an image
Ii. As a remedy, we employ damped Hessians JTJ + ηI during optimization (a.k.a.
Levenberg-Marquardt optimization). In updating a single Ti, we first initialize η to
0. Upon making an update, we project all {p|Ii ∈ V ′(p; tp)} onto Ii; if any vertices
fall outside Ii, we increase η to 0.001. We repeat this projection check and continue
increasing η by a factor of 1.1 until all vertices fall within Ii; if we have not found a
satisfactory update after 5 such trials, we do not update Ti during the current iteration.

In practice, we find that resolving small texture features such as text requires us to
increase the density of vertices in M before optimization. As such, after reconstructing
M using Narayan et. al.’s method76, we employ

√
3-subdivision56 without smoothing

to increase the mesh’s surface resolution while not altering M’s geometry. We then
apply the Levenberg-Marquardt procedure described above.

We empirically accelerate convergence without sacrificing solution quality by em-
ploying a coarse-to-fine optimization scheme. Rather than immediately use M in op-
timization, consider constructing the series of meshes: M0,M1,M2. Here, M1 is the
original unaltered mesh obtained from76 and M2 is obtained by a single application of√
3-subdivision. In the other direction, we apply Lindstrom-Turk polygon simplifica-
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(a) Before depth 
filtering

(b) After depth 
filtering

(c) Before SLIC 
smoothing

(d) After SLIC 
smoothing

Figure 4.6: (a) shows a sample response map for a single image after applying the technique
in Section 4.3.4, before depth discontinuity filtering; white regions denote higher responses.
(b) shows the updated map after depth discontinuity filtering. (c) visualizes all tp, without
SLIC smoothing. (d) visualizes the updated tp after SLIC smoothing.

tion68 to M0: specifically, M−1 has at most 50% the number of edges in M0. We use
implementations for both

√
3-subdivision and Lindstrom-Turk polygon simplification

provided in the open source Computational Geometry Algorithms Library (CGAL)cga.
We proceed by running Levenberg-Marquardt optimization on M0. Upon conver-

gence, we initialize a new optimization problem on M1; because the vertices have
changed, we re-initialize C. However, we warm-start this new optimization problem
using the converged T from M0. We repeat this up to M2. Figure 4.5 visualizes
optimization progress. Multiscale optimization typically yields speedups of 2 − 3×
over directly optimizing over M2 (larger speedups for larger meshes); we did not find
any noticeable differences between color models produced with and without multiscale
optimization.

4.3.4 Texture Label Assignment
Before presenting empirical results, we discuss how to compute texture labels tp for
p ∈ P. Algorithm 2provides the details. We first turn the camera images {Ii} into
grayscale images {I(gray)i } via the luminosity method. We convolve each I

(gray)
i with

10 kernels of size 10 × 10, whose entries are uniformly sampled from [−1, 1] and sum
to 0. Taking the element-wise-maximum over these filtered images then gives us a
response map, where higher responses correspond to textured regions in the image (see
Figure 4.6(a)). We let this resulting response map be I ′i. Convolving with random
filters is known to reveal high-frequency spatial patterns in images, e.g., edges85; as
such, examining the maximum responses from an ensemble of such filters typically
yields regions of high spatial frequency, i.e., textured regions.

As marked in Figure 4.6(a), depth-discontinuities can trigger high responses in the
response map near object boundaries, which are not necessarily textured. To combat
this, we (1) compute a z-buffered depth map using the intrinsics Ki and extrinsics Ti
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User Study Summary (n = 133): Which Method Matches the Reference Most Closely?
O1 O2 O3 O4 O5 O6 O7 O8

Our Method 0.872 0.841 0.882 0.985 0.587 0.735 0.855 0.655
Zhou et. al.118 0.005 0.019 0.000 0.008 0.049 0.027 0.021 0.031

Hernandez et. al.43 0.106 0.111 0.109 0.008 0.320 0.239 0.119 0.304
Volumetric blending80 0.018 0.029 0.009 0.000 0.044 0.000 0.004 0.010

O9 O10 O11 O12 O13 O14 O15 O16
Our Method 0.802 0.774 0.859 0.925 0.491 0.894 0.581 0.917

Zhou et. al.118 0.054 0.117 0.080 0.016 0.019 0.033 0.018 0.004
Hernandez et. al.43 0.126 0.100 0.044 0.055 0.472 0.065 0.353 0.063

Volumetric blending80 0.018 0.009 0.016 0.004 0.019 0.008 0.048 0.016

Table 4.1: O1 through O16 represent objects in Figure 4.7: 3m_high_tack_spray_adhesive
is O1, windex is O2, etc.

matrices associated with each image Ii and (2) compute a depth discontinuity map; a
depth value is considered to be a discontinuity if, within a centered square window of
9 pixels, there is a difference in depth of more than 1 cm. We zero out entries in I ′i
that are at a depth discontinuity. To average away sensor noise per image Ii, we (1)
compute SLIC superpixels4 of Ii and (2) set the value of each pixel in Ii to the average
of all values in the superpixel that the pixel lies in. We apply a linear transform to
ensure that entries of I ′i lie between 0 and 1. Figures 4.6c, d show the values of tp with
and without this noise-reduction step. The smoother consistency of Figure 4.6 yields
color models with fewer blotchy regions.

Computing tp entails projecting p onto all images where p is visible; let Pi ⊂ P
denote the subset of vertices which is visible in image Ii. We efficiently compute
each Pi using a z-buffer technique; additionally, vertices within 9 pixels of a depth
discontinuity are discarded from Pi. We proceed by projecting p onto each response
map I ′i for which p ∈ Pi, accumulating the lookup values into a list. We set tp to a
weighted mean of this list of values. The weight for image Ii is the absolute value of
the cosine of the angle subtending image Ii’s optical axis and vertex p’s normal. We
finally assign tp to 0 or 1 by simply rounding its value.

4.4 Experiments

We conduct experiments using objects drawn from the BigBIRD dataset, discussed
in Chapter 1. All experiments are run on an Intel i7-4930K with 64 GB of memory.
We provide timing information on the source code page (see abstract); in general, the
optimization process typically takes 1-5 minutes per object, depending on the number
of object vertices.

We display 64 reconstructed color models in Figure 4.7: 16 objects ×4 methods
we consider: (1) ours, (2) Zhou et. al’s118, (3) Hernandez et. al.’s43, and (4) PCL’s
volumetric blending80. We do not employ the deformation grid optimization that Zhou
et. al. discuss, as the resulting LM updates are not small, leading to divergence.
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Original [21] Ours [27] [8] [17] Original [21] Ours [27] [8] [17]

aunt_jemima_original_syrup mom_to_mom_butternut_squash_pear

white_rain_sensations_apple_blossomdetergent

palmolive_green pepto_bismol

cholula_chipotle_hot_saucecoca_cola_glass_bottle

softsoap_whitepop_secret_butter

listerine_greencrest_complete_minty_fresh

crystal_hot_saucewindex

v8_fusion_peach_mango3m_high_tack_spray_adhesive

Figure 4.7: Juxtapositions of original BigBIRD images90 with color model reconstructions
from (1) our method, (2) Zhou et. al.118 without deformation grid optimization, (3) Hernan-
dez et. al.43, and (4) PCL’s volumetric blending80. Note that we do not employ Zhou et.
al.’s deformation grid optimization, since this leads to divergence. Please use a PDF reader’s
digital zoom to view details.
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4.4.1 Evaluation Methodology
To quantitatively compare our method with competing approaches, we conducted an
online user survey (https://goo.gl/forms/Feo2OqOdw4), where each participant was
given 16 multiple choice questions, one per object in Figure 4.7. Each question asked
the participant: “Which of the following images matches ‘Reference’ most closely?”
The reference image displayed the original BigBIRD image; we juxtaposed the refer-
ence image with color models estimated from our method and competing methods.
We randomized the order in which the color models appeared within a question. Par-
ticipants were allowed to answer with a tie, electing two methods as the best for a
question. Participants were given as much time as needed to complete the 16 ques-
tions; we advertised the survey primarily via department emails. There were a total of
133 participants in the survey.

In creating Table 4.1, for each question asked per participant, we assigned 1 point
for a single elected method and 0.5 point to two elected methods when the participant
chose a tie. To ensure that we did not receive overwhelming amounts of spurious data,
we included two objects whose color models were difficult to distinguish in quality – O13
(cholula_chipotle_hot_sauce) and O15 (white_rain_sensations_apple_blossom); in
the former case, our method was voted the best by 49.1% of participants while Her-
nandez et. al.’s method received a close 47.2%. In the latter case, our method received
58.1% while Hernandez et. al.’s received 47.2%. Most of the other color models had
fairly distinguishing features.

4.4.2 Analysis
Our method received the highest votes in all objects we considered, in most cases, by
more than 30%, and often by more than 75%. Because Zhou et. al’s method averages in
all images that view a vertex118, it provides ghosted, faded textures. Examples include
front faces for pop_secret_butter and mom_to_mom_butternut_squash_pear as well
as caps for pepto_bismol and listerine_green. Other objects with Zhou et. al. are often
faded, as seen with the 3m_high_tack_spray_adhesive and v8_fusion_peach_mango.
PCL’s volumetric blending80 suffers from similar problems, although in most cases,
ghosting is more severe.

Per vertex, Hernandez et. al.’s approach averages the top 3 camera views that have
the highest saturation on an HSV scale; they do not jointly optimize camera poses43.
This model can produce vibrant, but highly distorted color models. Examples include
front faces for pop_secret_butter, detergent, crystal_hot_sauce, and palmolive_green
and caps for listerine_green, pepto_bismol, and mom_to_mom_butternut_squash_pear.

Despite the highly specular nature of our objects, our approach can reconstruct very
fine textural details. In pepto_bismol, we clearly see the “digestive relief” text on the
cap. In coca_cola_glass_bottle, we observe that Coca Cola created the bottle on 15
Sep 14 at 7:40 AM.§ In listerine_green, the white plastic holding down the cap as well

§To clearly see such tiny details, we recommend visiting the online survey: https://goo.gl/
forms/Feo2OqOdw4
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is crisp, as is the text “listerine” on the black cap.
Our method is not perfect. v8_fusion_peach_mango reveals blotchiness above the

V8 symbol. palmolive_green shows ghosting around the green logo. detergent’s bar-
code is not perfectly crisp and has few splotches of yellow.

4.5 Conclusion

We recover high-quality color models from the BigBIRD dataset by jointly optimiz-
ing a non-linear least squares objective over camera poses and a mesh color model.
We incorporate 2D texture cues, vertex color smoothing, and texture-adaptive cam-
era viewpoint selection into the objective, which allows us to outperform competing
methods. We also discuss strategies to accelerate optimization speeds.
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Algorithm 2 Compute Texture Intensities
M← input mesh, with vertex set P
{I(gray)i ,Ki,Ti} ← calibrated grayscale images I, associated intrinsics K, and
extrinsics matrices T
F ← a list of 10 kernels of size 10 × 10, whose entries are uniformly sampled
from [−1, 1] and sum to 0
I ′ ← {}
for I

(gray)
i ∈ {I(gray)i }, in parallel, do
I ′i ← matrix of zeros, with size of Ii
for f ∈ F do

C ← convolve f with I
(gray)
i

I ′i ← element-wise-max of I ′i and C
end for
Z ← depth map for I

(gray)
i , computed with M,Ki,Ti.

D ← depth discontinuity map computed from Z (see Section 4.3.4)
I ′i ← zero I ′i where depth discontinuities exist in D.
I ′i ← (I ′i −min(I ′i))/(max(I ′i)−min(I ′i))
S ← compute SLIC superpixels for Ii
for s ∈ S do

p← average value of I ′i in superpixel s
Replace all values in I ′i corresponding to pixels in s with value p

end for
I ′[i]← I ′i

end for
t← {}
for p ∈ P, in parallel, do

v ← list of values obtained by projecting p onto each I ′i where p is visible
in I ′i

tp ← weighted mean of values in v (see Section 4.3.4 for weights)
tp ← 0 if tp ≤ 0.5, otherwise 1

end for
return t
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5
Alpha-Beta Divergences Discover Micro

and Macro Structures in Data

Our exposition so far has examined how to extract a 3D color mesh from a “real-world”
object, by (1) first detailing the construction and calibration of a 3D scanner, (2) next
discussing techniques to extract a 3D mesh from the object, and (3) finally providing
algorithms to color the resulting 3D mesh. The mechanics of the scanner arguably allow
us to amass a vast collection of 3D objects; indeed, in addition to the objects present
in the moderately-sized public datasets which have made use of the setup detailed in
this thesis90,18,89, we have collected over 1500 other objects (not publicly released).

As with any growing dataset, the ability to holistically view dataset characteristics
becomes an evergrowing need. In particular, useful visualizations of a dataset’s in-
stances can provide yield invaluable intuition. Such intuitions are particularly difficult
to discover in very large datasets, especially those with large dimensionality. Con-
cretely, we consider visualizing datasets with anywhere between hundreds and tens of
millions of data instances, where each instance has anywhere between ten and millions
of features. Such scales are not (yet) common in 3D computer vision (such scales will
arguably arise very soon in this field), but are very common in 2D computer vision
as well as eclectic disciplines, ranging from physics to biology to music. This work
specifically considers non-linear dimensionality reduction in holistic visualization. This
work was published in ICML 201575.

5.1 Introduction and Related Work

Data visualization techniques aim to generate a low-dimensional representation of a
dataset which data scientists and researchers can inspect to gain insight into the
structure and complexity of the data. Vital to data-driven decision making, visu-
alizations graphically represent latent structure and meaning in the dataset. Many
recent approaches produce low-dimensional embeddings of data instances, which we
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can view via scatter plots19,45,99,64,15,103,113. Particularly, recent variants on stochas-
tic neighborhood embedding (SNE) have become popular45; the recently published
t-SNE (t-distributed stochastic neighbor embedding) is particularly popular99. At a
high level, SNEs (i) capture neighborhood information from pairs of points in the
original dataset with m data instances into an m × m data similarity matrix, and
(ii) learn a low-dimensional embedding of those points whose similarity matrix closely
matches the original. Computing an embedding which matches the structure of the
original data involves minimizing a divergence measure, e.g., KL-divergence, between
the data and embedding similarity matrices. Indeed, most methods employ the KL-
divergence45,99,100,111.

Unfortunately, most proposed methods either (1) are hyperparameter-free, giving
researchers little room to directly communicate what types of patterns they are search-
ing for in the data, or (2) have non-intuitive hyperparameters that require expensive,
tedious grid searches.

Contributions. We propose a method featuring 2 hyperparameters (α, β). Our theo-
retical analysis predicts that (1) setting α+β < 1 reveals macro-structures (categories,
e.g., dogs), (2) α < 1 reveals micro-structures (fine-grained classes, e.g. dalmations),
and (3) α+β > 1 reveals instances close to class boundaries (e.g., digits that are easily
confused as 1 vs 7 or 4 vs 9) (Section 5.4). The meaning of the parameters makes data
exploration intuitive, and can obviate the need for extensive grid searches over hyper-
parameter settings. We emphasize that these settings are dataset-agnostic, empirically
substantiated on 10 datasets covering a wide swath of sizes (100 – 11M instances)
drawn from a broad set of domains (computer vision, biology, particle physics). Our
method allows for fast parallel CPU/GPU implementations; our GPU implementation
runs 20× faster than the state of the art SNE-based implementations (Section 5.5).

Our theoretical analysis additionally answers a question recently posed in15: under
what circumstances should we choose a particular divergence to minimize in the SNE
framework, and what consequences does this choice have? While minimizing diver-
gences other than the KL-divergence in the SNE objective has recently been explored
computationally, these works do not answer this question. Yang et. al. demonstrate
that several popular SNE variants arise from varying the divergence that is being min-
imized112. Yang et. al. show that a novel optimization equivalence theorem between
α-divergences, β-divergences, and γ-divergences yields a class of methods that build on
the best aspects of graph layout and vectorial embedding. Bunte et. al. apply t-SNE
variants using several Bregman divergences, f -divergences, and γ-divergences to two
small datasets (COIL-2077 and the Olivetti face dataset84)15. Although Bunte et. al.
acknowledge that varying divergences produce different visualizations, they admit that
they are unable to deliver an overall recipe for choosing a particular divergence in a
given task. To the best of our knowledge, this work is the first to provide such a recipe.

Past work primarily explores minimizing purely a single divergence in the SNE
framework. We discover that minimizing the generalized alpha-beta divergence (a.k.a.
AB-divergence)23, which blends the α- and β- divergences, is crucial to discovering
important micro and macro structures in the data (Section 5.4).
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5.2 Background: t-distributed Stochastic Neighborhood Embedding

Given a dataset D = {x1,x2, · · · ,xm}, with data instances xi ∈ Rn, t-distributed
Stochastic Neighbor Embedding (t-SNE)99 aims to learn an embedding E = {y1,y2, · · · ,ym},
where yi ∈ Rd (usually, d = 2 or 3). To achieve this goal, t-SNE defines

Pj|i =
exp(−∥xi − xj∥2/2σ2

i )∑
ik exp(−∥xi − xk∥2/2σ2

i )
, (5.1)

Pij = (Pi|j +Pj|i)/2m, (5.2)

Qij =
(1 + ∥yi − yj∥2)−1∑
k ̸=l(1 + ∥yk − yl∥2)−1

(5.3)

where additionally, Pi|i = Qii = 0. Determining the individual variances σ2
i involves

running a binary search such that the perplexity (2 raised to the entropy) of the con-
ditional P·|j equals k, a free parameter100. The embedding employs a Student-t kernel
rather than a Gaussian to prevent embedding points from crowding near the center of
the visualization map without clear clustering, a.k.a. the “crowding problem.” t-SNE
prescribes learning the embedding vectors yi by running gradient descent to minimize
the resulting non-convex KL-divergence, J (E) =

∑
i ̸=j Pij logPij/Qij :

∂J
∂yi

= 4
∑
i̸=j

Z(yi − yj)(PijQij −Q2
ij) (5.4)

=
∑
i̸=j

4PijQijZ(yi − yj)︸ ︷︷ ︸
Force 1

−
∑
i̸=j

4Q2
ijZ(yi − yj)︸ ︷︷ ︸
Force 2

(5.5)

where Z =
∑

k ̸=l(1 + ∥yk − yl∥2)−1. Naively computing this gradient takes O(m2)
time, making visualizations of greater than 50K data vectors prohibitively expensive.

Barnes-Hut-SNE (BHSNE)100 approximates the t-SNE’s gradient in sub-quadratic
time, yielding nearly identical visualizations to t-SNE while allowing for visualizations
of millions of data vectors in a few hours. To this end, BHSNE only retains Pij where
data vector xj is one of xi’s closest 3k neighbors, and sets the rest to 0. In practice,
BHSNE constructs a vantage point tree to execute all nearest neighbor searches in
O(kmn logm) time100,114. BHSNE computes Force 1 in O(km) time by adding only
terms involving positive Pij and computing each QijZ = (1+∥yi−yj∥2)−1 in constant
time; we ignore the dimensionality of the yi, as BHSNE typically seeks a 2D or 3D
embedding. BHSNE employs a Barnes-Hut approximation algorithm to compute Force
2 in O(m logm) time: given yi,yj , and yk where ∥yi−yj∥ ≈ ∥yi−yk∥ ≫ ∥yj−yk∥, the
contributions of yj and yk to Force 2 will be roughly equal. The Barnes-Hut algorithm
exploits this in computing the sum of all contributions to an embedding vector yi by (i)
constructing a quadtree over {yi}, (ii) traversing the quadtree via a depth-first-search,
and (3) at every quadtree node, deciding whether the corresponding cell can summarize
the gradient contributions for all points in that cell. In computing Force 2 for a point
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yi, if a cell is sufficiently small and far away from yi, then Q2
ijZ(yi−yj) will be similar

for all points yj in that cell. As such, BHSNE approximates the total contribution as
Ncell · Q2

ijZ(yi − yj) where Ncell denotes the total number of points in the cell. To
compute Z efficiently, BHSNE (i) runs a separate Barnes-Hut procedure to compute a
zi =

∑
j Kq(∥yi − yj∥2) for each embedding point i and (ii) sums over the zi’s to yield

Z. BHSNE then uses this value of Z in the Barnes-Hut procedure to compute Force 2.
BHSNE decides whether a cell can summarize the points that it contains by checking
whether ∥yi − ycell∥2/rcell < θ, where rcell is the length of the cell diagonal, ycell is the
cell’s center of mass, and θ is a threshold that trades off speed and accuracy (larger
values lead to poorer approximations).

5.3 Alpha-Beta Stochastic Neighborhood Embedding

Alpha-Beta Stochastic Neighborhood Embedding (ABSNE), our proposed method, dif-
fers from t-SNE in that it minimizes the alpha-beta divergence (AB-divergence). We
minimize the cost JABSNE(E ;α, β) = Dαβ

AB(P∥Q), computed as

1

αβ

∑
i̸=j

(
−Pα

ijQ
β
ij +

α

α+ β
Pα+β

ij +
β

α+ β
Qα+β

ij

)
, (5.6)

where α ∈ R\{0}, β ∈ R are hyperparameters. It is possible to set β = 0 or α+β = 0 by
extending the AB-divergence via continuity, e.g., by applying l’Hôpital’s rule (see23);
this does not affect the form of the gradient we present below (see Supplementary
Materials). We use the definitions of Pij and Qij employed in BHSNE (see Section 5.2).
We minimize the ABSNE objective via gradient descent. The gradient, ∂JABSNE/∂yi,
is computed as ∑

j

4ZQ2
ij(yi − yj)(P

α
ijQ

β−1
ij︸ ︷︷ ︸

Force 1

−Qα+β−1
ij − J1 + J2)︸ ︷︷ ︸

Force 2

(5.7)

where J1 =
∑

k ̸=l P
α
klQ

β
kl and J2 =

∑
k ̸=l Q

α+β
kl . We compute ABSNE gradients in

O(m logm + mk) time using BHSNE’s computational tricks: we can compute Force
1 and J1 in O(km) time using P’s sparsity and Force 2 via a Barnes-Hut algorithm
similar to the one described in Section 5.2 after pre-computing Z and J2 using a separate
Barnes-Hut procedure.

5.4 How α and β Discover Hidden Structures

The AB-divergence offers two hyperparameters, α and β, which have strong intuitive
meaning. This conveniently removes the need for tedious grid searches. Defining λ =
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Figure 5.1: Functions in the (left) Tsallis deformed q-logarithm and (right) power families.
Dotted lines in the left figure denote absolute values of functions. | ln1−α(rij)|.

α+ β, we inspect the updates taken during learning:

∆yi = −
∂Dαβ

AB(P∥Q)

∂yi
=
∑
j

∂Qij

∂yi
Qλ−1

ij ln1−α

(
Pij

Qij

)
(5.8)

=
∑
j

∂Qij

∂yi
Qλ−1

ij ln1−α (rij) (5.9)

where lnq(x) is the Tsallis deformed q-logarithm* and rij = Pij/Qij . Our theoretical
analysis considers how each force fij = ∂Qij/∂yi · Qλ−1

ij ln1−α(rij) affects ∆yi. The
term ∂Qij/∂yi is a vector parallel to the ray k(yi − yj). Since the t-distribution
monotonically decreases for positive arguments, we must have k < 0, i.e., fij points
towards yj , implying that fij attracts yi towards yj if Qλ−1

ij ln1−α(rij) > 0 ⇒ rij > 1
(see Figure 5.1) and repulses yi from yj if rij < 1. Specifically, non-neighboring point
pairs in the original dataset D with Pij = 0⇒ rij = 0 < 1 repel each other.

We interleave theoretical intuition with empirical verification on two datasets (more
results presented in Section 5.6): MNIST67, a dataset of 70K 28× 28 grayscale images
depicting handwritten digits 0-9 and CIFAR-1059, a dataset of 32 × 32 color images
depicting 10 distinct object classes. We use the raw pixel data as MNIST’s feature
representation. For CIFAR-10, we train a 3-layer convolutional neural network with
the cudaconvnet58 architecture using Caffe51 and employ only third layer convolutional
features; we visualize the test set to avoid having training labels directly influence the
embedding. Applying PCA to center and reduce each dataset to 100 dimensions, we
ran ABSNE under various (α, λ) for both datasets with perplexity 30 (Figure 5.2). We
initialize all yi in experiments with the same random seed and run exactly 1000 itera-
tions of gradient descent per configuration (see Section 5.5 for optimization details), so
structural details across a row should be comparable; the first column (α = 1.0, λ = 1.0)
denotes vanilla t-SNE.

Intuition Behind α. To study α, let us fix λ = 1. Consider a cluster of embedding
points consisting of a few sub-clusters. After convergence, the sub-clusters will be

*lnq(x) ≡ (x1−q − 1)/(1− q) if q ̸= 1, else lnq(x) = lnx.
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Figure 5.2: Empirical evidence of the theory in Section 5.4: (col. 2) λ < 1 reveals macro-
structures, (col. 4) α < 1 reveals micro-structures, and (col. 3) λ > 1 reveals instances close
to class boundaries (Section 5.4). Further evidence on larger datasets (1M+ instances) is pro-
vided in Section 5.6. During data analysis, if supervision is not provided, column 2 may help
in identifying classes. If supervision is provided, the right three plots can help understand
“easily confused” (boundary) instances and instances within fine-grained categories. For ref-
erence, the left-most column displays t-SNE’s visualization, i.e., in the limit (α, λ) → (1, 1)
(this derivation is non-trivial due to the limits and presented in the Supplementary Materi-
als).

placed together in such a way that the attractive and repulsive forces are balanced.
According to Figure 5.1a., decreasing α below 1 emphasizes the magnitude of (repulsive)
forces with rij < 1 relative to (attractive) forces with rij > 1. The emphasized repulsive
forces and diminished attractive forces should cause sub-clusters to be placed further
apart, implying that ABSNE should tend to produce lots of small, fine-grained clusters
for α < 1. Because rij < 1 ⇒ Qij > Pij implies that points yi,yj are closer than
they are supposed to be, the fij operating on close-proximity points yi,yj should be
emphasized more than those of far away points, implying that setting α < 1 should
lead to fewer global changes in visualization structure in comparison with t-SNE (α =
λ = 1), but lots of change in local structure. Similarly, setting α > 1 should lead to
fewer, larger clusters with more global visualization changes. Inspecting columns 4 and
5 in Figure 5.2, we notice that varying α yields the anticipated effect of local clustering:
in both CIFAR-10 and MNIST, individual clusters are more tight and fine-grained for
α < 1 and loose for α > 1. As predicted, little global restructuring takes place for
α < 1 in comparison with α > 1. Variations on α could be useful to a user interested
in inspecting the relationships between sub-clusters arising within larger clusters of the
data at various scales.

Intuition Behind λ. To study λ, let us fix α = 1. According to Figure 5.1b., setting
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λ < 1 emphasizes fij with low Qij (distant yi,yj), over fij with high Qij (near yi,yj).
So, changing λ should primarily affect global over local structure. Thus, λ < 1 increases
the magnitudes of forces on distant, repulsive point pairs, exaggerating repulsion of non-
neighboring point pairs in the original dataset, which we conjecture leads to greater
cluster separation while setting λ > 1 leads to low separation. Inspecting column 2,
setting λ < 1 yields the anticipated effect of greater cluster separation: examining
MNIST for λ = 0.95 < 1, ABSNE places each cluster of points further away from the
others. Similarly, the purple and brown clusters are more separated from the other
clusters with CIFAR-10. In column 3, setting λ = 1.05 > 1 yields a single large
glob of points containing smaller globs corresponding to the same class, as expected.
This setting could be useful if the user wishes to inspect “boundary” cases between
embedding points with known classes.

The Importance of Blending α and β. While past work has individually applied the
α- and β- divergences to the SNE problem113,15,112, the heavy dependence of the theory
on λ = α + β shows that incorporating both divergences in the objective is crucial to
discovering important micro and macro structures in data.

5.5 Parallel CPU and GPU Implementations

While many optimization methods exist for embeddings, e.g. spectral descent72, partial
Hessian strategies102, fast multipole methods with L-BGFGS103, we found that warm-
started gradient descent100 obtained strong results: we (1) initialize all yi from a 2D
isotropic Gaussian with variance 10−4 and (2) update each yi via gradient descent
(GD) with momentum (step size 200). For the first 250 descent iterations, we use
momentum 0.5 and multiply all Pij values by a user-defined constant α = 12. For the
last 750 iterations, we use momentum 0.8. We use a per-parameter adaptive learning
rate scheme to speed up GD convergence48, otherwise known to be very slow and
sensitive to local optima in practice102. Concrete reasonings behind these choices can
be found in99,100. We now detail how to compute gradients and update the yi on the
GPU, particularly using the NVIDIA compute unified device architecture (CUDA).

5.5.1 Parallel GPU Gradients
We store the yi in two arrays on the GPU, one array per dimension, to take advantage
of cache locality, as done in16. We store the (sparse) affinity matrix P as a list of
triplets. We take advantage of P’s symmetry to minimize the number of memory reads
by storing only the upper half of the matrix. Our implementation consists of 13 kernels,
which we now discuss.

Kernels 1 – 5: Partially Computing Force 2. Recall from Section 5.3 that the AB-
SNE gradient consists of two types of forces: Force 1 and Force 2. We first compute
Force 2, since it will yield structures useful in computing Force 1.

Discussed in Section 5.2, computing Force 2 involves building a quadtree over the yi.
To do this, we (Kernel 1) construct a bounding box over the yi, (Kernel 2) hierarchically
subdivide the bounding box until each cell contains at most a single yi, and (Kernel 3)
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compute the center of mass and cumulative mass per cell. Next, we (Kernel 4) perform
an in-order traversal of the quadtree, which approximately places nearby cells next
to each other in the traversal; this is crucial in accelerating Kernel 5, which actually
computes the forces on the individual yi.

To understand why the in-order traversal is necessary, recall that in CUDA, all
threads within a single warp will execute in lockstep on entering a conditional statement
only if the conditional evaluation is identical for all threads; otherwise, threads within
the warp belonging to different branches will execute serially, often severely affecting
performance. The in-order traversal substantially reduces such within-warp thread
divergence in Kernel 5, leading to an order of magnitude savings in run-time. For more
details, see16, which we follow closely in implementing these five kernels.

Jointly, this set of kernels computes and stores g1 =
∑

j 4ZQ2
ij(yi − yj) and g2 =∑

j 4ZQ2
ij(yi − yj)Q

α+β−1
ij in GPU memory. We incorporate the contributions of J1

and J2 in later kernels.
Kernel 6, 7: Computing J2 and Z. We evaluate J2 =

∑
k ̸=l Q

α+β
kl by (1) computing

a J
(i)
2 =

∑
k ̸=iQ

α+β
ki per yi and (2) executing a reduction to compute J2 =

∑
i J

(i)
2 . We

efficiently perform (1) by computing auxiliary J
(i)
2 variables per yi in executing Kernel

5. We perform the reduction through the open-source Thrust library12. We compute
Z similarly.

Kernel 8, 9: Computing J1, Partially Computing Force 1. Rather than computing
Force 1 by iterating over each yi, we iterate through the positive entries of P, whose
contributions we add to the prescribed yi (Kernel 8). To parallelize computation, we
split the list of triplets (i, j,Pij) across enough blocks to allow for 1024 threads per
block; each thread processes a single triplet and updates points i and j. One caveat
of this approach is that these updates must be made atomically; e.g., parallel updates
for tuples (2, 3) and (3, 5) without atomic updates would yield a race condition for y3.
Kernel 8 computes and stores g3 =

∑
j 4ZQ2

ij(yi − yj)P
α
ijQ

β−1
ij in GPU memory.

Computing J1 entails iterating through the positive entries of P, computing the as-
sociated summands, and executing a reduce operation (Kernel 9). With large datasets,
the GPU cannot fully store P in memory; so, we swap batches of P between CPU and
GPU memory and apply Kernels 8 and 9 per batch, accumulating only J1 and g3 in
GPU memory.

Kernels 10 – 12: Updating yi. Kernel 10 executes the gradient updates per yi. We
compute the gradient by modifying each yi according to the entry in g = g1 ∗ (J2 −
J1)−g2+g3, taking into account momentum and the adaptive learning rates described
in Section 5.5.

5.5.2 Parallel CPU Gradients
We use a very similar computation flow in computing parallel CPU gradients. In
computing Force 2 on the CPU, we build the quadtree serially, as this step typically
takes less than 10% of the full training time. After constructing the quadtree, we
similarly partially compute Force 2 using OpenMP to parallelize computations over
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Figure 5.3: Best viewed in color. Timing experiments comparing cpu-naive99, fmm103, cpu-
bh100 with our cpu-par-bh and gpu-bh implementations. Error bars denote 2 standard devia-
tions of time across 30 experiments.

each yi. We then compute Z and J2 via OpenMP’s parallel reduce operation, using
similar auxiliary variables as in the GPU implementation. We compute Force 1 and J1
serially; in practice, we found that using atomic additions in parallel ran slower. We
then similarly update the yi in parallel.

5.5.3 Performance Experiments
All experiments in this chapter employ a machine with 2x Intel Xeon X5570 CPUs (8
cores total, 2.93 GHz), 64GB memory, and an NVIDIA Tesla K40c graphics card. Cor-
roborated by100, fixing θ = 0.25 offers a good tradeoff between speed and accuracy. We
explore the efficiency and scalability of (1) cpu-naive: a naive CPU implementation99,
(2) cpu-bh: a serial Barnes-Hut CPU implementation100, (3) fmm: a fast multipole
method, a scheme with linear gradient time complexity, the fastest published code
available online)103, (4) cpu-par-bh: our parallel Barnes-Hut CPU implementation,
and (5) gpu-bh: our Barnes-Hut GPU implementation. All implementations run t-
SNE by setting α = 1, β = 0. fmm runs s-SNE, since code for t-SNE was not available;
timing comparisons are still valid, since the number of operations involved in comput-
ing s-SNE and t-SNE gradients are similar. In our experiments, we sample subsets of
the HIGGS dataset8, a large dataset consisting of 11M instances and 28 features (see
Section 5.6 for dataset details and visualizations); we use a perplexity of 20. Figure 5.3
summarizes our findings in a log-log plot. As expected, cpu-naive timings have a slope
of 2 while cpu-bh, gpu-bh, and fmm timings have slopes close to 1, indicating the
expected theoretical complexities.

Barnes-Hut CPU Parallel On datasets with more than 50K instances, cpu-par-
bh yields speedups of more than 3.5x over cpu-bh, approaching about half of linear
speedup; we do not attain full linear speedup, since Force 1’s computation is not par-
allelized. Corroborated by103, fmm runs substantially faster than cpu-bh (20 − 30x);
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on datasets with more than 1M instances, cpu-par-bh closes this gap to 2.5x.
Barnes-Hut GPU Parallel On datasets with more than 50K instances, gpu-bh yields

speedups of 150− 200x over cpu-bh and 55− 60x over cpu-par-bh. While FMM is 2x
faster than gpu-bh on datasets with size < 2K, gpu-bh is 5 − 10x faster on datasets
with size 20− 500K and more than 20x faster on datasets with size 1− 10M. Between
100 and 50K instances, gpu-bh has a slope smaller than 1; this happens because (i)
Force 2 (quadtree) computations dominate computation time and (ii) we are able to
process ALL data instances simultaneously on the GPU, effectively yielding O(logm)
computation time. At the 100K mark, Force 1 dominates computation times because (i)
we need to update each data instance’s gradient atomically while (ii) swapping portions
of the sparse matrix P in and out of GPU memory, causing the slope to return to 1.

5.6 Case Studies

Evaluating visualization quality is a difficult problem; in previous work, researchers
have used supervised labels in tandem with a k-nearest neighbors metric to quantita-
tively assess performance99,100,111. However, such scores may not directly translate to
“better visualization”: For example, a data-miner aspiring to explore micro, within-
class clusters in a dataset without supervised labels may assign a low score to an
embedding that perfectly separates high-level macro clusters. We now explore AB-
SNE for use in such goal-driven visualization. We strongly encourage readers to use
a computer in tandem with digital zoom set to around 400% in looking at the large
visualization in this section.

5.6.1 ILSVRC 2012: Kingdoms to Species

A subset of ImageNet, ILSVRC 201229 features a training set of 1.28M images of
varying size, validation set of 50K images, and 1000 object categories. † We employ fc7
features yielded by Alexnet60 implemented in Caffe51, trained on the 1.28M images.‡
We show a t-SNE plot of the validation set in the top-middle of Figure 5.4; we also
present plots and 2 zoom views for (α = 0.8, λ = 1) and (α = 0.95, λ = 0.98). Zoom
views present a random subset of images from the plot; displayed images were not
hand-picked. As Section 5.4 predicts, the top scatter plots show tight clusters and
greater class separation in (α = 0.95, λ = 0.98) compared with the other settings,
particularly clusters corresponding to birds, mammals, and dogs. The maroon oval in
the purple panel shows a transition between perched birds to monkeys in trees, while
the blue and orange boxes in the red panel show well-separated classes. As expected,
we found stronger intra-class clustering for (α = 0.8, λ = 1); the purple panel shows

†These classes correspond to leaves in a hierarchical tree of classes, with “entity” being the
root. For convenient visualization, we greedily group together classes with the same parent
until 11 classes remain of roughly equal cardinality (31 employ a similar method).

‡We visualize the validation set rather than the training set, because the training labels
were used to train the Caffe model, and using the training labels themselves would yield perfect
separation in visualization.
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separate clusters for hummingbirds (green), macaw parrots (yellow), toucans (orange),
flamingos (blue), chickens (red), ducks (purple), and birds in the sky (gray). Similarly,
the blue panel separately clusters dalmations (green), Bernese mountain dogs (blue),
black and brown dogs, e.g. Doberman Pinschers and German Rottweilers (orange), and
black dogs (red). In comparison, the red panel associated with (α = 0.95, λ = 0.98)
shows fewer, vague clusters with all birds (orange): chickens (red) and swans/ducks
(purple). The green panel shows fewer classes: Bernese mountain dogs (blue) and
black and brown dogs (orange).

5.6.2 HIGGS: Discovering Higgs Bosons

We return to the HIGGS dataset8, whose goal is to distinguish between signal pro-
cesses which produce Higgs bosons and background processes which do not. Each data
instance consists of 28 features: the first 21 describe kinematic properties measured
by detectors in the accelerator, while the last 7 are high-level functions of the first
21. Again, we first run t-SNE on the HIGGS dataset (bottom left of Figure 5.4). For
HIGGS and SUSY, we first initialize and optimize with 0.5M random instances. Upon
convergence, we place another 0.5M new random instances near their nearest neighbor
in the original dataset with isotropic Gaussian noise with variance 0.01. Repeating
until all points have been embedded, this produces final objectives with lower value.

Interestingly, while clustering occurs, the clusters don’t correspond to the desired
classes. Hoping that tighter global clustering will lead to more intuitive results, we set
α = 0.98 (bottom middle plot). As predicted in Section 5.4, straggling points align with
existing clusters to yield a cleaner plot. While some clusters appear to have slightly
denser concentrations of positive signals, there still is not any concrete class separation.
While we are not aware of what the resulting clusters mean, we believe that the clusters
could yield further insights.

5.6.3 SUSY: Discovering Supersymmetric Particles
Discovering evidence of supersymmetry (SUSY) constitutes a major goal in the Large
Hadron Collider’s central mission; one ramification of the theory includes the discovery
of dark matter candidate particles8. We explore the SUSY dataset8, which similarly
tries to distinguish between processes which do and do not produce supersymmetric
particles. There is currently a vigorous effort to improve performance in this classi-
fication task21,9,83,14. As with HIGGS, we found that setting α = 0.98, λ = 1 yields
a cleaner plot with greater separation than that of t-SNE. While we do not observe
perfect cluster separation, there is a distinct purple region corresponding to observed
SUSY particles. Perhaps, replicating experimental conditions leading to particles in
this region would have a higher chance of yielding SUSY particles.

5.6.4 Connections to Spectral Clustering
The SNE variations discussed and Laplacian Eigenmaps (LE), a widely used spectral
embedding method11, are closely related19. Specifically, LE optimizes the function
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JLE(E) =
∑

i,j Pij∥yi − yj∥2 where the formulation of P constitutes a design choice.
If we expand the original SNE formulation, we are asked to minimize JSNE(E) =∑

i,j Pij∥yi − yj∥2 + log
∑

k ̸=l exp(−∥xk − xl∥2). The log-exp term constitutes the
primary difference between LE and SNE methods; while the weighted least squares
term encourages nearby data vectors to lie closely together in the final embedding, the
log-exp term, coming from the denominator of Q as defined in Equation (5.1), is a
data independent term whose gradient causes the embedding points to all repel each
other19. Several comparisons demonstrate that this term substantially improves the
spacing between individual points and clusters99,19,100.

To arrive at the LE formulation, we can set ABSNE’s parameters to reflect BHSNE
and eliminate the normalization parameter in Q.3 Surprisingly, we can compute the
globally optimal solution in this case, namely the nontrivial trailing eigenvectors of
the normalized Laplacian L = D − P, where Dii = diag(

∑
iPij) and 0 elsewhere in

O(km logm + km) time11; the need to only compute the bottom few eigenvectors as
well as the Laplacian’s sparsity allows for a procedure much faster than the canonical
O(m3) time.§

5.7 Discussion

Although several works have explored varying divergences in SNE methods, this is
the first to theoretically attribute and empirically verify how divergence parameters
qualitatively affect visualization. Our analysis reveals that parameter variation in (α, β)
for the AB-divergence discovers micro and macro structures within data in a dataset-
agnostic fashion. Our well-optimized GPU implementation yields speedups of more
than 20x on datasets with 1 – 10M instances over the state of the art implementation103.
This yields the largest published SNE visualization of a dataset (11M instances).

§LE additionally introduces the constraint Y TLY = I to avoid the y’s collapsing to 0; this
isn’t necessary in the t-SNE case because of the log-exp term, which forces repulsion.
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Time: 10.4 s
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(a) Our method, revealing micro-structures (c) Our method, revealing macro-structures
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(b) t-SNE

Figure 5.4: Please use digital zoom at high levels to view details. (a - c) depict ILSVRC
2012’s micro (specific animal species) in the purple, blue panels and macro (classes under the
animal kingdom) structures in the red, green panels. As expected, macro clusters are more
widely separated in (c) than (a) and in the red, green panels than purple, blue panels. (h -
j) depict analogous structures in the HIGGS and SUSY datasets; we are searching for what
physical meaning these structures have in the Standard Model of particle physics.
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6
Conclusion

We describe an end-to-end solution that produces high-quality 3D color scans of real
world objects. In particular, our approach offers significant improvements in model
acquisition speed and quality at a budget. As the world shifts towards producing and
consuming 3D media, we believe that our approach will allow for progress in both
research and broader consumer industries. Researchers can quickly scan and produce
high-quality 3D datasets at scale; as seen in the field of computer vision with the
collection of large-scale datasets such as ImageNet29, 3D computer vision would likely
quickly advance as a field. In the broder consumer industry, content developers would
be able to rapidly scan existing objects, iterate, and use them in products: from 3D
printing to 3D gaming, the possibilities are endless.

Concretely, in this thesis, we discuss how to construct a scanning rig that with a
single button click, automatically scans an object that fits within a 1 cubic meter space.
This scanning rig addresses reconstruction issues that other techniques face, including
transparent and translucent objects, objects with concavities, and objects that lack tex-
ture. Capitalizing on the strengths of the data modalities that this rig provides for each
object, we detail an algorithm that provides high-fidelity 3D meshes of object scans.
In comparison with existing techniques, our method produces reconstructions that are
hole-free, 3D printable, and substantially more detailed. We next detail an optimization
algorithm that produces high-fidelity textures. In comparison with existing techniques,
our algorithm produces textures that are more detailed and less blurry. Ultimately, as
an example, given a Coca Cola bottle, we are able to produce a high-quality 3D color
scan; difficult features that our algorithms recover include (1) nooks and crannies in
the surface of the bottle, despite transparencies, (2) the bottle’s barcode and date of
creation, both consisting of features under 1 mm in size, (3) a detailed color map of
the overall object, despite the highly non-Lambertian nature of the object. Finally,
we detail a non-linear dimensionality reduction algorithm that allows us to intuitively
visualize large-scale high-dimensional datasets. Although this algorithm currently does
not directly have applications in 3D scanning, we anticipate that it will over the next
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decade, as 3D scanning explodes. Currently, however, our algorithm has applications
in fields ranging from computer vision to botany to particle physics.

At the time this thesis was written, the most successful reconstruction algorithms
had many moving parts and involved a fair amount of “parameter tweaking,” as with
most subfields within artificial intelligence. Indeed, many algorithms in complementing
fields often produce hard-earned incremental improvements over the state of the art
primarily via minor tunings. Every once in a while, however, a fundamentally new idea
changes the game. Once the field of 3D scanning is solved, it is difficult to not wonder
whether the final solution will be one where future generations turn through the pages
of history and wonder how we could have been so gullible.
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A
Continuity and Gradients for the

Alpha-Beta Divergence

The form of the original Alpha-Beta divergence used in this thesis, defined J (E ;α, β) =
Dαβ

AB(P∥Q), is computed as:
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where α ∈ R \ {0}, β ∈ R are hyperparameters. According to23, to account for cases
such as β = 0 and α+ β = 0 in this objective, we can re-define:
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As described in this thesis, note that we obtain the KL-divergence by setting α =
1, β = 0 and the Itakura-Saito divergence by setting α = 1, β = −1, since P and Q are
probability distributions. Given these various definitions, we would like to ensure that
the gradient described in this thesis is the same particularly for the first three cases
(namely where α ̸= 0), as these are the ones that arise in our reductions. Specifically,
we need to ensure that the gradients ∂D

(α,β)
AB (P∥Q)/∂yi all match.

Case 1: α, β ̸= 0. We have that:
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In the remainder of the cases, we set β to the appropriate value to demonstrate that
the gradients match.

Case 2: α ̸= 0, β = 0. We have that:
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Setting β = 0 in Equation (A.8), we observe that the gradients match, as desired.
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Case 3: α = −β ̸= 0. We have that:
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Setting β = −α in Equation (A.8), we again observe that the gradients match, as
desired. It follows that for all cases in this thesis that we explore, we can simply use
the gradient in Equation (A.8).
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B
ABSNE Embeddings of Various Datasets

In Figures B.1, B.2 and B.3 we showcase visualizations of datasets on which we pre-
sented some results in the main text, but did not include plots for ease in exposition.

These plots aim to show the impact of α and β on qualitative properties of the
embedding: changing λ should primarily affect global over local structure, where (i)
λ < 1 should lead to greater cluster separation while (ii) λ > 1 should lead to low
separation. Further, ABSNE should tend to produce lots of small, fine-grained clusters
for α < 1 with few global changes in visualization while α > 1 should lead to fewer,
larger clusters with more global visualization changes.

We directly use pixels for the ORL and COIL-20 vision datasets, while we compute
fc7 features yielded by Caffe’s ImageNet model51 for Caltech256. We use raw features
for the other datasets. For all datasets with over 100 dimensions, we first apply 100
dimensional PCA before computing neighborhood scores.
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α = 1.0, λ = 1.0 α = 1.2, λ = 0.95 α = 0.8, λ = 1.05

α = 1.0, λ = 1.0 α = 0.9, λ = 0.98 α = 1.05, λ = 0.95

α = 1.0, λ = 1.0 α = 1.2, λ = 1.02 α = 0.6, λ = 1.0

α = 1.0, λ = 1.0 α = 0.8, λ = 1.0 α = 1.0, λ = 0.95

Figure B.1: ABSNE visualizations for (rows from the top) ATT-Faces, Caltech256, COIL20,
Segmentation Datasets. The left column corresponds to t-SNE.

78



α = 1.0, λ = 1.0 α = 0.6, λ = 1.0 α = 1.0, λ = 0.95

α = 1.0, λ = 1.0 α = 0.6, λ = 1.0 α = 1.0, λ = 0.95

α = 1.0, λ = 1.0 α = 0.8, λ = 1.0 α = 0.95, λ = 0.98

Figure B.2: ABSNE visualizations for (rows from the top) CIFAR10, MNIST, ILSVRC2012
(validation) Datasets. The left column corresponds to t-SNE.
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α = 1.0, λ = 1.0 α = 0.6, λ = 0.98 α = 0.95, λ = 0.93

α = 1.0, λ = 1.0 α = 1.0, λ = 0.95

α = 1.0, λ = 1.0 α = 0.6, λ = 1.0

Figure B.3: BSNE visualizations for (rows from the top) WDBC, WINE, IRIS Datasets. The
left column corresponds to t-SNE. WINE and IRIS are very small datasets with clear clus-
ters, and ABSNE plots do not differ much from t-SNE.
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