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ABSTRACT OF THE DISSERTATION

Design and Analysis of Crowdsourcing Mechanisms

by

Chien-Ju Ho
Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2015

Professor Jennifer Wortman Vaughan, Co-Chair

Professor Adnan Youssef Darwiche, Co-Chair

Crowdsourcing is a paradigm for utilizing crowd intelligence to help solve problems that computers

alone can not yet solve. In recent years, crowdsourcing has gained great success as the Internet makes

it easy to engage the crowd to work together. For instance, Wikipedia, the largest encyclopedia in

the world, is created with the help of online users. Games with A Purpose, crowdsourcing markets,

and online reviewing sites are also platforms that rely on human contributions to accomplish various

tasks. However, despite the great success of these platforms, how to better design crowdsourcing

mechanisms is still not well understood. Most of the crowdsourcing mechanisms suffer from the

prevalence of low quality work generated by humans.

In this dissertation, we explore the design and analysis of crowdsourcing mechanisms, with

the goal of understanding how to obtain high-quality information from participating users. We

approach the design problem from three interleaving directions. First, we study how to assign tasks

to workers with suitable skills using techniques from machine learning and online optimization.

Second, we explore how to design incentives to motivate users to provide high quality contribution.

Finally, we run behavioral experiments to understand how users behave in real systems with the

goal of developing more realistic user behavioral models.
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CHAPTER 1

Introduction

The rapid development of computer technology has helped humans accomplish various tasks in

everyday life, including filtering spam emails and finding the shortest driving directions. However,

some tasks, such as image tagging and language translation, still pose great challenges for computers

despite they are solvable by humans. In this dissertation, we study the design and analysis of

crowdsourcing mechanisms, which utilize the intelligence from the human crowd to solve machine-

intractable problems.

Background

Crowdsourcing, a term coined by Jeff Howe and Mark Robinson in the Wired Magazine in 2005, is

the process of outsourcing tasks to a crowd of people. Despite the invention of the term is relatively

new, the idea of utilizing the crowd to solve problems has appeared way before the Internet age.

For instance, in 1714, the British government offered a monetary prize, the Longitude Prize, to the

person who can provide the solution of measuring a ship’s longitude. In 1783, King Louis XVI

offered an award to the person who can produce alkali from sea salt with the most economic way.

In 1884, the Oxford English Dictionary relied on around 800 volunteers to help categorize words.

Nowadays, crowdsourcing has transfered mainly to the online environment, since the Internet

makes it easy to engage people to work together. Indeed, crowdsourcing has gained great success in

this Internet age. For example, Wikipedia becomes the largest encyclopedia in the world with the

help from online users to edit the articles. Online Q&A forums, such as Yahoo! Answers and Quora,

utilize the intelligence of the crowd to help answer questions from other online users. Galaxy Zoo

encourages online users to help contribute on science projects, such as classifying galaxies from
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telescope images.

With the increasing popularity of crowdsourcing, various mechanisms have been developed

to incentivize online users to contribute their effort and to aggregate their contribution. In Games

with A Purpose [111], developers design online games to attract online players to play games while

helping solve various hard real-world problems, such as gene folding [27] and image tagging [110].

reCAPTCHA [112] takes advantage of human effort in solving CAPTHCAs, which are distorted

images used to identify whether the solver is a human or a robot, and has completed digitizing the

archives of The New York Times and books from Google Books. Prediction markets, which allow

users to buy or sell securities on whether future events will happen, have shown to be successful in

predicting various events, such as Presidential elections [13] and Oscar winners.1

In addition to the above mechanisms, crowdsourcing markets are possibly the one with the most

general purpose. In crowdsourcing markets, requesters can post almost any tasks online along with

the payments to workers who complete the tasks. A typical task might involve tagging an image,

transcribing an audio message, or even designing a website logo. As a result of the flexibility, crowd-

sourcing markets are shown to be useful in various scenarios, including conducting user studies [77],

running behavioral experiments [66, 88], collecting data [65, 113], testing or even building business

applications [5, 99]. Moreover, a great number of companies and services are created to fulfill

the increasing demand of crowdsourcing services. Examples include Amazon Mechanical Turk,

Elance-oDesk, CrowdFlower, 99designs, TopCoder, and more. With this popularity, researchers

and companies are eager to understand how to better design crowdsourcing mechanisms and better

utilize the wisdom of crowd.

Main Challenges

Crowdsourcing has already shown to be effective at engaging people to work. However, how to

better design and utilize crowdsourcing mechanisms is still not well understood. In particular, most

of the crowdsourcing mechanisms suffer from the prevalence of low quality crowdwork.

1See the website http://www.predictwise.com for a wide range of event predictions using prediction
markets.
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The main challenges come from the human participation. The success of crowdsourcing depends

critically on whether we can obtain reliable information from participating users. More specifically,

humans might make mistakes and have different skills, and therefore we cannot assume all the user

contributions are reliable. We need to develop algorithms to aggregate noisy contributions from

users and further learn how to assign tasks to users with right skills. In addition, humans are often

self-interested and take actions to maximize their own benefits. We need to design mechanisms to

provide incentives and motivate online users to take actions which are desirable for the platforms.

Furthermore, humans might not always behave as the theory predicts. We need to better understand

humans really behave in the real systems.

This dissertation addresses these challenges by combining theoretical analysis and empirical

experiments. Building on techniques from machine learning, game theory, and online optimization,

we propose a series of algorithms and frameworks which help obtain high quality contributions from

online users. In addition, we conduct online behavioral experiments to understand how humans

behave in the real systems and develop a more realistic user model with the support of empirical

evidence.

Related Literature

There has been a growing literature on techniques to boost the quality of crowdwork. Here we

briefly describe the main research directions. A more thorough literature review and the highlights

of how our work advances the state of the art are described in each chapter.

First, there are a large number of research projects focusing on aggregating noisy contribution

from multiple users by applying various machine learning techniques, such as Bayesian learn-

ing [115], message passing [73], minimax entropy [120], spectral methods [76], and variational

inference [86]. In this dissertation (see Chapter 2), we not only study the aggregation of the noisy

user contribution but also explore how to assign suitable tasks to workers with the right skill sets.

In addition to aggregating noisy information, researchers have also examined the design of

incentive mechanisms to encourage high-quality crowdwork. For example, Jain et al. [70] explore

ways in which to award virtual points to users in online question-and-answer forums to improve

3



the quality of answers. Ghosh and Hummel [47, 48] and Ghosh and McAfee [50] study how to

distribute user generated content (e.g., Youtube videos) to users to encourage the production of

high-quality internet content by people who are motivated by attention. In this dissertation (see

Chapter 3 and 4), we focus on the use of two different incentives, including reputations and

performance-based payments, and show how to (near-)optimally choose the design parameters.

There has also been empirical work examining how workers’ behavior varies based on the

incentives offered in crowdsourcing markets. However, these studies often produced mixed and

somewhat contradictory recommendations. Take the use of performance-based payments for

example, Harris [57] and Yin et al. [117] suggested that performance-based payments can improve

work quality, while Shaw et al. [102] found no improvement and Yin et al. [116] found no difference

in quality when varying bonus size. In this dissertation (see Chapter 5), we conduct a comprehensive

set of empirical experiments to resolve the contradiction. We empirically examine whether, when,

why, and where do workers respond to performance-based financial incentives. Moreover, we

propose a novel but simple behavioral model which is consistent with the empirical observation

from our work and previous works.

1.1 Overview of this Dissertation

In this dissertation, we explore the design and analysis of crowdsourcing mechanisms. We approach

the design problem in three interleaving directions, as depicted in Figure 1.1, with a common goal

of obtaining high quality information from users.

In Chapter 2, we first assume workers are non-strategic, but have different skill levels and might

provide noisy information. We study how to assign suitable tasks to online arriving workers while

aggregating their noisy contribution. In Chapter 3 and Chapter 4, we consider the setting in which

workers are strategic and care about their own payoff. We explore how to incentivize workers to

contribute high quality information with two types of incentives, reputations and contracts (i.e.,

performance-based payments). In Chapter 5, we take a step back and think about whether we make

the right assumptions about how workers behave. In particular, we run behavioral experiments on

Amazon Mechanical Turk to understand how workers respond to performance-based payments

4
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Figure 1.1: The overview of this dissertation.

in real-world scenarios. We then develop a more realistic worker models based on our empirical

observation. Finally, in Chapter 6, we explore the setting in which we need to consider the

interactions between learning and incentives in crowdsourcing. In particular, we study the problem

of procuring data points from strategic users with the goal of solving a machine learning problem.

Below we give high level descriptions of each problem we study and highlight our contributions.

1.1.1 Online Task Assignment

Crowdsourcing markets rely on workers to solve a variety of tasks. However, workers have different

skill levels over different tasks and may not be able to produce high quality work for all tasks.

Therefore, it is important to design algorithms to learn workers’ skills and smartly assign suitable

tasks to workers. In Chapter 2, we explore the problem of assigning heterogeneous tasks to workers

with different, unknown skill sets. We consider the setting in which workers arrive online one at a

time and can only complete a limited number of tasks. The goal is to maximize the utility we get

from completed tasks and minimize the budget we spend on hiring workers.

To achieve the goal, we first formulate the problem in the online primal-dual framework. We

then propose task assignment algorithms which learn workers’ skill levels through historical records
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and assign tasks to workers based on what we learned. We prove that our algorithms can achieve

near-optimal performance compared to the oracle algorithm which has access to the unknown

worker skills and worker arriving sequences. Experiment results also demonstrate our algorithms

outperform greedy algorithms consistently.

This chapter is based on joint work with Shahin Jabbari and Jennifer Wortman Vaughan [59, 61].

1.1.2 Designing Incentives - Reputation Systems

Online workers not only have different skills but also are self-interested. Workers care about their

own benefits and might choose to exert low efforts on tasks to maximize their utilities. Furthermore,

the requesters might also be strategic and might not always honestly pay workers as they promised.

Therefore, we need to design appropriate incentive mechanisms to encourage requesters and workers

to take desired actions. In Chapter 3, we study the use of reputations as incentives. We focus on

reputation design in two-sided crowdsourcing markets, in which we attach reputation values both to

requesters who publish tasks and to workers who accept tasks.

We propose a framework for designing optimal reputation systems, which not only encourages

workers to exert high effort and requesters to honestly pay workers but also maximizes the revenue of

the platform designer. We illustrate the use of this technique to derive the optimal reputation design

from within the natural class of threshold-based social strategies paired with maximum punishment

reputation update rules, and show that the optimal norm in this class is simple to implement and

understand. We believe the framework and techniques will provide the necessary groundwork for

future progress towards a complete, robust theory of incentive design for crowdsourcing.

This chapter is based on joint work with Yu Zhang, Jennifer Wortman Vaughan, and Mihaela

van der Schaar [60].

1.1.3 Designing Incentives - Performance Based Payments

In addition to reputation systems, we also study the use of performance-based payments to encourage

high-quality contributions from workers. In Chapter 4, we explore how to set optimal crowdsourcing

contracts, i.e., performance-based payments, in which workers’ payments depend on the quality of
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their work. We consider the setting in which workers aim to maximize their own utilities and put in

effort based on the contracts we post. Furthermore, we have no knowledge of workers’ costs for

exerting effort and their abilities for the tasks in advance. The goal is to learn the contract which

optimizes the requester’s utility by observing workers’ historical performance over time.

We extend the standard principal-agent model from economic theory to a multi-round online

model. We then treat this problem as a multi-armed bandit problem, with each “arm” representing

a potential contract. To cope with the large (and in fact, infinite) number of arms, we propose a

new algorithm, AgnosticZooming, which adaptively discretizes the contract space so that more

promising regions of the contract space are eventually discretized more finely. We show that our

algorithm performs almost as well as an oracle algorithm which has access to full information

despite only observing limited information from users.

This chapter is based on joint work with Aleksandrs Slivkins and Jennifer Wortman Vaughan [62]

1.1.4 Modeling User Behavior

In Chapter 4, our results build on standard worker models in economics. In particular, we assume

workers are rational and aim to maximize their expected payments minus their expected costs.

However, this assumption might not always be true. In fact, several empirical studies have given

mixed and conflicting results. In this chapter, our goal is to resolve the controversy in previous works.

Furthermore, we aim to develop more realistic worker models, which can be used as foundations

for developing more practical theories.

We empirically explore the causal effects of financial incentives on the quality of crowdwork. In

particular, we study how online workers react to different performance-based payments. We conduct

a comprehensive set of experiments on Amazon Mechanical Turk and collect results from more

than 2,000 workers. With the empirical evidence, we provide a coherent explanation of our results

and the seemingly conflicting results from previous work. Moreover, we develop a worker behavior

model which introduces the concept of workers’ priors into the standard economic model. Workers’

priors describe workers’ beliefs on their subjective probabilities of getting different payments given

their performance. This simple model explains all of our empirical results and the results of previous
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studies. We bridge the gap between our previous theory work on adaptive contract design and this

empirical worker behavior model. We show that our theory still applies with this updated worker

model and is robust to a variety of worker models.

This chapter is based on joint work with Aleksandrs Slivkins, Siddharth Suri, and Jennifer

Wortman Vaughan [63]

1.1.5 Interactions Between Learning and Incentives

In Chapter 6, we consider the setting in which we need to jointly consider learning from the

contribution of the crowd and the incentives of the crowd. In particular, we study the following

problem: In a world where data is held by self-interested agents with heterogeneous costs for

providing it, and in particular when these costs may be arbitrarily correlated with the underlying

data, how can we design mechanisms that are incentive compatible, have robust learning guarantees,

and optimize the cost-efficiency trade-offs inherent in the learning problem?

To address this problem, we propose algorithms which identify the importance of each data

point and decide the payment to offer to each user. We show how to convert a large class of no-regret

algorithms into online posted-price and learning mechanisms. Our results parallel classic sample

complexity guarantees, but with the key resource constraint being money rather than quantity of

data available. With a budget constraint, we give robust risk (predictive error) bounds on the order

of one over the square root of the budget. In many cases our guarantees are significantly better due

to an active-learning approach that leverages correlations between costs and data.

This chapter is based on joint work with Jacob Abernethy, Yiling Chen, and Bo Waggoner [1].
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CHAPTER 2

Online Task Assignment

2.1 Overview

The availability of diverse workers willing to complete tasks inexpensively makes crowdsourcing

markets appealing as tools for collecting data [113]. Classification tasks, in which workers are

asked to provide a binary label for an instance, are among the most common tasks posted [67].

Unfortunately, due to a mix of human error, carelessness, and fraud — the existence of spammy

workers on Mechanical Turk is widely acknowledged — the data collected is often noisy [77, 114].

For classification tasks, this problem can be overcome by collecting labels for each instance from

multiple workers and combining these to infer the true label. Indeed, much recent research has

focused on developing algorithms for combining labels from heterogeneous labelers [32, 68].

However, this research has typically focused on the inference problem, sidestepping the question

of how to assign workers to tasks by assuming that the learner has no control over the assignment.

One exception is the work of Karger et al. [73], who focus on the situation in which all tasks are

homogeneous (i.e., equally difficult and not requiring specialized skills), in which case they show

that it is not possible to do better than using a random assignment.

One might expect the assignment to matter more when the tasks are heterogeneous. Classifying

images of dogs versus images of cats is likely easier for the average worker than classifying images

of Welsh Terriers versus images of Airedale Terriers. It might be necessary to assign more workers

to tasks of the latter type to produce high confidence labels. The assignment can also be important

when tasks require specialized skills. A worker who knows little about dogs may not be able to

produce high quality labels for the Terrier task, but may have skills that are applicable elsewhere.

In this chapter, we investigate the problem of task assignment and label inference for heteroge-
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neous classification tasks. In our model, a task requester has a set of tasks, each of which consists

of an instance for which he would like to infer a binary label. Workers arrive online. The learner

must decide which tasks to assign to each worker, and then use the noisy labels produced by the

workers to infer the true label for each task. The goal of the learner is to output a set of labels

with sufficiently low error while requesting as few labels from workers as possible. Building on

online primal-dual methods [18], we propose an exploration-exploitation algorithm that is provably

competitive with an optimal offline algorithm that has knowledge of the sequence of workers and

their skills in advance. We then evaluate this algorithm in a variety of experiments on synthetic data

and show that adaptively allocating tasks helps when the worker distribution is diverse or the tasks

are heterogeneous.

2.1.1 Related Work

The work in this chapter is mostly closely related to that of Karger et al. [73]. Karger et al. introduced

a model in which a requester has a set of homogeneous labeling tasks he must assign to workers

who arrive online. They proposed an assignment algorithm based on random graph generation

and a message-passing inference algorithm inspired by belief propagation, and showed that their

technique is order-optimal in terms of labeling budget. In particular, let p
j

be the probability that

worker j completes any given task correctly and q = E[(2p
j

� 1)

2

], where the expectation is over

the choice of a random worker j. They proved that their algorithm requires O((1/q) log(1/✏))

labels per task to achieve error less than ✏ in the limit as the numbers of tasks and workers go to

infinity. They also showed that adaptively assigning tasks does not help in their setting, in that

⌦((1/q) log(1/✏)) labels are still needed in general.

We generalize this model to allow heterogeneous tasks, so that the probability that worker j

completes a task correctly may depend on the particular task. In this generalized setting, assigning

tasks adaptively can provide an advantage both in theory and in practice.

Our techniques build on the online primal-dual framework, which has been used to analyze online

optimization problems ranging from the adwords problem [19, 38] to network optimization [4] and

paging [12].
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Repeated labeling has received considerable empirical attention, dating back to the EM-based

algorithm of Dawid and Skene [31]. Sheng et al. [103] considered a setting in which every worker

is correct on every task with the same probability, and empirically evaluated how much repeated

labeling helps. Ipeirotis et al. [68] extended this idea to heterogeneous workers and provided an

algorithm to simultaneously estimate workers’ quality and true task labels. More recently, there

has been work showing that label inference can be improved by first estimating parameters of

the structure underlying the labeling process using techniques such as Bayesian learning [115],

minimax entropy [120], and variational inference [86].

On the theoretical side, there have been several results on learning a binary classifier using

labeled data contributed by multiple teachers, each of which labels instances according to his own

fixed labeling function [28, 29, 32]. These require PAC-style assumptions and focus on filtering out

low quality workers. Tran-Thanh et al. [109] used ideas from the multi-armed bandit literature to

assign tasks. Bandit ideas cannot be applied in our setting without further assumptions since the

reward corresponding to an assignment depends on whether the worker’s label is correct, which

cannot be inferred until the task has been assigned to others.

Ghosh et al. [52] studied a model similar to that of Karger et al., also with homogeneous tasks,

and used eigenvalue decomposition to estimate each worker’s quality. Their bounds depend on a

quantity essentially identical to the quantity q defined above, which they refer to as the population’s

average competence. A similar quantity plays a role in our analysis.

2.2 The Model

In our model, a task requester has a set of n tasks, indexed 1, · · · , n. Each task is a binary

classification problem. The true label of task i, denoted `
i

, is either 1 or �1, and is unknown to the

requester.

Workers arrive online. When worker j arrives, she announces the maximum number of tasks

that she is willing to complete, her capacity, M
j

. No other information is known about each worker

when she arrives.
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Each worker j has a skill level, p
i,j

2 [0, 1], for each task i. If the algorithm assigns worker j to

task i, the worker will produce a label `
i,j

such that `
i,j

= `
i

with probability p
i,j

and `
i,j

= �`
i

with probability 1� p
i,j

, independent of all other labels. The algorithm may assign worker j up to

M
j

tasks, and may observe her output on each task before deciding whether to assign her to another

or move on, but once the algorithm moves on, it cannot access the worker again. This is meant

to reflect that crowdsourced workers are neither identifiable nor persistent, so we cannot hope to

identify and later reuse highly skilled workers.

Several of our results depend on the quantity q
i,j

= (2p
i,j

� 1)

2. Intuitively, when this quantity

is close to 1, the label of worker j on task i will be informative; when it is close to 0, the label will

be random noise.

To model the fact that the requester cannot wait arbitrarily long, we assume that he can only

assign tasks to the first m workers who arrive, for some known m. We therefore index workers

1, · · · , m. Later we consider an additional �m workers who are used for exploration.

In addition to assigning tasks to workers, the learning algorithm must produce a final estimate ˆ`
i

for the label `
i

of each task i based on the labels provided by the workers. The goal of the learner is

to produce estimates that are correct with high probability while querying workers for as few labels

as possible.

Task structure: A clever learning algorithm should infer the worker skill levels p
i,j

and assign

workers to tasks at which they excel. If the skills are arbitrary, then the learner cannot infer them

without assigning every worker to every task. Therefore, it is necessary to assume that the p
i,j

values exhibit some structure. Karger et al. [73] assume that all tasks are identical, i.e., p
i,j

= p
i

0
,j

for all j and all i and i0. We consider a more general setting in which the tasks can be divided into

T types, and assume only that p
i,j

= p
i

0
,j

if i and i0 are of the same type.

Gold standard tasks: As is common in the literature [94], we assume that the learner has

access to “gold standard” tasks of each task type.1 These are instances for which the learner knows

the true label a priori. They can be assigned in order to estimate the p
i,j

values. Of course the

algorithm must pay for these “pure exploration” assignments.

1If gold standard tasks are not available, they can be created by assigning a small set of tasks to many workers.
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Random permutation model: We analyze our algorithm in the random permutation model

as in Devanur and Hayes [37]. The capacities M
j

and skills p
i,j

of each worker j may be chosen

adversarially, as long as the assumptions on task structure are satisfied. However, the arrival order is

randomly permuted. Since only the order of workers is randomized, the offline optimal allocation is

well-defined.

Competitive ratio: To evaluate our algorithm, we use the notion of competitive ratio, which

is an upper bound on the ratio between the number of labels requested by the algorithm and the

number requested by an optimal offline algorithm which has access to all worker capacities and

skill levels, but must still assign enough workers to each task to obtain a high-confidence guess for

the task’s label. The optimal offline algorithm is discussed in Sections 2.3 and 2.4.

2.3 An Offline Problem

To gain intuition, we first consider a simplified offline version of our problem in which the learner

is provided with a full description of the sequence of m workers who will arrive, including the skill

levels p
i,j

and capacities M
j

for all i and j. The learner must decide which tasks to assign to each

worker and then infer the task labels. We discuss the inference problem first.

2.3.1 Aggregating Workers’ Labels

Suppose that the learner has already assigned tasks to workers and observed the workers’ labels for

these tasks. How should the learner aggregate this information to infer the true label for each task?

We consider aggregation methods that take a weighted vote of the workers’ labels. Fix a

task i. Let J
i

denote the set of workers assigned to this task. We consider methods that set

ˆ`
i

= sign(

P

j2J
i

w
i,j

`
i,j

) for some set of weights {w
i,j

}. The following lemma shows that this

technique with weights w
i,j

= 2p
i,j

� 1 is guaranteed to achieve a low error if enough high quality

workers are queried. Recall that q
i,j

= (2p
i,j

� 1)

2.

Lemma 2.3.1. Let ˆ`
i

= sign(

P

j2J
i

w
i,j

`
i,j

) for some set of weights {w
i,j

}. Then ˆ`
i

6= `
i

with

probability at most e�
1
2 (

P
j2J

i

w

i,j

(2p

i,j

�1))

2
/

P
j2J

i

w

2
i,j . This bound is minimized when w

i,j

/ (2p
i,j

�
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1), in which case the probability that ˆ`
i

6= `
i

is at most e�
1
2

P
j2J

i

q

i,j .

The proof, which uses a simple application of Hoeffding’s inequality, is in the appendix.2

This tells us that to guarantee that we make an error with probability less than ✏ on a task i, it is

sufficient to select a set of labelers J
i

such that ⌃

j2J
i

q
i,j

� 2 ln(1/✏) and aggregate labels by setting

ˆ`
i

= sign(

P

j2J
i

(2p
i,j

� 1)`
i,j

).

One might ask if it is possible to guarantee an error of ✏ with fewer labels. In some cases, it

is; if there exists an i and j such that p
i,j

= q
i,j

= 1, then one can achieve zero error with only

a single label. However, in some cases this method is optimal. For this reason, we restrict our

attention to algorithms that query subsets J
i

such that ⌃

j2J
i

q
i,j

� 2 ln(1/✏). We use the shorthand

C
✏

= 2 ln(1/✏).

2.3.2 Integer Programming Formulation

There is a significant benefit that comes from restricting attention to algorithms of the form

described above. Let y
i,j

be a variable that is 1 if task i is assigned to worker j and 0 otherwise. The

requirement that
P

j2J
i

q
i,j

� C
✏

can be expressed as a linear constraint of these variables. This

would not be possible using unweighted majority voting to aggregate labels; weighting by 2p
i,j

� 1

is key. This allows us to express the optimal offline assignment strategy as an integer linear program

(IP), with variables y
i,j

for each (i, j):

min ⌃

n

i=1

⌃

m

j=1

y
i,j

s.t. ⌃

n

i=1

y
i,j

M
j

8j (2.1)

⌃

m

j=1

q
i,j

y
i,j

� C
✏

8i (2.2)

y
i,j

2 {0, 1} 8(i, j). (2.3)

Constraint (2.1) guarantees that worker j does not exceed her capacity. Constraint (2.2) guarantees

that aggregation will produce the correct label of each task with high probability. Constraint (2.3)

implies that a task is either assigned to a worker or not.

2An appendix containing all omitted proofs and additional details can be found in the long version of this paper
available on the authors’ websites.
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Note that there may not exist a feasible solution to this IP, in which case it would not be possible

to guarantee a probability of error less than ✏ for all tasks using weighted majority voting. For most

of this paper, we assume a feasible solution exists; the case in which one does not is discussed in

Section 2.4.1.

For computational reasons, instead of working directly with this IP, we will work with a linear

programming relaxation obtained by replacing the last constraint with 0  y
i,j

 1 8(i, j); we will

see below that this does not impact the solution too much.

2.3.3 Working with the Dual

Solving the linear program described above requires knowing the values q
i,j

for the full sequence of

workers j up front. When we move to the online setting, it will be more convenient to work with

the dual of the relaxed linear program, which can be written as follows, with dual variables x
i

, z
j

,

and t
i,j

for all (i, j):

max C
✏

⌃

n

i=1

x
i

� ⌃

m

j=1

M
j

z
j

� ⌃

n

i=1

⌃

m

j=1

t
i,j

s.t. 1� q
i,j

x
i

+ z
j

+ t
i,j

� 0 8(i, j)

x
i

, z
j

, t
i,j

� 0 8(i, j).

We refer to x
i

as the task weight for i, and define the task value of worker j on task i as v
i,j

=

q
i,j

x
i

� 1.

Suppose that we were given access to the task weights x
i

for each task i and the values q
i,j

. (We

will discuss how to approximate these values later.) Then we could use the following algorithm to

approximate the optimal primal solution. Note that to run this algorithm, it is not necessary to have

access to all q
i,j

values at once; we only need information about worker j when it comes time to

assign tasks to this worker. This is the advantage of working with the dual.

The following theorem shows that this algorithm produces a near-optimal primal solution to

our original IP when given as input the optimal dual solution for the relaxed LP. The condition that

q
i,j

x⇤
i

6= q
i

0
,j

x⇤
i

0 for all i 6= i0 is needed for technical reasons, but can be relaxed by adding small
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Algorithm 1: Primal Approximation Algorithm
Input: Values x

i

and q
i,j

for all (i, j)

For every worker j 2 {1, . . . , m}, compute the task values, v
i,j

= q
i,j

x
i

� 1, for all tasks i.

Let n
j

be the number of tasks i such that v
i,j

� 0. If n
j

M
j

, then set y
ij

 1 for all n
j

tasks with non-negative task value. Otherwise, set y
i,j

 1 for the M
j

tasks with highest task

value. Set y
i,j

 0 for all other tasks.

random perturbations to q
i,j

values as in Devanur et al. [38].3 For the rest of the paper, we assume

that perturbations have been added and that the condition above holds. Call this the “perturbation

assumption.” In our final algorithm, we will perturb our estimates of the q
i,j

values for this reason.

Theorem 2.3.2. Let y

⇤ be the primal optimal of the IP and x

⇤ be the dual optimal of the relaxed

formulation. Let y be the output of the Primal Approximation Algorithm given input x

⇤ and the

true values q. Then y is feasible in the IP, and under the perturbation assumption, ⌃

n

i=1

⌃

m

j=1

y
i,j

�

⌃

n

i=1

⌃

m

j=1

y⇤
i,j

 min(m, n).

The proof shows that the y
i,j

values assigned by the Primal Approximation Algorithm differ

from the optimal solution of the relaxed LP for at most min(m, n) pairs (i, j), and that this implies

the result.

2.4 Moving to the Online Setting

We have shown that, given access to q and the optimal task weights x⇤, the Primal Approximation

Algorithm generates an assignment which is close to the optimal solution of the IP in Section 2.3.2.

However, in the online problem that we initially set out to solve, these values are unknown. In this

section, we provide methods for estimating these quantities and incorporate these into an algorithm

for the online problem.

Our online algorithm combines two varieties of exploration. First, we use exploration to estimate

the optimal task weights x⇤. To do this, we hire an additional �m workers on top of the m workers

3Adding noise will introduce an error, but this error can be made arbitrarily small when C
✏

is large. To simplify
presentation, we do no include the error in our discussion.
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we originally planned to hire, for some � > 0, and “observe” their q
i,j

values. (We will actually only

estimate these values; see below.) Then, by treating these �m workers as a random sample of the

population (which they effectively are under the random permutation model), we can apply online

primal-dual methods and obtain estimates of the optimal task weights. These estimates can then be

fed to the Primal Approximation Algorithm in order to determine assignments for the remaining m

workers, as described in Section 2.4.1.

The second variety is used to estimate workers’ skill levels. Each time a new worker arrives

(including the �m extras), we require her to complete a set of gold standard tasks of each task type.

Based on the labels she provides, we estimate her skill levels p
i,j

and use these to estimate the q
i,j

values. The impact of these estimates on performance is discussed in Section 2.4.2.

If we require each worker to complete s gold standard tasks, and we hire an extra �m workers,

we need to pay for an extra (1+�)ms assignments beyond those made by the Primal Approximation

Algorithm. We precisely quantify how the number of assignments compares with the offline optimal

in Section 2.4.3.

2.4.1 Estimating the Task Weights

In this section, we focus on the estimation of task weights in a simplified setting in which we can

observe the quality of each worker as she arrives. To estimate the task weights, we borrow an idea

from the literature on the online primal-dual framework. We use an initial sampling phase in

which we hire �m workers in addition to the primary m workers, for some �. We observe their skill

levels and treat the distribution over skills of the sampled workers as an estimate of the distribution

of skills of the m primary workers. Given the q
i,j

values from the sampled �m workers, we can

solve an alternative linear programming problem, which is the same as our relaxed offline linear

programming problem, except that m is replaced by �m and C
✏

is replaced by �C
✏

. Let ˆx⇤ be the

optimal task weights in this “sampled LP” problem. We show that if ✏ is small enough, running the

Primal Approximation Algorithm using ˆx⇤ and q yields a near-optimal solution, with a number of

assignments close to optimal, and a prediction error close to ✏ after aggregation.

Theorem 2.4.1. For any ✏, � 2 (0, 1/2), for any � = `/m with ` 2 {1, 2, · · · , m} and � 2 [1/C
✏

, 1],
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let ˆ

y

s,⇤ and ˆ

x

⇤ be the primal and dual optimal solutions of the sampled LP with parameters ✏ and �.

Let ˆ

y

⇤ be the output of the Primal Approximation Algorithm with inputs ˆ

x

⇤ and q, and let ¯

y

⇤ be the

optimal assignment of the relaxed offline formulation with parameter ✏. Let q
min

= min

(i,j):ŷ

s,⇤
i,j

>0

q
i,j

.

Then under the perturbation assumption, with probability at least 1� �,
n

X

i=1

m

X

j=1

ŷ⇤
i,j


✓

1+

min(m, n)

q
min

nC
✏

+

35 ln(2/�)

q
min

p
�C

✏

◆

n

X

i=1

m

X

j=1

ȳ⇤
i,j

.

If the labels collected from the resulting assignment are used to estimate the task labels via weighted

majority voting, the probability that any given task label is predicted incorrectly is no more than

✏1�6 ln(2/�)/

p
�C

✏ .

The requirement that � � 1/C
✏

stems from the fact that if C
✏

is small, the total number of

assignments will also be small, and the quality of the assignment is more sensitive to estimation

errors. If C
✏

is large, small estimation errors effect the assignment less and we can set the sampling

ratio to a smaller value.

In the proof, we show that the gap between the objectives of the primal solution generated by the

Primal Approximation Algorithm using ˆx⇤ and q and the corresponding dual solution is exactly the

summation of x̂⇤
i

(C
✏

� ⌃

m

j=1

q
i,j

ŷ⇤
i,j

) over all tasks i, which is small if enough workers are sampled.

By weak duality, the optimal number of assignments is between the primal and the dual objectives,

so the primal solution output by the algorithm must be near-optimal.

A note on feasibility: We have implicitly assumed that the sampled LP is feasible. In practice,

it may not be, or even if it is, there may exist tasks i such that min

j:ŷ

s,⇤
i,j

>0

q
i,j

is very small, leading

to a small value of q
min

. If either of these things happen, the task requester may want to discard

some of the tasks or lower his desired error, solve the sampled LP with these modified constraints,

and continue from there, as there is no way to guarantee low error on all tasks.

2.4.2 Using Estimates of Skill Levels

We now discuss the effect of estimating worker skills. Given observations of the gold standard tasks

of type ⌧ that worker j completed, we can estimate p
i,j

for any task i of type ⌧ as the fraction of

these tasks she labeled correctly. The following lemma, follows from a straightforward application
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of the Hoeffding bound; we state it here as it will be useful, but omit the proof.

Lemma 2.4.2. For any worker j, for any task type ⌧ , and for any t, � 2 (0, 1), suppose that worker

j labels ln(2/�)/(2t2) gold standard tasks of type ⌧ . Then with probability at least 1� �, for all

tasks i of type ⌧ , if we set p̂
i,j

to the fraction of gold standard tasks of type ⌧ answered correctly

then |p
i,j

� p̂
i,j

|  t.

This estimate of p
i,j

can then be used to derive an estimate for q
i,j

, with error bounded as

follows.

Lemma 2.4.3. For any worker j and task i, if p̂
i,j

is an estimate of p
i,j

such that |p
i,j

� p̂
i,j

|  t,

and q̂
i,j

is set to (2p̂
i,j

� 1)

2, then |q
i,j

� q̂
i,j

|  4t.

Of course the use of estimated values impacts performance. Consider the offline problem

discussed in the previous section. One might hope that if we applied the Primal Approximation

Algorithm using ˆq, the number of assignments would be close to the number made using q.

Unfortunately, this is not true. Consider this toy example. Let q
i,1

= q
i,2

= q
i,3

= 1 for all i,

q
i,j

= 10

�4 for all i and j > 3, and M
j

= n for all j. Set ✏ = 0.224 so that C
✏

⇡ 3. In the optimal

solution, each task i should be assigned only to workers 1, 2, and 3. If we underestimate the q
i,j

values, we could end up assigning each task to many more workers. This can be made arbitrarily

bad.

To address this, instead of solving the relaxed offline formulation directly, we consider an

alternative LP which is identical to the relaxed offline formulation, except that q is replaced with

ˆq and C
✏

is replaced with a smaller value C
✏

0 (corresponding to a higher allowable error ✏0). We

call this the approximated LP. We show that, if ✏0 is chosen properly, we can guarantee the optimal

solution in the relaxed offline formulation is feasible in the approximated LP, so the optimal solution

of the approximated LP will yield an assignment with fewer tasks assigned to workers than the

optimal solution of the relaxed offline formulation, even though it is based on estimations.

To set ✏0, we assume the requester has a rough idea of how hard the tasks are and how inaccurate

his estimates of worker skills are. The latter can be achieved by applying Lemma 2.4.2 and the

union bound to find a value of t such that |p
i,j

� p̂
i,j

|  t for all (i, j) pairs with high probability,
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and setting each q̂
i,j

= (2p̂
i,j

� 1)

2 as in Lemma 2.4.3. For the former, let ¯y⇤ be the optimal

solution of the relaxed offline formulation. Define q̄⇤
i

= ⌃

m

j=1

q
i,j

ȳ⇤
i,j

/⌃m

j=1

ȳ⇤
i,j

. We assume that the

requester can produce a value q̄⇤
min

such that q̄⇤
min

 q̄⇤
i

for all i and then set C
✏

0
= 2 ln(1/✏0) where

✏0 = ✏1�4t/q̄

⇤
min . If the requester doesn’t have much information, he can conservatively set q̄⇤

min

much smaller than min

i

{q̄⇤
i

}, but will both need more accurate estimates of p
i,j

and sacrifice some

prediction accuracy.

Theorem 2.4.4. Assume that we have access to a value q̄⇤
min

such that q̄⇤
min

 q̄⇤
i

for all i and

values p̂
i,j

such that |p
i,j

� p̂
i,j

|  t for all (i, j) pairs for any known value t < q̄⇤
min

/4. Then for

any ✏ > 0, the optimal solution of the approximated LP with parameter ✏0 = ✏1�4t/q̄

⇤
min and skill

levels q̂
i,j

= (2p̂
i,j

� 1)

2 is no bigger than the optimal solution of the relaxed offline formulation

with parameter ✏ and skill levels q
i,j

.

Of course this guarantee is not free. We pay the price of decreased prediction accuracy since we

are using ✏0 in place of ✏. We also pay when it comes time to aggregate the workers’ labels, since

we must now use ˆq in place of q when applying the weighted majority voting method described in

Section 2.3.1. This is quantified in the following theorem. Note that this theorem applies to any

feasible integer solution of the approximated LP and therefore also the best integer solution.

Theorem 2.4.5. Assume again that we have access to a value q̄⇤
min

such that q̄⇤
min

 q̄⇤
i

for all i and

values p̂
i,j

such that |p
i,j

�p̂
i,j

|  t for all (i, j) pairs for any known value t < q̄⇤
min

/4. For any ✏ > 0,

let y be any feasible integer assignment of the approximated LP with parameter ✏0 = ✏1�4t/q̄

⇤
min and

skill levels q̂
i,j

= (2p̂
i,j

� 1)

2. Let J
i

= {j : y
i,j

= 1} denote the set of workers that are assigned

to task i according to y , and define q̂
i

= ⌃

j2J
i

q
i,j

/ |J
i

|. If the tasks are assigned according to y

and the results aggregated using weighted majority voting with weights w
i,j

= 2p̂
i,j

� 1, the error

probability of the predicted task label for task i is bounded by ✏(1�4t/q̄

⇤
min

)(1�4t/q̂

i

).

Theorem 2.4.5 tells us that if our estimates of the worker skills are accurate (i.e., if t is small),

then our prediction error will be close to the error we would have achieved if we had known the

true worker skills. How good the estimates need to be depends on the quality of the workers, as

measured by q̄⇤
min

and q̂
i

. Intuitively, if q̄⇤
min

is small, there may exist some task i at which workers

perform poorly in the optimal solution. In this case, the assignment will be very sensitive to the
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value of ✏0 chosen, and it will be necessary to set ✏0 larger to guarantee that the true optimal solution

is feasible in the approximated LP. If q̂
i

is small, then a small amount of error in estimated worker

quality would dramatically change the weights used in the weighted majority voting aggregation

scheme.

2.4.3 Putting it All Together

We have separately considered relaxations of the task assignment and label inference problem in

which the optimal task weights or worker skill levels are already known. We now put all these

pieces together, give a combined algorithm, and state our main theorem.

Algorithm 2: Main Algorithm
Input: Values (✏, �, s, and q̄⇤

min

)

Hire �m preliminary workers.

for each preliminary worker do

Assign s gold standard tasks of each task type.

Calculate q̂
i,j

values as in Section 2.4.2 and perturb with a negligible amount of noise.

end for

Calculate C
✏

0 and solve the sampled LP with ˆq to obtain primal ys and dual ˆx⇤ as in

Section 2.4.1.

for each worker j 2 {1, ..., m} do

Assign s gold standard tasks of each task type.

Calculate q̂
i,j

values as in Section 2.4.2 and perturb with a negligible amount of noise.

Run the Primal Approximation Algorithm with inputs ˆx⇤ and (perturbed) ˆq to y.

Assign worker j to all tasks i with y
i,j

= 1.

end for

Aggregate the workers’ labels using weighted majority voting as in Section 2.3.1.

The complete algorithm is stated in Algorithm 2, and its performance guarantee is given below.

Recall that T is the number of task types. Again, we assume that the optimization problems are

feasible.
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Theorem 2.4.6. For any ✏, � 2 (0, 1/2), for any � = `/m for an ` 2 {1, 2, ..., m} such that

� 2 [1/C
✏

, 1], assume we have access to a value q̄⇤
min

satisfying the condition in Theorem 2.4.4, let

s be any integer satisfying s � 8 ln(4T (1+�)m/�)/q̄⇤2
min

, and let ✏0 = ✏1�4

p
ln(4T (1+�)m/�)/(2s)/q̄

⇤
min .

Then under the perturbation assumption, with probability at least 1� �, when the Main Algorithm

is executed with input (✏, �, s, q̄⇤
min

) , the following two things hold:

1) The number of assignments of to non-gold standard tasks is no more than
✓

1 +

min(m, n)

q̂
min

nC
✏

0
+

35 ln(4/�)

q̂
min

p
�C

✏

0

◆

times the optimal objective of the IP, where q̂
min

= min

(i,j):y

s

i,j

=1

q̂s
i,j

.

2) The probability that the aggregated label for each task i is incorrect is bounded by ✏(1�l1)(1�l2)(1�l3,i),

where l
1

= 4t/q̄⇤
min

, l
2

= 6 ln(4/�)/
p
�C

✏

0 , l
3,i

= 4t/q̂
i

, and t =

p

ln(4T (1 + �)m/�)/(2s).

When ✏ is small, C
✏

0 is large, and l
2

approaches 0. The competitive ratio may shrink, but if ✏ is

too small, q̂
min

will shrink as well, and at some point the problem may become infeasible. When s

is large, t is small, and so l
1

and l
3,i

approach 0, leading to error almost as low as if we knew the

true q values, as we would expect.

2.5 Synthetic Experiments

In this section, we evaluate the performance of our algorithm through simulations on synthetically

generated data. As a comparison, we also run the message-passing inference algorithm of Karger

et al. [73] on the same data sets. As described in Section 4.1.1, Karger et al. use a non-adaptive,

random assignment strategy in conjunction with this inference algorithm. We show that adaptively

allocating tasks to workers using our algorithm can outperform random task assignment in settings

in which (i) the worker distribution is diverse, or (ii) the set of tasks is heterogeneous.

We create n = 1, 000 tasks and m = 300 workers with capacity M
j

= 200 for all j, and vary

the distribution over skill levels p
i,j

. We would like to compare the error rates of the algorithms

when given access to the same total number of labels. In the message-passing algorithm, we can

directly set the number of labels by altering the number of assignments. In our algorithm, we change

the parameter ✏ and observe the number of labels (including exploration) and the prediction error.
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Figure 2.1: Uniform tasks with one or two worker types.

2.5.1 Worker Diversity

In their analysis, Karger et al. assume there is only one task type (that is, p
i,j

= p
i

0
,j

for all i, i0, and

j), and claim that in this setting adaptively assigning tasks does not yield much of an advantage.

Our first experiment simulates this setting. We would like to see if our algorithm can perform better

if the worker distribution is diverse, even though it requires some “pure exploration” — we need to

pay each worker to complete the gold standard tasks, and we need to hire an extra �m workers to

estimate the task weights.

For our algorithm, we set � = 0.3 and sample 90 extra workers from the same distribution to

learn task weights. Each worker is required to complete s = 20 gold standard tasks of each type

when she arrives. These values were not optimized, and performance could likely be improved by

tuning these parameters.

We examine two settings. In the first, every worker gives us a correct label with probability

0.6414 for all tasks. In the second, the population is 50% spammers and 50% hammers. The

spammers give random answers, while the hammers answer correctly with probability 0.7. Note

that these values are chosen such that E[q
i,j

] = E[(2p
i,j

� 1)

2

] is the same in both settings.

The results are shown in Figure 2.1. The performance of the message-passing algorithm is

almost identical in the two settings. Our algorithm performs relatively poorly in the setting with
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Figure 2.2: Heterogeneous tasks.

uniform workers since we can’t benefit from adaptive assignments but still pay the exploration costs.

However, our algorithm outperforms message passing in the setting with two types of workers,

quickly learning not to assign any tasks to the spammers beyond those used for exploration.

2.5.2 Heterogeneous Tasks

We next examine a setting in which there are multiple types of tasks, and every worker is skilled at

exactly one type. We generate k task types and k corresponding worker types, for k = 1, 2, and 3.

Type ↵ workers complete type ↵ tasks correctly with probability 0.7, but other tasks correctly with

probability 0.5.

For our algorithm, we set � = 0.3. Each worker completes s = 10 gold standard tasks of each

type.

The results are shown in Figure 2.2. Not surprisingly, since the message-passing algorithm does

not attempt to match tasks to suitable workers, its performance degrades quickly when k grows.

Since our algorithm attempts to find the best match between workers and tasks, the performance

degrades much more slowly when k grows, even with the extra exploration costs.
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2.6 Summary

We conclude this chapter by mentioning several extensions of our model. We have assumed that the

requester pays the same price for any label. Our results can be extended to handle the case in which

different workers charge different prices. Let c
i,j

denote the cost of obtaining a label for task i from

worker j. The objective in the integer program would become ⌃

n

i=1

⌃

m

j=1

c
i,j

y
i,j

. This is linear and

the same techniques would apply.

The framework can also be extended to handle more intricate assumptions about the structure of

tasks. We have assumed that there are T task types, with p
i,j

= p
i

0
,j

whenever i and i0 are of the

same type. However, this assumption is used only in the exploration phase in which workers’ skills

are estimated. While the amount of exploration required by the algorithm depends on the particular

task structure assumed, the derivation of our algorithm and the general analysis are independent of

the task structure.
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CHAPTER 3

Designing Incentives - Reputation Systems

3.1 Overview

In principle, crowdsourcing markets could revolutionize the way in which projects are completed

by giving individuals immediate access to large, diverse, and flexible pools of workers any time

of day or night. In practice, they are plagued by workers who attempt to exert as little effort

as possible [68, 77, 114], and requesters who advertise spammy tasks or deny workers payment

for tasks completed.1 This behavior must be discouraged in order for crowdsourcing markets to

succeed.

In this chapter, we propose and study a class of incentive mechanisms based on social norms [72,

93]. A social norm consists of a set of rules that market participants are expected to follow, and

a mechanism for updating participants’ public reputations based on whether or not they do. For

example, in a crowdsourcing market, workers may be encouraged to exert high effort only for tasks

posted by requesters who have treated other workers fairly in the past. Our goal is to develop a

formal framework to help platform designers (e.g., Amazon, in the case of Amazon Mechanical

Turk) identify optimal social norms for their applications, taking into account parameters about the

environment and the market participants.

Social norms have several advantages over more traditional reputation systems. For example, a

typical reputation system can have a large (or even infinite) number of equilibria, some of which

lead to high social welfare and revenue, and some of which do not (e.g., the “everyone behave badly”

equilibrium). Even if a good equilibrium exists, it is not clear how to guarantee that participants will

1See, for example, the “Requesters Hall of Fame/Shame” forum on turkernation.com.
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select it. With social norms, the equilibrium selection problem is easy since the platform designer

explicitly recommends strategies to the participants. The participants only need to verify that it is in

their own best interest to follow the recommended strategies.

We consider the large and general class of social norms with threshold-based social strategies.

In a threshold-based social strategy, workers are expected to exert high effort on tasks posted by

any requester whose reputation exceeds a specified value. Similarly, requesters are expected to

pay those workers whose reputation exceeds a specified value. We show that under the class of

maximum punishment reputation update rules, in which users who violate the social strategy have

their reputation reset to the minimum possible value, the optimal threshold-based social strategy

from the platform designer’s perspective is surprisingly simple and intuitive. In particular, the

optimal social strategy says that workers are expected to exert high effort on tasks posted by any

requester who followed the social strategy on the previous round, and requesters are expected to

pay those workers who followed the social strategy on the previous round. This can be viewed as a

variant of tit-for-tat in the sense that participants punish other participants who did not adhere to the

social strategy in the previous round. This result is reassuring in that it tells us we do not need to

construct complicated incentive mechanisms with heavily optimized parameters to obtain optimal

results. It is also somewhat surprising, given that complex parameter tuning is necessary to obtain

optimality in P2P systems [118].

3.1.1 Related Work

There are a variety of options one might consider when designing an incentive mechanism, such as

using virtual currency [74, 75] or virtual points [69]. In this chapter, we focus our discussion on a

mechanism based on reputation [34, 35, 44, 90, 96]. We discuss the adaptive design of financial

incentives in Chapter 4. In a reputation-based mechanism, rewards and punishments are typically

determined according to a differential service scheme, which might require, for example, that a user

who behaved well in the past (e.g., by making payments to workers on time) should receive more

resources or better service than a user who did not. This preferential treatment provides an incentive

for users to behave well.
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The particular reputation mechanisms we propose are based on social norms [72, 93], which

consist of a set of prescribed rules that market participants are asked to follow, and a mechanism

for updating reputations based on whether or not they do. Our model and analysis differ in several

important ways from most existing work on reputation systems, such as the influential work of

Dellarocas [34, 35] on sanctioning mechanisms for environments with pure moral hazard. The

traditional work on sanctioning mechanisms considers a one-sided market with one long-lived seller

and many short-lived buyers, while we consider a two-sided market with a large number of long-

lived workers and requesters. This distinction is especially important in scenarios with asymmetric

information. In Dellarocas’ model, in order to reach equilibrium, the seller’s strategy must be

publicly known. In our model, only the prescribed social norm must be known, and this can easily

be announced by the market operator. Additionally, the analytical techniques used differ. Dellarocas’

analysis proceeds by first finding the optimal objective value obtainable at equilibrium and then

deriving a reputation mechanism to achieve this value. We first identify a parameterized family

of social norms, and for every member of the family, derive the stationary distribution over users’

reputations assuming they all follow the social strategy. We then use this stationary distribution to

identify the set of sustainable mechanisms, and derive the optimal mechanism from this set. Both of

these techniques have merit and each may be more appropriate in certain settings. For example, our

technique may be more appropriate when the designer would like to restrict attention to classes of

mechanisms that are particularly easy to implement or computationally tractable to run.

One advantage of social norms over traditional reputation systems is that the equilibrium

selection problem is easy by design. The market operator announces the strategy that everyone

should follow, and participants only need to verify that following is in their own best interest. This

differs from typical reputation systems which may have a large or infinite number of equilibria,

some of which lead to low payoffs for all.

To the best of our knowledge, we are the first to consider incorporating social norms into

crowdsourcing markets. The most relevant related work is that of Zhang et al. [119] and Zhang

and van der Schaar [118] on social norm design for P2P systems. In P2P systems, all participating

users play similar roles, and only the transmitters take actions. This differs from crowdsourcing

markets, in which the set of workers accepting tasks is typically mostly disjoint from the set of
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task requesters, and both sets can take actions. Interactions in P2P systems are naturally modeled

as gift-giving games, while interactions in crowdsourcing markets are more naturally modeled as

instances of the Prisoner’s Dilemma, as we see below. These apparently small differences lead to

dramatically different results; to achieve optimality in P2P systems, it is necessary to carefully tune

parameters based on the environment, while in our setting, a simple and intuitive mechanism is

optimal for a wide range of environments.

3.2 Problem Formulation

We study the problem of designing social norms for crowdsourcing markets. In this chapter, we

take the point of view of the platform designer (e.g., Amazon in the case of Amazon Mechanical

Turk) who runs the market and typically receives a fixed percentage of all payments that are made.

We therefore consider the goal of maximizing the total amount of money exchanged in the system,

which can be viewed as a proxy for the platform designer’s profit. (We discuss a simple modification

of our model that incorporates the platform designer’s profit more explicitly in Section 3.4.3.)

For clarity of presentation, we initially make several simplifying assumptions in our model.

First, we assume that the user population is large and static, with the number of workers in the

population equal to the number of requesters. (Dynamic populations are considered in Section 3.4.)

Second, we assume that at each point in time, workers and requesters are randomly matched. The

problem of assigning tasks to workers is of great importance, but is beyond the scope of this chapter.

Third, we assume that workers and requesters are homogeneous in the sense that all workers pay

the same cost (in terms of time and effort) to complete any task, and all requesters receive the same

utility for tasks completed. Under these assumptions, it is natural to set one fixed price for all tasks

as well.

When a worker and a requester are matched, the worker chooses to exert either high or low

effort for the requester’s task, and the requester chooses whether or not to pay the worker. Ideally, a

requester would like to be able to carefully evaluate the worker’s work before choosing whether or

not to pay. However, in reality, the requester does not always have the ability to do this. Payment

decisions are generally made relatively quickly, while it may take significant time for the requester
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to evaluate the work. For this reason, we assume that a requester must choose whether or not to pay

a worker before the action of the worker is revealed. However, afterwords, when the requester has

had a chance to evaluate the work, the worker and requester can report each other’s actions to the

platform designer. The platform designer can then use these reports to update reputations.

Even after time has passed, it may be difficult for a requester to accurately evaluate the quality

of a worker’s work, especially for advanced tasks, such as translation. For this reason, we allow

some noise in the reports. In particular, we assume that with probability ✏
w

, the action of a worker

is misreported. Similarly, with probability ✏
r

, the action of a requester is misreported. Both ✏
w

and

✏
r

are common knowledge.

One might ask why we should expect users to report the actions of others truthfully. It is

easy to see that in our setting, there is no incentive for workers or requesters to report dishonestly.

These reports have no direct impact on the reputation of the reporter. Additionally, because we are

considering a very large population, any indirect effects of a dishonest report would be negligible.

For the majority of this chapter, we assume that all market participants are rational and would

like to maximize their long-term discounted sum of utilities. When dealing with rational participants,

we assume that all workers and requesters have the same discount factor, �.

3.2.1 Single Stage Game

Since workers and requesters are unable to observe each other’s action before choosing their own

actions, it is natural to model their interaction as a normal-form game as in Table 3.1. In this game,

C denotes a worker’s cost for exerting high effort on the requester’s task, V denotes the benefit a

requester receives when a worker exerts high effort, and P denotes the monetary payment associated

with the task. We implicitly assume the worker’s cost for exerting low effort is 0, but this assumption

is without loss of generality since our analysis depends only on the difference between the cost of

exerting high effort and the cost of exerting low effort. Similarly, it is without loss of generality to

assume the requester’s value for receiving low effort work is 0.

We are interested only in the natural setting in which the action pair (High Effort, Pay) leads to

higher payoffs than the action pair (Low Effort, Don’t Pay) for both the worker and the requester. If
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Requester

Pay Don’t Pay

Worker
High Effort P � C, V � P �C, V

Low Effort P,�P 0, 0

Table 3.1: Payoff matrix of the stage game.

this were not the case, then social welfare would be maximized by everyone choosing Low Effort

or Don’t Pay, and there would be no need to design a social norm. Therefore, we assume that

0 < C < P < V .

This game is a variation of the well-studied Prisoner’s Dilemma. It is easy to see the only Nash

equilibrium in this game is the action pair (Low Effort, Don’t Pay).

3.2.2 Repeated Game with Social Norm

In the single-stage game described above, the only Nash equilibrium results in a low payoff for

both the requester and the worker. Fortunately, in crowdsourcing markets, workers and requesters

typically participate in the market many times. Therefore, it is natural to model a crowdsourcing

market as a repeated game, in which workers and requesters play the normal-form game above with

a randomly chosen opponent at each point in time, as is common in the literature [42]. The social

norms that we propose will be for this repeated game setting.

In the social norms that we design, both requesters and workers are assigned reputation values

that are updated over time. The platform designer announces a prescribed social strategy (e.g.,

“don’t exert effort for/pay participants with zero reputation”) and updates participants’ reputations

based on how well they follow this strategy.

Formally speaking, a social norm consists of two parts:

• The social strategies �
w

and �
r

are functions that define the prescribed actions for the worker

and requester respectively when a worker with reputation ✓
w

is matched with a requester with

reputation ✓
r

.
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• The reputation update rules ⌧
w

and ⌧
r

define how to update the reputation of the worker and

requester respectively after each transaction. We assume the reputation values are bounded

between 0 and an upper bound L.

Designing a social norm involves specifying both the social strategies and the reputation update

rules.

3.3 Optimal Social Norm Design

In this section, we illustrate how to design optimal social norms under the most basic version of our

model. For now, we limit our attention to the most natural class of social strategies, threshold-based

social strategies, paired with maximum punishment reputation update rules, both defined below. We

first derive a set of conditions that can be used to determine whether or not a particular social norm

is sustainable, i.e., whether or not each user has incentive to follow the social norm if she believes

that everyone else is following. We then formalize the objective function of the platform designer

and show how to find the optimal sustainable social norm with respect to this objective function.

The general technique that we illustrate can also be applied to more elaborate variants of our model,

alternative objective functions, or alternative classes of social norms.

A threshold-based social strategy is based on a pair of threshold values (k
r

, k
w

). Workers are

expected to exert high effort when they face requesters with reputation at least k
r

, and exert low

effort otherwise. Similarly, requesters are expected to pay the payment only when they are matched

with workers with reputation at least k
w

. This is formalized in the following definition.

Definition 1. The threshold-based social strategies �
w

and �
r

with parameters k
r

and k
w

are

defined as:

�
w

(✓
w

, ✓
r

) =

8

>

<

>

:

“High Effort” if ✓
r

� k
r

,

“Low Effort” otherwise.

�
r

(✓
w

, ✓
r

) =

8

>

<

>

:

“Pay” if ✓
w

� k
w

,

“Don’t Pay” otherwise.
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We initially consider a very simple class of update rules. Each time the user follows the social

strategy, her reputation is increased by 1 until it hits the limit L.2 Each time the user deviates from

the social strategy, her reputation is reset to 0. We call this the maximum punishment reputation

update rule and define it more formally as follows.

Definition 2. The maximum punishment reputation update rules ⌧
w

and ⌧
r

with parameter L are

defined as:

⌧
w

(✓
w

, ✓
r

, a) =

8

>

<

>

:

min{✓
w

+ 1, L} if a = �
w

(✓
w

, ✓
r

),

0 otherwise.

⌧
r

(✓
w

, ✓
r

, a) =

8

>

<

>

:

min{✓
r

+ 1, L} if a = �
r

(✓
w

, ✓
r

),

0 otherwise.

We first show that there exists a unique stationary reputation distribution for the maximum

punishment reputation update rules. We then derive the sustainable conditions and find the optimal

values of the parameters k
r

, k
w

, L, and P . We show that the resulting optimal social norm is both

simple and intuitive for market participants.

3.3.1 The Stationary Reputation Distribution

Our first lemma states that there exists a stationary distribution of worker and requester reputations

under the assumption that all users follow the prescribed social strategy. Recall that every worker’s

(requester’s) action at a given time step is misreported with probability ✏
w

(✏
r

).

Lemma 3.3.1. In the basic model, under the maximum punishment reputation update rule with

any L > 0 paired with any social strategy, if all users follow the social strategy, then there exists a

unique stationary distribution {⌘
w

(✓)} over worker reputations and a unique stationary distribution

2We could define separate limits for workers and requesters. However, it turns out that this would not change the
optimal social norm. To simplify presentation, we therefore stick to one parameter L.
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{⌘
r

(✓)} over requester reputations given by

⌘
w

(✓) = (1� ✏
w

)

✓✏
w

, for ✓ 2 {0, · · · , L}

⌘
w

(L) = (1� ✏
w

)

L

⌘
r

(✓) = (1� ✏
r

)

✓✏
r

, for ✓ 2 {0, · · · , L}

⌘
r

(L) = (1� ✏
r

)

L.

Proof. We show how to derive the stationary distribution {⌘
w

(✓)} over worker reputations. The

derivation for the distribution over requester reputations is identical.

Let ⌘t
w

(✓) denote the fraction of workers with reputation ✓ at time t. Assuming that all workers

in the market follows the social strategy �
w

, the transition of worker reputations over time can be

described as follows. At any time t,

⌘t+1

w

(0) = ✏
w

⌘t+1

w

(✓) = (1� ✏
w

)⌘t
w

(✓ � 1) , for 1  ✓  L� 1

⌘t+1

w

(L) = (1� ✏
w

){⌘t
w

(L� 1) + ⌘t
w

(L)}.

When the distribution is stationary, ⌘t+1

r

(✓) = ⌘t
r

(✓) for all ✓. If for each value of ✓, we

substitute a single variable ⌘
r

(✓) for ⌘t+1

r

(✓) and ⌘t
r

(✓) in the equations above, we end up with L + 1

independent linear equations with L + 1 unknowns. These linear equations can be uniquely solved,

yielding the values of ⌘t
r

(✓) in the lemma statement.

We can verify that these values do indeed form a probability distribution by checking that
P

L

✓=0

⌘
r

(✓) = 1. When ⌘t
r

(✓) = ⌘t+1

r

(✓) = ⌘
r

(✓) for all ✓, summing over the L + 1 constraints

given above gives us exactly what we need.

The stationary distributions do not depend on the particular social strategy used. Note that in

the special case in which the reporting errors are 0, all workers and requesters have the highest

reputation value.

34



3.3.2 Sustainability Conditions

We next investigate the conditions under which users have incentive to follow the threshold-based

social norm. If the social strategy states that requesters never pay and workers never exert high

effort, it would be sustainable trivially, but this bad equilibrium is undesirable. We therefore focus

on the non-trivial case where k
w

 L and k
r

 L.

To check if a social norm is sustainable, we check whether a user has incentive to deviate from

the social norm given all other users are following. Since we assume the population of users is

large, the deviation of single agent will not influence the overall distribution. Therefore, we can

calculate the long-term expected payoff using the stationary reputation distribution. Below we show

the sustainable conditions for the threshold-based social norms. Recall that � denotes the discount

factor, which is common among all users.

Lemma 3.3.2. In the basic model, the threshold-based social strategy with parameters k
w

and k
r

paired with the maximum punishment reputation update rule with L > 0 is sustainable if and only

if k
w

> 0, k
r

> 0, and

1

�kw(1� ✏
w

)

k

w

�1

(1� 2✏
w

)

C  P  �kr(1� ✏
r

)

k

r

�1

(1� 2✏
r

) V.

The proof of this lemma, which uses the one-shot deviation principle of game theory, appears in

the appendix.

To gain intuition about Lemma 3.3.2, consider the case in which the reports of behavior are

noise-free, that is, ✏
r

= ✏
w

= 0. The lemma then implies that the social norm is sustainable if

C  �kwP and P  �krV . These are precisely the conditions under which a worker or requester

with reputation 0 has incentive to follow the social norm. The left-hand side of each equation is the

current maximum additional payoff a worker (first equation) or requester (second equation) can

get by deviating from the social norm, and the right-hand side is the difference of expected future

payoff she can get if she does not deviate from the social norm in the current stage. Since users with

reputation 0 have the least incentive to follow (they have no reputation to lose), these conditions

suffice to ensure that all users have incentive to follow.
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This result gives us a feasible interval in which we can set the price P . If the ratio of value to

cost or the discount factor is too small, (i.e., if V/C  1/�kr+k

w), then there is no way to set the

price to obtain a sustainable social norm.

3.3.3 The Optimal Social Norm

With the sustainability conditions in place, we are now ready to design the optimal threshold-based

social norm. We define optimality in terms of the total of all payments exchanged, which is a

proxy for the revenue of the platform designer. (In Section 3.4.3 we look at the platform designer’s

revenue directly.) The designer has control of four parameters: the payment P , the threshold values

k
r

and k
w

, and the maximum reputation L.

We first formally define the objective function of the design problem. Let P (✓
w

, ✓
r

) = P if

the requester of reputation ✓
r

is asked to pay in a transaction with worker of reputation ✓
w

, i.e.,

if �
r

(✓
w

, ✓
r

) = “Pay”, and P (✓
w

, ✓
r

) = 0 otherwise. Assuming that the population has already

converged to the unique stationary distribution, we can express the objective function U as

U =

L

X

✓

r

=0

L

X

✓

w

=0

⌘
w

(✓
w

)⌘
r

(✓
r

)P (✓
w

, ✓
r

).

Note that P (✓
w

, ✓
r

) depends on the choice of k
w

, but not k
r

. If everyone follows the social

strategy, the stationary distributions do not depend on k
w

or k
r

. We can therefore conclude that

under the assumption that all users follow the social strategies:

• For fixed values P , k
r

, and L, U is non-increasing in k
w

.

• For fixed values P , k
w

, and L, U is constant in k
r

.

This allows us to derive the optimal parameter settings.

Theorem 3.3.3. In the basic model, restricting attention to threshold-based social strategies paired

with maximum punishment reputation update rules, if

V

C
� 1

�2(1� 2✏
w

)(1� 2✏
r

)

then total payments are maximized by setting k
r

= k
w

= L = 1 and P = �(1� 2✏
r

)V . The optimal
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value of the objective U is then �(1 � ✏
w

)(1 � 2✏
r

)V . Otherwise, there is no sustainable social

norm.

Proof. Fix any L > 0. From Lemma 3.3.2, we know that if a sustainable social norm exists, then

regardless of the values of k
r

and k
w

, U is maximized if we set P = �(1 � 2✏
r

)V . Furthermore,

examining the condition in Lemma 3.3.2, we can see that if the social norm is not sustainable with

k
r

= k
w

= 1, then it will not be sustainable with any setting of k
r

and k
w

. As we argued above, U

is non-increasing in k
w

and constant in k
r

, so setting k
r

= k
w

= 1 maximizes U .

Finally, consider the choice of L. With k
r

= k
w

= 1, the value of maximum reputation L does

not affect the objective at all. We can therefore set L = 1 for simplicity.

With both of the thresholds and the maximum reputation L equal to 1, the optimal social norm

from Theorem 3.3.3 is surprisingly simple and intuitive. In this social norm, there are only two

different reputation values. Modulo the effects of noise, users who followed the social norm on the

previous time step have reputation 1, while users who did not follow have reputation 0. The social

strategy then says that users should play a tit-for-tat-like strategy, exerting high effort for or paying

those users who obeyed the social norm on the previous time step, and punishing those who did not.

This result is both reassuring and somewhat surprising. It tells us that there is no need to construct

complicated incentive mechanisms that are difficult for users to understand, or to heavily optimize

parameters of the mechanism based on properties of the market participants. More interestingly, in

the next section, we show that this intuitive social norm is still optimal even if we relax some of the

assumptions of the basic model. This is in stark contrast to the P2P setting [118, 119] in which in

order to derive optimal social norms it is necessary to tune complex parameters based on properties

of the environment.

3.4 Beyond the Basic Model

We now show that the simple and intuitive tit-for-tat-like social norm described above remains

optimal when we extend the basic model to allow a dynamic population, consider some fraction of

nonstrategic users in the market, or explicitly take into account the fees imposed by the platform
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designer. Only the optimal price P changes. Proofs of these results appear in the appendix.

3.4.1 Dynamic Population and Whitewashing

Until now, we have assumed that the user population is static. However, in real crowdsourcing

markets, participants enter and exit the market over time. This affects user incentives in several

ways. First, if users have the ability to leave and rejoin the market with a new identity, they may be

tempted to engage in whitewashing, creating a new identity to escape a bad reputation. This is an

important issue in reputation systems [45], since creating new identities is usually easy in online

settings. Second, if a user knows he will not stay in the market forever, he may be less willing to

work hard to earn a high reputation.

We first consider the problem of whitewashing. To some extent, this could be prevented outside

the social norm by requiring personal identification, such as a credit card number, to create a new

account. However, it may be undesirable to require such identification as it could prevent some users

from signing up, so it is not always required in practice. Luckily, it is easy to prevent whitewashing

using social norms by setting the reputation of any new user to 0. It is clear that doing this removes

any incentive that a user might have to erase his history.

With this problem under control, we need only to consider how the turnover rate affects the

stationary reputation distributions and users’ expectations about their future payoffs. To simplify

analysis, we assume the size of worker and requester populations stay the same at all times, but

at every time step, some fraction of users leave the market and are replaced by new users (with

reputation 0). Let ↵
w

be the fraction of workers who leave and are replaced by new workers at each

time step, and ↵
r

be the fraction of requesters who leave and are replaced. We obtain the following.

Theorem 3.4.1. Restricting attention to threshold-based social strategies paired with maximum

punishment reputation update rules, for any turnover rates ↵
w

and ↵
r

2 [0, 1), if

V

C
� 1

�2(1� ↵
r

)(1� ↵
w

)(1� 2✏
w

)(1� 2✏
r

)

then total payments are maximized by setting k
r

= k
w

= L = 1 and P = �(1 � ↵
r

)(1 � 2✏
r

)V .

Otherwise, there is no sustainable social norm.
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The proof is similar to the proof of Theorem 3.3.3 with two modifications. First, the stationary

distribution changes in this setting. Second, it is necessary to take into account the fact that users

will discount their expected payoff by the turnover rate, since they expect to leave the market with

probability ↵
w

or ↵
r

in the next time step.

3.4.2 Nonstrategic Users

Until this point, we have assumed that all users are strategic and select actions to maximize their

long-term utilities. While this assumption is relatively natural and quite useful analytically, in

real-world markets there exist users who do not behave rationally. For example, a system may

have altruists, who always perform “good” actions (i.e., making payments or exerting high effort),

malicious users, who always perform “bad” actions (i.e., not paying or exerting low effort), or

users who choose actions arbitrarily, ignoring social strategies and their own utility. Any reputation

mechanisms should be robust to the existence of nonstrategic users in order to be useful in practice.

The following theorem applies whenever some fraction of the population is nonstrategic, but

choose actions independent of their opponents’ reputation at each point in time. Call such a user

oblivious-nonstrategic. We assume that the fraction of nonstrategic users is known, but the identities

of the nonstrategic users are not.

Theorem 3.4.2. Restricting attention to threshold-based social strategies paired with maximum

punishment reputation update rules, for any f
r

, f
w

2 [0, 1), if a fraction f
r

of requesters and a

fraction f
w

of workers are oblivious-nonstrategic, then if

V

C
� 1

�2(1� f
w

)(1� f
r

)(1� 2✏
r

)(1� 2✏
w

)

then total payments are maximized by setting k
r

= k
w

= L = 1 and P = �(1 � f
w

)(1 � 2✏
r

)V .

Otherwise, there is no sustainable social norm.

As we can see in the theorem, the existence of nonstrategic users will shorten the interval of

feasible prices. However, it does not affect the social strategy design; the simple tit-for-tat-like

social norm is still optimal. Notice that altruistic and malicious users have the same impact on the

sustainability conditions, though clearly the strategies of these users will impact the total payment.
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3.4.3 Transaction Fees

We now discuss how to explicitly incorporate the platform designer’s fee into the analysis. We

assume the platform designer always takes a fixed portion m from the payment as the transaction fee.

Since the objective function is 1/m of the total payment, introducing this fee does not change the

design problem in terms of the objective. However, there is now a difference between the payment

paid by requesters (P ) and the payment received by workers (P (1�m)). The optimal social norm

is characterized as follows.

Theorem 3.4.3. Suppose that the platform designer takes a fixed portion m 2 [0, 1) of all pay-

ments. Restricting attention to threshold-based social strategies paired with maximum punishment

reputation update rules, if

V

C
� 1

�2(1� 2✏
w

)(1� 2✏
r

)(1�m)

then total transaction fees are maximized by setting k
r

= k
w

= L = 1, P = �(1� 2✏
r

)V , and

m = 1� 1

�2(1� 2✏
w

)(1� 2✏
r

)

C

V
.

Otherwise, there is no sustainable social norm.

Incorporating the fee only introduces an additional parameter in the sustainability condition,

leading to a slightly reduced space of feasible prices. The optimal social norm remains unchanged.

The optimal value of the fee m is the largest possible value which still sustains the social norm.

3.5 Summary

In this chapter, we introduced a framework for the design and analysis of incentive schemes for

crowdsourcing markets based on social norms, and described a general technique that can be used

to derive the optimal social norm from within a class of interest.

We illustrated the use of this technique to derive the optimal social norm from within the natural

class of threshold-based social strategies paired with maximum punishment reputation update rules,

and showed that the optimal norm in this class is simple to implement and understand. Furthermore,
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the optimal social strategy does not depend on features of the environment such as the amount of

noise in reports, the turnover rate of the population, or the fraction of non-strategic users, making it

applicable in a variety of settings.

This chapter presents a first step towards a complete, robust theory of incentive design for

crowdsourcing systems. An important next step in developing this theory is to build upon our

illustrative examples of heterogeneity to derive techniques for obtaining optimal social norms

for any distribution over worker costs and requester values. Allowing full heterogeneity would

also introduce interesting questions related to the problem of optimally matching workers and

requesters. Finally, developing a full theory would require digging into issues related to learning

and convergence to the stationary distribution. Our hope is that the framework and techniques in

this chapter will provide the necessary groundwork for future progress towards this goal.
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CHAPTER 4

Designing Incentives - Performance Based Payments

4.1 Overview

In this chapter, we explore the use of another kind of incentive, performance-based payments, to

motivate workers to perform high-quality work. In particular, we examine the requester’s problem

of dynamically setting performance-based payments for tasks. We consider a setting in which

time evolves in rounds. In each round, the requester posts a new contract, a performance-based

payment rule which specifies different levels of payment for different levels of output. A random,

unidentifiable worker then arrives in the market and strategically decides whether to accept the

requester’s task and how much effort to exert; the choice of effort level is not directly observable

by the requester. After the worker completes the task (or chooses not to complete it), the requester

observes the worker’s output, pays the worker according to the offered contract, and adjusts the

contract for the next round. The properties of a random worker (formally: the distribution over

the workers’ types) are not known to the requester, but may be learned over time. The goal of the

requester is to maximize his expected utility, the value he receives from completed work minus the

payments made. We call it the dynamic contract design problem.

For concreteness, consider a special case in which a worker can strategically choose to perform

a task with low effort or with high effort, and the task may be completed either at low quality or at

high quality. The low effort incurs no cost and results in low quality, which in turn brings no value

to the requester. The high effort leads to high quality with some positive probability (which may

vary from one worker to another, and is unknown to the requester). The requester only observes the

quality of completed tasks, and therefore cannot infer the effort level. This example captures the

two main tenets of our model: that the properties of a random worker are unknown to the requester
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and that workers’ strategic decisions are unobservable.

We treat the dynamic contract design problem as a multi-armed bandit (MAB) problem, with

each arm representing a potential contract. Since the action space is large (potentially infinite) and

has a well-defined real-valued structure, it is natural to consider an algorithm that uses discretization.

Our algorithm, AgnosticZooming, divides the action space into regions, and chooses among these

regions, effectively treating each region as a single “meta-arm.” The discretization is defined

adaptively, so that the more promising areas of the action space are eventually discretized more

finely than the less promising areas. While the general idea of adaptive discretization has appeared

in prior work on MAB [17, 80, 106, 107], our approach to adaptive discretization is new and

problem-specific. The main difficulty, compared to this prior work, is that an algorithm is not given

any information that links the observable numerical structure of contracts and the expected utilities

thereof.

To analyze performance, we propose a concept called “width dimension” which measures how

“nice” a particular problem instance is. We show that AgnosticZooming achieves regret sublinear

in the time horizon for problem instances with small width dimension. In particular, if the width

dimension is d, it achieves regret O(log T ·T (d+1)/(d+2)

) after T rounds. For problem instances with

large width dimension, AgnosticZooming matches the performance of the naive algorithm which

uniformly discretizes the space and runs a standard bandit algorithm. We illustrate our general

results via some corollaries and special cases, including the high-low example described above. We

support the theoretical results with simulations.

Further, we consider a special case of our setting where each worker only chooses whether to

accept or reject a given task. This special case corresponds to a dynamic pricing problem previously

studied in the literature. Our results significantly improve over the prior work on this problem.

Our contributions can be summarized as follows. We define a broad, practically important setting

in crowdsourcing markets; identify novel problem-specific structure, for both the algorithm and the

regret bounds; distill ideas from prior work to work with these structures; argue that our approach is

productive by deriving corollaries and comparing to prior work; and identify and analyze specific

examples where our theory applies. The main conceptual contributions are the model itself and the
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adaptive discretization approach mentioned above. Finally, this paper prompts further research on

dynamic contract design along several directions that we outline in the conclusion.

4.1.1 Related Work

Our work builds on three areas of research. First, our model can be viewed as a multi-round version

of the classical principal-agent model from contract theory [82]. A single round of our model

corresponds to the basic principal-agent setting, with adverse selection (unknown worker’s type)

and moral hazard (unobservable worker’s decisions). Unlike much of the prior work in contract

theory, the prior over worker types is not known to the principal, but may be learned over time.

Accordingly, our techniques are very different from those employed in contract theory.

Second, our methods build on those developed in the rich literature on MAB with continuous

outcome spaces. The closest line of work is that on Lipschitz MAB [80], in which the algorithm

is given a distance function on the arms, and the expected rewards of the arms are assumed

to satisfy Lipschitz-continuity (or a relaxation thereof) with respect to this distance function,

[2, 8, 17, 78, 80, 107]. Most related to our techniques is the idea of adaptive discretization

[17, 80, 107], and in particular, the zooming algorithm [80, 107]. However, the zooming algorithm

cannot be applied directly in our setting because the required numerical similarity information is not

immediately available. This problem also arises in web search and advertising, where it is natural to

assume that an algorithm can only observe a tree-shaped taxonomy on arms [81, 92, 95] which can

be used to explicitly reconstruct relevant parts of the underlying metric space [21, 106]. We take a

different approach, using a notion of “virtual width” to estimate similarity information. Explicit

comparisons between our results and prior MAB work are made throughout the paper.

Finally, our work follows several other theoretical papers on pricing in crowdsourcing markets.

The problem closest to ours which has been studied in this context is dynamic task pricing, which is

essentially the special case of our setting where in each round a worker is offered to perform a task

at a specified price, and can either accept or reject this offer [9, 10, 79, 104, 105].1 In particular, in

this setting the worker’s strategic choice is directly observable.

1In Badanidiyuru et al. [10], this problem is called “dynamic procurement”.
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4.2 Problem Formulation

In this section, we formally define the problem that we set out to solve. We start by describing a

static model, which captures what happens in a single round of interaction between a requester and

a worker. As described above, this is a version of the standard principal-agent model [82]. We then

define our dynamic model, an extension of the static model to multiple rounds, with a new worker

arriving each round. We then detail the objective of our pricing algorithm and the simplifying

assumptions that we make throughout the paper. Finally, we compare our setting to the classic

multi-armed bandit problem.

Static model. We begin with a description of what occurs during each interaction between the

requester and a single worker. The requester first posts a task which may be completed by the

worker, and a contract specifying how the worker will be paid if she completes the task. If the task

is completed, the requester pays the worker as specified in the contract, and the requester derives

value from the completed task; for normalization, we assume that the value derived is in [0, 1]. The

requester’s utility from a given task is this value minus the payment to the worker.

When the worker observes the contract and decides whether or not to complete the task, she

also chooses a level of effort to exert, which in turn determines her cost (in terms of time, energy, or

missed opportunities) and a distribution over the quality of her work. To model quality, we assume

that there is a (small) finite set of possible outcomes that result from the worker completing the

task (or choosing not to complete it), and that the realized outcome determines the value that the

requester derives from the task. The realized outcome is observed by the requester, and the contract

that the requester offers is a mapping from outcomes to payments for the worker.

We emphasize two crucial (and related) features of the principal-agent model: that the mapping

from effort level to outcomes can be randomized, and that the effort level is not directly observed

by the requester. This is in line with a standard observation in crowdsourcing that even honest,

high-effort workers occasionally make errors.

The worker’s utility from a given task is the payment from the requester minus the cost corre-

sponding to her chosen effort level. Given the contract she is offered, the worker chooses her effort
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level strategically so as to maximize her expected utility. Crucially, the chosen effort level is not

directly observable by the requester.

The worker’s choice not to perform a task is modeled as a separate effort level of zero cost

(called the null effort level) and a separate outcome of zero value and zero payment (called the null

outcome) such that the null effort level deterministically leads to the null outcome, and it is the only

effort level that can lead to this outcome.

The mapping from outcomes to the requester’s value is called the requester’s value function.

The mapping from effort levels to costs is called the cost function, and the mapping from effort

levels to distributions over outcomes is called the production function. For the purposes of this

paper, a worker is completely specified by these two functions; we say that the cost function

and the production function comprise the worker’s type. Unlike some traditional versions of the

principal-agent problem, in our setting a worker’s type is not observable by the requester, nor is any

prior given.

Dynamic model. The dynamic model we consider in this paper is a natural extension of the static

model to multiple rounds and multiple workers. We are still concerned with just a single requester.

In each round, a new worker arrives. We assume a stochastic environment in which the worker’s

type in each round is an i.i.d. sample from some fixed and unknown distribution over types, called

the supply distribution. The requester posts a new task and a contract for this task. All tasks are of

the same type, in the sense that the set of possible effort levels and the set of possible outcomes

are the same for all tasks. The worker strategically chooses her effort level so as to maximize

her expected utility from this task. Based on the chosen effort level and the worker’s production

function, an outcome is realized. The requester observes this outcome (but not the worker’s effort

level) and pays the worker the amount specified by the contract. The type of the arriving worker is

never revealed to the requester. The requester can adjust the contract from one round to another, and

his total utility is the sum of his utility over all rounds. For simplicity, we assume that the number

of rounds is known in advance, though this assumption can be relaxed using standard tricks.

The dynamic contract design problem. Throughout this paper, we take the point of view of the

requester interacting with workers in the dynamic model. The algorithms we examine dynamically
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choose contracts to offer on each round with the goal of maximizing the requester’s expected utility.

A problem instance consists of several quantities, some of which are known to the algorithm, and

some of which are not. The known quantities are the number of outcomes, the requester’s value

function, and the time horizon T (i.e., the number of rounds). The latent quantities are the number

of effort levels, the set of worker types, and the supply distribution. The algorithm adjusts the

contract from round to round and observes the realized outcomes but receives no other feedback.

We focus on contracts that are bounded (offer payments in [0, 1]), and monotone (assign equal or

higher payments for outcomes with higher value for the requester). Let X be the set of all bounded,

monotone contracts. We compare a given algorithm against a given subset of “candidate contracts”

Xcand ⇢ X . Letting OPT(Xcand) be the optimal utility over all contracts in Xcand, the goal is to

minimize the algorithm’s regret R(T |Xcand), defined as T ⇥ OPT(Xcand) minus the algorithm’s

expected utility.

The subset Xcand may be finite or infinite, possibly Xcand = X . The most natural example of a

finite Xcand is the set of all bounded, monotone contracts with payments that are integer multiples

of some  > 0; we call it the uniform mesh with granularity  , and denote it Xcand( ).

Notation. Let v(·) be the value function of the requester, with v(⇡) denoting the value of outcome

⇡. Let O be the set of all outcomes and let m be the number of non-null outcomes. We will index

the outcomes as O = {0, 1, 2 , . . . , m} in the order of increasing value (ties broken arbitrarily),

with a convention that 0 is the null outcome.

Let c
i

(·) and f
i

(·) be the cost function and production function for type i. Then the cost of

choosing effort level e is c
i

(e), and the probability of obtaining outcome ⇡ having chosen effort e is

f
i

(⇡|e). Let F
i

(⇡|e) =

P

⇡

0�⇡ f
i

(⇡0|e).

Recall that a contract x is a function from outcomes to (non-negative) payments. If contract x is

offered to a worker sampled i.i.d. from the supply distribution, V (x) is the expected value to the

requester, P (x) � 0 is the expected payment, and U(x) = V (x)� P (x) is the expected utility of

the requester. Let OPT(Xcand) = sup

x2Xcand
U(x).

Assumption: First-order stochastic dominance (FOSD). Given two effort levels e and e0, we say

that e has FOSD over e0 for type i if F
i

(⇡|e) � F
i

(⇡|e0) for all outcomes ⇡, with a strict inequality
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for at least one outcome.2 We say that type i satisfies the FOSD assumption if for any two distinct

effort levels, one effort level has FOSD over the other for type i. We assume that all types satisfy

this assumption.

Assumption: Consistent tie-breaking. If multiple effort levels maximize the expected utility of a

given worker for a contract x, we assume the tie is broken consistently in the sense that this worker

chooses the same effort level for any contract that leads to this particular tie. This assumption is

minor; it can be avoided (with minor technical complications) by adding random perturbations to

the contracts. This assumption is implicit throughout the paper.

4.2.1 Discussion

Number of outcomes. Our results assume a small number of outcomes. This regime is important in

practice, as the quality of submitted work is typically difficult to evaluate in a very fine granularity.

Even with m = 2 non-null outcomes, our setting has not been studied before. The special case

m = 1 is equivalent to the dynamic pricing problem from Kleinberg and Leighton [79]; we obtain

improved results for it, too.

The benchmark. Our benchmark OPT(·) only considers contracts that are bounded and monotone.

In practice, restricting to such contracts may be appealing to all human parties involved. However,

this restriction is not without loss of generality: there are problem instances in which monotone

contracts are not optimal; see Appendix A.3.5 for an example. Further, it is not clear whether

bounded monotone contracts are optimal among monotone contracts.

Our benchmark OPT(Xcand) is relative to a given set Xcand, which is typically a finite discretiza-

tion of the contract space. There are two reasons for this. First, crowdsourcing platforms may

require the payments to be multiples of some minimum unit (e.g., one cent), in which case it

is natural to restrict our attention to contracts satisfying the same constraint. Second, achieving

guarantees relative to OPT(X) for the full generality of our problem appears beyond the reach of

our techniques. As in many other machine learning scenarios, it is useful to consider a restricted

2This mimics the standard notion of FOSD between two distributions over a linearly ordered set.
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“benchmark set” – set of alternatives to compare to.3 In such settings, it is considered important to

handle arbitrary benchmark sets, which is what we do.

One known approach to obtain guarantees relative to OPT(X) is to start with some finite

Xcand ⇢ X , design an algorithm with guarantees relative to OPT(Xcand), and then, as a separate

result, bound the discretization error OPT(X) � OPT(Xcand). Then the choice of Xcand drives the

tradeoff between the discretization error and regret R(T |Xcand), and one can choose Xcand to

optimize this tradeoff. However, while one can upper-bound the discretization error in some (very)

simple special cases, it is unclear whether this can be extended to the full generality of dynamic

contract design.

Alternative worker models. One of the crucial tenets in our model is that the workers maximize

their expected utility. This “rationality assumption” is very standard in Economics, and is often

used to make the problem amenable to rigorous analysis. However, there is a considerable literature

suggesting that in practice workers may deviate from this “rational” behavior. Thus, it is worth

pointing out that our results do not rely heavily on the rationality assumption. The FOSD assumption

(which is also fairly standard) can be circumvented, too. In fact, all our assumptions regarding

worker behavior serve only to enable us to prove Lemma 4.3.1, and more specifically to guarantee

that the collective worker behavior satisfies the following natural property (which is used in the

proof of Lemma 4.3.1): if the requester increases the “increment payment” (as described in the next

section) for a particular outcome, the probability of obtaining an outcome at least that good also

increases.

Minimum wage. For ethical or legal reasons one may want to enforce some form of minimum

wage. This can be expressed within our model as a minimal payment ✓ for a completed task, i.e.,

for any non-null outcome. Our algorithm can be easily modified to accommodate this constraint.

Essentially, it suffices to restrict the action space to contracts that pay at least ✓ for a completed

task. Formally, the “increment space” defined in Section 4.3 should be [✓, 1]⇥ [0, 1]

m�1 rather than

[0, 1]

m, and the “quadrants” of each “cell” are defined by splitting the cell in half in each dimension.

All our results easily carry over to this version (restricting Xcand to contracts that pay at least ✓ for a

3A particularly relevant analogy is contextual bandits with policy sets, e.g., Dudik et al. [39].
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completed task). We omit further discussion of this issue for the sake of simplicity.

Comparison to multi-armed bandits (MAB). Dynamic contract design can be modeled as special

case of the MAB problem with some additional, problem-specific structure. The basic MAB

problem is defined as follows. An algorithm repeatedly chooses actions from a fixed action space

and collects rewards for the chosen actions; the available actions are traditionally called arms. More

specifically, time is partitioned into rounds, so that in each round the algorithm selects an arm and

receives a reward for the chosen arm. No other information, such as the reward the algorithm would

have received for choosing an alternative arm, is revealed. In an MAB problem with stochastic

rewards, the reward of each arm in a given round is an i.i.d. sample from some distribution which

depends on the arm but not on the round. A standard measure of algorithm’s performance is regret

with respect to the best fixed arm, defined as the difference in expected total reward between a

benchmark (usually the best fixed arm) and the algorithm.

Thus, dynamic contract design can be naturally modeled as an MAB problem with stochastic

rewards, in which arms correspond to monotone contracts. The prior work on MAB with large

/ infinite action spaces often assumes known upper bounds on similarity between arms. More

precisely, this prior work would assume that an algorithm is given a metric D on contracts such

that expected rewards are Lipschitz-continuous with respect to D, i.e., we have upper bounds

|U(x)� U(y)|  D(x, y) for any two contracts x, y.4 However, in our setting such upper bounds

are absent. On the other hand, our problem has some supplementary structure compared to the

standard MAB setting. In particular, the algorithm’s reward decomposes into value and payment,

both of which are determined by the outcome, which in turn is probabilistically determined by the

worker’s strategic choice of the effort level. Effectively, this supplementary structure provides some

“soft” information on similarity between contracts, in the sense that numerically similar contracts

are usually (but not always) similar to one another.

4Such upper bound is informative if and only if D(x, y) < 1.
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4.3 Our Algorithm: AgnosticZooming

In this section, we specify our algorithm. We call it AgnosticZooming because it “zooms in” on

more promising areas of the action space, and does so without knowing a precise measure of the

similarity between contracts. This zooming can be viewed as a dynamic form of discretization.

Before stating the algorithm itself, we discuss the discretization of the action space in more detail,

laying the groundwork for our approach.

4.3.1 Discretization of the action space

In each round, the AgnosticZooming algorithm partitions the action space into several regions and

chooses among these regions, effectively treating each region as a “meta-arm.” In this section, we

discuss which subsets of the action space are used as regions, and introduce some useful notions

and properties of such subsets.

Increment space and cells. To describe our approach to discretization, it is useful to think of

contracts in terms of increment payments. Specifically, we represent each monotone contract

x : O ! [0,1) as a vector x 2 [0,1)

m, where m is the number of non-null outcomes and

x

⇡

= x(⇡)� x(⇡ � 1) � 0 for each non-null outcome ⇡. (Recall that by convention 0 is the null

outcome and x(0) = 0.) We call this vector the increment representation of contract x, and denote

it incr(x). Note that if x is bounded, then incr(x) 2 [0, 1]

m. Conversely, call a contract weakly

bounded if it is monotone and its increment representation lies in [0, 1]

m. Such a contract is not

necessarily bounded.

We discretize the space of all weakly bounded contracts, viewed as a multi-dimensional unit

cube. More precisely, we define the increment space as [0, 1]

m with a convention that every vector

represents the corresponding weakly bounded contract. Each region in the discretization is a closed,

axis-aligned m-dimensional cube in the increment space; henceforth, such cubes are called cells. A

cell is called relevant if it contains at least one candidate contract. A relevant cell is called atomic if

it contains exactly one candidate contract, and composite otherwise.

In each composite cell C, the algorithm will only use two contracts: the maximal corner, denoted
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x+

(C), in which all increment payments are maximal, and the minimal corner, denoted x�
(C), in

which all increment payments are minimal. These two contracts are called the anchors of C. In

each atomic cell C, the algorithm will only use one contract: the unique candidate contract, also

called the anchor of C.

Virtual width. To take advantage of the problem structure, it is essential to estimate how similar

the contracts within a given composite cell C are. Ideally, we would like to know the maximal

difference in expected utility:

width(C) = sup

x,y2C |U(x)� U(y)| .

We estimate the width using a proxy, called virtual width, which is expressed in terms of the anchors:

VirtWidth(C) =

�

V (x+

(C))� P (x�
(C))

�

�
�

V (x�
(C))� P (x+

(C))

�

. (4.1)

This definition is one crucial place where the problem structure is used. (Note that it is not the

difference in utility at the anchors.) It is useful due to the following lemma (proved in Section A.3.1).

Lemma 4.3.1. If all types satisfy the FOSD assumption and consistent tie-breaking holds, then

width(C)  VirtWidth(C) for each composite cell C.

Recall that the proof of this lemma is the only place in the paper where we use our assumptions

on worker behavior. All further developments hold for any model of worker behavior which satisfies

Lemma 4.3.1.

4.3.2 Description of the algorithm

With these ideas in place, we are now ready to describe our algorithm. The high-level outline

of AgnosticZooming is very simple. The algorithm maintains a set of active cells which cover

the increment space at all times. Initially, there is only a single active cell comprising the entire

increment space. In each round t, the algorithm chooses one active cell C
t

using an upper confidence

index and posts contract x
t

sampled uniformly at random among the anchors of this cell. After

observing the feedback, the algorithm may choose to zoom in on C
t

, removing C
t

from the set of
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active cells and activating all relevant quadrants thereof, where the quadrants of cell C are defined

as the 2

m sub-cells of half the size for which one of the corners is the center of C. In the remainder

of this section, we specify how the cell C
t

is chosen (the selection rule), and how the algorithm

decides whether to zoom in on C
t

(the zooming rule).

Let us first introduce some notation. Consider cell C that is active in some round t. Let U(C)

be the expected utility from a single round in which C is chosen by the algorithm, i.e., the average

expected utility of the anchor(s) of C. Let n
t

(C) be the number of times this cell has been chosen

before round t. Consider all rounds in which C is chosen by the algorithm before round t. Let

U
t

(C) be the average utility over these rounds. For a composite cell C, let V +

t

(C) and P+

t

(C) be

the average value and average payment over all rounds when anchor x+

(C) is chosen. Similarly, let

V �
t

(C) and P�
t

(C) be the average value and average payment over all rounds when anchor x�
(C)

is chosen. Accordingly, we can estimate the virtual width of composite cell C at time t as

W
t

(C) =

�

V +

t

(C)� P�
t

(C)

�

�
�

V �
t

(C)� P+

t

(C)

�

. (4.2)

To bound the deviations, we define the confidence radius as

rad
t

(C) =

p

crad log(T )/n
t

(C), (4.3)

for some absolute constant crad; in our analysis, crad � 16 suffices. We will show that with high

probability all sample averages defined above will stay within rad
t

(C) of the respective expectations.

If this high probability event holds, the width estimate W
t

(C) will always be within 4 rad
t

(C) of

VirtWidth(C).

Selection rule. Now we are ready to complete the algorithm. The selection rule is as follows. In

each round t, the algorithm chooses an active cell C with maximal index I
t

(·). I
t

(C) is an upper

confidence bound on the expected utility of any candidate contract in C, defined as

I
t

(C) =

8

>

<

>

:

U
t

(C) + rad
t

(C) if C is an atomic cell,

U
t

(C) + W
t

(C) + 5 rad
t

(C) otherwise.
(4.4)

Zooming rule. We zoom in on a composite cell C
t

if

W
t+1

(C
t

) > 5 rad
t+1

(C
t

),
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i.e., the uncertainty due to random sampling, expressed by the confidence radius, becomes suffi-

ciently small compared to the uncertainty due to discretization, expressed by the virtual width. We

never zoom in on atomic cells. The pseudocode is summarized in Algorithm 3.

ALGORITHM 3: AgnosticZooming
Inputs: subset Xcand ⇢ X of candidate contracts.

Data structure: Collection A of cells. Initially, A = { [0, 1]m }.

For each round t = 1 to T

Let C
t

= argmax

C2A I
t

(C), where I
t

(·) is defined as in (4.4).

Sample contract x
t

u.a.r. among the anchors of C
t

. \\ Anchors are defined in Section 4.3.1.

Post contract x
t

and observe feedback.

If |C \Xcand| > 1 and 5 rad

t+1

(C
t

) < W
t+1

(C
t

) then

A A [ {all relevant quadrants of C
t

} \ {C
t

}. \\ C is relevant if |C \Xcand| � 1.

Integer payments. In practice it may be necessary to only allow contracts in which all payments are

integer multiples of some amount  , e.g., whole cents. (In this case we can assume that candidate

contracts have this property, too.) Then we can redefine the two anchors of each composite cell: the

maximal (resp., minimal) anchor is the nearest allowed contract to the maximal (resp., minimal)

corner. Width can be redefined as a sup over all allowed contracts in a given cell. With these

modifications, the analysis goes through without significant changes. We omit further discussion of

this issue.

4.4 Analysis and discussion

We present the main regret bound for AgnosticZooming. Formulating this result requires some

new, problem-specific structure. Stated in terms of this structure, the result is somewhat difficult to

access. To explain its significance, we state several corollaries, and compare our results to prior

work.

The main result. We start with the main regret bound. Like the algorithm itself, this regret bound

is parameterized by the set Xcand of candidate contracts; our goal is to bound the algorithm’s regret
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with respect to candidate contracts.

Recall that OPT(Xcand) = sup

x2Xcand
U(x) is the optimal expected utility over candidate con-

tracts. The algorithm’s regret with respect to candidate contracts is R(T |Xcand) = T OPT(Xcand)�U ,

where T is the time horizon and U is the expected cumulative utility of the algorithm.

Define the badness �(x) of a contract x 2 X as the difference in expected utility between an

optimal candidate contract and x: �(x) = OPT(Xcand)�U(x). Let X
✏

= {x 2 Xcand : �(x)  ✏}.

We will only be interested in cells that can potentially be used by AgnosticZooming. Formally,

we recursively define a collection of feasible cells as follows: (i) the cell [0, 1]

m is feasible, (ii) for

each feasible cell C, all relevant quadrants of C are feasible. Note that the definition of a feasible

cell implicitly depends on the set Xcand of candidate contracts.

Let F
✏

denote the collection of all feasible, composite cells C such that VirtWidth(C) � ✏.

For Y ⇢ Xcand, let F
✏

(Y ) be the collection of all cells C 2 F
✏

that overlap with Y , and let

N
✏

(Y ) = |F
✏

(Y )|; sometimes we will write N
✏

(Y |Xcand) in place of N
✏

(Y ) to emphasize the

dependence on Xcand.

Using the structure defined above, the main theorem is stated as follows. We prove this theorem

in Section A.3.2.

Theorem 4.4.1. Consider the dynamic contract design problem with all types satisfying the FOSD

assumption and a constant number of outcomes. Consider AgnosticZooming, parameterized by

some set Xcand of candidate contracts. Assume T � max(2

m

+1, 18). There is an absolute constant

�
0

> 0 such that for any � > 0,

R(T |Xcand)  �T + O(log T )

X

✏=2

�j��: j2N

N
✏ �0(X✏

|Xcand)

✏
. (4.5)

Remark 1. As discussed in Section 4.2.1, we target the practically important case of a small number

of outcomes. The impact of larger m is an exponential dependence on m in the O() notation, and,

more importantly, increased number of candidate policies (typically exponential in m for a given

granularity).

Remark 2. Our regret bounds do not depend on the number of worker types, in line with prior

work on dynamic pricing. Essentially, this is because bandit approaches tend to depend only on
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expected reward of a given “arm” (and perhaps also on the variance), not the finer properties of the

distribution.

(4.5) has a shape similar to several other regret bounds in the literature, as discussed below. To

make this more apparent, we observe that regret bounds in “bandits in metric spaces” are often

stated in terms of covering numbers. (For a fixed collection F of subsets of a given ground set X ,

the covering number of a subset Y ⇢ X relative to F is the smallest number of subsets in F that is

sufficient to cover Y .) The numbers N
✏

(Y |Xcand) are, essentially, about covering Y with feasible

cells with virtual width close to ✏. We make this point more precise as follows. Let an ✏-minimal cell

be a cell in F
✏

which does not contain any other cell in F
✏

. Let Nmin
✏

(Y ) be the covering number of

Y relative to the collection of ✏-minimal cells, i.e., the smallest number of ✏-minimal cells sufficient

to cover Y . Then

N
✏

(Y )  dlog

1

 

e Nmin
✏

(Y ) for any Y ⇢ Xcand and ✏ � 0, (4.6)

where  is the smallest size of a feasible cell.5 Thus, (4.5) can be easily restated using the covering

numbers Nmin
✏

(·) instead of N
✏

(·).

Corollary: Polynomial regret. Literature on regret-minimization often states “polynomial” regret

bounds of the form R(T ) =

˜O(T �

), � < 1. While covering-number regret bounds are more precise

and versatile, the exponent � in a polynomial regret bound expresses algorithms’ performance in a

particularly succinct and lucid way.

For “bandits in metric spaces” the exponent � is typically determined by an appropriately defined

notion of “dimension”, such as the covering dimension,6 which succinctly captures the difficulty of

the problem instance. Interestingly, the dependence of � on the dimension d is typically of the same

shape; � = (d + 1)/(d + 2), for several different notions of “dimension”. In line with this tradition,

5To prove (4.6), observe that for each cell C 2 F
✏

(Y ) there exists an ✏-minimal cell C 0 ⇢ C, and for each ✏-minimal
cell C 0 there exist at most dlog 1

 

e cells C 2 F
✏

(Y ) such that C 0 ⇢ C.

6Given covering numbers N
✏

(·), the covering dimension of Y is the smallest d � 0 such that N
✏

(Y ) = O(✏�d

) for
all ✏ > 0.
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we define the width dimension:

WidthDim
↵

= inf

�

d � 0 : N
✏ �0(X✏

|Xcand)  ↵ ✏�d for all ✏ > 0

 

, ↵ > 0. (4.7)

Note that the width dimension depends on Xcand and the problem instance, and is parameterized by

a constant ↵ > 0. By optimizing the choice of � in (4.5), we obtain the following corollary.

Corollary 4.4.2. Consider the the setting of Theorem 4.4.1. For any ↵ > 0, let d = WidthDim
↵

.

Then

R(T |Xcand)  O(↵ log T ) T (1+d)/(2+d). (4.8)

The width dimension is similar to the “zooming dimension” in Kleinberg et al. [80] and “near-

optimality dimension” in Bubeck et al. [17] in the work on “bandits in metric spaces”.

4.4.1 Comparison to prior work

Non-adaptive discretization. One approach from prior work that is directly applicable to the

dynamic contract design problem is non-adaptive discretization. This is an algorithm, call it

NonAdaptive, which runs an off-the-shelf MAB algorithm, treating a set of candidate contracts

Xcand as arms.7 For concreteness, and following the prior work [78–80], we use a well-known

algorithm UCB1 [7] as an off-the-shelf MAB algorithm.

To compare AgnosticZooming with NonAdaptive, it is useful to derive several “worst-case”

corollaries of Theorem 4.4.1, replacing N
✏

(X
✏

) with various (loose) upper bounds.8

Corollary 4.4.3. In the setting of Theorem 4.4.1, the regret of AgnosticZooming can be upper-

bounded as follows:

(a) R(T |Xcand)  �T +

P

✏=2

�j��: j2N ˜O(|X
✏

| /✏), for each � 2 (0, 1).

(b) R(T |Xcand)  ˜O(

p

T |Xcand|).

7To simplify the proofs of the lower bounds, we assume that the candidate contracts are randomly permuted when
given to the MAB algorithm.

8We use the facts that X
✏

⇢ Xcand, N
✏

(Y )  N
0

(Y ), and Nmin
0

(Y )  |Y | for all subsets Y ⇢ X .
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Here the ˜O() notation hides the logarithmic dependence on T and �.

The best known regret bounds for NonAdaptive coincide with those in Corollary 4.4.3 up to

poly-logarithmic factors. However, the regret bounds in Theorem 4.4.1 may be significantly better

than the ones in Corollary 4.4.3. We further discuss this in the next section, in the context of a

specific example.

Bandits in metric spaces. Consider a variant of dynamic contract design in which an algorithm is

given a priori information on similarity between contracts: a function D : Xcand ⇥Xcand ! [0, 1]

such that |U(x)� U(y)|  D(x, y) for any two candidate contracts x, y. If an algorithm is given

this function D (call such algorithm D-aware), the machinery from “bandits in metric spaces”

[17, 80] can be used to perform adaptive discretization and obtain a significant advantage over

NonAdaptive. We argue that we obtain similar results with AgnosticZooming without knowing

the D.

In practice, the similarity information D would be coarse, probably aggregated according to

some predefined hierarchy. To formalize this idea, the hierarchy can be represented as a collection

F of subsets of Xcand, so that D(x, y) is a function of the smallest subset in F containing both x

and y. The hierarchy F should be natural given the structure of the contract space. One such natural

hierarchy is the collection of all feasible cells, which corresponds to splitting the cells in half in

each dimension. Formally, D(x, y) = f(C
x,y

) for some f with f(C
x,y

) � width(C
x,y

), where C
x,y

is the smallest feasible cell containing both x and y.

Given this shape of D, let us state the regret bounds for D-aware algorithms in Kleinberg et al.

[80] and Bubeck et al. [17]. To simplify the notation, we assume that the action space is restricted

to Xcand. The regret bounds have a similar “shape” as that in Theorem 4.4.1:

R(T |Xcand)  �T + O(log T )

X

✏=2

�j��: j2N

N⇤
⌦(✏)

(X
✏

)

✏
, (4.9)

where the numbers N⇤
✏

(·) have a similar high-level meaning as N
✏

(·), and nearly coincide with

Nmin
✏

(·) when D(x, y) = VirtWidth(C
x,y

). One can use (4.9) to derive a polynomial regret bound

like (4.8).

For a more precise comparison, we focus on the results in Kleinberg et al. [80] . (The regret
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bounds in Bubeck et al. [17] are very similar in spirit, but are stated in terms of a slightly different

structure.) The “covering-type” regret bound in Kleinberg et al. [80] focuses on balls of radius at

most ✏ according to distance D, so that N⇤
✏

(Y ) is the smallest number of such balls that is sufficient

to cover Y . In the special case D(x, y) = VirtWidth(C
x,y

) balls of radius  ✏ are precisely

feasible cells of virtual width  ✏. This is very similar (albeit not technically the same) as the

✏-minimal cells in the definition of Nmin
✏

(·).

Further, the covering numbers N⇤
✏

(Y ) determine the “zooming dimension”:

ZoomDim
↵

= inf

�

d � 0 : N⇤
✏/8

(X
✏

)  ↵ ✏�d for all ✏ > 0

 

, ↵ > 0. (4.10)

This definition coincides with the covering dimension in the worst case, and can be much smaller for

“nice” problem instances in which X
✏

is a significantly small subset of Xcand. With this definition,

one obtains a polynomial regret bound which is version of (4.8) with d = ZoomDim
↵

.

We conclude that AgnosticZooming essentially matches the regret bounds for D-aware algo-

rithms, despite the fact that D-aware algorithms have access to much more information.

4.5 Summary

Motivated by applications to crowdsourcing markets, we define the dynamic contract design

problem, a multi-round version of the principal-agent model with unobservable strategic decisions.

We treat this problem as a multi-armed bandit problem, design an algorithm for this problem, and

derive regret bounds which compare favorably to prior work. Our main conceptual contribution,

aside from identifying the model, is the adaptive discretization approach that does not rely on

Lipschitz-continuity assumptions. We provably improve on the uniform discretization approach

from prior work, both in the general case and in some illustrative special cases. These theoretical

results are supported by simulations.

We believe that the dynamic contract design problem deserves further study, in several directions

that we outline below.

1. It is not clear whether our provable results can be improved, perhaps using substantially different

algorithms and relative to different problem-specific structures. In particular, one needs to establish
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lower bounds in order to argue about optimality; no lower bounds for dynamic contract design are

currently known.

2. Our adaptive discretization approach may be fine-tuned to improve its performance in practice.

In particular, the definition of the “index” I
t

(C) of a given feasible cell C may be re-defined in

several different ways. First, it can use the information from C in a more sophisticated way, similar

to the more sophisticated indices for the basic K-armed bandit problem; for example, see Garivier

and Cappé [46]. Second, the index can incorporate information from other cells. Third, it can be

defined in a “smoother”, probabilistic way, e.g., as in Thompson Sampling [108].

3. Deeper insights into the structure of the (static) principal-agent problem are needed, primarily

in order to optimize the choice of Xcand, the set of candidate contracts. The most natural target

here is the uniform mesh Xcand(✏). To optimize the granularity ✏, one needs to upper-bound the

discretization error OPT(Xcand)� OPT(Xcand(✏)) in terms of some function f(✏) such that f(✏)! 0

as ✏! 0. The first-order open question is to resolve whether this can be done in the general case, or

provide a specific example when it cannot. A related open question concerns the effect of increasing

the granularity: upper-bound the difference OPT(Xcand(✏))� OPT(Xcand(✏0)), ✏ > ✏0 > 0, in terms

of some function of ✏ and ✏0. Further, it is not known whether the optimal mesh of contracts is in

fact a uniform mesh.

Also of interest is the effect of restricting our attention to monotone contracts. While we prove

that monotone contracts may not be optimal (Appendix A.3.5), the significance of this phenomenon

is unclear. One would like to characterize the scenarios when restricting to monotone contracts is

alright (in the sense that the best monotone contract is as good, or not much worse, than the best

contract), and the scenarios when this restriction results in a significant loss. For the latter scenarios,

different algorithms may be needed.

4. A much more extensive analysis of special cases is in order. Our general results are difficult to

access (which appears to be an inherent property of the general problem), so the most immediate

direction for special cases is deriving lucid corollaries from the current regret bounds. In particular,

it is desirable to optimize the choice of candidate contracts. Apart from “massaging” the current

results, one can also design improved algorithms and derive specialized lower bounds. Particularly
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appealing special cases concern supply distributions that are mixtures of a small number of types,

and supply distributions that belong to a (simple) parameterized family with unknown parameter.

Going beyond our current model, a natural direction is to incorporate a budget constraint,

extending the corresponding results on dynamic task pricing. The main difficulty for such settings

is that a distribution over two contracts may perform much better than any fixed contract; see

Badanidiyuru et al. [10] for discussion. Effectively, an algorithm needs to optimize over the

distributions. As a first step, one can use non-adaptive discretization in conjunction with the general

algorithms for bandits with budget constraints (sometimes called “bandits with knapsacks” [3, 10]).

However, it is not clear how to choose an optimal mesh of contracts (as we discussed throughout the

paper), and this mesh is not likely to be uniform (because it is not uniform for the special case of

dynamic task pricing with a budget [10]). The eventual target in this research direction is to marry

adaptive discretization and the techniques from prior work on “bandits with knapsacks.”
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CHAPTER 5

Modeling Human Behavior

5.1 Overview

In the previous two chapters, we assume workers are strategic and respond to incentives rationally.

However, this may not be the case in real-world settings, especially when the amount of payments

is relatively small in crowdsourcing markets. In this chapter, we study the causal effects of financial

incentives on the quality of crowdwork in real-world environments. We focus on performance-based

payments (PBPs), bonus payments awarded to workers for producing high quality work. We

design and run randomized behavioral experiments on the popular crowdsourcing platform Amazon

Mechanical Turk with the goal of understanding when, where, and why PBPs help, identifying

properties of the payment, payment structure, and the task itself that make them most effective.

Previous empirical studies of performance-based payments in crowdsourcing markets have

produced mixed and somewhat contradictory recommendations. Harris [57] and Yin et al. [117]

suggested that PBPs can improve work quality, while Shaw et al. [102] found no improvement and

Yin et al. [116] found no difference in quality when varying bonus size.

Our results explain these disparities in prior work. Furthermore, we show how to generalize

previous findings beyond the particular tasks that were studied. We design and run experiments

with the goal of understanding not just whether PBPs improve work quality for a specific task or

bonus size, but when, why, and where they improve work quality. We identify properties of the

payment, payment structure, and the task itself that make PBPs effective.

In our experiments, we first identified a task (proofreading an article) for which PBPs improve

workers’ performance. We tested the robustness of this finding by varying the payment structure

and amount. We found that using PBPs with a wide range of quality thresholds improved work
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quality provided the bonus awarded for exceeding the threshold was sufficiently high. We also

found that even when standard, unconditional payments are used and no explicit acceptance criteria

is specified, workers may behave as if the payments are implicitly performance-based since they

believe their work may be rejected if its quality is sufficiently low.

We examined potential reasons why PBPs improve quality. We found that simply increasing the

amount of the base payment without offering any bonus significantly improved quality, contradicting

several previous studies [6, 20, 54, 89, 97]. However, PBPs led to improved quality and lower cost

compared to a guaranteed payment of the same amount. We also found that whether the opportunity

to receive a bonus or higher base payment is revealed before or after the task is accepted does not

make a difference in the quality of crowdwork, ruling out the possibility that the increased quality

we observed was due (at least in part) to the reciprocity caused by workers’ joy at receiving an

unexpected bonus, as discussed by Gilchrist et al. [54].

Finally, we investigated which properties of a particular task allow PBPs to have an effect. We

examined the conjecture that PBPs are more likely to improve quality on effort-responsive tasks,

tasks for which workers can produce higher quality work by exerting additional effort. We ran

experiments on four different tasks. By taking the amount of time workers spent on the task as

the proxy measure for their effort, we found that additional effort was correlated with improved

quality for the tasks for which PBPs helped, but not for the tasks for which PBPs did not help. This

observation yields a simple method for requesters to determine whether or not a given task is likely

to benefit from PBPs.

Based on our experimental results, we propose a simple theoretical model of worker behavior.

The model is a variant of the standard principal-agent model from economics that additionally

incorporates workers’ subjective beliefs about the quality of work required to be paid. We show that

this model can be used to explain our key empirical observations which cannot be explained using

the principal-agent model alone. This model may be useful as a more realistic foundation for future

theoretical work on crowdsourcing markets.
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5.1.1 Related Work

Performance-based payments have been studied extensively outside of crowdsourcing markets.

Lazear [83] conducted a highly influential analysis of observational data from an autoglass company

that switched from paying workers a fixed hourly rate to paying workers based on the number

of units installed, and showed that workers’ performance significantly improved when payments

were contingent on work done. As another example, Gneezy and Rustichini [55] gave college

students fifty questions from IQ tests to answer and found that their performance increased when

they received a bonus for answering questions correctly as long as the bonus was sufficiently high.

On the other hand, when the bonus payment was very small, quality decreased compared with not

offering a bonus at all. The psychology literature suggests that this is perhaps due to a decrease in

workers’ intrinsic motivation (enjoyment, responsibility, pride) for performing well, though this

theory is not universally accepted [23, 41, 43].

Camerer and Hogarth [22] performed a meta-analysis of 74 papers examining the effect of

using payments contingent on performance in lab experiments. They showed that using payments

contingent on performance improved the average performance of subjects for tasks in which

increased effort leads to improved performance, such as memory or recall tasks, clerical tasks

such as coding words or building things, and problem-solving tasks. Similar meta-analyses were

performed by Jenkins Jr. et al. [71], Bonner et al. [16], and Hertwig and Ortmann [58]. We build on

and extend this work by showing that PBPs have a causal impact on work quality in a field setting,

specifically, a crowdsourcing environment in which eliciting high quality work is a main concern

for requesters. Moreover, we give evidence to support the conjecture of Camerer and Hogarth [22]

that PBPs work in tasks that are effort-responsive.

The results of studies on performance-based payments in crowdsourcing markets have been

mixed and sometimes discouraging. On the positive side, in an early workshop paper, Harris

[57] showed that when asking workers to evaluate the relevance of resumes, PBPs increased both

performance and the time workers spent on the task. In very recent work, Yin et al. [117] studied

a setting in which workers switched back and forth between two types of tasks, and showed that

PBPs improved performance, especially when used immediately after a task switch.
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On the negative side, Shaw et al. [102] compared fourteen different incentive schemes, including

four using PBPs,1 and saw little variation in their effects on quality of work. However, the bonuses

offered were extremely small, only 10% ($0.03) on base payments of $0.30. One might hypothesize

that the lack of effect stems from decreased intrinsic motivation as in Gneezy and Rustichini [55],

or that obtaining the small bonus is simply not worth the costly additional effort that would be

required. More recently, Yin et al. [116] studied the effect of varying the bonus size of PBPs and

found that the size of the bonus did not impact the quality of work. In their case, all bonuses offered

were large compared with the base payment ($0.04, $0.08, $0.16, or $0.32 on a base payment of

$0.01 per task), so it is possible that even their smallest bonus was large enough to elicit the workers’

maximum effort; since Yin et al. did not include a treatment without PBPs, there is no way to know

whether PBPs boosted quality compared with offering base payments alone. In Section 5.3.2, we

give a unifying explanation for these results. We show small bonuses in a PBP result in little to no

effect on work quality, and that it can be hard to detect the effect between two large PBP bonuses.

However, the overall trend is that using PBPs with sufficiently high bonuses yields better quality

work.

Several additional studies have examined financial incentives in crowdsourcing markets. Horton

and Chilton [65] empirically estimated workers’ reservation wages and found that many workers

aim to hit payment targets (such as multiples of $0.05). Mason and Watts [89] found that paying

workers more increased the number of tasks workers chose to complete, but did not increase

performance on each task. That increased pay did not increase performance was observed by other

authors as well [20, 54, 85, 97]. In this paper, we found that paying workers more can actually

increase their performance for some types of tasks. This disparity can be explained by considering

workers’ subjective beliefs on how much work they must do to get their work accepted. In prior

work, workers either already performed well even with low pay since the tasks were easy or were

given additional instructions which could have primed their subjective beliefs. In our experiments,

workers are uncertain about how much work they should do to get paid. Therefore, they are willing

1The differences in these four treatments were whether payments were described in terms of rewards for high quality
or punishments for low quality, and whether quality was measured objectively or in terms of agreement with other
workers’ responses. Of these, the only treatment that resulted in performance statistically significantly different than the
control was punishing workers when their responses did not agree with others.
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to produce higher quality work to increase their chance of having their work accepted when the

payments are higher.

Gilchrist et al. [54] showed that the manner in which the payment is presented can influence

quality. In particular, they found that on oDesk, a crowdsourcing market for larger tasks, initially

telling workers they would receive $3 per hour and increasing this payment to $4 after the job was

accepted led to higher performance than paying either $3 or $4 per hour without the surprise. We

show in Section 5.3.3 that this result did not translate to the Mechanical Turk setting.

Ho et al. [62] studied the algorithmic problem of adaptively optimizing PBPs in crowdsourcing

markets, modeling the problem as a dynamic variant of the standard principal-agent model from

contract theory. Their model assumed that each worker chooses how much effort to exert in order to

maximize his expected utility, which is simply his expected payment minus the cost of his effort.

In Section 5.4, we propose a variant of this worker model that is in line with our experimental

observations. The results of Ho et al. [62] still apply when our worker model is used in place of

theirs.

5.2 Preliminaries

Before describing our experiments, we briefly describe the setting in which they were conducted.

All of our experiments were run on Amazon Mechanical Turk2 (henceforth MTurk), one of the most

popular crowdsourcing platforms. On MTurk, requesters post tasks (HITs) for workers to complete.

When a worker browses a task, he sees a description of the work to be done along with the amount

of money that the requester has offered as a base payment. A worker can then choose whether

to accept the task. After the worker completes the chosen task, the requester may evaluate the

worker’s submission and choose to either approve or reject the work. Each worker has an approval

rating which is simply the fraction of HITs he has submitted that have been accepted. If the work is

rejected, the worker is not paid and his approval rating, which serves as a de facto reputation score,

suffers. If the work is accepted, the worker receives the base payment for the task and his approval

2https://mturk.com
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rating increases. Requesters also decide at this time whether or not to award a bonus payment on

top of the base, and how much of a bonus to award. The possibility of such a bonus may or may not

be included in the task description.

HITs can also have qualifications associated with them. Only those workers who have the

appropriate qualifications can do a HIT. These qualifications are specified by the requester. For

example, we used a geographic qualification to restrict our tasks to workers located in the United

States, and used qualifications to disallow workers from completing the same type of task more

than once. We also used qualifications for random assignment in one of our experiments; how and

why we did this is described in Section 5.3.3.

Our experiments focus on the use of threshold-based PBPs. A threshold-based PBP is specified

by a base payment, a bonus payment, and a threshold. The base payment specifies the amount

of money a worker receives from completing the task; this is fixed at $0.50 USD in all of our

experiments.3 The bonus payment specifies the amount the worker can potentially receive as a

bonus. The threshold determines what the worker must do in order to obtain the bonus.

All of the experiments in this paper were approved by the Microsoft Research IRB.

5.3 Behavioral Experiments

5.3.1 Does PBP Work?

Our first experiment was designed with two goals in mind. The first was to verify that PBPs can lead

to higher quality crowdwork and identify a task for which this happens. The second was to determine

if there exists what we call an implicit PBP effect: even if the requester offers a guaranteed payment,

MTurk workers have subjective beliefs on the quality of work they must produce in order to receive

this payment, and therefore behave as if the payments were (implicitly) performance-based. We

measure these subjective beliefs by the difference in the quality of crowdwork when base payments

are explicitly guaranteed, effectively resetting the workers’ subjective beliefs, compared to when

3The base payment of $0.50 was chosen so that workers could obtain a $6 hourly rate from the base payment alone
with a reasonable amount of effort in each of our tasks.
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base payments are not guaranteed.

Experiment Design

In this experiment, workers were asked to proofread an article of 500 to 700 words and correct

spelling errors. For each article, we randomly inserted 20 typos from a list of common spelling

errors. Workers were asked to input the line number of each typo, the misspelled word, and the

correct spelling of the word.

This task has two key properties. First, we would expect that workers could produce better work

by exerting more effort—the more carefully a worker reads or the more passes a worker takes over

the text, the more typos he will find—and that this would open up the possibility of PBPs improving

quality. (We study this conjecture in more detail in Section 5.3.4.) Second, since we injected the

typos into the text, the quality of each worker’s output could be measured objectively, though this

was not known to the workers.

Before accepting the HIT, each worker saw a preview consisting of the instructions, an example

article with typos, and the base payment of $0.50 USD. The preview was the same for all workers.

After workers accepted the HIT, they were randomly assigned to different treatments and then

shown treatment-specific instructions, when applicable. Our experiment had a 2⇥ 3 design, with 2

treatments governing the base payment and 3 treatments governing the bonus payment (if any). We

discuss the bonus treatments first:

• No Bonus: This is the control group. It had no bonus and no mention of a bonus.

• Bonus for All: All workers earned a $1 bonus after submitting the HIT.

• PBP: Workers earned a $1 bonus if they found 75% of the typos found by the other workers.

The purpose of the control group was to allow us to measure the baseline number of typos

workers found. The purpose of the Bonus for All treatment was to test if simply paying more

resulted in higher quality work. The purpose of the PBP bonus treatment was to test if specifically

incentivizing for quality improved the number of typos found.

As mentioned, we are also interested in whether workers have subjective assumptions on how
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much effort they must exert to get their work accepted. Workers may be afraid that if they do not find

a sufficient number of typos their work will be rejected, resulting in no pay and a negatively affected

MTurk reputation. To estimate this, we designed a treatment in which workers were explicitly

guaranteed acceptance provided that they completed a very small amount of work. We had two

treatments for the base payment:

• Non-Guaranteed: There were no extra instructions. This is the control and emulates most MTurk

tasks.

• Guaranteed: Workers were told they would get paid if they found at least one typo.

The first typo appeared before line 3 in each article. Thus a worker would only have to do a

trivial amount of work to ensure they got paid in the guaranteed base treatment.

Results

The HIT was completed by 1,000 unique workers, who were each assigned uniformly to one of the

six treatments. We conducted a chi-squared test to check for significant differences in the number

of participants who finished the six treatments and found none (p = 0.38). The primary dependent

variable (or outcome measure) we were interested in is the number of true typos found. In the

analysis we made six comparisons that we spell out below. We performed this analysis using an

ANOVA with one-sided, planned comparisons [100] and report p-values that have been corrected

for these multiple (six) comparisons. The results of this experiment are shown in Figure 5.1 and

described below.

PBPs improve quality. To determine whether PBPs increase quality for this task, we focus on the

non-guaranteed base treatments since almost all HITs on MTurk do not explicitly guarantee any

kind of acceptance criteria. Workers in the PBP bonus treatment found on average 1.3 more typos

than workers in the No Bonus treatment (p = 0.042), showing that PBPs did improve quality for

this task.

All payment schemes may be implicitly performance-based. In the No Bonus treatment, the

guaranteed base resulted in 1.5 fewer typos found on average compared with the non-guaranteed
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Figure 5.1: The effect of different payment schemes on work quality in the proofreading task. Error

bars indicate the mean ± one standard error.

base (p = 0.015). Similarly, in the Bonus for All treatment, the guaranteed base resulted in 1.3

fewer typos found on average (p = 0.024). While there may be other explanations, this suggests

that workers do have subjective beliefs on the amount of work that needs to be done for their work

to be accepted, lending support to our conjecture that payments on MTurk are already implicitly

performance-based. We discuss this further in Section 5.4.

In the PBP bonus treatment, we did not see a significantly different effect between the guaranteed

base and non-guaranteed base treatments. We offer two related explanations of this finding. First,

the only way to grant a bonus using the MTurk API is to first accept the work. This means that in

the PBP bonus treatment, workers would likely believe that finding 75% of typos would almost

certainly result in their work being accepted, already altering their subjective beliefs. Second, the

treatment might have made this 75% threshold more salient to the workers. This gave a clear goal

for the workers to strive for.

Simply paying more improves quality. Focusing again on the non-guaranteed base treatment,

workers in the Bonus for All treatment found on average 1.3 more typos than workers in the No
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Bonus treatment (p = 0.036). Thus offering an unconditional bonus—which is essentially just

paying more—increased quality.

This finding is perhaps surprising since it appears to contradict the results of prior work [20,

89, 97]. We give two potential explanations. First, since the announcement of the bonus came

after workers accepted the HIT, the workers may be exhibiting reciprocity by doing higher quality

work [54], rewarding the requester for this pleasant surprise. We further test and refute this

hypothesis in Section 5.3.3. Second, this could be explained by the implicit PBP effect described

above. That is, workers might have subjective beliefs about the number of typos they must find

to get paid. If we increase the bonus payment, workers might be willing to put in more effort to

increase their probability of earning this higher amount.

This observation is not inconsistent with previous work. In most prior work, either easy tasks

were chosen which might cause workers to perform well even for low pay [20, 97] or additional

instructions or tutorials were provided which may have primed workers’ subjective beliefs [89].

PBPs can save money compared with high unconditional payments. In the non-guaranteed

base treatment, the difference in the number of typos found in the PBP and Bonus for All treatments

is not significant. Both resulted in higher quality work than the control. However, we spent much

less money on the PBP treatment. We paid each worker $1.50 in the Bonus for All treatment, while

we paid each worker only $0.97 on average in the PBP treatment with non-guaranteed base and

$0.96 on average in the PBP treatment with guaranteed base. Therefore, it may still be advantageous

for requesters to offer PBPs even if they could achieve the same quality work with unconditional

payments.

5.3.2 When Does PBP Work?

Having established that PBPs can improve quality for the proofreading task, we investigated the

effect of varying two parameters of the payment scheme, the bonus threshold and the bonus amount,

to better understand when PBPs help.
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Bonus Thresholds: Experiment Design

We first tested the effect of varying the threshold of quality that must be met in order for workers to

receive the bonus. We used the same proofreading task described in Section 5.3.1, with the same

base payment of $0.50 and bonus of $1. Workers were randomly assigned to treatments in which

they were told they could earn the bonus if they found at least 5 typos or at least 25%, 75%, or

100% of the typos found by the other workers. In the control, workers did not receive any bonus or

see any mention of a bonus.

Bonus Thresholds: Results

The results from 585 unique workers are presented in Figure 5.2. As before, we ran an ANOVA

with one-sided, planned comparisons [100] and report p-values that have been corrected for the

multiple (five) comparisons we describe below.

PBPs improve quality for a wide range of bonus thresholds. Improvements in quality over the

control can be observed in both the 25% and 75% treatments. The 25% treatment resulted in

workers finding, on average, 1.1 more typos than the control (p = 0.082). Similarly, the 75%

treatment resulted in workers finding, on average 1.2 more typos, than the control (p = 0.049). We

conjecture that setting a threshold anywhere between 25% and 75% would yield similar results, so

the improvements from PBPs are not overly sensitive to the threshold. However, the 100% typo

condition was neither significantly different than the 75% treatment or control, so our results suggest

that if the bonus threshold is set too high, then workers’ average performance slightly decreases.

This could be due to some workers giving up because they do not believe the bonus is attainable.

Subjective beliefs on the quality thresholds can improve work. Since each article contains 20

typos in total, 25% of the typos found by other workers is at most 5 typos and will be exactly 5

typos if the number of workers is sufficiently large. In this sense, the two thresholds are roughly

equivalent. However, workers in the 25% treatment performed much better than workers in the 5

typos treatment. Workers in the 25% treatment found, on average, 1.9 more typos than those in the 5

typo treatment (p < .001). An analysis of the line numbers in which typos were found showed that
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Figure 5.2: The effect of the bonus threshold on work quality in the proofreading task. Error bars

indicate the mean ± one standard error.

workers in the 5 typo treatment did not stop reading before workers in the 25% treatment; however,

there may be a variety of other explanations for this. For example, it is possible that workers in the

25% group had different subjective beliefs and thought that they would need to find more than 5

typos to receive the bonus. After all, workers did not know the total number of typos in the article.

Bonus Amounts: Experiment Design

We next examined the effect of varying the bonus amount. We used the same proofreading task

with a base payment of $0.50. Workers were assigned to treatments in which they could earn either

$0.05, $0.50, or $1 if they found 75% of the typos found by other workers. Once again, workers in

the control did not receive or see any mention of a bonus.

As an implementation detail, we note that these experiments were run simultaneously with

those described in Section 5.3.2, allowing us to share two treatments (the control and the $1 for

75%) and run only seven treatments in total instead of nine. We excluded workers who had already

participated in the experiment from Section 5.3.1. We collected results from 815 unique workers
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assigned uniformly to the seven treatments. A chi-squared test showed no significant differences

between the number of workers who completed the seven treatments (p = 0.23)

Bonus Amounts: Results

We collected data from 451 unique workers. Figure 5.3 shows the overall trend: PBPs lead to

higher quality work only when the bonus is sufficiently large, but increasing the bonus amount has

diminishing returns. Indeed, regressing the number of typos found on the bonus amount shows that

an extra $1 of bonus results in finding 1.4 more typos (p = 0.002) on average.
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Figure 5.3: The effect of the bonus amount on work quality in the proofreading task. Error bars

indicate the mean ± one standard error.

This may help to explain previous negative results on PBPs in crowdsourcing markets. Shaw

et al. [102] reported little or no quality improvement using PBPs compared with fixed payments.

However, they offered a bonus payment of only $0.03, 10% of their $0.30 base. As we observe

from the leftmost two points in Figure 5.3, PBPs do not improve quality when the bonus is very

small. Yin et al. [116] tested PBPs with several bonus sizes and reported that bonus size alone did

not significantly impact quality. However, their study did not include a control with fixed payments,
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and the bonus sizes that they tested were all significantly larger than their base payment ($0.04,

$0.08, $0.16, and $0.32 on a base payment of $0.01). As we observe from the rightmost two points

in Figure 5.3, increasing the bonus size only leads to minor improvements in quality once the bonus

is already sufficiently large. It is only when we view the whole picture that we can see that PBPs do

help.

Taken as a whole, the results in this section show that PBPs improve quality for a wide range of

possible thresholds, provided that the requester offers a bonus that is high enough to make the extra

reward salient.

5.3.3 Why Does PBP Work?

There are two primary motivations for our next experiment. First, we wanted to verify that PBPs are

useful in other tasks beyond finding typos. Second, we wanted to explore potential reasons why

PBPs work. In particular, as pointed out in Section 5.3.1, simply increasing the amount of the bonus

payment led to almost as much of an improvement as using PBPs in the proofreading experiment.

While it could be that workers are responding rationally to the provided incentives, it could also be

the case that workers are increasing their effort due to a reciprocity effect; workers are pleasantly

surprised to discover the opportunity to receive a (performance-based or unconditional) bonus after

accepting the HIT, and reward the requester for this kind action by working harder. Indeed, Gilchrist

et al. [54] found, in a different crowdsourcing context, that workers who accept a task and then

receive an unexpected bonus do higher quality work than workers who are paid the same amount

total but are told up front. This experiment is designed to test whether this “unexpected bonus

effect,” is the (partial) cause of the observed increases in performance using PBPs.

Experiment Design

In this task, workers were shown twenty pairs of images. Ten of the pairs were identical images,

while the other ten pairs contained minor differences. Workers were asked to specify whether each

pair was identical or not, and were not told how many pairs of images were identical in advance.

Again, this task has two key properties we desire. First, we speculated that workers would be more
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likely to spot the differences between images if they spent more time and effort looking. Second,

we can objectively measure the quality of workers’ output by the number of correctly answered

pairs. A similar task was used in experiments by Yin et al. [116].

To test our research questions, we wished to vary the bonus amount and bonus rules as well

as the amount of the base payment. Obviously, if we launched two HITs that differed only in

the base payment amount, the majority of workers would choose the HIT with the higher base

payment, resulting in selection bias. To avoid this, we used the following method for randomly

assigning treatments. We first posted a qualification HIT in which workers were paid a small amount

($0.05) if they agreed to receive notifications about our future tasks. We made it clear that they

were under no obligation to do the future tasks. We then randomly assigned the workers who

completed this recruitment task to different treatments. For each treatment, we posted a separate

HIT. Workers were only qualified to see and do the HIT corresponding to their assigned treatment.

Finally, we used the notifyWorkers API call to send notification emails to workers with a link to

their assigned HITs (treatments). While others have suggested using qualifications to filter out

workers for experiments [26] or recruiting a panel of workers in advance [88], we believe that the

approach described here is novel and of independent interest.

We next describe the treatments:

• Low Base: The base payment was $0.50. No opportunity for a bonus was given. This was our

control.

• High Base: The base payment was $1.50. No opportunity for a bonus was given.

• Unexpected Bonus: The base payment was $0.50. After accepting the HIT, workers were told

they would receive an additional bonus of $1.

• PBP: The base payment was $0.50. In addition to the base payment, workers could earn a bonus

of $1 if they correctly labeled 80% of the image pairs as identical or not. Workers were informed

of the bonus and rules for receiving the bonus before accepting the HIT.

Note that the payment amounts in the High Base and Unexpected Bonus treatments are the same.

The difference is only how and when the payments were described.

76



Results

We randomly chose 800 workers from the pool that completed the qualification HIT and randomly

assigned them to the four treatments, 200 workers per treatment. After assigning qualifications

corresponding to each treatment, we posted the HITs for each simultaneously and sent each worker

a notification with a link to their treatment’s HIT. We conducted a chi-squared test to check for

significant differences in the number of participants who finished the four treatments and found

none (p = 0.90). In the analysis we make six comparisons, described below. We did this analysis

using an ANOVA with one-sided, planned comparisons [100] and report p-values that have been

corrected for these multiple comparisons. The results are shown in Figure 5.4.
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Figure 5.4: The effect of different payment schemes on work quality in the spot the differences task.

Error bars indicate the mean ± one standard error.

Similar to the proofreading experiment described in Section 5.3.1, simply paying more resulted

in higher quality work. The High Base treatment had a significantly higher number of correct

answers than the Low Base treatment (p = 0.030). Similarly, the Unexpected Bonus treatment had a

significantly higher number of correct answers than the Low Base treatment (p = 0.047). Figure 5.4
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shows no significant difference between the High Base and the Unexpected Bonus treatments. This

suggests that there was no “unexpected bonus effect” in contrast to Gilchrist et al. [54]4 The absence

of any reciprocity effect due to the unexpected bonus suggests that workers were doing better work

to increase the probability (according to their prior assumptions) that their work got accepted and

thus earn the higher pay.

We also observe that workers in the PBP treatment outperformed workers in all other treatments

(p < 0.005). This suggests that workers are rational to some degree and are willing to exert more

effort to increase their chances of receiving higher payments. Note that in this experiment workers

knew before they accepted the HIT that they could earn a bonus, in contrast to the experiment

described in Section 5.3.1 in which workers were informed of the opportunity to earn a bonus

only after they accepted the HIT. We have therefore shown that PBPs can work whether or not the

opportunity for a bonus is unexpected.

5.3.4 Where Does PBP Work?

We have shown that PBPs incentivize higher quality crowdwork on two specific tasks, proofreading

and spotting differences in images. It is natural to ask whether our results generalize, and in

particular, what properties of a task open up the possibility of performance improvements with

PBPs.

Camerer and Hogarth [22] note that in the context of economics lab experiments, performance-

based incentives tend to improve quality for effort-responsive tasks, tasks for which it is possible

to generate higher quality work by exerting additional effort (presumably without requiring too

much effort). One might ask if the same is true in a crowdsourcing setting. More specifically, we

investigate a hypothesis that whether, and to what extent, a task is effort-responsive is an important

reason for whether or not PBPs work for this task. We find an empirical correlation between the two,

which we interpret as a strong evidence in favor of this hypothesis. Since it is difficult to directly

measure how much effort a worker has put into a task, we use the time a worker spent on a HIT as a

4Note that our experimental setting is not the same as theirs. They ran experiments on oDesk for tasks with much
longer working hours (3 hours) while our experiment is on MTurk and our tasks only last for on average 8.8 minutes.
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proxy measure for effort, and examine the relationship between time spent and quality of work.

Figures 5.5(a) and 5.5(b) illustrate this correlation for the proofreading and spot-the-difference

tasks respectively. Each shows the amount of time that a worker spent on the HIT versus the quality

of his work (measured as number of typos found or number of correctly labeled image pairs as

before). For the proofreading task, regressing the number of correct typos found on the amount

of time a worker spent shows that every minute is correlated with finding another 0.42 typos on

average (p < 0.001). Similarly, for the spot-the-difference task, regressing the number of pairs

correctly identified on the amount of time a worker spent shows that every minute is correlated with

another 0.17 correct answers (p < 0.001). We see that, in general, workers who spent more time on

our tasks generated better quality work. We observe similar trends in all treatments, but include

only workers in the control groups in the plots since they are most comparable across tasks. This is

evidence that the tasks on which we observed improvements from PBPs are effort-responsive.

To further explore this hypothesis and the generalizability of our results, we examined the effects

of PBPs on two additional tasks, handwriting recognition and audio transcription. For consistency

with our previous experiments, we maintained a base payment of $0.50 (adjusting the task lengths to

maintain an hourly rate of roughly $6) and a bonus of $1 when applicable. Workers were randomly

assigned to treatments after accepting the HIT in the same way as in the experiments described in

Sections 5.3.1 and 5.3.2.

Handwriting Recognition: Design

For the handwriting recognition task, workers were shown two images containing handwritten

text and asked to transcribe the text. The images were collected from the IAM Handwriting

Database [87]. One contained 89 words and the other 74. As in our other experiments, workers

in the control treatment received only the base payment. We also used a PBP treatment in which

workers were told that for one of the images, their transcription would be compared against a gold

standard solution and they would receive the bonus if they correctly transcribed 90% of the words

in the image. They were not told which image would be used to assess their accuracy. This payment

rule was used to make the task appear more like a realistic MTurk task.
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(b) Spot-the-Difference
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(c) Handwriting Rec.
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(d) Audio Transcription

Figure 5.5: Time vs. quality for effort responsive tasks in panels 5.5(a) and 5.5(b), and non-effort

responsive tasks in panels 5.5(c) and 5.5(d). The blue lines indicate the regression line and the

shaded areas represent the 95% confidence interval around it. Results are similar when outliers are

excluded from the analysis.

Handwriting Recognition: Results

Data was collected from 220 workers. As shown in Figure 5.5(c), the quality of work produced

was not significantly correlated with the time a worker spent on the task. In other words, this task

does not appear to be effort-responsive. Moreover, we did not find a significant difference between

the accuracy of workers in the control group versus the PBP treatment via a one-sided t-test. We

note that one of the two images given to workers was chosen because it was especially difficult

for workers in a pilot study. Restricting our analysis to just this image did show a marginal effect,

with workers in the control group averaging 92.3% accuracy and workers in the PBP treatment
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averaging 93.5% (p = 0.055). Since PBPs only had a small, marginal effect on even the most

difficult handwriting recognition image, we conclude that PBPs only have a small effect on this task

in general.

One reason why PBPs did not have a strong effect on quality for this task may be that there

was a ceiling effect, as discussed in the context of incentives in lab experiments by Camerer and

Hogarth [22]. As Figure 5.5(c) shows, the average accuracy over the two articles of the workers in

the control group was 95.2%, leaving little room for PBPs to have impact. A related explanation is

that most of handwritten words in our data sets were trivial to recognize. Over 80% of words were

correctly transcribed by over 90% of workers.

It is possible that PBPs would have improved performance if we had chosen a different thresh-

old. However, since the average performance was already very high, there was little room for

experimentation. If a better threshold exists, it would be difficult for a requester to identify.

Audio Transcription: Design

For the audio transcription task, workers were asked to transcribe 10 audio clips, each of which

contained approximately 5 seconds of speech. The audio clips were collected from VoxForge5

and we intentionally chose clips from speakers with heavy accents to increase the difficulty of the

task and avoid the ceiling effect. Once again workers in the control treatment received only the

base payment. We additionally included three PBP treatments with different thresholds of quality

required to receive the bonus. In these treatments, workers were told that their answers for 5 of the

10 clips would be compared against gold standard answers, and that they would receive the bonus

if they correctly transcribed 80%, 85%, or 90% of the words respectively. These threshold values

were chosen based on quality observed in a pilot experiment on this task in order to cover the range

of thresholds that we believed would be most likely to lead to quality improvements with PBPs. We

note that audio transcription is one of the most common tasks on MTurk.

5http://www.voxforge.org/
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Audio Transcription: Results

We collected data from 400 workers. As Figure 5.5(d) shows, quality and time are not significantly

correlated. That is, audio transcription does not appear to be effort-responsive. Furthermore, we

did not find a significant difference between any of the three PBP treatments and the control group.

Since the average accuracy in the control group was only 75.4%, this cannot be fully explained by a

ceiling effect as may have been the case for handwriting recognition. One might ask if there are

certain hard words for which PBPs did improve performance. We took a closer look at the data and

found that this does not appear to be the case. Of the 97 words included in the 10 clips, workers’

combined accuracy was better in the 85% threshold PBP treatment compared with the control

on 52 words, and better in the control than the 85% threshold PBP treatment on 44; essentially

these differences appear to be mostly due to noise. We observe a similar pattern for the other PBP

treatments. Additionally, for more than 80% of the words, the percentage of workers correctly

transcribing the word when PBPs were offered is close (within ±5%) to the percentage in the

control group. This could suggest that workers’ performance is limited by their abilities and cannot

be improved through PBPs.

A Practical Recommendation

While the results in this section are not causal, they are in line with the hypothesis that the extent

to which a task is effort-responsive is an important reason for whether or not PBPs help improve

quality for this task. This suggests an approach that requesters can use when deciding whether

or not to employ PBPs in their own HIT. A requester could run a pilot of their HIT with a small

number of workers and a fixed (not performance-based) payment and plot the time that workers

spend on the task versus the quality of their work to determine whether and to what extent the task

is effort-responsive. A requester may be able to incentivize higher quality using PBPs only if the

task is (sufficiently) effort-responsive. In this case, the requester must determine whether the boost

in quality is worth the extra cost of PBPs.
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5.4 A Theory of Worker Incentives

The worker model in the well-known principal-agent framework [82] assumes that a worker chooses

a level of effort or quality to maximize his expected utility, which is simply the expected payment

he receives minus the expected cost of doing the work at the chosen effort level. In this section,

we show that incorporating the worker’s subjective beliefs about how much quality is required to

earn the base and bonus payments into the worker model allows us to explain the main observations

from our experiments in a parsimonious way. Furthermore, it is not clear how one might capture

our experimental results using the traditional worker model without incorporating the worker’s

subjective beliefs. Our model can be used to reason about the possible consequences of using

performance-based payments.

We assume that a worker views a task and chooses to produce work at a particular quality level

in order to maximize his expected utility, defined as his perceived expected payment minus the

perceived cost of doing the task at a given quality level. In our model, when workers are offered

performance-based payments with base payment p and bonus payment b, the worker’s expected

utility is

Upbp(q) = p Pr(base|q) + b Pr(bonus|q)� c(q), (5.1)

where q is the quality level, Pr(base|q) and Pr(bonus|q) denote the worker’s perceived probabilities

of receiving the base and bonus payments with work of quality q, and c(q) is the worker’s perceived

cost of producing quality q. We posit that q comes from a totally ordered set, and assume that

Pr(base|q) and Pr(bonus|q) are non-decreasing in q.

While we typically think of the cost of producing work as positive, capturing the effort the

worker must exert to produce work of the chosen quality level, it could in some cases be negative,

capturing the subjective intrinsic utility the worker receives from his enjoyment of the task or

his satisfaction from a job well done. To allow for such effects, we make no assumptions on the

monotonicity of c(q).

We make a minor consistent tie-breaking assumption. If multiple quality levels maximize the

expected utility for a pair of base and bonus payments, we assume the tie is broken consistently in
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the sense that the worker chooses the same quality level for any payments leading to this particular

tie.

Consequences of the Worker Model

Given the worker model, we are able to provide a coherent explanation of our key observations,

including some that are not explained by the standard principal-agent model. To explain the key

observations from our experiments we compare Equation 5.1, which describes the worker’s utility

when there are both a base payment and a bonus payment, with the utility of a worker with subjective

beliefs under the “standard” payment scheme in which workers are offered a base payment only.

The standard payment scheme was used in the control group in our experiments. In this case, the

worker’s expected utility is simply

Ustd(q) = p Pr(base|q)� c(q). (5.2)

Let qstd be the quality level chosen by the worker under this utility function, so qstd 2 arg max

q

Ustd(q),

and qpbp be the quality chosen under Equation 5.1, so qpbp 2 arg max

q

Upbp(q).

Subjective beliefs about acceptance criteria increase quality. In Section 5.3.1, we experimen-

tally showed that the quality of work produced is higher when workers have subjective beliefs about

acceptance criteria than when the base payment is explicitly guaranteed. We called this an implicit

PBP. It is easy to explain in our model.

Consider the standard setting (no PBPs). With a guaranteed base payment, the worker’s utility

becomes p � c(q). Let q⇤ be a maximizer of this expression. It follows that q⇤ is a minimizer

of c(q), thus c(q⇤)  c(q) for all q. For any q < q⇤, we have p Pr(base|q)  p Pr(base|q⇤)

given the monotonicity of Pr(base|q). Therefore, for any q < q⇤, Ustd(q)  Ustd(q⇤). Given the

consistent tie-breaking assumption, the worker will not choose to generate work of quality q if

q < q⇤. Therefore, if qstd is the maximizer of Equation 5.2 then qstd � q⇤. Thus qstd, the optimal

quality level with no guaranteed base payment, is greater than or equal to q⇤, the optimal quality

level with guaranteed base payment, which we observed experimentally in Figure 5.1. It is possible
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to strengthen this result to strict inequality (qstd > q⇤) with a few additional assumptions.6 Similar

arguments can be made for the setting with PBPs.

Higher payments increase quality. The experiments in Sections 5.3.1 and 5.3.2 demonstrated that

increasing the base payment (or the unconditional bonus) can increase quality. This is also easy

to explain in our model. Consider increasing the base payment in the standard setting (no PBPs).

Let q
�

be the maximizer of U
�

(q) = (p + �) Pr(base|q)� c(q), the utility of the worker if the base

payment were p + � instead of p, where � > 0. By optimality of qstd, for all q,

p Pr(base|q)� c(q)  p Pr(base|qstd)� c(qstd).

Since Pr(base|q) is non-decreasing in q, q < qstd implies � Pr(base|q)  � Pr(base|qstd). Com-

bining the last two inequalities, U
�

(q)  U
�

(qstd) for all q < qstd. Therefore, given the consistent

tie-breaking assumption, q
�

, the optimal quality level under higher pay, is greater than or equal to

qstd, the optimal quality level under the standard setting. Again, strict inequality is achievable with

the additional assumptions from Footnote 6. Similar arguments can be made for increasing the

base payment with PBPs, and for increasing the bonus payment.

These conclusions hold only when uncertainty about receiving the payment is included. They

would not hold in the standard principal-agent model, where increasing a guaranteed payment does

not increase quality.

Performance-based payments (significantly) increase quality. A key result from our experi-

ments in Sections 5.3.1-5.3.3 is that PBPs can, in fact, increase quality in a significant way. This

can be explained from our model too.

We have that the quality improves (qpbp � qstd, or qpbp > qstd with additional assumptions) as

a special case of the argument above. However, this statement is relatively weak, as it does not

say anything about the magnitude of the improvement, i.e., the difference qpbp � qstd. We would

6In multiple places in this section, to make inequalities on quality strict, we could first assume that q takes values on
some interval [q

min

, q
max

] such that c(q
max

) > b+ p, and that Pr(base|q), Pr(bonus|q), and c(q) are differentiable
on this interval. We must then also assume that the subjective probabilities Pr(base|q) and Pr(bonus|q) are strictly
increasing in q. In this particular instance, under these assumptions, since c0(q⇤) = 0, we have U 0

std(q
⇤
) > 0, which

implies that q⇤ cannot be the maximizer of U 0
std(q

⇤
), so qstd > q⇤.
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like this difference to be large; a requester might not want to take on the extra costs of PBPs if the

increase in quality is small. In order to gain some intuition for when it is or is not possible to obtain

a sufficiently large improvement in quality, we consider several special cases as examples.

As a first example, consider the case in which the worker does not have fine-grained control over

the precise quality of his work, but can only choose between two options: high-quality, denoted q
high

,

or low quality, q
low

. Then PBPs work if and only if the worker’s optimal quality level is q
low

without

PBPs, and q
high

with PBPs. In formulas, Ustd(qhigh) < Ustd(qlow) and Upbp(qhigh) > Upbp(qlow),

or

p (Pr(base|q
high

)� Pr(base|q
low

)) < c(q
high

)� c(q
low

)

< p (Pr(base|q
high

)� Pr(base|q
low

)) +

b (Pr(bonus|q
high

)� Pr(bonus|q
low

)) .

In words, the extra cost to produce high-quality work must be less than the extra benefit the worker

would receive in terms of expected payments if the bonus is included, and bigger than the extra

benefit he would receive with standard payments. Examining this expression gives us intuition

about when we might expect PBPs to help. First, c(q
high

)� c(q
low

) cannot be too large. It must be

possible for the worker to substantially increase his quality with additional effort (and at a reasonable

cost)—essentially, the task must be effort-responsive, as conjectured in Section 5.3.4. Second,

c(q
high

)�c(q
low

) cannot be too small (in particular, compared with Pr(base|q
high

)�Pr(base|q
low

)

and p) or PBPs are unnecessary to achieve high quality. This is a partial explanation for why we did

not see improvements from PBPs in the handwriting recognition task when the cost of producing

high quality was already small. Third, the bonus b must be set large enough. This could partially

explain our observation that PBPs did not help in the proofreading task with a very small bonus.

Finally, the difference Pr(bonus|q
high

)�Pr(bonus|q
low

) must be high enough. This could explain

why we observed that PBPs did not help when the threshold for receiving a bonus is set too low.

As a second tractable example, suppose that the worker has fine-grained control over quality,
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but has no uncertainty over whether the bonus will be obtained, i.e.,

Pr(bonus|q) =

8

>

<

>

:

1 if q � q̄

0 otherwise

for some threshold value q̄. It is easy to show that either qpbp = qstd (if the worker prefers to do

less work and pass up the bonus) or qpbp � q̄ (if the worker prefers to do more work to receive the

bonus). PBPs are useful if and only if q̄ is sufficiently higher than qstd (according to the needs of

the requester), and for some q � q̄, Upbp(q) > Upbp(qstd), or equivalently

c(q)� c(qstd) < p(Pr(base|q)� Pr(base|qstd)) + b. (5.3)

Again we see that for PBPs to help it must be possible for the worker to increase his quality with

additional effort at a reasonable cost, and the bonus must be set sufficiently large.

Equation 5.3 provides a concrete and simple way to think about whether it would help to increase

the bonus threshold q̄. For fixed payments p and b, it is optimal to choose as q̄ the largest q which

satisfies Equation 5.3. However, q̄ is a perceived threshold and cannot always be controlled directly.

Instead, it may help to alter workers’ perception, perhaps without even changing the objective bonus

rule. For example, in the proofreading experiment from Section 5.3.2 the “5 typos” bonus rule is

roughly equivalent to the “25%” bonus rule in terms of when bonus payments are awarded, yet

workers react differently. One possible explanation for this general phenomenon is a difference in

the perceived value q̄.

Comparison with Principal-Agent Model

In the standard principal-agent model, a worker maximizes his payment minus the intrinsic cost of

his effort. We deviate from the standard model in that we include the worker’s subjective beliefs

about how high quality his work must be to be paid. In particular, while the objective probability of

receiving the base payment is often 1, the subjective probability may be much smaller, depending on

the quality level. This feature allows us to capture some effects that are not captured by the standard

model, e.g., that increasing the base payment may increase the quality of work that the worker

chooses to produce, while removing uncertainty about the base payment may decrease quality.
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Our model may be useful as a more realistic foundation for theoretical work. As an example,

consider Ho et al. [62], a recent theoretical paper on the optimization of PBPs. While that paper

posits the standard principal-agent model, all results carry over to our model.

5.5 Summary

We describe the results of a series of experiments studying the effect of performance-based payments

on the quality of crowdwork on Amazon Mechanical Turk. Our goal is to identify properties of the

payment, payment structure, and task that allow for quality improvements using PBPs.

We find that PBPs can improve the quality of submitted work for some tasks, but are not likely

to for others. We identify the extent to which a task is effort-responsive as a potential important

reason for whether or not PBPs work for this task. This leads to an actionable insight for requesters.

When considering whether or not to use PBPs, one could first run a pilot experiment to determine

whether a task is effort-responsive by examining the correlation between time spent and quality. If

additional time spent leads to a sufficiently high boost in quality, we would expect PBPs to improve

performance.

We find strong evidence for what we call the implicit PBP effect: workers may have their

own subjective beliefs about the quality of work they must submit to have their work accepted,

which makes them view fixed payments as implicitly performance-based. Workers may also

have subjective beliefs about the likelihood of receiving the bonus when payments are explicitly

performance-based. This should be taken into account when designing a payment scheme. For

example, we find that in some cases a requester can incentivize higher quality work by defining the

bonus threshold relative to other workers or with respect to gold standard data that the workers do

not have access to.

We show that in order for PBPs to improve quality, the bonus payment offered must be suffi-

ciently large, but that there are diminishing returns for further increasing this payment. This partially

explains existing negative results on the effectiveness of PBPs in crowdsourcing markets. We

provide evidence that when PBPs improve quality, they do so for a wide range of quality thresholds.
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Finally, we suggest a theoretical model of workers’ behavior that captures all of the above

effects and explains several outcomes we observed in our experiments. We believe this model may

be useful in further work on crowdsourcing markets, both as a concrete way to think about the

consequences of using this or that payment scheme in practice, and as a more realistic foundation

for theoretical work compared to the standard principal-agent model.

89



CHAPTER 6

Interactions Between Learning and Incentives

6.1 Overview

In crowdsourcing markets, the requester often tries to procure information from workers, who might

have their own objectives and need to be incentivized to work. So far in this dissertation, we have

separately considered learning problems and worker incentives. However, these two aspects often

coincide and need to be considered jointly.

In this chapter, we consider the following question which involves the interaction of learning

and incentives.

In a world where data is offered to us at heterogeneous prices by self-interested

agents, and in particular when these prices may be arbitrarily correlated with the

underlying data, how can we design mechanisms that are incentive-compatible, have

robust learning guarantees, and optimize the cost-efficiency of learning?

We will address this question for the classic problem of statistical learning which we now

describe.

From sample complexity to budget efficiency

The classical problem in statistical learning theory is the following. We are given n datapoints

(examples) z
1

, . . . , z
n

2 Z sampled from some distribution D. Our goal is to select a hypothesis

h 2 H which “performs well” on unseen data from D. We can specify performance in terms of a

loss function `(h, z), and we write L(h), known as the risk of h, to be the expectation of `(h, z) on

a random draw z from D. The goal is to produce a hypothesis ¯h whose risk is not much more than
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that of h⇤, the optimal member of H. For example, in binary classification, each data point consists

of a pair z = (x, y) where x encodes some “features” and y 2 {�1, 1} is the label; a hypothesis h

is a function that predicts a label for a given set of features; and the loss `(h, (x, y)) is 0 if h(x) = y

and is 1 otherwise.

Research in statistical learning theory attempts to characterize how well such tasks can be

performed in terms of the resources available and the inherent difficulty of the problem. The

resource is usually the quantity of data n. In binary classification, for instance, the difficulty or

richness of the problem is captured by the “VC-dimension” d, and a famous result is that there is an

algorithm achieving the bound

L(

¯h)  L(h⇤
) + O

 

r

d log n

n

!

. (6.1)

In this chapter, we consider an alternative scenario: the learner has a fixed budget B and can

use this budget to purchase examples. More precisely, on round t of a sequence of T rounds,

agent t arrives with data point z
t

, sampled i.i.d. from some D, and a cost c
t

2 [0, 1]. The learning

mechanism may offer a menu of take-it-or-leave-it prices ⇡
t

(z), with a possibly different price ⇡
t

(z)

for each data point z. The arriving agent observes the price ⇡
t

(z
t

) offered for her data and accepts

as long as ⇡
t

(z
t

) � c
t

, in which case the mechanism pays the agent ⇡
t

(z
t

) and learns (c
t

, z
t

).1 Our

goal is to actively select data to purchase, subject to a budget B, in order to minimize the risk of our

final output ¯h. At a high level, our main result is as follows:

Main Result 1 (Informal). For a large class of problems, there is an active data purchasing algorithm

that spends at most B in expectation and outputs a hypothesis ¯h satisfying,

EL(

¯h)  L(h⇤
) + O

✓

r

�

B

◆

,

where � 2 [0, 1] is a parameter of the (cost, data) sequence capturing the monetary difficulty of

learning and the expectation is over the algorithm’s internal randomness. The only prior knowledge

required is a rough estimate of �.2

1We will discuss the interaction model further in Sections 6.2.

2Knowledge of � can be weakened with gracefully degrading guarantees; for instance, a rough estimate of the mean
of the arriving costs suffices.
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Online learning algorithm 
(e.g. Multiplicative Weights, 
Online Gradient Descent)

Classic
regret bound

Mechanism to 
purchase data for 
regret minimization

Mechanism to 
purchase data for 
statistical learning

Regret bound
(Section 4)

Risk bound
(main result)

Figure 6.1: Algorithmic and analytic approach. First, we convert “Follow-the-Regularized-Leader”

online no-regret algorithms (a broad class) into mechanisms that purchase data for a regret-minimization

setting that we introduce for purposes of analysis. Then, we convert these into mechanisms to solve our main

problem, statistical learning. The mechanisms interact with the online learning algorithms as black boxes, but

the analysis relies on “opening the box”.

Our results highlight parallels to classical bounds such as Equation 6.1. The key resource

constraint of the problem is now the budget B.3 We also identify a parameter � 2 [0, 1] that captures

the monetary difficulty of the setting. � is roughly defined as the average product of an arriving

datapoint’s cost and its “difficulty score”. An important illustration of the role of � is the following.

If the average cost of the data goes to 0, then � ! 0 and Main Result 1 guarantees good learning

for cheap. The same holds if the average “difficulty score” of the data goes to 0.

But in some settings, the average cost of data is large and the average “difficulty score” is also

large. The purchasing problem appears difficult, requiring a large budget; and the learning-theoretic

problem also appears difficult relative to the traditional resource of quantity of data. However, due to

beneficial correlations between difficulty and cost, it may be that the parameter � remains relatively

small. In this case, Main Result 1 implies that we can learn at a much more efficient rate relative to

the resource we care about, the budget. And crucially, this fact would not have been apparent by

considering either the economic or the learning-theoretic aspects of the problem in isolation.
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Overview of Techniques

Our general idea for attacking this problem is to utilize online learning algorithms (OLAs) for regret

minimization [24]. These algorithms output a hypothesis or prediction at each step t = 1, . . . , T ,

and their performance is measured by the summed loss of these predictions over all the steps. The

idea is that the hypotheses produced by the OLA at each step can be used both to determine the

value of data during the procurement process and to generate a final prediction.

In Section 6.3.1, we lay out the tools we need for a pricing and learning mechanism to interact

with OLAs. The first high-level problem is that, because of the budget constraint, our OLA will

only see a small subset of the data sequence. We use the tool of importance-weighting to give good

regret-minimization guarantees even when we do not see the entire data sequence. The second

problem is how to aggregate the hypotheses of the OLA and convert its regret guarantee into a risk

guarantee for our statistical learning setting. This is achieved with the standard “online-to-batch”

conversion [25].

Given the tools of Section 6.3.1, the key remaining challenge is to develop a pricing and learning

strategy that achieves low regret. We address this question in Section 6.3.2. We formally define a

model of online learning for regret minimization with purchased data, in which the mechanism must

output a hypothesis at each time step and perform well in hindsight against the entire data sequence,

but only has enough budget to purchase and observe a fraction of the arriving data. We defer until

later our detailed analysis of this setting, derivation of a pricing strategy, and lower bounds. At this

point, we present our pricing strategy and prove regret guarantees for this setting.

In Section 6.4, we prove our main results: risk guarantees for a learner with budget B and

access to T arriving agents. These bounds follow directly by using the tools in Section 6.3.1 and

regret-minimization results in Section 6.3.2.

In Section 6.5, we develop a deeper understanding of the regret minimization setting. We derive

our pricing strategy from an in-depth analysis of a more analytically tractable variant of the problem,

the “at-cost” setting, where the mechanism is only required to pay the cost of the arriving data

3Assuming that budget is scarce relative to data; see formal theorems for details.
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point rather than the price posted. For this setting, we are able to derive the optimal pricing strategy

for minimizing the regret bound of our class of learning algorithms subject to an expected budget

constraint.

We also complement our upper bounds by proving lower bounds for data-purchasing regret

minimization. These show that our mechanisms for the easier at-cost setting have an order-optimal

regret guarantee of Tp
B

�. There is a small gap to our mechanisms for the main regret minimization

setting, in which our guarantee is on the order of Tp
B

p
� (recall that � 2 [0, 1], so this is a weaker

guarantee). The dependence T/
p

B approaches the classic
p

T regret bound when B is large

(approaching T ). When B is small but still superconstant, we observe the perhaps counterintuitive

fact that we can achieve o(1) average regret per arrival while only observing an o(1) fraction of the

arriving data; in other words, we have “no data, no regret.”

All proofs appear in the appendix.

6.1.1 Related work

Our motivations overlap with much prior work, but the problem of generic learning with purchased

data does not seem to admit active solutions from the literature. A naı̈ve approach would be to offer

the maximum price of 1 to every arriving agent until the budget is exhausted, then run the learning

algorithm. To improve on this is already highly nontrivial, because as soon as one posts a price

below 1, the obtained data becomes biased toward lower costs, making it unclear how to guarantee

good learning properties on the entire distribution.

Improvements on this naı̈ve solution for “batch” settings have appeared in recent work, especially

Roth and Schoenebeck [98], which considered the design of mechanisms for efficient estimation of

a statistic with incentive-compatible payment schemes. However, this work and others in related

settings [30, 51, 84] consider “passive” solutions that do not treat different types of data points

differently, e.g. drawing a posted price independently regardless of the type of datapoint. We focus

on an active approach in which the marginal value of individual examples is estimated according to

the current learning progress and budget.

Horel et al. [64] does take a data-dependent approach to purchasing data for learning, but focuses
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on a quite different learning setting, focusing on a model of regression with noisy samples and using

a budget-feasible mechanism design approach.

Other works such as Dekel et al. [33], Ghosh et al. [53], Meir et al. [91] focus on a setting in

which agents may misreport their data (see also the peer-prediction literature). We suppose that

agents may misreport their costs but not their data.

Many of the ideas in the present work draw from recent advances in using importance weighting

for the active learning problem [15]. There is a wealth of theoretical research into active learning,

including Balcan et al. [11], Beygelzimer et al. [14], Hanneke [56] and many others.

“Budgeted Learning” is a somewhat related area of machine learning, but there the budget is

not monetary. The idea is that we do not see all of the features of the data points in our set, but

rather have a “budget” (for instance, we may choose to observe any two of the three features height,

weight, age).

6.2 Problem Formulation: Actively Purchasing Data for Learning

In this section, we formally define the problem setting. The body of the paper will then consist of a

series of steps for deriving mechanisms for this setting with provable guarantees, which will finally

appear in Section 6.4.

We consider a statistical learning problem described as follows. Our data points are objects

z 2 Z. We are given a hypothesis class H which we will assume is parameterized by vectors Rd

but more broadly can be any Hilbert space endowed with a norm k · k; for convenience we will

treat elements h 2 H as vectors which can be added, scaled, etc. We are also given a loss function

` : H ⇥ Z ! R that is convex in H. We assume throughout the paper that the loss function is

1-Lipschitz in h; that is, for any z 2 Z and any h, h0 2 H we have |`(h, z)� `(h0, z)|  kh� h0k.

In many common scenarios, Z is the space of pairs (x, y) from the cross product X ⇥ Y , with

x the feature input and y the label, though in our setting Z can be a more generic object. For

example, in the canonical problem of linear regression, we have that Z = X ⇥ Y = Rd ⇥ R, the

hypothesis class is vectors H = Rd, and the loss function is defined according to squared error
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`(h, (x, y)) := (h>x� y)

2.

The data-purchasing statistical learning problem is parameterized by the data space Z, hy-

pothesis space H, loss function `, number of arriving data points T , and expected budget con-

straint B. A problem instance consists of a distribution D on the set Z and a sequence of pairs

(c
1

, z
1

), . . . , (c
T

, z
T

) where each z
t

is a data point drawn i.i.d. according to D and each c
t

2 [0, 1]

is the cost associated with that data point. The costs may be arbitrarily chosen, i.e. we consider a

worst-case model of costs. (For instance, if costs and data are drawn together from a joint, correlated

distribution, then this is a special case of our setting.)

In this problem, the task is to design a mechanism implementing the operations “post”, “receive”,

and “predict” and interacting with the problem instance as follows.

• For each time step t = 1, . . . , T :

1. The mechanism posts a pricing function ⇡
t

: Z! R, where ⇡
t

(z) is the price posted for

data point z.

2. Agent t arrives, possessing (c
t

, z
t

).

3. If the posted price ⇡
t

(z
t

) � c
t

, then agent t accepts the transaction: The mechanism pays

⇡
t

(z
t

) to the agent and receives (c
t

, z
t

). If ⇡
t

(z
t

) < c
t

, agent t rejects the transaction

and the mechanism receives a null signal.

• The mechanism outputs a prediction ¯h 2 H.

The design problem of the mechanism is how to choose the pricing function ⇡
t

to post at each time,

how to update based on receiving data, and how to choose the final prediction. The risk or predictive

error of a hypothesis is

L(h) = E
z⇠D`(h, z)

and the goal of the mechanism is to minimize the risk L(

¯h) of its final hypothesis ¯h. The benchmark

is the optimal hypotehsis in the class, h⇤
= arg min

h2H L(h).

The mechanism must guarantee that, for every input sequence (c
1

, z
1

), . . . , (c
T

, z
T

), it spends at

most B in expectation over its own internal randomness.

96



Agent-mechanism interaction. The model of agent arrival and posted prices contains several

assumptions. First, agents cannot fabricate data; they can only report data they actually have to the

mechanism. Second, agents are rational in that they accept a posted price when it is higher than

their cost and reject otherwise. Third, the mechanism can truthfully obtain the agent’s costs c
t

.

We emphasize that the purpose of this paper is not focused on the implementation of such a

setting, but instead on developing active learning and pricing techniques and guarantees. This is

also intended as a simple and clean model in which to begin developing such techniques. However,

we briefly note some possible implementations.

In the most straightforward one, the mechanism posts prices directly to the agent who responds

directly. This would be a weakly truthful implementation, as agents have no incentive to misreport

costs after they choose to accept the transaction.

One strictly truthful implementation uses a trusted third party (TTP) that can facilitate the

transactions (and guarantee the validity of the data if necessary). For example, we could imagine

attempting to learn to classify a disease, and we could rely on a hospital to act as the broker allowing

us to negotiate with patients for their data. Then the TTP/agent interaction could proceed as follows:

1. Learning mechanism submits the pricing function ⇡
t

to the TTP;

2. Agent provides his data point z
t

and cost c
t

to the TTP;

3. TTP determines whether ⇡
t

(z
t

) � c
t

and, if so, instructs the learner to pay ⇡
t

(z
t

) to the agent

and then provides the pair (z
t

, c
t

) to the learner.

Other possibilities for strictly truthful implementation include using a bit of cryptography.

6.3 Our Approach

6.3.1 Tools for Converting Regret-Minimizing Algorithms

In this section, we begin with the classic regret-minimization problem and a broad class of algorithms

for this problem. We then show how to apply techniques that convert these algorithms into a form
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that will be useful for solving the statistical learning problem with purchased data. The only missing

ingredient will then be a price-posting strategy, which will be presented in Section 6.3.2.

Recap of classic regret-minimization setting and algorithms

In the classic regret-minimization problem, we have a hypothesis class H with the same assumptions

as stated in Section 6.2. At each time t = 1, . . . , T , the algorithm posts a hypothesis h
t

2 H. A

convex loss function f
t

: H ! R arrives.4 We assume the loss functions are 1-Lipschitz. The

algorithm receives f
t

, updates, and posts a hypothesis h
t+1

.

The loss of the algorithm on this particular input sequence is

Loss =

T

X

t=1

f
t

(h
t

). (6.2)

We define the regret as compared to the best fixed hypothesis h⇤ in hindsight:

Regret = Loss� min

h

⇤2H

T

X

t=1

f
t

(h⇤
). (6.3)

We generally consider expected loss and regret, where the expectation is over any randomness in

the algorithm (but is still for a fixed, non-random input data sequence). An algorithm is said to

guarantee regret R(T ) if for every sequence of loss functions f
1

, . . . , f
T

, its expected regret is at

most R(T ).

We utilize the broad class of Follow-the-Regularized-Leader (FTRL) online algorithms (Algo-

rithm 4). This class includes most popular no-regret algorithms such as Online Gradient Descent,

Multiplicative Weights, and so on for particular choices of the regularizer G (these special cases

usually have very computationally efficient updates). For example, Multiplicative Weights follows

by using the negative entropy function as a regularizer, which is strongly-convex with respect to

`
1

norm [24]. Online Gradient Descent follows by using the regularizer G(h) =

1

2

khk2
2

, which is

strongly-convex with respect to `
2

norm.

It is well-known (and indeed follows as a special case of Lemma 6.3.1) that, under the assump-

tions on our setting, FTRL algorithms guarantee an expected regret bound of O(

p
T ), and this is

4This definition of “loss function” is a departure from our main setting which involved `(·, ·). But we will use this
somewhat more general setup by choosing f

t

(h) / `(h, z
t

) for the datapoint z
t

.
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ALGORITHM 4: Follow-the-Regularized-Leader (FTRL). Note we assume in the definition a strongly-

convex regularizer G.
Input: parameter ⌘,

regularizer G : H! R which is strongly-convex with respect to a norm k · k over H

for t = 1, . . . , T do

post hypothesis h
t

;

receive loss function f
t

;

update h
t+1

= inf

h2H

8

<

:

X

t

0t

f
t

0
(h) + ⌘G(h)

9

=

;

;

tight in that no algorithm has a better guarantee. We will later prove generalizations of these bounds

for a regret minimization setting with purchased data.

Importance-Weighting Technique for Less Data

As a starting point, suppose we wish to design an online learning algorithm that does not observe

all of the arriving loss functions, but still performs well against the entire arrival sequence.

Because the arrival sequence may be adversarially chosen, a good algorithm should randomly

choose to sample some of the arrivals. In this section, we abstract away the decision of how to

randomly sample. (This will be the focus of Section 6.3.2.) In this section, we suppose that at each

time t, after posting a hypothesis h
t

, a probability q
t

> 0 is specified by some external means as

a (possibly random) function of the preceding time steps. With probability q
t

independently, we

observe f
t

; with probability 1� q
t

, we do not observe f
t

.

Our goal is to modify our online learning algorithms for this setting and obtain a modified regret

guarantee. Notice crucially that the definition of loss (6.2) and regret (6.3) are unchanged: We still

suffer the loss f
t

(h
t

) regardless of whether we observe f
t

.

The key technique we use is importance weighting. The idea is that, if we only observe each of

a sequence of values x
i

with probability p
i

, then we can get an unbiased estimate of their sum by

taking the sum of x

i

p

i

for those we do observe. To check this fact, let
i

be the indicator variable
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for the event that we observe i and note that the expectation of our sum is E
h

P

i

i

x

i

p

i

i

=

P

i

x
i

.

This is called importance-weighting the observations (and is a specific instance of a more general

machine learning technique). Furthermore, if each x

i

p

i

is bounded and independent, we can expect

the estimate to be quite good via tail bounds.

The importance-weighted modification to an online learning algorithm is outlined in Algorithm

5. The importance-weighted regret guarantee we obtain is given in Lemma 6.3.1. It depends upon a

key parameter at each time step, for a given hypothesis h of the online algorithm and arriving loss

function f :

Definition 1. For a norm k · k
?

, a hypothesis h 2 H , and a convex loss function f : H! R, define

�

h,f

= krf(h)k
?

.

We will informally refer to �

h,f

as the “benefit” or “value” of f when the current hypothesis is h.

In this paper, we will always use a FTRL algorithm, which is assumed to have a regularizer G

that is strongly-convex according to some norm k · k. In this case, k · k
?

is the dual norm to k · k.

We assume implicitly from now on that this k · k
?

is the norm used in the definition of �

h,f

.

ALGORITHM 5: Importance-Weighted Online Learning Algorithm.
Input: access to Online Learning Algorithm (OLA)

for t = 1, . . . , T do

post hypothesis h
t

 OLA;

observe q
t

(chosen by some external process);

if receive loss function f
t

(which occurs with probability q
t

) then

let importance-weighted loss function ˆf
t

(·) = f

t

(·)
q

t

;

send ˆf
t

! OLA;

else

send 0 function! OLA;

Lemma 6.3.1. If Algorithm 5 is run with (nonzero) probabilities q
1

, . . . , q
T

and FTRL as the
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learning algorithm, then the expected regret is bounded by

�

⌘
+ 2⌘E

"

T

X

t=1

�

2

h

t

,f

t

q
t

#

,

where � is a constant depending on H, ⌘ is a parameter of the algorithm, and the expectation is

over any randomness in the choices of h
t

and q
t

.

We can recover the classic regret bound as follows: Take each q
t

= 1, and note by the Lipschitz

assumption that each �

h

t

,f

t

 1. Then by setting ⌘ = ⇥

⇣

1/
p

T
⌘

, we get an expected regret

bounded by O
⇣p

T
⌘

.

The “Online-to-Batch” Conversion

So far so good: We can convert an online regret-minimization algorithm to use smaller amounts of

data (leaving the question of how and when to purchase that data till Section 6.3.2).

The next question is: Given that we have such an algorithm, how can we use it to solve our

original task of generating an accurate prediction based on the data?

We answer that question with a standard tool known as the “online-to-batch conversion” (so-

named for converting an online learning algorithm into a “batch” or statistical learner). The standard

argument (e.g. [101]) goes as follows: Given a “batch” of i.i.d. data points, feed them to the

no-regret algorithm. Because the algorithm has low regret, on average over the data points, its

hypotheses predict well. But since each data point was drawn i.i.d., this means that the hypotheses

on average predict well on an i.i.d. draw from the distribution. Thus it suffices to take the mean of

the hypotheses or to pick one of them uniformly at random.

Lemma 6.3.2 (Online-to-Batch [25]). Suppose the sequence of convex loss functions f
1

, . . . , f
T

are drawn i.i.d. from a distribution F and that an online learning algorithm with hypotheses

h
1

, . . . , h
T

achieves expected regret R(T ). Let L(h) = E
f⇠Ff(h) and h⇤

= arg min

h2H L(h).

Then by choosing either ¯h =

1

T

P

T

t=1

h
t

or ¯h a uniformly randomly selected h
t

, we have

E
f1,...,f

T

,

alg
L(

¯h)  L(h⇤
) +

1

T
R(T ).
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We note that this conversion will continue to hold in the data-purchasing no-regret setting we

define next, since all that is required is that the algorithm output a hypothesis h
t

at each step and

that there is a regret bound on these hypotheses.

6.3.2 Regret Minimization with Purchased Data

In this setting, we define the problem of regret minimization with purchased data. We will design

mechanisms with good regret guarantees for this problem, which will translate via the afore-

mentioned online-to-batch conversion (Lemma 6.3.2) into guarantees for our original problem of

statistical prediction.

The essence of the data-purchasing no-regret learning setting is that an online algorithm (“mech-

anism”) is asked to perform well against a sequence of data, but by default, the mechanism does

not have the ability to see the data. Rather, the mechanism may purchase the right to observe data

points using a limited budget. The mechanism is still expected to have low regret compared to the

optimal hypothesis in hindsight on the entire data sequence (even though it only observes a portion

of the sequence).

Problem Definition

The data-purchasing regret minimization problem is parameterized by the hypothesis space H,

number of arriving data points T , and expected budget constraint B. A problem instance is a

sequence of pairs (c
1

, f
1

), . . . , (c
T

, f
T

) where each f
t

: H! R is a convex loss function and each

c
t

2 [0, 1] is the cost associated with that data point. We assume that the f
t

are 1-Lipschitz, and

suppose that the f
t

come from a set F .

In this problem, we design a mechanism implementing the operations “post” and “receive” and

interacting with the problem instance as follows.

• For each time step t = 1, . . . , T :

1. The mechanism posts a hypothesis h
t

and a pricing function ⇡
t

: F ! R, where ⇡
t

(f)

is the price posted for loss function f .
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2. Agent t arrives, possessing (c
t

, f
t

).

3. If the posted price ⇡
t

(f
t

) � c
t

, then agent t accepts the transaction: The mechanism pays

⇡
t

(f
t

) to the agent and receives (c
t

, f
t

). If ⇡
t

(f
t

) < c
t

, agent t rejects the transaction

and the mechanism receives a null signal.

Note the key differences from the statistical learning setting: We must post a hypothesis h
t

at

each time step (and we do not output a final prediction), and data is not assumed to come from a

distribution.

The goal of the mechanism is to minimize the loss (Equation 6.2), namely
P

t

f
t

(h
t

). The

definition of regret is also the same as in the classical setting (Equation 6.3). Note that we suffer

a loss f
t

(h
t

) at time t regardless of whether we purchase f
t

or not. The mechanism must also

guarantee that, for every problem instance (c
1

, f
1

), . . . , (c
T

, f
T

), it spends at most B in expectation

over its own internal randomness.

The Importance-Weighting Framework

Recall that, in Section 6.3.1, we introduced the importance-weighting technique for online learning.

This gave regret guarantees for a learning algorithm when each arrival f
t

is observed with some

probability q
t

.

Our general approach will be to develop a strategy for randomly drawing posted prices ⇡
t

. This

will induce a probability q
t

of obtaining each arrival f
t

.

Therefore, the entire problem has been reduced to choosing a posted-price strategy at each time

step. This posted-price strategy should attempt to minimize the regret bound while satisfying the

expected budget constraint.

A brief sketch of the proof arguments is as follows. After we choose a posted price strategy,

each q
t

will be determined as a function of h
t

, c
t

, and f
t

. (q
t

is just equal to the probability that our

randomly drawn price exceeds the agent’s cost c
t

.) Thus, we can apply Lemma 6.3.1, which (recall)

stated that for these induced probabilities q
t

, the expected regret of the learning algorithm is

�

⌘
+ 2⌘E

X

t

�

2

h

t

,f

t

q
t

,
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where � is a constant and ⌘ is a parameter of the learning algorithm to be chosen later.

After we choose and apply such a strategy, the general approach to proving our regret bounds is

to find an a priori bound M such that 2E
P

t

�

2
h

t

,f

t

q

t

M . Then the regret bound becomes �

⌘

+ ⌘M .

If we know this upper-bound M in advance using some prior knowledge, then we can choose

⌘ = ⇥

⇣

1/
p

M
⌘

as the parameter for our learning algorithms. This gives a regret guarantee of

O(

p
M).

A First Step to Pricing: The “At-Cost” Variant

The bulk of our analysis of the no-regret data-purchasing problem actually focuses on a slightly

easier variant of the setting: If the arriving agent accepts the transaction, then the mechanism only

has to pay the cost c
t

rather than the posted price ⇡
t

(f
t

). We call this the “at-cost” variant of the

problem. This setting turns out to be much more analytically tractable: We derive optimal regret

bounds for our mechanisms and matching lower bounds. We then take the key approach and insights

derived from this variant and apply them to produce a solution to the main no-regret data purchasing

problem. In order to keep the story moving forward, we summarize our results for the “at-cost”

setting here and explore how they are obtained in Section 6.5.

In the at-cost setting, we are able to solve directly for the pricing strategy that minimizes the

importance-weighted regret bound of Lemma 6.3.1. We first state the strategy and result in Theorem

6.3.3, then explain and discuss.

Theorem 6.3.3. There is a mechanism for the “at-cost” problem of data purchasing for regret

minimization that interfaces with FTRL and guarantees to meet the expected budget constraint,

where for a parameter � 2 [0, 1] (Definition 2),

1. The expected regret is bounded by O
⇣

max

n

Tp
B

� ,
p

T
o⌘

.

2. This is optimal in that no mechanism can have a better guarantee (up to constant factors).

3. The pricing strategy is to set K = O
�

T

B

�
�

and draw ⇡
t

(f) randomly according to a distribu-

tion such that

Pr[⇡
t

(f) � c] = min

⇢

1 ,
�

h

t

,f

K
p

c

�

.
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The only prior knowledge required is an estimate of � up to a constant factor.

To understand this bound, we will answer the following questions about the parameter �:

1. How is � formally defined?

2. When should we expect our mechanism to have approximate prior knowledge of �?

3. What guarantees can we obtain if we do not have this knowledge?

4. What are the implications of �’s dependence on the choice of learning algorithm?

(1) How is � defined?

Definition 2. For a fixed input sequence (c
1

, f
1

), . . . , (c
T

, f
T

), �

h,f

in Definition 1, and a mecha-

nism outputting (possibly random) hypotheses h
1

, . . . , h
T

, define

� = E 1

T

X

t

�

h

t

,f

t

p
c
t

where the expectation is over the randomness of the algorithm. Note that � lies in [0, 1] by our

assumptions on bounded cost and Lipschitz loss.

In each term in the � summation, the value �

h

t

,f

t

intuitively captures both the “difficulty” of the

data f
t

and also the “value” or “benefit” of f
t

. To explain the difficulty aspect, by examining the

regret bound for FTRL learning algorithms (e.g. the importance-weighted regret bound of Lemma

6.3.1 with all q
t

= 1), one observes that if each �

h

t

,f

t

is small, then we have an excellent regret

bound for our learning algorithm; the problem is “easy”. To explain the “value aspect”, one can

for concreteness take the Online Gradient Descent algorithm; the larger the gradient, the larger the

update at this step, and �

h

t

,f

t

is the norm of the gradient.

Thus, � captures the correlations between the value or benefit of the arriving data and the cost

of that data. If either the mean of the costs or the average benefit �

h

t

,f

t

of the data is converging to

0, then � ! 0 and in these cases we can learn with high accuracy very cheaply, as may be expected.

More interestingly, it is possible to have both high average costs, and high average data-values, and

yet still have � ! 0 due to beneficial correlations. In these cases we can learn much more cheaply

than might be expected based on either the economic side or the learning side alone.
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(2) When should we expect to have good prior knowledge of �? Although in general � will

be domain-specific, there are several reasons for optimism. First, � compresses all information

about the data and costs into a single scalar parameter (compare to the common mechanism-design

assumption that the prior distribution of agents’ values is fully known). Second, we do not need

very exact estimates of � (e.g. we do not need to know � ± ✏): For order-optimal regret bounds, we

only need an estimate within a constant factor of �. Third, � is directly proportional to K, which

is a normalization constant: If we increase K, the probability of obtaining a given data point only

decreases, and vice versa. In fact, the best choice of K is the normalization constant so that, if we

draw prices according to the proposed distribution of Theorem 6.3.3, we run out of budget precisely

when the last arrival leaves. Thus, K (equivalently, �) can be estimated and adjusted online by

tracking the “burn rate” (spending per unit time) of the algorithm. In simulations, we have observed

success with a simple approach of estimating K based on the average correlation so far along with

the burn rate, i.e. if the current estimated � is �̂ and there are ˆT steps remaining with ˆB budget

remaining to spend, set K = �̂ ˆT/ ˆB.

(3) What can we prove without prior knowledge of �? It turns out that, if we only have an

estimate of c̄ =

1

T

P

t

p
c
t

, respectively µ =

1

T

P

t

c
t

, then this suffices for regret guarantees on

the order of T c̄/
p

B, respectively T
p

µ/
p

B. This “graceful degradation” will continue to be true

in the main setting. The idea is that we can follow the optimal form of the pricing strategy while

choosing any normalization constant K � T

B

�. It may no longer be optimal, but it will ensure that

we satisfy the budget and give guarantees depending on the magnitude of K. So all we need is an

approximate estimate of some value larger than �. Both c̄ and µ are guaranteed to upper-bound on

�, so both can be used to pick K while satisfying the budget.

(4) � depends on the algorithm—what are the implications? If the original OLA chosen for the

learning problem was a poor fit or has bad guarantees, then after being converted with our reduction,

it is probably still a poor fit and � may not be an appropriate measure of difficulty of the problem in

general. However, the positive result is that if one chooses a good algorithm for the problem, the

dependence on � shows that the mechanism can take advantage of correlations when they exist. If

we do have a good algorithm, a natural question is:
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(4a) Can we remove the algorithm-dependence of �? One might hope to achieve a bound

depending on an algorithm-independent quantity that captures correlations between data and cost.

A natural candidate is �⇤ :=

1

T

P

t

kr`(h⇤, z
t

)kpc
t

. In general, there are difficult cases where one

can not achieve a bound in terms of �⇤. However, in nicer scenarios we may expect � to approximate

�⇤. For instance, suppose `(h, z) = �(h>z) where � is a differentiable 1-Lipschitz convex function

(commonly-used examples include the squared hinge loss and the log loss). Under this condition,

we can show that

kr`(h
t

, z
t

)kpc
t

� kr`(h⇤, z
t

)kpc
t

 k(�0
(h>

t

z
t

)� �0
(h⇤>z

t

))z
t

k

 |�(h>
t

z
t

)� �(h⇤>z
t

)|

= |`(h
t

, z
t

)� `(h⇤, z
t

)|.

By the regret guarantee of our mechanism when run with a good algorithm, even initialized with

very weak knowledge, this difference in losses per time step is o(1), implying that � ! �⇤. A

deeper investigation of this phenomenon is a good candidate for future work.

Mechanisms and Results for Data-Purchasing Regret Minimization

Unlike in the “at-cost” setting, we cannot in general solve for the form of the optimal pricing

strategy. This is intuitively because, when we must pay the price we post, the optimal strategy

depends on c
t

. But the algorithm cannot condition the purchasing decision directly on c
t

, as this is

private information of the arriving agent.

We propose simply drawing posted prices according to the optimal strategy derived for the

at-cost setting, namely,

Pr[⇡
t

(f) � c] = min

⇢

1 ,
�

h

t

,f

K
p

c

�

,

but with a different choice of normalization constant K. More details about the imposed pricing

distribution are given in Figure 6.2. This strategy gives Mechanism 6.

As in the known-costs case, our regret bounds depend upon the prior knowledge of the algorithm.

It will turn out to be helpful to have prior knowledge about both � and the following parameter,
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0 c� 1
price ⇡

0

1/c�

PD
F

(a) Probability density function of the pricing distribu-

tion. The distribution has a point mass at the maxi-

mum cost 1, setting price ⇡(f) = 1 with probability

min {1,�
ht,f/K}. Otherwise, it draws the price ⇡(f)

from a continuous distribution on the interval (c⇤, 1) with

probability density function x 7! �

ht,f/2Kx3/2.

0 c� 1
price ⇡

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(b) Cumulative distribution function of the pricing dis-

tribution. Equal to zero for ⇡  c⇤, then equal to

1��

ht,f/K
p
⇡ on (c⇤, 1), then equal to 1 at cost 1.

Figure 6.2: The pricing distribution. Illustrates the distribution from which we draw our posted prices at

time t, for a fixed arrival f . The quantity �

h

t

,f

captures the “benefit” from obtaining f . K is a normalization

parameter. The distribution’s support has a lowest price c⇤, which has the form c⇤ = �

2

h

t

,f

t

/K2.

which can be interpreted as � with all costs c
t

= 1:

�
max

= E 1

T

X

t

�

h

t

,f

t

.

Theorem 6.3.4. If Mechanism 6 is run with prior knowledge of � and of �
max

(up to a constant

factor), then it can choose K and ⌘ to satisfy the expected budget constraint and obtain a regret

bound of

O

✓

max

⇢

Tp
B

g ,
p

T

�◆

,

where g =

p
� · �

max

(by setting K =

T

B

�
max

). Similarly, knowledge only of �, respectively

c̄ =

1

T

P

t

p
c
t

, respectively µ =

1

T

P

t

c
t

suffices for the regret bound with g =

p
�, respectively

g =

p
c̄, respectively g = µ1/4.

We can observe a quantifiable “price of strategic behavior” in the difference between Theorems

6.3.4 (this setting) and Theorem 6.3.3 (the “at-cost”) setting:

Tp
B

p
� · �

max

vs
Tp
B
�.
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Mechanism 6: Mechanism for no-regret data-purchasing problem.
Input: parameters K, ⌘, access to online learning algorithm (OLA)

set OLA parameter ⌘;

for t = 1, . . . , T do

post hypothesis h
t

 OLA;

for each f , post price ⇡
t

(f) drawn independently from the distribution satisfying

Pr[⇡
t

(f) � c] = min

⇢

1 ,
�

h

t

,f

K
p
c

�

.

if we receive (c
t

, f
t

) then

let q
t

= Pr
⇡

t

[⇡
t

(f
t

) � c
t

];

let importance-weighted loss function ˆf
t

(·) = f

t

(·)
q

t

;

send ˆf
t

! OLA;

else

send 0 function! OLA;

Note that �
max

� �, and they approach equality as all costs approach the upper bound 1, but become

very different as the average cost µ! 0 while the maximum cost remains fixed at 1.

Comparison to lower bound. Our lower-bound for the data purchasing regret minimization

problem is ⌦

⇣

Tp
B

�
⌘

(because the lower bound for the at-cost setting applies to the general setting

as well), so the difference in bounds discussed above, � to �
max

, is the only gap between our upper

and lower bounds for the general data purchasing no regret problem.

The most immediate open problem in this paper is close this gap. Intuitively, the lower bound

does not take advantage of “strategic behavior” in that a posted-price mechanism may often have to

pay significantly more than the data actually costs, meaning that it obtains less data in the long run.

Meanwhile, it may be possible to improve on our upper-bound strategy by drawing prices from a

different distribution.
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6.4 Main Results

In this section, we give the final mechanism, Mechanism 7, for the data purchasing statistical

learning problem. The idea is to simply run the regret-minimization Mechanism 6 on the arriving

agents. At each stage, Mechanism 6 posts a hypothesis h
t

. We then aggregate these hypothesis by

averaging to obtain our final prediction.

Mechanism 7: Mechanism for statistical learning data-purchasing problem.
Input: parameters K, ⌘, access to OLA

identify each data point z with the loss function f(·) = `(·, z);

run Mechanism 6 with parameters ⌘,K and access to OLA;

let h
1

, . . . , h
T

be the resulting hypotheses;

output ¯h =

1

T

P

t

h
t

(alternatively, ¯h = a randomly chosen h
t

);

Theorem 6.4.1. Mechanism 7 guarantees spending at most B in expectation and

EL(

¯h)  L(h⇤
) + O

 

max

(

gp
B

,

r

1

T

)!

,

where g =

p
� · �

max

, assuming that � and �
max

are known in advance up to a constant factor.

If instead one assumes approximate knowledge respectively of �, of c̄ =

1

T

P

t

p
c
t

, or of

µ =

1

T

P

t

c
t

, then the guarantee holds with respectively g =

p
�, g =

p
c̄, or g = µ1/4.

Proof. By Theorem 6.3.4, Mechanism 6 guarantees an expected regret of O
⇣

max

n

Tp
B

g ,
p

T
o⌘

when run with the specified prior knowledge for the specified values of g. Therefore, the online-to-

batch conversion of Lemma 6.3.2 proves the theorem.

The statement of Main Result 1 is the special case where only � is known and g =

p
�.

6.5 Deriving Pricing and the “at-cost” Variant

In this section, we dig a bit deeper into the structure of the no-regret data purchasing problem. To

do so, we consider a simpler “at-cost” variant of the no-regret data purchasing problem defined in
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Section 6.3.2: Rather than paying the price it posts, the mechanism is only required to pay the cost

c
t

of the data it is acquiring. Otherwise, the setting is exactly the same.

We first show how our posted-price strategy is derived as the optimal solution to the at-cost

problem of minimizing regret subject to the budget constraint. The resulting upper bounds for the

“at-cost” variant were given in Theorem 6.3.3. Then, we give some fundamental lower-bounds

on regret, showing that in general our upper bounds cannot be improved upon here. These lower

bounds also hold for the main no-regret data purchasing problem.

Deriving an Optimal Pricing Strategy

We begin by asking what seems to be an even easier question. Suppose that for every pair (c
t

, f
t

)

that arrives, we could first “see” (c
t

, f
t

), then choose a probability with which to obtain (c
t

, f
t

) and

pay c
t

. What would be the optimal probability with which to take this data?

Lemma 6.5.1. To minimize the regret bound of Lemma 6.3.1, the optimal choice of sampling

probability is of the form

q
t

= min

⇢

1 ,
�

h

t

,f

t

K⇤pc
t

�

.

The normalization factor K⇤ ⇡ T

B

�.

The proof follows by formulating the convex programming problem of minimizing the regret

bound of Lemma 6.3.1 subject to an expected budget constraint. It also gives the form of the

normalization constant K⇤, which depends on the input data sequence and the hypothesis sequence.

The key insight is now that we can actually achieve the sampling probabilities dictated by

Lemma 6.3.1 using a randomized posted-price mechanism. First, we utilize the same pricing

strategy as a function of �

h

t

,f

for each possible loss function f . Then whichever f
t

actually arrives,

we are drawing prices from the “right” distribution for that f
t

. Second, once we fix f
t

, notice that the

optimal sampling probability is decreasing in the associated c
t

. This can be achieved by drawing a

posted price from the appropriate distribution. Namely, the distribution we have previously defined

satisfies the dictates of Lemma 6.5.1 for all c
t

simultaneously.

Thus, our final mechanism for the at-cost variant is to simply apply Mechanism 6, but only pay
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the cost of the arrival rather than the price we posted. We set K =

T

B

�. Note that this choice of

normalization constant K is different from the main setting because we on average pay less in the

at-cost setting; this leads to the difference in the regret bounds. Our main bound for the at-cost

variant was given in Theorem 6.3.3. An open problem for this setting is to attempt to obtain the

same regret bounds, but without being told anything at all about the arriving costs and data.

Lower bounds for data purchasing regret minimization

Here, we prove lower bounds analogous to the classic regret lower bound, which states that no

algorithm can guarantee to do better than O
⇣p

T
⌘

. These lower bounds will hold even in the

“at-cost” setting, where they match our upper bounds. An open problem is to obtain a larger-order

lower bound for the main setting where the mechanism pays its posted price. This would show a

separation between the problems.

First, we give what might be considered a “sample complexity” lower bound for no-regret

learning: It specializes our setting to the case where all costs are equal to one (and this is known to

the algorithm in advance), so the question is what regret is achievable by an algorithm that observes

B of the T arrivals.

Theorem 6.5.2. Suppose all costs c
t

= 1. No algorithm for the at-cost online data-purchasing

problem has regret better than O
⇣

Tp
B

⌘

; that is, for every algorithm, there exists an input sequence

on which its regret is ⌦

⇣

Tp
B

⌘

.

Proof Idea: We will have two coins, with probabilities 1

2

± ✏ of coming up heads. We will take

one of the coins and provide T i.i.d. flips as the input sequence. The possible hypotheses for the

algorithm are {heads, tails} and the loss is zero if the hypothesis matches the flip and zero otherwise.

The cost of every data point will be one.

The idea is that an algorithm with regret much smaller than T ✏ must usually predict heads if it

is the heads-biased coin and usually predict tails if it is the tails-biased coin. Thus, it can be used to

distinguish these cases. However, there is a lower bound of ⌦

�

1

✏

2

�

samples required to distinguish

the coins, and the algorithm only has enough budget to gain information about O(B) of the samples.

Setting ✏ = 1/
p

B gives the regret bound.
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We next extend this idea to the case with heterogeneous costs. The idea is very simple: Begin

with the problem from the label-complexity lower bound, and introduce “useless” data points and

heterogeneous costs. The worst or “hardest” case for a given average cost is when cost is perfectly

correlated with benefit, so all and only the “useful” data points are expensive.

Theorem 6.5.3. No algorithm for the non-strategic online data-purchasing problem has expected

regret better than O
⇣

�T/
p

B
⌘

; that is, for every �, for every algorithm, there exists a sequence

with parameter � on which its regret is ⌦

⇣

� Tp
B

⌘

. Similarly, for c̄ =

1

T

P

t

p
c and µ =

1

T

P

t

c
t

,

we have the lower bounds ⌦

⇣

T c̄/
p

B
⌘

and ⌦

⇣

Tµ/
p

B
⌘

.

6.6 Examples and Experiments

In this section, we give some examples of the performance of our mechanisms on data. We use

a binary classification problem with feature vector x 2 Rd and label y 2 {�1, 1}. The dataset is

described in Figure 6.3.

(a) Visualizing the classification problem

without costs.

(b) A brighter green background corre-

sponds to a higher-cost data point.

Figure 6.3: Dataset. Data points are images of handwritten digits, each data point consisting of a feature

vector x of grayscale pixels and a label y, the digit it depicts. We use the MNIST handwritten digit dataset

(http://yann.lecun.com/exdb/mnist/). The algorithm is asked to distinguish between two “categories” of

digits, where “positive” examples are digits 9 and 8 and “negative” examples are 1 and 4 (all other digits are

not used), giving T = 8503. This task allows us to adjust the correlations by drawing costs differently for

different digits.

The hypothesis is a hyperplane classifier, i.e. vector w where the example is classified as
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(a) A comparison of mechanisms. “Naive” offers a maxi-

mum price of 1 to every arrival until out of budget. “Ours”

is Mechanism 7, with K initialized to 0 and then adjusted

online according to the estimated average � on the data

so far. “Baseline” obtains every data point (has no budget

constraint). Costs are distributed uniform (0, 1) indepen-

dently. Each datapoint is an average of 4000 trials, with

standard error of at most 0.0002.
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(b) An illustration of the role of cost-data correlations.

The marginal distribution of costs is 1 with probability

0.2 and free otherwise, but the correlation of cost and data

changes. The performance of Naive and the Baseline do

not change with correlations. The larger-� case has high-

cost points consisting of only 4s and 9s, while � is smaller

when costs and data are independent. Each datapoint is

an average of 2000 trials, with standard error of at most

0.0004.

Figure 6.4: Examples of mechanism performance.

positive if w · x � 0 and negative otherwise; the risk is therefore the error rate (fraction of

examples misclassified). For the implementation of the online gradient descent algorithm, we use a

“convexified” loss function, the well-known hinge loss: `(w, (x, y)) = max{0, 1� y(w · x)} where

y 2 {�1, 1}.

In our simulations, we give each mechanism access to the exact same implementation of the

Online Gradient Descent algorithm, including the same parameter ⌘ chosen to be 0.1/c where c is

the average norm of the data feature vectors. We train on a randomly chosen half of the dataset and

test on the other half.

The “baseline” mechanism has no budget cap and purchases every data point. The “naive”

mechanism offers a maximum price of 1 for every data point until out of budget. “Ours” is an

implementation of Mechanism 7. We do not use any prior knowledge of the costs at all: We initialize

K = 0 and then adjust K online by estimating � from the data purchased so far. (For a symmetric

comparison, we do not adjust ⌘ accordingly; instead we leave it at the same value as used with the
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other mechanisms.) The examples are shown in Figure 6.4.

6.7 Summary

In this chapter, we propose an active scheme for learning and pricing data as it arrives online, held

by strategic agents. The active approach allows learning from past data and selectively pricing

future data. Our mechanisms interface with existing no-regret algorithms in an essentially black-box

fashion (although the proof depends on the specific class of algorithms). The analysis relies on

showing that they have good guarantees in a model of no-regret learning with purchased data.

This no-regret setting may be of interest in future work, to either achieve good guarantees with no

foreknowledge at all other than the maximum cost, or to propose variants on the model.

The no-regret analysis means our mechanisms are robust to adversarial input. But in nicer

settings, one might hope to improve on the guarantees. One direction is to assume that costs

are drawn according to a known marginal distribution (although the correlation with the data

is unknown). A combination of our approach and the posted-price distributions of Roth and

Schoenebeck [98] may be fruitful here.

Broadly, the problem of purchasing data for learning has many potential models and directions

for study. One motivating setting, closer to crowdsourcing, is an active problem where data points

consist of pairs (example, label) and the mechanism can offer a price for anyone who obtains

the label of a given example. In an online arrival scheme, such a mechanism could build on the

importance-weighted active learning paradigm [15].
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CHAPTER 7

Conclusion and Future Directions

In this dissertation, we have explored the design and analysis of crowdsourcing mechanisms. We

address the challenges that crowdworkers might not always give trustworthy information and

developed algorithms and techniques to obtain high-quality contributions from crowdworkers.

We first study how to assign tasks to suitable workers with initially unknown skills in Chapter 2

using techniques from machine learning and online optimization. We show that our algorithm

can learn to assign tasks to workers near-optimally even when the workers’ arriving sequence

and workers’ skill levels are initially unknown. In Chapter 3 and 4, we explore how to incentive

workers to exert high effort using game theoretic approaches. We demonstrate the use of reputations

and performance-based payments as incentives to encourage high quality contribution. Next, in

Chapter 5, we examine whether our assumptions on workers’ incentives hold in practice. We

conduct online behavioral experiments to understand how humans behave in the real systems and

develop a more realistic worker model with the support of empirical evidence. Finally, in Chapter 6,

we explore the setting in which we need to jointly consider the learning/optimization problems and

workers’ incentives.

There are still abundant of interesting open questions in better utilizing the wisdom of crowd.

We conclude this dissertation by outlining a selection of future research directions.

7.1 Learning with strategic agents

The growth of Web technology has raised many interesting machine learning challenges. For exam-

ple, Facebook might want to learn users’ preferences and interests to provide targeted advertising.

LinkedIn might want to learn the best matching between employers and employees to facilitate the
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job-seeking process. However, these problems all involve learning from data generated or possessed

by strategic users. To enable learning, we need to apply different mechanisms and observe agents’

behavioral changes. However, changing mechanisms also changes agents’ incentives, and agents

will take different actions. Therefore, it is necessary to consider agents’ incentives while learning

from their behavior.

In Chapter 6, we have addressed this problem in a special case where strategic agents posses data

that they cannot fabricate. However, there are more interesting cases when agents can make more

sophisticated choices, such as the amount of effort to exert. These problems present new challenges

both in theory and in practice. In order to make progress in this domain, it is important to incorporate

the techniques from game theory into machine learning. For example, one natural direction would be

to introduce solution concepts in game theory as either the constraints or objectives in the learning

problem we are interested in.

7.2 Better understanding human behavior

Most of the work on the design of crowdsourcing mechanisms assumes simple user models. For

example, users’ skills are represented by a probability distribution, and users’ utility is a quasi-linear

function of payments minus costs. However, these assumptions fail in many scenarios. Users might

improve their skills over time and might have different objectives. It is important to develop more

realistic user behavior models. In particular, it is important to conduct extensive experiments on

various crowdsourcing platforms, such as Amazon Mechanical Turk, to develop and validate models

using empirical observations.

This problem is especially interesting since some of the recent works [40, 49] have demonstrated

that a small deviation on the worker model could hugely influence the optimal design of mechanisms.

In Chapter 5, we have empirically studied how online users react to different performance-based

payments and developed theoretical models based on our empirical observations. However, we

only focus on one single aspect of how workers behave. In order to develop practical theories

and algorithms to utilize human intelligence, it is important to identify the key features of human

behavioral models, empirically examine them, and develop realistic theories.
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7.3 Crowdsourcing complex tasks to groups of workers

Most work in crowdsourcing assumes we only interact with one worker at a time. This dissertation

has also been mainly focusing on either eliciting high-quality responses from individual workers or

aggregating multiple noisy responses into a high-quality one. However, real-world tasks are often

complex and cannot be completed by individual workers. For example, crisis mapping, which aims

at utilizing online users to gather and analyze data during a crisis (such as a natural disaster), requires

the collaboration of a group of users. It is therefore important to design methods to coordinate

human effort for complex tasks.

There are several interesting research directions. For example, can we design incentive mech-

anisms to encourage a group of workers to collaborate with each other while rewarding workers

fairly? Can we automatically decompose a complex task into small microtasks? Given the decompo-

sition, how do we design efficient workflows to solve the decomposed microtasks and aggregate the

results? It would be important to tackle these problems using techniques from Artificial Intelligence,

Economics, and Social Sciences.
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APPENDIX A

Appendix

A.1 Additional Proofs from Chapter 2

A.1.1 Proof of Lemma 2.3.1

Without loss of generality, assume that `
i

= 1. Let X
i,j

be a random variable which represents the

weighted label, so

X
i,j

=

8

>

<

>

:

w
i,j

, with probability p
i,j

,

�w
i,j

, with probability 1� p
i,j

,

and let X
i

=

P

j2J
i

X
i,j

.

Recall that we predict that task i has label 1 if X
i

� 0 and has label �1 otherwise. Since the

true label is 1, bounding Pr(X
i

 0) would give us a bound on the probability of an error. We will

need that
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] =
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=
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Note that Pr(X
i
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]�X
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� E[X
i

]). By Hoeffding’s inequality, we have
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This shows the first part of this lemma. This error bound is maximized when the expression

(

P

j2J
i

w
i,j

(2p
i,j

� 1))

2

2

P

j2J
i

w2

i,j

is minimized. Setting the gradient of this expression to 0, we see that this happens when for every k,
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w
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i,j

� 1)
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j2J
i

w2

i,j

w
i,k

= 2p
i,k

� 1,

i.e., when w
i,k

/ 2p
i,k

� 1. (Note that scaling the weights will not change the bound since ˆ`
i

will

not change.) Plugging w
i,j

= 2p
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� 1 into the bound from the first half of the lemma, we get that
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A.1.2 Proof of Theorem 2.3.2

The bulk of this proof involves showing that there exists a primal optimal ¯

y

⇤ for the relaxed linear

program such that for at most min(m, n) pairs of (i, j), ȳ⇤
i,j

6= y
i,j

. Therefore, since ȳ⇤
i,j

, y
i,j

2 [0, 1]

for all i and j,
P

n

i=1

P

m

j=1

(y
i,j

� ȳ⇤
i,j

)  min(m, n). To complete the proof, we will use the fact

that y⇤ is feasible in the relaxed linear program to show that this implies the result.

We start with a helpful lemma that characterizes the dual optimal solution of the relaxed linear

program.

Lemma A.1.1. If x⇤ is the optimal value of x in any dual optimal solution, then there exists a dual

optimal solution (x

⇤, z⇤, t⇤) such that for each j 2 {1, · · · , m},

z⇤
j

=

8

>

<

>

:

0, if n
j

M
j

,

v
c

j

,j

, otherwise

where v
i,j

= q
i,j

x⇤
i

� 1 is the task value for (i, j) and c
j

is the task with the M
j

th largest task value

for worker j among all tasks.
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Proof. We prove the lemma in two steps. In Step 1, we show that there cannot exist a dual optimal

(x

⇤, ¯z,¯t) such that z̄
j

6= v
c

j

,j

for some j such that n
j

> M
j

. In Step 2, we show that if there exists a

dual optimal (x

⇤, ¯z,¯t) such that z̄
j

6= 0 for some j with n
j

 M
j

, then there exists another dual

optimal solution (x

⇤, ¯z0,¯t0) such that

z̄0
k

=

8

>

<

>

:

z̄
k

, if k 6= j,

0, if k = j,
(A.1)

and

¯t0
i,k

=
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>

<

>

:

¯t
i,k

, if k 6= j or k = j and v
i,j

< 0,

¯t
i,k

+ z̄
j

, otherwise.
(A.2)

Therefore, starting with any dual solution, we can transform it into a solution satisfying the condition

that z⇤
j

= 0 if n
j

M
j

by repeating this transformation for any workers j for which the condition

did not originally hold.

In the following proof, we define the function g to represent the dual objective:

g(x, z, t) = C
✏
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.

Recall that the dual constraints are

1� q
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x
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+ z
j
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� 0 8(i, j),

x
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, z
j

, t
i,j

� 0.

Step 1: Assume by contradiction that there exists a dual optimal (x

⇤, ¯z,¯t) and worker j such

that z̄
j

6= v
c

j

,j

and n
j

> M
j

. Below we show that we can always generate a dual feasible solution

(x

⇤, ¯z0,¯t0) which leads to higher dual objective. Therefore, (x

⇤, ¯z,¯t) cannot be optimal.

Define

z̄0
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=

8

>

<

>

:
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, if k 6= j,

v
c

j
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and
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=
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>

>

>

>

>

<
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1) Suppose that z̄
j

< v
c

j

,j

. We can observe that z̄0
j

> z̄
j

and ¯t0
i,k

� ¯t
i,k

for all k. Since (x

⇤, ¯z,¯t)

is dual feasible, We can verify that (x

⇤, ¯z0,¯t0) is also dual feasible.

Next we show that (x

⇤, ¯z0,¯t0) leads to higher dual objective than (x

⇤, ¯z,¯t).
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Therefore, (x

⇤, ¯z,¯t) couldn’t have been optimal.

2) Suppose that z̄
j

> v
c

j

,j

. Note that (x

⇤, ¯z,¯t) is dual feasible, and the only change in (x

⇤, ¯z0,¯t0)

is that z̄0
j

= v
c

j

,j

. We need only examine if �v
c

j

,j

+ z̄0
j

+

¯t
i,j

� 0 to check the dual feasibility. Since

¯t0
i,j

� 0, we know (x

⇤, ¯z0,¯t0) is dual feasible.

Furthermore, (x

⇤, ¯z0,¯t0) also leads to higher dual objective:
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j
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j

+ M
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(v
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Therefore, (x

⇤, ¯z,¯t) couldn’t have been optimal. This shows that there cannot be a dual optimal

solution with z⇤
j

6= v
c

j

,j

for some j with n
j

> M
j

.

Step 2: Assume there exists a dual optimal solution (x

⇤, ¯z,¯t) and worker j such that z̄
j

> 0 and

n
j

 M
j

. Below we show that (x

⇤, ¯z0,¯t0), as defined in Equations A.1 and A.2, is dual feasible,

and the dual objective g(x

⇤, ¯z0,¯t0) is no less than g(x

⇤, ¯z,¯t).

To show feasibility, first observe that for all k 6= j, the dual variables z̄0
k

and ¯t0
i,k

are not changed.

Therefore, we need only check if the constraint �v
i,k

+ z̄0
k

+

¯t0
i,k

� 0 holds for all i and k = j.

Observing Equations A.1 and A.2, when v
i,j

< 0, the constraint trivially holds since z̄0
k

and ¯t0
i,k

are
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nonnegative. When v
i,j

� 0, the left-hand side of the constraint can be written as v
i,j

+

¯t
i,k

+ z̄
j

,

which is larger then or equal to 0 since (x

⇤, ¯z,¯t) is dual feasible. Therefore, (x

⇤, ¯z0,¯t0) is also dual

feasible.

Furthermore, we have

g(x

⇤, ¯z,¯t)� g(x
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= (�M
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 0.

Therefore, (x

⇤, ¯z0,¯t0) must be an optimal dual solution.

Combining this with Step 1, we can always transform any dual solution (x

⇤, z⇤, t⇤) into another

that satisfies the properties in the lemma without changing x

⇤.

Given the dual optimal above, using complementary slackness, we can characterizes the primal

optimal solution ¯

y

⇤. Below we list the cases in which ȳ⇤
i,j

takes on integer values. Looking ahead,

we will see that in all of these cases, ȳ⇤
i,j

and y
i,j

do not differ. We can then show there are at most

min(m, n) pairs of y
i,j

such that y
i,j

6= ȳ⇤
i,j

.

Lemma A.1.2. Consider a dual optimal solution (x

⇤, z⇤, t⇤) satisfying the criteria in Lemma A.1.1,

and let ¯

y

⇤ be the corresponding primal optimal solution to the relaxed linear programming problem.

Let v
i,j

= q
i,j

x⇤
i

� 1 be the task value for (i, j) and c
j

be the task with the M
j

th largest task value

for worker j among all tasks. For all (i, j),

1. If v
i,j

< 0 then ȳ⇤
i,j

= 0.

2. If v
i,j

> 0 & n
j

M
j

then ȳ⇤
i,j

= 1.

3. If v
i,j

> 0, n
j

> M
j

, & v
i,j

> v
c

j

,j

, then ȳ⇤
i,j

= 1.

4. If v
i,j

> 0, n
j

> M
j

, & v
i,j

< v
c

j

,j

, then ȳ⇤
i,j

= 0.

Proof. We prove the four parts in turn. First, it is useful to note that by complementary slackness,
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we have

ȳ⇤
i,j

(1� q
i,j

x⇤
i

+ z⇤
j

+ t⇤
i,j

) = 0 8(i, j), (A.3)

t⇤
i,j

(ȳ⇤
i,j

� 1) = 0 8(i, j). (A.4)

Part 1: The first part is simple. Since z⇤
j

, t⇤
ij

� 0, if v
i,j

< 0, it must be the case that
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x⇤
i

+ z⇤
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+ t⇤
i,j

> 0. From Equation A.3, we have ȳ⇤
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= 0.

Part 2: From Lemma A.1.1, if n
j

M
j

then z⇤
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= 0. When z⇤
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= 0 and v
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that t⇤
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� v
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in order to satisfy the first dual constraint. Equation A.4 then implies that ȳ⇤
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= 1.
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then z⇤
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. In this case, when v
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> 0, and by Equation A.4, ȳ⇤
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Part 4: Again, from Lemma A.1.1, since n
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j

we know that z⇤
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. In this case, if

v
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0
,j

, then any t
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� 0 is feasible. Since t
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appears negated in the objective and does not

appear in other constraints, we must have t⇤
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= 0. This implies that 1� q
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x⇤
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+ z⇤
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+ t⇤
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> 0, and

by Equation A.3, ȳ⇤
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One can verify that in all of the cases covered by Lemma A.1.2, ȳ⇤
i,j

= y
i,j

. Notice that the only

case not covered by this lemma is the case in which v
i,j

> 0, n
j

> M
j

, and v
i,j

= v
c

j

,j

. Since

we have assumed that v
i,j

6= v
i

0
,j

unless i = i0, this can happen at most once for each worker j,

and, therefore, at most m times in total. In cases where y
i,j

and ȳ⇤
i,j

differ, y
i,j

= 1 and ȳ⇤
i,j

2 [0, 1].

Hence,
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�
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ȳ⇤
i,j

 m. (A.5)

Since y
i,j

2 {0, 1}, we know that for each worker j, there exists at most one task i such that

ȳ⇤
i,j

62 {0, 1}. Furthermore, we know that if such a task exists, the Primal Approximation Algorithm

assigns the task to worker j, i.e., y
i,j

= 1. Below we further argue that for each task i, there exists at

most one worker j such that ȳ⇤
i,j

62 {0, 1}, and this worker is the one with minimum skill level q
i,j

among all the workers with y
i,j

= 1. Hence, the difference in Equation A.5 can be upper bounded

by n as well.

Let j
i

be the worker with the minimum skill level among all the workers with y
i,j

= 1. As we

will describe in later in this section, we can add random noise to the q
i,j

values such that q
i,j

6= q
i

0
,j

0
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unless i = i0 and j = j0. Assume for contradiction that there exists a worker j 6= j
i

such that

ȳ⇤
i,j

/2 {0, 1}. We know that the Primal Approximation Algorithm sets y
i,j

to 1 when ȳ⇤
i,j

/2 {0, 1}.

Therefore, we have q
i,j

> q
i,j

i

by definition of j
i

. Let � = min(q
i,j

i

ȳ⇤
i,j

i

/q
i,j

, 1 � ȳ⇤
i,j

). Suppose

that we increased the value of ȳ⇤
i,j

by � and decreased the value of ȳ⇤
i,j

i

by q
i,j

�/q
i,j

i

. It is easy to

verify that no constraints of the relaxed offline formulation would be violated, but the objective

would decrease since q
i,j

> q
i,j

i

. This is a contradiction. Therefore, for each task i, there exists at

most one worker j such that ȳ⇤
i,j

62 {0, 1}, and this worker is the one with minimum skill level q
i,j

among all the workers with y
i,j

= 1. Hence,

n

X

i=1

m

X

j=1

y
i,j

�
n

X

i=1

m

X

j=1

ȳ⇤
i,j

 n. (A.6)

Combining Equations A.5 and A.6

n
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m

X
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�
n

X

i=1

m

X

j=1

ȳ⇤
i,j

 min(m, n).

Finally, since y

⇤ (the optimal solution of the IP) is feasible in the relaxed linear program where

¯

y

⇤ is optimal, we know that
n

X

i=1

m

X

j=1

ȳ⇤
i,j


n

X

i=1

m

X

j=1

y⇤
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.

Putting these together, we have

n

X

i=1

m

X

j=1

y
i,j

�
n

X

i=1

m

X

j=1

y⇤
i,j

 min(m, n),

which completes the proof of Theorem 2.3.2.

A.1.3 Discussion of Perturbation Assumption

In Section 2.3.3 where we introduced the perturbation assumption, we claimed that we can add

small random perturbations (noise) to the q
i,j

values as in Devanur and Hartline [36] to satisfy the

condition that q
i,j

x
i

6= q
i

0
,j

x
i

0 for i 6= i0. In this section, we explain the details of the claim.

First of all, note that if all the q
i,j

values (i) are determined independently, and, (ii) are in general

position in R, then the probability that any two q
i,j

values are the same is 0 [36]. However, in our
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solution, the q
i,j

values are estimated by our exploration phase. Since the number of exploratory

assignments are small, there is only a limited number of possible q
i,j

values. Therefore, the

probability of the q
i,j

values being all different is clearly non-zero. To remedy this, we can add a

small amount of noise to the q
i,j

values after estimating them empirically. If the noise is drawn

from a uniform distribution, the new noisy q
i,j

values will be in general position. Therefore, the

probability that two noisy q
i,j

values are the same is 0 after adding the noise. Note that we can set

the random noise arbitrarily small to reduce the effects of it in our analysis. For example, if we

know the error in estimating the q
i,j

values is bounded by t, then the amount of random noise can

be set to something much smaller than t.

Second, we show that when q
i,j

values are all different, at most n� 1 ties in the q
i,j

x⇤
i

values

can happen. Note that for some worker j and two tasks i and i0, if q
i,j

x⇤
i

= q
i

0
,j

x⇤
i

0 , then x⇤
i

=

x⇤
i

0(q
i

0
,j

/q
i,j

). Hence, in the worst case, an adversary could create at most n� 1 ties by adjusting

the x

⇤ values since the noisy q
i,j

values are in general position.

A.1.4 Proof of Theorem 2.4.1

We first characterize some properties of the Primal Approximation Algorithm. In order to do this,

we consider the expanded version of the algorithm in Algorithm 8. Its behavior is identical to the

algorithm stated in Section 2.3.3 in terms of the way that the assignments y
i,j

are made, but it also

includes settings for the dual variables z and t as well.

This expanded version of the algorithm can be used to prove the following lemma.

Lemma A.1.3. Given any inputs x and q, let y and (z, t) be the primal assignments and dual

variables set by the Expanded Primal Approximation Algorithm. Let P (y) and D(x, z, t) denote

the primal and dual objective. Then under the perturbation assumption,

P (y) = D(x, z, t) +

n

X

i=1

 

m

X

j=1

q
i,j

y
i,j

� C
✏

!

x
i

.

Proof. By examining the Expanded Primal Approximation Algorithm, one can easily verify the

following properties.
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ALGORITHM 8: The Expanded Primal Approximation Algorithm, which explicitly sets dual variables.
Input: Values x

i

and q
i,j

for all (i, j)

Output: Values y
i,j

, t
i,j

, z
j

for all (i, j)

Calculate task values v
i,j

= q
i,j

x
i

� 1 for all i.

if there are no more than M
j

tasks with v
i,j

� 0 then

Aet z
j

to 0.

for every task i with v
i,j

� 0 do

Set t
i,j

= v
i,j

= q
i,j

x
i

� 1.

Set y
i,j

= 1.

end for

for every task i with v
i,j

< 0 do

Set t
i,j

= 0.

Set y
i,j

= 0.

end for

end if

if there are more than M
j

tasks with v
i,j

� 0 then

Set z
j

to a value such that there are exactly M
j

tasks with v
i,j

� z
j

� 0.

for every task i with v
i,j

� z
j

� 0 do

Set t
i,j

= v
i,j

� z
j

= q
i,j

x
i

� 1� z
j

.

Set y
i,j

= 1.

end for

for every task i with v
i,j

� z
j

< 0 do

Set t
i,j

= 0.

Set y
i,j

= 0.

end for

end if
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1. If t
i,j

> 0, then y
i,j

= 1.

2.
P

n

i=1

y
i,j

M
j

.

3. If
P

n

i=1

y
i,j

< M
j

, then z
j

= 0.

4. If y
i,j

= 1, then z
j

+ t
i,j

= q
i,j

x
i

� 1.

By definition, the dual objective can be written as

D(x, z, t) = C
✏

n

X

i=1

x
i

�
m

X

j=1

M
j

z
j

�
n

X

i=1

m

X

j=1

t
i,j

.

Note that the first property implies ⌃

n

i=1

⌃

m

j=1

t
i,j

= ⌃

n

i=1

⌃

m

j=1

t
i,j

y
i,j

. The second and third

properties together imply M
j

z
j

= (⌃

n

i=1

y
i,j

)z
j

. Hence,

D(x, z, t) = C
✏

n

X

i=1

x
i

�
m

X

j=1

(

n

X

i=1

y
i,j

)z
j

�
n

X

i=1

m

X

j=1

t
i,j

y
i,j

= C
✏

n

X

i=1

x
i

�
n

X

i=1

m

X

j=1

(z
j

+ t
i,j

)y
i,j

.

Finally, since y
i,j

2 {0, 1}, the fourth property implies that (z
j

+ t
i,j

)y
i,j

= (q
i,j

x
i

� 1)y
i,j

.

Therefore,

D(x, z, t) = C
✏

n

X

i=1

x
i

�
n

X

i=1

m

X

j=1

(q
i,j

x
i

� 1)y
i,j

= C
✏

n

X

i=1

x
i

�
n

X

i=1

m

X

j=1

(q
i,j

y
i,j

)x
i

+

n

X

i=1

m

X

j=1

y
i,j

= P (y)�
n

X

i=1

 

m

X

j=1

q
i,j

y
i,j

� C
✏

!

x
i

.

In our algorithm, we hire an extra �m workers and observe their skill levels q
i,j

. We then solve

the sampled LP, which consists of these �m workers. Let ˆ

x

⇤ be the optimal task weights of the

sampled LP. We then apply the Primal Approximation Algorithm with inputs ˆ

x

⇤ and q
i,j

values of

the primary m workers. We denote ˆ

y

⇤ as the assignments generated by the Primal Approximation

Algorithm using these two inputs.
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By observing Algorithm 8, we can see that as long as the input x
i

is non-negative for all i, z
j

and t
i,j

will be non-negative and 1� q
i,j

x
i

+ z
j

+ t
i,j

� 0. Therefore, the Primal Approximation

Algorithm always generates feasible dual solutions, and the dual objective D(x, z, t) is no bigger

than primal optimal by weak duality for any inputs x and q, subject to x
i

� 0 for all i.

Next we bound the values of x̂⇤
i

(in Lemma A.1.4) and ⌃

m

j=1

q
i,j

ŷ⇤
i,j

�C
✏

(in Lemma A.1.6). And

then we can show the primal objective is close to optimal.

Lemma A.1.4. For every i 2 {1, · · · , n} and j 2 {1, · · · , �m}, let qs
i,j

be a value in [0, 1]

perturbed by random noise so that qs
i,j

6= qs
i

0
,j

0 unless i = i0 and j = j0. Let ˆ

x

⇤ be the optimal task

weights of the sampled LP with these perturbed values. Let ˆ

y

s,⇤ denote the assignment generated by

applying the Primal Approximation Algorithm with inputs ˆ

x

⇤ and q

s. Then under the perturbation

assumption, for all i, x̂⇤
i

= 1/ min{j:ŷs,⇤
i,j

=1} qs
i,j

.

Proof. In this proof, our discussion is restricted to the sampled LP. Therefore, we omit all the

superscript s in the notations.

Let j
i

be the worker with minimum skill level for task i among the set of workers assigned

to task i, i.e., j
i

= argmin

j:ŷ

⇤
i,j

=1

q
i,j

. Note that j
i

is uniquely specified since all q
i,j

values are

different.

Let ¯

y

⇤ be the optimal solution of the sampled LP. By the same argument as the one in the

proof of Theorem 2.3.2, we know that for each worker j, there exists at most one task i such

that ȳ⇤
i,j

6= ŷ⇤
i,j

, which implies that for each worker j, there exists at most one task i such that

ȳ⇤
i,j

62 {0, 1}. Furthermore, we know that if such a task exists, the Primal Assignment Algorithm

assigns the task to worker j, i.e., ŷ⇤
i,j

= 1.

We now show that if ȳ⇤
i,j

62 {0, 1}, then j = j
i

. This means for each task i, there exists at

most one worker j such that ȳ⇤
i,j

62 {0, 1}, and this worker is the one with minimum skill level

among all the workers who are assigned to that task. Assume for contradiction that there exists a

worker j 6= j
i

such that ȳ⇤
i,j

2 (0, 1). We know that this worker is assigned to task i by the Primal

Approximation Algorithm and so q
i,j

> q
i,j

i

. Let � = min(q
i,j

i

ȳ⇤
i,j

i

/q
i,j

, 1� ȳ⇤
i,j

). Suppose that we

increased the value of ȳ⇤
i,j

by � and decreased the value of ȳ⇤
i,j

i

by q
i,j

�/q
i,j

i

. It is easy to verify
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that no constraints of the sampled LP would be violated, but the objective would increase since

q
i,j

> q
i,j

i

. This is a contradiction.

Since the q
i,j

values have been randomly perturbed, there cannot exist any set of workers J
i

for

any task i such that ⌃

j2J
i

q
i,j

= C
✏

. Together with the last paragraph and the fact that ⌃

j

q
i,j

ȳ⇤
i,j

= C
✏

,

this implies that for each task i, ȳ⇤
i,j

i

62 {0, 1}.

With this fact in place, we are ready to show that x̂⇤
i

= 1/q
i,j

i

for all i. Let (

ˆ

x

⇤, ˆz⇤,ˆt⇤) denote

the dual optimal solution of the sampled LP.

First, assume there exists a task i such that x̂⇤
i

> 1/q
i,j

i

. Then we know that 1 � q
i,j

i

x̂⇤
i

< 0.

Recall that by the dual constraints, 1� q
i,j

x̂⇤
i

+ ẑ⇤
j

+

ˆt⇤
i,j

� 0 for all (i, j). Therefore, we have either

ẑ⇤
j

i

> 0 or ˆt⇤
i,j

i

> 0. However, by complementary slackness, if ˆt⇤
i,j

i

> 0, we have ȳ⇤
i,j

i

= 1, which is

a contradiction to the property above. On the other hand, if ẑ⇤
j

i

> 0, then ⌃

n

i=1

ȳ⇤
i,j

i

= M
j

. Since M
j

is an integer and there exist at most one task i such that ȳ⇤
i,j

i

62 {0, 1}, we have ȳ⇤
i,j

i

2 {0, 1}. This

is also a contradiction. Therefore, we must have that x̂⇤
i

 1/q
i,j

i

.

Now assume there exists a task i such that x̂⇤
i

< 1/q
i,j

i

. Then 1 � q
i,j

i

x̂⇤
i

> 0. Therefore

1� q
i,j

i

x̂⇤
i

+ ẑ⇤
j

i

+

ˆt⇤
i,j

i

> 0, which, by complementary slackness, means ȳ⇤
i,j

i

= 0. This is again a

contradiction.

From the previous two paragraphs, we know that x̂⇤
i

= 1/q
i,j

i

for all i.

Next, we bound the value of ⌃

m

j=1

q
i,j

ŷ⇤
i,j

� C
✏

. The proof relies on Lemma 3 of Devanur and

Hayes [37], which we restate here for completeness.

Lemma A.1.5. [37] Let Y = (Y
1

, ..., Y
m

) be a vector of random variables. For any � 2 (0, 1) such

that �m is an integer, let S be a random subset of {1, . . . , m} of size �m, and Y
S

=

P

j2S Y
j

. Then

under the perturbation assumption, for any � 2 (0, 1),

Pr(|Y
S

� E[Y
S

]| � 2

3

kY k1 ln

2

�
+ kY k

2

r

2� ln

2

�
)  �.

Lemma A.1.6. For any given task i, with probability of at least 1� �,
m

X

j=1

q
i,j

ŷ⇤
i,j

� C
✏

 d
m

i

�
+

20

�
ln

2

�
+10

r

1

�
ln

2

�

r

C
✏

+

1

�
.
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where ⌃

n

i=1

d
m

i

= �m. Since � � 1/C
✏

,
m

X

j=1

q
i,j

ŷ⇤
i,j

� C
✏

 d
m

i

�
+ 35 ln

2

�

s

C
✏

�
.

Proof. We are considering the random permutation model. The adversary chooses values of

capacities M
j

and skills p
i,j

for (1 + �)m workers, but the workers’ arriving sequence is randomly

permuted. In our algorithm, we hire the first �m workers and estimate the task weights. We then try

to minimize the number of assignments for the latter m workers.

To simplify notations, in the proof, we use q

s to denote the skills of the first �m workers, and

use q to denote the skill levels of primary m workers. We will use the following two facts to prove

the lemma.

1. If ˆ

x

⇤ is the optimal task weights of the sampled LP, let ˆ

y

s,⇤ be the assignments generated by

the Primal Approximation Algorithm with input ˆ

x

⇤ and q

s. We have �C
✏

 ⌃

�m

j=1

qs
i,j

ŷs,⇤
i,j



�C
✏

+ 1. This property follows directly from the proof of Lemma A.1.4. For each task i,

there is at most one value ŷs,⇤
i,j

which is not equal to the optimal value ys,⇤
i,j

of the sampled LP,

and ⌃

�m

j=1

qs
i,j

ys,⇤
i,j

= C
✏

.

We also have ⌃

�m

j=1

qs
i,j

ŷs,⇤
i,j

 �C
✏

+d
m

i

, where ⌃

n

i=1

d
m

i

= �m. This property follows directly

from the proof of Theorem 2.3.2. For worker j, there is at most one ŷs,⇤
i,j

which is not equal to

the optimal solution of the sampled LP.

2. Given any task weight x, let ys be the assignments generated by the Primal Approximation

Algorithm with inputs x and q

s, and y be the assignments generated by the Primal Approx-

imation Algorithm with input x and q. Note that in our setting, given task weights x and

worker skill levels, the assignments y
i,j

made by the Primal Approximation Algorithm are

determined and remain the same for a given task, whether it appears in the initial sample or

primary set of workers. Below we use this fact to show that, for task i, with high probability,

⌃

�m

j=1

qs
i,j

ys

i,j

is close to �⌃m

j=1

q
i,j

y
i,j

.

Consider a single task i. Define Y
j

= qs
i,j

ys

i,j

for j 2 {1, ..., �m} and Y
j

= q
i,j��my

i,j��m

for j 2 {�m + 1, ..., (1 + �)m}, and let Y = {Y
1

, ...Y
(1+�)m

}. Since we assume the worker
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arriving sequence is randomly permuted, we can think of ⌃

�m

j=1

qs
i,j

ys

i,j

as the sum of a random

subset of size �m from Y . We can then obtain a bound by applying Lemma A.1.5.

Before applying the lemma, we first bound the values of kY k1, kY k
2

, and E[Y
S

]. Below we

use the notation Q
i

= ⌃

m

j=1

q
i,j

y
i,j

and Qs

i

= ⌃

�m

j=1

qs
i,j

ys

i,j

.

kY k1 = max

j

{Y
j

}  1.

kY k
2

=

v

u

u

t

m

X

j=1

(q
i,j

y
i,j

)

2

+

�m

X

j=1

(qs
i,j

ys

i,j

)

2


p

Q
i

+ Qs

i

.

E[Y
S

] =

�

(1 + �)
(Q

i

+ Qs

i

).

Applying Lemma A.1.5, with probability at least 1� �,

|Qs

i

� �

1 + �
(Q

i

+ Qs

i

)|

2

3

ln

2

�
+

p

Q
i

+ Qs

i

r

2

�

1 + �
ln

2

�
.

Finally, multiplying both sides by (1 + �) gives us

|�Q
i

�Qs

i

|

(1 + �)
2

3

ln

2

�
+

p

Q
i

+ Qs

i

r

2�(1 + �) ln

2

�
.

Let Q⇤
i

= ⌃

m

j=1

q
i,j

ŷ⇤
i,j

and Qs,⇤
i

= ⌃

�m

j=1

qs
i,j

ŷs,⇤
i,j

. Using the two facts above, we have

Q⇤
i

Qs,⇤
i

�
+

1+�

�

2

3

ln

2

�
+

s

2(1+�)

�
ln

2

�

q

Q⇤
i

+Qs,⇤
i

.

To simplify the notation, let C = Qs,⇤
i

/� and K = 2 ln(2/�)(1 + �)/�, we can get

Q⇤
i

 C + K/3 +

p
K
p

�C + Q⇤
i

 C + K/3 +

p
K
p

�C +

p
K
p

Q⇤
i

.
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By rearranging the variables, we can get

Q⇤
i

�
p

K
p

Q⇤
i

� (C + K/3 +

p
K
p

�C)  0.

Applying the quadratic equation, we know that

p
K �

q

K + 4(C + K/3 +

p
K
p
�C)

2


p

Q⇤
i


p

K +

q

K + 4(C + K/3 +

p
K
p
�C)

2

.

Therefore,

p

Q⇤
i


p

K +

p
K + 2

q

C + K/3 +

p
K
p
�C

2

=

p
K +

q

C + K/3 +

p
K
p

�C.

Since �  1, taking the square on both sides,

Q⇤
i

 K+C+K/3+

p

K�C+2

p
K
q

C+K/3+

p

K�C

 C+4K/3+

p

K�C+2

p
K

✓p
C+

p

K/3+

q

p

K�C

◆

 C + (

4 + 2

p
3

3

)K + (�
1
2

+ 2)K
1
2C

1
2

+ 2�
1
4K

3
4C

1
4

 C + 3K + 3K
1
2C

1
2

+ 2K
3
4C

1
4 .

Since K3/4C1/4  max{K, K1/2C1/2}, we have K3/4C1/4  K + K1/2C1/2. Therefore,

Q⇤
i

 C + 5K + 5K
1
2C

1
2 .

Since Qs,⇤
i

 �C
✏

+ min(1, d
m

i

), we have C  C
✏

+ min(1/�, d
m

i

/�). Also, since 1 + �  2,

we have

Q⇤
i

�C
✏

min(1, d
m

i

)

�
+10

1+�

�
ln

2

�
+5

r

2

1+�

�
ln

2

�

r

C
✏

+

1

�

min(1, d
m

i

)

�
+

20

�
ln

2

�
+10

r

1

�
ln

2

�

r

C
✏

+

1

�
.
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Since � < 1/2, ln(2/�) � 1. Since � � 1/C
✏

, the above bound can be written as

Q⇤
i

� C
✏

 min(1, d
m

i

)

�
+ (20 + 10

p
2) ln

2

�

s

C
✏

�

 min(1, d
m

i

)

�
+ 35 ln

2

�

s

C
✏

�
.

Note that the Primal Approximation Algorithm always generates feasible dual solutions, there-

fore, the dual objective is always no bigger than the optimal primal solution by weak duality.

We use OPT to denote the primal optimal solution of the relaxed offline formulation. Combing

Lemmas A.1.3, A.1.6, and A.1.4. Recall that q
i,min

= min{j:ŷs,⇤
i,j

=1} qs
i,j

and q
min

= min

i

q
i,min

.

Since we required ln(2/�) � 1 and � � 1/C
✏

, we have that

P (

ˆ

y

⇤
) = D(

ˆ

x

⇤, ˆz⇤,ˆt⇤) +

n

X

i=1

 

m

X

j=1

q
i,j

ŷ⇤
i,j

� C
✏

!

x̂
i

 OPT +

n

X

i=1

 

min(1, d
m

i

)

�
+ 35 ln

2

�

s

C
✏

�

!

1

q
i,min

 OPT +

1

q
min

 

min(m, n) + 35n ln

2

�

s

C
✏

�

!

.

Since OPT � nC
✏

,

P (

ˆ

y

⇤
)  OPT

✓

1 +

min(m, n)

q
min
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✏

+

35 ln(2/�)

q
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p
�C

✏

◆

.

Finally, we need to bound the prediction error. Recall that we know that

C
✏


�m

X

j=1
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ŷs,⇤
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 �C
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Again, by simple manipulation,

Q⇤
i

+

p
K
p

Q⇤
i

� C
✏

+ K/3 +

p
K
p

�C � 0.

Using the quadratic formula again,

p
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�
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� 4K/3� 4

p
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2
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p
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�
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q
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✏

� 4K/3� 4

p
K
p
�C

2

.

Note that the first inequality never holds since
p

Q⇤
i

� 0. Squaring both sides of the second

inequality,
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✏
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Again, since � < 1/2 and � � 1/C
✏

,
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✏

� 4

p
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�
ln

2

�

p

C
✏

= C
✏

(1� 4

p
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�
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�
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)
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Therefore, if labels are aggregated using weighted majority voting, the prediction accuracy is

bounded by ✏0, where

✏0 = ✏1�6 ln(2/�)/

p
�C

✏

because C
✏

0
= C

✏

(1� 6 ln(2/�)/
p
�C

✏

).

A.1.5 Proof of Lemma 2.4.3

We have assumed we have an estimate p̂
i,j

such that |p
i,j

� p̂
i,j

| = ↵ for some ↵ 2 [0, t]. Define

q̂
i,j

= (2p̂
i,j

� 1)

2. We have

|q
i,j

� q̂
i,j

| =

�

�

(2p
i,j

� 1)

2 � (2p̂
i,j

� 1)

2

�

�

= 4

�

�p2
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� p
i,j
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+ p̂
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�

�

= 4

�

�

(p2
i,j

� p̂2
i,j

)� (p
i,j

� p̂
i,j

)

�

� . (A.8)

Consider the two terms in the absolute value in Equation A.8. First note that these two terms

always have the same sign; both are positive if p
i,j

> p̂
i,j

, negative if p
i,j

< p̂
i,j

, and 0 if p
i,j

= p̂
i,j

.

Therefore, we can write

|q
i,j

� q̂
i,j

| = 4

�

�

�

�p2
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� p̂2
i,j

�

�� |p
i,j
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|
�

�
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�

�

�

�p2
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�
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� .

Consider the case in which p
i,j

� p̂
i,j

. Then

�

�p2
i,j

� p̂2
i,j

�

�

= p2
i,j

� p̂2
i,j

 p2
i,j

� (p
i,j

� ↵)

2

= 2↵p
i,j

� ↵2  2↵ .

A symmetric argument can be made for the case in which p
i,j

< p̂
i,j

. So
�

�p2
i,j

� p̂2
i,j

�

� 2 [0, 2↵] and

therefore

|q
i,j

� q̂
i,j

|  4↵  4t.
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A.1.6 Proof of Theorem 2.4.4

We first show that the optimal solution of the relaxed offline formulation with the true q
i,j

values and

parameter ✏ is feasible in the approximated LP using the values q̂
i,j

= (2p̂
i,j

� 1)

2 and parameter ✏0.

Let ¯

y

⇤ be the optimal solution of the relaxed offline formulation. To show that ¯

y

⇤ is feasible in the

approximated LP, we need only show that for every task i, ¯

y

⇤ satisfies
m

X

j=1

q̂
i,j

ȳ⇤
i,j

� C
✏

0
= 2 ln

✓

1

✏1�4t/q̄

⇤
min

◆

, (A.9)

because ˆ

q and C
✏

0 only appear in this constraint.

Fix a task i. Since we assumed that for every j, |p
i,j

� p̂
i,j

|  t, we have from Lemma 2.4.3

that q̂
i,j

� q
i,j

� 4t for all j, and
m
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ȳ⇤
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q
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ȳ⇤
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� 4t
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X
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ȳ⇤
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.

Since ¯

y

⇤ is optimal in the relaxed offline formulation we can easily show that ⌃

m

j=1

q
i,j

ȳ⇤
i,j

= C
✏

for all i. Assume for contradiction that this was not the case. We cannot have ⌃

m

j=1

q
i,j

ȳ⇤
i,j

< C
✏

for any i since this would violate the constraints of the relaxed offline formulation. Assume that

⌃

m

j=1

q
i,j

ȳ⇤
i,j

> C
✏

for some i. Then we could always decrease some y⇤
i,j

of task i to make the equality

hold, which would decrease the objective value without violating any other constraint, meaning that

the solution could not be optimal.

By definition of q̄⇤
i

, i.e., q̄⇤
i
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which shows that ¯

y

⇤ satisfies Equation A.9 for all i.

Since the optimal solution of the relaxed offline formulation is feasible in the approximated LP,

the optimal objective of the approximated LP is no bigger than the optimal objective of the relaxed

offline formulation. Furthermore, the optimal objective of the relaxed offline formulation is always

no bigger than the optimal objective of the offline integer program. Therefore, the optimal objective

of the approximated LP would be no bigger than the offline optimal of integer program.

A.1.7 Proof of Theorem 2.4.5

We begin by restating the main definitions from the theorem statement for easy reference. Recall

that q̄⇤
min

is a value such that q̄⇤
min

 q̄⇤
i

for all i, and our estimates p̂
i,j

are guaranteed to satisfy

|p
i,j

� p̂
i,j

|  t for all (i, j) pairs for some t < q̄⇤
min

/4. Recall that y is any feasible integer

assignment of the approximated LP with parameter ✏0 = ✏1�4t/q̄

⇤
min and skill levels q̂
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�1)

2,

J
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= 1} denotes the set of workers that are assigned to task i according to the feasible

integer assignment, and q̂
i

= ⌃

j2J
i
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i,j

/ |J
i

|. Tasks are assigned according to y and the results are

aggregated using weighted majority voting with weights w
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= 2p̂
i,j

� 1, so
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= sign
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Below we show that ˆ`
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= `
i

with probability at least 1� ✏(1�4t/q̄

⇤
min

)(1�4t/q̂
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).

Without loss of generality, assume that `
i

= 1. Note that although we weight each label by

2p̂
i,j

� 1, the probability of label `
i,j

being correct (i.e., the probability that `
i,j

= `
i

= 1) is still

p
i,j

. Similar to the proof of Lemma 2.3.1, let

X
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8

>

<

>
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Let t
i,j

= p
i,j

� p̂
i,j

. Then
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The first term is simply |J
i

| q̂
i

. Since, by assumption, |t
i,j

|  t for all (i, j), and since

|2p̂
i,j

� 1|  1 for all (i, j), we have

E[X
i

] � |J
i

| q̂
i

� 2t |J
i

| = |J
i

| (q̂
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� 2t).

Similar to the proof of Lemma 2.3.1, the probability of predicting the wrong label for task i is

bounded by Pr(X
i

 0) = Pr(E[X
i

]�X
i

� E[X
i

]). Using Hoeffding’s inequality and the bound
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above, we have
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The sixth line follows from the constraints of the approximated LP which require that

|J
i

|q̂
i

=

X

j2J
i

q̂
i,j

� 2 ln(1/✏0),

and so exp(�|J
i

|q̂
i

/2)  ✏0.

A.1.8 Proof of Theorem 2.4.6

The proof is a direct application of Lemma 2.4.2 and Theorems 2.4.1, 2.4.4, and 2.4.5.

We assign each worker s gold standard tasks for each task type. If we use the empirical skill

level p̂
i,j

as an estimate of p
i,j

as in Lemma 2.4.2, we know that for any �0, with probability at least

1� �0, |p
i,j

� p̂
i,j

| 
p

ln(2/�0)/(2s).

Note that we have T types of tasks and (1+�)m workers. Hence, we need to assign T (1+�)ms

gold standard tasks in total to workers. Replacing �0 with �/2 and applying the union bound for all

types of tasks and all workers, we know that with probability at least 1� �/2,

|p
i,j

� p̂
i,j

| 
r

ln(4T (1 + �)m/�)

2s
for all (i, j). (A.10)
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Let t =

p

ln(4T (1 + �)m/�)/(2s). If we set q̂
i,j

= (2p̂
i,j

� 1)

2, from Lemma 2.4.3, we have

an estimate ˆ

q such that with probability at least 1� �/2, |q
i,j

� q̂
i,j

|  4t for all i and j. Given ˆ

q

and access to q̄⇤
min

(as assumed in statement of the theorem), we can create the approximated LP as

described in Section 2.4.2 with ˆ

q and C
✏

0 where ✏0 = ✏1�4t/q̄

⇤
min .

Bounding Competitive Ratio

Below we bound the number of non-gold standard tasks assignment of the the full version. In Section

5.1, we assumed that the q
i,j

values of worker j are revealed when worker j arrives. However,

now we have only estimates of these values. We can still apply Theorem 2.4.1, but now with the

estimated values q̂
i,j

in place of the q
i,j

, and ✏0 in place of ✏. The relaxed online formulation with

these replacements is exactly the approximated LP of Section 2.4.2. Applying Theorem 2.4.1 with

� set to �/2, with probability at least 1� �/2, the Primal Approximation Algorithm with inputs ˆ

x

and ˆ

q yields an assignment y such that the number of tasks assigned using y is no more than
✓

1 +

min(m, n)

q̂
min

nC
✏

0
+

35 ln(4/�)
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p
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✏

0

◆

times the optimal value of the approximated LP, where q̂
min

= min

(i,j):y

s

i,j

=1

q̂s
i,j

, and y

s is the

primal optimal solution of the sampled LP with the replacements described above.

From Theorem 2.4.4, we know that the optimal of the approximated LP yields no more as-

signment than the optimal of the relaxed offline formulation. Combining the above results, with

probability of at least 1� �/2, the the full version yields no more assignments than
✓

1 +

min(m, n)

q̂
min

nC
✏

0
+

35 ln(4/�)

q̂
min

p
�C

✏

0

◆

times the optimal of the relaxed offline formulation, which is less than the optimal of the IP.

Since the analysis above holds only if |p
i,j

� p̂
i,j

|  t for all (i, j) and we know this happens

with probability at least 1� �/2, we can apply union bound to show that the competitive ratio above

can be achieved with probability of at least 1� �.

Bounding Prediction Error

We now bound the prediction error. By a similar argument to the one used above, we can use the

same argument made to achieve the error bound in Theorem 2.4.1 (Equation A.7) to guarantee that

141



if the high probability events above hold, then
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�C 0
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where ✏00 = ✏0(1�6 ln(4/�)/

p
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0 ).

Assume that the high probability event from above holds and so |p
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� p̂
i,j

|  t for all (i, j).

Let q̂
i

=

P

j:y

i,j

=1

q
i,j

/|{j : y
i,j

= 1}|. Applying Theorem 2.4.5 with the value ✏00 in place of ✏0

(since y is a feasible assignment to the relaxed LP with ✏00 used instead of ✏0), we have that the

prediction error of each task i is bounded by

✏001�4t/q̂
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Replacing s in Equation A.10, we have that |p
i,j

� p̂
i,j

|  t for all i and j where t 
p

ln(4T (1 + �)m/�)/(2s). Finally, replacing t in the error bound above completes the proof.

A.2 Additional Proofs from Chapter 3

A.2.1 Proof of Lemma 3.3.2

A.2.1.1 Notations

Before the proof, we first define and describe some notations. We consider the case when all

users follow the social norm. Below we show the derivation on the worker side, the notations and

derivations are identical for the requesters.

• u
w

(✓
w

, ✓
r

) is the worker stage payoff when a worker with reputation ✓
w

is matched with a

requester with reputation ✓
r

. The values can be looked up in the payoff matrix in Table 3.1.

For example, u
w

(✓
w

, ✓
r

) = P � C if �
w

(✓
w

, ✓
r

) =“High Effort” and �
r

(✓
w

, ✓
r

) =“Pay”.

• v
w

(✓) is the expected stage payoff of a worker with reputation ✓ before she is matched.

Since we are considering random matching, the expected stage payoff can be defined using
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stationary reputation distribution {⌘
w

(✓)}

v
w

(✓) =

X

˜

✓

u
w

(✓, ˜✓)⌘
w

(

˜✓)

• v1
w

(✓) is the expected long-term payoff of a worker with reputation ✓ before she is matched.

Let p
w

(✓0|✓) be the transition probability for a worker with reputation ✓ to become ✓0. The

long-term payoff v1
w

(✓) of a worker with reputation ✓ can be written as (� is the discounting

factor)

v1
w

(✓) = v
w

(✓) + �
X

✓

02⇥
p
w

(✓0|✓)v1
w

(✓0)

Given the above definitions, we can show that v1
w

(✓) and v1
r

(✓) are non-decreasing in ✓.

Proposition A.2.1. v1
w

(✓) and v1
r

(✓) are non-decreasing in ✓.

Proof. Since we are considering the threshold-based social norm with threshold values (k
w

, k
r

), we

know that a worker with reputation ✓ � k
w

will always get paid, and she only exerts high effort to

requesters with reputation more than k
r

. Using this argument for ✓ < k
w

, we can get the expected

stage payoff as follows,

v
w

(✓) =

8

>

<

>

:

P � C ·
P
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˜

✓=k

r
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w

�C ·
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˜

✓=k

r

⌘(˜✓) otherwise

By observing the formulations, it is trivial to see that v
w

(✓) is non-decreasing in ✓. Now we write

down the definition of v1
w

as follows:

v1
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(L) = v
w

(L) + �✏
w
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(0) + �(1� ✏
w

)v1
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According to the definition, we know that
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(L)� v1
w

(L� 1) = v
w

(L)� v
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(L� 1) � 0

Therefore, v1
w
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(L� 1). For ✓ 6= L, we know that
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Since we know v
w

(✓) � v
w

(✓� 1) and v1
w

(L) � v1
w

(L� 1), we can show that v1
w

(✓) � v
w

(✓� 1)

is valid for all ✓ by simple induction. Therefore, v1
w

(✓) is non-decreasing in ✓. Exactly the same

proof can be used in requester side.

A.2.1.2 Proof of the lemma

In this proof, we check if we can find any worker who can get better expected payoff by deviating

from the social norm. According to one-shot deviation principle in game theory, we know that

we need only check if a worker can get better payoff by deviating in one stage (and follows

the social norm in the other stages.) Below we check all possible cases in which a worker has

different reputation values. Therefore, we cover all possible situations in the future rounds, and

we need only check if a worker can get better payoff by deviating in the current stage. Since

we assume the user population is large, the deviation of single worker will not influence the

overall distribution. Therefore, we can calculate the long-term expected payoff using the stationary

reputation distribution. As before, we only focus on the proof of the worker side. The same proof

can be used on the requester side.

In the discussion, we divide the worker payoff into two parts: the current payoff, i.e. the payoff

in the current stage, and the expected future payoff. We calculate the payoff differences between

the following two worker strategies: 1) always follow the social norm, and 2) deviate from the

social norm in the current stage and follow the social norm afterwords. Consider the case when the

worker with reputation ✓
w

is matched with the requester with reputation ✓
r

. Let �V
w,CUR

(✓
w

, ✓
r

)

be the difference of the current payoff changing from the first strategy to the second strategy, and

�V
w,FUT

(✓
w

, ✓
r

) be the difference of the expected future payoff.

If the social norm is sustainable, it means no worker has incentive to change from the first

strategy to second strategy. Therefore, we can write the sustainable conditions as �V
w,CUR

(✓
w

, ✓
r

)+

�V
w,FUT

(✓
w

, ✓
r

)  0 for all (✓
w

, ✓
r

). In the following discussion, we find the necessary and

sufficient conditions where the above inequalities are satisfied. Below we show how to calculate

�V
w,CUR

(✓
w

, ✓
r

) and �V
w,FUT

(✓
w

, ✓
r

).

• �V
w,FUT

(✓
w

, ✓
r

)
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If a worker with reputation ✓
w

follows the social norm in the current stage, since we consider

reporting errors, her reputation would become min{✓
w

+ 1, L} with probability 1 � ✏ and

become 0 with probability ✏. Therefore, her expected future payoff would be

�[(1� ✏
w

)v1
w

(min{✓
w

+ 1, L}) + ✏
w

v1
w

(0)]

If a worker chooses to deviate from the social norm in the current stage, her expected future

payoff would be

�[(1� ✏
w

)v1
w

(0) + ✏
w

v1
w

(min{✓
w

+ 1, L})]

Let ✓+ = min{✓ + 1, L} , we can get the results as follows

�V
w,FUT

(✓
w

, ✓
r

) = ��(1� 2✏
w

)[v1
w

(✓+
w

)� v1
w

(0)]

• �V
w,CUR

(✓
w

, ✓
r

)

Since we consider the case when all users follow the social norm, the difference of the current

payoff can be expressed as follows

�V
w,CUR

(✓
w

, ✓
r

) =

8

>

<

>

:

C if ✓
r

� k
r

�C otherwise

A social norm is sustainable for workers if and only if �V
w,CUR

(✓
w

, ✓
r

)+�V
w,FUT

(✓
w

, ✓
r

)  0

for all (✓
w

, ✓
r

). In the following analysis, we consider the worst set of (✓
w

, ✓
r

) where both �V
w,CUR

and �V
w,FUT

are maximum. The worst condition is satisfied if only if the general conditions are

satisfied. Since we know that v1
w

(✓) is non-decreasing in ✓ from Proposition A.2.1, setting ✓
w

to 0

maximizes the value of �V
w,FUT

. Since we are not considering the trivial case when no workers

are required to exert high effort, i.e., k
r

< L, setting ✓
r

to L maximize �V
w,CUR

. Therefore, the

sustainable conditions are satisfied if and only if

�V
w,CUR

(0, L) + �V
w,FUT

(0, L)  0

Intuitively speaking, when a worker with reputation 0 has no incentive to deviate from the social

norm when she is matched with a requester with reputation L, no worker would has incentive to

deviate from the social norm. Therefore, the social norm is sustainable for workers.
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Based on the above formulas, we can derive the sustainable conditions as in the lemma. The

detailed derivations are list as follows. We first insert the value of �V
w,CUR

and �V
r,FUT

into the

formulas.

C � �(1� 2✏
w

)[v1
w

(1)� v1
w

(0)]  0

Given the definition of v1
w

(✓)

v1
w

(✓) = v
w

(✓) + �✏
w

v1
w

(0) + �(1� ✏
w

)v1
w

(min{✓ + 1, L})

we can calculate the result of v1
w

(1)� v1
w

(0)

v1
w

(1)� v1
w

(0) = v
w

(1)� v
w

(0) + �(1� ✏
w

)(v1
w

(2)� v1
w

(1))

=

L

X

i=1

�i�1

(1� ✏
w

)

i�1

(v
w

(i)� v
w

(i� 1))

The definition of v
w

(✓) is as follows,

v
w

(✓) =

8

>

<

>

:

P � C ·
P

L

˜

✓=k

r

⌘(˜✓) if ✓ � k
w

�C ·
P

L

˜

✓=k

r

⌘(˜✓) otherwise

Note that v
w

(✓) is a step function. v
w

(✓)�v
w

(✓�1) = 0 if ✓ is not k
w

, and v
w

(✓)�v
w

(✓�1) = P

if ✓ = k
w

. Therefore, we can rewrite v1
w

(1)� v1
w

(0) as follows,

v1
w

(1)� v1
w

(0) =

8

>

<

>

:

�kw�1

(1� ✏
w

)

k

w

�1P if k
w

> 0

0 otherwise

If k
w

= 0, the sustainable condition would never be satisfied. Since v1
w

(1)� v1
w

(0) = 0 and C > 0,

the sustainable condition would become

C � �(1� 2✏
w

)0  0

which is never satisfied. Using the same argument in requester side, we know that k
r

and k
w

must

be larger than 0 for a social norm to be sustainable. Since k
r

, k
w

> 0, we can substitute the values

to the formulation and get

�(1� 2✏
w

)[�(1� ✏
w

)]

k

w

�1P � C

�(1� 2✏
r

)[�(1� ✏
r

)]

k

r

�1V � P

which is equivalent to the conditions in the lemma.
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A.2.2 Proof of Theorem 3.4.1

In the setting of dynamic population with turnover rates ↵
w

and ↵
r

, the objective value is still

non-increasing in k
w

and constant in k
r

. The sustainable conditions in Lemma 3.3.2 will be modified

as follow

1

�kw(1� ↵
w

)

k

w

(1� ✏
w

)

k

w

�1

(1� 2✏
w

)

C

 P

 �kr(1� ↵
r

)

k

r

(1� ✏
r

)

k

r

�1

(1� 2✏
r

) V

Using the same argument in Theorem 3.3.3, we can set k
w

and k
r

to 1 and get the sustainable

conditions in the optimal setting. This completes the proof.

Below we show how to derive the modified sustainable conditions as above. Similar to the proof

in Lemma 3.3.2, we need only consider the following conditions,

�V
w,CUR

(0, L) + �V
w,FUT

(0, L)  0

�V
r,CUR

(L, 0) + �V
r,FUT

(L, 0)  0

Since the difference of the current payoff �V
CUR

only depends on the social strategies, it stays

the same as in Lemma 3.3.2. Below we calculate �V
FUT

. With turnover rate ↵, each user needs to

consider if she will stay in the market in the future. Therefore, she will discount the future payoff

by (1� ↵) as follows,

�V
w,FUT

(0, L) = ��(1� ↵
w

)(1� 2✏
w

)[v1
w

(1)� v1
w

(0)]

�V
r,FUT

(L, 0) = ��(1� ↵
r

)(1� 2✏
r

)[v1
r

(1)� v1
r

(0)]

With turnover rate ↵, the definition of v1
(✓) We can calculate v1

(1)� v1
(0) as follows,

v1
w

(1)� v1
w

(0) =

8

>

<

>

:

[�(1� ↵
w

)(1� ✏
w

)]

k

w

�1P if k
w

> 0

0 otherwise

v1
r

(1)� v1
r

(0) =

8

>

<

>

:

[�(1� ↵
r

)(1� ✏
r

)]

k

r

�1V if k
r

> 0

0 otherwise

147



Combining the above results, we can get the following conditions and therefore complete the

proof.

�(1� 2✏
w

)(1� ↵
w

)[�(1� ↵
w

)(1� ✏
w

)]

k

w

�1P � C

�(1� 2✏
r

)(1� ↵
r

)[�(1� ↵
r

)(1� ✏
r

)]

k

r

�1V � P

A.2.3 Proof of Theorem 3.4.2

Similar to the proof in Theorem 3.4.1, the sustainable conditions can be expressed as follows,

�V
w,CUR

(0, L) + �V
w,FUT

(0, L)  0

�V
r,CUR

(L, 0) + �V
r,FUT

(L, 0)  0

The differences of the current payoff �V
CUR

are the same as in Lemma 3.3.2. The differences

of the expected future payoff are discounted by the proportion of strategic opponents.

�V
w,FUT

(0, L) = �(1� 2✏
w

)(1� f
r

)(v1
w

(1)� v1
w

(0))

= �kw(1� ✏
w

)

k

w

�1

(1� 2✏
w

)(1� f
r

) P

�V
r,FUT

(L, 0) = �(1� 2✏
r

)(1� f
w

)(v1
r

(1)� v1
r

(0))

= �kr(1� ✏
r

)

k

r

�1

(1� 2✏
r

)(1� f
w

) V

Combining the above results, we can get the following results

�kw(1� ✏)kw�1

(1� 2✏
w

)(1� f
r

)P � C

�kr(1� ✏)kr�1

(1� 2✏
r

)(1� f
w

)V � P

Since we know the objective value is non-increasing in k
w

and constant in k
r

, setting k
w

and k
r

to 1

leads to the optimal social norm. Therefore, we can get the conditions as in the theorem.
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A.2.4 Proof of Theorem 3.4.3

Similar to the proof in Theorem 3.4.1, the sustainable conditions can be expressed as follows,

�V
w,CUR

(0, L) + �V
w,FUT

(0, L)  0

�V
r,CUR

(L, 0) + �V
r,FUT

(L, 0)  0

Since the introduction of the transaction fees only affects the payment received by the worker,

the differences of the current payoff are the same as in Lemma 3.3.2. The differences of the expected

future payoff are

�V
w,FUT

(0, L) = �(1� 2✏
w

)(v1
w

(1)� v1
w

(0))

= �(1� 2✏
w

)�kw�1

(1� ✏)kw�1

(1�m)P

�V
r,FUT

(L, 0) = �(1� 2✏
r

)(v1
r

(1)� v1
r

(0))

= �(1� 2✏
w

)�kw�1

(1� ✏)kw�1 V

Combining the above results, we can get the following conditions

�(1� 2✏
w

)[�(1� ✏
w

)]

k

w

�1

(1�m)P � C

�(1� 2✏
r

)[�(1� ✏
r

)]

k

r

�1 V � P

We know the objective function is non-increasing in k
w

and k
r

, setting k
w

and k
r

to 1 leads to

the optimal social norm. Therefore, we can get the conditions as in the theorem. Since the revenue

of the platform designer is Pm, and the optimal value can be decided regardless of the value of m,

the optimal m would be the largest possible m which still satisfies the condition. By solving the

equality in the condition, we can get optimal m as stated in the theorem.

A.3 Additional Proofs from Chapter 4

A.3.1 Proof of Lemma 4.3.1 (virtual width)

For two vectors x,x0 2 <m, write x

0 ⌫ x if x0 pointwise dominates x, i.e., if x0
j

� x

j

for all j. For

two monotone contracts x, x0, write x0 ⌫ x if incr(x0
) ⌫ incr(x).
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Claim A.3.1. Consider a worker whose type satisfies the FOSD assumption and two weakly

bounded contracts x, x0 such that x0 ⌫ x. Let e (resp., e0) be the effort levels exerted by this worker

when he is offered contract x (resp., x0). Then e does not have FOSD over e0.

Proof. For the sake of contradiction, assume that e has FOSD over e0. Note that e 6= e0.

Let i be the worker’s type. Recall that F
i

(⇡|e) denotes the probability of generating an outcome

⇡0 � ⇡ given the effort level e. Define F = ( F
i

(1|e) , . . . , F
i

(m|e) ), and define F

0 similarly for

e0.

Let x and x

0 be the increment representations for x and x0. Given contract x, the worker’s

expected utility for effort level e is U
i

(x|e) = x · F� c
i

(e). Since e is the optimal effort level given

this contract, we have U
i

(x|e) � U
i

(x|e0), and therefore

x · F� x · F0 � c
i

(e)� c
i

(e0).

Similarly, since e0 is the optimal effort level given contract x0, we have

x

0 · F0 � x

0 · F � c
i

(e0)� c
i

(e).

Combining the above two inequalities, we obtain

(x� x

0
) · (F� F

0
) � 0. (A.11)

Note that if (A.11) holds with equality then U
i

(x|e) = U
i

(x|e0) and U
i

(x0|e) = U
i

(x0|e0), so the

worker breaks the tie between e and e0 in a different way for two different contracts. This contradicts

the consistent tie-breaking assumption. However, (A.11) cannot hold with a strict equality, either,

because x

0 ⌫ x and (since e has FOSD over e0) we have F ⌫ F

0 and F

⇡

> F

0
⇡

for some outcome

⇡ > 0. Therefore we obtain a contradiction, completing the proof.

The proof of Claim A.3.1 is the only place in the paper where we directly use the consistent

tie-breaking assumption. (But the rest of the paper relies on this claim.)

Claim A.3.2. Assume all types satisfy the FOSD assumption. Consider weakly bounded contracts

x, x0 such that x0 ⌫ x. Then V (x0
) � V (x) and P (x0

) � P (x).
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Proof. Consider some worker, let i be his type. Let e and e0 be the chosen effort levels for contracts

x and x

0, respectively. By the FOSD assumption, either e = e0, or e0 has FOSD over e, or e has

FOSD over e0. Claim A.3.1 rules out the latter possibility.

Define vectors F and F

0 as in the proof of Claim A.3.1. Note that F0 ⌫ F.

Then P = x · F and P 0
= x

0 · F0 is the expected payment for contracts x and x0, respectively.

Further, letting v denote the increment representation of the requester’s value for each outcome,

V = v · F and V 0
= v · F0 is the expected requester’s value for contracts x and x0, respectively.

Since x

0 ⌫ x and F

0 ⌫ F, it follows that P 0 � P and V 0 � V . Since this holds for each worker,

this also holds in expectation over workers.

To finish the proof of Lemma 4.3.1, fix a contract x 2 C and observe that V (x+

) � V (x) �

V (x�
) and P (x+

) � P (x) � P (x�
), where x+

= x+

(C) and x�
= x�

(C) are the two anchors.

A.3.2 Proof of Theorem 4.4.1

We now prove the main result from Section 4.4. Our high-level approach is to define a clean

execution of an algorithm as an execution in which some high-probability events are satisfied, and

derive bounds on regret conditional on the clean execution. The analysis of a clean execution does

not involve any “probabilistic” arguments. This approach tends to simplify regret analysis.

We start by listing some simple invariants enforced by AgnosticZooming:

Invariant A.3.3. In each round t of each execution of AgnosticZooming:

(a) All active cells are relevant,

(b) Each candidate contract is contained in some active cell,

(c) W
t

(C)  5 rad
t

(C) for each active composite cell C.

Note that the zooming rule is essential to ensure Invariant A.3.3(c).
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A.3.3 Analysis of the randomness

Definition 3 (Clean Execution). An execution of AgnosticZooming is called clean if for each

round t and each active cell C it holds that

|U(C)� U
t

(C)|  rad
t

(C), (A.12)

|VirtWidth(C)�W
t

(C)|  4 rad
t

(C) (if C is composite). (A.13)

Lemma A.3.4. Assume crad � 16 and T � max(1 + 2

m, 18). Then:

(a) Pr [ (A.12) holds 8 rounds t, active cells C ] � 1� 2 T�2.

(b) Pr [ (A.13) holds 8 rounds t, active composite cells C ] � 1� 16 T�2.

Consequently, an execution of AgnosticZooming is clean with probability at least 1� 1/T .

Lemma A.3.4 follows from the standard concentration inequality known as “Chernoff Bounds”.

However, one needs to be careful about conditioning and other details.

Proof of Lemma A.3.4(a). Consider an execution of AgnosticZooming. Let N be the total number

of activated cells. Since at most 2

m cells can be activated in any one round, N  1 + 2

mT  T 2.

Let C
j

be the min(j, N)-th cell activated by the algorithm. (If multiple “quadrants” are activated in

the same round, order them according to some fixed ordering on the quadrants.)

Fix some feasible cell C and j  T 2. We claim that

Pr [ |U(C)� U
t

(C)|  rad
t

(C) for all rounds t | C
j

= C ] � 1� 2 T�4. (A.14)

Let n(C) = n
1+T

(C) be the total number of times cell C is chosen by the algorithm. For each

s 2 N: 1  s  n(C) let U
s

be the requester’s utility in the round when C is chosen for the s-th

time. Further, let D
C

be the distribution of U
1

, conditional on the event n(S) � 1. (That is, the

per-round reward from choosing cell C.) Let U 0
1

, . . . , U 0
T

be a family of mutually independent

random variables, each with distribution D
C

. Then for each n  T , conditional on the event

{C
j

= C} ^ {n(C) = n}, the tuple (U
1

, . . . , U
n

) has the same joint distribution as the tuple
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(U 0
1

, . . . , U 0
n

). Consequently, applying Chernoff Bounds to the latter tuple, it follows that

Pr
h

�

�U(C)� 1

n

P

n

s=1

U
s

�

� 
q

1

n

crad log(T )

�

�

�

{C
j

= C} ^ {n(C) = n}
i

� 1� 2 T�2crad � 1� 2 T�5.

Taking the Union Bound over all n  T , and plugging in rad
t

(C
j

), n
t

(C
j

), and U
t

(C
j

), we obtain

(A.14).

Now, let us keep j fixed in (A.14), and integrate over C. More precisely, let us multiply both

sides of (A.14) by Pr[C
j

= C] and sum over all feasible cells C. We obtain, for all j  T 2:

Pr [ |U(C
j

)� U
t

(C
j

)|  rad
t

(C
j

) for all rounds t ] � 1� 2 T�4. (A.15)

(Note that to obtain (A.15), we do not need to take the Union Bound over all feasible cells C.) To

conclude, we take the Union Bound over all j  1 + T 2.

Proof Sketch of Lemma A.3.4(b). We show that

Pr
⇥

�

�V +

(C)� V +

t

(C)

�

�  rad
t

(C) 8 rounds t, active composite cells C
⇤

� 1� 4

T

2 , (A.16)

and similarly for V �
(), P+

() and P�
(). Each of these four statements is proved similarly, using the

technique from Lemma A.3.4(a). In what follows, we sketch the proof for one of the four cases,

namely for (A.16).

For a given composite cell C, we are only interested in rounds in which anchor x+

(C) is selected

by the algorithm. Letting n+

t

(C) be the number of times this anchor is chosen up to time t, let us

define the corresponding notion of “confidence radius”:

rad+
t

(C) =

1

2

s

crad log T

n+

t

(C)

.

With the technique from the proof of Lemma A.3.4(a), we can establish the following high-

probability event:

�

�V +

(C)� V +

t

(C)

�

�  rad+
t

(C). (A.17)
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More precisely, we can prove that

Pr [ (A.17) holds 8 rounds t, active composite cells C ] � 1� 2 T�2.

Further, we need to prove that w.h.p. the anchor x+

(C) is played sufficiently often. Noting that

E[n+

t

(C)] =

1

2

n
t

(C), we establish an auxiliary high-probability event:1

n+

t

(C) � 1

2

n
t

(C)� 1

4

rad
t

(C). (A.18)

More precisely, we can use Chernoff Bounds to show that, if crad � 16,

Pr [ (A.18) holds 8 rounds t, active composite cells C ] � 1� 2 T�2. (A.19)

Now, letting n
0

= (crad log T )

1/3, observe that

n
t

(C) � n
0

) n+

t

(C) � 1

4

n
t

(C) ) rad+
t

(C)  rad
t

(C),

n
t

(C) < n
0

) rad
t

(C) � 1 )
�

�V +

(C)� V +

t

(C)

�

�  rad
t

(C).

Therefore, once Equations Equation A.17 and Equation A.18 hold, we have
�

�V +

(C)� V +

t

(C)

�

� 

rad
t

(C). This completes the proof of (A.16).

A.3.4 Analysis of a clean execution

The rest of the analysis focuses on a clean execution. Recall that C
t

is the cell chosen by the

algorithm in round t.

Claim A.3.5. In any clean execution, I(C
t

) � OPT(Xcand) for each round t.

Proof. Fix round t, and let x⇤ be any candidate contract. By Invariant A.3.3(b), there exists an

active cell, call it C⇤
t

, which contains x⇤.

We claim that I
t

(C⇤
t

) � U(x⇤
). We consider two cases, depending on whether C⇤

t

is atomic.

If C⇤
t

is atomic then the anchor is unique, so U(C⇤
t

) = U(x⇤
), and I

t

(C⇤
t

) � U(x⇤
) by the clean

1The constant 1

4

in (A.18) is there to enable a consistent choice of n
0

in the remainder of the proof.
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execution. If C⇤
t

is composite then

I
t

(C⇤
t

) � U(C⇤
t

) + VirtWidth(C⇤
t

) by clean execution

� U(C⇤
t

) + width(C⇤
t

) by Lemma 4.3.1

� U(x⇤
) by definition of width, since x⇤ 2 C⇤

t

.

We have proved that I
t

(C⇤
t

) � U(x⇤
). Now, by the selection rule we have I

t

(C
t

) � I
t

(C⇤
t

) � U(x⇤
).

Since this holds for any candidate contract x⇤, the claim follows.

Claim A.3.6. In any clean execution, for each round t, the index I
t

(C
t

) is upper-bounded as

follows:

(a) if C
t

is atomic then I(C
t

)  U(C
t

) + 2 rad
t

(C
t

).

(b) if C
t

is composite then I(C
t

)  U(x) + O(rad
t

(C
t

)) for each contract x 2 C
t

.

Proof. Fix round t. Part (a) follows because I
t

(C
t

) = U
t

(C
t

) + rad
t

(C
t

) by definition of the index,

and U
t

(C
t

)  U(C
t

) + rad
t

(C
t

) by clean execution.

For part (b), fix a contract x 2 C
t

. Then:

U
t

(C
t

)  U(C
t

) + rad
t

(C
t

) by clean execution

 U(x) + width(C
t

) + rad
t

(C
t

) by definition of width

 U(x) + VirtWidth(C
t

) + rad
t

(C
t

) by Lemma 4.3.1

 U(x) + W
t

(C
t

) + 5 rad
t

(C
t

) by clean execution. (A.20)

I
t

(C
t

) = U
t

(C
t

) + W
t

(C
t

) + 5 rad
t

(C
t

) by definition of index

 U(x) + 2 W
t

(C
t

) + 10 rad
t

(C
t

) by (A.20)

 U(x) + 20 rad
t

(C
t

) by Invariant A.3.3(c).

For each relevant cell C, define badness �(C) as follows. If C is composite, �(C) =

sup

x2C �(x) is the maximal badness among all contracts in C. If C is atomic and x 2 C is

the unique candidate contract in C, then �(C) = �(x).

Claim A.3.7. In any clean execution, �(C)  O(rad
t

(C)) for each round t and each active cell

C.
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Proof. By Claims A.3.5 and A.3.6, �(C
t

)  O(rad
t

(C
t

)) for each round t. Fix round t and let

C be an active cell in this round. If C has never be selected before round t, the claim is trivially

true. Else, let s be the most recent round before t when C is selected by the algorithm. Then

�(C)  O(rad
s

(C)). The claim follows since rad
s

(C) = rad
t

(C).

Claim A.3.8. In a clean execution, each cell C is selected  O(log T/(�(C))

2

) times.

Proof. By Claim A.3.7, �(C)  O(rad
T

(C)). The claim follows from the definition of rad
T

in

(4.3).

Let n(x) and n(C) be the number of times contract x and cell C, respectively, are chosen by the

algorithm. Then regret of the algorithm is

R(T |Xcand) =

P

x2X n(x) �(x) 
P

cells C n(C) �(C). (A.21)

The next result (Lemma A.3.9) upper-bounds the right-hand side of (A.21) for a clean execution.

By Lemma A.3.4, this suffices to complete the proof of Theorem 4.4.1

Lemma A.3.9. Consider a clean execution of AgnosticZooming. For any � 2 (0, 1),

P

cells C n(C) �(C)  �T + O(log T )

P

✏=2

�j��: j2N
|F

✏

(X2✏)|
✏

.

The proof of Lemma A.3.9 relies on some simple properties of �(·), stated below.

Claim A.3.10. Consider two relevant cells C ⇢ Cp. Then:

(a) �(C)  �(Cp).

(b) If �(C)  ✏ for some ✏ > 0, then C overlaps with X
✏

.

Proof. To prove part (a), one needs to consider two cases, depending on whether cell Cp is

composite. If it is, the claim follows trivially. If Cp is atomic, then C is atomic, too, and so

�(C) = �(Cp) = �(x), where x is the unique candidate contract in Cp.

For part (b), there exists a candidate contract x 2 C. It is easy to see that �(x)  �(C) (again,

consider two cases, depending on whether C is composite.) So, x 2 X
✏

.
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Proof of Lemma A.3.9. Let ⌃ denote the sum in question. Let A⇤ be the collection of all cells ever

activated by the algorithm. Among such cells, consider those with badness on the order of ✏:

G
✏

:= { C 2 A⇤
: �(C) 2 [✏, 2✏) } .

By Claim A.3.8, the algorithm chooses each cell C 2 G
✏

at most O(log T/✏2) times, so n(C) �(C) 

O(log T/✏).

Fix some � 2 (0, 1) and observe that all cells C with �(C)  � contribute at most �T to ⌃.

Therefore it suffices to focus on G
✏

, ✏ � �/2. It follows that

⌃  �T + O(log T )

P

✏=2

�i��/2
|G

✏

|
✏

. (A.22)

We bound |G
✏

| as follows. Consider a cell C 2 G
✏

. The cell is called a leaf if it is never zoomed

in on (i.e., removed from the active set) by the algorithm. If C is activated in the round when cell

Cp is zoomed in on, Cp is called the parent of C. We consider two cases, depending on whether or

not C is a leaf.

(i) Assume cell C is not a leaf. Since �(C) < 2✏, C overlaps with X
2✏

by Claim A.3.10(b).

Note that C is zoomed in on in some round, say in round t� 1. Then

5 rad
t

(C)  W
t

(C) by the zooming rule

 VirtWidth(C) + 4 rad
t

(C) by clean execution,

so rad
t

(C)  VirtWidth(C). Therefore, using Claim A.3.7, we have

✏  �(C)  O(rad
t

(C))  O(VirtWidth(C)).

It follows that C 2 F
⌦(✏)

(X
2✏

).

(ii) Assume cell C is a leaf. Let Cp be the parent of C. Since C ⇢ Cp, we have �(C)  �(Cp)

by Claim A.3.10(a). Therefore, invoking case (i), we have

✏  �(C)  �(Cp)  O(VirtWidth(Cp)).

Since �(C) < 2✏, C overlaps with X
2✏

by Claim A.3.10(b), and therefore so does Cp. It

follows that Cp 2 F
⌦(✏)

(X
2✏

).
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Combing these two cases, it follows that |G
✏

|  (2

m

+ 1)

�

�F
⌦(✏)

(X
2✏

)

�

�. Plugging this into

Equation A.22 and making an appropriate substitution ✏! ⇥(✏) to simplify the resulting expression,

we obtain the regret bound in Theorem 4.4.1

A.3.5 Discussion: Monotone contracts may not be optimal

In this section we provide an example of a problem instance for which all monotone contracts are

suboptimal (at least when restricting attention to only those contracts with non-negative payoffs).

In this example, there are three non-null outcomes (i.e., m = 3), and two non-null effort levels,

“low” effort and “high” effort, which we denote e
`

and e
h

respectively. There is only a single worker

type. Since there is only one type, we drop the subscript when describing the cost function c. We

let c(e
`

) = 0, and let c(e
h

) be any positive value less than 0.5(v(2) � v(1)). If a worker chooses

low effort, the outcome is equally likely to be 1 or 3. If the worker chooses high effort, it is equally

likely to be 2 or 3. It is easy to verify that this type satisfies the FOSD assumption. Finally, for

simplicity, we assume that all workers break ties between high effort and any other effort level in

favor of high effort, and that all workers break ties between low effort and the null effort level in

favor of low effort.

Let’s consider the optimal contract. Since there is just a single worker type and all workers

of this type break ties in the same way, we can consider separately the best contract that would

make all workers choose the null effort level, the best contract that would make all workers choose

low effort, and the best contract that would make all workers choose high effort, and compare the

requester’s expected value for each.

Since c(e
`

) = 0 and workers break ties between low effort and null effort in favor of low effort,

there is no contract that would cause workers to choose null effort; workers always prefer low effort

to null effort.

It is easy to see that the best contract (in terms of requester expected value) that would make

workers choose low effort would set x(1) = x(3) = 0 and x(2) sufficiently low that workers would

not be enticed to choose high effort; setting x(2) = 0 is sufficient. In this case, the expected value

of the requester would be 0.5(v(1) + v(3)).
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Now let’s consider contracts that cause workers to choose high effort. If a worker chooses high

effort, the expected value to the requester is

0.5(v(2)� x(2) + v(3)� x(3)). (A.23)

Workers will choose high effort if and only if

0.5(x(1) + x(3))  0.5(x(2) + x(3))� c(e
h

)

or

0.5x(1)  0.5x(2)� c(e
h

). (A.24)

So to find the contract that maximizes the requester’s expected value when workers choose high

effort, we want to maximize Equation A.23 subject to the constraint in Equation A.24. Since x(3)

doesn’t appear in Equation A.24, we can set it to 0 to maximize Equation A.23. Since x(1) does not

appear in Equation A.23, we can set x(1) = 0 to make Equation A.24 as easy as possible to satisfy.

We can then see that the optimal occurs when x(2) = 2c(e
h

).

Plugging this contact x into Equation A.23, the expected utility in this case is 0.5(v(2)+v(3))�

c(e
h

). Since we assumed that c(e
h

) < 0.5(v(2)� v(1))), this is strictly preferable to the constant 0

contract, and is in fact the unique optimal contract. Since x(2) > x(3), the unique optimal contract

is not monotonic.

A.4 Additional Proofs from Chapter 6

A.4.1 Tools for Converting Regret-Minimizing Algorithms

Lemma A.4.1 (Lemma 6.3.1). If Algorithm 5 is run with (nonzero) probabilities q
1

, . . . , q
T

and

FTRL as the learning algorithm, then the expected regret is bounded by

�

⌘
+ 2⌘E

"

T

X

t=1

�

2

h

t

,f

t

q
t

#

,

where � is a constant depending on H, ⌘ is a parameter of the algorithm, and the expectation is

over any randomness in the choices of h
t

and q
t

.
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Proof. Let h⇤
= inf

h2H
P

t

f
t

(h). We wish to prove that

E{h
t

,q

t

}
X

t

f
t

(h
t

) 
X

t

f
t

(h

⇤
) + R

where {h
t

, q
t

} is shorthand for {h
1

, q
1

, . . . , h
T

, q
T

} and

R =

�

⌘
+ 2⌘E{h

t

,q

t

}

"

X

t

�

2

h

t

,f

t

q
t

#

.

As a prelude, note that in general these expectations could be quite tricky to deal with. We consider

a fixed input sequence f
1

, . . . , f
T

, but each random variable q
t

, h
t

depends on the prior sequence of

variables and outcomes. However, we will see that the nice feature of the importance-weighting

technique of Algorithm 5 helps make this problem tractable.

Some preliminaries: Define the importance-weighted loss function at time t to be the random

variable

ˆf
t

(h) =

8

>

<

>

:

f

t

(h)

q

t

obtain f
t

0 o.w.

Let
t

be the indicator random variable equal to 1 if we obtain f
t

, which occurs with probability q
t

,

and equal to 0 otherwise. Then notice that for any hypothesis h,

ˆf
t

(h) =

t

f
t

(h)

q
t

=) E
t

h

ˆf
t

(h) | q
t

i

= f
t

(h). (A.25)

To be clear, the expectation is over the random outcome whether or not we obtain datapoint f
t

conditioned on the value of q
t

; and conditioned on the value of q
t

, by definition we obtain datapoint

f
t

with probability q
t

and obtain the 0 function otherwise.

Now we proceed with the proof. For any method of choosing q
1

, . . . , q
T

and any resulting

outcomes of
t

, Algorithm 5 reduces to running the Follow-the-Regularized-Leader algorithm

on the sequence of convex loss functions ˆf
1

, . . . , ˆf
T

. Thus, by the regret bound proof for FTRL

(Lemma A.4.2), FTRL guarantees that for every fixed “reference hypothesis” h 2 H:

X

t

ˆf
t

(h
t

) 
X

t

ˆf
t

(h) +

ˆR
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where

ˆR =

�

⌘
+ 2⌘

X

t

�

2

h

t

,

ˆ

f

t

=

�

⌘
+ 2⌘

X

t

t

�

2

h

t

,f

t

q2
t

.

(Recall that �

h,f

= krf(h)k
?

.) Now we will take the expectation of both sides, separating out the

expectation over the choice of q
t

, over h
t

, and over
t

:
X

t

E
h

t

,q

t

h

E
t

h

ˆf
t

(h
t

) | h
t

, q
t

ii


X

t

E
h

t

,q

t

h

E
t

h

ˆf
t

(h) | h
t

, q
t

ii

+ E{h
t

,q

t

}
h

E{
t

}
h

ˆR | {h
t

, q
t

}
ii

.

Use the importance-weighting observation above (A.25):

E{h
t

,q

t

}
X

t

f
t

(h
t

) 
X

t

f
t

(h) + R

where

R =

�

⌘
+ 2⌘E{h

t

,q

t

}

"

X

t

�

2

h

t

,f

t

q
t

#

.

In particular, because this holds for every reference hypothesis h, it holds for h⇤.

Lemma A.4.2. Let G be 1-strongly convex with respect to some norm k · k. The regret of Follow-

The-Regularized-Leader algorithm with regularizer G and convex loss functions f
1

, . . . , f
T

can be

bounded by
�

⌘
+ 2⌘

X

t

�

2

h

t

,f

t

,

where � is the upper bound of G(·).

Proof. We reproduce the standard proof. First, the regret of Follow-The-Regularized-Leader can be

bounded by
1

⌘
(R(h

T

)�R(h
1

)) +

T

X

t=1

(`(h
t

, f
t

)� `(h
t+1

, f
t

)).

Below we show that `(h
t

, f
t

)� `(h
t+1

, f
t

)  2⌘kr`(h
t

, f
t

)k2
?

.

Define �

t

(h) = R(h)/⌘ +

P

t

i=1

`(h, f
i

). By definition, we know h
t

= arg min

h

�

t�1

(h).

Since `(·) is convex and R(·) is 1-strongly convex, we know �

t

(·) is (1/⌘)-strongly convex for all t.

Therefore, since h
t+1

minimizes �

t

, by definition of strong convex, we get

�

t

(h
t

) � �

t

(h
t+1

) +

1

2⌘
kh

t

� h
t+1

k2
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After simple manipulations, we get

kh
t

� h
t+1

k2  2⌘(�
t

(h
t

)� �

t

(h
t+1

))

= 2⌘(�
t�1

(h
t

)� �

t�1

(h
t+1

)) + 2⌘(`(h
t

, f
t

)� `(h
t+1

, f
t

))

 2⌘(`(h
t

, f
t

)� `(h
t+1

, f
t

))

The last inequality comes from the fact that h
t

is the minimizer of �

t�1

.

Since `(·) is convex, we have

`(h
t

, f
t

)� `(h
t+1

, f
t

)  (h
t

� h
t+1

)r`(h
t

, f
t

)

 kh
t

� h
t+1

kkr`(h
t

, f
t

)k
?

The last inequality comes from the generalized Cauchy-Schwartz inequality.

Combining the above two inequalities together, we get

`(h
t

, f
t

)� `(h
t+1

, f
t

)  kr`(h
t

, f
t

)k
?

p

2⌘(`(h
t

, f
t

)� `(h
t+1

, f
t

))

By squaring and shifting sides,

`(h
t

, f
t

)� `(h
t+1

, f
t

)  2⌘kr`(h
t

, f
t

)k2
?

The proof is completed by inserting the inequality into the regret bound.

A.4.2 No regret “at-cost” setting

A.4.2.1 At-cost upper bounds

Lemma A.4.3 (Lemma 6.5.1). To minimize the regret bound of Lemma 6.3.1, the optimal choice of

sampling probability is of the form

q
t

= min

⇢

1 ,
�

h

t

,f

t

K⇤pc
t

�

.

The normalization factor K⇤ ⇡ T

B

�.
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Proof. Recall that the regret bound of Lemma 6.3.1 is

�

⌘
+ 2⌘E

X

t

�

2

h

t

,f

t

q
t

where q
t

is the probability with which we choose to purchase arrival (c
t

, f
t

). We will solve for the

choices of q
t

for each t.

Since � is a constant and ⌘ a parameter to be tuned later, our problem is to minimize the

summation term in this regret bound. This yields the following optimization problem:

min

q

t

X

t

�

2

h

t

,f

t

q
t

s.t.
X

t

q
t

· c
t

 B

q
t

 1 (8t).

The first constraint is the expected budget constraint, as we take each point (c
t

, f
t

) with probability

q
t

and pay c
t

if we do. The second constrains each q
t

to be a probability.

To be completely formal, our goal is to minimize the expectation of the summation in the

objective, as each h
t

and q
t

are random variables (they depend on the previous steps). However,

our approach will be to optimize this objective pointwise: For every prior sequence h
1

, . . . , h
t

and

q
1

, . . . , q
t�1

, we pick the optimal q
t

. Therefore in the proof we will elide the expectation operators

and argument. Similarly, since the budget constraint holds for all choices of q
t

that we make, we

elide the expectation over the randomness in q
t

.

The Lagrangian of this problem is

L(�, {q
t

,↵
t

}) =

X

t

�

2

h

t

,f

t

q
t

+ �

 

X

t

q
t

· c
t

� B

!

+

X

t

↵
t

(q
t

� 1)

with each �, q
t

,↵
t

� 0. At optimum,

0 =

@L

@q
t

= �
�

2

h

t

,f

t

q2
t

+ �c
t

+ ↵
t

,

implying that

q
t

=

�

h

t

,f

tp
�c

t

+ ↵
t

.
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By complementary slackness, ↵
t

(q
t

� 1) = 0 at optimum, so consider two cases. If ↵
t

> 0, then

q
t

= 1. On the other hand, if q
t

< 1, then ↵
t

= 0. Thus we may more simply write

q
t

= min

⇢

1 ,
�

h

t

,f

tp
�c

t

�

.

Therefore, our normalization constant K⇤
=

p
�. To solve for �, by complementary slackness,

� (

P

t

q
t

· c
t

� B) = 0. If � = 0, then the form of q
t

and prior discussion implies that all q
t

= 1,

and we have
P

t

c
t

 B; in other words, we have enough budget to purchase every point. Otherwise,

the budget constraint is tight and
P

t

q
t

· c
t

= B, so
X

t

c
t

· min

⇢

1 ,
�

h

t

,f

tp
�c

t

�

= B.

Let us call those points that are taken with provability q
t

= 1 “valuable” and the others “less

valuable”, and let S be the set of less valuable points, S = {t : q
t

< 1}. Then we can rewrite as
X

t 62S
c
t

+

X

t2S

�

h

t

,f

t

p
c
tp

�
= B,

so

K⇤
=

p
� =

1

B �
P

t 62S c
t

X

t2S
�

h

t

,f

t

p
c
t

.

This completes the proof. Let us make several final comments and observations, however. First, if

the budget is small relative to the amount of data, then with Lipschitz loss functions, no data points

will be taken with probability q
t

= 1, so S will equal all of T . In this case, the expectation of K⇤ is

exactly T

B

�, which is the meaning of our informal statement K⇤ ⇡ T

B

�.

Second, this K⇤ is optimal “pointwise”, in that it includes advance knowledge of which data

points will be taken and which hypotheses will be posted. However, notice that, to satisfy the budget

constraint, it suffices to take the expectation and choose a normalization constant

K = E
"

1

B �
P

t 62S c
t

X

t2S
�

h

t

,f

t

p
c
t

#

.

Third, as noted above, the extreme case is when all q
t

< 1 and in this case the above K =

T

B

�

exactly. While this will not be “as optimal” for the specific random outcomes of this sequence, it

will suffice to prove good upper bounds on regret. Furthermore, it holds that any choice of K � T

B

�

satisfies the expected budget constraint; and (by setting ⌘ as a function of K) suffices to prove an

upper bound on regret.
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Theorem A.4.4 (Theorem 6.3.3). There is a mechanism for the “at-cost” problem of data purchas-

ing for regret minimization that interfaces with FTRL and guarantees to meet the expected budget

constraint, where for a parameter � 2 [0, 1] (Definition 2),

1. The expected regret is bounded by O
⇣

max

n

Tp
B

� ,
p

T
o⌘

.

2. This is optimal in that no mechanism can have a better guarantee (up to constant factors).

3. The pricing strategy is to set K = O
�

T

B

�
�

and draw ⇡
t

(f) randomly according to a distribu-

tion such that

Pr[⇡
t

(f) � c] = min

⇢

1 ,
�

h

t

,f

K
p

c

�

.

The only prior knowledge required is an estimate of � up to a constant factor.

Proof. The lower bound proof appears in Theorem 6.5.3.

For the upper bound, we will give a more careful argument first, obtaining a more subtle bound

capturing the two extremes in the regret bound as well as the spectrum in between. We will then

simplify to get the theorem statement.

First, note as pointed out in the proof of Lemma 6.5.1 that choosing any K � T

B

� � E[K⇤
]

satisfies the expected budget constraint, as each probability of purchase q
t

only decreases. We now

just need to show that if we know � to within a constant factor larger, i.e. set K = O
�

T

B

�
�

and ⌘

appropriately, then we achieve the regret bound.

By Lemma 6.3.1, for any choices of q
t

and the learning parameter ⌘, the regret bound satisfies

Regret  �

⌘
+ 2⌘E

X

t

�

2

h

t

,f

t

q
t

(A.26)

where � is a constant. Our strategy is to set

q
t

= min

⇢

1 ,
�

h

t

,f

t

K
p

c
t

�

.

Recall from the proof of Lemma 6.5.1 that in the optimal solution there were in general “valuable”

points for which the probability of purchase was q
t

= 1 and “less-valuable” points where q
t

< 1.

We had S = {t : q
t

< 1}. Thus the summation term in the regret bound becomes

E
X

t 62S
�

2

h

t

,f

t

+ E
X

t2S
�

h

t

,f

t

p
c
t

K. (A.27)
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Before we prove the theorem statement, let us show how to achieve the more subtle bound. So for

the sake of this argument, let �
S

=

1

|S|E
P

t2S �

h

t

,f

t

p
c
t

. Let K
S

approximate the more precise

form derived in the proof of Lemma 6.5.1; that is,

K
S

= O

 

|S|
B �

P

t 62S c
t

�
S

!

.

Then the summation term of the regret bound (Expression A.27) is at most a constant times

X

t 62S
�

2

h

t

,f

t

+

|S|2
B �

P

t 62S c
t

�2
S

 T � |S| + +

|S|2
B �

P

t 62S c
t

�2
S

(A.28)

as each �

h

t

,f

t

 1. It remains to select the parameter ⌘ to use for the learning algorithm and plug

into the original regret bound, Expression A.26. If the algorithm has an accurate estimate of K
S

,

|S|, and
P

t 62S c
t

, then it can set ⌘ equal to the square root of one over Expression A.28. (Note this

may be achievable by tuning ⌘ online as well, perhaps even with a theoretical guarantee.) In this

case, the regret bound is

Regret  O

 s

T � |S| +

|S|2
B �

P

t 62S c
t

�2
S

!

.

Note that as B ! 0, |S|! T , and as B !
P

t

c
t

, |S|! 0.

Now let us actually prove the Theorem as stated. Let � =

P

t

�

h

t

,f

t

p
c
t

and let K =

T

B

�. The

summation term in the regret bound, Expression A.27, is upper-bounded by

T + (T�)K

= T +

T 2

B
�2

using that T� �
P

t2S �

h

t

,f

t

p
c
t

since it is a summation over more (positive) terms. Now by

Expression A.27,

Regret  �

⌘
+ 2⌘

✓

T +

T 2

B
�2
◆

.

Setting

⌘ = ⇥

✓

1/ max

⇢p
T ,

Tp
B
�

�◆

gives a regret bound of the order of 1/⌘.
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A.4.2.2 At-cost lower bounds

Theorem A.4.5 (Theorem 6.5.2). Suppose all costs c
t

= 1. No algorithm for the at-cost online

data-purchasing problem has regret better than O
⇣

Tp
B

⌘

; that is, for every algorithm, there exists

an input sequence on which its regret is ⌦

⇣

Tp
B

⌘

.

Proof. Consider two possible input distributions: i.i.d. flips of a coin that has probability 1

2

+ ✏ of

heads, or of one with probability 1

2

� ✏.

It will suffice to prove the following:

Claim 1: If there is an algorithm with budget B and expected regret at most T ✏/6, then there is

an algorithm to distinguish whether a coin is ✏-heads-biased or ✏-tails-biased with probability at

least 2/3 using 18B coin flips.

This claim implies the theorem because it is known that distinguishing these coins requires

⌦ (1/✏2) coin flips; in other words, it implies that ✏ � ⌦

⇣

1/
p

B
⌘

, so the algorithm’s expected

regret must be ⌦

⇣

T/
p

B
⌘

.

We prove Claim 1 by proving the following two claims:

Claim 2: If an algorithm’s expected regret is at most T ✏/6, then under the ✏-heads-biased coin,

with probability at least 5/6, it outputs the heads hypothesis more times than the tails hypothesis.

(And symmetrically under the tails-biased coin.)

Claim 3: An algorithm in this coin setting with budget B can, with probability at least 5/6, be

simulated for T rounds using at most 18B coin flips – in the sense that its behavior is identical to its

behavior on a full sequence of T coin flips.

Proof of Claim 1 from 2 and 3. We will take an algorithm with budget B and regret T ✏ and

use it to distinguish the coin using 18B coin flips: Using Claim 3, we can simulate the algorithm’s

behavior for all T rounds using at most 18B coin flips, except with probability 1/6. Then, if the

algorithm used the hypothesis heads more times than tails, we guess that the coin is heads-biased,

and symmetrically. By Claim 2, our guess is correct except with probability 1/6. By a union bound,

therefore, this procedure correctly distinguishes the coin except with probability 1/3, proving Claim

1.
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Proof of Claim 2. Suppose the coin being flipped is the heads-biased coin; everything that

follows will hold symmetrically for the tails-biased coin. Now, suppose that the algorithm outputs

the hypothesis tails for M of the T rounds. Since each round is an independent coin toss, if the

hypothesis is tails then its expected loss on that round is 1

2

+ ✏; if heads, 1

2

� ✏. This gives an

expected loss of M
�

1

2

+ ✏
�

+ (T �M)

�

1

2

� ✏
�

=

T

2

+ (2M � T )✏.

Meanwhile, the expected loss of the optimal hypothesis is at most T
�

1

2

� ✏
�

, since this is the

expected loss of the heads hypothesis. Therefore, the algorithm’s expected regret, if it outputs the

hypothesis tails M times on average, is at least

T

2

+ (2EM � T )✏� T

✓

1

2

� ✏
◆

= 2EM✏.

If the algorithm’s regret is at most T ✏/6, then this implies that 2EM✏  T ✏/6, or EM  T/12.

Thus by Markov’s inequality, the probability that half or more of the hypotheses are tails is bounded

by

Pr[M � T/2]  EM

T/2

 1/6.

.

Proof of Claim 3. Here, we assume that ✏ < 1/6, or B is larger than a (relatively small) constant.

On each data point, there are four possible menus: whether to buy or not to buy if the point is a

heads or is a tails.2 If the menu is (don’t buy, don’t buy), then no coin flip is needed (the behavior

of the algorithm is identical whether the coin is actually flipped or not). Otherwise, the coin must

be flipped, but the algorithm buys the data point with probability at least 1

2

� ✏ � 1

3

(the lowest

probability of the remaining three menus). Thus the expected number of flips needed before the

budget is exhausted is at most 3B, and by Markov’s inequality, the probability that it exceeds 18B

is at most 1/6.

Theorem A.4.6 (Theorem 6.5.3). No algorithm for the non-strategic online data-purchasing prob-

lem has expected regret better than O
⇣

�T/
p

B
⌘

; that is, for every �, for every algorithm, there

2The algorithm may make this a randomized menu, but we can simply consider the outcome of that random menu.
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exists a sequence with parameter � on which its regret is ⌦

⇣

� Tp
B

⌘

. Similarly, for c̄ =

1

T

P

t

p
c

and µ =

1

T

P

t

c
t

, we have the lower bounds ⌦

⇣

T c̄/
p

B
⌘

and ⌦

⇣

Tµ/
p

B
⌘

.

Proof. We reduce to the previous theorem. Consider the following distribution on input sequences.

There are three possible data points: heads, tails, and “no coin”. There are still two hypotheses,

heads and tails. Both have loss 1 on the “no coin” data point.

Now fix any � 2 [0, 1]. We will first send (1� �)T data points, all of which are “no coin”. The

loss of either hypothesis on all of these points is 1, and the cost of these points is zero. Then, we

will choose either the ✏-heads-biased or ✏-tails-biased coin, with ✏ = 1/
p

B, and send T 0
= �T

coin flips, just as in the previous proof.

Because the first (1 � �)T points are irrelevant to the regret, the regret of any algorithm is

simply its regret on these final T 0 data points, which by the previous proof is at least on the order of

T 0✏ = T 0/
p

B = �T/
p

B.

Now to check that the parameter � chosen above really is the � value of the data sequence,

note that the convexified hypothesis space for this problem is the space of distributions p 2 R2 on

{heads, tails}, with loss 1� p · (1, 0) if the coin is heads or 1� p · (0, 1) if the coin is tails. The

gradient of the loss on either point for all p is (1, 0) or (0, 1) respectively, and both have norm 1. So

�

h

t

,f

t

= 1 for all “heads” and “tails” data points. Thus we have that 1

T

P

t

�

h

t

,f

t

p
c
t

=

T

0

T

= �.

Finally, noting that � = c̄ in this case gives the bound containing c̄. For the lower bound with µ,

take the exact construction in Theorem 6.5.2 and let each point have c
t

= µ instead of c
t

= 1.

A.4.3 No regret — main setting

Theorem A.4.7 (Theorem 6.3.4). If Mechanism 6 is run with prior knowledge of � and of �
max

(up to a constant factor), then it can choose K and ⌘ to satisfy the expected budget constraint and

obtain a regret bound of

O

✓

max

⇢

Tp
B

g ,
p

T

�◆

,

where g =

p
� · �

max

(by setting K =

T

B

�
max

). Similarly, knowledge only of �, respectively

c̄ =

1

T

P

t

p
c
t

, respectively µ =

1

T

P

t

c
t

suffices for the regret bound with g =

p
�, respectively
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g =

p
c̄, respectively g = µ1/4.

Proof. The proof will proceed by finding a close-to-optimal value K of the normalizing constant

by considering the budget constraint, then plugging this into the regret term to get a bound. The

constant maximum price plays into this proof in a slightly non-obvious way. Because of this, instead

of setting this maximum price equal to 1, we consider the generalization where costs may lie in

[0, c
max

].

Consider time t when (c
t

, f
t

) arrives. Recall that the approach at time t is to draw a price for f
t

from the distribution where

A
t

(c) = Pr[price � c] = min

⇢

1 ,
�

h

t

,f

t

K
p

c

�

.

Consider then the induced posted-price distribution, which is pictured in Figure 6.2. It has a point

mass at c
max

of probability3
�

h

t

,f

t

/K
p

c
max

. Otherwise, it is continuous on the interval [c⇤, c
max

]

with density

�A0
t

(⇡) =

�

h

t

,f

t

2K⇡3/2

,

and the lower endpoint c⇤ satisfies A
t

(c⇤) = 1, i.e. c⇤ = �

2

h

t

,f

t

/K2.

We first find the bound on K such that the expected budget constraint is satisfied. The expected

amount spent on arrival t can be computed as follows.

c
max

Pr[price = c
max

] +

Z

c

max

max{c
t

,c

⇤}
x (pdf at x) dx

= c
max

�

h

t

,f

t

K
p

c
max

+

Z

c

max

max{c
t

,c

⇤}
x

�

h

t

,f

t

2Kx3/2

dx

=

�

h

t

,f

t

K

✓p
c
max

+

Z

c

max

max{c
t

,c

⇤}

1

2

p
x
dx

◆

=

�

h

t

,f

t

K

⇣

2

p
c
max

�
p

max{c
t

, c⇤}
⌘

.

Now let c⇤
t

be the value of c⇤ for arrival t (to distinguish its value in different timesteps). By the

budget constraint, we need to pick K so that
X

t

E [spend on arrival (c
t

, f
t

)]  B,

3If this quantity is greater than 1, then we post a price of c
max

for this datapoint, and what follows will only be a
looser upper bound on the amount spent.
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so
X

t

�

h

t

,f

t

K

⇣

2

p
c
max

�
p

max{c
t

, c⇤}
⌘

 B.

Now we make a simplification: If we substitute c
t

in for max{c
t

, c⇤}, then the left-hand side only

increases. Thus, to satisfy the previous inequality, it suffices to choose K to satisfy
X

t

�

h

t

,f

t

K
(2

p
c
max

�pc
t

)  B.

Thus, we let

K
min

=

1

B

X

t

�

h

t

,f

t

(2

p
c
max

�pc
t

) .

Note that it also suffices to choose any normalizer greater than K.

Recall our definition of the “difficulty-of-the-input” parameter

� = E 1

T

X

t

�

h

t

,f

t

p
c
t

,

and let

�
max

= E 1

T

X

t

�

h

t

,f

t

p
c
max

.

Then we have

K
min

=

T

B
(2�

max

� �) .

We now have the setup to quickly derive bounds such as the theorem statements. Note that any

choice of K � K
min

satisfies the expected budget constraint.

For the first regret bound, suppose that we know both � and �
max

up to a constant factor. Then

we can set K = O(K
min

). By Lemma 6.3.1, the expected regret is bounded by

Regret  �

⌘
+ ⌘

X

t

�

2

h

t

,f

t

A
t

(c
t

)

where � is a constant and ⌘ will be chosen later.

As in the known-costs scenario, let us split into those arrivals that we purchase with probability

1 (this corresponds to c
t

< c⇤
t

) and the others, letting S = {t : A
t

(c
t

) < 1}. Then the summation

term in the regret bound is bounded by a constant times
X

t 62S
�

2

h

t

,f

t

+

X

t2S
�

h

t

,f

t

p
c
t
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 T +
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� �) (A.29)
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where we have used the Lipschitz assumption on the loss function �

h

t

,f

t

 1.

As �
max

� �, we do not lose much by taking the upper bound

M = T + 2

T 2

B
� · �

max

. (A.30)

Now we can choose ⌘ = ⇥(1/M) and obtain our regret bound of

Regret  O
⇣p

M
⌘

 O

✓

max

⇢p
T ,

Tp
B

p
� · �

max

.

�◆

.

The other regret bounds all follow by (1) upper-bounding �
max

 pc
max

; (2) letting K =

T

B

p
c
max

;

(3) upper-bounding �; and (4) setting ⌘ appropriately. Note that this can only increase K, so the

expected budget constraint is still satisfied. The modifications simply give a different bound in

Expression A.30, from which the rest of the argument follows analogously.

From (1) and (2), Expression A.30 becomes

M = T + 2

T 2

B
�
p

c
max

.

First, if we know �, then picking ⌘ = ⇥(1/M) gives the corresponding bound.

Second, with only knowledge of c̄ =

1

T

P

t

p
c
t

, observe that �  O(c̄) and plug in.

Third, observe that by Jensen’s inequality c̄  pµ (where µ =

1

T

P

t

c
t

) and plug in.
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