
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Kernel methods for deep learning

Permalink
https://escholarship.org/uc/item/9dr6q1w8

Author
Cho, Youngmin

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9dr6q1w8
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Kernel Methods for Deep Learning

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Youngmin Cho

Committee in charge:

Professor Lawrence Saul, Chair
Professor Garrison Cottrell
Professor Sanjoy Dasgupta
Professor Gert Lanckriet
Professor Nuno Vasconcelos

2012

Copyright

Youngmin Cho, 2012

All rights reserved.

The dissertation of Youngmin Cho is approved, and it is

acceptable in quality and form for publication on micro-

film and electronically:

Chair

University of California, San Diego

2012

iii

DEDICATION

To my loving wife, Nuree.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Figures . vii

List of Tables . xi

Acknowledgements . xii

Vita . xiii

Abstract of the Dissertation . xiv

Chapter 1 Introduction . 1
1.1 Supervised Learning . 2
1.2 Main Idea . 9
1.3 Organization . 12

Chapter 2 Arc-cosine Kernels . 13
2.1 Kernels From Neural Networks 13

2.1.1 Basic Properties 13
2.1.2 Computation in Single-layer Threshold Networks . 16

2.2 Experimental Results . 20
2.2.1 Data Sets . 20
2.2.2 Methodology . 23
2.2.3 Results . 23

2.3 Discussion . 25

Chapter 3 Variations in Activation Functions 27
3.1 Introduction . 27
3.2 Activation Functions . 28

3.2.1 Fractional Order Polynomial Threshold Functions 28
3.2.2 Biased Threshold Functions 29
3.2.3 Smoothed Threshold Functions 32

3.3 Experimental Results . 33
3.4 Discussion . 34

v

Chapter 4 Combination of Arc-cosine Kernels 36
4.1 Introduction . 36
4.2 Combinations of Kernels 37

4.2.1 Kernel Composition 37
4.2.2 Kernel Multiplication 41
4.2.3 Kernel Averaging 42

4.3 Experimental Results . 43
4.3.1 Kernel Composition 43
4.3.2 Kernel Multiplication 49
4.3.3 Kernel Averaging 53

4.4 Discussion . 54

Chapter 5 Multilayer Kernel Machines 56
5.1 Introduction . 56
5.2 Principles of Multilayer Kernel Machines 57

5.2.1 Main Idea . 57
5.2.2 Comparison with Multilayer Arc-cosine Kernels . 58
5.2.3 Implementation 60

5.3 Experimental Results . 62
5.4 Discussion . 64

Chapter 6 Analysis of Arc-cosine Kernels with Differential Geometry . . 66
6.1 Introduction . 66
6.2 Analysis . 67

6.2.1 Riemannian Geometry 68
6.2.2 Non-analytic Kernels 72

6.3 Kernel Geometry and Probabilistic Modeling 74
6.3.1 Jacobians for Deep Learning 74
6.3.2 From Linear to Nonlinear ICA 75

6.4 Discussion . 77

Chapter 7 Conclusion . 79
7.1 Contributions . 79
7.2 Future Work . 81

Appendix A Derivation of Kernel Function 84

Appendix B Derivation of Kernel with Biased Threshold Functions 88

Appendix C Derivation of Kernel with Smoothed Threshold Functions . . . 91

Appendix D Derivation of Riemannian Metric 93

Bibliography . 97

vi

LIST OF FIGURES

Figure 1.1: A decision hyperplane w · x− b = 0 from a support vector ma-
chines for binary classification (red circles versus blue squares).
We optimize w and b to maximize the distance 2

‖w‖ between the
two dotted hyperplanes. 5

Figure 1.2: Classification in support vector machines with nonlinear kernels.
Left : it is impossible to find a linear hyperplane separating in-
put data space into two classes (red circles versus blue squares).
Right : it is easy to find a decision boundary (the yellow hyper-
plane) in high dimensional feature space after the mapping Φ(·)
induced by nonlinear kernels. 6

Figure 1.3: Multilayer neural networks. An input example x ∈ Rd is trans-
formed to the output t ∈ [0, 1] through multiple layers of lin-
ear mappings Wi and an elementwise sigmoid function σ(z) =

1
1+e−z

. Intermediate hidden representations are denoted as hi
and bias terms are bi. 8

Figure 2.1: Form of Jn(θ) in eq. (2.4) for arc-cosine kernels with different
values of n. The function Jn(θ) takes its maximum value at
θ = 0 and decays monotonically to zero at θ=π for all values
of n. However, note the different behaviors for small θ. 15

Figure 2.2: A single-layer threshold network where x ∈ Rd is transformed
to f ∈ Rm by a nonlinear mapping. 16

Figure 2.3: Nonlinear activation functions gn(z) in eq. (2.9) for different
values of n = 0, 1, and 2. 17

Figure 2.4: Examples from the first six data sets in Table 2.1 represented as
28 × 28 grayscale images (LeCun and Cortes, 1998; Larochelle
et al., 2007). 22

Figure 3.1: Nonlinear activation functions for new arc-cosine kernels. Left :
fractional order polynomial function with degree n=−0.25 in
eq. (2.9). Middle: biased threshold function Θ(z−b) with bias
b. Right : smoothed threshold function Ψσ(z) in eq. (3.14). . . . 28

Figure 3.2: Various forms of the nonlinear activation functions gn(z) in
eq. (2.9) for different values of n = −0.25, 0, 0.5, 1, 1.5, and 2
in order from left to right. 28

Figure 3.3: Behavior of the function Jn(θ) in eq. (2.4) including the case of
n=−0.25. 29

Figure 3.4: A triangle formed by the input data vectors x, y, and their
difference x− y. 31

Figure 3.5: Classification error rates on the MNIST data set using arc-
cosine kernels with fractional degrees n (horizontal axis). 33

vii

Figure 4.1: RBF kernels and their composition form as a function of ‖x−y‖.
The original RBF kernel with the kernel width λ = 2 (red curve)
and its composition form (green) show little difference when
‖x−y‖ becomes large compared to λ. Also note that the latter
can be approximated well with the original form of an RBF ker-
nel with a different kernel width λ = 7 (blue), which means the
kernel composition is less likely to induce qualitatively different
forms of kernels. 38

Figure 4.2: Arc-cosine kernels with degree n=0 and their composition forms
(up to three levels) as a function of θ. In contrast to the RBF
kernel in Figure 4.1, new arc-cosine kernels by kernel composi-
tion exhibit qualitatively different behavior. 39

Figure 4.3: Multilayer neural networks modeled by the composition of arc-
cosine kernels. Note that different nonlinear mappings (i.e.,
kernels) can be used at different layers. 40

Figure 4.4: Multilayer neural networks modeled by the kernel multiplica-
tion. Φn,m means the mth feature induced by the arc-cosine
kernel with degree n. Different colors in the intermediate layers
encode different nonlinear mappings induced by the correspond-
ing kernels. 41

Figure 4.5: Multilayer neural networks modeled by the kernel averaging.
The nonlinear mappings (i.e., kernels) at different layers of the
multilayer kernel (top) are concatenated as a single feature rep-
resentation (bottom) via kernel averaging. 42

Figure 4.6: Test error rates on the MNIST data set from SVMs with mul-
tilayer arc-cosine kernels. The figure shows results for kernels
of varying degrees (n) and numbers of layers (`). In one set of
experiments, the multi-layer kernels were constructed by com-
posing arc-cosine kernels of the same degree. In another set of
experiments, only arc-cosine kernels of degree n= 1 were used
at higher layers; the figure indicates degrees using the notation
in eq. (4.10). The error rate from the configuration that per-
formed best on held-out set is displayed. The best comparable
result is 1.22% from SVMs using polynomial kernels of degree
9 (Decoste and Schölkopf, 2002). See text for details. 44

Figure 4.7: Classification error rates on the Rectangles-image data set. SVMs
with arc-cosine kernels have error rates from 22.36–25.64%. Re-
sults are shown for kernels of varying degrees (n) and numbers of
layers (`). The best previous results are 24.04% for SVMs with
RBF kernels and 22.50% for deep belief nets (Larochelle et al.,
2007). The error rate from the configuration that performed
best on held-out set is displayed. See text for details. 45

viii

Figure 4.8: Classification error rates on the Convex data set. SVMs with
arc-cosine kernels have error rates from 17.15–20.51%. Results
are shown for kernels of varying degrees (n) and numbers of
layers (`). The best previous results are 19.13% for SVMs with
RBF kernels and 18.63% for deep belief nets (Larochelle et al.,
2007). The error rate from the configuration that performed
best on held-out set is displayed. See text for details. 46

Figure 4.9: Classification error rates on the MNIST-rand data set. SVMs
with arc-cosine kernels have error rates from 16.14–21.27%. Re-
sults are shown for kernels of varying degrees (n) and numbers of
layers (`). The best previous results are 14.58% for SVMs with
RBF kernels and 6.73% for deep belief nets (Larochelle et al.,
2007). The error rate from the configuration that performed
best on held-out set is displayed. See text for details. 47

Figure 4.10: Classification error rates on the MNIST-image data set. SVMs
with arc-cosine kernels have error rates from 23.03–27.58%. Re-
sults are shown for kernels of varying degrees (n) and numbers of
layers (`). The best previous results are 22.61% for SVMs with
RBF kernels and 16.31% for deep belief nets (Larochelle et al.,
2007). The error rate from the configuration that performed
best on held-out set is displayed. See text for details. 48

Figure 4.11: Test error rates on the MNIST data set from SVMs with prod-
uct arc-cosine kernels. The figure shows results for kernels of
varying degrees (n) and numbers of factors (m). In one set
of experiments, the product kernels were constructed by multi-
plying arc-cosine kernels of the same degree. In another set of
experiments, only arc-cosine kernels of degree n= 0 were used
as new factors. Other formatting details follow Figure 4.6. . . 50

Figure 4.12: Classification error rates on the Rectangles-image (top) and
Convex (bottom) data sets with product arc-cosine kernels. Re-
sults are shown for kernels of varying degrees (n) and numbers
of factors (m). The error rate from the configuration that per-
formed best on held-out set is displayed. 51

Figure 4.13: Classification error rates on the MNIST-rand (top) and MNIST-
image (bottom) data sets with product arc-cosine kernels. Same
format as Figure 4.12. 52

Figure 4.14: Behavior of the function Jn(θ) in eq. (2.4) including the case of
multiplying by certain powers of the arc-cosine kernel of degree
n=0. 53

ix

Figure 5.1: Main concept in multilayer kernel machines (MKMs). Input
data X (upper left) are transformed sequentially by supervised
feature selection, arc-cosine kernel, and unsupervised dimen-
sionality reduction. This cycle is repeated multiple times to
construct an MKM. 57

Figure 5.2: Comparison between (a) multilayer arc-cosine kernels and (b)
multilayer kernel machines (MKMs). As in multilayer arc-cosine
kernels, MKMs use arc-cosine kernels Φ(·) repeatedly to build a
kernel hierarchy. In MKMs, however, irrelevant features (dotted
circles) are pruned at every layer, and the dimensionality of
data is reduced by Ψ(·) (shaded circles) at every layer except
the original input layer. For the final classification layer, MKMs
can use any general classifiers, not necessarily SVMs. 59

Figure 5.3: Training procedures for multilayer kernel machines. See text for
details. 60

Figure 5.4: Classification error rates on the MNIST-rand data set for MKMs
with different kernels and numbers of layers. The notation n1–
n2–. . . –nL in the horizontal axis means an MKM whose ith
layer uses the arc-cosine kernel of degree ni, while “LMNN”
corresponds to the result of using LMNN with feature selection
only (but without arc-cosine kernels or kernel PCA). MKMs
with arc-cosine kernel have error rates from 6.13–7.69%. The
error rate from the configuration that performed best on held-
out set is displayed. The best previous results are 14.58% for
SVMs with RBF kernels (not shown) and 6.73% for deep belief
nets (Larochelle et al., 2007). See text for details. 63

Figure 5.5: Classification error rates on the MNIST-image data set for MKMs
with different kernels and numbers of layers. Same horizontal
axis as Figure 5.4. MKMs with arc-cosine kernel have error rates
from 17.91–23.50%. The error rate from the configuration that
performed best on held-out set is displayed. The best previous
results are 22.61% for SVMs with RBF kernels and 16.31% for
deep belief nets (Larochelle et al., 2007). See text for details. . 64

Figure 6.1: The kernel function induces a mapping from the input space into
a nonlinear feature space. We can study the geometry of this
surface in feature space—for example, asking how arc lengths
and volume elements transform under this mapping. 67

x

LIST OF TABLES

Table 2.1: Data set specifications: the number of training, validation, and
test examples, input dimensionality, and the number of classes. . 21

Table 2.2: Classification error rates (%) on test sets from SVMs with various
kernels. The first three kernels are arc-cosine kernels of degree
n= 0, 1, and 2. The best performing kernel for each data set is
marked in bold. When different, the best performing arc-cosine
kernel is marked in italics. See text for details. 24

Table 3.1: Classification error rates (%) on test sets from SVMs with various
kernels. The first three kernels are the arc-cosine kernel of degree
n=0 and the variations on this kernel described in sections 3.2.2
and 3.2.3. The best performing kernel for each data set is marked
in bold. When different, the best performing arc-cosine kernel is
marked in italics. See text for details. 34

Table 6.1: Comparison of the metric gµν and scalar curvature S for different
kernels over inputs x ∈ Rd. The results for polynomial (the
second row) and RBF kernels (the third row) were derived by
Burges (1999). The results for arc-cosine kernels (the bottom
row) are valid for kernels of order n ≥ 1. 70

xi

ACKNOWLEDGEMENTS

First, I would like to express my deep gratitude to my advisor Prof. Lawrence

Saul. Without his amazing guidance and support, I could not come this far. I also

appreciate the suggestions and comments from my committee members: Prof.

Garrison Cottrell, Prof. Sanjoy Dasgupta, Prof. Gert Lanckriet, and Prof. Nuno

Vasconcelos. They helped me to improve the quality of this thesis.

I am very grateful to Dr. Andrew Senior and Dr. Jason Weston for giving

me the opportunity to work with them as a summer intern at Google. Special

gratitude is also extended to the Samsung Scholarship Foundation for the financial

support during my doctoral study. Many thanks are also due to my lab mates and

friends for sharing ideas and concerns.

I am deeply indebted to my parents and my family for their continued

support. Finally, I would like to offer my sincere thanks to my wife Nuree and my

daughters Seren and Dana for giving me the strength to pursue my dream.

Parts of this thesis are reprints of the papers coauthored with Lawrence

Saul. Chapters 1, 2, and 4 are based on “Large margin classification in infinite

neural networks” by Cho, Y. and Saul, L. K. as it appears in Cho and Saul (2010).

Chapters 1, 2, 4, and 5 is based on “Kernel methods for deep learning” by Cho, Y.

and Saul, L. K. as it appears in Cho and Saul (2009). Chapters 1, 3, and 6 are based

on “Analysis and extension of arc-cosine kernels for large margin classification” by

Cho, Y. and Saul, L. K. as in appears in Cho and Saul (2012). The thesis author

was the primary investigator and author of these work.

xii

VITA

2001 B. S. in Computer Science and Engineering summa cum laude,
Seoul National University, Republic of Korea

2012 Ph. D. in Computer Science, University of California, San
Diego

PUBLICATIONS

Cho, Y. and Saul, L. K. (2012). Analysis and extension of arc-cosine kernels
for large margin classification. Technical Report CS2012-0972, Department of
Computer Science and Engineering, University of California, San Diego.

Senior, A., Cho, Y., and Weston, J. (2012). Learning improved linear transforms
for speech recognition. In Proceedings of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP-12), to appear.

Cho, Y. and Saul, L. K. (2010). Large margin classification in infinite neural
networks. Neural Computation, 22(10):2678–2697.

Hu, D. J., van der Maaten, L., Cho, Y., Saul, L. K., and Lerner, S. (2010). Latent
variable models for predicting file dependencies in large-scale software develop-
ment. In Lafferty, J., Williams, C. K. I., Shawe-Taylor, J., Zemel, R., and Culotta,
A., editors, Advances in Neural Information Processing Systems 23, pages 865–873.

Cho, Y. and Saul, L. K. (2009). Kernel methods for deep learning. In Bengio, Y.,
Schuurmans, D., Lafferty, J., Williams, C., and Culotta, A., editors, Advances in
Neural Information Processing Systems 22, pages 342–350, Cambridge, MA. MIT
Press.

Cho, Y. and Saul, L. K. (2009). Learning dictionaries of stable autoregressive
models for audio scene analysis. In Proceedings of the Twenty Sixth International
Conference on Machine Learning (ICML-09), pages 169–176.

Cho, Y. and Saul, L. K. (2009). Sparse decomposition of mixed audio signals by
basis pursuit with autoregressive models. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing (ICASSP-09), pages 1705–
1708.

xiii

ABSTRACT OF THE DISSERTATION

Kernel Methods for Deep Learning

by

Youngmin Cho

Doctor of Philosophy in Computer Science

University of California, San Diego, 2012

Professor Lawrence Saul, Chair

We introduce a new family of positive-definite kernels that mimic the com-

putation in large neural networks. We derive the different members of this family

by considering neural networks with different activation functions. Using these

kernels as building blocks, we also show how to construct other positive-definite

kernels by operations such as composition, multiplication, and averaging. We ex-

plore the use of these kernels in standard models of supervised learning, such as

support vector machines for large margin classification, as well as in new models

of unsupervised learning based on deep architectures. On several problems, we

obtain better results than previous, leading benchmarks from both support vector

machines with Gaussian kernels as well as deep belief nets. Finally, we examine

xiv

the properties of these kernels by analyzing the geometry of surfaces that they

induce in Hilbert space.

xv

Chapter 1

Introduction

Machine learning is a field of study that aims to design and implement

algorithms that enable machines to learn from examples. The resulting algorithms

allow us to recognize patterns in the data, extract knowledge from them, and

make predictions for new, unseen examples. Given the limited number of training

examples and also restricted computational resources, the key issue in machine

learning is how to cope with complex variabilities in the data efficiently.

Machine learning has been applied to various areas including, but never

limited to: object recognition (identification of patterns that exclusively belong

to a particular class of images), information extraction (extraction of structured

knowledge from unstructured data such as documents on the Internet), recommen-

dation systems (prediction of preference scores for unrated items for a particular

user given the user profile and item properties), and so on.

Typically, machine learning models contain parameters to fit the data and

thus they are often formulated as parameter optimization problems. This model fit-

ting has two scenarios that should be avoided—overfitting and underfitting. Over-

fitting occurs when the training data are not enough but the learning models are

unnecessarily complex. As a result, the models even fit to irrelevant details of

training examples and fail to generalize beyond them. In contrast, underfitting

occurs when the models do not have enough capacities to cover the variabilities in

the examples and again, fail to generalize to test data. Hence, to strike a balance

between these two extremes is an important challenge for machine learning.

1

2

1.1 Supervised Learning

Supervised learning is a machine learning scheme where statistical models

are trained with input examples and their target labels. In supervised learning,

we are typically provided with a training set of N examples {(xn, yn)}Nn=1 where

xn ∈ Rd is the nth data point and yn is its label which is either a real number

(regression) or a categorical value (classification). The goal of supervised learning

is to learn a statistical model from labeled examples so that it can generalize to

unseen examples and predict their labels correctly.

Linear Models (and Their Limitations)

A simple yet effective way to achieve this goal is to use linear models. Con-

sider the task of spam detection that can be formulated as a binary classification

problem (spam versus regular). In linear classification models, we predict the label

of an example x ∈ Rd by first multiplying the weight wi to each dimension xi of

the input, summing d such factors, and finally testing its sign:

t = sign

(
d∑
i=1

wixi

)
, (1.1)

where the positive sign means spam. The linear weights w = (w1, w2, . . . , wd)

correspond to the parameters of the model that we learn from training data. For

the case of classification, w defines a linear decision hyperplane.

Though linear models are efficient and also easy to analyze, they have seri-

ous limitations in practice (Bishop, 2006). Particularly, many real data sets reside

in nonlinear spaces. For the example of binary classification, we cannot expect lin-

ear decision boundaries to separate two classes without much error in such spaces.

It is possible to expand the input space by adding nonlinear features Φ(x) ex-

plicitly and to learn the linear weights for the resulting representation; however,

this often increases the input dimensionality too much, leading to a problematic

situation known as the curse of dimensionality (Bellman, 1961).

More specifically, this phenomenon means we will need exponentially more

3

data points to cover the input space even when its dimensionality increases linearly.

As a result, supervised learning algorithms have more risk of overfitting to (com-

paratively) small number of examples in high-dimensional space. For instance,

there exist many linear decision boundaries for perfect classification of training

examples when the input dimensionality exceeds the number of training examples;

however, all of these boundaries do not necessarily generalize well to unseen exam-

ples. Another problem with such increased dimensionality is the cost of learning

and prediction—it takes more computational resources to process the data.

There have been various efforts to overcome such limitations of linear mod-

els. A support vector machine (SVM) is a linear classifier that avoids overfitting in

high-dimensional space by a robust decision hyperplane (Boser et al., 1992; Cortes

and Vapnik, 1995; Schölkopf and Smola, 2001). It relies on the concept of “mar-

gin” between the binary classes and seeks a decision boundary that maximizes

it (more details follow later). Interestingly, analyses from computational learning

theory prove that margin maximization is an effective way to minimize the risk

of overfitting (Vapnik, 1998). Besides such desirable property, SVMs are easily

extended to nonlinear models by implicitly incorporating nonlinear features into

data representation through kernels.

Neural networks (or deep learning) are another interesting learning ap-

proaches to address the problems of linear models. They transform inputs through

multiple layers of nonlinear processing and most importantly, such nonlinearity is

in parametric forms so that they can be adapted to each data sets through training.

This is in contrast to other generalized linear models (including SVMs) that ob-

tain nonlinear features through fixed operations such as basis expansion or kernels.

Due to such adaptability, neural networks can focus only on regions of input space

where important variations happen and thus provide compact nonlinear models

without unnecessary feature expansion. (But this is achieved at the cost of more

difficult training procedures.)

Finally, an orthogonal approach to these (non-)linear supervised methods is

unsupervised learning. In unsupervised learning, we focus on capturing important

patterns from data regardless of their labels. It is usually carried out in the form

4

of dimensionality reduction or feature extraction, and these methods are beneficial

to supervised models in general. Particularly, unsupervised learning reduces the

input dimensionality of data without losing crucial information and alleviates the

curse of dimensionality. It also regularizes supervised models to concentrate their

modeling capacities on relatively small regions of input space without overfitting

to noisy details. Since it is much easier to acquire unlabeled examples compared

with labeled ones, unsupervised learning will be even more useful in practice.

In this thesis, we combine the ideas from this discussion and propose a

novel nonlinear supervised model. We first begin with reviewing kernel methods

and deep architectures as follows.

Kernel Methods

Kernel methods provide a powerful framework for pattern analysis and clas-

sification (Boser et al., 1992; Cortes and Vapnik, 1995; Schölkopf and Smola, 2001).

Intuitively, the so-called “kernel trick” works by mapping inputs x into a nonlin-

ear, potentially infinite-dimensional feature space Φ(x) (Aizerman et al., 1964),

then applying classical linear methods in this space. The mapping is induced by a

kernel function k(·, ·) that operates on pairs of inputs and computes a generalized

inner product:

k(x,y) = Φ(x) ·Φ(y). (1.2)

Typically, the kernel function measures some highly nonlinear or domain-specific

notion of similarity.

This general approach has been particularly successful for problems in clas-

sification, where kernel methods are most often used in conjunction with support

vector machines (SVMs) (Boser et al., 1992; Cortes and Vapnik, 1995; Cristianini

and Shawe-Taylor, 2000). The SVM is a linear classifier that predicts binary labels

of input examples based on projection of the examples into a decision hyperplane.

In particular, we seek the decision boundary where the margin between the binary

classes is maximized. Figure 1.1 illustrates the main idea.

More concretely, consider a binary classification data set of N examples

{(xi, yi)}Ni=1 where xi ∈ Rd is the ith data point and yi ∈ {−1, 1} is its label.

5

w

Figure 1.1: A decision hyperplane w · x− b = 0 from a support vector machines
for binary classification (red circles versus blue squares). We optimize w and b to
maximize the distance 2

‖w‖ between the two dotted hyperplanes.

Then, the linear decision boundary for an input example x is described as

w · x− b = 0, (1.3)

where w is the weight vector and b is the offset. In SVMs, we require the deci-

sion hyperplane to separate the positively and negatively labeled examples by the

largest possible margin. Particularly, we formulate this idea as new constraints on

the hyperplane:

yi (w · xi − b) ≥ 1, (1.4)

which means positive (yi=1) and negative (yi=−1) examples should be separated

further from the decision boundary1. Figure 1.1 explains this idea for examples

in R2, where positive data points (red circles) are located above the hyperplane

w · x − b = 1 and negative data points (blue squares) are located below the

hyperplane w · x− b = −1.

For large margin classification, we attempt to maximize the distance 2
‖w‖

between these two hyperplanes, which is eventually formulated as the following

1In practice, there may not exist a linear hyperplane that perfectly separates the binary classes
without errors. Soft margin support vector machines address this issue by introducing a slack
variable ξi ≥ 0 to relax each constraint: yi (w · xi − b) ≥ 1 − ξi (Cortes and Vapnik, 1995). We
use soft margin SVMs for experiments in this thesis.

6

x Φ(x)

Figure 1.2: Classification in support vector machines with nonlinear kernels. Left :
it is impossible to find a linear hyperplane separating input data space into two
classes (red circles versus blue squares). Right : it is easy to find a decision bound-
ary (the yellow hyperplane) in high dimensional feature space after the mapping
Φ(·) induced by nonlinear kernels.

constrained minimization problem:

min
w,b

1

2
‖w‖2

subject to yi (w · xi − b) ≥ 1 ∀i ∈ {1, 2, . . . , N}
(1.5)

This convex optimization problem can be solved efficiently (Fan et al.,

2008), but we are interested in the dual form of the problem as well:

max
α

N∑
i=1

αi −
1

2

∑
i,j

αiαjyiyj xi · xj

subject to αi ≥ 0 ∀i ∈ {1, 2, . . . , N},
N∑
i=1

αiyi = 0,

(1.6)

where the dual variable α is related to the solution of eq. (1.5) by w =
∑N

i=1 αiyixi.

Most important point in this dual representation is we can replace the inner prod-

uct xi · xj in the objective with a nonlinear kernel k(xi,xj) = Φ(xi) ·Φ(xj). This

makes it possible to use SVMs in nonlinear feature space where it is easier to find

a linear decision boundary due to the high dimensionality of the space. Figure 1.2

7

illustrates this point. The required optimization in eq. (1.6) is a convex problem

in quadratic programming, and we can obtain the global optimum very efficiently

using specialized solvers (Platt, 1998). Finally, note that theoretical analyses of

SVMs have also succeeded in relating the margin of classification to their expected

generalization error. These computational and statistical properties of SVMs ac-

count in large part for their many empirical successes.

Deep Learning

Notwithstanding these successes of kernel methods and SVMs, however,

recent work in machine learning has highlighted various circumstances that appear

to favor deep architectures, such as multilayer neural networks and deep belief

networks, over shallow architectures such as SVMs (Bengio and LeCun, 2007).

Deep architectures learn complex mappings by transforming their inputs

through multiple layers of nonlinear processing (Hinton et al., 2006). Figure 1.3

shows a multilayer neural network that transforms an input example x ∈ Rd to

the output t ∈ [0, 1] for binary classification of the example. Each layer defines

nonlinear transformation of inputs through the combination of linear mapping and

nonlinear activation functions. For example, the original input vector x is first

linearly mapped by a weight matrix W1; then, a bias term b1 is added; finally,

sigmoid activation function2 is applied elementwise:

h1 = σ(W1x + b1) where σ(z) =
1

1 + e−z
. (1.7)

The resulting vector h1 (called hidden units) is then fed to the next layer as inputs,

and the same procedure is repeated multiple times. At the final layer, the output

is a prediction score between 0 and 1 for the binary label of the input example x.

We formulate this model as an optimization problem with respect to the

parameters W = {Wi,bi}4i=1, which correspond to all the linear weights and the

bias terms in the network. Since the task is binary classification, we use the cross-

entropy loss to measure the performance of the model. More specifically, for a data

2There are other types of nonlinear activation functions such as tanh(z) = ez−e−z

ez+e−z .

8

...

...

...

...

Figure 1.3: Multilayer neural networks. An input example x ∈ Rd is transformed
to the output t ∈ [0, 1] through multiple layers of linear mappings Wi and an
elementwise sigmoid function σ(z) = 1

1+e−z
. Intermediate hidden representations

are denoted as hi and bias terms are bi.

set of N examples {(xi, yi)}Ni=1 where xi ∈ Rd is the ith example and yi ∈ {0, 1} is

its label, the optimization problem is defined as:

min
W

−
N∑
i=1

[yi log ti + (1− yi) log(1− ti)] , (1.8)

where ti is the prediction of the model for xi as described in Figure 1.3.

The loss function in eq. (1.8) is not convex with respect to W, and thus we

are not guaranteed to find its global minimum (in contrast to the support vector

machines in eq. (1.5)). As a result, gradient-based algorithms have been the main

tools for the minimization of the objective, and especially (stochastic) gradient de-

scent has been favored for its efficiency and simplicity. The error backpropagation

algorithm (Rumelhart et al., 1986) is an efficient implementation of the gradient

descent for multilayer neural networks.

Multilayer neural networks have also inspired development of other deep

architectures. For example, deep belief nets (Hinton et al., 2006) are probabilistic

9

generative models that are constructed as layers of restricted Boltzmann machines.

With unsupervised pre-training of the networks, they start from advantageous

initial points for optimization of the weight parameters by the subsequent back-

propagation algorithm. Stacked denoising autoencoders (Vincent et al., 2008) are

another variant of multilayer neural networks where each layer is an autoencoder

that extracts important features from inputs by minimizing the reconstruction er-

ror for the inputs. Similar to deep belief nets, each layer is trained in turn for

pre-training of the weights. Finally, convolutional neural networks (LeCun et al.,

1998; Ranzato et al., 2007) are special types of multilayer neural networks that

exploit spatial correlation between features (e.g., image pixels). They repeat con-

volution and feature pooling stages multiple times to construct meaningful feature

hierarchies.

Researchers have advanced a number of different motivations for deep ar-

chitectures: the wide range of functions that can be parameterized by composing

weakly nonlinear transformations, the appeal of hierarchical distributed represen-

tations, and the potential for combining methods in unsupervised and supervised

learning. Experiments have also shown the benefits of deep learning in several

interesting applications including dimensionality reduction (Hinton and Salakhut-

dinov, 2006), computer vision (Ranzato et al., 2007), and natural language pro-

cessing (Collobert and Weston, 2008).

1.2 Main Idea

Many issues surround the ongoing debate over deep versus shallow architec-

tures (Bengio and LeCun, 2007; Bengio, 2009). Deep architectures are generally

more difficult to train than shallow ones. They involve highly nonlinear optimiza-

tions and many heuristics for gradient-based learning, which do not guarantee

global optimal solutions due to the non-convexity of the optimization problem.

These challenges of deep learning explain the early and continued appeal of SVMs.

Unlike deep architectures, SVMs are trained by solving a problem in convex op-

timization. On the other hand, SVMs are seemingly unequipped to discover the

10

rich internal representations of multilayer neural networks.

Like many, we are intrigued by the successes of deep architectures yet drawn

to the elegance of kernel methods. In this thesis, we develop and explore a new con-

nection between these two different approaches to statistical learning. Specifically,

we begin with introducing a new family of positive-definite kernels called arc-cosine

kernels that mimic the computation in large neural networks with a single layer of

hidden units. They mimic this computation in the following sense: given a large

neural network with Gaussian-distributed weights, and the multidimensional non-

linear outputs of such a neural network from inputs x and y, we derive a kernel

function k(x,y) that approximates the inner product computed directly between

the outputs of the neural network. Put another way, we show that the nonlinear

feature spaces induced by these kernels encode internal representations similar to

those of single-layer neural networks.

Our work then extends the arc-cosine kernels with different activation func-

tions. The original arc-cosine kernels are derived by considering the mappings

in neural networks with Heaviside step functions. We derive three new kernels

with general one-sided polynomial activation functions, shifted Heaviside step

functions, and sigmoidal activation functions respectively. These modifications

are inspired by similar counterparts in conventional neural networks. They pro-

vide new hyperparameters—the polynomial growth rate, the amount of shift or

smoothing—that can be tuned to improve the performance of the corresponding

kernels.

We also show how to extend the family of arc-cosine kernels via combina-

tions of individual members of the family. We use kernel composition, multiplica-

tion, and averaging to build more complex kernels. These operations yield more

interesting results when they are applied to arc-cosine kernels than polynomial or

Gaussian kernels. These new kernels can be interpreted as interesting forms of

computations in multilayer neural networks. In particular, kernels from the com-

position of arc-cosine kernels mimic the computation in large multilayer neural

networks and thus are called as multilayer kernels. We evaluate these kernels in

support vector machines for large margin classification. In experiments on data

11

sets from a deep learning benchmark (Larochelle et al., 2007), we obtain competi-

tive results compared to state-of-the-art methods. Interestingly, we often observe

improved performance from combinations of more numbers of kernels (e.g., more

layers in multilayer kernels), which is reminiscent of experience with multilayer

neural networks.

Encouraged by such promising results in this direction of research, we pro-

pose another kernel-based hierarchical model called multilayer kernel machines

(MKMs). Based on interesting parallels between our work (from original arc-

cosine kernels to multilayer arc-cosine kernels) and the history of neural networks

(from perceptrons to multilayer neural networks), our new model adopts recent ad-

vances in deep architectures—unsupervised learning. Specifically, we train MKMs

by a combination of unsupervised and supervised learning methods. At the core of

MKMs, we recursively iterate three processes: nonlinear transform by arc-cosine

kernels, unsupervised dimensionality reduction by kernel principal component anal-

ysis (Schölkopf et al., 1998), and feature selection by mutual information (Guyon

and Elisseeff, 2003). This cycle is repeated multiple times to construct the feature

hierarchy of MKMs. MKMs are designed as a denoised version of the multilayer

arc-cosine kernels, and this point is empirically verified using data sets of noisy

image classification.

Finally, we carry out theoretical analysis of arc-cosine kernels in terms of the

geometric properties. We aim to provide a richer understanding of the geometry of

surfaces induced by arc-cosine kernels using tools from differential geometry (Amari

and Wu, 1999; Burges, 1999). These surfaces are the images of the input space

under the implicit nonlinear mapping performed by the kernels (and by association,

the nonlinear transformations parameterized by large neural networks). Compared

with other popular kernels such as Gaussian and polynomial kernels, we show that

family of arc-cosine kernels exhibits a larger variety of behaviors—described by

non-analytic, flat, or curved Riemannian manifold. We suggest how to utilize the

geometric properties of these kernels in new research directions including nonlinear

independent component analysis (Jutten and Karhunen, 2004).

12

1.3 Organization

The organization of this paper is as follows. In Chapter 2, we derive arc-

cosine kernels from large single-layer neural networks and contrast their properties

with those of other popular kernels for SVMs. We experiment with the arc-cosine

kernels using SVMs and we also explain classification data sets that are used

throughout this work. In Chapter 3, we show how to construct new arc-cosine

kernels by considering neural networks with different activation functions. We also

evaluate these kernels using SVMs for classification tasks. In Chapter 4, we review

how to construct new kernels by composing, averaging, and taking products of

existing ones and examine the form of such extended kernels when these opera-

tions are performed on arc-cosine kernels. We experiment with these new kernels

and highlight interesting trends in performance that verify our intuition behind

such construction. In Chapter 5, we describe multilayer kernel machines, kernel-

based architecture with multiple layers of nonlinear transformation. We provide

experimental results and discuss the strengths and weaknesses of our approach. In

Chapter 6, we analyze the surfaces in Hilbert spaces induced by arc-cosine kernels

and derive expressions for the metric, volume element, and scalar curvature when

these surfaces can be described as Riemannian manifolds. Finally, in Chapter 7,

we conclude by summarizing our most important contributions and suggesting

directions for future research.

Chapter 1, in part, is a reprint of the material as it appears in Advances

in Neural Information Processing Systems 22. Cho, Y. and Saul, L. K. The thesis

author was the primary investigator and author of this work.

Chapter 1, in part, is a reprint of the material as it appears in Neural

Computation 22(10). Cho, Y. and Saul, L. K. The thesis author was the primary

investigator and author of this work.

Chapter 1, in part, is a reprint of the material as it appears in Technical

Report CS2012-0972, Department of Computer Science and Engineering, Univer-

sity of California, San Diego. Cho, Y. and Saul, L. K. The thesis author was the

primary investigator and author of this work.

Chapter 2

Arc-cosine Kernels

2.1 Kernels From Neural Networks

In this chapter, we develop a new family of kernel functions for computing

the similarity of vector inputs x,y ∈ Rd. As shorthand, let Θ(z) = 1
2
(1 + sign(z))

denote the Heaviside step function. We define the nth order arc-cosine kernel

function via the integral representation:

kn(x,y) = 2

∫
dw

e−
‖w‖2

2

(2π)d/2
Θ(w · x) Θ(w · y) (w · x)n (w · y)n. (2.1)

The kernel function in eq. (2.1) has interesting connections to neural compu-

tation (Williams, 1998) that we explore further. However, we begin by elucidating

its basic properties.

2.1.1 Basic Properties

We focus primarily on kernel functions in this family with non-negative

integer values of n ∈ {0, 1, 2, . . .}. However, for non-zero inputs x and y, the

multidimensional integral in eq. (2.1) is well-defined and bounded for all real values

n > −1
2
, which we consider in Chapter 3. For non-negative integer values, we show

how to evaluate the integral in eq. (2.1) analytically in Appendix A1. The final

1Interestingly, this computation was also carried out earlier in different context (Price, 1958).

13

14

result is most easily expressed in terms of the angle θ between the inputs:

θ = cos−1
(

x · y
‖x‖‖y‖

)
. (2.2)

The integral in eq. (2.1) has a simple, trivial dependence on the magnitudes of the

inputs x and y, but a complex, interesting dependence on the angle between them.

In particular, we can write:

kn(x,y) =
1

π
‖x‖n‖y‖nJn(θ) (2.3)

where all the angular dependence is captured by the family of functions Jn(θ). Like

homogeneous polynomial kernels, note how these kernels also behave in a simple

way when the inputs are scaled: kn(αx, βy) = (αβ)nkn(x,y) for scaling factors

α, β ≥ 0. Evaluating the integral in Appendix A, we show that this angular

dependence is given by:

Jn(θ) = (−1)n(sin θ)2n+1

(
1

sin θ

∂

∂θ

)n(
π − θ
sin θ

)
for ∀n ∈ {0, 1, 2, . . .}. (2.4)

For n= 0, this expression reduces to the supplement of the angle between

the inputs. However, for n>0, the angular dependence is more complicated. The

first few expressions are:

J0(θ) = π − θ, (2.5)

J1(θ) = sin θ + (π − θ) cos θ, (2.6)

J2(θ) = 3 sin θ cos θ + (π − θ)(1 + 2 cos2 θ). (2.7)

Higher-order expressions can be computed from eq. (2.4). Figure 2.1 compares the

form of Jn(θ) for different settings of n. We describe eq. (2.3) as an arc-cosine

kernel because for n=0, it takes the simple form2: k0(x,y) = 1− 1
π

cos−1
(

x·y
‖x‖‖y‖

)
.

Arc-cosine kernels have other intriguing properties. From the magnitude

dependence in eq. (2.3), we observe the following: (i) the n= 0 arc-cosine kernel

2To constrain the maximum value of k0(x,y) as 1, we use the multiplicative factor 2 in
eq. (2.1).

15

0

0.5

1

θ

Jn(θ)/Jn(0)

0 π/4 π/2 3π/4 π

n = 0

n = 1

n = 2

Figure 2.1: Form of Jn(θ) in eq. (2.4) for arc-cosine kernels with different values
of n. The function Jn(θ) takes its maximum value at θ= 0 and decays monotoni-
cally to zero at θ=π for all values of n. However, note the different behaviors for
small θ.

maps inputs x to the unit hypersphere in feature space, with k0(x,x) = 1; (ii) the

n = 1 arc-cosine kernel preserves the norm of inputs, with k1(x,x) = ‖x‖2; (iii)

higher order (n> 1) arc-cosine kernels expand the dynamic range of the inputs,

with kn(x,x) ∼ ‖x‖2n. Properties (i)–(iii) are shared respectively by radial basis

function (RBF), linear, and polynomial kernels. Interestingly, though, the n= 1

arc-cosine kernel is highly nonlinear, also satisfying k1(x,−x) = 0 for all inputs x.

Finally, we verify that the arc-cosine kernels kn(x,y) are positive-definite.

In particular, consider any finite kernel matrix K ∈ RN×N whose elements Kij =

kn(xi,xj) store pairwise evaluations of the kernel function for inputs {x1,x2, . . . ,xN}.
Then for all z ∈ RN , we have:

z>K z =
N∑
i=1

N∑
j=1

kn(xi,xj) zi zj

=
N∑
i=1

N∑
j=1

2

∫
dw

e−
‖w‖2

2

(2π)d/2
[
Θ(w · xi) (w · xi)n zi

][
Θ(w · xj) (w · xj)n zj

]
= 2

∫
dw

e−
‖w‖2

2

(2π)d/2

[
N∑
i=1

Θ(w · xi) (w · xi)n zi

]2
≥ 0. (2.8)

16

W
x1 x2 xj xd

f1 f2 f3 fi fm

... ...

... ...

Figure 2.2: A single-layer threshold network where x ∈ Rd is transformed to
f ∈ Rm by a nonlinear mapping.

Eq. (2.8) holds for all sets of N ≥ 1 inputs {x1,x2, . . . ,xN}; thus, the kernel

function in eq. (2.1) is positive-definite. In fact, this property also follows by

observing that the integral representation in eq. (2.1) defines a covariance function

(i.e., the expected product of functions evaluated at x and y).

2.1.2 Computation in Single-layer Threshold Networks

Consider the single-layer network shown in Figure 2.2 whose weights Wij

connect the jth input unit to the ith output unit (i.e., W is of size m-by-d). The

network maps inputs x to outputs f(x) by applying an elementwise nonlinearity

to the matrix-vector product of the inputs and the weight matrix: f(x) = g(Wx).

The nonlinearity is described by the network’s so-called activation function. Here

we consider the family of piecewise-smooth activation functions:

gn(z) = Θ(z)zn, (2.9)

which are displayed in Figure 2.3. For n = 0, the activation function is a step

function, and the network is an array of perceptrons. For n = 1, the activation

function is a ramp function (or rectification nonlinearity (Hahnloser et al., 2003)),

and the mapping f(x) is piecewise linear. More generally, the nonlinear behavior of

these networks is induced by thresholding on weighted sums. We refer to networks

with these activation functions as single-layer threshold networks of degree n.

Computation in these networks is closely connected to computation with

17

0
0

1

0
0

1

0
0

1

Figure 2.3: Nonlinear activation functions gn(z) in eq. (2.9) for different values
of n = 0, 1, and 2.

the arc-cosine kernel function in eq. (2.1). To see the connection, consider how

inner products are transformed by the mapping in single-layer threshold networks.

As notation, let the vector wi denote ith row of the weight matrix W. Then we

can express the inner product between different outputs of the network as:

f(x) · f(y) =
m∑
i=1

Θ(wi · x)Θ(wi · y)(wi · x)n(wi · y)n, (2.10)

where m is the number of output units. The connection with the arc-cosine kernel

function emerges in the limit of very large networks (Neal, 1996; Williams, 1998).

Imagine that the network has an infinite number of output units, and that the

weights Wij are Gaussian distributed with zero mean and unit variance. In this

limit, we see that eq. (2.10) reduces to eq. (2.1) up to a trivial multiplicative factor:

lim
m→∞

[
2

m
f(x)·f(y)

]
(2.11)

= lim
m→∞

[
2

m

m∑
i=1

Θ(wi · x)Θ(wi · y)(wi · x)n(wi · y)n

]
(2.12)

= 2 Ew∼N (0,Id)

[
Θ(w · x) Θ(w · y) (w · x)n (w · y)n

]
(2.13)

= 2

∫
dw

e−
‖w‖2

2

(2π)d/2
Θ(w · x) Θ(w · y) (w · x)n (w · y)n (2.14)

= kn(x,y). (2.15)

Thus the arc-cosine kernel function in eq. (2.1) can be viewed as the inner prod-

18

uct between feature vectors derived from the mapping of an infinite single-layer

threshold network.

Many researchers have noted the general connection between kernel ma-

chines and one layer neural networks (Bengio and LeCun, 2007). Interestingly,

the n= 0 arc-cosine kernel in eq. (2.1) can also be derived from an earlier result

obtained in the context of Gaussian processes. Specifically, Williams (1998) de-

rived a covariance function for Gaussian processes that mimic the computation in

infinite neural networks with sigmoidal activation functions. To derive this covari-

ance function, he evaluated a similar integral as eq. (2.1) for n = 0, but with two

differences: first, the weights w were integrated over a Gaussian distribution with

a general covariance matrix:

w ∼ N (0,Σ); (2.16)

second, the activation function was an error function with range [−1, 1] as opposed

to a step function with range [0, 1]:

erf(z) =
2√
π

∫ z

0

e−t
2

dt. (2.17)

Specializing to a covariance matrix that is a multiple of the identity matrix,

and taking the limit of very large variances, the result in Williams (1998) reduces

to a kernel function that mimics the computation in infinite neural networks with

activation functions 2Θ(z) − 1. The kernel function kGP(x,y) in this limit is ex-

pressed in terms of arc-sine functions of normalized dot products between inputs3:

kGP(x,y) =

∫
dw

e−
‖w‖2

2

(2π)d/2
(2Θ(w · x)− 1) (2Θ(w · y)− 1) (2.18)

=
2

π
sin−1

(
x · y
‖x‖‖y‖

)
. (2.19)

Using elementary identities, our result for the n = 0 arc-cosine kernel follows as a

3The original form in Williams (1998) is kGP(x,y) = 2
π sin−1

(
2x̄>Σȳ√

(1+2x̄>Σx̄)(1+2ȳ>Σȳ)

)
where

x̄ = (1,x) and ȳ = (1,y).

19

simple corollary:

kGP(x,y) = 2k0(x,y)− 2

∫
dw

e−
‖w‖2

2

(2π)d/2
Θ(w · x) (2.20)

−2

∫
dw

e−
‖w‖2

2

(2π)d/2
Θ(w · y) +

∫
dw

e−
‖w‖2

2

(2π)d/2
1. (2.21)

k0(x,y) =
1

2

[
kGP(x,y) + 2 · 1

2
+ 2 · 1

2
− 1

]
(2.22)

=
1

2

[
2

π
sin−1

(
x · y
‖x‖‖y‖

)
+ 1

]
(2.23)

=
1

2

[
2

π

{
π

2
− cos−1

(
x · y
‖x‖‖y‖

)}
+ 1

]
(2.24)

= 1− 1

π
cos−1

(
x · y
‖x‖‖y‖

)
. (2.25)

More generally, however, we are unaware of any previous theoretical or

empirical work on the general family of these kernels for degrees n > −1
2
. In

our work, we focus on the use of these kernels for large margin classification.

Viewing these kernels as covariance functions for Gaussian processes, it also follows

that ridge-regression with arc-cosine kernels is equivalent to MAP estimation in

neural networks with a Gaussian prior. Thus our results also expand the family of

neural networks whose computations can be mimicked (or perhaps more tractably

implemented) by Gaussian processes (Neal, 1996; Williams, 1998).

Arc-cosine kernels differ from polynomial and RBF kernels in one espe-

cially interesting respect. As highlighted by the integral representation in eq. (2.1),

arc-cosine kernels induce feature spaces that mimic the sparse, non-negative, dis-

tributed representations of single-layer threshold networks. Polynomial and RBF

kernels do not encode their inputs in this way. In particular, the feature vector

induced by polynomial kernels is neither sparse nor non-negative, while the fea-

ture vector induced by RBF kernels resembles the localized output of a soft vector

quantizer. Chapter 4 explores further implications of this difference.

Finally, note that the computation in infinite neural networks with a Gaus-

sian prior can also be explained from a different perspective—randomized weights

20

in statistical models. In particular, it has been found that instead of learning all the

weight parameters of statistical models, randomizing (large parts of) the weights

could lead to surprisingly good results with much less effort in training. This is

mainly due to the random projection theorem (Johnson and Lindenstrauss, 1984),

which provides theoretical guarantees that the distance between two data points

is not distorted much after random projections. Based on that, Rahimi and Recht

(2009) proposed a randomized learning model where inputs are passed through

a large bank of randomized nonlinearities, and the resulting outputs are linearly

combined to achieve state-of-the-art performance in classification. Furthermore,

recent advances in deep architectures (Jarrett et al., 2009; Saxe et al., 2011) have

also been made using networks with a large number of hidden units and random

weights, suggesting it may be more important to efficiently maintain large number

of hidden units and layers in neural networks than to train the weights carefully.

The arc-cosine kernel in eq. (2.1) fits well into this scenario. It is defined from a

network with infinitely many hidden units and whose weights are randomly drawn

from a Gaussian distribution; then support vector machines are utilized to choose

the best features from the large number of randomly generated features for large

margin classification.

2.2 Experimental Results

We evaluated SVMs with arc-cosine kernels on several medium-sized data

sets for classification. Our experiments in this section had two goals: first, to

compare arc-cosine kernels with more traditional RBF kernels and linear kernels

for various classification tasks; second, to provide baseline results that we would

improve upon in the following chapters.

2.2.1 Data Sets

Table 2.1 lists the nine data sets used in our experiments and Figure 2.4

shows examples from the first six data sets, which can be visualized as 28 × 28

grayscale images. The first data set is MNIST, which is a well-known classification

21

Table 2.1: Data set specifications: the number of training, validation, and test
examples, input dimensionality, and the number of classes.

Data set Training Validation Test Dimension Class
MNIST 50000 10000 10000 784 10
MNIST-rand 10000 2000 50000 784 10
MNIST-image 10000 2000 50000 784 10
Rectangles 1000 200 50000 784 2
Rectangles-image 10000 2000 50000 784 2
Convex 6000 2000 50000 784 2
20-Newsgroups 12748 3187 3993 62061 20
ISOLET 4990 1248 1559 617 26
Gisette 4800 1200 1000 5000 2

data set of grayscale handwritten digits (LeCun and Cortes, 1998). We held out

the last (roughly) 1000 training examples of each digit class as validation examples.

The following five data sets in the table are image classification benchmarks

from an empirical evaluation of deep learning (Larochelle et al., 2007). The first

two of these are noisy variations of MNIST: the task in MNIST-rand is to rec-

ognize digits whose backgrounds have been corrupted by white noise, while the

task in MNIST-image is to recognize digits whose backgrounds consist of other

image patches. The other benchmarks are purely synthetic data sets. The task

in Rectangles is to classify a single rectangle that appears in each image as tall or

wide. Rectangles-image is a harder variation of this task in which the background

of each rectangle consists of other image patches. Finally, the task in Convex is to

classify a single white region that appears in each image as convex or non-convex.

We partitioned these data sets into training, validation, and test examples as in

previous benchmarks.

Note that the classes in Rectangles, Rectangles-image, and Convex involve

abstract, shape-based features that cannot be computed directly from raw pixel

inputs, but rather seem to require many layers of processing. The positive and

negative examples also exhibit tremendous variability, making these problems dif-

ficult for template-based approaches (e.g., SVMs with RBF kernels). In previous

benchmarks on binary classification (Larochelle et al., 2007), these problems ex-

22

(a) MNIST

(b) MNIST-rand

(c) MNIST-image

(d) Rectangles

(e) Rectangles-image

(f) Convex

Figure 2.4: Examples from the first six data sets in Table 2.1 represented as 28
× 28 grayscale images (LeCun and Cortes, 1998; Larochelle et al., 2007).

hibited the biggest performance gap between deep architectures (e.g., deep belief

nets) and traditional SVMs.

The bottom three data sets in Table 2.1 are from benchmark problems in

text categorization, spoken letter recognition, and feature selection. The task in

20-Newsgroups is to classify newsgroup postings (represented as bags of words) into

one of twenty news categories (Lang, 1995). The task in ISOLET is to identify

a spoken letter of the English alphabet (Frank and Asuncion, 2010). The task

in Gisette is to distinguish the MNIST digits four versus nine, but the input

representation has been padded with a large number of additional features—some

23

helpful, some spurious, and some sparse (Guyon et al., 2005). We randomly held

out 20% of the training examples in these data sets for validation.

2.2.2 Methodology

For classification by SVMs, we compared five different kernels—the arc-

cosine kernels of degree n = 0, 1, 2, the radial basis function (RBF) kernel, and

the linear kernel. All SVMs were trained using LIBSVM (Chang and Lin, 2001),

a publicly available software package. For multiclass problems, we adopted the

so-called one-versus-one approach: SVMs were trained for each pair of different

classes, and test examples were labeled by the majority vote of all the pairwise

SVMs.

We followed a similar experimental methodology as in previous work to

tune the margin-violation penalties in SVMs as well as the kernel width in RBF

kernels (Larochelle et al., 2007). We used the held-out (validation) examples to de-

termine these values, first searching over a coarse logarithmic grid, then performing

a fine-grained search to improve their settings. Once these values were determined,

however, we retrained each SVM on the combined set of training and validation

examples. We used these retrained SVMs for the final performance evaluations on

test examples.

2.2.3 Results

Table 2.2 displays the test error rates from the experiments where we can

observe three interesting points as follows. First, arc-cosine kernels return lower

error rates compared to the linear kernel in all the data sets, and such differences are

generally bigger in the first six data sets of image classification; for high dimensional

data sets like 20-Newsgroups , however, the arc-cosine kernels (and the RBF kernel

as well) are only slightly better than the linear kernel because it is not difficult to

find linear decision boundaries in the high dimensional space.

Second, the arc-cosine kernels seem to be inferior to the RBF kernel in ma-

jority of cases. We suspect this is due to the lack of continuous tuning parameters

24

Table 2.2: Classification error rates (%) on test sets from SVMs with various
kernels. The first three kernels are arc-cosine kernels of degree n=0, 1, and 2. The
best performing kernel for each data set is marked in bold. When different, the
best performing arc-cosine kernel is marked in italics. See text for details.

Data set
Arc-cosine

RBF Linear
n=0 n=1 n=2

MNIST 1.68 1.7 1.63 1.31 4.15
MNIST-rand 17.16 17.56 16.87 14.80 17.31
MNIST-image 23.81 24.76 24.36 22.80 25.07
Rectangles 13.08 4.62 3.79 2.11 30.30
Rectangles-image 22.66 24.6 24.94 23.42 49.69
Convex 20.05 19.9 19.53 18.76 45.67
20-Newsgroups 16.28 15.88 15.63 15.75 15.90
ISOLET 3.40 3.46 3.53 3.01 3.53
Gisette 1.80 2.2 2.1 2.10 2.20

in the arc-cosine kernels in contrast to RBF kernels where we can adapt the kernel

width parameter to fit the particular data sets better. We attempt to address

this point by introducing continuous tuning parameters to arc-cosine kernels in

Chapter 3.

Third, it remains to be understood why some problems are better suited for

certain arc-cosine kernels than others. We do not have definitive answers to this

question. Perhaps the n = 0 arc-cosine kernel works well on the Rectangles-image

data set (see Figure 2.4) because it normalizes for brightness, only considering

the angle between two images. Admittedly, choosing the best degree in arc-cosine

kernels is dependent on data sets and thus cross-validation seems to be the only

reasonable method for this issue, which is often the case for other kernels as well.

However, we claim that this search for hyperparameters in kernels is an easier

problem in need of less expertise compared to training complex deep architectures,

given its easily parallelizable structure and efficient quadratic programming solvers

for SVMs (Platt, 1998).

Finally, note that RBF kernels in the first six data sets of Table 2.2 are

reported to return higher error rates than deep architectures, which were carefully

25

trained by experts (Larochelle et al., 2007)4. This will be reviewed more extensively

in Chapter 4.

2.3 Discussion

In this chapter, we have explored a new family of positive-definite ker-

nels called arc-cosine kernels. The feature spaces induced by these kernels mimic

the internal representations stored by the hidden layers of large neural networks.

Evaluating these kernels in SVMs, we found that on certain problems they led to

satisfactory results (not state-of-the-art though).

Our approach builds on several lines of related work by previous authors.

Computation in infinite neural networks was first studied in the context of Gaussian

processes (Neal, 1996). In later work, Williams (1998) derived analytical forms for

kernel functions that mimicked the computation in large networks. In networks

with sigmoidal activation functions, these earlier results reduce as a special case

to eq. (2.1) for the arc-cosine kernel of degree n=0 as shown in Section 2.1.2. Our

contribution to this line of work has been to enlarge the family of kernels which

can be computed analytically. In particular, we have derived kernels to mimic the

computation in large networks with any one-sided polynomial activation functions.

Exploring the use of these kernels for large margin classification, we often found

that the best results were obtained by arc-cosine kernels with degree n>0.

To improve the performance of arc-cosine kernels further, we explore various

directions in the following chapters. First, in Chapter 3, we introduce continuous

tuning parameters to the arc-cosine kernels by using different activation functions

in the threshold networks and consequently in the definition of the kernels. Second,

in Chapter 4, we combine arc-cosine kernels in hierarchical fashion to mimic the

computations in multilayer threshold networks. Third, in Chapter 5, unsupervised

learning methods are incorporated into arc-cosine kernels as in state-of-the-art

deep architectures.

4Larochelle et al. (2007) reported slightly different results for RBF kernels compared to Ta-
ble 2.2, but this is due to differences in the search ranges for hyperparameters and it does not
affect the analysis in this section.

26

Chapter 2, in part, is a reprint of the material as it appears in Advances

in Neural Information Processing Systems 22. Cho, Y. and Saul, L. K. The thesis

author was the primary investigator and author of this work.

Chapter 2, in part, is a reprint of the material as it appears in Neural

Computation 22(10). Cho, Y. and Saul, L. K. The thesis author was the primary

investigator and author of this work.

Chapter 3

Variations in Activation Functions

3.1 Introduction

In this chapter, we explore three variations on the arc-cosine kernels that are

derived from large neural networks with different activation functions. Specifically,

we construct new kernels by adapting the activation functions as in Figure 3.1. We

begin with using fractional degrees for the one-sided polynomial activation function

in eq. (2.9). Then, we consider the effects of shifting the thresholds of Heaviside

step functions as well as smoothing their nonlinearities. These modifications intro-

duce continuous parameters—the polynomial growth rate, the amount of shift or

smoothing—that can be tuned to improve the performance of the resulting kernels.

In particular, the first of these operations (fractional degrees) provides di-

verse options to model the input data (see Figure 3.2 for various forms of the

activation function with respect to the change in the degree n); the second (bi-

asing) induces more sparse representations of the data in feature space; the third

(smoothing) refines ranges of feature representations by removing the discontinu-

ities of the activation function.1. These effects are interesting to explore given

the improvements they have yielded in conventional neural networks. We evaluate

these variations of arc-cosine kernels in support vector machines for large margin

classification. Our experiments show that these variations of arc-cosine kernels

1In Chapter 6, we show this is also related with non-analyticity of the arc-cosine kernel with
degree n=0.

27

28

0
0

1

0 b
0

1

0
0

1

Figure 3.1: Nonlinear activation functions for new arc-cosine kernels. Left : frac-
tional order polynomial function with degree n=−0.25 in eq. (2.9). Middle: biased
threshold function Θ(z−b) with bias b. Right : smoothed threshold function Ψσ(z)
in eq. (3.14).

0
0

1

0
0

1

0
0

1

0
0

1

0
0

1

0
0

1

Figure 3.2: Various forms of the nonlinear activation functions gn(z) in eq. (2.9)
for different values of n = −0.25, 0, 0.5, 1, 1.5, and 2 in order from left to right.

often lead to better performance.

3.2 Activation Functions

3.2.1 Fractional Order Polynomial Threshold Functions

We consider the kernel function in eq. (2.1) for non-integer values of n. The

general form in eq. (2.3) still holds, but the function Jn(θ) does not have a simple

analytical form. However, it remains possible to evaluate the integral in eq. (2.1)

for the special case where x = y. In Appendix A, we show that:

kn(x,x) =
1

π
‖x‖2n Jn(0) where Jn(0) =

√
π 2n Γ

(
n+

1

2

)
. (3.1)

Note that this expression diverges as Jn(0) ∼ (n + 1
2
)−1 due to a non-integrable

singularity. Thus the family of arc-cosine kernels is only defined for n > −1
2
; for

smaller values, the integral in eq. (2.1) is not defined. The magnitude of kn(x,x)

29

0

0.5

1

θ

Jn(θ)/Jn(0)

0 π/4 π/2 3π/4 π

n = 0

n = 1

n = 2

n = − 0.25

Figure 3.3: Behavior of the function Jn(θ) in eq. (2.4) including the case of
n=−0.25.

also diverges for fixed non-zero x as n→∞. Thus as n takes on increasingly

positive or negative values within its allowed range, the kernel function in eq. (2.1)

maps inputs to larger and larger vectors in feature space.

The arc-cosine kernel exhibits qualitatively different behavior for negative

values of n. For example, when n < 0, the kernel function performs an inversion,

mapping the origin in input space to infinity in feature space, with kn(x,x) ∼
‖x‖2n. We are not aware of other kernel functions with this property. Though Jn(θ)

does not have a simple analytical form for n < 0, it can be computed numerically;

more details are given in Appendix A. Figure 3.3 compares the form of Jn(θ) for

different settings of n. For n < 0, note that Jn(θ) decays quickly away from its

maximum value at θ = 0. This decay serves to magnify small differences in angle

between nearby inputs.

3.2.2 Biased Threshold Functions

Consider the arc-cosine kernel of degree n= 0 as defined by eq. (2.1). We

obtain a new kernel by translating the Heaviside step functions in this definition

30

by a bias term b ∈ R:

kb(x,y) = 2

∫
dw

e−
‖w‖2

2

(2π)d/2
Θ(w · x− b) Θ(w · y − b). (3.2)

The motivation behind this construction is to regulate the sparsity of the

infinite dimensional representation Φ(x). Note that as the bias b is increased, a

larger volume of the weight space w ∈ Rd is associated with zero activation levels

Θ(w · x−b) from the input x ∈ Rd. Thus this construction is able to emulate a

large neural network with especially sparse (b > 0) or dense (b < 0) hidden unit

representations.

The integral in eq. (3.2) cannot be performed in closed form, but we can

express it in terms of simple one-dimensional definite integrals. To this end, we

use ξ, ψ, and θ to denote the internal angles of the triangle formed by the vectors

x, y, and x− y; see Figure 3.4. Also, as shorthand, we define the two-parameter

family of definite integrals:

I(r, ξ) =
1

π

∫ ξ

0

dφ exp

(
− 1

2 r2 sin2 φ

)
. (3.3)

It is simple to compute this integral and store the results in a lookup table for

discretized values of ξ ∈ [0, π] and r > 0.

We begin by evaluating the right hand side of eq. (3.2) in the regime b ≥ 0

of increased sparsity. Then, in terms of the above notation, we obtain the result:

kb(x,y) = I
(
b−1‖x‖, ψ

)
+ I(b−1‖y‖, ξ) for b ≥ 0. (3.4)

The derivation of this result is given in Appendix B.

The result in the opposite regime b ≤ 0 is obtained by a simple transfor-

mation. In this regime, we can evaluate the integral in eq. (3.2) by noting that

Θ(z) = 1−Θ(−z) and exploiting the symmetry of the integral in weight space. It

follows that:

kb(x,y) = k−b(x,y) + erf

(
−b√
2‖x‖

)
+ erf

(
−b√
2‖y‖

)
for b ≤ 0, (3.5)

31

�
�
�
�
�
�
�
�
�>

-

Q
Q
Q
Q
Q
Q
Q
Q
Q
Qs

x

y x− y

θ ψ

ξ

Figure 3.4: A triangle formed by the input data vectors x, y, and their difference
x− y.

where erf(x) = 2√
π

∫ x
0
e−t

2
dt is the error function. From the same observations,

it also follows that kernel matrices for opposite values of b are equivalent up to

centering (i.e., after subtracting out the mean in feature space). Specifically, let

b and C denote a N×1 vector from eq. (3.5) and the N×N centering matrix

respectively:

b =

[
erf

(
−b√
2‖x1‖

)
, erf

(
−b√
2‖x2‖

)
, . . . , erf

(
−b√

2‖xN‖

)]>
, (3.6)

C = IN −
1

N
11> (3.7)

where xi is ith training example; IN is the N×N identity matrix; 1 is the column

vector of N ones. Then, a kernel matrix Kb ∈ RN×N of N training examples with

the arc-cosine kernel kb(x,y) for b ≤ 0 is centered to K̃b:

K̃b = CKbC (3.8)

= C
(
K−b + 1b> + b1>

)
C (3.9)

= CK−bC +

(
1− 1

N
11>1

)
b>C + Cb

(
1> − 1

N
1>11>

)
(3.10)

= CK−bC (3.11)

= K̃−b, (3.12)

where we verified the equivalence. Thus without loss of generality, we only inves-

tigate kernels with biases b ≥ 0 in our experiments on support vector machines.

As already noted, the arc-cosine kernel of degree n = 0 depends only on

the angle between its inputs and not on their magnitudes. The kernel in eq. (3.4)

32

does not exhibit this same invariance. However, it does have the scaling property:

kb(ρx, ρy) = kb/ρ(x,y) for ρ > 0. (3.13)

Eq. (3.13) shows that the effect of a different bias can be mimicked by uniformly

rescaling all the inputs. This property is convenient because it can save us some

numerical integrations in eq. (3.3) when we build lookup tables for certain values

of b.

3.2.3 Smoothed Threshold Functions

We can extend the arc-cosine kernel of degree n= 0 in a different way by

smoothing the Heaviside step function in eq. (2.1). The simplest smooth alternative

is the cumulative Gaussian function:

Ψσ(z) =
1√

2πσ2

∫ z

−∞
du e−

u2

2σ2 , (3.14)

which reduces to the Heaviside step function in the limit of vanishing variance

(σ2 → 0). The resulting kernel is defined as:

kσ(x,y) = 2

∫
dw

e−
‖w‖2

2

(2π)d/2
Ψσ(w · x) Ψσ(w · y). (3.15)

The variance parameter σ2 can be tuned in this kernel just as its counterpart in a

radial basis function (RBF) kernel. However, note that RBF kernels behave very

differently than these kernels in the limit of vanishing variance: the former become

degenerate, whereas eq. (3.15) reduces to the arc-cosine kernel of degree n=0.

The integral in eq. (3.15) can be performed analytically, yielding the result:

kσ(x,y) = 1− 1

π
cos−1

(
x · y√

(‖x‖2 + σ2)(‖y‖2 + σ2)

)
. (3.16)

Details of the calculation are given in Appendix C. The kernel in eq. (3.16) is

analogous to one derived earlier by Williams (1998) in the context of Gaussian

processes. However, in that work, the kernel was computed for an activation

33

−0.5 0 0.5 1 1.5 2

1.6

1.7

1.8

1.9

2

2.1

2.2

Test error rate (%)

 n

Figure 3.5: Classification error rates on the MNIST data set using arc-cosine
kernels with fractional degrees n (horizontal axis).

function bounded between -1 and 1 (as opposed to 0 and 1, above).

3.3 Experimental Results

We evaluated the new kernels in this section by measuring their performance

in support vector machines (SVMs). We also compared them to other popular

kernels for large margin classification. We used the same data sets and followed

the same methodology in Section 2.2.

We first experimented with fractional and negative values of the degree n

in arc-cosine kernels using the MNIST data set (LeCun and Cortes, 1998). The

kernel functions in these experiments had to be computed numerically, as described

in Appendix A. Figure 3.5 shows the test error rates from SVMs in which we

continuously varied the degree of the arc-cosine kernel. The best results in these

experiments were obtained by using kernels with fractional degrees; however, the

improvements were relatively modest.

On the other hand, we obtain more satisfying results from the other two

cases of arc-cosine kernels with biased or smoothed activation functions. Table 3.1

displays the test error rates from these extensive experiments. In the majority of

34

Table 3.1: Classification error rates (%) on test sets from SVMs with various
kernels. The first three kernels are the arc-cosine kernel of degree n= 0 and the
variations on this kernel described in sections 3.2.2 and 3.2.3. The best performing
kernel for each data set is marked in bold. When different, the best performing
arc-cosine kernel is marked in italics. See text for details.

Data set
Arc-cosine

RBF Linear
n=0 Bias Smooth

MNIST-rand 17.16 16.49 17.03 14.80 17.31
MNIST-image 23.81 23.77 24.09 22.80 25.07
Rectangles 13.08 2.48 11.84 2.11 30.30
Rectangles-image 22.66 23.59 24.48 23.42 49.69
Convex 20.05 20.12 19.60 18.76 45.67
20-Newsgroups 16.28 16.25 15.73 15.75 15.90
ISOLET 3.40 3.34 3.53 3.01 3.53
Gisette 1.80 1.90 1.90 2.10 2.20

cases, the parameterized variations of arc-cosine kernels achieve better performance

than the original arc-cosine kernel of degree n=0. This demonstrates the utility of

adapting the arc-cosine kernel to data sets using the bias term or the smoothness

level. Though the performance degrades somewhat in the Rectangles-image data

set, this is the case where model selection is misled by the limited number of

validation examples (i.e., the new arc-cosine kernels actually return lower error

rates in validation sets). Unfortunately, we find the arc-cosine kernels are still

slightly inferior to the RBF kernels in the majority of data sets, but they are

consistently better than the linear kernels.

3.4 Discussion

In this chapter, we explored variations of arc-cosine kernels by controlling

the polynomial growth rate, the amount of shift or smoothing in the activation

functions. We evaluated these new kernels extensively for large margin classifica-

tion in SVMs. By tuning the continuous parameters in these kernels, we showed

that they often performed better than the original arc-cosine kernel of degree n=0.

However, we found that these improvements were not big enough to out-

35

perform the RBF kernels (and the deep belief nets as well) in most of the data

sets. Considering the cost incurred by cross-validation to choose the continuous

parameters in the kernels2, this is a somewhat discouraging result.

In the next chapter, we take a different approach: rather than enhancing a

single arc-cosine kernel by modifying activation functions, we focus on how to com-

bine basic arc-cosine kernels to improve the performance. Interestingly, this leads

to development of new kernels that mimic the computations in large multilayer

neural networks.

Chapter 3, in part, is a reprint of the material as it appears in Neural

Computation 22(10). Cho, Y. and Saul, L. K. The thesis author was the primary

investigator and author of this work.

Chapter 3, in part, is a reprint of the material as it appears in Technical

Report CS2012-0972, Department of Computer Science and Engineering, Univer-

sity of California, San Diego. Cho, Y. and Saul, L. K. The thesis author was the

primary investigator and author of this work.

2The numerical integration in the first two cases is the main computational issue although
this can be alleviated by storing pre-computed results in the reference tables.

Chapter 4

Combination of Arc-cosine

Kernels

4.1 Introduction

In this chapter, we show how to construct more complex kernels via opera-

tions like kernel composition, multiplication, and averaging. These operations yield

more interesting results when they are applied to arc-cosine kernels than polyno-

mial or RBF kernels. For example, the composition or product of two polynomial

kernels is simply another polynomial kernel, but of higher degree. Likewise, the

product of two RBF kernels is just another RBF kernel, but with different variance.

By contrast, when these operations are applied to arc-cosine kernels, they lead to

new kernels that are not part of the original family. These new kernels can also be

interpreted as interesting forms of computations in multilayer neural networks.

We evaluate the use of these extended constructions of arc-cosine kernels

in support vector machines for large margin classification. Experimenting on the

MNIST data set of handwritten digits (LeCun and Cortes, 1998), we highlight

general trends in performance as the basic kernels in this family are combined in

different ways. Our results show that with kernels formed by composing or taking

products of other kernels, we often obtain significantly better performance, while

we do not see any consistent benefits from averaging. Furthermore, in experiments

36

37

on data sets from a deep learning benchmark (Larochelle et al., 2007), we often

obtain competitive results compared to the state-of-the-art methods such as SVMs

with Gaussian kernels as well as deep belief nets.

4.2 Combinations of Kernels

4.2.1 Kernel Composition

A kernel function can be viewed as inducing a nonlinear mapping from

inputs x to feature vectors Φ(x). The kernel computes the inner product in the

induced feature space:

k(x,y) = Φ(x) ·Φ(y). (4.1)

In this section, we consider how to compose the nonlinear mappings induced by

kernel functions, an idea suggested in Schölkopf et al. (1996). Specifically, we show

how to derive new kernel functions,

k(`)(x,y) = Φ(Φ(...Φ︸ ︷︷ ︸
` times

(x))) ·Φ(Φ(...Φ︸ ︷︷ ︸
` times

(y))) (4.2)

which compute the inner product after ` successive applications of the nonlinear

mapping Φ(·). Our motivation is the following: intuitively, if the base kernel

function k(x,y) = Φ(x) ·Φ(y) models the computation in a single-layer network,

then the iterated mapping in eq. (4.2) should model the computation in a multilayer

network.

We first examine the results of this procedure for widely used kernels. Here

we find that the iterated mapping in eq. (4.2) does not yield particularly inter-

esting results. For instance, consider the two-fold composition that maps x to

Φ(Φ(x)). For linear kernels k(x,y) = x · y, the composition is trivial: in particu-

lar, it yields the identity map Φ(Φ(x)) = Φ(x) = x. For homogeneous polynomial

kernels k(x,y) = (x · y)d, the composition yields:

Φ(Φ(x)) ·Φ(Φ(y)) = (Φ(x) ·Φ(y))d = (x · y)d
2

. (4.3)

38

0 0.5 1 1.5 2 2.5

0

0.5

1

||x−y||

k(x, y) = e−λ||x−y||2 for λ = 2

k(Φ(x) , Φ(y)) = e−2λ(1−k(x,y)) for λ = 2

k(x, y) = e−λ||x−y||2 for λ = 7

Figure 4.1: RBF kernels and their composition form as a function of ‖x−y‖. The
original RBF kernel with the kernel width λ = 2 (red curve) and its composition
form (green) show little difference when ‖x − y‖ becomes large compared to λ.
Also note that the latter can be approximated well with the original form of an
RBF kernel with a different kernel width λ = 7 (blue), which means the kernel
composition is less likely to induce qualitatively different forms of kernels.

The above result is not especially interesting: the kernel implied by this com-

position is also polynomial, just of higher degree. Likewise, for RBF kernels

k(x,y) = e−λ‖x−y‖2 , the composition yields:

Φ(Φ(x)) ·Φ(Φ(y)) = e−λ‖Φ(x)−Φ(y)‖2 = e−2λ(1−k(x,y)). (4.4)

Though non-trivial, this does not represent a particularly interesting computation.

Recall that RBF kernels mimic the computation of soft vector quantizers, yielding

k(x,y)� 1 when ‖x−y‖ is large compared to the kernel width. It is hard to

see how the iterated mapping Φ(Φ(x)) would generate a qualitatively different

representation than the original mapping Φ(x). Figure 4.1 explains this point.

Next we consider the `-fold composition in eq. (4.2) for arc-cosine kernel

functions. We work out a simple example before stating the general formula.

Consider the n = 0 arc-cosine kernel, for which k0(x,y) = 1− θ
π
, where θ is the

39

0

0.5

1

θ

0 π/4 π/2 3π/4 π

k
(1)
0 (x, y) k

(2)
0 (x, y) k

(3)
0 (x, y)

Figure 4.2: Arc-cosine kernels with degree n=0 and their composition forms (up
to three levels) as a function of θ. In contrast to the RBF kernel in Figure 4.1, new
arc-cosine kernels by kernel composition exhibit qualitatively different behavior.

angle between x and y. For this kernel, it follows that:

Φ(Φ(x)) ·Φ(Φ(y)) = 1− 1

π
cos−1

(
Φ(x) ·Φ(y)

‖Φ(x)‖‖Φ(y))‖

)
(4.5)

= 1− 1

π
cos−1

(
k0(x,y)√

k0(x,x) k0(y,y)

)
(4.6)

= 1− 1

π
cos−1

(
1− θ

π

)
. (4.7)

Figure 4.2 shows how the n=0 arc-cosine kernels evolve via this kernel composition

up to three levels.

More generally, we can work out a recursive formula for the `-fold compo-

sition in eq. (4.2). The base case is given by eq. (2.3) for kernels of depth `= 1

and degree n. Substituting into eq. (2.3), we obtain the construction for kernels of

greater depth:

k(`+1)
n (x,y) =

1

π

[
k(`)n (x,x) k(`)n (y,y)

]n/2
Jn
(
θ(`)n
)
, (4.8)

where θ
(`)
n is the angle between the images of x and y in the feature space induced

40

... ...

... ...

... ...

... ...

Figure 4.3: Multilayer neural networks modeled by the composition of arc-cosine
kernels. Note that different nonlinear mappings (i.e., kernels) can be used at
different layers.

by the `-fold composition. In particular, we can write:

θ(`)n = cos−1

 k
(`)
n (x,y)√

k
(`)
n (x,x) k

(`)
n (y,y)

 . (4.9)

The recursion in eq. (4.8) is simple to compute in practice. The resulting

multilayer kernels mimic the computations in large multilayer threshold networks

where the weights are Gaussian distributed with zero mean and unit variance.

Above, for simplicity, we have assumed that the arc-cosine kernels have the same

degree n at every level (or layer) ` of the recursion. However, it is straightforward

to use kernels of different degrees at different levels. We denote compositions of

this form by

kn1,...,n`(x,y) = Φn`(...Φn1(x)) ·Φn`(...Φn1(y)), (4.10)

where ni denotes the degree of the kernel used at the ith layer in the composition.

Figure 4.3 illustrates this multilayer arc-cosine kernels.

41

... ...

...

...

... ...

Figure 4.4: Multilayer neural networks modeled by the kernel multiplication.
Φn,m means the mth feature induced by the arc-cosine kernel with degree n. Dif-
ferent colors in the intermediate layers encode different nonlinear mappings induced
by the corresponding kernels.

4.2.2 Kernel Multiplication

Next we consider the kernels obtained by taking products of arc-cosine ker-

nels. The product operation has much richer possibilities with arc-cosine kernels

than polynomial or RBF kernels. In particular, the product of homogeneous poly-

nomial kernels of degrees pi is simply another polynomial kernel of degree
∑

i pi;

the product of RBF kernels with widths σ2
i is another RBF kernel with width

(
∑

i σ
−2
i)−1. By contrast, the products of arc-cosine kernels are not themselves

members of the original family.

For m arc-cosine kernels with individual degrees ni, we denote the product

kernel by:

kn1×···×nm(x,y) =
m∏
i

kni(x,y). (4.11)

The product of m arc-cosine kernels can be interpreted as computing the inner

product of outputs from a particular type of two-layer neural network. The units

in the first layer of this network encode the mapping from the individual kernels in

the product. The units in the second layer compute m-wise products of the units

in the first layer. Figure 4.4 illustrates this concept. The product of arc-cosine

42

... ...

...

... ...

... ...

... ...

... ...

Figure 4.5: Multilayer neural networks modeled by the kernel averaging. The
nonlinear mappings (i.e., kernels) at different layers of the multilayer kernel (top)
are concatenated as a single feature representation (bottom) via kernel averaging.

kernels of the same degree can also be viewed as the composition of an arc-cosine

kernel with a polynomial kernel.

4.2.3 Kernel Averaging

Finally, we consider the kernels formed by averaging. As shown in sec-

tions 4.2.1 and 4.2.2, there are (combinatorially) many ways to construct new

kernels from compositions and products of arc-cosine kernels. It seems unlikely

that any one of these constructions captures all the information needed to classify

43

the inputs correctly. We can look for a potentially better solution by concatenating

the feature vectors obtained from individual kernel maps and computing the inner

product in this “stacked” feature space (i.e., the Cartesian product). The averaged

kernel performs this computation.

We are particularly interested in the effects of averaging across different

multilayer kernels, as constructed in Section 4.2.1. For classification in multilayer

neural networks, it is known that the units in intermediate hidden layers can

provide useful information for decision-making, often in addition to the units in

the final hidden layer. Thus, we hypothesize that averaging multilayer kernels

of different “depth” would lead to better performance than the results of any

individual kernel. Figure 4.5 illustrates this idea.

4.3 Experimental Results

4.3.1 Kernel Composition

We experimented with the multilayer kernels described in Section 4.2.1,

using the composition of arc-cosine kernels of degree n = 0, 1, and 2 from one

to six levels of recursion. Figure 4.6 shows the test set error rates on deslanted

MNIST from arc-cosine kernels of varying degrees (n) and numbers of layers (`).

To show certain interesting trends (or the absence of such trends), our results

compare test error rates obtained from a large number of different kernels. It

should be emphasized, however, that one does not know a priori which kernel

should be chosen for any given task. Therefore, for each experiment, we also

indicate which kernel was selected by its performance on held-out training examples

(before retraining on all the training examples). The results from these properly

selected kernels permit meaningful comparisons to previous benchmarks.

We experimented first with multilayer kernels that used the same base ker-

nel in each layer. In this case, we observed that the performance generally improved

with increasing number of layers (up to `=6) for the arc-cosine kernel with degree

n=1, but generally worsened1 for the other cases (n=0 and 2). These results led

1Also, though not shown in the figure, the arc-cosine kernel with degree n=2 gave essentially

44

1.5

2

2.5

3

3.5

4

4.5
Test error rate (%)

0

0,
0

0,
0,

0

0,
0,

0,
0

0,
0,

0,
0,

0

0,
0,

0,
0,

0,
0 1

1,
1

1,
1,

1

1,
1,

1,
1

1,
1,

1,
1,

1

1,
1,

1,
1,

1,
1 2

2,
2

2,
2,

2

(a) Same-degree multilayer kernels

1.2

1.3

1.4

1.5

1.6

1.7

Test error rate (%)

0

0,
1

0,
1,

1

0,
1,

1,
1

0,
1,

1,
1,

1

0,
1,

1,
1,

1,
1 1

1,
1

1,
1,

1

1,
1,

1,
1

1,
1,

1,
1,

1

1,
1,

1,
1,

1,
1 2

2,
1

2,
1,

1

2,
1,

1,
1

2,
1,

1,
1,

1

2,
1,

1,
1,

1,
1

1.38

(b) Mixed-degree multilayer kernels

Figure 4.6: Test error rates on the MNIST data set from SVMs with multilayer
arc-cosine kernels. The figure shows results for kernels of varying degrees (n) and
numbers of layers (`). In one set of experiments, the multi-layer kernels were con-
structed by composing arc-cosine kernels of the same degree. In another set of
experiments, only arc-cosine kernels of degree n=1 were used at higher layers; the
figure indicates degrees using the notation in eq. (4.10). The error rate from the
configuration that performed best on held-out set is displayed. The best compara-
ble result is 1.22% from SVMs using polynomial kernels of degree 9 (Decoste and
Schölkopf, 2002). See text for details.

random results, with roughly 90% error rates, when composed with itself three or more times.

45

22

23

24

25

DBN−3

SVM−RBF
0

0,
1

0,
1,

1

0,
1,

1,
1

0,
1,

1,
1,

1

0,
1,

1,
1,

1,
1 1

1,
1

1,
1,

1

1,
1,

1,
1

1,
1,

1,
1,

1

1,
1,

1,
1,

1,
1 2

2,
1

2,
1,

1

2,
1,

1,
1

2,
1,

1,
1,

1

2,
1,

1,
1,

1,
1

(%)

22.36

Figure 4.7: Classification error rates on the Rectangles-image data set. SVMs
with arc-cosine kernels have error rates from 22.36–25.64%. Results are shown for
kernels of varying degrees (n) and numbers of layers (`). The best previous results
are 24.04% for SVMs with RBF kernels and 22.50% for deep belief nets (Larochelle
et al., 2007). The error rate from the configuration that performed best on held-out
set is displayed. See text for details.

us to hypothesize that only n=1 arc-cosine kernels preserve sufficient information

about the magnitude of their inputs to work effectively in composition with other

kernels. Recall from Section 2.1.1 that only the n= 1 arc-cosine kernel preserves

the norm of its inputs: the n= 0 kernel maps inputs to the unit hypersphere in

feature space, while higher-order (n > 1) kernels distort input magnitudes in the

same way as polynomial kernels.

We tested this hypothesis by experimenting with “mixed-degree” multilayer

kernels which used arc-cosine kernels of degree n = 1 at all higher levels (` > 1)

of the recursion in eqs. (4.8–4.9). Figure 4.6 shows these sets of results in the

bottom panel. In these experiments, we used arc-cosine kernels of different degrees

at the first layer of nonlinearity, but only the arc-cosine kernels of degree n=1 at

successive layers. The best of these kernels yielded a test error rate of 1.38%, com-

parable to many other results from SVMs (LeCun and Cortes, 1998) on deslanted

MNIST digits, though not matching the best previous result of 1.22% (Decoste

and Schölkopf, 2002). These results also reveal that multilayer kernels yield dif-

ferent results than their single-layer counterparts. (With increasing depth, there

is also a slight but suggestive trend toward improved results.) Though SVMs are

46

17

18

19

20

21

DBN−3
SVM−RBF

Test error rate (%)

0

0,
1

0,
1,

1

0,
1,

1,
1

0,
1,

1,
1,

1

0,
1,

1,
1,

1,
1 1

1,
1

1,
1,

1

1,
1,

1,
1

1,
1,

1,
1,

1

1,
1,

1,
1,

1,
1 2

2,
1

2,
1,

1

2,
1,

1,
1

2,
1,

1,
1,

1

2,
1,

1,
1,

1,
1

17.42

Figure 4.8: Classification error rates on the Convex data set. SVMs with arc-
cosine kernels have error rates from 17.15–20.51%. Results are shown for kernels
of varying degrees (n) and numbers of layers (`). The best previous results are
19.13% for SVMs with RBF kernels and 18.63% for deep belief nets (Larochelle
et al., 2007). The error rate from the configuration that performed best on held-out
set is displayed. See text for details.

inherently shallow architectures, this variability is reminiscent of experience with

multilayer neural nets.

We explored the effects of multilayer kernels further on data sets in Sec-

tion 2.2, which were specifically designed to illustrate the advantages of deep archi-

tectures. Figures 4.7 and 4.8 show the test set error rates on the Rectangles-image

and the Convex data sets from SVMs with mixed-degree, multilayer arc-cosine

kernels. For these experiments, we used arc-cosine kernels of degree n=1 in all

but the first layer. The figures also show the best previous results from SVMs with

RBF kernels and three-layer deep belief nets (Larochelle et al., 2007). Overall, the

figures show that many SVMs with arc-cosine kernels outperform SVMs with RBF

kernels, and a certain number also outperform deep belief nets. The results on

the Rectangles-image data set show that the n = 0 kernel seems particularly well

suited to this task. The results on the Convex data set show a pronounced trend

in which increasing numbers of layers leads to lower error rates.

Beyond these improvements in performance, we also note that SVMs with

multilayer arc-cosine kernels are quite straightforward to train. Unlike SVMs with

47

8

12

16

20

DBN−3

SVM−RBF

Test error rate (%)

0

0,
1

0,
1,

1

0,
1,

1,
1

0,
1,

1,
1,

1

0,
1,

1,
1,

1,
1 1

1,
1

1,
1,

1

1,
1,

1,
1

1,
1,

1,
1,

1

1,
1,

1,
1,

1,
1 2

2,
1

2,
1,

1

2,
1,

1,
1

2,
1,

1,
1,

1

2,
1,

1,
1,

1,
1

16.3

Figure 4.9: Classification error rates on the MNIST-rand data set. SVMs with
arc-cosine kernels have error rates from 16.14–21.27%. Results are shown for ker-
nels of varying degrees (n) and numbers of layers (`). The best previous results
are 14.58% for SVMs with RBF kernels and 6.73% for deep belief nets (Larochelle
et al., 2007). The error rate from the configuration that performed best on held-out
set is displayed. See text for details.

RBF kernels, they do not require tuning a kernel width parameter, and unlike

deep belief nets, they do not require solving a difficult nonlinear optimization or

searching over many possible architectures. Thus, as a purely practical matter,

SVMs with multilayer arc-cosine kernels are very well suited for medium-sized

problems in binary classification.

We were curious if SVMs with arc-cosine kernels were discovering sparse

solutions to the above problems. To investigate this possibility, we compared the

numbers of support vectors used by SVMs with arc-cosine and RBF kernels. The

best SVMs with arc-cosine kernels used 9600 support vectors for the Rectangles-

image data set and 5094 support vectors for the Convex data set. These numbers

are slightly lower (by several hundred) than the numbers for RBF kernels; however,

they still represent a sizable fraction of the training examples for these data sets.

We experimented last on two challenging data sets in multiway classifi-

cation. Like the data sets in the previous experiments, these data sets were also

designed to illustrate the advantages of deep architectures (Larochelle et al., 2007).

They were created by adding different types of background noise to the MNIST

48

16

18

20

22

24

26

28

DBN−3

SVM−RBF

Test error rate (%)

0

0,
1

0,
1,

1

0,
1,

1,
1

0,
1,

1,
1,

1

0,
1,

1,
1,

1,
1 1

1,
1

1,
1,

1

1,
1,

1,
1

1,
1,

1,
1,

1

1,
1,

1,
1,

1,
1 2

2,
1

2,
1,

1

2,
1,

1,
1

2,
1,

1,
1,

1

2,
1,

1,
1,

1,
1

23.58

Figure 4.10: Classification error rates on the MNIST-image data set. SVMs
with arc-cosine kernels have error rates from 23.03–27.58%. Results are shown for
kernels of varying degrees (n) and numbers of layers (`). The best previous results
are 22.61% for SVMs with RBF kernels and 16.31% for deep belief nets (Larochelle
et al., 2007). The error rate from the configuration that performed best on held-out
set is displayed. See text for details.

images of handwritten digits. (See Section 2.2 for details.)

Figures 4.9 and 4.10 show the test set error rates of SVMs with multilayer

arc-cosine kernels. For these experiments, we again used arc-cosine kernels of

degree n=1 kernels in all but the first layer. Though we observed that arc-cosine

kernels with more layers often led to better performance, the trend was not as

pronounced as in previous sections. Moreover, on these data sets, SVMs with arc-

cosine kernels performed slightly worse than the best SVMs with RBF kernels and

significantly worse than the best deep belief nets.

On this problem, it is not too surprising that SVMs fare much worse than

deep belief nets. In particular, while deep belief nets can adaptively extract useful

features from all the training examples on this multiclass problem by unsupervised

pre-training methods, SVMs for each pair of different classes (i.e., one-versus-one

approach) can only consider the features extracted from limited sets of examples

(i.e., two classes in comparison). Even with the so-called one-versus-all approach,

this problem remains because SVMs are only allowed to consider features implicitly

generated by kernels, but it is hard to adapt these features explicitly according to

49

certain useful criteria like the reconstruction error in unsupervised pre-training of

deep architectures.

In addition, both arc-cosine and RBF kernels are rotationally invariant,

and such kernels are not well-equipped to deal with large numbers of noisy and/or

irrelevant features (Ng, 2004). Presumably, deep belief nets perform better be-

cause they can learn to directly suppress noisy pixels. The rotational invariance

of arc-cosine kernel could also be explicitly broken by integrating in eq. (2.1) over

a multivariate Gaussian distribution with a general (non-identity) covariance ma-

trix. By choosing the covariance matrix appropriately (or perhaps by learning it),

we could potentially tune arc-cosine kernels to suppress irrelevant features in the

inputs.

It is less clear why SVMs with arc-cosine kernels perform worse on these

data sets than SVMs with RBF kernels. Our results in multiway classification

were obtained by a naive combination of binary SVM classifiers, which may be a

confounding effect. We also examined the SVM error rates on the 45 sub-tasks of

one-against-one classification. Here we observed that on average, the SVMs with

arc-cosine kernels performed slightly worse (from 0.06–0.67%) than the SVMs with

RBF kernels, but not as much as the differences in Figures 4.9 and 4.10 might

suggest. In future work, we may explore arc-cosine kernels in a more principled

framework for multiclass SVMs (Crammer and Singer, 2001).

4.3.2 Kernel Multiplication

Our second set of experiments evaluated the product kernels described in

Section 4.2.2. We first experimented with product kernels that used the arc-cosine

kernels of the same degrees n=0, 1, 2 as individual factors (up to six) in the kernel

multiplication. Figure 4.11 shows the error rates on the MNIST data set from

SVMs with these kernels. From these experiments, we observed similar trends to

the case of multilayer kernels in Section 4.3.1: the performance generally improved

with increasing number of factors for the arc-cosine kernels with degree n=0, but

generally worsened for the other cases. Interestingly, this trend is consistent with

our previous hypothesis—preserving the magnitude information is important for

50

2

3

4

5

6

Test error rate (%)

0

0x
0

0x
0x

0

0x
0x

0x
0

0x
0x

0x
0x

0

0x
0x

0x
0x

0x
0 1

1x
1

1x
1x

1

1x
1x

1x
1

1x
1x

1x
1x

1

1x
1x

1x
1x

1x
1 2

2x
2

2x
2x

2

2x
2x

2x
2

2x
2x

2x
2x

2

2x
2x

2x
2x

2x
2

(a) Same-degree product kernels

1.2

1.3

1.4

1.5

1.6

1.7

Test error rate (%)

0

0x
0

0x
0x

0

0x
0x

0x
0

0x
0x

0x
0x

0

0x
0x

0x
0x

0x
0 1

1x
0

1x
0x

0

1x
0x

0x
0

1x
0x

0x
0x

0

1x
0x

0x
0x

0x
0 2

2x
0

2x
0x

0

2x
0x

0x
0

2x
0x

0x
0x

0

2x
0x

0x
0x

0x
0

1.41

(b) Mixed-degree product kernels

Figure 4.11: Test error rates on the MNIST data set from SVMs with product
arc-cosine kernels. The figure shows results for kernels of varying degrees (n)
and numbers of factors (m). In one set of experiments, the product kernels were
constructed by multiplying arc-cosine kernels of the same degree. In another set
of experiments, only arc-cosine kernels of degree n= 0 were used as new factors.
Other formatting details follow Figure 4.6.

51

22

23

24

25

DBN−3

SVM−RBF

Test error rate (%)

0

0x
0

0x
0x

0

0x
0x

0x
0

0x
0x

0x
0x

0

0x
0x

0x
0x

0x
0 1

1x
0

1x
0x

0

1x
0x

0x
0

1x
0x

0x
0x

0

1x
0x

0x
0x

0x
0 2

2x
0

2x
0x

0

2x
0x

0x
0

2x
0x

0x
0x

0

2x
0x

0x
0x

0x
0

22.66

(a) Rectangles-image

17

18

19

20

21

DBN−3
SVM−RBF

Test error rate (%)

0

0x
0

0x
0x

0

0x
0x

0x
0

0x
0x

0x
0x

0

0x
0x

0x
0x

0x
0 1

1x
0

1x
0x

0

1x
0x

0x
0

1x
0x

0x
0x

0

1x
0x

0x
0x

0x
0 2

2x
0

2x
0x

0

2x
0x

0x
0

2x
0x

0x
0x

0

2x
0x

0x
0x

0x
0

19.74

(b) Convex

Figure 4.12: Classification error rates on the Rectangles-image (top) and Convex
(bottom) data sets with product arc-cosine kernels. Results are shown for ker-
nels of varying degrees (n) and numbers of factors (m). The error rate from the
configuration that performed best on held-out set is displayed.

the classification performance. In particular, we can easily see that the multipli-

cation by arc-cosine kernels of degree n= 0 does not affect the norms of mapped

inputs in feature space:

kn1×0×0...×0(x,x) = kn1(x,x). (4.12)

52

8

12

16

20

DBN−3

SVM−RBF

Test error rate (%)

0

0x
0

0x
0x

0

0x
0x

0x
0

0x
0x

0x
0x

0

0x
0x

0x
0x

0x
0 1

1x
0

1x
0x

0

1x
0x

0x
0

1x
0x

0x
0x

0

1x
0x

0x
0x

0x
0 2

2x
0

2x
0x

0

2x
0x

0x
0

2x
0x

0x
0x

0

2x
0x

0x
0x

0x
0

15.81

(a) MNIST-rand

16

18

20

22

24

26

28

DBN−3

SVM−RBF

Test error rate (%)

0

0x
0

0x
0x

0

0x
0x

0x
0

0x
0x

0x
0x

0

0x
0x

0x
0x

0x
0 1

1x
0

1x
0x

0

1x
0x

0x
0

1x
0x

0x
0x

0

1x
0x

0x
0x

0x
0 2

2x
0

2x
0x

0

2x
0x

0x
0

2x
0x

0x
0x

0

2x
0x

0x
0x

0x
0

21.92

(b) MNIST-image

Figure 4.13: Classification error rates on the MNIST-rand (top) and MNIST-
image (bottom) data sets with product arc-cosine kernels. Same format as Fig-
ure 4.12.

Based on this observation, we focused only on the case where at most one

of the arc-cosine kernels in this product had non-zero degree. Figure 4.11 shows

these sets of results in the bottom panel where we find such construction often

leads to much improved error rates, similar to the trend in Figure 4.6. We also ex-

tensively evaluated product kernels in this form on the other data sets (Rectangles-

image, Convex, MNIST-rand, and MNIST-image) from the deep learning bench-

53

0

0.5

1

θ

0 π/4 π/2 3π/4 π

J0(θ)/π

J1(θ)/π

J2(θ)/3π

J0(θ)2/π2

J0(θ)3/π3

Figure 4.14: Behavior of the function Jn(θ) in eq. (2.4) including the case of
multiplying by certain powers of the arc-cosine kernel of degree n=0.

marks (Larochelle et al., 2007). Figures 4.12–4.13 show the results from these

experiments, where we find again that product kernels lead to consistent improve-

ment in many cases. Not surprisingly, though, the gains from product kernels

eventually saturate and/or reverse themselves as more products are accumulated.

We can only speculate why the product operation in eq. (4.11) leads to

such significant improvement. Consider the plot in Figure 4.14, which shows the

effect of multiplying by powers of the arc-cosine kernel of degree n = 0. Note

that (J0(θ)/π)m has an increasingly negative slope at θ = 0 with increasing m.

Intuitively, large negative slopes at θ= 0 indicate that nearby inputs (with small

angles between them) are mapped to distant points in feature space. Thus, product

kernels with powers of k0(x,y) warp the input space by repelling nearby inputs

while preserving their individual norms. Perhaps the classification results improve

under this operation because the increased sensitivity to angular displacements in

the input space leads to better separation of different (but easily confused) classes.

4.3.3 Kernel Averaging

Our last set of experiments evaluated kernels obtained by averaging. We ex-

perimented by averaging kernels over many different types of ensembles: arc-cosine

kernels of different degree, multilayer kernels of different depth, product kernels

54

of different powers, and various combinations of the above. We also experimented

with many forms of preprocessing (e.g., rescaling, centering) before averaging. The

results of these experiments were uniformly negative: in most cases, SVMs with

averaged kernels showed no improvement or yielded worse error rates. Rather than

expanding the feature space and enabling individual kernels to complement each

other, the averaging operation seemed only to dilute the effectiveness of the best

individual kernel.

4.4 Discussion

In this chapter, we demonstrated how to extend the family of arc-cosine

kernels using kernel composition, multiplication, and averaging. The resulting arc-

cosine kernels could be interpreted in the context of multilayer neural networks,

and we obtained promising experimental results on certain classification tasks that

could support this direction of research.

As partly discussed in Section 2.3, several researchers have also explored

connections between kernel machines and deep learning. Bengio et al. (2006)

showed how to formulate the training of multilayer neural networks as a prob-

lem in convex optimization; though the problem involves an infinite number of

variables, corresponding to all possible hidden units, finite solutions are obtained

by regularizing the weights at the output layer and incrementally inserting one

hidden unit at a time. Related ideas were also previously considered by Lee et al.

(1996) and Zhang (2003).

Rahimi and Recht (2009) studied networks that pass inputs through a large

bank of arbitrary randomized nonlinearities, then compute weighted sums of the

resulting features; these networks can be designed to mimic the computation in

kernel machines, while scaling much better to large data sets. For the most part,

these previous studies have exploited the connection between kernel machines and

neural networks with one layer of hidden units. Our contribution to this line of

work has been to develop a more direct connection between kernel machines and

multilayer neural networks. This connection was explored through the recursive

55

construction of multilayer kernels in Section 4.2.1.

Our work was also motivated by the ongoing debate over deep versus shal-

low architectures (Bengio and LeCun, 2007). Motivated by similar issues, We-

ston et al. (2008) suggested that kernel methods could play a useful role in deep

learning; specifically, these authors showed that shallow architectures for nonlin-

ear embedding could be used to define auxiliary tasks for the hidden layers of

deep architectures. Our results suggest another way that kernel methods may play

a useful role in deep learning—by mimicking directly the computation in large,

multilayer neural networks.

For future research directions, we are currently exploring the use of arc-

cosine kernels in other types of kernel machines besides SVMs, including architec-

tures for unsupervised and semi-supervised learning. This work was motivated by

the weakness of SVMs in the noisy multiclass data sets in Section 4.3.1. In the

next chapter, we show a proof-of-concept model for this direction by combining

ideas from kernel principal component analysis (Schölkopf et al., 1998), discrim-

inative feature selection (Guyon and Elisseeff, 2003), and large margin nearest

neighbor classification (Weinberger and Saul, 2009). Finally, we are also interested

in more effective schemes to combine arc-cosine kernels. In particular, multiple

kernel learning (Lanckriet et al., 2004; Rakotomamonjy et al., 2008; Bach, 2009;

Cortes et al., 2010) is an interesting generalization of the kernel averaging, and

we hope it can address the issues raised in Section 4.3.3 and eventually provide

compelling options for kernel combination.

Chapter 4, in part, is a reprint of the material as it appears in Advances

in Neural Information Processing Systems 22. Cho, Y. and Saul, L. K. The thesis

author was the primary investigator and author of this work.

Chapter 4, in part, is a reprint of the material as it appears in Neural

Computation 22(10). Cho, Y. and Saul, L. K. The thesis author was the primary

investigator and author of this work.

Chapter 5

Multilayer Kernel Machines

5.1 Introduction

In this chapter, we explore how to construct new hierarchical kernel ma-

chines to overcome the weakness of SVMs. As noted in Section 4.3.1, SVMs with

multilayer arc-cosine kernels have difficulties in fully utilizing training sets of mul-

ticlass problems in unsupervised fashion. Also, it is not obvious for the multilayer

arc-cosine kernels to suppress irrelevant input features directly because it may be

hard to filter out such noise when the kernel operation intermingles it with other

useful features, which can be even problematic for iterated kernel operations in the

multilayer arc-cosine kernels.

In fact, these shortcomings of SVMs turn out to be the rationale behind

using deep architectures. Specifically, deep architectures have been benefited much

from the unsupervised pre-training stage in terms of training efficiency and test

performance (Erhan et al., 2010). Also, deep architectures can adapt all the weight

parameters in the network (including the ones linked to input features) with respect

to the tasks they solve. In contrast, SVMs with multilayer arc-cosine kernels can

adapt only the weight of the final decision boundary.

Inspired by such desirable properties of the deep architectures, we introduce

an alternative kernel-based model, called a multilayer kernel machine (MKM). The

main idea is to incorporate unsupervised dimensionality reduction and supervised

feature selection techniques into the multilayer arc-cosine kernels; the former of

56

57

X
Supervised feature selection // X̃

Arc-cosine kernel

��

Ψ(X̃)
Finite dimension

Set as new representation

OO

Φ(X̃)
Infinite dimension

Unsupervised dimensionality reductionoo

Figure 5.1: Main concept in multilayer kernel machines (MKMs). Input data X
(upper left) are transformed sequentially by supervised feature selection, arc-cosine
kernel, and unsupervised dimensionality reduction. This cycle is repeated multiple
times to construct an MKM.

which integrates unsupervised learning schemes into arc-cosine kernels while the

latter aims to suppress irrelevant features.

5.2 Principles of Multilayer Kernel Machines

5.2.1 Main Idea

Figure 5.1 illustrates the main concept of MKMs: first, the original input

data X are filtered to contain only the features relevant to the label informa-

tion; second, the resulting data X̃ are fed to arc-cosine kernels which (implicitly)

construct infinite dimensional representation Φ(X̃); third, unsupervised dimen-

sionality reduction is applied on Φ(X̃) in feature space and finite dimensional

representation Ψ(X̃) is obtained as a result; fourth, we set Ψ(X̃) as new input

features and repeat the previous steps multiple, say L, times to construct L-layer

feature hierarchy of MKMs. Finally, we feed the features at the last layer to any

off-the-shelf classifiers to make a final decision.

Note that our goal in this work is to demonstrate kernel methods can also

be extended to hierarchical structures without requiring complicated machinery,

but simply with leveraging existing machine learning methods for feature selection,

58

dimensionality reduction, and multiclass classification. Therefore, it is definitely

possible to implement this high-level concept of MKMs by choosing different ma-

chine learning techniques for certain components of the model. Our implementa-

tion of the concept is presented in Section 5.2.3 and we also briefly discuss other

alternative configurations in Section 5.3.

5.2.2 Comparison with Multilayer Arc-cosine Kernels

Multilayer kernel machines were inspired by multilayer arc-cosine kernels

in Section 4.2.1 and actually they can be regarded as a denoised version of the

multilayer arc-cosine kernels.

Figure 5.2 compares these two architectures. Basically, both models apply

arc-cosine kernels Φ(·) at each layer to sequentially transform the input data to

the final representations. While these final features are just fed to SVMs in multi-

layer arc-cosine kernels, MKMs have additional procedures to modify the features

at every layer. Most significantly, MKMs reduce the dimensionality of the kernel

representation to decrease noise and also provide compact representations of the

data. This unsupervised dimensionality reduction stage turns an infinite dimen-

sional representation Φ(·) into a finite dimensional representation Ψ(·), which has

two effects in the MKM architecture as follows.

First, it becomes possible to explicitly evaluate individual features based on

their relevance to label information—which may not be straightforward for implicit

representation of the data in the kernel space—and remove irrelevant ones among

them. In Figure 5.2, such pruned features are denoted as dotted circles, which do

not have upward weights to the next layer.

Second, we can use any general classifiers at the final layer other than non-

linear SVMs because again the data at the final layer are not expressed implicitly

in the kernel space. For example, we use Mahalanobis distance metric learning for

this purpose in our implementation, which may be hard to apply with the “kernel

trick”. In general, this means we are provided more flexibility in incorporating

MKMs with other parts of a bigger learning system.

59

... ...

... ...

... ...

(a) SVMs with multilayer arc-cosine kernels.

... ...

... ...

... ...

(b) Multilayer kernel machines.

Figure 5.2: Comparison between (a) multilayer arc-cosine kernels and (b) mul-
tilayer kernel machines (MKMs). As in multilayer arc-cosine kernels, MKMs use
arc-cosine kernels Φ(·) repeatedly to build a kernel hierarchy. In MKMs, however,
irrelevant features (dotted circles) are pruned at every layer, and the dimension-
ality of data is reduced by Ψ(·) (shaded circles) at every layer except the original
input layer. For the final classification layer, MKMs can use any general classifiers,
not necessarily SVMs.

60

Prune uninformative features from inputs X0 using mutual
information.
` = 0.
while ` < L do

Compute k(X`,X`). (e.g., arc-cosine kernel)
Extract principal components V` in the feature space induced
by k(X`,X`).
X`+1 = V` ·Φ(X`).
Prune uninformative components from X`+1.
` = `+ 1.

end
Learn Mahalanobis distance metric for k-NN classification of XL.

Figure 5.3: Training procedures for multilayer kernel machines. See text for
details.

5.2.3 Implementation

In this section, we show how we have implemented MKMs by supplement-

ing multilayer arc-cosine kernels with kernel principal components analysis (kernel

PCA) (Schölkopf et al., 1998) and feature selection (Guyon and Elisseeff, 2003) at

intermediate hidden layers and large-margin nearest neighbor classification (Wein-

berger and Saul, 2009) at the final output layer. Specifically, for L-layer MKMs,

we consider the training procedure in Figure 5.3.

The individual steps in this procedure are well-established methods; only

their combination is new. While many other approaches are worth investigating,

our positive results from the above procedure provide a first proof-of-concept. We

discuss each of these steps in greater detail below.

Kernel PCA

Deep learning in MKMs is achieved by iterative applications of kernel prin-

cipal components analysis (Schölkopf et al., 1998). This use of kernel PCA was

suggested over a decade ago (Schölkopf et al., 1996) and more recently inspired

by the pre-training of deep belief nets by unsupervised methods. In MKMs, the

outputs (or features) from kernel PCA at one layer are the inputs to kernel PCA

61

at the next layer. However, we do not strictly transmit each layer’s top principal

components to the next layer; some components are discarded if they are deemed

uninformative. While any nonlinear kernel can be used for the layerwise PCA in

MKMs, arc-cosine kernels are natural choices to mimic the computations in large

neural nets.

Feature Selection

The layers in MKMs are trained by interleaving a supervised method for

feature selection with the unsupervised method of kernel PCA. The feature se-

lection is used to prune away uninformative features at each layer in the MKM

(including the zeroth layer which stores the raw inputs). Intuitively, this feature

selection helps to focus the unsupervised learning in MKMs on statistics of the

inputs that actually contain information about the class labels. We prune features

at each layer by a simple two-step procedure that first ranks them by estimates

of their mutual information, then truncates them using cross-validation. More

specifically, in the first step, we discretize each real-valued feature and construct

class-conditional and marginal histograms of its discretized values; then, using

these histograms, we estimate each feature’s mutual information with the class

label and sort the features in order of these estimates (Guyon and Elisseeff, 2003).

In the second step, considering only the first w features in this ordering, we com-

pute the error rates of a basic k-nearest neighbor (k-NN) classifier using Euclidean

distances in feature space. We compute these error rates on a held-out set of vali-

dation examples for many values of k and w and record the optimal values for each

layer. The optimal w determines the number of informative features passed onto

the next layer; this is essentially the width of the layer. In practice, we varied k

from 1 to 15 and w from 10 to 300; though exhaustive, this cross-validation can

be done quickly and efficiently by careful bookkeeping. Note that this procedure

determines the architecture of the network in a greedy, layer-by-layer fashion.

62

Distance Metric Learning

Test examples in MKMs are classified by a variant of k-NN classification

on the outputs of the final layer. Specifically, we use large margin nearest neigh-

bor (LMNN) classification (Weinberger and Saul, 2009) to learn a Mahalanobis

distance metric for these outputs, though other methods are equally viable (Gold-

berger et al., 2005). The use of LMNN is inspired by the supervised fine-tuning

of weights in the training of deep architectures (Bengio et al., 2007). In MKMs,

however, this supervised training only occurs at the final layer (which underscores

the importance of feature selection in earlier layers). LMNN learns a distance met-

ric by solving a problem in semidefinite programming; one advantage of LMNN

is that the required optimization is convex. Test examples are classified by the

energy-based decision rule for LMNN (Weinberger and Saul, 2009), which was

itself inspired by earlier work on multilayer neural nets (Chopra et al., 2005).

5.3 Experimental Results

We evaluated MKMs on the two multiclass data sets MNIST-rand and

MNIST-image from deep learning benchmarks (Larochelle et al., 2007) in pre-

vious sections, which exhibited the largest performance gap between deep archi-

tectures and shallow ones including SVMs with multilayer arc-cosine kernels in

Section 4.3.1.

We trained MKMs with arc-cosine kernels in each layer. For each data

set, we initially withheld the last 2000 training examples as a validation set. Per-

formance on this validation set was used to determine each MKM’s architecture,

as described in the previous section. Once these parameters were set by cross-

validation, we re-inserted the validation examples into the training set and used

all 12000 training examples for feature selection and distance metric learning. For

kernel PCA, we were limited by memory requirements to processing only 6000 out

of 12000 training examples. We chose these 6000 examples randomly, but repeated

each experiment five times to obtain a measure of average performance. The results

we report for each MKM are the average performance over these five runs.

63

5

6

7

8

DBN−3

Test error rate (%)

LM
N

N 0

0−
1

0−
1−

1

0−
1−

1−
1

0−
1−

1−
1−

1

LM
N

N 1

1−
1

1−
1−

1

1−
1−

1−
1

1−
1−

1−
1−

1

LM
N

N 2

2−
1

2−
1−

1

2−
1−

1−
1

2−
1−

1−
1−

1

6.17

Figure 5.4: Classification error rates on the MNIST-rand data set for MKMs
with different kernels and numbers of layers. The notation n1–n2–. . . –nL in the
horizontal axis means an MKM whose ith layer uses the arc-cosine kernel of degree
ni, while “LMNN” corresponds to the result of using LMNN with feature selection
only (but without arc-cosine kernels or kernel PCA). MKMs with arc-cosine kernel
have error rates from 6.13–7.69%. The error rate from the configuration that
performed best on held-out set is displayed. The best previous results are 14.58%
for SVMs with RBF kernels (not shown) and 6.73% for deep belief nets (Larochelle
et al., 2007). See text for details.

Figures 5.4 and 5.5 show the test set error rates of MKMs with different

kernels and numbers of layers. For reference, we also show the best previously

reported results (Larochelle et al., 2007) using traditional SVMs with RBF kernels

and deep belief nets with three layers. MKMs perform significantly better than

shallow architectures such as SVMs with RBF kernels or LMNN with feature

selection only (reported as “LMNN”). Compared to deep belief nets, the leading

MKMs obtain slightly lower error rates on one data set and slightly higher error

rates on another. MKMs worked best with arc-cosine kernels of degree n= 0 and

n=1. The kernel of degree n=2 performed less well in MKMs.

Finally, we briefly summarize experiments on MKMs for further analysis. In

particular, we attempted to evaluate the individual contributions to performance

from feature selection and LMNN classification. Feature selection helped signifi-

cantly on the MNIST-image data set, but only slightly on the MNIST-rand data

64

16

18

20

22

DBN−3

SVM−RBF

Test error rate (%)

LM
N

N 0

0−
1

0−
1−

1

0−
1−

1−
1

0−
1−

1−
1−

1

LM
N

N 1

1−
1

1−
1−

1

1−
1−

1−
1

1−
1−

1−
1−

1

LM
N

N 2

2−
1

2−
1−

1

2−
1−

1−
1

2−
1−

1−
1−

1

18.87

Figure 5.5: Classification error rates on the MNIST-image data set for MKMs
with different kernels and numbers of layers. Same horizontal axis as Figure 5.4.
MKMs with arc-cosine kernel have error rates from 17.91–23.50%. The error rate
from the configuration that performed best on held-out set is displayed. The best
previous results are 22.61% for SVMs with RBF kernels and 16.31% for deep belief
nets (Larochelle et al., 2007). See text for details.

set. On the other hand, LMNN classification in the output layer yielded consistent

improvements over basic k-NN classification provided that we used the energy-

based decision rule (Weinberger and Saul, 2009). Also, we tested the idea of using

RBF kernels in place of arc-cosine kernels to build MKMs (even though arc-cosine

kernels are natural choices for hierarchical structure). It turned out, however,

MKMs with RBF kernels were difficult to train due to the sensitive dependence

on kernel width parameters. It was extremely time-consuming to cross-validate

the kernel width at each layer of the MKM. We only obtained meaningful results

for one and two-layer MKMs with RBF kernels, which were still inferior to MKMs

with arc-cosine kernels.

5.4 Discussion

In this chapter, we explored a novel approach to use kernel methods in

hierarchical fashion. We showed how to train deep kernel-based architectures by

a simple combination of supervised and unsupervised methods. Using the arc-

65

cosine kernels as the main part of the model, these multilayer kernel machines

(MKMs) performed very competitively on multiclass data sets designed to foil

shallow architectures (Larochelle et al., 2007).

Despite such state-of-the-art performance, MKMs still have rooms for fur-

ther improvement. In particular, we discovered the greedy choice of hyperpa-

rameters (e.g., network structure) was somewhat prone to overfitting to training

examples, and especially this was misleading for the MNIST-image data set. For

example, the performance of MKMs had higher correlation with the number of lay-

ers in training set, but we found this trend was not followed closely in test set as

shown in Figure 5.5. It seems overfitted choice of hyperparameters at lower layers

has limited the possibilities for the upper layers to produce meaningful features.

Besides such hyperparameter issue, the feature selection step of MKMs

was also revealed to be rather inefficient because we assumed the independence

of features given the label, which is not true in practice. As a result, the criteria

by which the features were selected might be biased towards individual features

having high mutual information with labels, even when some of them provided

redundant information (e.g., nearby pixels in images). Considering that m best

features are not the best m features in general, we need a more sophisticated

strategy for feature selection in MKMs.

Chapter 5, in part, is a reprint of the material as it appears in Advances

in Neural Information Processing Systems 22. Cho, Y. and Saul, L. K. The thesis

author was the primary investigator and author of this work.

Chapter 6

Analysis of Arc-cosine Kernels

with Differential Geometry

6.1 Introduction

Given their competitive results from the previous chapters, it seems worth

exploring theoretical properties of arc-cosine kernels further. In this chapter, we

investigate the geometric properties of arc-cosine kernels in much greater detail.

Specifically, we analyze the geometry of surfaces in Hilbert space that are induced

by these kernels. These surfaces are the images of the input space under the im-

plicit nonlinear mapping performed by the kernel; see Figure 6.1. Our analysis

yields a richer understanding of the geometry of these surfaces (and by associa-

tion, the nonlinear transformations parameterized by large neural networks). We

also compare and contrast our results to those previously obtained for RBF and

polynomial kernels (Amari and Wu, 1999; Burges, 1999).

As one important theoretical contribution, our analysis shows that arc-

cosine kernels of different degrees have qualitatively different geometric properties.

In particular, for some kernels in this family, the surface in Hilbert space is de-

scribed by a curved Riemannian manifold; for another kernel, this surface is flat,

with zero intrinsic curvature; finally, for the simplest member of the family, this

surface cannot be described as a manifold at all. It seems that the family of arc-

66

67

Φ : x → Φ(x)

Figure 6.1: The kernel function induces a mapping from the input space into
a nonlinear feature space. We can study the geometry of this surface in feature
space—for example, asking how arc lengths and volume elements transform under
this mapping.

cosine kernels exhibits a larger variety of behaviors than other popular families of

kernels.

One preliminary, but interesting, result is that for certain arc-cosine ker-

nels, the implicit mapping into feature space preserves local distances and volume

elements. In Section 6.3, we show how the geometric properties of these ker-

nels open up new directions for deep learning and independent component anal-

ysis (ICA) (Jutten and Karhunen, 2004). In particular, we use these kernels to

define nonlinear probabilistic models that mimic the transformations of multilayer

neural networks but do not involve complicated Jacobians.

6.2 Analysis

In this section, we examine the properties of arc-cosine kernels using tools

from differential geometry (Amari and Wu, 1999; Burges, 1999). Specifically, we

analyze the geometry of surfaces in Hilbert space that are induced by these kernels.

When this geometry is described by a Riemannian manifold, we derive results for

the metric, curvature, and volume element. We also examine a kernel in this family

that does not admit such an interpretation.

68

6.2.1 Riemannian Geometry

We can understand the family of arc-cosine kernels better by analyzing

the geometry of surfaces in Hilbert space. For surfaces that can be described as

Riemannian manifolds, Burges (1999) and Amari and Wu (1999) showed how to

derive the metric, volume element, and curvature directly from the kernel function.

In this section, we use these methods to study arc-cosine kernels of degree n ≥ 1.

As some of the calculations are lengthy, we sketch the main results here while

providing more detailed derivations in Appendix D.

Metric

We briefly review the relation of the metric to the kernel function k(x,y).

Consider the surface in Hilbert space parameterized by the input coordinates xµ.

The line element on the surface is given by:

ds2 = ‖Φ(x+dx)−Φ(x)‖2

= k(x+dx,x+dx)− 2k(x,x+dx) + k(x,x). (6.1)

We identify the metric gµν by expanding the right hand side to second order in the

displacement dx:

ds2 = k(x,x) + k(x+dx,x+dx)− 2k(x,x+dx) (6.2)

= k(x,x) + k(x,x) +
∑
µ

dxµ
∂

∂xµ
k(x,x) +

1

2!

∑
µν

dxµdxν
∂

∂xµ

∂

∂xν
k(x,x) (6.3)

−2

(
k(x,x) +

∑
µ

dxµ

[
∂

∂yµ
k(x,y)

]
y=x

+
1

2!

∑
µν

dxµdxν

[
∂

∂yµ

∂

∂yν
k(x,y)

]
y=x

)

=
1

2

∑
µν

dxµdxν
∂

∂xµ

∂

∂xν
k(x,x)−

∑
µν

dxµdxν

[
∂

∂yµ

∂

∂yν
k(x,y)

]
y=x

. (6.4)

In terms of the metric, the line element is given by:

ds2 = gµνdx
µdxν , (6.5)

69

where a sum over repeated indices is implied. Finally, equating the last two ex-

pression gives:

gµν =
1

2

∂

∂xµ

∂

∂xν
k(x,x)−

[
∂

∂yµ

∂

∂yν
k(x,y)

]
y=x

(6.6)

provided that the kernel function k(x,y) is twice-differentiable.

We now consider the metrics induced by the family of arc-cosine kernels

kn(x,y) in eq. (2.3) of degree n ≥ 1. As a first step, we analyze the behavior of

these kernels for nearby inputs x ≈ y. This behavior is in turn determined by

the behavior of the functions Jn(θ) in eq. (2.4) for small values of θ. For n ≥ 1,

this behavior is locally quadratic with a maximum at θ = 0. In particular, by

expanding the integral representation in eq. (2.1) for small values of θ, it can be

shown that:

Jn(0) = π (2n−1)!!, (6.7)

Jn(θ) ≈ Jn(0)

(
1− n2θ2

2(2n−1)

)
, (6.8)

where (2n−1)!! = (2n)!
2n n!

is known as the double-factorial function. Together with

eq. (2.3), the quadratic expansion in eq. (6.8) captures the behavior of the arc-

cosine kernels kn(x,y) for nearby inputs x ≈ y. It follows from eq. (6.6) that this

behavior also determines the form of the metric.

The metrics for arc-cosine kernels of degree n ≥ 1 can be derived by sub-

stituting the general form in eq. (2.3) into eq. (6.6). After some algebra (see

Appendix D), this calculation gives:

gµν = n2(2n−3)!! ‖x‖2n−2
(
δµν + 2(n−1)

xµxν
‖x‖2

)
. (6.9)

In general, this metric differs from the Euclidean metric in the prefactor ‖x‖2n−2

and the projection component xµxν/‖x‖2. However, it is worth distinguishing two

qualitatively different regimes of behavior.

70

Table 6.1: Comparison of the metric gµν and scalar curvature S for different
kernels over inputs x ∈ Rd. The results for polynomial (the second row) and RBF
kernels (the third row) were derived by Burges (1999). The results for arc-cosine
kernels (the bottom row) are valid for kernels of order n ≥ 1.

k(x,y) gµν S

x · y δµν 0

(x · y)p p ‖x‖2p−2
(
δµν + (p−1)xµxν‖x‖2

)
(p−1)(2−d)(d−1)

p‖x‖2p

e−‖x−y‖2/σ2
(2/σ2)δµν 0

‖x‖n‖y‖n
π

Jn(θ) n2(2n−3)!! ‖x‖2n−2
(
δµν + 2(n−1)xµxν‖x‖2

)
3(n−1)2 (2−d) (d−1)
n2 (2n−1)!! ‖x‖2n

Case n = 1: the manifold is flat.

Though the metric in eq. (6.9) is generally non-Euclidean, an interesting

result emerges in the special case n= 1: it reduces to the Euclidean metric gµν =

δµν . Thus, despite performing a highly nonlinear mapping, the n = 1 arc-cosine

kernel induces a surface in Hilbert space that is intrinsically flat. In Section 2.1.1,

we observed that the n = 1 arc-cosine kernel preserves the norm of inputs with

k1(x,x) = ‖x‖2. In this section, we have shown that also like the purely linear

kernel, it preserves the fully Euclidean metric.

In fact, it is not unusual for nonlinear kernels to preserve the Euclidean

metric. Burges (1999) observed that all translationally invariant kernels of the form

k(x,y) = k(x−y) have this property, including the popular family of RBF kernels.

Note, however, that the n=1 arc-cosine kernel is not translationally invariant. It

represents a different form of nonlinearity that nonetheless preserves the Euclidean

metric.

Case n ≥ 2: the manifold is curved.

The metrics from arc-cosine kernels of degree n≥ 2 have a similar form as

metrics from homogeneous polynomial kernels of degree p ≥ 2. Table 6.1 compares

our results to previous results obtained for polynomial and RBF kernels (Amari

and Wu, 1999; Burges, 1999). We will see later that the metric in eq. (6.9) describes

71

a manifold with non-zero intrinsic curvature if the inputs x ∈ Rd live in three or

more dimensions (d > 2).

Volume element

The metric gµν determines other interesting quantities as well. For example,

the volume element dV on the manifold is given by:

dV =
√

det gµν dx. (6.10)

Assuming that the mapping from inputs to features is one-to-one, the volume

element determines how a probability density transforms under this mapping.

The determinant of the metric for arc-cosine kernels is straightforward to

compute. In particular, noting that the metric in eq. (6.9) is proportional to the

identity matrix plus a projection matrix:

g = n2(2n−3)!! ‖x‖2n−2
(

I +
2(n−1)

‖x‖2
xx>

)
, (6.11)

we find:

det(g) = (2n−1)
(
n2(2n−3)!! ‖x‖2n−2

)d
. (6.12)

For the special case n= 1, this expression reduces to det(g) = 1, consistent with

the previous observation that in this case, the metric is Euclidean.

Curvature

The metric gµν also determines the intrinsic curvature of the manifold. The

curvature is expressed in terms of the Christoffel elements of the second kind:

Γαβγ =
1

2
gαµ
(
∂βgγµ − ∂µgβγ + ∂γgµβ

)
, (6.13)

where ∂µ = ∂/∂xµ denotes the partial derivative and gαµ denotes the matrix in-

verse of the metric. In terms of these quantities, the Riemann curvature tensor is

72

given by:

Rναβ
µ = ∂αΓµβν − ∂βΓµαν + ΓρανΓ

µ
βρ − ΓρβνΓ

µ
αρ . (6.14)

The elements of Rναβ
µ vanish for a manifold with no intrinsic curvature. The

scalar curvature is given by:

S = gνβRνµβ
µ. (6.15)

The scalar curvature describes the amount by which the volume of a geodesic ball

on the manifold deviates from that of a ball in Euclidean space.

Substituting the metric in eq. (6.9) into eqs. (6.13–6.15), we obtain the

scalar curvature for surfaces in Hilbert space induced by arc-cosine kernels:

S =
3(n−1)2 (2−d) (d−1)

n2 (2n−1)!! ‖x‖2n
. (6.16)

Note that the curvature vanishes for the kernel of degree n= 1, as well as for all

kernels in this family when the inputs x ∈ Rd lie in R1 or R2. The vanishing of

the curvature in these circumstances is also observed in the family of homogeneous

polynomial kernels, as shown in Table 6.1.

6.2.2 Non-analytic Kernels

Next we show that the n = 0 arc-cosine kernel does not induce a surface

in Hilbert space whose geometry can be described as a Riemannian manifold.

Consider the squared distance between the feature vectors Φ(x) and Φ(x+dx)

induced by this kernel for an infinitesimal displacement dx. To begin, we compute

this distance for non-radial displacements dx⊥ that are orthogonal to x, satisfying

x · dx⊥ = 0. Recall that the n = 0 arc-cosine kernel maps all inputs x to the unit

73

hypersphere in feature space, with k0(x,x) = 1. Exploiting this property, we find:

‖Φ(x + dx⊥)−Φ(x)‖2

= k0(x+dx⊥,x+dx⊥) + k0(x,x)− 2k0(x,x+dx⊥)

= (2/π) cos−1(‖x‖/‖x + dx⊥‖)

= (2/π) sin−1(‖dx⊥‖/‖x + dx⊥‖)

≈ (2/π)‖dx⊥‖/‖x‖, (6.17)

where in the last line we have approximated the right hand side by its first-order

Taylor series and kept only leading terms.

To generalize eq. (6.17) to arbitrary displacements, we note that the n= 0

arc-cosine kernel is invariant to the magnitude of its arguments, depending only

on the angle θ between them. Thus, eq. (6.17) generalizes easily to displacements

dx that include a radial component. In particular, we can write:

‖Φ(x + dx)−Φ(x)‖2 =
2

π‖x‖

√
dx>

(
Id−

xx>

‖x‖2

)
dx, (6.18)

which merely projects out the radial component before computing the infinitesimal

squared distance; here Id is the d×d identity matrix.

Note that the right hand side of eq. (6.18) does not have the form of a

Riemannian metric. In particular, the infinitesimal squared distance in feature

space scales linearly not quadratically with ‖dx⊥‖. This behavior arises from the

non-analyticity of the arc-cosine function, which does not admit a Taylor series

expansion around its root at unity: cos−1(1− ε) ≈
√

2ε for 0 < ε � 1. This non-

analyticity not only distinguishes the n = 0 arc-cosine kernel from higher-order

kernels in this family, but also from all polynomial and RBF kernels.

Interestingly, it turns out the arc-cosine kernel with smoothed threshold

functions in eq. (3.15) removes the non-analyticity of the arc-cosine kernel of degree

n=0. In fact, it is straightforward to compute the Riemannian metric and volume

74

element associated with the kernel in eq. (3.16) (see Appendix D):

gµν =
1

πσ
√

2‖x‖2 + σ2

(
δµν −

2xµxν
2‖x‖2 + σ2

)
, (6.19)

det(g) =
1

πdσd−2(2‖x‖2 + σ2)
d
2
+1
. (6.20)

Two observations are worth making here. First, from eq. (6.19), we see that the

metric diverges as σ vanishes, reflecting the non-analyticity of the arc-cosine kernel

of degree n= 0. Second, from eq. (6.20), we see that the volume element shrinks

with increasing distance from the origin in input space (i.e., with increasing ‖x‖);
this property distinguishes this kernel from all the other kernels in Section 6.2.1.

6.3 Kernel Geometry and Probabilistic Model-

ing

6.3.1 Jacobians for Deep Learning

Consider the mapping induced by a multilayer arc-cosine kernel composed

of degree n=1 kernels. Since the volume element is preserved under this mapping,

any probability density p(x) over the inputs x transforms in a trivial way. In

particular, for all `, we have:

p(x) = p(Φ(Φ(...Φ︸ ︷︷ ︸
` times

(x))). (6.21)

This identity suggests a role for kernel-based methods in probabilistic models of

deep learning, where a multilayer arc-cosine kernel is used to mimic the computa-

tion in a deep neural net.

What can be learned in such a setting? Consider a further linear projection

from the feature space of the multilayer kernel to a finite-dimensional output space.

In particular, let z = LΦ(Φ(...Φ(x))). Appealing to representer theorems (Kimel-

dorf and Wahba, 1971), we suppose that the linear transformation L acts only on

75

the subspace spanned by the images of training examples {x1,x2, . . . ,xN} in fea-

ture space. In this case, the linear transformation can be parameterized by a finite-

dimensional matrix A, in terms of which the ith element of z = LΦ(Φ(...Φ(x)))

is given by:

zi =
N∑
j=1

Aij k
(`)
1 (xj,x). (6.22)

Next, we consider how probability densities over the input space transform to the

output space. Assuming the map from inputs x to outputs z is invertible, then by

the chain rule and eq. (6.21), we can write:

p(z) = p(x)
√

det(LL>) = p(x)

√
det(AKA>), (6.23)

where Kij = k
(`)
1 (xi,xj) denote the elements of the kernel matrix. It is straight-

forward to differentiate the Jacobian in this expression with respect to the matrix

elements of A. Thus this matrix can be easily adapted to learn highly nonlinear

probabilistic models; we sketch one such application in the next section.

6.3.2 From Linear to Nonlinear ICA

Independent component analysis (ICA) is a popular method for linear fea-

ture extraction (Hyvärinen and Oja, 2000). From inputs x, the goal of ICA is to

compute linear projections z = Wx such that the different components of z are

not only uncorrelated, but statistically independent:

P (z) ≈
∏
i

P (zi). (6.24)

The goodness of the approximation in eq. (6.24) is measured by the mutual infor-

mation between different components of z. Letting H(·) denote the entropy, we

can write the mutual information as:

I(z) =
∑
i

H(zi)−H(z). (6.25)

76

Eq. (6.25) is the starting point for many formulations of ICA, each involving dif-

ferent ways of approximating the univariate entropies H(zi) (e.g., based on con-

trast functions (Hyvärinen, 1999), interval spacings (Learned-Miller and Fisher III,

2003)). The matrix W is optimized to minimize the surrogate function for mutual

information. Note that the rightmost term in eq. (6.25) simplifies due to linearity:

H(z) = H(x) + log det W. (6.26)

Treating H(x) as a constant, the optimization in linear ICA balances the two re-

maining terms in eq. (6.25), the first involving estimates of the univariate entropies

H(zi), the second involving the logarithm of the Jacobian, log det W.

A natural extension of ICA is to compute nonlinear features that are sta-

tistically independent (Jutten and Karhunen, 2004). However, such extensions

are generally complicated by the non-trivial Jacobians that arise from nonlinear

feature maps:

H(z) = H(x) +

∫
dx p(x) log

∣∣∂z/∂x
∣∣. (6.27)

Parra suggested to use symplectic (volume-conserving) transformations to param-

eterize nonlinear feature maps (Parra, 1996); while these transformations do not

introduce a complicated Jacobian, they must still be parameterized, thus compli-

cating other terms in the objective functions for ICA.

Multilayer arc-cosine kernels suggest an intriguing solution to this long-

standing problem (Jutten et al., 2010). For nonlinear ICA, we propose the feature

maps in eq. (6.22), where projections depend linearly on the matrix elements Aij.

The Jacobian for these feature maps takes the simple form in eq. (6.23). Substitut-

ing these two results into eq. (6.25), we obtain an objective function for nonlinear

ICA that is of similar complexity to the one for linear ICA. Clearly, many issues

remain to be explored in this context, such as the estimation of univariate en-

tropies and the procedures for optimization. Here, our main goal is to provoke

consideration of these and related applications of our theoretical analysis.

Several points are worth emphasizing about this “kernel trick” for nonlinear

ICA. First, the simplifications hinge on the volume-preserving property of the

77

mapping into feature space, established in Section 6.2, which does not hold for

general kernels. Second, the choice of volume-preserving kernel may affect the

types of independent components that can be extracted. Multilayer arc-cosine

kernels can mimic the computation in deep neural nets; by contrast, Gaussian

kernels act on inputs in a similar way as soft vector quantizers. Finally, this use

of kernels for nonlinear ICA is different than what is commonly known as “kernel

ICA” (Bach and Jordan, 2003); the latter is a sophisticated algorithm for linear

ICA where statistical dependence is measured by computing canonical correlations

in a reproducing kernel Hilbert space.

6.4 Discussion

In this chapter, we have investigated the geometric properties of arc-cosine

kernels. Our main theoretical results are summarized in Table 6.1. The two most

intriguing results concern the surfaces in Hilbert space induced by arc-cosine ker-

nels of degree n=0 and n=1. For the arc-cosine kernels of degree n=0, the surface

cannot be described as a Riemannian manifold due to the non-analyticity of the

kernel function. In this case, the breakdown of manifold structure implies that

(differentially) nearby inputs do not always map to (differentially) nearby regions

of feature space; an interesting question for future work is whether this observation

can be exploited for large margin classification. For the arc-cosine kernel of degree

n=1, we observed that the surface in Hilbert space has a Euclidean metric. This

property also extends to multilayer kernels constructed by composition of degree

n= 1 kernels. As developed in Section 6.3, this property suggests novel applica-

tions of these kernels for deep learning and nonlinear ICA. We are studying these

in ongoing work.

Other than nonlinear ICA, our theoretical and experimental results suggest

many possible directions for future work. One direction is to leverage the geometric

properties of the arc-cosine kernels for better classification performance. Such an

idea was proposed earlier by Amari and Wu (1999) and Wu and Amari (2002),

who used a conformal transformation to increase the spatial resolution around the

78

decision boundary induced by RBF kernels. The volume elements in eq. (6.12)

and eq. (6.20) allow us to explore similar methods for the kernels analyzed in this

paper.

Given the relatively simple form of the volume element, another possible

direction is to explore the use of arc-cosine kernels for probabilistic modeling other

than nonlinear ICA. Such an approach might exploit the connection with neural

computation to provide a kernel-based alternative to inference and learning in

deep belief networks (Hinton et al., 2006). Though our experimental results have

not revealed a clear connection between the geometric properties of arc-cosine

kernels and their performance in SVMs, it is worth emphasizing that kernels are

used in many settings beyond classification, including clustering, dimensionality

reduction, and manifold learning. In these other settings, the geometric properties

of arc-cosine kernels may play a more prominent role.

Chapter 6, in part, is a reprint of the material as it appears in Technical

Report CS2012-0972, Department of Computer Science and Engineering, Univer-

sity of California, San Diego. Cho, Y. and Saul, L. K. The thesis author was the

primary investigator and author of this work.

Chapter 7

Conclusion

7.1 Contributions

In this thesis, we have developed a new family of kernel functions that mimic

the computation in large, multilayer neural nets. On challenging data sets, we have

obtained results that outperform previous SVMs and compare favorably to deep

belief nets. More significantly, our experiments validate the basic intuitions behind

deep learning in the altogether different context of kernel-based architectures. We

conclude by reviewing our main contributions as follows.

In Chapter 2, we defined arc-cosine kernels—a new family of positive-

definite kernels that mimic the computation in a special type of large neural net-

works with a single layer. Assuming the network weights were randomly drawn

from standard Gaussian distributions, we derived analytical expressions for the

kernel function (i.e., inner product of output units from two examples), which are

easy to evaluate in practice. We also extended the family of arc-cosine kernels by

generalizing the activation function in the network to one-sided polynomial func-

tions. Evaluating these kernels in large margin classification by SVMs, we obtained

satisfactory results on well-known classification data sets.

In Chapter 3, we extended the family of arc-cosine kernels even further

by varying the activation functions in terms of the fractional growth rate of the

polynomials and the amount of shifting or smoothing. These modifications enabled

us to tune the amount of the variations for better data modeling, which we observed

79

80

by improved performance on the classification tasks. Besides such performance

gain, our contribution in this work is that by definition of the arc-cosine kernels,

we actually modeled the computation in large neural networks with interesting

activation functions such as sparsity-inducing or sigmoidal ones.

In Chapter 4, we constructed new types of arc-cosine kernels using ker-

nel composition, multiplication, and averaging. Though it was well known that

these operations could build new kernels from existing ones, we discovered such

operations produced non-trivial extensions only for arc-cosine kernels in contrast

to other popular kernels. In particular, these extensions could be interpreted as

mimicking computations in various types of multilayer neural networks. Also, us-

ing SVMs with those kernels, we achieved state-of-the-art performance in difficult

deep learning benchmarks (Larochelle et al., 2007), which suggests these kernels

can capture useful properties of deep architectures with much less training cost.

In Chapter 5, we explored how to construct multilayer kernel machines

(MKMs), new hierarchical models based on kernel methods. For MKMs, we iter-

ated kernel principal component analysis with feature selection, which was aimed to

supplement multilayer arc-cosine kernels with unsupervised and supervised learn-

ing. By obtaining competitive performance from MKMs in the deep learning

benchmarks, we verified the importance of unsupervised learning in kernel-based

architectures, which has been actually a crucial factor for recent advances in deep

architectures (Erhan et al., 2010). We hope that our results inspire more work

on this direction of building deep feature hierarchies using models traditionally

regarded as shallow (e.g., kernel methods).

Finally, in Chapter 6, we investigated the geometric properties of arc-cosine

kernels, which were studied by analyzing the surfaces that these kernels induced in

Hilbert space. We discovered the family of arc-cosine kernels exhibits a large vari-

ety of behaviors—described by non-analytic, flat, or curved Riemannian manifold.

Even though we have not found any direct links between the kernel geometry and

classification performance yet, we believe our analysis lays a theoretical founda-

tion to use arc-cosine kernels in various settings other than typical support vector

machines (e.g., nonlinear ICA in Section 6.3).

81

7.2 Future Work

There are many possible directions for future work. Currently, we are in-

vestigating links from kernel methods to more general deep architectures. The

standard Gaussian prior for the weight of infinite neural networks enables us to

derive simple analytical expressions for the arc-cosine kernels; however, this prior

seems limited in a sense that the resulting network could explain only a very special

type of nonlinear mapping (i.e., massive random projection), which is predefined

independently from tasks we would like to solve.

We have made our efforts to overcome this issue by varying the activation

functions (see Chapters 2 and 3) or combining kernels (see Chapter 4), and this

can be viewed as providing more kernel options to choose from for particular prob-

lems. However, we believe it is still relevant to derive kernels that can be adjusted

to each task by leveraging problem dependent information (e.g., domain specific

knowledge).

In the context of arc-cosine kernels, we can attempt to define the weight

prior distributions in new parametric forms and learn the parameters according

to the task. For instance, we can use mixtures of Gaussian distributions instead

of a single Gaussian for the weight prior. Due to the additivity of the integral in

eq. (2.1), such Gaussian mixture modeling leads to additive forms of arc-cosine

kernels. Interestingly, this is a special case of multiple kernel learning in Sec-

tion 4.4 (Lanckriet et al., 2004; Rakotomamonjy et al., 2008; Bach, 2009; Cortes

et al., 2010), where we learn the mixture coefficients with additional regularization.

Another example is to use a general covariance matrix in the Gaussian

prior and learn the covariance matrix (or only its diagonal entries for high dimen-

sional data) to use in the arc-cosine kernels, which are still derived in analytical

forms (Williams, 1998). Note that this is actually related with input feature se-

lection (Guyon and Elisseeff, 2003) or Mahalanobis distance metric learning in

general (Weinberger and Saul, 2009), both of which are components of MKMs in

Chapter 5.

On a related note, an intriguing question is how to extend and special-

ize this concept to the computer vision domain (e.g., image classification tasks

82

in Section 2.2). Specifically, convolutional neural networks (LeCun et al., 1989;

Ranzato et al., 2007) have been found to be powerful models in many computer

vision tasks (LeCun and Cortes, 1998), and we hope to incorporate the invariances

modeled by the convolutional feature mapping into the arc-cosine kernels.

Borrowing more concepts from neural networks, we have additional direc-

tions to explore in arc-cosine kernels. In particular, we are interested in different

techniques to regularize the multilayer kernels in Section 4.2.1. We empirically

discovered preserving magnitudes of inputs was important to prevent the kernels

from becoming unfeasible (e.g., kernel values decaying too quickly or exploding

out of ranges), but there are other ways to regularize such sequential nonlinear

processing. For instance, we can normalize the kernel outputs at every layer to be

inside a predetermined range by division of entries, which is similar to the divisive

normalization in image processing and convolutional neural networks (Lyu and

Simoncelli, 2008; Jarrett et al., 2009).

Alternatively, we can use arc-cosine kernels with smoothed activation func-

tions in Section 3.2.3 as individual components in kernel composition to build

multilayer kernels. This is similar to traditional neural networks where sigmoidal

activation functions are used at every layer. Then, by adapting the amount of

smoothing at every layer properly, we can achieve similar effect of normalization.

Note that how to optimize these hyperparameters is another challenging problem

as well.

Besides such regularization in multilayer kernels, it seems interesting to

study the effect of large numbers of layers in multilayer arc-cosine kernels because

some experiments showed the performance kept increasing while adding layers, but

we do not know about the limiting behavior of our models in the vertical direction.

Interestingly, this makes a good comparison with deep architectures, where it is

typically hard to keep adding layers as many as we want without involving huge

training cost.

Finally, how to make our kernel-based models scalable to large data sets is

an interesting topic to investigate. While our methods are fairly straightforward to

train, they inherit certain disadvantages of all kernel-based approaches—quadratic

83

expansion of kernel matrices in the size of training sets. Specifically, we had diffi-

culties in applying nonlinear support vector machines with the arc-cosine kernels

on very large data sets, and we also had to sample training examples to construct a

kernel matrix for kernel PCA in MKMs due to limited memory. In fact, this topic

has been studied quite extensively in general; Nyström approximation of kernel

matrices (Kumar et al., 2012), iterative kernel PCA (Kim et al., 2005), paralleliza-

tion of support vector machines (Catanzaro et al., 2008), and approximation of

kernel operations with explicit nonlinear mapping (Rahimi and Recht, 2008) are

representative work in this direction, and we are considering these methods to

make arc-cosine kernels more scalable to large data sets.

Appendix A

Derivation of Kernel Function

In this appendix, we show how to evaluate the multidimensional integral in

eq. (2.1) for the arc-cosine kernel. We begin by reducing it to a one-dimensional

integral. Let θ denote the angle between the inputs x and y. Without loss of

generality, we can take the w1-axis to align with the input x and the w1w2-plane

to contain the input y:

x = e1‖x‖, (A.1)

y =
(
e1 cos θ + e2 sin θ

)
‖y‖, (A.2)

where ei is the ith standard basis. Integrating out the orthogonal coordinates of

the weight vector w, we obtain the result in eq. (2.3) where Jn(θ) is the remaining

integral:

Jn(θ) =

∫ ∞
−∞
dw1

∫ ∞
−∞
dw2

[
e−

w2
1+w

2
2

2

×Θ(w1) Θ(w1 cos θ + w2 sin θ)wn1 (w1 cos θ + w2 sin θ)n
]
.

(A.3)

Changing variables to u=w1 and v = w1 cos θ+w2 sin θ, we simplify the domain of

integration to the first quadrant of the uv-plane:

Jn(θ) =
1

sin θ

∫ ∞
0

du

∫ ∞
0

dv e−(u
2+v2−2uv cos θ)/(2 sin2 θ) unvn. (A.4)

84

85

The prefactor of (sin θ)−1 in eq. (A.4) is due to the Jacobian. We reduce the two

dimensional integral in eq. (A.4) to a one dimensional integral by adopting polar

coordinates:

u = r cosφ, (A.5)

v = r sinφ. (A.6)

The integral over the radius coordinate r is straightforward, yielding:

Jn(θ) =
1

sin θ

∫ π
2

0

dφ

∫ ∞
0

rdr e−r
2(1−cos θ sin 2φ)/(2 sin2 θ) (r2 sinφ cosφ

)n
(A.7)

=
1

sin θ

∫ π
2

0

dφ

(
sin 2φ

2

)n ∫ ∞
0

dr r2n+1e−r
2(1−cos θ sin 2φ)/(2 sin2 θ) (A.8)

=
1

sin θ

∫ π
2

0

dφ

(
sin 2φ

2

)n
(2 sin2 θ)n+1

2(1− cos θ sin 2φ)n+1
Γ(n+ 1) (A.9)

= n! (sin θ)2n+1

∫ π
2

0

dφ
sinn 2φ

(1− cos θ sin 2φ)n+1
. (A.10)

Finally, to convert this integral into a more standard form, we make the simple

change of variables ψ = 2φ− π
2
. The resulting integral is given by:

Jn(θ) = n! (sin θ)2n+1

∫ π
2

0

dψ
cosn ψ

(1− cos θ cosψ)n+1
. (A.11)

Note the dependence of this final one-dimensional integral on the degree n of

the arc-cosine kernel function. As we show next, this integral can be evaluated

analytically for all n ∈ {0, 1, 2, . . .}.
We first evaluate eq. (A.11) for the special case n=0. The following result

can be derived by contour integration in the complex plane (Carrier et al., 2005):

∫ ξ

0

dψ

1− cos θ cosψ
=

1

sin θ
tan−1

(
sin θ sin ξ

cos ξ − cos θ

)
, (A.12)

The integral in eq. (A.12) can also be verified directly by differentiating the right

86

hand side. Evaluating the above result at ξ= π
2

gives:

∫ π/2

0

dψ

1− cos θ cosψ
=

π − θ
sin θ

. (A.13)

Substituting eq. (A.13) into our expression for the angular part of the kernel func-

tion in eq. (A.11), we recover our earlier claim that J0(θ) = π−θ. Related integrals

for the special case n = 0 can also be found in earlier work (Williams, 1998; Watkin

et al., 1993).

Next we show how to evaluate the integrals in eq. (A.11) for higher order

kernel functions. For integer n> 0, the required integrals can be obtained by the

method of differentiating under the integral sign. In particular, we note that:

∫ π
2

0

dψ
cosn ψ

(1− cos θ cosψ)n+1
=

1

n!

∂n

∂(cos θ)n

∫ π/2

0

dψ

1− cos θ cosψ
. (A.14)

Substituting eq. (A.14) into eq. (A.11), then appealing to the previous result in

eq. (A.13), we recover the expression for Jn(θ) as stated in eq. (2.4):

Jn(θ) = n! (sin θ)2n+1 1

n!

∂n

∂(cos θ)n

∫ π/2

0

dψ

1− cos θ cosψ
(A.15)

= (sin θ)2n+1 ∂n

∂(cos θ)n

(
π − θ
sin θ

)
(A.16)

= (−1)n(sin θ)2n+1

(
1

sin θ

∂

∂θ

)n(
π − θ
sin θ

)
. (A.17)

Finally, we consider the general case where the degree n of the arc-cosine

kernel is real-valued. For real-valued n, the required integral in eq. (A.11) does not

have a simple analytical form. However, we can evaluate the original representation

in eq. (2.1) for the special case of equal inputs x = y. In this case, without loss of

generality, we can again take the w1-axis to align with the input x:

x = e1‖x‖. (A.18)

87

Integrating out the orthogonal coordinates of the weight vector w, we obtain:

kn(x,x) =

√
2

π
‖x‖2n

∫ ∞
0

dw1 e
− 1

2
w2

1 w2n
1 (A.19)

=
2n√
π

Γ

(
n+

1

2

)
‖x‖2n. (A.20)

The gamma function on the right hand side of eq. (A.20) diverges as its argument

approaches zero; thus kn(x,x) diverges as n→ −1
2

for all inputs x. This divergence

shows that the integral representation of the arc-cosine kernel in eq. (2.1) is only

defined for n > −1
2
.

Though the arc-cosine kernel does not have a simple form for real-valued n,

the intermediate results in eqs. (2.3) and (A.11) remain generally valid. Thus,

for non-integer n, the integral representation in eq. (2.1) can still be reduced to a

one-dimensional integral for Jn(θ), where θ is the angle between the inputs x and

y. For θ > 0, it is straightforward to evaluate the integral for Jn(θ) in eq. (A.11)

by numerical methods. This was done for the experiments in Section 3.3.

Appendix B

Derivation of Kernel with Biased

Threshold Functions

In this appendix we show how to evaluate the integral in eq. (3.2). As in

Appendix A, we start by adopting coordinates in which x aligns with the w1 axis

and y lies in the w1w2-plane:

x = e1‖x‖, (B.1)

y =
(
e1 cos θ + e2 sin θ

)
‖y‖, (B.2)

where ei is the unit vector along the ith axis and θ is defined in eq. (2.2). Next

we substitute these expressions into eq. (3.2) and integrate out the remaining or-

thogonal coordinates of the weight vector w. What remains is the two dimensional

integral:

kb(x,y) =
1

π

∫ ∞
−∞
dw1

∫ ∞
−∞
dw2

[
e−

w2
1+w

2
2

2

×Θ(w1‖x‖ − b) Θ(w1‖y‖ cos θ + w2‖y‖ sin θ − b)
]
.

(B.3)

We can simplify this further by adopting polar coordinates (r, φ) in the w1w2–plane

of integration, where w1 = r cosφ and w2 = r sinφ. With this change of variables,

88

89

we obtain the polar integral:

kb(x,y) =
1

π

∫ π

−π
dφ

∫ ∞
0

dr

[
re−

r2

2

×Θ(r‖x‖ cosφ− b) Θ(r‖y‖ cos(θ − φ)− b)
]
.

(B.4)

This integral can be evaluated in the feasible region of the plane that is defined

by the arguments of the step functions. In what follows, we assume b > 0 since

the opposite case can be derived by symmetry (as shown in Section 3.2.2). We

identify the feasible region by conditioning the arguments of the step functions to

be positive:

cosφ > 0, (B.5)

cos(φ− θ) > 0, (B.6)

r > max

(
b

‖x‖ cosφ
,

b

‖y‖ cos(φ− θ)

)
. (B.7)

The first two of these inequalities limit the range of the angular integral; in partic-

ular, we require θ − π
2
< φ < π

2
. The third bounds the range of the radial integral

from below. We can perform the radial integral analytically to obtain:

kb(x,y) =
1

π

∫ π
2

θ−π
2

dφ
[
−e−

r2

2

]∞
max[b

‖x‖ cosφ ,
b

‖y‖ cos(φ−θ)]
(B.8)

=
1

π

∫ π
2

θ−π
2

dφ min

[
e−

1
2(b
‖x‖ cosφ)

2

, e−
1
2(b
‖y‖ cos(φ−θ))

2
]

(B.9)

The term that is selected by the minimum operation in eq. (B.9) depends on the

value of φ. The crossover point φc occurs where the exponents are equal, namely

at ‖x‖ cosφc = ‖y‖ cos(φc − θ). Solving for φc yields:

φc = tan−1
(
‖x‖

‖y‖ sin θ
− cot θ

)
. (B.10)

90

To disentangle the min-operation in the integrand, we break the range of integra-

tion into two intervals:

kb(x,y) =
1

π

∫ φc

θ−π
2

dφ e−
1
2(b
‖y‖ cos(φ−θ))

2

+
1

π

∫ π
2

φc

dφ e−
1
2(b
‖x‖ cosφ)

2

. (B.11)

Finally, we obtain a more symmetric expression by appealing to the angles ξ and ψ

defined in Figure 3.4. Note that φc and ψ are complementary angles, with φc =

π
2
− ψ. Writing eq. (B.11) in terms of the angles ξ and ψ yields the final form in

eq. (3.4):

kb(x,y) =
1

π

∫ φc+
π
2
−θ

0

dφ e−
1
2(b
‖y‖ sin θ)

2

+
1

π

∫ π
2
−φc

0

dφ e−
1
2(b
‖x‖ sinφ)

2

(B.12)

=
1

π

∫ ξ

0

dφ e−
1
2(b
‖y‖ sin θ)

2

+
1

π

∫ ψ

0

dφ e−
1
2(b
‖x‖ sinφ)

2

. (B.13)

Appendix C

Derivation of Kernel with

Smoothed Threshold Functions

A simple transformation of the integral in eq. (3.15) reduces it to essentially

the same integral as eq. (2.1). We begin by appealing to the integral representation

of the cumulative Gaussian function:

Ψσ(w · x) =
1√

2πσ2

∫ ∞
−∞

dµ e−
µ2

2σ2 Θ(w · x− µ), (C.1)

Ψσ(w · y) =
1√

2πσ2

∫ ∞
−∞

dν e−
ν2

2σ2 Θ(w · y − ν). (C.2)

After substituting these representations into eq. (3.15), we obtain an expanded

integral over the weight vector w and the new auxiliary variables µ and ν:

kσ(x,y) = 2

∫
dw

∫
dµ

∫
dν

e−
‖w‖2

2
− µ2

2σ2
− ν2

2σ2

σ2(2π)(d+2)/2
Θ(w · x− µ) Θ(w · y − ν). (C.3)

Let w̄ ∈ Rd+2 denote the extended weight vector obtained by appending

two new elements to w ∈ Rd as follows:

w̄ =
(
w, µσ−1, νσ−1

)
. (C.4)

Also let x̄ ∈ Rd+2 and ȳ ∈ Rd+2 denote the extended inputs defined by appending

91

92

two new elements to x ∈ Rd and y ∈ Rd as follows:

x̄ = (x, −σ, 0), (C.5)

ȳ = (y, 0, −σ). (C.6)

The transformation is completed by writing the required integral for eq. (C.3)

in terms of w̄, x̄, and ȳ. This change of variables yields an integral analogous to

eq. (2.1), with w̄, x̄, and ȳ playing the same roles as w, x, and y. The result in

eq. (3.16) follows.

Appendix D

Derivation of Riemannian Metric

In this appendix, we show how to derive the results for the Riemannian

metric and curvature that appear in Section 6.2.1. We begin by deriving the indi-

vidual terms that appear in the expression for the metric in eq. (6.6). Substituting

the form of the arc-cosine kernels in eq. (2.3) into this expression, we obtain:

∂xµ∂xνkn(x,x) =
2

π
‖x‖2n−2 Jn(0)

[
n δµν + 2n(n−1)

xµxν
‖x‖2

]
, (D.1)[

∂yµ∂yνkn(x,y)

]
y=x

=
1

π
‖x‖2n−2

(
Jn(0)

[
n δµν + n(n−2)

xµxν
‖x‖2

]
(D.2)

+

[
J ′n(θ)

sin θ

]
θ=0

[
δµν −

xµxν
‖x‖2

])
where ∂xµ is shorthand for the partial derivative with respect to xµ. To complete the

derivation of the metric, we must evaluate the terms Jn(0) and limθ→0

[
J ′n(θ)/ sin θ

]
that appear in these expressions. As shown in Appendix A, an expression for Jn(θ)

is given by the two-dimensional integral:

Jn(θ) =

∫ ∞
−∞
dw1

∫ ∞
−∞
dw2

[
e−

w2
1+w

2
2

2 Θ(w1) Θ(w1 cos θ + w2 sin θ)

× wn1 (w1 cos θ + w2 sin θ)n
]
.

(D.3)

It is straightforward to evaluate this integral at θ = 0, which yields the result

in eq. (2.6). Differentiating under the integral sign and evaluating at θ = 0, we

93

94

obtain:

J ′n(0) = n

∫ ∞
−∞
dw1

∫ ∞
−∞
dw2 e−

w2
1+w

2
2

2 Θ(w1)w
2n−1
1 w2 = 0, (D.4)

where the integral vanishes due to symmetry. To evaluate the rightmost term in

eq. (D.2), we avail ourselves of l’Hôpital’s rule:

lim
θ→0

[
J ′n(θ)

sin θ

]
= lim

θ→0
J ′′n(θ) = J ′′n(0). (D.5)

Differentiating eq. (D.3) twice under the integral sign and evaluating at θ = 0, we

obtain:

J ′′n(0) = n

∫ ∞
−∞
dw1

∫ ∞
−∞
dw2 e

−w
2
1+w

2
2

2 Θ(w1) w
2n−2
1

[
(n− 1)w2

2 − w2
1

]
= −πn2(2n− 3)!!.

(D.6)

Substituting these results into eq. (6.6), we obtain the expression for the metric in

eq. (6.9). The remaining calculations for the curvature are tedious but straight-

forward. Using the Woodbury matrix identity, we can compute the matrix inverse

of the metric as:

gµν =
1

‖x‖2n−2n2(2n− 3)!!

(
δµν −

xµxν
‖x‖2

2(n− 1)

2n− 1

)
. (D.7)

The partial derivatives of the metric are also easily computed as:

∂βgγµ = 2n2(n− 1)(2n− 3)!! ‖x‖2n−4

×
(
xβδγµ + xγδβµ + xµδβγ + (2n− 4)

xβxγxµ
‖x‖2

)
.

(D.8)

95

Substituting these results for the metric inverse and partial derivatives into eq. (6.13),

we obtain the Christoffel elements of the second kind:

Γαβγ = gαµΓβγµ (D.9)

=
1

2
gαµ(∂βgγµ − ∂µgβγ + ∂γgµβ) (D.10)

=
n− 1

‖x‖2

(
xβδαγ + xγδαβ +

xαδβγ
2n− 1

− 2n

2n− 1

xαxβxγ
‖x‖2

)
. (D.11)

Substituting these Christoffel elements into eq. (6.14), we obtain the Riemann

curvature tensor:

Rναβ
µ =

3

‖x‖2
(n− 1)2

2n− 1

(
xµxαδβν − xµxβδνα + xνxβδµα − xνxαδµβ

‖x‖2

+ δµβδνα − δµαδβν
)
.

(D.12)

Then, combining eqs. (D.7) and (D.12), we obtain the scalar curvature S in

eq. (6.16):

S = gνβRνµβ
µ (D.13)

=
3(n−1)2 (2−d) (d−1)

n2 (2n−1)!! ‖x‖2n
. (D.14)

Finally, we briefly report how to derive the Riemannian metric and vol-

ume element for the arc-cosine kernel with smoothed activation functions in Sec-

tion 3.2.3. We first calculate second-order partial derivatives of k(x,y) as follows:

∂xµ∂xνkn(x,x) =
1

π

[
2σ√

2‖x‖2 + σ2(‖x‖2 + σ2)
(D.15)

×
(
δµν − 2xµxν

[
1

2‖x‖2 + σ2
+

1

‖x‖2 + σ2

])]
,[

∂yµ∂yνkn(x,y)

]
y=x

=
1

π(‖x‖2 + σ2) σ
√

2‖x‖2 + σ2
(D.16)

×
(

2xµxν

[
‖x‖4 − ‖x‖2σ2 − σ4

(2‖x‖2 + σ2)(‖x‖2 + σ2)

]
− ‖x‖2δµν

)
.

By plugging in those results into eq. (6.6), we obtain the Riemannian metric

96

for the kernel:

gµν =
1

2
∂xµ∂xνkn(x,x)−

[
∂yµ∂yνkn(x,y)

]
y=x

(D.17)

=
1

πσ
√

2‖x‖2 + σ2

(
δµν −

2xµxν
2‖x‖2 + σ2

)
. (D.18)

Also, using the matrix determinant lemma, we can compute the volume element

as:

det(g) =
1

πdσd(
√

2‖x‖2 + σ2)d

(
1− 2‖x‖2

2‖x‖2 + σ2

)
(D.19)

=
1

πdσd−2(2‖x‖2 + σ2)
d
2
+1
. (D.20)

Bibliography

Aizerman, M. A., Braverman, E. M., and Rozonoér, L. I. (1964). Theoretical
foundations of the potential function method in pattern recognition learning.
Automation and Remote Control, 25:821–837.

Amari, S. and Wu, S. (1999). Improving support vector machine classifiers by
modifying kernel functions. Neural Networks, 12(6):783–789.

Bach, F. (2009). Exploring large feature spaces with hierarchical multiple kernel
learning. In Koller, D., Schuurmans, D., Bengio, Y., and Bottou, L., editors,
Advances in Neural Information Processing Systems 21, pages 105–112.

Bach, F. R. and Jordan, M. I. (2003). Kernel independent component analysis.
Journal of Machine Learning Research, 3:1–48.

Bellman, R. E. (1961). Adaptive control processes - A guided tour. Princeton
University Press.

Bengio, Y. (2009). Learning deep architectures for AI. Foundations and Trends in
Machine Learning, 2(1):1–127.

Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H. (2007). Greedy layer-
wise training of deep networks. In Schölkopf, B., Platt, J., and Hoffman, T.,
editors, Advances in Neural Information Processing Systems 19, pages 153–160.
MIT Press.

Bengio, Y. and LeCun, Y. (2007). Scaling learning algorithms towards AI. In Bot-
tou, L., Chapelle, O., Decoste, D., and Weston, J., editors, Large-Scale Kernel
Machines. MIT Press.

Bengio, Y., Roux, N. L., Vincent, P., Delalleau, O., and Marcotte, P. (2006).
Convex neural networks. In Weiss, Y., Schölkopf, B., and Platt, J., editors,
Advances in Neural Information Processing Systems 18, pages 123–130. MIT
Press.

Bishop, C. M. (2006). Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer.

97

98

Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A training algorithm for
optimal margin classifiers. In Proceedings of the Fifth Annual ACM Workshop
on Computational Learning Theory, pages 144–152. ACM Press.

Burges, C. J. C. (1999). Geometry and invariance in kernel based methods. In
Schölkopf, B., Burges, C. J. C., and Smola, A., editors, Advances in Kernel
Methods - Support Vector Learning. MIT Press.

Carrier, G. F., Krook, M., and Pearson, C. E. (2005). Functions of a Complex
Variable: Theory and Technique. Society for Industrial and Applied Mathemat-
ics.

Catanzaro, B., Sundaram, N., and Keutzer, K. (2008). Fast support vector machine
training and classification on graphics processors. In Proceedings of the 25th
International Conference on Machine Learning (ICML-08), pages 104–111.

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27.
Software available at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

Cho, Y. and Saul, L. K. (2009). Kernel methods for deep learning. In Bengio, Y.,
Schuurmans, D., Lafferty, J., Williams, C., and Culotta, A., editors, Advances
in Neural Information Processing Systems 22, pages 342–350.

Cho, Y. and Saul, L. K. (2010). Large margin classification in infinite neural
networks. Neural Computation, 22(10):2678–2697.

Cho, Y. and Saul, L. K. (2012). Analysis and extension of arc-cosine kernels
for large margin classification. Technical Report CS2012-0972, Department of
Computer Science and Engineering, University of California, San Diego.

Chopra, S., Hadsell, R., and LeCun, Y. (2005). Learning a similarity metric dis-
criminatively, with application to face verification. In Proceedings of the 2005
IEEE Conference on Computer Vision and Pattern Recognition (CVPR-05),
pages 539–546.

Collobert, R. and Weston, J. (2008). A unified architecture for natural language
processing: deep neural networks with multitask learning. In Proceedings of the
25th International Conference on Machine Learning (ICML-08), pages 160–167.

Cortes, C., Mohri, M., and Rostamizadeh, A. (2010). Two-Stage Learning Kernel
Algorithms. In Proceedings of the 27th International Conference on Machine
Learning (ICML-10), pages 239–246.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,
20:273–297.

99

Crammer, K. and Singer, Y. (2001). On the algorithmic implementation of mul-
ticlass kernel-based vector machines. Journal of Machine Learning Research,
2:265–292.

Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vec-
tor Machines and Other Kernel-based Learning Methods. Cambridge University
Press.

Decoste, D. and Schölkopf, B. (2002). Training invariant support vector machines.
Machine Learning, 46(1-3):161–190.

Erhan, D., Bengio, Y., Courville, A., Manzagol, P.-A., Vincent, P., and Bengio,
S. (2010). Why does unsupervised pre-training help deep learning? Journal of
Machine Learning Research, 11:625–660.

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., and Lin, C.-J. (2008). LIB-
LINEAR: A library for large linear classification. Journal of Machine Learning
Research, 9:1871–1874.

Frank, A. and Asuncion, A. (2010). UCI machine learning repository.

Goldberger, J., Roweis, S., Hinton, G. E., and Salakhutdinov, R. (2005). Neigh-
bourhood components analysis. In Saul, L. K., Weiss, Y., and Bottou, L.,
editors, Advances in Neural Information Processing Systems 17, pages 513–520.
MIT Press.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature selec-
tion. Journal of Machine Learning Research, 3:1157–1182.

Guyon, I., Gunn, S., Ben-Hur, A., and Dror, G. (2005). Result analysis of the
nips 2003 feature selection challenge. In Saul, L. K., Weiss, Y., and Bottou, L.,
editors, Advances in Neural Information Processing Systems 17, pages 545–552.
MIT Press.

Hahnloser, R. H. R., Seung, H. S., and Slotine, J. J. (2003). Permitted and
forbidden sets in symmetric threshold-linear networks. Neural Computation,
15(3):621–638.

Hinton, G. E., Osindero, S., and Teh, Y. W. (2006). A fast learning algorithm for
deep belief nets. Neural Computation, 18(7):1527–1554.

Hinton, G. E. and Salakhutdinov, R. (2006). Reducing the dimensionality of data
with neural networks. Science, 313(5786):504–507.

Hyvärinen, A. (1999). Survey on independent component analysis. Neural Com-
puting Surveys, 2:94–128.

100

Hyvärinen, A. and Oja, E. (2000). Independent component analysis: algorithms
and applications. Neural Networks, 13(4-5):411–430.

Jarrett, K., Kavukcuoglu, K., Ranzato, M., and LeCun, Y. (2009). What is the best
multi-stage architecture for object recognition? In Proceedings of International
Conference on Computer Vision (ICCV’09). IEEE.

Johnson, W. and Lindenstrauss, J. (1984). Extensions of Lipschitz mappings into
a Hilbert space. In Conference in modern analysis and probability (New Haven,
Conn., 1982), volume 26 of Contemporary Mathematics, pages 189–206. Ameri-
can Mathematical Society.

Jutten, C., Babaie-Zadeh, M., and Karhunen, J. (2010). Nonlinear mixtures. In
Comon, P. and Jutten, C., editors, Handbook of Blind Source Separation, Inde-
pendent Component Analysis and Applications, pages 549–592. Academic Press.

Jutten, C. and Karhunen, J. (2004). Advances in blind source separation (BSS)
and independent component analysis (ICA) for nonlinear mixtures. International
Journal of Neural Systems, 14(5):267–292.

Kim, K. I., Franz, M. O., and Scholkopf, B. (2005). Iterative kernel principal
component analysis for image modeling. IEEE Transactions on Pattern Analysis
and Machine Intelligence (TPAMI), 27(9):1351–1366.

Kimeldorf, G. S. and Wahba, G. (1971). Some results on Tchebycheffian spline
functions. Journal of Mathematical Analysis and Applications, 33(1):82–95.

Kumar, S., Mohri, M., and Talwalkar, A. (2012). Sampling methods for the
nyström method. Journal of Machine Learning Research, 13:981–1006.

Lanckriet, G., Cristianini, N., Bartlett, P., Ghaoui, L. E., and Jordan, M. I. (2004).
Learning the kernel matrix with semidefinite programming. Journal of Machine
Learning Research, 5:27–72.

Lang, K. (1995). Newsweeder: Learning to filter netnews. In Proceedings of the
12th International Conference on Machine Learning (ICML-95), pages 331–339.
Morgan Kaufmann publishers Inc.: San Mateo, CA, USA.

Larochelle, H., Erhan, D., Courville, A., Bergstra, J., and Bengio, Y. (2007).
An empirical evaluation of deep architectures on problems with many factors
of variation. In Proceedings of the 24th International Conference on Machine
Learning (ICML-07), pages 473–480.

Learned-Miller, E. G. and Fisher III, J. W. (2003). ICA using spacings estimates
of entropy. Journal of Machine Learning Research, 4:1271–1295.

101

LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W., and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code
recognition. Neural Computation, 1(4):541–551.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998). Gradient-based learning
applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324.

LeCun, Y. and Cortes, C. (1998). The MNIST database of handwritten digits.
http://yann.lecun.com/exdb/mnist/.

Lee, W. S., Bartlett, P., and Williamson, R. (1996). Efficient agnostic learning
of neural networks with bounded fan-in. IEEE Transactions on Information
Theory, 42(6):2118–2132.

Lyu, S. and Simoncelli, E. P. (2008). Nonlinear image representation using divisive
normalization. In Proceedings of the 2008 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR-08), pages 1–8.

Neal, R. M. (1996). Bayesian Learning for Neural Networks. Springer-Verlag New
York, Inc.

Ng, A. Y. (2004). Feature selection, L1 vs. L2 regularization, and rotational invari-
ance. In Proceedings of the 21st International Conference on Machine Learning
(ICML-04), pages 78–85.

Parra, L. C. (1996). Symplectic nonlinear component analysis. In Advances in
Neural Information Processing Systems 8, pages 437–443. MIT Press.

Platt, J. C. (1998). Sequential minimal optimization: A fast algorithm for train-
ing support vector machines. Technical report, Advances in Kernel Methods -
Support Vector Learning.

Price, R. (1958). A useful theorem for nonlinear devices having Gaussian inputs.
IRE Transactions on Information Theory, 4(2):69–72.

Rahimi, A. and Recht, B. (2008). Random features for large-scale kernel machines.
In Platt, J., Koller, D., Singer, Y., and Roweis, S., editors, Advances in Neural
Information Processing Systems 20, pages 1177–1184. MIT Press.

Rahimi, A. and Recht, B. (2009). Weighted sums of random kitchen sinks: Replac-
ing minimization with randomization in learning. In Koller, D., Schuurmans, D.,
Bengio, Y., and Bottou, L., editors, Advances in Neural Information Processing
Systems 21, pages 1313–1320.

Rakotomamonjy, A., Bach, F. R., Canu, S., and Grandvalet, Y. (2008). Sim-
pleMKL. Journal of Machine Learning Research, 9:2491–2521.

102

Ranzato, M. A., Huang, F. J., Boureau, Y. L., and LeCun, Y. (2007). Unsupervised
learning of invariant feature hierarchies with applications to object recognition.
In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR-07), pages 1–8.

Rumelhart, D., Hinton, G., and Williams, R. (1986). Learning representations by
back-propagating errors. Nature, 323(6088):533–536.

Saxe, A., Koh, P. W., Chen, Z., Bhand, M., Suresh, B., and Ng, A. (2011). On ran-
dom weights and unsupervised feature learning. In Getoor, L. and Scheffer, T.,
editors, Proceedings of the 28th International Conference on Machine Learning
(ICML-11), pages 1089–1096.

Schölkopf, B., Smola, A., and Müller, K. (1998). Nonlinear component analysis as
a kernel eigenvalue problem. Neural Computation, 10(5):1299–1319.

Schölkopf, B. and Smola, A. J. (2001). Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press.

Schölkopf, B., Smola, A. J., and Müller, K.-R. (1996). Nonlinear component anal-
ysis as a kernel eigenvalue problem. Technical Report 44, Max-Planck-Institut
für biologische Kybernetik.

Vapnik, V. N. (1998). Statistical Learning Theory. John Wiley & Sons.

Vincent, P., Larochelle, H., Bengio, Y., and Manzagol, P.-A. (2008). Extracting
and composing robust features with denoising autoencoders. In Proceedings of
the 25th international conference on Machine learning (ICML-08), pages 1096–
1103.

Watkin, T. H. L., Rau, A., and Biehl, M. (1993). The statistical mechanics of
learning a rule. Reviews of Modern Physics, 65(2):499–556.

Weinberger, K. Q. and Saul, L. K. (2009). Distance metric learning for large
margin nearest neighbor classification. Journal of Machine Learning Research,
10:207–244.

Weston, J., Ratle, F., and Collobert, R. (2008). Deep learning via semi-supervised
embedding. In Proceedings of the 25th International Conference on Machine
Learning (ICML-08), pages 1168–1175.

Williams, C. K. I. (1998). Computation with infinite neural networks. Neural
Computation, 10(5):1203–1216.

Wu, S. and Amari, S. (2002). Conformal transformation of kernel functions: a data-
dependent way to improve support vector machine classifiers. Neural Processing
Letters, 15(1):59–67.

103

Zhang, T. (2003). Sequential greedy approximation for certain convex optimization
problems. IEEE Transactions on Information Theory, 49(3):682–691.

