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2School of Humanities and Liberal Studies, San Francisco State University, San Francisco, CA, USA

Abstract

Order effects occur when judgments about a hypoth-
esis’s probability given a sequence of information
do not equal the probability of the same hypothesis
when the information is reversed. Different exper-
iments have been performed in the literature that
supports evidence of order effects.
We proposed a Bayesian update model for order ef-
fects where each question can be thought of as a
mini-experiment where the respondents reflect on
their beliefs. We showed that order effects appear,
and they have a simple cognitive explanation: the
respondent’s prior belief that two questions are cor-
related.
The proposed Bayesian model allows us to make sev-
eral predictions: (1) we found certain conditions on
the priors that limit the existence of order effects;
(2) we show that, for our model, the QQ equality is
not necessarily satisfied (due to symmetry assump-
tions); and (3) the proposed Bayesian model has the
advantage of possessing fewer parameters than its
quantum counterpart.
Keywords: order effects; quantum cognition;
Bayesian networks; Bayesian updates

Introduction
The application of Quantum Mechanic’s mathemat-
ical principles in areas outside of physics has been
getting increasing attention in the scientific com-
munity in a field called Quantum Cognition (Buse-
meyer & Bruza, 2012; Moreira, Tiwari, et al., 2020;
Moreira, Hammes, et al., 2020). These principles
have been applied to explain paradoxical situa-
tions that cannot be easily explained through classi-
cal probability theory (Moreira & Wichert, 2017b).
Quantum principles have also been adopted in
many different domains, such as Cognitive Psychol-
ogy (Busemeyer et al., 2006; Pothos & Busemeyer,
2009; Pothos et al., 2013), Economics (Khrennikov,
2009; Haven & Khrennikov, 2013), Biology (Asano
et al., 2012, 2015), and Information Retrieval Bruza
et al. (2009, 2013), to name a few.

Order Effects
One of those paradoxical situations is order effects.
Order effects occur when judgments about a hypoth-
esis’s probability given a sequence of information

do not equal the probability of the same hypothesis
when the given information is reversed.

In purely classical models, such as the one exam-
ined by Trueblood & Busemeyer (2011), this poses a
problem. Since classical probability theory is based
on set theory, this means that it is commutative.
That is, for some question Q3 and two questions Q1
and Q2: P ( Q1 ∩Q2 | Q3 ) = P ( Q2 ∩Q1 | Q3 ) since
P (Q1 ∩Q2) = P (Q2 ∩Q1). This commutativity poses
a challenge to model order effects, because in order
to have P ( Q3 | Q1 ∩Q2 ) = P ( Q3 | Q2 ∩Q1 ), then
using Bayes Rule, one would need to satisfy the fol-
lowing relationship (Trueblood & Busemeyer, 2011):

P (Q3| Q1 ∩Q2 ) = P (Q3| Q2 ∩Q1), (1)

which implies that

P (Q1 ∩Q2|Q3)P (Q3)
P (Q1 ∩Q2)

=
P (Q2 ∩Q1|Q3)P (Q3)

P (Q2 ∩Q1)
. (2)

To accommodate these paradoxical findings, some
researchers turned to non-standard probability the-
ories. One such example is quantum probability,
a theory based on operators’ measures in Hilbert
spaces instead of sample sets. Quantum probability
models provide many advantages over their classi-
cal counterparts (Busemeyer et al., 2015; Moreira
& Wichert, 2018). They can represent events in
vector spaces through a superposition state, which
comprises all events at the same time. In quantum
mechanics, the superposition principle refers to the
property that particles must be in an indefinite state:
a particle can be in different states at the same time.

From a psychological perspective, a quantum su-
perposition is interpreted as related to the feeling of
confusion, uncertainty, or ambiguity (Busemeyer &
Bruza, 2012). The vector space representation does
not obey the distributive axiom of Boolean logic and
to the law of total probability. Instead, events sat-
isfy a quantum lattice structure and not a Boolean
algebra. This vector representation enables the con-
struction of more general models that can mathemat-
ically explain cognitive phenomena such as order
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effects (Pothos & Busemeyer, 2009; Khrennikov &
Haven, 2009).

Quantum Probability Models to
Accommodate Order Effects
One of the quantum approaches used to explain or-
der effects is the quantum projection model (Pothos
et al., 2013). In this approach, we start with a Hilbert
space, H, whose dimensions correspond to the num-
ber of possible responses to a question (e.g., C2).
A Hermitian operator (called an observable oper-
ator) models each question in H, and if two ques-
tions are to exhibit order effect, those operators are
non-commuting. Because of the spectral theorem,
such operators can be written as linear combina-
tions of projection operators, with the eigenvalues
multiplying each projector. Thus, in the quantum
model for order effects, when an initial state, de-
noted by a vector (or density operator) in the Hilbert
space, is subject to a question, the model treats it as
a measurement represented by the operator. After
a measurement, the initial state collapses into one
of the subspaces of the observable operator. This
new collapsed state is used to compute the proba-
bilities of the second operator. Since projections are
not unitary and do not commute, measuring one ob-
servable before another changes the measurements’
outcomes. The non-unitarity of non-commuting
quantum measurements leads, in essence, to order
effects. We refer the reader to Pothos et al. (2013)
for details about the quantum model.

Contributions

A question remains as to whether one needs quan-
tum models to describe order effects (Moreira &
Wichert, 2017a). Can one use classical probabil-
ity theory without constructing contrived models?
Some previous works attempt to answer this ques-
tion. In Costello & Watts (2018), the authors argue
that order effects result from classical probability
theory with some noise, and in David Kellen (2018),
the authors discuss a class of repeat-choice models
that can provide approximate results to the quan-
tum models. This paper tries to answer this question
positively. We do so by constructing a Bayesian up-
date model that accounts for order effects. The pro-
posed model allows us to make several predictions:
certain conditions on the priors limit the existence of
order effects, and the proposed Bayesian model has
fewer parameters than its quantum counterparts.

Paper Outline

This paper is organized as follows. In the next sec-
tion, we use Bayesian Networks to show a fallacy in

the argument that order effects cannot be derived
from classical probability theory. This Bayesian
Network representation leads to the intuition that
Bayesian probability updates can account for order
effects. In the following section, we construct a
Bayesian update model that offers further insights
into the cognitive origins of order effects and show
a series of predictions from the model. Finally, we
end this article by summarizing the most relevant
contributions presented throughout this study.

Fallacies in Order Effects
Consider the following experimental scenario. A
set of participants is required to answer three ques-
tions, Q0, Q1, and Q2 consecutively. One set of
participants is presented with the questions Q0→
Q1 → Q2, while the other participants are pre-
sented with the same questions, but in reversed or-
der, Q0 → Q2 → Q1. Some researchers argue the
above experimental contexts should attain similar
outcomes for questions Q1 and Q2 since, in classical
probability theory, the joint distribution between
two events is commutative. In other words, it is ar-
gued that the expected probability outcomes should
be P (Q1,Q2|Q0) = P (Q2,Q1|Q0). We claim that this
premise is a fallacy due to the following reasons:

• There is no causality in probability theory.
Probability theory describes the likelihood of out-
comes of random phenomena. Since events are
represented as sets, there is no notion of tempo-
rality (order) between events, and, consequently,
probability theory, by itself, says nothing about
causality. The jointQ1∩Q2 means that both events
occur, without any implications to time or cause
& effect (order) between the events.

• There is no temporality in probability theory.
Order effects experiments imply the notion of
time: one question needs to be asked after an-
other. Again probability theory, due to its set-
based foundation, nothing says about time. Con-
ditional probability is simply a measure under
additional information. It implies symmetry, and
for that reason, it does not imply temporal order.
Temporality is part of a model, and not part of
probability theory itself.

A good set of tools to visualize these fallacies are
Bayesian networks (BNs), which are models that rep-
resent a compact full joint probability distribution
through a directed acyclic graphical structure. Its
underlying mathematical principles are Bayes rule
and conditional independence.

Given different full joint probability distributions,
P (Q0,Q1,Q2), each distribution will be associated to

2
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Figure 1: Different representations of a joint
probability distribution portraying different

assumptions between random variables.

a specific configuration of random variables. Con-
sider the Bayesian networks in Figure 1. They
all represent the full joint probability distribution
P (Q0,Q1,Q2), but with different underlying proba-
bilistic graphical models. It is not correct to say that
the full joint probability distribution in Figure 1-(A)
has to be same as in Figure 1-(B). First, because they
represent different experimental scenarios. For that
reason, they yield different measures over the sam-
ple spaces. Second, the priors affecting the random
variables change in both scenarios. It is a fallacy to
assume that these two models should represent the
same experimental context.

For example, the equation expressing the full
joint of the network in Figure 1-(A) is given by
P (Q0,Q1,Q2) = P (Q0)P (Q1|Q0)P (Q2|Q0,Q1). In
the same way, the equation representing the net-
work in Figure 1-(B) is given by P ′(Q0,Q1,Q2) =
P ′(Q0)P ′(Q2|Q0)P ′(Q1|Q0,Q2). Thus, it is a fallacy
to assume that P (Q0,Q1,Q2) = P ′(Q0,Q1,Q2).

In this paper, we argue that to model order effect
between three questions, Q0, Q1, and Q2, we need
to have a causal reasoning network structure as de-

picted in Figure 1-(C). This means that order effects
can be observed when:

• Q0 is correlated with Q1 and Q2, and

• Q1 and Q2 are conditionally independent, given
Q0, (Q1 yQ2|Q0).

These two conditions imply that, if there are no order
effects, then the following equation should hold:

P (Q2|Q0) = P (Q2|Q0,Q1)

P (Q1|Q0) = P (Q1|Q0,Q2)
(3)

If Equation 3 is violated, then it suggests some cor-
relation between Q1 and Q2, which may be derived
from the degree of uncertainty that the decision-
maker is experiencing. In the next section, we will
use these notions to formulate a Bayesian update
model to accommodate order effects.

Order Effects in Bayesian Updates
To understand the main idea, let us think of the well-
known Clinton/Gore order-effect example, which
corresponds to an order effect experiment originally
conducted by Moore (2002). Consider the following
two questions that were used in the experiment:

Q1: Is [former US president Bill] Clinton honest and
trustworthy?

Q2: Is [former US vice-president Al] Gore honest
and trustworthy?

Experimental data shows that we get disparate re-
sults if we ask the above questions in different orders
(Table 1) Wang et al. (2014). Namely, if we ask Q1
before Q2, the probability that Q1 is answered in
the positive is 53%. However, if we ask Q1 after
Q2, i.e., if we change the order, Q1 is answered pos-
itively 59% of the time. Similarly, Q2 gets 75% if
asked first and 65% if asked after Q1. The change in
probabilities of Q1 and Q2 with the order they are
answered is known as the order effect.

How can we understand the order effect from a
Bayesian point of view? A simple Bayesian model,
such as the one presented by Trueblood & Buse-
meyer (2011), cannot account for order effects. As
discussed previously, the reason is simple: from a
set-theoretic point of view, the conjunction A∩B is
the same as B∩A, so there is no order in it.

So, does that mean that it is impossible to ob-
tain order effects with Bayesian probabilities? The
answer is no. To see this, consider the following cir-
cumstance. Imagine we ask a participant a question
they are not sure of its answer. After some reflec-
tion, they may answer yes to it. However, this does

3
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Scenario 1:

Clinton (C)→ Gore (G)

Scenario 2:

Gore (G)→ Clinton (C)

P( G = yes | C ) P( G = no | C ) P( C = yes | G ) P( C = no | G )

P( C = yes ) 0.4899 0.0447 P( G = yes ) 0.5625 0.1991

P( C = no ) 0.1767 0.2886 P( G = no ) 0.0255 0.2130

Table 1: Order-effect experiments reported in the work of Moore (2002). The random variable Clinton
represents the question Is [former US president Bill] Clinton honest and trustworthy?; and Gore represents the
question Is [former US vice-president Al] Gore honest and trustworthy?. A total of 501 participants answered

the questions in each scenario, making a total of 1002 participants in the experiments.

not mean they are sure of their answer. For exam-
ple, if after a moment of pondering, they answer
“yes” to the question, they weighed the evidence for
and against it and found a preponderance toward
yes. Thus, we can think of the process of answer-
ing a question as a reflection on our beliefs. It is a
type of mini-experiment. As such, after this mini-
experiment, their beliefs may change. Consequently,
they need to update their prior. Being asked and an-
swering a question updates the prior to a posterior.

To implement the above idea to produce an or-
der effect, we follow the belief update described in
Morris (1974, 1977); de Barros (2013). Imagine a
participant being asked the two questions, Q1 and
Q2. Before answering Q1, the participant has an
unconscious prior joint probability P (Q1,Q2). Once
they reflect on Q1, their prior is updated to a poste-
rior P ′(Q1,Q2). This new posterior is the one used to
compute the answer to Q2. If the prior joint proba-
bility has Q1 and Q2 correlated (as is likely the case
of Gore and Clinton), then the expectation for Q2
will likely be different. The same would happen if
Q2 were asked first, with a new posterior P ′′(Q1,Q2)
giving rise to a different expectation for Q1.

Let us describe mathematically the above intu-
ition. We start with a participant, Alice, who will be
asked to decide between the two questions, Q1 and
Q2. Alice starts the experiment with a prior joint
probability distribution P (Q1 = x;Q2 = y|κ) condi-
tioned on Alice’s current knowledge κ, where Q1
and Q2 are 0/1-valued random variables represent-
ing Alice’s two possible answers, “yes” (1) and “no”
(0). We will denote P (Q1 = y) as P (q1) and the com-
plementary probability, P (Q1 = n) as P (q1). Prior
to being asked a question, Alice is unaware of her
belief for each answer, encoded by the prior. It is not
until she is asked that, by thinking about her belief,
Alice comes up with one of two possible answers
and perhaps a measure of her belief. Thus, Alice’s
choice of “yes” or “no” and her reflection requires a

belief update. According to Bayes’s theorem, Alice’s
prior became the posterior P ′(Q1 = x,Q2 = y|Q1 = z).
Assuming a simple linear likelihood function, the
updated posterior for the order Q1 and then Q2 be-
comes

P ′O1(x,y|z) =
P (Q1 = z)P (z,y)∑

x′ ,y′ P (Q1 = x′)P (Q1 = x′ ,Q2 = y′)
,

(4)
where we are using the simplifying notation P ′(Q1 =
x,Q2 = y|Q1 = z) = P ′(x,y|z) when there is no ambi-
guity in meaning, and the subscript O1 for the order
Q1 first. Similarly, for the order Q1→Q2 we get

P ′O2(x,y|z) =
P (Q2 = z)P (z,y)∑

x′ ,y′ P (Q2 = x′)P (Q1 = x′ ,Q2 = y′)
,

(5)
for the inverse order, with Q2 first.

For simplicity, let us assume that the prior has
well the following expectations.

P (q1) = P (q1,q2) + P (q1,q2) = a, (6)

P (q2) = P (q1,q2) + P (q1,q2) = b, (7)

P (q1,q2) = c. (8)

a and b are the probabilities of Q1 and Q2 as true
when asked first, respectively, and c is related to
their correlation, as it equals their joint moment.
For instance, c = 1 if both Q1 and Q2 are true.

From Eq. 6-8, one can compute the remaining
values of the full joint distribution by solving the
following linear equation system:

P (q1,q2) + P (q1,q2) + P (q1,q2) + P (q1,q2) = 1
P (q1) = P (q1,q2) + P (q1,q2) = a
P (q2) = P (q1,q2) + P (q1,q2) = b
P (q1,q2) = c

(9)
From Eq. 9, we can find that P (q1,q2) = c,

P (q1,q2) = a − c, P (q1,q2) = b − c, and P (q1,q2) =
4
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1 − a − b + c. By substituting the values of Eq. 4
by the outputs of our linear solver, then we obtain
Eq. 10 from which it is straightforward to show that
there is an order effect. For instance, for Q1 first, the
probability of a true answer is a, but if one asks Q2,
after the update, the probability of being true is

P ′(q2|Q1) =
(2a− 1)c+ (1− a)b

2a2 − 2a+ 1
. (10)

We can see from the above equations that the up-
dated probability for Q2, P ′(q2|Q1), is not the same
as it was before, P (q2). What are the conditions for
the probability to be the same, i.e., for not having
an order effect? No order effect can be verified if the
following conditions are satisfied:

• Both questions are statistically independent,Q1 y
Q2, and the following conditions are satisfied:

– P ′(q2|Q1) = P (q2), the belief of answering ”true”
to the second question independently of having
knowledge about the first question.

– P ′(q1|Q2) = P (q1), the belief of answering ”true”
to the first question independently of having
knowledge about the second question.

If the above conditions are not satisfied, then we
have an order effect. Figure 2 illustrate an order
effect in the Bayesian update from P (q1) to P ′(q2|Q1)
(Equation 10).

Figure 2: Order effect on belief update from
answering ”true” to the second question having

knowledge about the first question ( Eq.10)(c = 0.2).

One possibility to not have an order effect is for
a = 1/2. This possibility is intuitive since, if we have
no opinion on Clinton, it stands to reason that what

a random choice will not influence how we think of
Gore. The other solution, c = a.b, is also intuitive
(and it is represented in Figure 3): it means that our
prior opinion of Gore and Clinton are statistically
independent. Note that independence between ques-
tions is one of the properties that were highlighted
in Eq. 3, as a necessary condition for order effects to
not occur. Therefore whatever we learn about our
beliefs about Clinton, they will not affect our beliefs
about Gore.

Figure 3: No order effect on belief update from
answering ”true” to the second question having

knowledge about the first question. Setting c = a.b.

With the above example, we can understand how
the update leads to the order effect. We start with
a prior, say one that has Clinton at 40% and Gore
at 70% as our belief that they are honest and trust-
worthy. Let us assume that, because we know Gore
was Clinton’s vice president, there is a correlation
between our belief’s about Clinton and Gore. By
reflecting on Clinton and thinking, “no, we do not
think he is honest and trustworthy, and we think
that the likelihood of trustworthy is just 40%”, our
prior updates and our belief about Gore changes.

What about the QQ equality, a measure of how
well the order effect matches quantum predictions.
We can also compute the QQ equality for this system,
and we obtain the following prediction.

QQ = − 2(b − a)(b+ a− 1)(c − ab)
(2a2 − 2a+ 1)(2b2 − 2b+ 1)

(11)

We can see that the QQ equality is satisfied when
a = b, b = 1 − a, or when both Clinton and Gore
are statistically independent. The latter case is not
interesting since it also implies there is no order

5
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effect. Interestingly, Bayesian updates do not predict
the QQ equality, but it provides conditions for which
the QQ equality is satisfied. Furthermore, it allows
us to try and find experimental situations where QQ
is maximally violated.

Q1→Q2→Q1 order effect

We now turn to a problem with quantum cognition
models for order effect (Khrennikov et al., 2014).
The quantum model provided by Wang & Buse-
meyer (2013) assumes observables Â and B̂ in the
Hilbert space associated with Q1 and Q2, such that
[Â, B̂] , 0. If the initial cognitive state is given, then,
afterQ1, this state collapses into a subspace of Â cor-
responding to the eigenvalue of the response. Sub-
sequent observation of Q2 leads to another collapse
into the eigenvectors of B̂. However, this second
collapse presents a problem. Since Â and B̂ do not
commute, it follows that asking Q1 twice yields dif-
ferent results if Q2 is asked in between them. In
other words, someone’s response to Q1 may change
when an intermediate question is asked.

In their paper, Khrennikov et al. (2014) discussed
this problem, claiming to be a significant issue with
the quantum model. They reasoned that if one asks
Q1 twice, people will answer it the same. This re-
peatability is known as the replicability effect. In
a recent article, Busemeyer & Wang (2017) showed
that, indeed, replicability is not necessarily true in
a Q1→Q2→Q1 experiment, arguing that this sup-
ports the quantum approach.

However, does this experiment represent a quan-
tum effect? From our Bayesian model, we can see
that each time a question is asked, the prior is up-
dated. Thus, the probability of answering Q1 the
second time is not the same, and there is an intuitive
dynamics at play for each consecutive question. The
first Q1 updates the prior and leads to a posterior
that changes the probabilities for Q2. The answer-
ing of Q2 once again updates the probabilities of the
new posterior for Q1. One can imagine situations
where, depending on the correlations and initial
probabilities, Q1 before Q2 can be made more or
less probable than the Q1 after Q2.

Does the Bayesian model provide anything funda-
mentally different from the quantum model, as both
predict the non-replicability of a question? We be-
lieve so. Consider now the further complication to
the Q1→ Q2→ Q1 experiment: Q1→ Q2→ Q1→
Q2 → Q1. The quantum model predicts that the
third Q1 will have the same probability as the sec-
ond one. The Bayesian model, on the other hand,
predicts that the probabilities will be updated every
time. This change in probabilities is intuitive. The

more one reconstructs an answer, the more likely we
will be to repeat it. This convergence to the stability
of answers is not part of the quantum model, and it
is a prediction of our proposed Bayesian model.

Conclusions
Order effect has been studied extensively in the lit-
erature. It is the most striking example of an experi-
mental outcome that fits well with quantum models
while challenging traditional cognitive models. Fur-
thermore, quantum models predict some constraints
for order effects, most notably the QQ equality.

In this paper, we examined the order effect as a
Bayesian update phenomenon. We first showed that,
by thinking about questions in terms of a Bayesian
Network, one could realize that some traditional
models, such as those discussed by Trueblood &
Busemeyer (2011), fail because they do not account
for temporal processes. Notably, they do not in-
corporate changes in the probability distribution
during a Bayesian update. To address this challenge,
we constructed an explicit Bayesian update model
where each question can be thought of as a mini-
experiment where the respondent reflects on their
beliefs. For this model, we showed that order effects
appear, and they have a simple cognitive explana-
tion for their existence: the respondent’s prior belief
that two questions are correlated.

Similar to the quantum order effect model, our
Bayesian model allows us to make several predic-
tions. First, we see certain conditions on the prior
that limit the existence of order effects. For exam-
ple, if Q1 and Q2 are statistically independent, one
should not expect order effects. These conditions
allow us to think about possible experiments where
order effects will be strong or non-existent. Second,
we show that, for our model, the QQ equality is not
necessarily satisfied. This does not mean that QQ
will not be satisfied for a particular experiment. It
only means that QQ requires further assumptions
(i.e., certain symmetry conditions). Third, like the
quantum model, the Bayesian model does not pre-
dict the exact replicability of questions. However,
contrary to the quantum model, the more questions
are asked, the more the posterior will converge, sta-
bilizing the answer. Finally, the Bayesian model
has the advantage of having fewer parameters than
the quantum model. For the simplest order-effect
quantum model, a minimum of four parameters is
necessary. For our Bayesian model, three parameters
describe the joint probability distributions entirely.
Whether the Bayesian model is better than the quan-
tum model is a question to be settled empirically,
which we are planning to address as future work.
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