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Abstract

Is a hydrogen bond symmetric, with the hydrogen centered between

two donor atoms, or is it asymmetric, with the hydrogen closer to one but

jumping to the other? The NMR method of isotopic perturbation has been

used to distinguish these. Previous evidence from isotope shifts implies that

a wide variety  of  dicarboxylate  monanions  are asymmetric,  present  as  a

rapidly  equilibrating  mixture  of  tautomers.  However,  calculations  of

hydrogen trajectories across an anharmonic potential-energy surface could

reproduce the observed isotope shifts in phthalate monoanion. Therefore it

was concluded that those isotope shifts are instead consistent with isotope-

induced  desymmetrization  on  a  symmetric  potential-energy  surface.  To

distinguish  between  these  two  interpretations,  the  18O-induced isotope

effects  on  the  13C  NMR  chemical  shifts  of  cyclohexene-1,2-dicarboxylate

monoanion  in  chloroform-d and  on  the  19F  NMR  chemical  shifts  of

difluoromaleate monoanion in D2O have been investigated. In both cases the
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isotope effects are larger at lower temperature and also with deuterium in

the hydrogen bond. It is concluded that these behaviors are consistent with

the  perturbation  of  an  equilibrium  between  asymmetric  tautomers  and

inconsistent  with  isotope-induced  desymmetrization  on  a  symmetric

potential-energy surface.

Introduction

Hydrogen  bonds  (H-bonds)  are  the  result  of  an  attractive  force

between a proton and two lone-pair donors.1 They have a vital role in the

structure and reactivity of chemical species.2 They contribute to the shape

and function of many substances,3 and they have attracted great interest for

their possible role in stabilizing intermediates or transition states,4 although

reasonable alternatives have been proposed.5 A  fundamental  question

regarding  H-bonds  is  whether  the  H  is  centered  between the  two  donor

atoms or is instantaneously closer to one.6 This question simplifies if the two

donor  atoms are  of  very  different  basicities.  In  such cases the potential-

energy surface describing the H motion is a double well with unequal well

depths, so that the H is always closer to the more basic donor than to the

other.  This  is  the situation for  some of the most common H-bonds,  as in

water, proteins, and nucleic acids. They are termed asymmetric H-bonds. In

contrast,  if  the  two  donor  atoms  are  of  equal  basicities,  the  double-well

potential becomes symmetric, with equal well depths. If the energy barrier

between the wells is substantial, the H may be instantaneously localized in

one well and jumping between them, in an asymmetric H-bond. Alternatively,

as  the  distance  between  the  donor  atoms  decreases,  the  barrier  height

drops, and the H may be delocalized across both wells and in a symmetric H-

bond. Such H-bonds are often called “short” or “low-barrier” H-bonds, with

enhanced strength.7 
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Symmetric  species  have  often  been  distinguished  from asymmetric

ones by the NMR method of isotopic perturbation.8 This method succeeds

even if rapid equilibration coalesces the signals. Our approach has been to

apply this method to H-bonds,9 in order to distinguish a symmetric species in

a single-well potential from a rapidly equilibrating mixture of tautomers in a

double-well potential.10 This requires measuring the isotope shift nΔX, which is

the  change of  the  NMR chemical  shift  δ  of  a  reporter  nucleus  X  due  to

isotopic  substitution  n bonds away (eq.  1,  with  n sometimes omitted).  In

general  the  isotope  shift  due  to  a  heavier  isotope  is  negative  (greater

shielding), although conventions differ.11 There are two contributions to the

observed isotope shift, an intrinsic isotope shift Δ0 and a perturbation shift

Δeq induced by perturbation of an equilibrium (eq. 2). The mere presence of

an isotope is responsible for Δ0,12 while Δeq is due to an equilibrium isotope

effect  (EIE)  arising  from  differences  in  the  mass-dependent  vibrational

frequencies and zero-point energies of the two species in equilibrium.13 

nΔX = heavy – light (1)

Δobs = Δ0 – Δeq (2)

For  more  than two decades isotopic  perturbation  has been used to

explore the symmetry of H-bonds in the monoanions of dicarboxylic acids

and  similar  species.  Although  some  of  them are  symmetric  in  crystals,14

others,  including  maleate  and  phthalate  monoanions,  are  nevertheless

asymmetric in aqueous and organic solutions.15 The asymmetry in solution

was  attributed  to  the  disordered  instantaneous  solvation  of  the  local

environment,15-16 leading to solvatomers (isomers that differ in solvation).17

The  disorder  of  solvation  renders  the  two  donor  atoms  instantaneously

inequivalent,  whereupon the  hydrogen  attaches  to  the  less  well  solvated

donor.17b,18 Indeed,  this  interpretation  was  supported  by  computer
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simulations,19 including  the  case  of  otherwise  symmetric  FHF–.20 Further

examples show that asymmetry is also seen in NHN and NHO H-bonds.21 In

summary, we and others have been unable to find evidence for symmetric H-

bonds  in  solution  (except  at  very  low  temperature,  where  the  solvent

becomes  well  ordered),22 and  with  only  one  recent  exception  that

demonstrates the subtlety of solvation.23 Therefore we concluded that there

is no stabilization or enhanced strength associated with symmetric, short, or

low-barrier H-bonds.9 

However,  Bogle  and  Singleton  have  published  an  alternative

interpretation  of  those  NMR  data  that  were  presented  as  evidence  for

asymmetric  tautomers.24 They calculated the quasiclassical  trajectories  of

hydrogen  across  the  highly  anharmonic  potential-energy  surface  in

isotopically labeled phthalate monoanion and averaged the  13C NMR shifts

over those trajectories. They concluded that an  18O produces a significant

intrinsic isotope shift that can account for the results obtained by Perrin and

co-workers. If so, phthalate monoanion is symmetric and there is no need to

propose equilibrating tautomers.

We do not deny that the intrinsic isotope shift due to an  18O can be

substantial  when there  is  coupling  between a  desymmetrizing  mode and

anharmonic  isotope-dependent modes. The question remains whether this

calculated  isotope  shift  accounts  fully  for  the  isotope  shifts  that  were

measured. 

To  address  the  claim  that  the  measured  isotope  shifts  can  be

attributed to the isotope effect (IE) on a symmetric but anharmonic potential-

energy  surface,24 we  first  studied  cyclohexene-1,2-dicarboxylic  acid

monoanion (1-h) in CDCl3.25 We found that the 18O-induced 13C NMR isotope

shifts at the ipso carbons are larger at lower temperature, consistent with
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perturbation of an equilibrium between asymmetric H-bond tautomers. We

further inferred that this result is inconsistent with the desymmetrizing effect

of isotopic substitution on a symmetric potential-energy surface, because the

trajectories ought to become less anharmonic at lower temperature. We now

extend this study to the temperature dependences of  the  18O-induced  13C

NMR isotope shifts of  1-d and of the  18O-induced  19F NMR isotope shifts in

difluoromaleate monoanion (2-h and 2-d).

Our  second  approach  is  to  compare  the  isotope  shifts  of  diacid

monoanions 1-d and 2-d with an ODO H-bond to 1-h and 2-h with an OHO H-

bond. If the isotope shifts are due to the desymmetrizing effect of isotopic

substitution on a symmetric but anharmonic potential-energy surface, that

effect  ought  to  be  smaller  with  heavier  deuterium,  whose motion  is  less

anharmonic. Alternatively, if the isotope shifts are due to the perturbation of

an  equilibrium  between  asymmetric  H-bond  tautomers,  that  equilibrium

might  become  more  unbalanced  with  OD,  because  the  isotope  shift  is

expected to increase with D,16a owing to a larger 18O IE on the acidity of an

OD  acid.26,31 We  now  report  isotope  shifts  of  18O-labeled  protium  and

deuterium  cyclohexene-1,2-dicarboxylate  monoanions  (1)  and

difluoromaleate monoanions (2), in order to compare ODO H-bonds with OHO

H-bonds.

Experimental

Synthesis and 18O incorporation

Synthesis of Bu4N+ 3,4,5,6-tetrahydrophthalate-d-18O0–4 (1-d-18On)
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A  mixture  of  18O  isotopologues  of  diacid  1 was  synthesized  by

hydrolyzing the anhydride in H2
18O containing THF (to increase solubility),

then  adding  D2O  and  Bu4N+ OH–.  The  solid  Bu4N+ salt  of  the  monoacid

monoanion 1-d-18On was then obtained by removing the solvent in vacuo. 

Synthesis  of  difluoromaleic  acid,  difluoromaleic-18O0–2 acid,  Bu4N+

difluoromaleate-18O  (2-18On,  n =  0,1,2),  and  of  Bu4N+ deuterium

difluoromaleate-18O (2-d-18On, n= 0,1,2)

Even though difluoromaleic acid is a "simple" material, it is not readily

available,  so  that  it  was  necessary  to  give  careful  consideration  to  its

preparation.  Although  it  has  been  prepared  in  one  step  by  oxidation  of

polyfluorinated  aromatics  with  ≥40%  peracetic  acid,27 this  peracid  is

hazardous  and  not  always  available.  An  alternative  small-scale  oxidation

procedure  was  reported,  but  it  requires  a  commercially  less  accessible

phthalocyanine catalyst.28 Instead of these oxidative pathways a multistep

procedure  is  more  commonly  used.29 However,  neither  of  the  requisite

precursors,  1,1,2-trichloro-2,3,3-trifluorocyclobutane  nor  trifluorosuccinic

acid,  is  now available  commercially  at  a  reasonable  price.  Therefore  we

developed a mild procedure for synthesis and isolation of difluoromaleic acid

by oxidation of pentafluorophenol with ~35% peracetic acid. 

Difluoromaleic anhydride was then readily prepared by dehydration of

difluoromaleic acid with P2O5.30 

The procedure for  incorporation of  18O was adapted from an earlier

one.29b Hydrolysis  of  difluoromaleic  anhydride  with  H2
18O  containing  >2

equiv.  of  Na18OH  rapidly  produced  the  mono-18O-labeled  difluoromaleate

dianion  and  avoided  equilibration  or  incorporation  of  more  than one  18O.

Excess  hydroxide  is  necessary  because  with  only  one  equivalent  the

resulting  monoacid  monoanion  would  neutralize  a  second  equivalent  of
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hydroxide.  The  use  of  Na18OH  succeeded  in  furnishing  100%  dianion

containing ~95%  18O. Acidification with dilute HCl then led to isolation of

difluoromaleic  acid  containing  ~80%  monolabeled  material,  along  with

~15% of  unlabeled  and  ~5% doubly  labeled  18O-diacid.  This  quality  was

suitable to clearly observe and interpret the isotope shifts in the  19F NMR

spectrum of the monoanion. 

Bu4N+ protium  difluoromaleate-18O  (2-h-18On;  n =  0,1,2)  was  then

readily prepared by the addition of 1 equivalent of Bu4N+ CN– to the solution

of difluoromaleic-18On acid in H2O. However, applying that procedure to the

same difluoromaleic-18On acid, but in D2O, was not successful in producing

Bu4N+ difluoromaleate-d-18On (2-d-18On;  n =  0,1,2).  We  surmise  that  this

remarkable feature is because difluoromaleic acid is so strong an acid that it

is present in aqueous solution exclusively as its internally hydrogen-bonded

monoanion (2-h), which is so weak an acid and also so weak a base that

neither  base-  nor  acid-catalyzed  hydrogen  exchange  is  fast  enough  to

equilibrate  the  protonated  and  deuterated  isotopologues.  However,  the

equilibrium could be established and shifted toward the desired deuterated

isotopologue by heating in D2O. Evidence for the retention of H within the H-

bond  and  the  conditions  to  remove  that  H  are  presented  in  Supporting

Information.

Results

Carboxyl 13C NMR Chemical-Shift Assignments for 18O Isotopologues 

of 1-d
Figure 1 shows the 13C NMR signals for the carboxyl (A) carbons of the

18O isotopologues of 1-d-18On at 20°C, −10°C, −20°C, −30°C, and −50°C. The

prominent  peaks  represent  unlabeled  (A0)  and  mono-18O-labeled  (A1)

carboxyl carbons. These designations are shown in Fig. 2, which is adapted
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from Fig. 3 of a previous study.25 The two major signals are separated by an

intrinsic isotope shift  Δ0 of –28.5 ppb at 20 ºC. Although signals due to a

small amount of di-18O-labeled (A2) carboxyl may be present at 171.53 ppm,

those  signals  were  ignored.  These  assignments  are  based  on  results

obtained  from  1-h,  where  addition  of  unlabeled  1 increased  the  A0

intensity.25

Figure 1. 13C NMR spectrum of the carboxyl region of a mixture of 18O-labeled

isotopologues of 1-d-18On in CDCl3 at 20°C (blue), −10°C (green), −20°C

(brown), −30°C (pink), and −50°C (yellow).

Figure 2. Dominant un-, mono-, and di-18O-labeled isotopologues of 1-d and

designation of distinguishable carbons.

Ipso 13C NMR Chemical-Shift Assignments for 18O Isotopologues of 1-
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d

Figure 3 shows the  13C NMR signals for  the ipso carbons of  the  18O

isotopologues of  1-d-18On at 20°C, −10°C, −20°C, −30°C, and −50°C. The

ipso designations are also labeled as B on the structures in Figure 2. The first

subscript represents the number of 18O labels on the carboxyl group adjacent

to that ipso carbon, and the second subscript represents the number of 18O

labels  on  the  opposite  carboxyl.  Thus  B00 and  B11 correspond  to  species

where the two carboxyls have the same number of 18O labels. Because these

two signals are not resolvable, the intrinsic isotope shift Δ0 must be too small

to measure, in contrast to the intrinsic isotope shift for the carboxyls, and as

expected  from  phthalate  monoanion.15 These  signals  are  therefore

designated as  B00/11.  Two other peaks,  B01 and  B10,  correspond to species

with one additional 18O label in one of the carboxyls, while we ignore signals

B12 and B21. Two further peaks, B02 and B20, correspond to species with two

additional  18O labels in one of the carboxyls, but they are too weak to be

resolved well. The labeling of the peaks in Fig. 3 is consistent with a negative

isotope shift due to a heavy isotope, even though it is not possible to assign

which signal is due to the  13C that is closer to the  18O. Finally, it should be

noted that isotopologues  1-18O1 and  1-18O2s, with carboxyls bearing one  16O

and  one  18O,  exist  as  a  mixture  of  rapidly  equilibrating  conformational

isotopomers related by rotation about the Cipso-C bond, but for brevity only

the one with  18O involved in the H-bond is shown. The justification for this

simplification is presented in the Supporting Information. 
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Figure 3. 13C NMR spectrum of the ipso region of a mixture of 18O-labeled

isotopologues of 1-d-18On in CDCl3 at 20°C (blue), −10°C (green), −20°C

(brown), −30°C (pink), and −50°C (yellow).

Temperature Dependence of Chemical-Shift Differences in 1-d and 1-

h

Tables S5 and S6 list the chemical shifts of the carboxyl (A) and ipso

(B)  carbons  in  18O isotopologues  of  1-h and  1-d,  respectively,  at  various

temperatures.  The carboxyl (A) chemical-shift  differences are dismissed as

less  reliable,  and  we  focus  on  the  B signals  of  ipso  carbons.  The  ipso

chemical-shift differences, B01−B10, for both 1-h and 1-d are listed in Table 1.

Because the signal assigned as B01 is more deshielded than that assigned as

B10, these differences represent negative isotope shifts.

Table 1. Chemical-shift differences (ppb) for ipso (B) carbons of 1-h and 1-d

at various temperatures.

Anio

n 

20°

C

−10°

C

−20°

C

−30°

C

−50°

C

1-h25

B01−B

10

46.

0 51.2 52.2 53.5 55.3

10



1-d

B01−B

10

55.

6 60.0 61.5 64.1 69.9

All the chemical-shift differences for  1-h and  1-d in Table 1 increase

with decreasing temperature. This confirms what had been observed for  1-

h,25 while the result for  1-d is new. Figure 4 shows a plot vs 1000/T of the

observed chemical-shift differences   for the  B01 −  B10 ipso separations of

both  1-h and 1-d. The plots are adequately linear, with slopes of 8.6 ± 1.3

and 13.3 ± 0.8 ppm-K, respectively. The intercepts of 17 ± 5 and 9.5 ± 3

ppb represent intrinsic shifts that are higher than the expected 3 ppb, but

the  values  are  quite  uncertain  because  they  depend on  extrapolating  to

infinite temperature from data over a small range. Besides, correcting for

that discrepancy hardly changes the slope. The key result is  that in both

cases the increase of  with decreasing temperature can be attributed to the

perturbation of an equilibrium between tautomers. 
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Figure 4. Linear fit of chemical-shift difference Δ vs 1000/T for the ipso

carbons (B01 − B10) of 1-h-18O (x) and 1-d-18O (+) in CDCl3.

19F Chemical Shifts and 18O-Induced 19F Isotope Shifts of 2-h and 2-d

The  19F NMR spectra  of  difluoromaleate  monoanion-h,  monoanion-d,

and dianion (without  18O incorporation)  in  D2O are singlets  with chemical

shifts -126.45, -126.33, and -140.79 ppm, respectively. These are in good

agreement with previously reported values.29b Although difluoromaleic acid is

such a strong acid that it does not persist in aqueous solution so that its

chemical shift cannot be measured, that chemical shift can be estimated as -

112 ppm, assuming an additive contribution from each proton. From the 19F

NMR chemical shifts of monoanion and dianion, a perturbation shift of 0.07

ppm between the two fluorines  of  difluoromaleate-18O monoanion  can be

estimated from eq. 3, if the equilibrium constant between the two tautomers,

one with H on 18O and the other with H on 16O, is taken as 1.01, based on the

18O EIE on the acidity of simple carboxylic acids.26

∆eq = D (K – 1)/(K + 1) (3)

The 19F NMR spectrum of the disodium salt of a 15:80:5 mixture of un-,

mono-, and di-18O-labeled difluoromaleate dianion in D2O shows a singlet at δ

-140.785 ppm. In contrast, the 19F NMR spectra of the Bu4N+ salts of 15:80:5

mixtures  of  un-,  mono-,  and  di-18O-labeled  protium-  and  deuterium-

difluoromaleate monoanion (2-h-18On and 2-d-18On, n = 0,1,2) in D2O at 20°C

are shown in Fig. 5. The chemical shifts of 2-h-18On and 2-d-18On taken from

those spectra are included in Tables S7 and S8. The individual signals of 2-h-

18On are approximately twice as broad as those of  2-d-18On, as rationalized

below,  but  the  overall  spans  are  almost  the  same  (17.6  Hz)  for  both

multiplets. It should also be noted that even in D2O the H does not exchange
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out of the H-bond of 2-h-18On, because this monoanion is too weak an acid to

lose its H. Nor is it sufficiently basic to be converted to the diacid, from which

that H can be removed.

       

Figure 5. 19F NMR spectra of (a) 2-h-18On and (b) 2-d-18On in D2O at 20°C.

Of the two central signals in Fig. 5a or Fig. 5b the more intense can be

assigned to unlabeled (2-18O0) and the less intense to di-18O-labeled (2-18O2),

based on the mass-spectral data in Table S4 and as in a previous study.29b

The outer four signals, which can be assigned to monolabeled 2-18O, can be

recognized as an AB spin system. The spectra in Fig. 5 are very similar to

each  other,  except  that  the  peaks  of  2-h-18O are  slightly  broader.  The

broadening can be attributed to unresolved HF coupling, with  JHF << 1 Hz.

Actually that coupling is an average of a four-bond 4JHF and a five-bond  5JHF

coupling, each of which is generally ~ 1 Hz, but it is quite possible that they
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are of  opposite  signs,  as  in  trifluoromethylbenzene,31 so  that  they nearly

cancel.

The 1H and 19F NMR spectra of the Bu4N+ salts of 2-h-18On and 2-d-18On

in CD3CN are shown in Figs. S2 and S3. The incorporation of deuterium in the

latter is confirmed by the absence of the  1H signal at 20.33 ppm that was

present in the former. Again the individual 19F signals of 2-h-18On are broader

than those of 2-d-18On, as can be attributed to unresolved JHF. 

Second-order analysis was used to analyze the AB patterns in Fig. 5 of

monolabeled  2-18O and  2-d-18O in  D2O,  as  described  in  Supporting

Information. Values of the coupling constants  JAB, chemical-shift differences

∆AB, and intrinsic isotope shifts ∆0 are in Table 2. The fact that ∆AB is so

much larger than ∆0 is strong evidence that ∆AB is not an intrinsic shift but

must  be  due  to  the  perturbation  of  an  equilibrium.  Presumably  this

perturbation shift has a negative value, but its sign cannot be determined

because it is not possible to assign which 19F is closer to the 18O and subject

to the more negative isotope shift.

Table 2. Analysis of AB patterns of monolabeled 2-18O and 2-d-18O in Fig. 5.

Parame

ter

2-h-

18On 

2-d-

18On 
JAB, Hz 2.62 2.71
∆AB,

ppb 48.72 49.27
–∆0,

ppb 2.95 4.30

Temperature Dependence of 19F Isotope Shifts of 2-h-18On and 2-d-

18On

Figure 6 shows 19F NMR spectra of 2-h-18On and 2-d-18On in D2O from 0

to  40°C.  As  the  temperature  decreases,  the  chemical  shifts  of  the  AB

14



patterns  of  both  samples  move  apart  slightly,  with  no  deterioration  in

resolution, and with maintenance of the symmetry. As in Fig. 5 the peaks of

2-h-18O are slightly broader, owing to unresolved HF coupling. Tables S7 and

S8 list the chemical shifts for every signal in Fig. 6. Values of the coupling

constants  JAB, chemical-shift differences ∆AB, and intrinsic isotope shifts ∆0

are in Table 3. The slightly lower  JAB for  2-h-18O may be an artifact of the

broadening due to unresolved HF coupling.
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Figure 6. Variable-temperature 19F NMR spectra in D2O of (a) Bu4N+ protium

difluoromaleate-18On (2-h-18On) and (b) Bu4N+ deuterium difluoromaleate-18On

(2-d-18On).

Table 3. Parameters describing the AB patterns in Fig. 6 from 2-h-18O and 2-

d-18O.

Parame
ter

2
- 

0ºC
10º
C

20º
C

30º
C

40º
C

JAB, Hz
h 2.75 2.68 2.62 2.57 2.54

d 2.82 2.77 2.71 2.68 2.65

∆AB,

ppb

h
51.4

3
49.9

0
48.7

2
47.5

4
46.3

3

d
51.9

5
50.4

6
49.2

7
48.1

7
47.0

7

–∆0,
ppb

h 3.38 2.85 2.75 2.75 2.30

d 4.55 4.40 4.30 4.20 4.20
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All of these parameters decrease with increasing temperature for both

2-h-18O and 2-d-18O. The scalar coupling constants JAB seem to decrease with

increasing temperature,  but very slightly,  and they ought to be constant.

Although the intrinsic isotope shifts ∆0 appear to increase with decreasing

temperature, this increase is due to poor spectral resolution, so that we can

take the intrinsic isotope shifts as nearly constant. The decrease of ∆AB with

increasing temperature is considerably larger and more significant. It can be

attributed to the perturbation of an equilibrium between tautomers. Figure 7

shows a plot of the chemical-shift  differences ∆AB for  2-h-18O and  2-d-18O

versus 1000/T, both with correlation coefficient 0.999. The slopes are 10.75

± 0.19 and 10.3 ± 0.19 ppm-K, respectively, with intercepts 12 ± 0.6 and 14

± 0.6 ppb. The slope for 2-d is greater than that for 2-h, but the difference is

barely significant.

Figure 7. Linear fit of chemical-shift differences ∆AB for 2-h-18O (x) and 2-d-

18O (+) versus 1000/T.

To  the  extent  that  the  temperature  dependences  in  Table  3  are

manifestations of an equilibrium, the slopes in Fig. 7 correspond to a ∆∆Gº of

18



−1.41 cal/mol for 2-h-18O and −1.47 cal/mol for 2-d-18O, or to K16/K18 at 20ºC

of 1.0024 or 1.0025 per  18O, respectively.  These values are in qualitative

agreement with the typical 18O IE of ∼1.01 on acidity.26,32 The intercepts, 12

and 14 ppb, which ought to equal the intrinsic isotope shifts ∆0, are much

higher than the values in Table 2. However, the errors in the intercepts are

quite large, owing to an extrapolation over a large range.

It was previously demonstrated that not only in aqueous solution but

also in the aprotic organic solvents CD3CN and CD2Cl2 the 19F NMR spectrum

of difluoromaleate-18O monoanion 2-h-18O exhibits an AB spin system.29b The

18O-induced chemical-shift difference between the two fluorines at 20ºC are

0.046, 0.029, and 0.028 ppm in D2O, CD3CN and CD2Cl2, respectively. It was

confirmed  that  these  are  not  because  of  an  intrinsic  isotope  shift  but

because of an equilibrium isotope shift, due to perturbation of an equilibrium

by the isotopic label. It was further concluded that the H-bonded monoanion

exists as a pair of tautomeric structures which are asymmetric due to the

disorder of the instantaneous solvation environment. The results here now

show that the  19F NMR spectrum of difluoromaleate-18O monoanion  2-d-18O

also exhibits  an AB spin system, which is  taken as evidence that this  H-

bonded  monoanion  exists  as  a  pair  of  tautomeric  structures  that  are

asymmetric.

In summary, the chemical-shift separations for both 1 and 2 increase

with decreasing temperature. This demonstrates that these separations are

not  intrinsic  isotope  shifts  but  must  be  due  to  the  perturbation  of  an

equilibrium. 

Comparison of OHO and ODO H-bonds

According to the data in Table 1 the ipso chemical-shift separation for

1-d at  all  temperatures  is  at  least  9  ppb  larger  than  for  1-h.  Moreover,
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although the slope for 2-d in fig. 7 may not be significantly greater than that

for  2-h,  the  chemical-shift  differences  ∆AB in  Table  3  are  larger  at  all

temperatures for 2-d-18O than for 2-h-18O. In both anions a larger difference

is seen with the ODO H-bond than with the OHO.

Discussion

Temperature Dependence of Isotope Shifts

According to the data in Table 1, the chemical-shift differences for 1-d

increase with decreasing temperature, as had been observed for 1-h.25 This

is  further strong evidence for  the perturbation of  an equilibrium between

tautomers that differ in whether the proton or deuteron is bonded to the 18O-

labeled carboxyl. Most diagnostic is the separation between B01 and B10 ipso

13C NMR signals, for which the slopes in Fig. 4 correspond to ∆∆Gº of −5.1

and –7.9 cal/mol for 1-h and 1-d and corresponding equilibrium IEts K16/K18 of

1.009 and 1.015.

For 2 the decrease of the 18O-induced 19F equilibrium isotope shifts ∆AB

with increasing temperature, as shown in Table 3, is also significant. It too is

strong evidence for the perturbation of an equilibrium between tautomers.

Moreover, as can be seen in Fig. 7, the dependence is adequately linear in 1/

T, with slopes corresponding to EIEs K16/K18 at 20°C of 1.0024 per 18O for 2-h

or 1.0025 for 2-d. The lower EIE, relative to 1, may be attributed to the high

acidity of difluoromaleic acid, which reduces the sensitivity of acidity to 18O

substitution. 

This is the same tautomeric equilibrium that was described for many

dicarboxylate monoanions.15-16,17b,18,25,29b Although the H-bond is  intrinsically

symmetric, with a single-well potential, asymmetry arises from the disorder

of solvation and the presence of solvatomers (isomers, or tautomers, that
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differ in  solvation).17b Thus we conclude that the H-bonds in protium and

deuterium tetrahydrophthalate-18O monoanions (1-h-18O and 1-d-18O) and in

protium and deuterium difluoromaleate-18O monoanions  (2-h-18O and  2-d-

18O)  are  asymmetric.  Moreover,  because  the  Born-Oppenheimer

Approximation guarantees that the potential-energy surface is independent

of isotopic substitution,33 this same conclusion holds for unlabeled 1 and 2,

without the asymmetry of one 16O and one 18O and regardless of whether H

or D is in the H-bond.

Comparison of OHO and ODO H-bonds

The slope of  Fig.  4 corresponds to an EIE  per  18O for  1-d of  1.015,

significantly  larger  than  the  EIE  of  1.009  for  1-h.  The  increase  can  be

attributed to the presence of  D in the H-bond instead of H,  as had been

found for the (empirical and computed)  18O EIEs on the acidity of HCOOD

(1.015,1.018) versus HCOOH (1.011,1.015).32a,c Similarly, the EIEs per 18O for

2-d is 1.0025, larger than the 1.0024 for  2-h. This small difference is truly

significant, not because it derives from the slopes in Fig. 7 but because it

derives from the observation that ∆AB for 2-d in Table 3 is greater than for 2-

h at all temperatures, just as the ipso chemical-shift separations for 1-d are

greater than for 1-h.

In both cases the larger 18O EIE for the ODO H-bond than for the OHO

H-bond is consistent with perturbations of equilibria between tautomers. The

equilibria become more unbalanced with OD, because the acidity of an OD

acid shows a larger 18O IE than does an OH acid.26,31 

It should be noted that this result represents an isotope effect on an

isotope  effect  ("IE/IE").  According  to  the  Rule  of  the  Geometric  Mean,34

multiple isotopic substitutions act independently, so that there should never

be  any  IE/IE.35 Yet  they  have  often  been  observed.  The  most  common
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examples are of secondary deuterium IEs on the large primary kinetic IE of

deuterium,  as  in  hydride  transfer  reactions,36 and of  the  decrease of  the

secondary tritium IE on E2 elimination of deuterium.37 Because IEs other than

primary IEs are generally small, an IE/IE is a second-order effect that can be

difficult  to  detect.  One  remarkable  example  is  the  observation  of  the

nonadditivity of secondary deuterium IEs on the basicity of trimethylamine,38

which was made possible by a highly accurate NMR titration method. Here it

is the sensitivity of  13C and  19F NMR that permits detection of different  18O

EIEs for ODO and OHO H-bonds.

Conclusions

The larger isotope shifts at lower temperature are consistent with the

perturbation  of  an  equilibrium  that  becomes  more  unbalanced  at  lower

temperature. Likewise, the larger isotope shifts with deuterium within the H-

bond are consistent with perturbation of an equilibrium because the 18O IE on

the acidity of an OD is greater than its effect on an OH. These are exactly the

results  to  be  expected  if  the  observed  isotope  shifts  are  due  to  the

perturbation  of  an  equilibrium  between  tautomers.  Moreover,  these  are

results from two independent methods, both of which support the conclusion

that each of these two dicarboxylate monoanions is a mixture of tautomers,

not a single symmetric species.

It is not entirely clear what the experimental results would be if the

observed isotope shifts are due to the anharmonicity of hydrogen motion in a

symmetric H-bond, as proposed by Bogle and Singleton.24 Our expectations

were that anharmonicity would be more significant at higher temperature,

where vibrational modes are excited, and with lower-mass protium in the H-

bond.  These  expectations  are  exactly  opposite  to  the  observed  results.
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Although  those  are  only  our  expectations,  evidence  for  a  greater

anharmonicity with H than with D is presented in the Supporting Information.

Therefore we recommend that further computations be undertaken to

assess the effects on isotope shift of both the temperature dependence of

anharmonicity  and  the  comparison  of  ODO  and  OHO  H-bonds.  If  those

computations support our expectations, then we can reject anharmonicity as

primarily responsible for the observed isotope shifts. We do not deny that

anharmonicity can contribute to the isotope shifts, but only that it is not the

dominant  contribution.  If  this  is  correct,  then we must  conclude that  the

observed  isotope  shifts  are  due  to  the  perturbation  of  an  equilibrium

between tautomers, and that the H-bonds in tetrahydrophthalate monoanion

(1) and difluoromaleate monoanion (2) are instantaneously asymmetric.
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