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ORIGINAL INVESTIGATION

Genome‑wide analysis of mitochondrial DNA copy number reveals 
loci implicated in nucleotide metabolism, platelet activation, 
and megakaryocyte proliferation

R. J. Longchamps1 · S. Y. Yang1  · C. A. Castellani1,2 · W. Shi1 · J. Lane3 · M. L. Grove4 · T. M. Bartz5 · C. Sarnowski6 · 
C. Liu6 · K. Burrows7,8 · A. L. Guyatt9 · T. R. Gaunt7,8 · T. Kacprowski10,35 · J. Yang11 · P. L. De Jager12,13 · L. Yu11 · 
A. Bergman14 · R. Xia15 · M. Fornage15,16 · M. F. Feitosa17 · M. K. Wojczynski17 · A. T. Kraja17 · M. A. Province17 · 
N. Amin18 · F. Rivadeneira19 · H. Tiemeier18,20 · A. G. Uitterlinden18,19 · L. Broer19 · J. B. J. Van Meurs18,19 · 
C. M. Van Duijn18 · L. M. Raffield21 · L. Lange22 · S. S. Rich23 · R. N. Lemaitre24 · M. O. Goodarzi25 · C. M. Sitlani24 · 
A. C. Y. Mak26 · D. A. Bennett11 · S. Rodriguez7,8 · J. M. Murabito27 · K. L. Lunetta6 · N. Sotoodehnia28 · G. Atzmon29,31 · 
K. Ye30 · N. Barzilai31 · J. A. Brody24 · B. M. Psaty32 · K. D. Taylor33 · J. I. Rotter33 · E. Boerwinkle4,34 · N. Pankratz3 · 
D. E. Arking1

Received: 23 September 2021 / Accepted: 22 October 2021 / Published online: 2 December 2021 
© The Author(s) 2021

Abstract
Mitochondrial DNA copy number (mtDNA-CN) measured from blood specimens is a minimally invasive marker of mito-
chondrial function that exhibits both inter-individual and intercellular variation. To identify genes involved in regulating 
mitochondrial function, we performed a genome-wide association study (GWAS) in 465,809 White individuals from the 
Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank (UKB). We 
identified 133 SNPs with statistically significant, independent effects associated with mtDNA-CN across 100 loci. A combi-
nation of fine-mapping, variant annotation, and co-localization analyses was used to prioritize genes within each of the 133 
independent sites. Putative causal genes were enriched for known mitochondrial DNA depletion syndromes (p = 3.09 ×  10–15) 
and the gene ontology (GO) terms for mtDNA metabolism (p = 1.43 ×  10–8) and mtDNA replication (p = 1.2 ×  10–7). A clus-
tering approach leveraged pleiotropy between mtDNA-CN associated SNPs and 41 mtDNA-CN associated phenotypes to 
identify functional domains, revealing three distinct groups, including platelet activation, megakaryocyte proliferation, and 
mtDNA metabolism. Finally, using mitochondrial SNPs, we establish causal relationships between mitochondrial function 
and a variety of blood cell-related traits, kidney function, liver function and overall (p = 0.044) and non-cancer mortality 
(p = 6.56 ×  10–4).

Introduction

Mitochondria are the cellular organelles primarily responsi-
ble for producing the chemical energy required for metabo-
lism, as well as signaling the apoptotic process, maintain-
ing homeostasis, and synthesizing several macromolecules 
such as lipids, heme and iron-sulfur clusters (Wallace 1992; 
Vakifahmetoglu-Norberg et al. 2017). Mitochondria possess 

their own genome (mtDNA); a circular, intron-free, double-
stranded, haploid, ~ 16.6 kb maternally inherited molecule 
encoding 37 genes vital for proper mitochondrial function. 
Due to the integral role of mitochondria in cellular metabo-
lism, mitochondrial dysfunction is known to play a criti-
cal role in the underlying etiology of several aging-related 
diseases (Dai et al. 2012; Cui et al. 2012; Herst et al. 2017).

Unlike the nuclear genome, a large amount of variation 
exists in the number of copies of mtDNA present within 
cells, tissues, and individuals. The relative copy number 
of mtDNA (mtDNA-CN) has been shown to be positively 
correlated with oxidative stress (Liu et al. 2003), energy 
reserves, and mitochondrial membrane potential (Guha and 
Avadhani 2013). As a minimally invasive proxy measure 
of mitochondrial dysfunction (Malik and Czajka 2013), 
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decreased mtDNA-CN measured in blood has been previ-
ously associated with aging-related disease states including 
frailty (Ashar et al. 2015), cardiovascular disease (Ashar 
et al. 2017; Hong et al. 2020; Zhao et al. 2020), chronic 
kidney disease (Tin et al. 2016), neurodegeneration (Pyle 
et al. 2016; Wei et al. 2017), and cancer (Reznik et al. 2016).

Although mtDNA-CN measured from whole blood pre-
sents itself as an easily accessible and minimally invasive 
biomarker, cell-type composition has been shown to be an 
important confounder, complicating analyses (Hurtado-Roca 
et al. 2016; Knez et al. 2016). For example, while platelets 
generally have fewer mtDNA molecules than leukocytes, 
the lack of a platelet nuclear genome drastically skews 
mtDNA-CN estimates. As a result, not only is controlling 
for cell composition extremely vital for accurate mtDNA-CN 
estimation, interpreting the results in relation to the impact 
of cell composition becomes a necessity (Knez et al. 2016; 
Kumar et al. 2018; Urata et al. 2008).

Though the comprehensive mechanism through which 
mtDNA-CN is modulated is largely unknown (Clay Mon-
tier et al. 2009; Tang et al. 2000), twin studies have esti-
mated a broad-sense heritability of ~ 0.65, consistent with 
moderate genetic control (Xing et al. 2008). Several nuclear 
genes have been shown to directly modulate mtDNA-CN, 
specifically those within the mtDNA replication machinery 
such as the mitochondrial polymerase, POLG and POLG2 
(Carling et al. 2011; Harvey et al. 2011), as well as the mito-
chondrial DNA helicase, TWNK, and the mitochondrial 
single-stranded binding protein, mtSSB (Copeland 2014). 
It is important to note that mtDNA-CN and mitochondrial 
transcription are intertwined, as many mitochondrial fac-
tors are involved in both mitochondrial replication and tran-
scription (Clayton 2000). Furthermore, nuclear genes which 
maintain proper mitochondrial nucleotide supply including 
DGUOK and TK2 have also been shown to regulate mtDNA-
CN (Mandel et al. 2001; Wang et al. 2005; Rusecka et al. 
2018). To further elucidate the genetic control over mtDNA-
CN, several genome-wide association studies (GWAS) of 
mtDNA-CN have been published (Cai et al. 2015; Work-
alemahu et al. 2017; Guyatt et al. 2019; Hägg et al. 2020), 
including a study that was published while the current manu-
script was in preparation, analyzing ~ 300,000 participants 
from the UK Biobank (UKB), and identifying 50 independ-
ent loci (Hägg et al. 2020).

SNPs located on the mtDNA genome presumably affect 
different biological pathways solely through mitochondrial 
function. mtDNA SNPs have previously been shown to be 
associated with oxidative consumption and gene expression 
(Cohen et al. 2016; Gómez-Durán et al. 2010). Additionally, 
mtDNA-SNPs are known to associate with altered risks of 
developing many diseases, and can modulate mitochondrial 
protein translation (Marom et al. 2017; Cai et al. 2021). 
To dissect whether mitochondrial processes are causal for 

diseases associated with mtDNA-CN, we utilized mtDNA-
SNPs as a proxy for mitochondrial function.

In the present study, we report mtDNA-CN GWAS results 
from 465,809 individuals across the Cohorts for Heart and 
Aging Research in Genomic Epidemiology (CHARGE) 
consortium (Psaty et al. 2009) and the UK Biobank (UKB) 
(Bycroft et al. 2018). Using multiple gene prioritization and 
functional annotation methods, we assign genes to loci that 
reached genome-wide significance. We perform a PHEWAS 
and group our genome-wide significant SNPs into three 
clusters that represent distinct functional domains related 
to mtDNA-CN. Finally, we leverage mitochondrial SNPs 
to establish causality between mitochondrial function and 
mtDNA-CN associated traits.

Subjects and methods

Study populations

470,579 individuals participated in this GWAS, 465,809 of 
whom self-identified as White. Participants were derived 
from 7 population-based cohorts representing the Cohorts 
for Heart and Aging Research in Genetic Epidemiology 
(CHARGE) consortium (Avon Longitudinal Study of 
Parents and Children [ALSPAC], Atherosclerosis Risk in 
Communities [ARIC], Cardiovascular Health Study [CHS], 
Multi-Ethnic Study of Atherosclerosis [MESA], Religious 
Orders Study and Memory and Aging Project [ROSMAP], 
Study of Health in Pomerania [SHIP]) and from the UK 
Biobank (UKB) (Supplemental Table 1). Detailed descrip-
tions of each participating cohort, their quality control prac-
tices, study level analyses, and ethic statements are avail-
able in the Supplemental Methods. All study participants 
provided written informed consent and all centers obtained 
approval from their institutional review boards.

Methods for mitochondrial DNA copy number 
estimation (CHARGE cohorts)

qPCR

mtDNA-CN was determined using a quantitative PCR 
assay as previously described (Guyatt et al. 2019; Long-
champs et al. 2020). Briefly, the cycle threshold (Ct) value 
of a nuclear-specific and mitochondrial-specific probe were 
measured in triplicate for each sample. In CHS, a multi-
plex assay using the mitochondrial ND1 probe and nuclear 
RPPH1 probe was used, whereas ALSPAC used a mito-
chondrial probe targeting the D-Loop and a nuclear probe 
targeting B2M. In CHS, we observed plate effects, as well 
as a linear increase in ΔCt due to the pipetting order of each 
replicate. These effects were corrected in the analysis using 
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linear mixed model regression, with pipetting order included 
as a fixed effect and plate as a random effect to create a 
raw measure of mtDNA-CN prior to correcting for mtDNA-
CN associated covariates such as age and sex. In ALSPAC, 
run-to-run variability was controlled using three calibra-
tor samples added to every plate, to allow for adjustment 
by a per-plate calibration factor (Guyatt et al. 2019). CHS 
DNA was extracted by salt precipitation following protein-
ase K digestion of the buffy coat from whole blood, while 
ALSPAC DNA was extracted using a phenol–chloroform 
method (Ashar et al. 2017; Guyatt et al. 2019).

Microarray

Microarray probe intensities were used to estimate mtDNA-
CN using the Genvisis software package (MitoPipeline 
2021) as previously described (Ashar et al. 2017; Long-
champs et al. 2020). Briefly, Genvisis uses the median mito-
chondrial probe intensity across all homozygous mitochon-
drial SNPs as an initial estimate of mtDNA-CN. Technical 
artifacts such as DNA input quality, DNA input quantity, 
and hybridization efficiency were captured through either 
surrogate variable (SV) or principal component (PC) analy-
ses. SVs or PCs were adjusted for through stepwise linear 
regression by adding successive components until each suc-
cessive surrogate variable or principal component no longer 
significantly improved the model.

Whole‑genome sequencing (ARIC)

Whole-genome sequencing read counts were used to esti-
mate mtDNA-CN as previously described (Longchamps 
et al. 2020). Briefly, the total number of reads in a sample 
were web scraped from the NCBI sequence read archive. 
Mitochondrial reads were downloaded directly from dbGaP 
through Samtools (1.3.1). There was no overlap between 
ARIC microarray and ARIC whole-genome sequencing 
samples. A ratio of mitochondrial reads to total aligned reads 
was used as a raw measure of mtDNA-CN.

Adjusting for covariates

Each method described above represents a raw measure 
of mtDNA-CN, adjusted for technical artifacts; however, 
several potential confounding variables (e.g., age, sex, blood 
cell composition) have been identified previously (Knez 
et al. 2016). Raw mtDNA-CN values were adjusted for 
white blood cell count via linear regression in ARIC, SHIP 
and CHS (which also adjusted for platelet count), depend-
ing on available data. For all studies, standardized residuals 
(mean = 0, standard deviation = 1) of mtDNA-CN were used 
after adjusting for covariates (Supplemental Table 1).

Estimation of mitochondrial DNA copy number 
(UKB)

Due to the availability of more detailed cell count data, as 
well as a different underlying biochemistry for the Affym-
etrix Axiom array compared to the genotyping arrays used 
in the CHARGE cohorts, mtDNA-CN in the UKB was esti-
mated differently (Supplemental Methods). Briefly, mtDNA-
CN estimates derived from whole-exome sequencing data, 
available on ~ 50,000 individuals, were generated first using 
customized Perl scripts to aggregate the number of mapped 
sequencing reads and correct for covariates through both lin-
ear and spline regression models. Concurrently, mitochon-
drial probe intensities from the Affymetrix Axiom arrays, 
available on the full ~ 500,000 UKB cohort, were adjusted 
for technical artifacts through principal components gener-
ated from nuclear probe intensities. Probe intensities were 
then regressed onto the whole-exome sequencing mtDNA-
CN metric, and beta estimates from that regression were 
used to estimate mtDNA-CN in the full UKB cohort. Finally, 
we used a tenfold cross-validation method to select the cell 
counts to include in the final model (Supplemental Table 2). 
The final UKB mtDNA-CN metric is the standardized resid-
uals (mean = 0, standard deviation = 1) from a linear model 
adjusting for covariates (age, sex, cell counts) as described 
in the Supplemental Methods.

Genome‑wide association study

For each individual cohort, regression analysis was per-
formed with residualized mtDNA-CN as the dependent 
variable adjusting for age, sex, and cohort-specific covari-
ates (e.g., principal components, DNA collection site, family 
structure, cell composition). Cohorts with multiple mtDNA-
CN estimation platforms were stratified into separate analy-
ses. Ancestry-stratified meta-analyses were performed using 
Metasoft software using the Han and Eskin random-effects 
model to control for unobserved heterogeneity due to dif-
ferences in mtDNA-CN estimation method (Han and Eskin 
2011). Effect size estimates for SNPs were calculated using a 
random-effect meta-analysis from cohort summary statistics, 
as the Han and Eskin model relaxes the assumption under 
the null hypothesis without modifying the effect size esti-
mates that occur under the alternative hypothesis (Han and 
Eskin 2011). In total, three complementary analyses were 
performed in self-identified White individuals, (1) a meta-
analysis using all available studies, (2) a meta-analysis of 
studies with available data for cell count adjustments, and 
(3) an analysis of UKB-only data. The UKB GWAS was 
performed on all self-identified white individuals, excluding 
individuals who were cell count outliers (See Supplemental 
Methods). Relatedness was accounted for using a kinship 
matrix. As the vast majority of samples are derived from the 
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UKB study, and given the difficulty in interpreting effect size 
estimates from a random-effects model, further downstream 
analyses were all performed using effect size estimates from 
UKB-only data. We additionally performed X chromosome 
analyses using only UKB data. X-chromosome analyses 
were stratified by sex (males = 194,151, females = 216,989), 
and summary statistics were meta-analyzed using METAL 
(Willer et al. 2010) to obtain the final effect estimates (Sup-
plemental Fig. 1).

SNP heritability estimation

SNP heritability estimates were retrieved from BOLT-LMM 
(Loh et al. 2015). To verify this metric, we used SumHer 
(Speed 2019) to calculate an independent heritability metric 
using summary statistics. The heritability model used in this 
analysis was the BLD-LDAK model. The tagging file used 
is the pre-computed UK Biobank GBR version for the cor-
responding heritability model. The summary statistics were 
filtered so that only single-character reference and alternate 
alleles are allowed. Chr:BP combination duplicates were 
removed except for the first appearance. SNP heritability 
was then calculated and extracted from output files.

Identification of independent GWAS loci

To identify the initial genome-wide significant (lead) SNPs 
in each locus, the most significant SNP that passed genome-
wide significance (p < 5 ×  10–8) within a 1 Mb window was 
selected. To avoid Type I error, SNPs were only retained for 
further analyses if there were either (a) at least two genome-
wide significant SNPs in the 1 Mb window or (b) if the 
lead SNP was directly genotyped. Conditional analyses were 
performed in UKB, where the lead SNPs from the original 
GWAS were used as additional covariates to identify addi-
tional independent associations.

Comparisons with Hägg et al. 2020

To compare results with Hägg et al. (2020), summary statis-
tics were obtained from their Supplementary Table 4. Loci 
were identified as shared between the two GWAS if two 
lead SNPs were fewer than 500,000 base pairs apart from 
one another.

Fine‑mapping

The susieR package was used to identify all potential causal 
variants for each independent locus associated with mtDNA 
CN (Wang et al. 2020). UKB imputed genotype data for 
unrelated White subjects were used and variants were 
extracted using a 500 kb window around the lead SNP for 
each locus with minor allele frequency (MAF) > 0.001. 95% 

credible sets (CS) of SNPs, containing a potential causal 
variant within a locus, were generated. The minimum abso-
lute correlation within each CS is 0.5 and the scaled prior 
variance is 0.01. When the CS did not include the lead SNP 
(six out of 96 loci) identified from the GWAS, some of the 
parameters were slightly relaxed [minimum absolute cor-
relation is 0.2, estimate prior variance is TRUE]. The SNP 
with the highest posterior inclusion probability (PIP) within 
each CS was also identified (Supplemental Table 3). With a 
few exceptions, final lead SNPs were selected by prioritizing 
initially identified SNPs unless the SNP with the highest PIP 
had a PIP greater than 0.2 and was 1.75 times larger than the 
SNP with the second highest PIP.

Functional annotation and gene prioritization

Functional annotation

ANNOVAR was used for functional annotation of variants 
identified in the fine-mapping step (Wang et al. 2010). First, 
variants were converted to an ANNOVAR-ready format 
using the dbSNP version 150 database (Sherry et al. 1999). 
Then, variants were annotated with ANNOVAR using the 
RefSeq Gene database (O’Leary et al. 2016). The annota-
tion for each variant includes the associated gene and region 
(e.g., exonic, intronic, intergenic). For intergenic variants, 
ANNOVAR provides flanking genes and the distance to each 
gene. For exonic variants, annotations also include likely 
functional consequences (e.g., synonymous/nonsynony-
mous, insertion/deletion), the gene affected by the variant, 
and the amino acid sequence change (Supplemental Table 4).

Co‑localization analyses

Co-localization analyses were performed using the approxi-
mate Bayes factor method in the R package coloc (Giambar-
tolomei et al. 2014). Briefly, coloc utilizes eQTL data and 
GWAS summary statistics to evaluate the probability that 
gene expression and GWAS data share a single causal SNP 
(colocalize). Coloc returns multiple posterior probabilities; 
H0 (no causal variant), H1 (causal variant for gene expres-
sion only), H2 (causal variant for mtDNA-CN only), H3 
(two distinct causal variants), and H4 (shared causal vari-
ant for gene expression and mtDNA-CN). In the event of 
high H4, we designate the gene as causal for the GWAS 
phenotype of interest (mtDNA-CN). eQTL summary sta-
tistics were obtained from the eQTLGen database (Võsa 
et al. 2018). Genes with significant associations with lead 
SNPs were tested for co-localization using variants within a 
500 kb window of the sentinel SNP. Occasionally, some of 
the eQTLGen p values for certain SNPs were identical due 
to R’s (ver 4.0.3) limitation in handling small numbers. To 
account for this, if the absolute value for a SNP’s z-score 
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association with a gene was greater than 37.02, z-scores 
were rescaled so that the largest z-score would result in a p 
value of 5 ×  10–300. Additionally, a few clearly co-localized 
genes did not result in high H4 PPs due to the strong effect 
for each phenotype of a single SNP (Supplemental Fig. 2), 
possibly due to differences in linkage disequilibrium (LD) 
between the UKB and eQTLGen populations. To account for 
this, we summed mtDNA-CN GWAS p values and eQTL-
Gen p values for each SNP and removed the SNP with the 
lowest combined p value. Co-localization analyses were then 
repeated without the lowest SNP. Genes with H4 greater 
than 50% were classified as genes with significant evidence 
of co-localization. The fifty percent cut-off was chosen based 
on visual inspection of plots. Ultimately, functional stud-
ies are necessary to prove true causality between candidate 
genes and mtDNA-CN.

DEPICT

Gene prioritization was performed with Depict, an integra-
tive tool that incorporates gene co-regulation and GWAS 
data to identify the most likely causal gene at a given locus 
(Pers et al. 2015). Across GWAS SNPs which overlapped 
with the DEPICT database, we identified SNPs repre-
senting 119 independent loci with LD pruning defined as 
p < 5 ×  10–8, r2 < 0.05 and > 500 kb from other locus bounda-
ries. Only genes with a nominal p value of less than 0.05 
were considered for downstream prioritization.

Gene assignment

To prioritize genes for each identified locus, we utilized 
functional annotations, eQTL co-localization analyses, 
and DEPICT gene prioritization results (Supplemental 
Fig. 3). First, genes with missense variants within susieR 
fine-mapped credible sets were assigned to loci. If loci co-
localized with a gene’s expression with a posterior prob-
ability (PP) of greater than 0.50 and there were no other 
co-localized genes with a PP within 5%, the gene with the 
highest posterior probability was assigned. If there was still 
no assigned gene, the most significant DEPICT gene was 
assigned. If there was no co-localization or DEPICT evi-
dence, the nearest gene was assigned.

Gene set enrichment analyses

Using the finalized gene list from the prioritization pipe-
line, GO and KEGG pathway enrichment analyses were per-
formed using the “goana” and “kegga” functions from the R 
package limma (Smyth et al. 2021), treating all known genes 
as the background universe (Young et al. 2010). Only one 
gene per locus was used for “goana” and “kegga” gene set 
enrichment analysis, prioritizing genes assigned to primary 

independent hits. If there were multiple assigned genes, 
one gene was randomly selected to avoid biasing results 
through loci with multiple functionally related genes. To 
identify an appropriate p value cutoff, 100 genes were ran-
domly selected from the genome and run through the same 
enrichment analysis. This permutation was repeated 1000 
times to generate a null distribution of the smallest p values 
from each permutation. For cluster-specific gene set enrich-
ment analyses, permutation testing used the same number 
of random genes as the number of genes in each cluster. To 
ensure the robustness of results, gene set enrichment analy-
sis was repeated 50 times with random selection of genes 
at loci with multiple assigned genes. GO and KEGG terms 
that passed permutation cutoffs at least 40/50 times were 
retained.

Gene‑based association test

We used metaXcan, which employs gene expression predic-
tion models to evaluate associations between phenotypes and 
gene expression (Barbeira et al. 2018). We obtained pre-
calculated expression prediction models and SNP covari-
ance matrices, computed using whole blood from European 
ancestry individuals in version 7 of the Genotype-Tissue 
expression (GTEx) database (Barbeira et al. 2019). Using 
prediction performance p < 0.05, a total of 6285 genes were 
predicted. Of these genes, 74 passed Bonferroni correc-
tion of p < 7.95 ×  10–6. Gene set enrichment analyses were 
performed on Bonferroni-significant genes as previously 
described. REVIGO (Supek et al. 2011) was used on the 
“medium” setting (allowed similarity = 0.7) to visualize sig-
nificantly enriched GO terms.

We used a one-sided Fisher’s exact test to test for enrich-
ment of genes that have been previously identified as causal 
for mtDNA depletion syndromes (Stiles et al. 2016; Korn-
blum et al. 2013; El-Hattab and Scaglia 2013).

PHEWAS‑based SNP clustering

mtDNA‑CN phenome‑wide association study (PHEWAS)

We used the PHEnome Scan ANalysis Tool (PHESANT) 
(Millard et al. 2018) to identify mtDNA-CN associated 
quantitative traits in the UKB. Briefly, we tested for the asso-
ciation of mtDNA-CN with 869 quantitative traits (Supple-
mental Table 5), limiting analyses to 365,781 White, unre-
lated individuals (used.in.pca.calculation = 1). As extreme 
cell count measurements could indicate individuals with 
active infections or cancers, they were excluded from analy-
sis (see Supplemental Methods). Analyses were adjusted for 
age, sex, and assessment center.
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SNP‑phenotype associations

SNP genotypes were regressed on mtDNA-associated quan-
titative phenotypic traits using linear regression, adjusted 
for sex, age with a natural spline (df = 2), assessment center, 
genotyping array, and 40 genotyping principal components 
(provided as part of the UKB data download).

SNP clustering

To identify distinct clusters of mtDNA-CN GWS SNPs 
based on phenotypic associations, beta estimates from the 
SNP-phenotype associations were first divided by the beta 
estimate of the mtDNA-CN SNP-mtDNA-CN associa-
tion, so that all SNP-phenotype associations are relative to 
the mtDNA-CN increasing allele and scaled to the effect 
of the SNP on mtDNA-CN. The adjusted beta estimates 
were subjected to a dimensionality reduction method, Uni-
form Manifold and Approximation Projection (UMAP), 
as implemented in the R package umap (Konopka 2020) 
(random_state = 123, n_neighbors = 10, min_dist = 0.001, 
n_components = 2, n_epochs = 200). SNPs were assigned 
to clusters using Density-Based Clustering of Applications 
with Noise (DBSCAN) as implemented in the R package 
dbscan (Hahsler et al. 2019) (minPts = 10). Robustness of 
cluster assignment was established by varying n_neighors, 
min_dist, and random_state parameters. Clusters represent 
groups of SNPs with similar phenotypic associations.

Phenotype enrichment and permutation testing

To test for enrichment of individual phenotypes within clus-
ters, we compared the median mtDNA-CN scaled phenotype 
beta estimates within the cluster to the median beta estimates 
for all SNPs not in the cluster, with significance determined 
using 20,000 permutations in which cluster assignment was 
permuted. For multi-test correction across all phenotypes, 
we performed 300 permutations of the initial cluster assign-
ment, followed by the comparison of median beta estimates 
as described above. We retained only the most significant 
result from across all phenotypes and clusters from each 
of the 300 permutations, and then selected the 15th most 
significant value as the study-wide threshold for multi-test 
corrected significance of p < 0.05.

mtDNA variant association analyses

Mitochondrial variant phasing and imputation

Shapeit4 and Impute5 were used for UK Biobank mtDNA 
genotype phasing and imputation (Delaneau et al. 2019; 
Rubinacci et al. 2020). Phasing and imputation were per-
formed separately for each genotyping array (UKBB, 

UKBL), and restricted to self-identified White individuals. 
The reference panel used for imputation analysis was the 
1000 Genomes Project phase 3 mtDNA variants (Auton 
et al. 2015). UK Biobank genotypes were coded to match 
the reference panel allele. All genotype files, including the 
reference panel, were phased using Shapeit4 to fill in any 
missing genotypes using the phasing iteration sequence “10
b,1p,1b,1p,1b,1p,1b,1p,10 m”, where b is burn-in itera-
tion, p is pruning iteration, and m is main iteration. The 
–sequencing option was also used due to the presence of 
multiple mtDNA variants in a very small region, analogous 
to sequencing data.

Phased UK Biobank genotypes were then imputed with 
the reference panel using Impute5 with the following param-
eters: –pbwt-depth 8; –pbwt-cm 0.005; –no-threshold. All 
imputed variants were functionally annotated using MSe-
qDR mvTools (Shen et al. 2018).

mtSNP association tests

Linear regressions stratified by genotyping array (UKBB, 
UKBL) were performed for each mtDNA SNP on the 41 
traits and mtDNA-CN, including the following covariates: 
age,  age2, sex, center, first 20 genotyping PCs. Only SNPs 
with MAF > 0.005 and imputation INFO score > 0.80 were 
included (UKBB, n = 223; UKBL, n = 190; both, n = 149). 
Results were then meta-analyzed using inverse variance 
weighting.

Identification of independent genetic effects

Single SNP study-wide significance was established by gen-
erating 300 normally distributed dummy traits, and running 
single SNP tests using the UKBB data. The minimum SNP 
p value for each dummy trait was then selected, and the 15th 
most significant p value from the 300 analyses was divided 
by 42 (41 real traits + mtDNA-CN), resulting in a study-
wide p value threshold of P < 9.5 ×  10–6. To identify a subset 
of traits to perform credible set identification using SusieR 
(see above, Fine Mapping), SNPs were first filtered based 
on the study-wide p value threshold, and then most signifi-
cantly associated trait was identified for each SNP. SusieR, 
(parameters: L = 10, estimate_residual_variance = TRUE, 
estimate_prior_variance = TRUE, check_z = FALSE) was 
then run for each of these traits using the UKBB imputed 
data and summary association test statistics. A total of seven 
credible sets were identified across the four traits, two of 
which co-localized, resulting in six credible sets. Independ-
ence across the six credible sets was tested using multivari-
ate regression models, and requiring P < 0.0005 for at least 
one trait for a SNP to remain in the model. SNPs MT73A_G 
and MT 7028C_T were in moderate-high LD (r2 = 0.67), but 
based on conditional regression analyses as described in the 
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main results, capture independent effects and are associated 
with different traits.

Haplotype generation and analysis

Haplotype was constructed by concatenating SNPs across 
the six credible sets using SNPs directly genotyped on both 
genotyping arrays. This required selecting a SNP with a 
lower PPI for two of the six credible sets (MT12612A_G 
replaced MT462C_T, r2 = 0.81; MT10238T_C replaced 
MT4529A_T, r2 = 0.89). Haplotypes with MAF < 0.005 
were set to missing (n = 1607), resulting in eight haplo-
types, with the most common haplotype set as reference. 
Significance for haplotype associations with each trait was 
generated by an anova between regression models with and 
without the haplotypes. Covariates included age,  age2, sex, 
center, first 40 genotyping PCs, and genotyping array.

Mortality analyses were run using Cox proportional 
hazards models, with covariates as above. Individuals with 
external causes of death (ICD 10 Death Code categories V, 
W, X, Y) were censored at the time of death. Additionally, 
for non-cancer mortality analyses, cancer death (ICD 10 
Death Code categories C00-D48) was censored. For cancer 
mortality analyses, all death due to non-cancer cases were 
censored at the time of death.

Clustering for visualization was performed using the 
R package ‘heatmaply’, with default setting and hclust_
method = ”ward.D2”.

All statistical analyses were performed using R version 
4.0.3.

Results

Sample characteristics

The current study included 465,809 White individuals 
(53.9% female) with an average age of 56.6 yrs (sd = 8.2 
yrs) (Supplemental Table 1). Follow-up validation analyses 
were performed in 4770 Black individuals (60.2% female) 
with an average age of 61.2 yrs (sd = 7.4 yrs). The major-
ity of the data originated from the UKB (93%). The bulk 
of the DNA used for mtDNA-CN estimation was derived 
from the buffy coat (95.5%) while the rest was derived from 
peripheral leukocytes (2.2%), whole blood (2.3%), or brain 
(< 0.2%). mtDNA-CN estimated from Affymetrix genotyp-
ing arrays consisted of 97.9% of the data while the remain-
der was derived from qPCR (1.8%) and WGS (0.3%).

GWAS reveals 97 loci that are significantly 
associated with mtDNA‑CN

Previous work has demonstrated that the method used to 
measure mtDNA-CN can impact the strength of association 

(Longchamps et al. 2020). To account for potential dif-
ferences across studies due to the different mtDNA-CN 
measurements used, as well as the inclusion of blood 
cell counts as covariates in only a subset of the cohorts, 
we took two approaches. First, we used a random-effects 
model to perform meta-analyses, allowing for different 
genetic effect size estimates across cohorts. Second, we 
performed  three  complementary analyses in individu-
als who self-identified as White: (1) meta-analysis of all 
available studies (n = 465,809); (2) meta-analysis of studies 
with available data for cell count adjustment (n = 456,151); 
and (3) GWAS of UKB only, adjusting for age, sex, and 
cell counts (n = 440,266) (Fig. 1). 77 loci were significant 
in all three meta-analyses, and we identified 93 independent 
loci that were significant in at least one of the analyses. In 
the meta-analysis of UKB-only data, 92 of the total 93 loci 
were identified (Supplemental Fig. 4). Given that > 90% of 
the samples come from the UKB study, and the challenge 
of interpreting effect size estimates from a random-effects 
model, downstream analyses all use effect size estimates 
from the UKB only analyses (Supplemental Table 6), which 
showed no evidence for population substructure inflating 
test statistics, with a genomic inflation factor of 1.09 (Sup-
plemental Fig. 5). mtDNA-CN in the UKB dataset was 
significantly associated with known covariates such as age 
(p < 2 ×  10–16) and sex (p < 2 ×  10–16) in the expected direc-
tions, with older individuals having lower mtDNA-CN, and 
females having higher mtDNA-CN. SNP heritability esti-
mated from BOLT-LMM (Loh et al. 2015) for mtDNA-CN 
adjusted for age and sex was 10.5% while heritability for 
mtDNA-CN adjusted for age, sex, and cell counts was 7.4%, 
implying that some of the mtDNA-CN heritability observed 
in previous studies could be due to heritability of cell-type 
composition. We also used SumHer (Speed 2019) as an 
alternative approach to calculating SNP heritability, which 
returned a comparable estimate of 7.0% for the cell-count 
corrected mtDNA-CN metric.

The most significant SNP associated with mtDNA-CN 
was a missense mutation in LONP1 (p = 3.00 ×  10–141), a 
gene that encodes a mitochondrial protease that can directly 
bind mtDNA, and has been shown to regulate TFAM, a tran-
scription factor involved in mtDNA replication and tran-
scription (for review see Gibellini et al.) (Gibellini et al. 
2020).

Meta-analysis of the sex-stratified X chromosome results 
identified four loci significantly associated with mtDNA-CN, 
with directionality consistent across the male and female 
stratified analyses (Supplemental Table 7). We note that 
there are similar results for the significant autosomal results, 
with effect sizes being highly concordant between sexes save 
for a single rare variant (MAF < 0.005), whose sex interac-
tion p value does not pass multi-test correction (p = 0.003, 
Supplemental Fig. 6).
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Fine‑mapping and secondary hits uncover multiple 
independent signals within loci

To identify additional independent SNPs within novel loci 
whose effects were masked by the original significant SNP, 
as well as identify additional loci, we took two approaches. 
First, a conditional analysis adjusting for the top 93 SNPs 
from the initial (primary) GWAS run revealed three novel 
loci and 19 additional independent significant SNPs within 
existing loci. We also performed fine-mapping with susieR 
(Wang et al. 2020) and discovered an additional 14 inde-
pendent SNPs within existing loci. The majority of loci had 
only one 95% credible set of SNPs; further, twenty of the 
credible sets contained only one SNP. However, many of the 
credible sets contained greater than 50 SNPs after fine-map-
ping, and 12 of the 122 credible sets had a missense SNP 
as the SNP with the highest PIP in the set. Using these two 
methods, we identified in total 129 independent SNPs across 
96 autosomal loci (Supplemental Fig. 7), while susieR fine-
mapping and conditional analyses for the X-chromosome 
loci did not reveal any additional secondary signals.

Replication of previously identified signals 
and discovery of additional GWS signals

Out of the 50 loci reported in Hägg et  al. 2020 (Hägg 
et al. 2020), we replicate 38 loci in our cell-count adjusted 

analyses (Supplemental Table 8). As the two GWASs both 
use UK Biobank data, this replication is unsurprising. Out 
of the 12 loci that were not genome-wide significant in our 
cell-count adjusted analyses, 11 were significant when we 
did not adjust our mtDNA-CN metric for cell counts, sug-
gesting that cell-type composition may be driving these sig-
nals. The current manuscript also reports 62 additional loci 
that are not in the Hägg et al. 2020 study. This is likely due 
to increased power, as the sample size used for the current 
analyses is nearly twice as large.

Associations in Black populations show concordance 
between nuclear genetic effects

Examining the 129 autosomal SNPs from the Whites-
only analysis, 99 were available in the Black individuals-
only meta-analysis (n = 4770). After multiple testing cor-
rections, one of these SNPs was significant (rs73349121, 
p = 0.0001), 9 were nominally significant (p < 0.05, with 
5 expected), and 58/99 had a direction of effect that was 
consistent with the Whites-only analyses (one-sided 
p = 0.04, Fig. 2). Despite being under-powered, these 
results in the Black individuals-only analyses provide 
evidence for similar nuclear genetic effects in a differ-
ent ancestry group. As African mtDNA haplogroups 
are substantially different from those of Europeans, we 
additionally examined associations between haplogroups 

Fig. 1  Manhattan plot of GWS loci from UKB-only analyses. Manhattan plot showing genome-wide significant loci for the UK Biobank-only 
analyses
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and mtDNA-CN. While none of the associations achieve 
genome-wide significance, 3/10 haplogroups are signifi-
cant at P < 0.05, and 2 are significant after Bonferroni 
correction for the number of haplogroups tested (Sup-
plemental Table 9).

Significant enrichment of mtDNA depletion 
syndrome genes after gene prioritization

We integrated results from three different gene prioriti-
zation and functional annotation methods (ANNOVAR 
(Wang et  al. 2010), COLOC (Giambartolomei et  al. 
2014), and DEPICT (Pers et al. 2015)) so that loci with 
nonsynonymous variants in gene exons were prioritized 
first, with eQTL co-localization results considered sec-
ond (Supplemental Table 10), and those from DEPICT 
(Supplemental Table 11) were considered last (Supple-
mental Fig. 3). For 20 loci, multiple genes were assigned 
as analyses could not identify a single priority gene (Sup-
plemental Table 12). As eQTLGen did not evaluate X 
chromosome variants and none of the credible sets con-
tained missense variants, the four X-chromosome loci 
were assigned to the nearest gene.

We noted the identification of a number of mtDNA 
depletion syndrome genes in the priority list and tested 
for enrichment of these known causal genes using a one-
sided Fisher’s exact test. For this analysis, all genes for 
loci assigned to multiple genes were used, and genes for 
all primary and secondary loci were considered. Our gene 
prioritization approach identified seven of 16 mtDNA 
depletion genes (Supplemental Table 13), consistent with a 
highly significant enrichment (one-sided p = 3.09 ×  10–15).

Gene set enrichment analyses show significant 
enrichment of mitochondria‑related terms

To avoid bias from a single locus with multiple functionally 
related genes contributing to a false-positive signal, only one 
gene per unique locus was used, prioritizing genes assigned to 
primary loci. For loci with multiple assigned genes, one gene 
was randomly selected for testing. To test for the robustness of 
gene set enrichment results, random selection was repeated 50 
times, and only gene sets that were significantly enriched for 
at least 40 iterations were retained. In all, a total of 100 genes 
were utilized for GO term and KEGG pathway enrichment 
analyses. Using a Bonferroni-corrected p-value cutoff, 12 gene 
sets were significantly enriched for all 50 iterations, including 
mitochondrial nucleoid, mitochondrial DNA replication, and 
amyloid-beta clearance (Supplemental Table 14). No KEGG 
terms were significant across multiple iterations.

Predicted gene expression for multiple 
mitochondrial genes is associated with GWS 
mtDNA‑CN SNPs

As a complementary approach to single-SNP analyses, we 
explored the associations between mtDNA-CN and pre-
dicted gene expression using MetaXcan (Barbeira et  al. 
2018). MetaXcan incorporates multiple SNPs within a locus 
along with a reference eQTL dataset to generate predicted 
gene expression levels. As our study estimated mtDNA-CN 
derived from blood, we used whole blood gene expression 
eQTLs from the Gene-Tissue Expression (GTEx) consortium 
(GTEx Consortium 2013) to predict gene expression in the 
UKB dataset. We identified 6285 genes that had a predicted 
performance p-value of less than 0.05 (i.e., they had sufficient 

Fig. 2  Scatterplot displaying 
effect size estimates between 
White/Black individuals GWAS 
results for the 129 autosomal 
SNPs identified in the Whites 
analyses. Scatterplot showing a 
comparison between effect size 
estimates for White and Black 
individuals. Color represents 
significance of effect for each 
locus in Black individuals 
GWAS analyses
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data to generate robust gene expression levels) and were tested 
for association with mtDNA-CN. Of these genes, 74 were 
significantly associated with mtDNA-CN (p < 7.95 ×  10–6) 
(Fig. 3, Supplemental Table 15), including eight that were 
not identified through single-SNP analyses. Many of the sig-
nificant genes have known mitochondrial functions, notably 
the mtDNA transcription factor TFAM (p = 1.09 ×  10–29) and 
mitochondrial exonuclease MGME1 (p = 5.87 ×  10–23), genes 
known as causal for mtDNA depletion syndromes (Stiles et al. 
2016; Kornblum et al. 2013). Additionally, LONP1, MRPL43, 
and BAK1, are all genes with known mitochondrial functions 
(Liu et al. 2004; Sharma et al. 2003; Shimizu et al. 1999). 
Bonferroni significant MetaXcan genes were used for gene 
enrichment analysis, finding enrichment for “nucleobase met-
abolic process” (p = 1.47 ×  10–4) and “mitochondrial fusion” 
(p = 1.86 ×  10–4) (Supplemental Fig. 7).

PHEWAS‑based SNP clustering and gene set 
enrichment uncover 3 sets of SNPs mapping 
to distinct biological pathways

mtDNA-CN is associated with numerous quantitative 
and qualitative phenotypes, many of which are relevant 

to aging-related disease (Dai et al. 2012; Cui et al. 2012; 
Herst et al. 2017; Ashar et al. 2015, 2017; Tin et al. 2016; 
Pyle et al. 2016; Wei et al. 2017; Reznik et al. 2016). We 
hypothesized that this pleiotropy may reflect different 
underlying functional domains captured by mtDNA-CN, 
and may be reflected in GWAS-identified SNPs and their 
likely causal genes. To test this hypothesis, we used the 
UKB data to identify quantitative traits associated with 
mtDNA-CN and selected 41 highly significant, non-
redundant traits to test for association with the mtDNA-CN 
GWAS SNPs (Supplemental Table 5, in PHEWAS = 1). We 
clustered SNPs using the trait effect size (beta) divided 
by the mtDNA-CN effect size estimate so that all effects 
are standardized to the effect of the mtDNA-CN increas-
ing allele for each locus. We identified 3 clusters of SNPs 
(Supplemental Table 16, Fig. 4A), with cluster 1 contain-
ing SNPs in which the mtDNA-CN increasing allele is 
associated with decreased platelet count (PLT) (Fig. 4B), 
increased mean platelet volume (MPV) (Fig. 4C), and 
platelet distribution width (PDW) (Fig. 4D), consistent 
with a role in platelet activation (Vagdatli et al. 2010). 
Cluster 2 is most strongly enriched for SNPs in which 
the mtDNA-CN increasing allele is associated with 

Fig. 3  Volcano plot of genes whose predicted gene expression is sig-
nificantly associated with mtDNA-CN. Volcano plot showing genes 
whose predicted gene expression is significantly associated with 
mtDNA-CN. Red indicates positive associations, blue indicates nega-

tive associations. Three genes (ARRDC1, EHMT1, PNPLA7) had 
extreme effect size estimates greater than 0.3 but were non-significant 
and removed from the plot for readability
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increased PLT, plateletcrit (PCT, a measure of total plate-
let mass), serum calcium (Fig. 4E), serum phosphate, as 
well as decreased mean corpuscular volume (MCV) and 
mean spherical cellular volume (Fig. 4F) (Supplemental 
Table 17). The cluster 2 phenotypes implicate megakaryo-
cyte proliferation and proplatelet formation in addition to 
apoptosis and autophagy, and are supported by the genes 
identified for this cluster (megakaryocyte proliferation and 
proplatelet formation: MYB, JAK2 (PathCards : Factors 
involved in megakaryocyte development and platelet pro-
duction Pathway and related pathways. xxxx), apoptosis 
and autophagy: BAK1, BCL2, TYMP) (PathCards : Apop-
tosis and Autophagy Pathway and related pathways. xxxx). 
Gene set enrichment analysis confirmed this, as cluster 
2 genes are significantly enriched for extrinsic apoptosis 
signaling pathways in the absence of ligand (Supplemental 
Table 18). Cluster 3 did not yield any specific trait enrich-
ment (all significant results reflected the strong enrichment 
observed in clusters 1–2); however, gene set enrichment 
for this cluster identified multiple mtDNA-related gene 
ontology terms, including mitochondrial DNA replica-
tion, gamma DNA polymerase complex, and mitochondrial 
nucleoid (Supplemental Table 19).

Determination of causal associations 
between mitochondrial function and mtDNA‑CN 
associated traits using mitochondrial SNPs

The extensive pleiotropy and limited variance explained of 
nuclear DNA SNPs associated with mtDNA-CN (< 1% of 

the variance in mtDNA-CN explained by GWS loci when 
predicted into the ARIC cohort) precludes the use of tradi-
tional Mendelian randomization (MR) approaches to estab-
lish causality between mtDNA-CN and the 41 identified 
mtDNA-CN associated traits. As an alternative approach, 
we examined the association of mitochondrial SNPs with 
mtDNA-CN and the 41 traits, under the assumption that 
these SNPs can only act through alteration of mitochondrial 
function, and thus a significant association implies causality. 
Imputation and analyses of mitochondrial SNPs were run 
stratified by genotyping array (see Methods), and then meta-
analyzed using inverse-variance weighting. After multi-test 
correction (P < 9.5 ×  10–6), we identified 45 SNPs associated 
with one or more of the traits, ranging from 1 to 6 traits 
per SNP. To identify independent effects, we first identified 
the most significantly associated trait for each SNP, high-
lighting four traits (aspartate aminotransferase, creatinine, 
MCV, PCT) in which to run susieR to identify independent 
credible sets. We identified six independent effects across 
the four traits, with MCV credible set 4 and platelet cred-
ible set 1 representing the same effect. We note that two 
of the SNPs are in moderately high LD (MT73A_G and 
MT7028C_T, r2 = 0.67), however, conditional analyses dem-
onstrate that MT73A_G is associated with creatinine, and 
not MCV, and the reverse is seen for MT7028C_T (Supple-
mental Table 20). Leveraging the haploid nature of the mito-
chondrial genome, we selected the directly genotyped SNP 
with the highest PIP from each credible set (Supplemental 
Table 21), and identified eight haplotypes with MAF > 0.005 
(Supplemental Table 22). As haplotypes indicate regions of 

Fig. 4  PHEWAS-based clustering of mtDNA-CN associated SNPs. 
UMAP clusters created from PHEWAS associations for mtDNA-
CN associated SNPs. A Three clusters were identified  as labeled in 
the panel; orange  indicates no cluster. B–F SNPs are colored based 

on their effect estimate size,  standardized  to the effect on mtDNA-
CN (red = positive, blue = negative estimates), for B platelet count, C 
mean platelet volume, D platelet distribution width, E serum calcium 
levels, F mean spherical cellular volume
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the mitochondrial genome that are in linkage disequilibrium, 
some of them may be captured by ancestral haplogroups 
(Supplemental Table 23). For example, nearly all the indi-
viduals in haplotype 1 belong to haplogroup N1. As a direct 
test of whether haplogroup explains the observed associa-
tion, we included haplogroup as a covariate in the regression 
model for MCV, and demonstrate that while somewhat atten-
uated, haplotype is still highly significant (P < 1.3 × 10–10 
vs. P < 7.2 × 10–27). Comparing linear regression models 
with and without the haplotypes in the model, we identify 14 
traits nominally associated (p < 0.05), and nine traits signifi-
cantly associated after Bonferroni correction, with mtDNA 
genetic variation (Supplemental Table 24, Fig. 5). These 
results causally implicate mitochondrial function in a vari-
ety of cell-related traits (MCV, MSCV, MPV, PCT, Platelet), 
kidney function (creatinine), liver function (aspartate and 
alanine aminotransferases) and mtDNA-CN.

Association of mitochondrial haplotypes 
with mortality

We have previously shown that mtDNA-CN is associated 
with overall mortality (Ashar et al. 2015). As above, we 
collectively tested the mitochondrial haplotypes for asso-
ciation with mortality not due to external causes (e.g., no 
accidents, falls, see Methods; n = 24,622, median follow-
up time = 4318 days), and found a nominally significant 
association with overall mortality (p = 0.044, Supplemental 
Table 25). Given the conflicting reports between increased 
mtDNA-CN and both increased and decreased cancer risk 
(Reznik et al. 2016; Yuan et al. 2020; Mizumachi et al. 
2008), we looked separately at cancer (n = 13,231) and 

non-cancer mortality (n = 11,391). While there was no 
association between mitochondrial haplotypes and cancer 
mortality (p = 0.74), we saw a highly significant association 
with non-cancer mortality (p = 6.56 ×  10–4).

Discussion

We conducted a GWAS for mtDNA-CN using 465,809 indi-
viduals from the CHARGE consortium and the UKB. We 
report 133 independent signals originating from 100 loci, 
the majority of which were not identified in previous stud-
ies. Examining our GWS SNPs in a Black population, we 
observed a concordant signal, suggesting that the nuclear 
genetic etiology of mtDNA-CN may be broadly similar 
across populations. Using several functional follow-up meth-
ods, genes were assigned for each identified independent hit 
and significant enrichment was observed for genes involved 
in mitochondrial DNA metabolism, homeostasis, cell activa-
tion, and amyloid-beta clearance. In total, we assigned 128 
unique genes to independent GWAS signals associated with 
mtDNA-CN. We also identified eight additional genes whose 
predicted gene expression is associated with mtDNA-CN 
that could not be mapped back to GWS loci. Finally, using a 
clustering approach based on SNP associations with various 
mtDNA-CN associated phenotypes, we were able to func-
tionally categorize SNPs, providing insight into biological 
pathways that impact mtDNA-CN.

We note that during the preparation of this manuscript, a 
GWAS for mtDNA-CN performed in 295,150 unrelated indi-
viduals from the UK Biobank was published, which reported 
50 genome-wide significant regions (Hägg et al. 2020). 

7.5e-08

0.41

0.21

8.5e-07

0.055

0.23

3.2e-05

2.3e-08

0.00024

0.43

0.048

0.32

0.11

0.29

2.1e-11

2.7e-10

0.44

0.15

0.52

0.03

0.55

0.003

0.00039

0.29

0.91

0.92

0.0097

0.26

0.57

0.38

0.47

0.035

0.78

0.57

3.1e-14

0.14

0.22

0.15

0.0043

0.57

0.75

7.3e-06

0.0027

0.027

0.0031

7.8e-07

6.1e-05

0.31

0.82

3.5e-09

7.4e-08

6.1e-07

9.9e-05

0.79

0.61

0.31

9.9e-18

9.4e-13

1.6e-10

1.4e-05

1

0.18

0.4

cre
at
ini
ne MP

V
PC
T

PL
T

as
pa
rta

te

ala
nin

e

m
tD
NA

_C
N

MS
CV MC

V

Haplo_0_0_2_2_0_2

Haplo_0_0_2_0_2_0

Haplo_0_0_2_0_2_2

Haplo_0_0_2_2_2_2

Haplo_0_2_2_2_2_2

Haplo_2_0_2_2_2_2

Haplo_0_0_0_2_2_2

-4

0

4

8

Fig. 5  Associations between mtDNA-CN associated phenotypes 
and mitochondrial haplotypes. Mitochondrial haplotypes are signifi-
cantly associated with mtDNA-CN associated traits, implying causal 

relationships between mitochondrial function and traits of interest. 
Haplotypes are notated in the following format: MT73_MT7028_
MT10238_ MT12612_MT13617_MT15257



139Human Genetics (2022) 141:127–146 

1 3

Within our GWAS, we replicate 38 of these 50 genome-
wide significant loci in our cell count corrected analyses. An 
additional 11 out of the remaining 12 loci are genome-wide 
significant when we do not adjust mtDNA-CN for cell count. 
While Hagg et al adjust for cell-type composition, this dif-
ference suggests that their adjustment may not be fully cap-
turing the effects of cell counts. Additionally, our analyses 
report 59 additional loci that are not observed in the previous 
paper, largely due to the increased power of our study.

We were able to identify a substantial proportion of 
the genes involved in mtDNA depletion syndromes (7/16, 
p = 3.09 ×  10–15 for enrichment), including TWNK, TFAM, 
DGUOK, MGME1, RRM2B, TYMP, and POLG. mtDNA 
depletion syndromes can be broken down into 5 subtypes 
based on their constellation of phenotypes (Basel 2020), and 
with the exception of cardiomyopathic subtypes (associated 
with mutations in AGK and SLC25A4), we were able to 
identify at least one gene from the other four subtypes, sug-
gesting that our mtDNA-CN measurement in blood-derived 
DNA can identify genes widely relevant to non-blood phe-
notypes. This finding is consistent with a large body of work 
showing that mtDNA-CN measured in blood is associated 
with numerous aging-related phenotypes for which the pri-
mary tissue of interest is not blood (e.g. chronic kidney dis-
ease (Tin et al. 2016), heart failure (Hong et al. 2020), and 
diabetes (DeBarmore et al. 2020)). Also consistent with this 
finding is recent work demonstrating that mtDNA-CN meas-
ured in blood is associated with mtRNA expression across 
numerous non-blood tissues, suggesting a link between 
mitochondrial activity measured in blood and other tissues 
(Yang et al. 2021). However, vascular dysfunction is com-
mon to these different diseases, and it is important to note 
that mtDNA-CN in blood could have a direct effect on dis-
ease etiology, rather than simply serving as a reflection of 
mtDNA-CN in primary disease tissues.

In addition to identifying the mtDNA depletion syndrome 
genes directly linked to mitochondrial DNA metabolic pro-
cesses, DNA replication, and genome maintenance, we also 
identify genes which play a role in mitochondrial function. 
The top GWAS hit is a missense mutation in LONP1, which 
encodes a mitochondrial protease that has been shown to 
cause mitochondrial cytopathy and reduced respiratory chain 
activity (Hannah-Shmouni et al. 2019; Grainha et al. 2018). 
Interestingly, this missense mutation was recently found to 
be associated with mitochondrial tRNA methylation levels 
(Ali et al. 2020). Additional genes known to impact mito-
chondrial function include MFN1, which encodes a mediator 
of mitochondrial fusion (Schrepfer and Scorrano 2016; Ishi-
hara et al. 2004), STMP1, which plays a role in mitochon-
drial respiration (Zhang et al. 2012), and MRPS35, which 
encodes a ribosomal protein involved in protein synthesis in 
the mitochondrion (Cavdar Koc et al. 2001; Márquez-Jurado 
et al. 2018).

Using a combination of gene-based tests and gene pri-
oritization using functional annotation we assigned genes 
to identified signals. However, a caveat is that these com-
putational predictions must be functionally validated in a 
biological system to definitively assign underlying responsi-
ble genes. After assigning genes using the specified criteria, 
pathway analyses reveal enrichment for numerous mitochon-
drial related pathways, as well as those involved in the regu-
lation of cell differentiation (p < 1.08 ×  10–5), homeostatic 
processes (p < 3.77 ×  10–6), and cellular response to stress 
(p < 3.49 ×  10–6) (Supplemental Table 13). These results pro-
vide additional evidence for the broad role played by mito-
chondria in numerous aspects of cellular function. Of par-
ticular interest, the GO term for amyloid beta is significantly 
enriched, reinforcing a link between mtDNA-CN and neu-
rodegenerative disease (Dölle et al. 2016; Chen et al. 2019; 
Pinto and Moraes 2014). Previous work from our lab using 
the UKB has shown that higher mtDNA-CN is associated 
with lower rates of prevalent neurodegenerative disease, and 
is predictive of decreased risk of incident neurodegenerative 
disease (Yang et al. 2021). mtDNA-CN is also known to be 
decreased in the frontal cortex of Alzheimer’s disease (AD) 
patients (Rodríguez-Santiago et al. 2001). Interestingly, 
the four GWAS-identified genes driving the enrichment for 
amyloid-beta clearance are all related to the regulation of 
lipid levels, and lipid homeostasis within the brain is known 
to play an important role in Alzheimer’s disease (Chew et al. 
2020). APOE, one of the most well-known risk genes for 
Alzheimer’s disease, is a cholesterol carrier involved in 
lipid transport, and the ApoE-ɛ4 isoform involved in AD 
pathogenesis is associated with mitochondrial dysfunction 
and oxidative distress in the human brain (Yin et al. 2020); 
CD36 is a platelet glycoprotein which mediates the response 
to amyloid-beta accumulation (Khoury et al. 2003); LDLR 
is a low-density lipoprotein receptor associated with AD 
(Lämsä et al. 2008); and ABCA7 is a phospholipid trans-
porter (Tomioka et al. 2017). ABCA7 loss of function vari-
ants are enriched in both AD and Parkinson’s disease (PD) 
patients (Nuytemans et al. 2016), suggesting a broad role 
across neurodegenerative diseases.

Given the integral role of mitochondria in cellular func-
tion, from ATP formation and energy production, signaling 
through reactive oxygen species, and apoptosis mediation, 
there is a strong basis to a priori assume that genetic variants 
associated with mtDNA-CN are likely to be highly pleio-
tropic. It has also been shown that mtDNA variants them-
selves are pleiotropic and are capable of affecting oxidative 
phosphorylation and gene expression (Cohen et al. 2016; 
Gómez-Durán et al. 2010; Marom et al. 2017). MtDNA-CN 
itself is associated with numerous phenotypes, suggesting 
that multiple biological pathways are involved in mtDNA-
CN control (Supplemental Table 5). Through our PHEWAS-
based clustering approach using 41 mtDNA-CN associated 
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phenotypes, we uncovered phenotypic associations between 
three distinct clusters of GWS mtDNA-CN associated SNPs. 
Cluster 1 was characterized by increased MPV, PDW, and 
decreased PLT (note that measured MPV and PLT are gener-
ally inversely correlated to maintain hemostasis), which are 
the hallmarks of platelet activation (Vagdatli et al. 2010). 
The link between platelets and mtDNA-CN has typically 
revolved around platelet count, as platelets have functional 
mitochondria, but do not have a nucleus. Given that the 
mtDNA-CN measurement is the ratio between mtDNA and 
nuclear DNA, increased platelets, all else being equal, would 
directly equate with increased mtDNA-CN. We note that 
the mtDNA-CN metric used in this GWAS was adjusted for 
platelet count, likely increasing the ability to detect variants 
that impact mtDNA-CN through increased platelet activa-
tion. Examining the genes within this cluster suggests roles 
for actin formation and regulation (TPM4, PACSIN2) (Cra-
bos et al. 1991; Kostan et al. 2014) and vesicular transport 
and endocytic trafficking (DNM3, EHD3) (Sever 2002; Cai 
et al. 2013) in platelet activation.

Cluster 2 is most strongly enriched for SNPs in which the 
mtDNA-CN increasing allele is associated with increased 
PLT/PCT and serum calcium/phosphate. Examining the 
genes assigned to the cluster, we implicate megakaryocyte 
proliferation and proplatelet formation (MYB, JAK2) (Path-
Cards : Factors involved in megakaryocyte development and 
platelet production Pathway and related pathways. xxxx), 
and apoptosis and autophagy (BAK1, BCL2, TYMP) (Path-
Cards : Apoptosis and Autophagy Pathway and related path-
ways. xxxx). Megakaryocytes are used to form proplatelets, 
and the process includes an important role for both intra- and 
extracellular calcium levels (Buduo et al. 2014). A role for 
apoptosis, and specifically BCL2, in proplatelet formation 
and platelet release has been suggested (Botton et al. 2002; 
Josefsson et al. 2011), however, work in mice has suggested 
that apoptosis does not play a direct role in these processes 
(Josefsson et al. 2014). Nevertheless, apoptosis is important 
for platelet lifespan (McArthur et al. 2018).

Cluster 3 was particularly challenging to interpret, given 
that no particular phenotype was enriched relative to the 
non-cluster 3 SNPs. We note that this cluster appeared to 
be enriched for the mtDNA depletion syndrome genes, con-
taining 6/7 genes identified in the GWAS, and significantly 
enriched for GO Terms related mitochondrial DNA. Addi-
tionally, genes in cluster 3 were significantly enriched for 
low-density lipoprotein particle binding, suggesting a role 
for lipid homeostasis. Closer inspection of cluster 3 genes 
reveals a number of genes known to be associated with lipid 
levels (LIPC, CETP, LDLR, APOE). While lipids play a 
role in both energy metabolism (largely through fatty acids) 
and cellular membrane formation, a link to mtDNA-CN 
and/or mitochondrial function is not well-established. One 
potentially interesting result is provided by Olkowicz and 

colleagues, who demonstrated that  ApoE−/−/LDLR−/− mice 
had increased cardiac mitochondrial oxidative metabolism, 
with proteomic analysis suggesting increased mitochondrial 
abundance in mouse hearts (Olkowicz et al. 2021). How-
ever, we note that our results show an association between 
decreased lipids and increased mtDNA-CN, rather than the 
reverse, shown in the Olkowicz study.

A strong rationale for the study of mtDNA-CN is the 
underlying assumption that it reflects mitochondrial function 
and is readily measured, often from existing data. A serious 
complication to the interpretation of the role of mitochon-
drial function in various traits has been use of blood-derived 
measurements, which can be confounded by differences in 
cell counts across individuals. Mendelian randomization has 
been widely used to infer causality between traits (e.g. LDL 
and CAD) (Linsel-Nitschke et al. 2008), but is only robust 
under conditions of little to no pleiotropy (Lawlor et al. 
2008) and its power is a function of variance explained. For 
mtDNA-CN, the extensive pleiotropy and small amount of 
variance explained of GWS variants (< 1%) prevents the use 
of traditional MR approaches. As an alternative approach, 
we analyzed associations between mitochondrial DNA 
variants and mtDNA-CN-associated phenotypes. Presum-
ably, variants located on the mitochondrial genome are only 
able to modify phenotypes through modulating mitochon-
drial function, allowing for causal inference. Our analyses 
revealed significant relationships between mitochondrial 
variants and creatinine, aspartate aminotransferase, MCV, 
and PCT. Creatinine and aspartate aminotransferase are 
markers of kidney and liver function respectively, and sup-
porting these findings, mtDNA-CN has been linked to both 
chronic kidney disease (Tin et al. 2016) and non-alcoholic 
fatty liver disease (Sookoian et al. 2010). We also find a 
highly significant association between mitochondrial varia-
tion and non-cancer mortality, adding evidence for a causal 
relationship to previous findings showing mtDNA-CN is 
associated with all-cause mortality (Ashar et al. 2015).

Several limitations should be noted. First, despite the 
large sample size and numerous loci identified, we are likely 
missing a great deal of the true signal, as our SNP herit-
ability estimates through SumHer and BOLT-LMM were 
7.0% and 7.4% respectively, while previous studies have 
estimated mtDNA-CN heritability to be 65% (Xing et al. 
2008). Second, while we have adjusted our mtDNA-CN met-
ric for a variety of confounders, it is important to note that 
mtDNA-CN can be influenced by a variety of environmen-
tal factors including smoking (Vyas et al. 2020) and drugs, 
which have not been adjusted for in these analyses. Moreo-
ver, mtDNA-CN is not a direct reflection of mitochondrial 
function, which can confound interpretation. Finally, for 
analyses involving mitochondrial SNPs, since much of the 
mitochondrial genome is in LD, the selected mitochondrial 
SNPs may be in LD with the true causal SNP.
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In summary, we performed the largest-to-date GWAS 
for mtDNA-CN, including almost 500,000 individuals. We 
identified three distinct groups of SNPs associated with 
mtDNA-CN that are related to platelet activation, mega-
karyocyte formation and apoptotic processes, and showed 
clear enrichment for genes involved in mtDNA depletion 
and nucleotide regulation. Additionally, we find that mito-
chondrial variants are significantly associated with creati-
nine, aspartate aminotransferase, MCV, and PCT, implying 
a causal relationship between mitochondrial function and 
these phenotypes. Finally, we provide strong evidence that 
mitochondrial function is causal for non-cancer mortality. 
Given the role of mtDNA-CN, and, by proxy, mitochon-
drial function in aging-related disease, this work begins to 
unravel the many varied underlying mechanisms through 
which mitochondrial function impacts human health.
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