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ABSTRACT OF THE DISSERTATION 

 

Estimating the spatial and temporal distribution of  
snow in mountainous terrain 

 

by 

Keith Newton Musselman 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2012 

Professor Steven Adam Margulis, co-Chair 

Professor Noah P. Molotch, co-Chair 

 

In-situ measurements and numerical models were used to quantify and improve understanding of 

the processes governing snowpack dynamics in mountainous terrain. Three studies were 

conducted in Sequoia National Park in the southern Sierra Nevada, California. The first two 

studies evaluated and simulated the variability of observed melt rates at the point-scale in a 

mixed conifer forest. The third study evaluated the accuracy of a distributed snow model run 

over 1800 km2; a 3600 m elevation gradient that includes ecosystems ranging from semi-arid 

grasslands to massive sequoia stands to alpine tundra. In the first study, a network of 24 

automated snow depth sensors and repeated monthly snow density surveys in a conifer forest 

were used to measure snow ablation rates for three years. A model was developed to estimate the 

direct beam solar radiation beneath the forest canopy from upward-looking hemispherical photos 

and above-canopy measurements. Sub-canopy solar beam irradiance and the bulk canopy metric 
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sky view factor explained the most (58% and 87%, respectively) of the observed ablation rates in 

years with the least and most cloud cover, respectively; no single metric could explain > 41% of 

the melt rate variability for all years. In the second study, the time-varying photo-derived direct 

beam canopy transmissivity and the sky view factor canopy parameter were incorporated into a 

one-dimensional physically based snowmelt model. Compared to a bulk parameterization of 

canopy radiative transfer, when the model was modified to accept the time-varying canopy 

transmissivity, errors in the simulated snow disappearance date were reduced by one week and 

errors in the timing of soil water fluxes were reduced by 11 days, on average. In the third study, a 

distributed land surface model was used to simulate snow depth and SWE dynamics for three 

years. The model was evaluated against data from regional automated SWE measurement 

stations, repeated catchment-scale depth and density surveys, and airborne LiDAR snow depth 

data. In general, the model accurately simulated the seasonal maximum snow depth and SWE at 

lower and middle elevation forested areas. The model tended to overestimate SWE at upper 

elevations where no precipitation measurements were available. The SWE errors could largely 

be explained (R2 > 0.80, p<0.01) by distance of the SWE measurement from the nearest 

precipitation gauge. The results suggest that precipitation uncertainty is a critical limitation on 

snow model accuracy. Finally, an analysis of seasonal and inter-annual snowmelt patterns 

highlighted distinct melt differences between lower, middle, and upper elevations. Snowmelt was 

generally most frequent (70% - 95% of the snow-covered season) at the lower elevations where 

snow cover was ephemeral and seasonal mean melt rates computed on days when melt was 

simulated were generally low (< 3 mm day-1). At upper elevations, melt occurred during less 

than 65% of the snow-covered period, it occurred later in the season, and mean melt rates were 
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the highest of the region (> 6 mm day-1). Middle elevations remained continuously snow covered 

throughout the winter and early spring, were prone to frequent but intermittent melt, and 

provided the most sustained period of seasonal mean snowmelt (~ 5 mm day-1). The melt 

dynamics (e.g. timing and melt rate) unique to these middle elevations may be critical to the 

local forest ecosystem. Furthermore, the three years evaluated in this study indicate a marked 

sensitivity of this elevation range to seasonal meteorology, suggesting that it could be highly 

sensitive to future changes in climate. 
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Chapter 1. Introduction 

1.1 Snow as a water resource  

The importance of reliable water resources is notable in regions where supply is limited, 

demand is increasing, and the ability of management systems to adequately adapt to future 

changes in the hydrologic system is uncertain. Like many semi-arid regions worldwide, 

California relies upon runoff that originates as mountain snow to sustain its agricultural industry 

and a growing population. Conservative estimates indicate that greater than 50% of developed 

water in the state is derived from snowmelt, and the small fraction not used by agriculture 

supports municipal demand. In 2007, California’s agricultural sector reported a net cash income 

of $75 billion (CDFA, 2009) and the state’s population exceeded 38 million (CDF, 2009), 

emphasizing the fiscal and societal relevance of the snow-dominated hydrological regime. Much 

of the reason for these staggering numbers is California’s geographically varied climate. The 

climate is characterized by a winter-dominated seasonality of annual precipitation (Tonnessen, 

1991) and its geographic variability is a result of diverse topography owed largely to its 

prominent mountain range, the Sierra Nevada. The range’s height, perpendicular orientation to 

prevailing synoptic winds, and proximity to the Pacific Ocean produce upper elevation annual 

precipitation totals that range from four to six times greater than those measured in valley 

locations (Daly et al., 1994; NOAA, 1985). At elevations above 1800 m, more than 75% of that 

annual precipitation falls in the form of snow (Stephenson, 1988) and temperatures maintain 

winter snow coverage until the spring warmth initiates melt and the relatively slow release of 

stored water. In this regard, snowmelt provides the predominant annual input to ecosystems, 
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aquifers, rivers and, ultimately, to downstream agricultural and metropolitan users through vast 

networks of reservoirs and aqueducts. Thus, mountain snowpack represents a critical component 

of California’s water resource infrastructure in that it affords reliable water during otherwise arid 

summers when demand is highest.   

The sustainability of the state’s water resources is fundamentally reliant upon 

accumulated winter precipitation and spring snowmelt in mountainous areas. At the same time, 

these processes can cause disastrous floods. Continuous and accurate monitoring of precipitation 

and snowmelt dynamics is required to mitigate such risk and inform resource management 

decisions. Currently, this information is gathered from remote weather stations and manual snow 

surveys at specific locations. The data are compared to historical trends to estimate flood hazard 

and make water supply forecasts (LADWP, 2012). Mote et al. (2006) suggest that present and 

future variations in climate require more robust models that are less reliant upon historical 

records. Many regional and global scale climate and hydrological models have ad hoc treatment 

of the physics governing snowpack development and depletion (Marks et al., 2001; Pomeroy et 

al., 1998a), although recent efforts to improve regional climate model representation of snow are 

commended (e.g. Barlage et al., 2010; Livneh et al., 2010; Niu et al., 2011). Realistic hydrologic 

predictions in mountainous areas require explicit model representation of the meteorology as 

well as the effects of local terrain and forest cover that engender variability in snowpack 

dynamics (Shamir and Georgakakos, 2005) and ultimately govern the timing and magnitude of 

seasonal runoff.   
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1.2 The variability of snow properties 

Many physical processes are known to influence the variability of snow cover. For 

example, precipitation itself is highly variable and is generally enhanced at higher elevations 

(Seyfried and Wilcox, 1995) and in orographically favored regions (Elliot and Shaffer, 1962). 

Snow redistribution by wind can significantly add to snow cover heterogeneity (e.g. Trujillo et 

al., 2007). This variability is further compounded by snow ablation (i.e. melt and sublimation) 

patterns. Snow ablation patterns are mutually determined by spatial (e.g. terrain and vegetation) 

or both temporal and spatial (e.g. temperature, radiation, wind, etc.) factors. The spatial 

variability of snow water equivalent (SWE) in mountainous regions is therefore an integration of 

dynamic meteorological processes (Marks et al., 2003) and interactions with physiography (i.e. 

terrain and vegetation) that form and affect a snowpack over the duration of its existence. For 

example, in mid-latitude regions (e.g. the Sierra Nevada, California), solar radiation comprises 

more than 70% of the net snowpack energy balance (Aguado, 1985; Marks et al., 1992). As a 

result, snowmelt patterns largely reflect the heterogeneous distribution of surface shortwave 

irradiance. Spatiotemporal patterns of solar irradiance are determined by solar elevation, local 

and regional terrain, cloud cover, and particularly, forest vegetation. 

It is estimated that ~ 19% of Northern Hemisphere snow cover overlaps forest vegetation 

(Rutter et al., 2009) and that fraction is likely closer to 60% in many mountainous regions where 

the majority of snow water resources accumulate. Forested environments exhibit high snow 

cover heterogeneity over short distances as a result of vegetation interactions with incident 

above-canopy atmospheric fluxes that form complex mosaics of net precipitation and energy at 

the sub-canopy surface (Musselman et al., 2012). The physical mechanisms in forested 
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environments that control gradients in snow interception, sublimation and throughfall (e.g. 

Hedstrom and Pomeroy, 1998; Koivusalo and Kokkonen, 2002; Lundberg et al., 1998; Storck et 

al., 2002), shortwave (e.g. Ellis and Pomeroy, 2007; Hardy et al., 2004; Pomeroy and Dion, 

1996) and longwave (e.g. Essery et al., 2008b; Pomeroy et al., 2009) radiation, and the local 

advection of momentum, heat and moisture fluxes (e.g. Liston, 1995; Price and Dunne, 1976) are 

well documented. Spatial snowmelt patterns beneath the canopy are dictated by forest 

architecture and resulting sub-canopy energy gradients. The forest canopy structure and 

particularly the fraction of canopy coverage, also known as the canopy ‘closure’, can vary at 

many scales (Hopkinson and Chasmer, 2009) (Figure 1.1), thus impacting the variability of 

snowmelt rates. For example, Musselman et al. (2012) and Talbot et al. (2006) showed that 

patterns of sub-canopy shortwave irradiance explain ~ 60% of the variability in snowmelt rates. 

Pomeroy et al. (2009) documented a strong positive relationship between the attenuation of 

shortwave radiation by canopy elements and locally enhanced longwave irradiance at the snow 

surface. The results imply that spatial patterns of sub-canopy long- and short-wave irradiance are 

not strictly independent, further complicating snowmelt patterns in forested areas.  
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Figure 1.1. Illustrative schematic of different degrees of forest canopy closure. Modified from Hopkinson and 
Chasmer (2009).  

The processes discussed above determine the variability in the timing of melt onset and 

snowmelt duration and ultimately the distribution of soil moisture (Bales et al., 2011; Molotch et 

al., 2009), infiltration, groundwater recharge, and streamflow (Seyfried and Wilcox, 1995). In 

this context, complex hydrometeorological processes govern the formation, storage, and release 

of water resources (Lehning et al., 2006) in mountainous environments. Such processes have 

extensive regional and global impacts, yet remain some of the greatest uncertainties in numerical 

land surface schemes and hydrological models (Marks et al., 2003), emphasizing the need for 

continued research. 

1.3 Methods of characterizing snow water resources 

1.3.1 Measurement techniques 

Since the 1930’s, snow water resources in the United States have been monitored by 

federal, state, and private cooperative snow surveys and often directed by the U.S. Department of 
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Agriculture’s Natural Resources Conservation Service (NRCS, 2012b). The program and others 

like it have evolved to include extensive automated networks of remote stations that collect snow 

properties and related climate data (NRCS, 2012a). However, these observations must be 

extrapolated across variable terrain and forest cover to estimate the catchment-scale SWE 

distribution. Remote sensing techniques have great utility for characterizing snow properties over 

large areas, but continue to face limitations in forested regions and particularly in steep, forested 

terrain.  

Direct measurements are useful to gain a better understanding of the mechanisms 

discussed above, including interactions with soil moisture and vegetation response. In this 

regard, heavily instrumented research sites have been developed to monitor the spatial and 

temporal relationships between snow accumulation and melt patterns, the distribution of soil 

temperature and moisture, and vegetation structure (e.g. Bales et al., 2011; Molotch et al., 2009; 

Musselman et al., 2008; Musselman et al., 2012; Vivoni et al., 2008) (Figure 1.2). 

  

Figure 1.2. Schematic example of the instrumentation used in this study to monitor plot-scale 
hydrometeorology. Modified from Molotch et al. (2009). 

For an exhaustive review of the measurement methods the reader is referred to the literature cited 
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above. The measurements represent tools with which to build understanding of the underlying 

processes, as well as to evaluate numerical models at a variety of scales.  

1.3.2 Modeling methods 

A half-century of thorough inquiry has established numerical representation of the effects 

of wind (e.g. Schmidt, 1982), topography (e.g. Meiman, 1968), and vegetation (e.g. Golding and 

Swanson, 1978) on snow distribution. However, the complex relationships between these 

variables and their high variability in time and space and at different scales continue to challenge 

snow model predictive skill (Jost et al., 2007). Despite these challenges, the need for accurate 

predictions of snow water resources has prompted the development of operational numerical 

snow models for a range of applications (Essery and Etchevers, 2004) including hydrological 

forecasting (e.g. Anderson, 1986), weather prediction (e.g. Niu et al., 2011), avalanche 

forecasting (e.g. Lehning et al., 1998), climate modeling (e.g. Bonan, 1998), and retrieval of 

snow characteristics by remote sensing (e.g. Mätzler and Wiesmann, 1999). 

Snow models differ in their degree of process representation (Tarboton et al., 2000) 

depending on the intended application (Essery and Etchevers, 2004). Snow models generally fall 

into two categories: temperature index models and energy balance models (Hock, 2003). 

Temperature index models use empirical relationships between local air temperature and 

snowmelt to estimate snow depletion (Ohmura, 2001). However, these models are limited in 

their application because they do not explicitly address the physical snowpack dynamics and 

energy fluxes necessary to accurately predict small-scale spatial heterogeneity, changes in 

climate, or snowmelt beyond the range of model calibration. Energy balance snow models, on 

the other hand, are designed to simulate all energy fluxes into and out of a snowpack and are 
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used to predict snowmelt as a result of the computed net internal energy. These process-based 

models have been shown to yield improved local SWE estimates over temperature index 

methods (Walter et al., 2005). Even within a general snow model category, models differ in their 

representation of snowpack stratigraphy and vary from single layer (e.g. Essery, 1998; Schlosser 

et al., 1997), to three-layer (e.g. Sun and Xue, 2001), to detailed multilayer (e.g. Brun et al., 

1992; Jordan, 1991; Lehning et al., 1998) snowpack representations. Detailed knowledge of the 

internal snowpack structure is critical for radiative transfer applications in remote sensing 

(Wiesmann and Mätzler, 1999) and avalanche forecasts (Lehning et al., 1999) and has shown 

utility in hydrological and climate research applications (Bavay et al., 2009), presumably due to 

the correlation between snow material structure and surface – atmosphere interactions. 

For purposes of runoff estimation, simple melt models such as temperature index 

approaches and simplified, parameterized energy balance snow models have shown utility when 

judiciously calibrated to the specific basins to which they are applied. However, such heavily 

parameterized models often mask individual surface process interactions through an implicit 

treatment of the natural physics at the expense of numerical simplicity.  

1.3.2.1 Physically based models 

Through the use of more detailed models, it is possible to quantify and improve 

understanding of these process interactions and their individual impacts on catchment hydrology 

and snow cover distribution (Lehning et al., 2006). Process-based snow models also offer the 

opportunity to benefit from the increased availability and performance of satellite remote sensing 

techniques to validate individual model states or improve state estimates through data 

assimilation (Durand et al., 2008b; Lehning et al., 2006; Schmugge et al., 2002). Recent 
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advances have increased the predictive accuracy and physical representation of basin SWE yield, 

runoff, snow stratigraphy and surface characteristics, soil moisture distribution, stream 

chemistry, and ecological processes. One of the most detailed process-based land surface models 

with a particular emphasis on snow processes in complex terrain is the Alpine3D model suite 

(Lehning et al., 2006). Various components of this model suite, including the one-dimensional 

snow model SNOWPACK, are used in this thesis. Model details are provided in subsequent 

sections.  

1.3.2.2 Model treatment of forest vegetation cover 

Numerical modeling is the only feasible method of representing SWE beneath a forest 

canopy over large areas due to the small number of forested observation systems and limitations 

of remote sensing in forested regions (Rutter et al., 2009). The main challenge in canopy model 

development is the accurate representation of the upper boundary conditions of the snow (or bare 

soil) beneath the canopy. In addition to accounting for the influence of the canopy on radiative 

and turbulent heat fluxes at the snow/soil surface, physically-based models must explicitly treat 

interception and throughfall of precipitation, the sublimation and evaporation of intercepted 

precipitation, and the canopy albedo adjusted for the effect of intercepted snow. Even with high 

process-level detail, models require conceptual representation of otherwise complex, three-

dimensional canopy structure. Empirical relationships between measured states and fluxes and 

bulk canopy structure metrics are then used to predict canopy processes. Model representations 

of these forest canopy metrics differ, which complicates attempts to quantify canopy model 

uncertainty (Essery et al., 2009). 

An inter-comparison study of 33 snowmelt models by Rutter et al. (2009) found that 
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model errors were greater at forested sites than open sites. In addition, individual models showed 

inconsistent performance between different forested sites and particularly between paired 

forested and open sites in the same year. These model inconsistencies, observed under optimal 

point-scale conditions, are further compounded when models are distributed to the catchment-

scale.  

Model treatment of canopy interception of precipitation and the attenuation of 

momentum and heat fluxes are well established and beyond the scope of this study. Rather, the 

strong correlation documented between sub-canopy snowmelt rates and shortwave irradiance 

(e.g. Ellis et al., 2010; Hardy et al., 2004; Musselman et al., 2008; Musselman et al., 2012; 

Talbot et al., 2006) makes a compelling case for the evaluation of canopy radiative transfer (RT) 

techniques. Canopy models vary in their representation of RT from simple bulk approximations 

to complex treatments of the effects of individual canopy elements on attenuation, reflection and 

transmission of radiation. The more complex methods require detailed canopy structure 

parameters (e.g. Li et al., 1995; Ni et al., 1997). In practice, however, models that are physically 

realistic but employ only those parameters that are routinely available may be preferable (Nijssen 

and Lettenmaier, 1999). Many of the simpler or larger-scale models employ a one-dimensional 

“big-leaf” canopy representation. This canopy model design is used in this study and is described 

in detail in Chapter 3 and Appendix A.  

Physically based snowmelt models are well suited to evaluate the complex linkages 

between meteorology, forest cover, snow accumulation and melt, and the basin-scale water 

balance (e.g. Lehning et al., 2006; Pomeroy et al., 2007). The ability of a physically based snow 

– canopy model to simulate these processes is limited, in part, by the difficulty of obtaining 
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detailed canopy structure information (Tribbeck et al., 2004). Additionally, the error associated 

with validating simulated snowmelt rates under different canopy conditions is large (Nijssen and 

Lettenmaier, 1999). For example, issues of scale arise when a canopy model commonly 

parameterized by bulk canopy metrics (e.g. area-averaged leaf area index or canopy density) is 

used to estimate heterogeneities in sub-canopy hydrometeorological processes as measured at a 

few point-scale locations. This study evaluates many of these scale issues by making use of the 

direct, automated measurements made at intensive research sites (Figure 1.2).  

1.4 Motivation for improving snowmelt model estimates in forested 

environments 

The significant hydrologic contribution from seasonally snow covered forested elevations 

of the Sierra Nevada emphasizes the need for numerical models to accurately represent these 

complex mass and energy fluxes. Yet model skill has been shown to be most limited in forested 

areas (Rutter et al., 2009). Furthermore, the lower elevation of forested regions relative to alpine 

areas makes forests particularly sensitive to climate change. These regions are at risk of a 

hydrologic transition from a snow-dominated regime characterized by a single spring melt pulse 

to one that experiences temporally discontinuous snow coverage and is dominated by synoptic-

driven runoff events (Beniston, 2003). A discernible science gap has been identified that limits 

accurate representation of the Sierra’s current and future hydrologic regime and the role of snow 

in these sub-alpine systems. Additionally, forest fire, insect kills, and climate change impact 

forest distribution and alter soil moisture and catchment water yield (e.g. Kurz et al., 2008; 

Pomeroy et al., 2012; Tague et al., 2009). Although the net effect of such changes on snow 
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distribution remains unclear, it is certain that forest – snow processes are likely to become more, 

rather than less, important in the future (Rutter et al., 2009).  

The growing need and reduced accuracy of models to predict water resources in forested 

environments motivates the current research. This work evaluates the distribution of snow in 

forested and alpine terrain using a multi-scale measurement approach that includes 1) in-situ 

observation of snow and soil moisture dynamics over multiple years, 2) high-resolution canopy 

and terrain metrics associated with each observation, 3) an evaluation of the ability of a 

physically based one-dimensional snow model to simulate the observed snow and soil moisture 

dynamics, 4) the use of a distributed land surface model to examine scale relationships as 

evaluated against a unique suite of point-scale and distributed observations. The overarching 

science questions addressed in this thesis are thus: What are the limitations of physically based 

models to simulate observed snowmelt variability in forested regions? How could the models be 

improved? And how do model limitations observed at the plot-scale impact larger-scale 

estimates of snow water resources in mountainous terrain?  

1.5 Organization of the thesis 

In Chapter 2, the relationships between measured sub-canopy snowmelt and canopy 

metrics are evaluated for three years of observation. In Chapter 3, the accuracy of the point-scale 

snow – canopy model to predict sub-canopy snow cover dynamics is examined. A modification 

of the canopy model structure is introduced that permits the model to explicitly account for 

location-specific, time-variant solar direct beam canopy transmissivity. Chapters 2 and 3 address 

the questions: how do sub-canopy snowpack processes vary in time and space and do the 
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relationships observed during a single year hold over multiple water years? And what level of 

canopy structure detail is necessary to simulate the observed dynamics? Chapter 3 provides a 

description of a typical big-leaf canopy model and a summary of the model used in this study is 

provided in Appendix A. In Chapter 4, the distributed land surface model Alpine3D is introduced 

and run for three water years over a large domain. The domain encompasses a multi-scale 

measurement campaign that included high-resolution LiDAR, MODIS satellite data, repeated 

catchment-scale snow surveys, and point-scale observations of SWE, depth, and soil moisture. In 

Chapter 5, the major findings are summarized and directions for future research are discussed. 

 

Chapter 2. Influence of canopy structure and direct beam 

solar irradiance on snowmelt rates in a mixed conifer forest 

The heterogeneous arrangement of tree boles, branches, needles and understory together 

with micrometeorology and terrain dictate the physical processes summarized in Chapter 1 and 

ultimately govern the hydrology and ecology of many seasonally snow-covered forested 

catchments. Relative to open areas, a general dichotomy in forest - snow processes has been 

identified in which conifer canopy cover reduces the total annual meltwater available to runoff 

and/or infiltration through interception losses (Essery et al., 2003; Hedstrom and Pomeroy, 

1998), while sub-canopy snow ablation processes determine the duration of snow cover and 

meltwater inputs (Link and Marks, 1999; Liston, 1995). The structure of vegetation combined 

with seasonal variations in solar elevation and cloud cover largely governs snow ablation 

patterns by determining the forest radiation regime (Baldocchi et al., 1984; López-Moreno and 
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Stähli, 2008; Stähli et al., 2009). Whether forests become snow-free before or after nearby 

clearings is found to be a function of latitude, forest structure, climate and seasonal meteorology 

(Faria et al., 2000; Molotch et al., 2011; Rutter et al., 2009; Schleppi, 2011; Sicart et al., 2004).  

Shade from solar radiation provided by forest cover has been shown to explain more than 

60% of the variability in snowmelt rates between different stands of the same tree species 

(Talbot et al., 2006). As a result, the date of snow disappearance at the forested plot scale (i.e. 40 

x 40 m) can vary by as much as one month (Molotch et al., 2009) greatly impacting the 

magnitude of peak flows, the partition of meltwater to infiltration or runoff (Pomeroy et al., 

2001) as well as seasonal soil moisture dynamics (Bales et al., 2011). The results imply that sub-

canopy hydrometeorological surface fluxes and related states are well correlated with canopy 

cover ‘upstream’ of the prevailing flux paths. For example, the solar irradiance at a given sub-

canopy location is most influenced by canopy configuration in the sky direction defined by the 

solar coordinates. Provided detailed canopy structure information, a consideration of the 

prevailing energy flux trajectories through a forest canopy may inform the derivation of optimal 

canopy metrics to improve energy flux parameterizations in canopy models.  

Numerous empirical studies report correlations between snow properties and general 

descriptors of sub-canopy position relative to tree crowns such as ‘open’, ‘edge’, and ‘under’ 

categorizations (e.g. Musselman et al., 2008; Veatch et al., 2009). Others have compared snow 

depth or snow water equivalent (SWE) measured in canopy gaps of various sizes to that 

measured beneath the canopy (e.g. Golding and Swanson, 1986; Pomeroy et al., 2002). The 

results of these studies generally lack a pathway to predictive applications beyond the 

physiographic, climate, and weather conditions under which they were developed. A more 
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detailed collection of canopy structure data in plot-scale studies permits an explicit evaluation of 

processes that influence snow ablation. In this regard, the objective of this study is to identify 

impacts of forest canopy structure and subsequent differences in direct beam solar irradiance on 

measured snow ablation. Two science questions are addressed: 1) Do canopy metrics derived 

from hemispherical photos explain observed spatial variability in snow ablation rates? and 2) 

Do optimal canopy metrics exist (either bulk or detailed descriptors) that can be used to explain 

observed variability in snow ablation rates? 

Section 2.1 describes the measurement and evaluation methods utilized in both Chapters 

2 and 3, including a description of the study area and the hydrometeorological dataset. The 

results are reported and discussed in Section 2.3. Finally, a summary of conclusions of Chapter 2 

is presented in Section 2.4. 

2.1 Data and methods 

Three years of seasonal SWE ablation as measured by a network of 24 ultrasonic snow 

depth sensors and manual snow density surveys were compared to: 1) photo-derived estimates of 

cumulative sub-canopy direct beam solar irradiance during the period of observed ablation; and 

2) sky view factor (SVFθ) computed over the full hemispherical range of zenith angles at one-

degree increments. The direct beam irradiance, derived from detailed canopy transmissivity and 

above-canopy measurements, was used in explicit recognition that direct beam solar irradiance 

contributes significantly to the spatial variability of the sub-canopy energy budget. The canopy 

metric SVFθ was used in implicit recognition that the majority of above-canopy diffuse, 

longwave, and turbulent fluxes enters the canopy from all sky directions above the effective 
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horizon, and may also hold information relevant to the estimation of terrestrial longwave fluxes. 

The analyses cover a range of elevation, slope, aspect and canopy configuration and three snow 

seasons (i.e. water years 2008 - 2010). 

2.1.1 Study area 

The study was conducted in the Wolverton basin, located in Sequoia National Park on the 

western slope of the southern Sierra Nevada, California, U.S.A. (36.59ºN, 118.717ºW) (Figure 

2.1). The Wolverton basin is a 7.22 km2, snowmelt-dominated, forested watershed. Elevation 

ranges from 2192 m to 3075 m asl. Conifer forest stands include red fir (Abies magnifica), white 

fir (Abies concolor), Jeffrey pine (Pinus jeffreyi) and Lodgepole pine (Pinus contorta subsp. 

murrayana).  

 

Figure 2.1.  The Wolverton basin in Sequoia National Park, California. Locations of the four instrumented 
research sites and two meteorological stations (elevation in meters a.s.l) are indicated. 
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The forest is predominantly mature red fir, ranging in height from 20 - 50 m. The average 

canopy density is 65% and ranges from 0% in small clearings to 75% on steeper terrain with 

nearly continuous canopy coverage as determined from the National Land Cover Database 

(NLCD, 2001) (Homer et al., 2004) (Figure 2.1). A monthly snow course has been conducted 

since 1925 by the California Cooperative Snow Survey (CCSS) at elevation 2622 m asl. The 

average April 1st SWE for the historic record is 932 mm. The average wind velocity measured 

during winter and spring at the upper elevation (2642 m asl) meteorological station (Figure 2.1) 

for the three years of the study was 0.52 m s-1, and the maximum daily wind velocity exceeded 3 

m s-1 on only three occasions, indicating relatively little wind influence on local snow processes. 

In 2006, four extensively instrumented sets of sensor nodes (i.e. sites) were installed in the basin 

with locations stratified to represent the basin’s range of aspect, elevation, and canopy cover 

(Table 1). 

Table 2.1.  Instrument site terrain and canopy statistics. The mean, maximum, and minimum values represent site 
variability sampled at locations of the six ultrasonic snow depth sensors.   

 
* Canopy openness was determined from Landsat-derived NLCD, 2001 canopy density. Site values represent the 
average canopy openness as sampled at the location of the six snow depth sensors at each site. 

2.1.2 Hydrometeorological measurements 

Six ultrasonic snow depth sensors (Judd Communications) were installed at four 

locations representing different elevations, aspects, and forest canopy characteristics (Table 1) 

following Molotch et al., (2009). The manufacturer specifies a senor range of 0.5 m to 10 m and 
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an accuracy of 1 cm or 0.4% of the target distance. Sensors at each site were separated by 8 - 55 

m within the ~ 40 x 40 m site footprint. Snow depth observations were recorded hourly and 

processed to remove outliers and fill gaps following Lehning et al., (2002a) (Figure 2.2).    

Snow density data were obtained from five, six and four snow density surveys conducted in 

2008, 2009 and 2010, respectively (Figure 2.2). Snow density measurements at the four sites 

were obtained from approximately monthly (January - May) snow pits and CCSS snow course 

measurements. Snow pit density measurements made with 1000 cm3 cutters were assumed to be 

representative of the plot-scale mean snow density. CCSS snow course density data represent the 

average of equally spaced Federal snow tube measurements made along multiple linear transects 

in close proximity to Sites 3 and 4 (Figure 2.1). In cases where both snow pit and CCSS 

measurements were conducted within one week of each other, only the snow pit density 

measurements were used to maintain consistency and site representativeness.  For each year, the 

timing of maximum SWE was determined by multiplying surveyed site-specific density values 

by sensor snow depth values corresponding to the respective survey dates. The survey date that 

yielded the highest sensor SWE at all sites was prescribed as the date of maximum annual SWE. 

Given an estimate of maximum SWE at each depth sensor location for each year of the study, an 

index of the seasonal SWE ablation rate was then computed as the maximum SWE at a given 

sensor divided by the number of days from maximum SWE until snow disappearance as 

recorded by the same sensor. The approach yielded an ensemble of seasonal SWE ablation 

indices corresponding to different canopy configurations, elevations, aspects, and slopes of the 

individual snow depth sensor locations. 
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Figure 2.2.  Hourly snow depth recorded by 24 ultrasonic sensors at two lower (sites 1 and 2) and two upper 
(sites 3 and 4) research sites and neighboring meteorological stations for three years. Dates of 15 snow 
density surveys (↓ symbols) and the survey dates determined to coincide with the timing of annual maximum 
SWE (* symbols) are indicated. 

Obtaining manual snow density measurements on the date of maximum SWE is 

complicated by weather and schedule constraints and slight differences in terrain and forest 

cover that may cause spatial heterogeneity in the timing of maximum SWE. Two assumptions 

were made in regard to maximum SWE accumulation. First, the timing of maximum SWE was 

assumed to be uniform across sensor locations in a given year; that is, the date (not the 

magnitude) of maximum SWE was assumed to be spatially invariant. This assumption was 

necessary because SWE was not explicitly measured at each sensor location, but estimated only 

when density observations were available. Second, it was assumed that, for each year, one of the 

monthly density surveys captured the snow density at the time of maximum SWE. This 

assumption was necessary because density measurements were made at monthly repeat intervals. 

Measurements of hourly, global incident solar radiation (Rs↓) unobstructed by 

surrounding forest canopy were not available in the forested Wolverton basin. Instead, Rs↓ for the 

three years of the study were obtained from a meteorological station located above timberline at 
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Topaz Lake in the Tokopah basin; 8 km ENE of the study site at 3220 m asl. The data were 

assumed to be representative of above-canopy Rs↓ at the locations of the four sites. A four-day 

deployment of a Kipp and Zonen pyranometer in the Wolverton basin indicated cumulative 

differences with the Topaz Lake data of less than 4%. A three-year comparison of Rs↓ measured 

at Topaz Lake and a station operated by the National Park Service 6 km WSW of the study site 

yielded a correlation coefficient of 0.93. Based on these two independent evaluations the use of 

Topaz Lake Rs↓ measurements to represent above-canopy Rs↓ in Wolverton is justified. 

2.1.3 Hemispherical photography acquisition and analysis 

An upward-looking hemispherical photograph was taken directly beneath each of the 24 

depth sensors using a Nikon D700 digital single lens reflex camera (Nikon Corporation, Japan) 

with a Sigma 8 mm F3.5 EX DG Circular Fisheye Lens (Sigma Corporation, Japan). The camera 

was mounted on a tripod and photographs were taken at a height of 1.5 meters, roughly 

consistent with the seasonal average snow depth at the study sites. A bubble level fitted to the 

lens cap ensured horizontal camera orientation and a compass was used to orient the top of the 

camera to true north following methods of Frazer et al. (2000) (Figure 2.3a). The scientific 

image processing software Gap Light Analyzer  (GLA) Version 2.0 (Frazer et al., 1999) was 

used to register and classify each digital hemispherical image following recommended methods 

of Frazer et al. (1999) and Hardy et al. (2004). The GLA image analysis created an image 

consisting solely of black and white pixels (Figure 2.3b).   

To characterize canopy structural parameters from a pre-processed hemispherical photo, 

an automated image analysis model was developed. The model first determines the image center 

and assigns Cartesian coordinates to each pixel, in number of pixels, with nadir specified as the 
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central datum. The Cartesian coordinates are converted to a polar system such that each pixel is 

assigned a zenith angle (0 to π/2 radians) and an azimuth angle (0 to 2π radians) according to its 

position on the projected hemisphere. The coordinate system is defined such that an azimuth 

angle of 0 radians and a zenith angle of π/2 radians refer to the circular exposure’s topmost 

central pixel and the azimuth angle increases in a counter-clockwise fashion consistent with the 

orientation of an inverted plan view compass rose. The quality of the exposure’s circular extent 

(~ 2000 x 2000 pixels) permits high-resolution analysis. Radial projection errors are inherent to 

image acquisition. A five-piece polynomial was applied that adequately approximates the radial 

projection error provided by the lens manufacturer (Sigma Corporation, personal 

communication). Other sources of uncertainty associated with hemispherical photography 

include geo-reference errors and the subjectivity of RGB threshold specification. 

2.1.4 Photo-derived canopy metrics 

Sky view factor (SVFθ) was computed from binary hemispherical images as the weighted 

canopy openness over all azimuth angles (φ) from a specified zenith angle (θ) to nadir. The 

metric has been successfully used in the study of forest light environments (e.g. Hardy et al., 

2004), longwave radiation (e.g. Essery et al., 2008b) and sub-canopy snow dynamics (e.g. 

López-Moreno and Latron, 2008). When computed over a single hemispherical region defined 

by θ, SVFθ is a bulk, 0-D representation of canopy openness over a select concentric area of the 

projected hemisphere. When computed over a range of θ angles from 1° to 90°, SVFθ becomes a 

one-dimensional array that describes the change in canopy openness as more of the surrounding 

forest is considered. Figures 3c,d provide examples of SVFθ computed at one-degree zenith angle 

increments over the field of view of a hemispherical photograph. In the example, SVFθ is equal 
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to one nearest nadir, decreases slightly as a result of the overhead snow depth sensor until an 

angle of ~ 12° is reached, beyond which canopy elements begin to enter the field of view and 

SVFθ decreases more significantly (Figures 3c,d). In this way, SVFθ was computed for each 

hemispherical photo taken at depth sensor locations at one-degree intervals of θ from 1° to 90°. 

 
Figure 2.3. Processing and analysis steps of a hemispherical canopy photograph including a) a georeferenced 
digital hemispherical color photo (with location of the site 3, snow depth sensor #3 indicated), b) binary pixel 
representation of the color photo with the circular exposure outlined, c) photo with concentric circles defined 
by zenith angle, θ, d) the resulting sky view factor (SVFθ) determined by integrating fractional canopy 
openness from specified zenith angles at 1° increments (1° - 90°) to nadir (0°) and e)-j) examples of the 
hemispherical photo aggregated into discrete sky regions to determine directional SVF at e) 12 sky regions or 
~ 53º, f) 36 sky regions or 30º, g) 324 sky regions or 10º, h) 1296 sky regions or 5º, i) 3600 sky regions or 3º, 
and j) 32,400 sky regions or 1º angular resolutions. 

2.1.4.1 Sky view factor 

The explicit consideration of canopy openness as it might influence the direct beam solar 

flux entering the forest canopy in a specified trajectory is not achievable with bulk SVFθ 

measurements. When computed over individual φ and θ ranges, however, SVFθ gains a 

directional component (directional SVF) and becomes a two-dimensional (2-D) array that 
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describes the hemispherical distribution of canopy openness relative to a photo location at any 

angular resolution of interest. Pre-processed hemispherical images were divided into 

circumferential and radial solid angles, or sky regions, specified by angular increments δθi, and 

δφj. The total count and fraction of sky / non-sky pixels in each sky region were computed and 

binned in matrices of size , representing weighting schemes and directional SVF, 

respectively. Figures 3e-j illustrate examples of directional SVF computed over a specified range 

of φ and θ discretizations. An example in Figure 2.3e shows the projected hemisphere divided 

into six φ and two θ bands for a total of 12 sky regions at an angular resolution of 60° (φ) and 

45° (θ). In this study, the estimated total uncertainty in radial pixel position was one-degree. For 

this reason, a one-degree hemispherical angular resolution was chosen, representing 360 azimuth 

and 90 zenith discretizations or a total of 32,400 sky regions (Figure 2.3j).  

2.1.4.2 Directional sky view factor 

The explicit consideration of canopy openness as it might influence the direct beam solar 

flux entering the forest canopy in a specified trajectory is not achievable with bulk SVFθ 

measurements. When computed over individual φ and θ ranges, however, SVFθ gains a 

directional component (directional SVF) and becomes a two-dimensional (2-D) array that 

describes the hemispherical distribution of canopy openness relative to a photo location at any 

angular resolution of interest. Pre-processed hemispherical images were divided into 

circumferential and radial solid angles, or sky regions, specified by angular increments δθi, and 

δφj. The total count and fraction of sky / non-sky pixels in each sky region were computed and 
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binned in matrices of size , representing weighting schemes and directional SVF, 

respectively. Figures 3e-j illustrate examples of directional SVF computed over a specified range 

of φ and θ discretizations. An example in Figure 2.3e shows the projected hemisphere divided 

into six φ and two θ bands for a total of 12 sky regions at an angular resolution of 60° (φ) and 

45° (θ). In this study, the estimated total uncertainty in radial pixel position was one-degree. For 

this reason, a one-degree hemispherical angular resolution was chosen, representing 360 azimuth 

and 90 zenith discretizations or a total of 32,400 sky regions (Figure 2.3j).  

2.1.5 Canopy radiative transfer model 

Directional SVF has been used extensively to estimate solar canopy transmissivity (e.g. 

Becker et al., 1989; Frazer et al., 2000; Hardy et al., 2004; Sicart et al., 2004). In this study, the 

sky coordinates of the sun were used to ‘sample’ the directional SVF from the sky region 

encompassing the sun’s position. The sun’s position in the sky at one-minute resolution was 

computed for the three years of the study following methods of Reda and Andreas (2004), with 

an uncertainty of ± 0.0003º. A one-minute time scale was chosen to adequately capture the 

relative velocity (~ 0.25º per minute) of the sun’s location on the projected hemispherical plane. 

Hourly measurements of above-canopy Rs↓ were linearly resampled to one-minute estimates and 

used to estimate sub-canopy fluxes at the locations of hemispherical photos. Combined with one-

degree resolution directional SVF, the one-minute time step captures the intermittent nature of 

sun flecks tracking on the forest floor and the resulting high temporal variability of the forest 

light environment. Differences in the physics of canopy attenuation / transmission of direct 

(Rs↓dir) and diffuse (Rs↓dif) solar radiation require these two components to be treated 
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independently. The Rs↓dir and Rs↓dif fluxes were partitioned from the above-canopy global 

shortwave measurements using the all-sky solar partition model presented in Allen et al., (2006) 

as an empirical function of atmospheric transmissivity. The model provided one-minute 

estimates of above-canopy Rs↓dir and Rs↓dif.  

In this study, direct beam canopy transmissivity (DBT) is defined as the probability that 

the solar beam will pass through forest cover unimpeded by canopy elements at a given time and 

as determined at the location and height of a hemispherical photograph. Directional SVF 

sampled from sky regions corresponding to the track of the sun provided a high-resolution 

estimate of DBT. The model does not account for scattering of attenuated direct beam radiation. 

At every photo / depth sensor location, directional SVF and the trajectory of the sun in the sky 

were used to compute DBT for every minute of every day for the three water years of interest.  

The one-minute detailed DBT was multiplied by the one-minute above-canopy Rs↓dir to 

estimate sub-canopy Rs↓dir on a horizontal plane. The direct beam irradiance estimated at the 

location of individual depth sensors was then projected on the local slope according to Oke 

(1988). The cumulative slope-projected direct beam irradiance calculated over the same time 

frame used to compute sensor-specific seasonal SWE ablation rates was used to test the 

correlation between the observed SWE ablation and estimated sub-canopy Rs↓dir.  

To evaluate the model’s predictive accuracy of sub-canopy Rs↓dir, canopy transmission of 

the above-canopy diffuse component was also estimated and the sub-canopy Rs↓dir and Rs↓dif 

fluxes were combined to represent the horizontal, sub-canopy global shortwave radiation. 

Estimates of sub-canopy Rs↓ were then compared to pyranometer data. Unlike the source of the 

direct beam, which was treated as a point on the projected hemisphere, diffuse radiation may be 
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transmitted from all sky regions. The anisotropic sky distribution of diffuse radiation was treated 

with a simple cosine approximation such that more weight was applied to the near-nadir sky 

regions (i.e. lower zenith angles) and less toward the horizon. Diffuse solar irradiance entering 

the canopy is absorbed, reflected, or transmitted. The fraction of unimpeded diffuse irradiance 

was determined by the directional SVF of each sky region. Reflection of the fraction of diffuse 

light incident on canopy elements (i.e. 1 - directional SVF) was approximated using an estimated 

canopy albedo and a Beer’s-type exponential reduction as a function of effective leaf area index 

(LAI’). Photo-derived LAI’ was computed following the gap fraction methods of Norman and 

Campbell, (1989) and accounting for a sloped surface as Schleppi et al., (2007). The average 

LAI’ from the 24 photos was 2.72 m2 m-2 and the values ranged from 1.20 to 4.88 m2 m-2. The 

sub-canopy Rs↓dif issuing from any sky direction was estimated as: 

                            (1) 
 
 

where k (-) is an extinction parameter typically between 0.4-0.8 and specified as 0.7, αc is the 

conifer canopy albedo specified as 0.125, and SVFi,j is the directional SVF in the sky region 

defined by zenith angle i and azimuth angle j. An additional weighting scheme was necessary to 

account for the hemispherical effect of upper sky regions (i.e. solid angles) having less area than 

those nearer the horizon. Each sky region was assigned a weight defined as the pixel count for 

that region normalized by the total hemispherical pixel count. The weighted irradiance 

effectively permits all sky regions to contribute equally to the surface irradiance, computed as 

the summation of hemispherical weighted irradiance.  

Model validation was conducted in two experiments. In the first experiment, upward-

looking photographs were taken as close as possible to three mast-mounted pyranometers 3.5 m 
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above the forest floor. The pyranometers logged data for eight days at one-minute resolution. In 

the second validation experiment, a total of nine leveled Kipp and Zonen pyranometers were 

deployed on the snow surface for three days in radial transects centered on a cluster of 40 m trees 

near Site 3. The sensors were programed to log at five-minute intervals of ten-second integrated 

measurements. An additional, identically programed pyranometer located in a large clearing ~ 

0.5 km WSW of Site 1 provided ‘above-canopy’ radiation. 

2.1.6 Regression analyses 

Linear regression analyses were conducted on the relationships between measured 

seasonal SWE ablation rates at the 24 locations for three years and: 1) estimates of cumulative 

sub-canopy direct beam solar irradiance during the period of observed ablation; and 2) SVFθ 

computed over the full hemispherical range of zenith angles at one-degree increments. The 

coefficient of determination (R2), slope, intercepts and statistical significance (p-value) were 

evaluated. 

2.2 Results 

2.2.1 Hydrometeorological observations 

Hourly time series of snow depth measured by the 24 ultrasonic sensors for water years 

2008, 2009, and 2010 show that accumulation and depletion rates varied between upper (Sites 3 

and 4; 2620 m - 2665 m asl) and lower (Sites 1 and 2; 2253 m - 2300 m asl) elevations, between 

sites at similar elevations, and between sensor locations at individual sites (Figure 2.2). On 

average, the 12 sensors at the two lower elevation sites recorded seasonal maximum snow depths 
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of 203 cm, 154 cm, and 199 cm for the three years, respectively, while the 12 sensors at the two 

upper elevation sites recorded average maximum depths of 278 cm, 194 cm, and 307 cm for the 

same years. The lower elevation sites accumulated 73%, 79%, and 65% of the average maximum 

snow depth at the upper elevation research sites for 2008, 2009, and 2010, respectively. 

Maximum snow depth was recorded on 26 February, 2008; 19 February, 2009; and 21 April, 

2010 and the dates did not vary by elevation. Snow density data (not shown) from each of the 

three years exhibited a seasonal increase with the springtime maximum snowpack densities 

between 450 kg m-3 and ~500 kg m-3. The timing of seasonal maximum SWE was estimated to 

coincide with density surveys conducted on 23 March, 2008; 21 March, 2009; and 2 May, 2010 

(Figure 2.2, Table 2). Average maximum annual SWE for lower and upper elevation sites, 

respectively, was 519 mm and 955 mm in 2008; 263 mm and 576 mm in 2009; and 817 mm and 

1330 mm in 2010. The melt season duration, defined as the number of days between peak SWE 

and snow disappearance, was found to vary significantly by site, year, and lower (sites 1 and 2) 

and upper (sites 3 and 4) elevations (Table 2). 

 

Table 2.2.  Melt-season metrics. 

 

 

2.2.2 Direct beam canopy transmissivity (DBT) 

The DBT at the location of snow depth sensor #3, site #3 is illustrated in Figures 4a,b. In 
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the example, directional SVF is sampled along the solar disk trajectory (Figure 2.4a) at one-

minute resolution between the hours of 4:00 and 20:00 PST for every day between the winter and 

summer solstices (Figure 2.4b). The daily (i.e. when the sun is above the horizon) mean DBT for 

this location (Figure 2.4c) has a seasonal minimum of 0.05 on 11 January, a seasonal maximum 

of 0.48 on 29 April, and the seasonal average of the mean daily DBT is 0.29. However, the high 

variability of the one-minute DBT is not well represented by the seasonal evolution of the daily 

mean as indicated by the near-zero median and 45th and 55th percentiles for much of the year 

(Figure 2.4c). The distribution of minutes when direct sunlight passes unimpeded through the 

canopy (i.e. DBT = 1) is heavily skewed toward solar noon (at the daily scale) and the summer 

solstice (at the seasonal or annual scale), but that general trend is dependent on location and 

surrounding forest structure. 
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Figure 2.4. Directional SVF at one-degree angular resolution at the same depth sensor location as in Figure 
2.3 showing a) the projected solar disk trajectory on the winter (lower) and summer (upper) solstices, b) 
directional SVF sampled along the sun track (i.e. direct beam canopy transmissivity, DBT) at one-minute (x-
axis) resolution for every day (y-axis) between the solstices, and c) the seasonal variability including the 
mean, median, and the 45th and 55th percentiles of the daily mean DBT at the same location. 

 

For example, the spatial variability of the seasonal distribution of daytime DBT computed 

between the solstices as in Figure 2.4b but at all 24 photo / snow depth sensor locations is 

illustrated in Figure 2.5a. The mean of the daily average DBT at all sensor locations varies from 

0.044 to 0.32 between the winter and summer solstices, respectively (Figure 2.5b). The 24-sensor 

mean of the photo-derived DBT (0.19) is only slightly less than the photo-derived 24-sensor 

mean SVF90° (0.24; Table 1) - a surprising result given that SVF90° contains information about a 

much larger portion of the projected hemisphere than the angular swath defined by the solar 
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coordinates. However, particularly at time scales greater than one hour, the mean DBT does not 

correspond to sub-canopy potential direct beam irradiance without consideration of the highly 

variable nature of above-canopy solar radiation. In the analyses to follow, the photo-derived DBT 

was used to explicitly estimate sub-canopy direct beam solar irradiance in an effort to capture the 

highly dynamic nature of the sub-canopy shortwave environment.   

 

 

Figure 2.5. Direct beam canopy transmissivity (DBT) between the winter and summer solstices a) for all 
daylight hours as shown in Figure 2.4 but at the locations of all 24 snow depth sensors, and b) as the sensor 
network mean (solid line) and range (shading) of the daily average at all sensor locations and relative to the 
site 3, sensor 3 mean DBT (dashed line) shown in Figure 2.4.  
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2.2.3 Above-canopy radiation 

Hourly measured above-canopy  data for the three years are shown in Figure 2.6; the 

darker horizontal bands indicate cloud cover (Figure 2.6). A daily clearness index,  (Liu and 

Jordan, 1960) (Equation 2), was computed for the period between the spring equinox and 

summer solstice of each year as  

        (2)  

where  is the estimated horizontal solar flux received at the top of the atmosphere per 

unit area per hour, computed as Allen et al. (2006). Low (high)  values represent low (high) 

radiation typically associated with cloudy (clear) sky conditions. However, no definitive 

thresholds exist by which to classify sky conditions based on  (Okogbue et al., 2009). The 

threshold used to identify cloudy conditions varies by study from K!  ≤ 0.15 (Okogbue et al., 

2009) to K!  ≤ 0.35 (Kuye and Jagtap, 1992). For this study, daily average K!  was rarely less 

than 0.15 (Figure 2.6). As a result, a threshold of K!  ≤ 0.35 was specified to estimate cloudy 

conditions. Based on this K!  threshold, 4, 23, and 8 days were categorized as cloudy in 2008, 

2009, and 2010, respectively (Figure 2.6). 
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Figure 2.6. Hourly global shortwave Rs↓ radiation measured at the Topaz Lake meteorological station between 
the winter and summer solstices of water years 2008, 2009, and 2010. Daily clearness indices (Kτ) for each 
year are shown in the vertical scatter plots. Darkened data points indicate days after the spring equinox for 
each year. Circles ( symbols) indicate days when Kτ ≤ 0.35 (i.e. ‘cloudy’); the vertical black line indicates 
this cloudy / clear sky threshold.  

2.2.4 Sub-canopy direct beam irradiance 

An evaluation of the one-minute sub-canopy Rs↓dir at a single snow depth sensor location 

reveals the control of canopy structure on the transmission of the solar beam (Figure 2.7). 

Periods of cloud cover are identifiable in the time series of the simulated sub-canopy direct beam 

flux; note the rapid transitions from red to blue in the vertical line graph in Figure 2.7, indicating 

a shift in radiation dominance from the direct to diffuse light. Changes in daily average 

shortwave canopy transmission associated with temporally discontinuous cloud cover occur 

when clouds block the sun precisely when the direct beam would otherwise be transmitted 

through the canopy at a given location (Figure 2.7; note changes in the vertical line graph during 

cloudy (blue) periods).  
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Figure 2.7. Modeled sub-canopy Rs↓dir for 21 December, 2007 – 21 June, 2008 (left) at the same photo 
location shown in Figure 2.4.  The mean daily fraction of modeled sub-canopy to above-canopy direct beam 
irradiance (i.e. daily direct beam canopy transmission) is indicated by the vertical line graph and the daily 
fraction of total direct / diffuse irradiance is indicated by the line color. Diurnal examples of above-canopy 
(thin line) and sub-canopy (bold line) direct Rs↓ for 1 March and 1 May, 2008 are included at right. 

Diurnal cross-sections of the sub-canopy direct beam irradiance on 1 March (lower) and 

1 May (upper), 2008 illustrate the variability in sub-canopy solar beam irradiance relative to the 

above-canopy flux and general increase over the two-month period (Figure 2.7; insets on right). 

The canopy transmission of the direct beam is therefore highly dynamic as a combined result of 

cloud cover and forest canopy structure coincident with the sky track of the sun (e.g. Figure 2.4). 

The average daily probability (in percent likelihood) of DBT plotted in Figure 2.5b was 12% and 

37% in winter (21 December, 2007 - 21 March, 2008) and spring (21 March - 21 June, 2008), 

respectively, while for the same two seasons the direct beam comprised 46% and 75%, 

respectively, of the total global sub-canopy solar irradiance. The results suggest that even in 

winter, despite the relatively low daily average probability of solar beam canopy transmittance, 

the direct beam still represented much of the sub-canopy solar irradiance.  

The first validation of simulated Rs↓dir conducted for eight days and evaluated against 
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data from three pyranometers yielded an average linear Pearson’s correlation coefficient of 0.58 

and a positive model bias of 9.9% was noted. The second validation experiment run at nine 

pyranometer locations for three days yielded an average correlation coefficient computed for the 

sub-canopy sensors and model estimates of 0.70 and a positive model bias of 7.1% was 

observed. Various error sources of the model and measurement designs likely contributed to the 

observed error and bias. Spatial offsets of as much as a few meters between the camera lens and 

pyranometer positions likely resulted in much of the observed error at the relatively high 

temporal resolution of the measurements and model estimates. The spatial offset between sensors 

and photographs effectively caused a temporal lag in the intermittent irradiance, reducing the 

correlation coefficient. The positive model bias could be attributed to a combination of error in 

the partition of above-canopy global radiation to direct and diffuse, hemispherical photo 

acquisition and analysis, and pyranometer measurement error at the base station (representing 

above-canopy) and/or the sub-canopy sensors. The potential influences of the various 

uncertainties on analyses and results are presented in the Discussion. 

2.2.5 Regression analyses 

The mean ablation rates for the continuously operational snow depth sensors were -11.7 

mm day-1, -7.2 mm day-1, and -23.2 mm day-1 in 2008, 2009, and 2010, respectively (Figure 2.8). 

The mean cumulative sub-canopy direct beam irradiance from the date of maximum 

accumulation to the mean date of snow disappearance for the three years at the location of the 

continuously recording sensors was 365 MJ m-2 (23 March - 29 May, 2008), 274 MJ m-2 (21 

March - 19 May, 2009), and 304 MJ m-2 (2 May - 17 June, 2010) (Figure 2.8). A total of 15, 12, 

and 19 sensors recorded SWE ablation rates in 2008, 2009, and 2010, respectively, and are used 
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in the following regression analyses. 

 

Figure 2.8. Mean ( symbol) and standard deviation (error bars) of measured seasonal SWE ablation rates 
(left) and modeled cumulative melt season sub-canopy direct beam irradiance (right) for years 2008, 2009, 
and 2010. For consistent inter-annual comparison, only data from seven continuously operational sensor 
locations are shown.   

Generally, (negative) linear relationships were observed between seasonal SWE ablation 

(i.e. ΔSWE; with negative values indicating ablation) and modeled cumulative incident Rs↓dir 

(Figure 2.9). The estimated cumulative direct beam irradiance explained 58%, 29%, and 23% of 

the variation in seasonal SWE ablation in 2008, 2009, and 2010, respectively. The linear 

relationship of the 2009 data was not statistically significant at the 5% level. Years with greater 

sub-canopy direct beam irradiance exhibited a stronger relationship between ablation rates and 

direct beam irradiance. Sky view factor exhibits the same general (negative) linear relationship 

with SWE ablation, but the slope and statistical significance of that relationship is dependent on 

the specified range of zenith angles used to compute SVFθ. The sensitivity of the observed 

relationships between ablation rates and SVFθ were evaluated for sensitivity to seasonal inter-

annual differences in cloud cover for three years of record.  
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Figure 2.9. Linear regression trends between spring SWE ablation rate measured at snow depth sensor 
locations and corresponding modeled cumulative seasonal sub-canopy shortwave irradiance for years 2008 
(n=15), 2009 (n=12), and 2010 (n=19). 

Figure 2.10 shows the coefficient of determination of the linear regression analyses 

conducted on the SWE ablation rates observed for each of the three years and SVFθ computed 

over successively larger sky regions. The optimal zenith angle used to compute SVFθ that 

resulted in the strongest correlation with ablation rates varied for each of the three years: 90° in 

2009, the cloudiest season, and 45° (2010) and 66° (2008); years with less cloud cover and more 

direct beam irradiance (Figure 2.10). The SVFθ at these optimal zenith angles explained 41%, 

87%, and 48% of the observed seasonal SWE ablation for the respective three years (Figure 

2.11). 

 

2.3 Discussion 

At least four factors likely contributed to the variability of observed SWE ablation rates. 

First and most importantly, cumulative sub-canopy direct beam irradiance was largely governed 

by the spatial arrangement of forest vegetation in the sky direction of the sun’s path. Second, 
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seasonal ablation rates are limited, in part, by the availability of incident solar irradiance, which 

varies seasonally with solar elevation. Hence, reduced ablation rates were observed at lower 

elevations (Figure 2.9) where snowmelt commences earlier in the year when solar elevations are 

lower. At upper elevations snowmelt continues later into the year (Figure 2.2) when solar 

elevations are higher, resulting in greater seasonal ablation rates (Figure 2.9). Third, snow 

ablation rates are governed by seasonal meteorology. Years with greater sub-canopy direct beam 

irradiance (and less cloud cover) exhibited a stronger relationship between seasonal ablation 

rates and direct beam irradiance (Figure 2.9). While Rs↓dir explained nearly 60% of the observed 

variability in SWE ablation for the most cloud-free ablation season, the remaining unexplained 

variability for this year and for years with more cloud cover highlights the role of other energy 

sources known to drive plot-scale snowmelt variability. Finally, the timing of the melt season, 

defined by the period of time between peak SWE and snow disappearance, dictates the 

availability of incident solar radiation and thus strongly influences the SWE ablation rates. For 

example, the year with the latest peak SWE date (May 2, 2010) and latest mean snow 

disappearance date exhibited the shortest melt season duration (see Table 2). In contrast, 2008 

was the clearest melt season on record but, with a peak SWE date of March 23, recorded the 

longest melt season duration of the three years despite recording only ~ 74% of the 2010 peak 

SWE. Other inter-annual meteorological differences during the melt season such as air 

temperature, snowfall, humidity, wind, cloud cover and rain-on-snow events would also be 

expected to result in inter-annual differences in seasonal SWE ablation rates. 
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Figure 2.10. Coefficient of determination and p-values from linear regression between seasonal SWE ablation 
(ΔSWE) measured at operational depth sensors for water years 2008, 2009, and 2010, and sky view factor 
(SVFθ) at corresponding sensor locations computed by integrating canopy openness from specified zenith 
angles (1° - 90°) to nadir (0°). For each year, the vertical red line indicates the zenith angle that maximizes R2 
and minimizes the p-value. 

Numerous sources of uncertainty could potentially complicate the statistical relationships 

between seasonal SWE ablation rates and the metrics direct beam irradiance and SVFθ. How 

these error sources influence the interpreted results depend on the type and degree of uncertainty 

and the methods available to minimize the errors. For example, the geo-reference errors in 

hemispherical photos can be minimized by following documented methods (e.g. Frazer et al., 

1999; Hardy et al., 2004). Such errors would be expected to be small and relatively random in 

nature. Conversely, errors associated with the use of radiation measurements made in an alpine 
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area 8 km from the study site to represent above-canopy radiation at lower elevations may have 

greater implications on the results. For example, a three-year comparison of Rs↓ measured at 

Topaz Lake and a station 340 m lower in elevation than the study area yielded a correlation 

coefficient of 0.93. Despite the relatively high long-term correlation, the correlation was lower 

during cloudy periods, indicating that the alpine region experienced more cloud cover than the 

lower elevations.  

The use of these data to represent above-canopy global solar radiation at the lower 

elevations could introduce a negative bias in the radiation data, particularly during cloudy 

periods. This bias could potentially influence inter-annual comparisons and interpretations of the 

results. A bias would be expected to manifest largely during the cloudiest season (e.g. 2009) and 

would decrease the significance of the linear regression between ablation rates and direct beam 

solar irradiance for this year. A simple test for this radiative bias would be to examine the zenith 

angle that resulted in the best linear fit between seasonal SWE ablation rates and SVFθ. A 

negative radiation bias (i.e. simulating cloudy conditions when it is actually clear) would cause a 

decrease in the ‘optimal’ zenith angle, similar to what is observed during years with less cloud 

cover (e.g. 2008 and 2010). The optimal zenith angle of 90° during the 2009 melt season 

suggests that this potential radiation bias was negligible (i.e. measured cloud cover in the alpine 

similarly impacted the Wolverton basin).  
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Figure 2.11. Linear regression trends between seasonal SWE ablation rates shown in Figure 2.9 and the 
corresponding measured SVFθ at the optimal zenith angles for years 2008 (n=15), 2009 (n=12), and 2010 
(n=19) as indicated by the red lines in Figure 2.10.   

The strength of the statistical relationship between sky view (a measure of canopy 

openness) and observed ablation was found to be sensitive to the concentric area of the 

hemispherical sky view used to evaluate SVFθ. The findings support results of López-Moreno 

and Latron (2008), in which a sensitivity between SWE, time of year, and the specified range of 

zenith angles used to compute SVFθ was documented. Evaluation of the zenith angle that when 

used to compute SVFθ explains the most variability in ablation rates across all snow depth sensor 

locations may provide insight into the source of the governing energy fluxes. For example, the 

high optimal zenith angle of 90° predicted during the cloudiest melt season suggests the 

dominance of energy sources derived from all hemispherical directions, including diffuse 

radiation and atmospheric and terrestrial longwave radiation known to be dominant energy fluxes 

during cloudy conditions. The reduced optimal zenith angles for years with less cloud cover and / 

or a later melt season imply a stronger influence of the solar direct beam with respect to the sub-

canopy energy balance. For example, the daytime average and average daily maximum solar 

zenith angles during the melt season were 53° and 25° in 2008 (March 23 – May 22) and were 
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50° and 16° in 2010 (May 2 – June 16). The zenith angle at which SVFθ explained the most 

variability in ablation rates of 45° in 2010 (8 cloudy days and late melt season) is close to the 50° 

daily average solar zenith angle for this melt season. In 2008 (four cloudy days and early melt 

season), the optimal SVFθ zenith angle of 66° is nearer to the horizon than the 53° daily average 

solar zenith angle. The differences suggest that the variability of ablation rates during the earlier 

melt season (i.e. 2008) may be less impacted by direct beam solar irradiance than the melt season 

that occurred later (i.e. 2010) despite the latter season experiencing more cloud cover. The 

results indicate that the ability of the individual metrics to explain observed variability in SWE 

ablation rates is related to seasonal meteorology (i.e. both cloud cover and timing and duration of 

the melt season). Combined, the two metrics studied here (sub-canopy direct beam irradiance 

and SVFθ) may be used to explain much of the observed plot-scale variability in SWE ablation at 

the finer time scales relevant to snow and hydrological model applications.  

Land surface and hydrological models typically use spatially aggregated (i.e. bulk) 

representations of complex, three-dimensional (3-D) canopy structure to represent the numerous 

mechanisms known to cause spatiotemporal variability in SWE. Satellite-derived estimates of 

canopy density and LAI’ are two bulk forest metrics commonly used to scale above-canopy 

fluxes to the sub-canopy surface. Despite well-documented relationships between sub-canopy 

fluxes and areal-averaged LAI’ and canopy density, these bulk metrics often lack the level of 

detail necessary to fully explain sub-canopy snow dynamics (Varhola et al., 2010b). Essery et al. 

(2008b) suggest that a more explicit characterization of canopy structure is needed to resolve the 

distribution of sub-canopy energetics and snow cover depletion. Detailed atmosphere - canopy 

radiative transfer models have proven accurate in the simulation of forest light environments for 
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the estimation of photosynthesis and carbon sequestration (Kobayashi and Iwabuchi, 2008), but 

the distributed application of such techniques is generally limited by computational expense and 

data requirements. An effective compromise in detailed canopy representation may split the 

difference between bulk forest metrics such as LAI’ or canopy density and 3-D canopy structure 

data required by multispectral radiative transfer models. 

The metrics SVFθ and direct beam irradiance could be combined with other variables 

such as canopy parameters, slope, aspect or elevation to further explain variability of observed 

ablation rates. However, the relationships and metrics explored in this study have more global 

implications for the improvement of land surface and hydrologic models in snow-covered 

forests. For example, direct beam canopy transmissivity could be incorporated as a time-variant 

model input rather than using bulk LAI’ and extinction parameter values in a Beer’s-type 

exponential reduction of above-canopy direct beam solar radiation. Similarly, SVFθ determined 

at optimal zenith angles defining sky / canopy regions that most influence particular energy 

fluxes could be used to simulate energy fluxes that are more omnidirectional than the solar direct 

beam. For example, SVFθ determined from hemispherical photographs could be used to estimate 

sub-canopy longwave irradiance during cloudy periods. However, during clear sky conditions 

the added contribution of longwave radiation by sunlit canopy elements (e.g. Pomeroy et al., 

2009) introduces a third dimension to the problem that cannot be fully addressed with a single 

two-dimensional photograph. Increasingly available light detection and ranging (LiDAR) data 

provide a means to obtain these and other canopy structure metrics for future basin-scale 

hydrological applications.  

Terrestrial LiDAR techniques have been used to estimate directional SVF (e.g. Côté et 
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al., 2009; Danson et al., 2007) but, like hemispherical photography, the technique is limited in its 

application at hydrologically relevant scales (i.e. catchment level). Toward bridging this scale 

gap, airborne scanning LiDAR systems offer an innovative alternative (van Leeuwen and 

Nieuwenhuis, 2010; Varhola et al., 2010a) to other indirect methods in that they capture the 

general spatial arrangement and structure of vegetation over large areas. Work by Essery et al. 

(2008a) to derive a viewshed of surrounding forest vegetation from an orthophoto and LiDAR 

data shows promise for subsequent distributed applications of the current work. Future efforts 

will explore the utility of detailed canopy metrics to improve the representation of surface - 

atmosphere interactions in physically based snow, hydrological, and ecological models, 

including extending the presented methods to estimate the sub-canopy thermal radiative 

environment. Efforts will include the use of LiDAR data to map the most physically meaningful, 

detailed canopy metrics over large areas for distributed model application. 

2.4 Conclusions 

Sub-canopy cumulative seasonal direct beam solar irradiance derived from above-canopy 

measurements and hemispherical photography explained the most variability in snow ablation 

rates during the least cloudy melt season (58%, p(0.05)<<0.01; 2008; 4 cloudy days, 365 MJ m-2 

direct irradiance), less for the snowmelt season with intermediate cloud cover (23%, p(0.05)<0.05; 

2010; 8 cloudy days, 304 MJ m-2 direct irradiance), and the least during the cloudiest melt season 

of the study (29%, p(0.05)> 0.05; 2009; 23 cloudy days, 274 MJ m-2 direct irradiance). Conversely, 

sky view factor (SVFθ) explained the most variability in snow ablation rates under cloudier 

conditions (i.e. 87% in 2009, p(0.05)<<0.01) and the relationships between SVFθ and ablation rates 
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were stronger when developed over the entire hemisphere (i.e. SVF90°). Combined, the two 

metrics studied here (sub-canopy direct beam irradiance and SVFθ) may be used to explain much 

of the observed plot-scale variability in SWE ablation at finer time scales relevant to physically 

based snow and hydrological model applications. 

 

Chapter 3. Improved snowmelt simulations with a canopy 

model forced with photo-derived direct beam canopy 

transmissivity 

This study evaluates snowmelt estimates from a canopy model coupled to a finite-

element snowmelt model. Three years of sub-canopy snow observations from 24 locations 

spanning a range of terrain and forest structure provide the basis for the evaluation. The methods 

examine whether model skill is gained from an increased level of detail in the canopy structure 

information provided to the canopy module, with a focus on the treatment of direct beam canopy 

transmissivity. The following questions are addressed: (1) ‘How do various methods of obtaining 

bulk canopy metrics affect snowmelt model accuracy?’ and (2) ‘Does an explicit treatment of 

direct beam canopy transmissivity improve snowmelt model accuracy?’ 

The next section describes the background and motivating questions. Section 3.2 

provides additional details of the study area, instrumentation, canopy structure and the regional 

hydrometeorological data as they differ from those presented in Chapter 2. Section 3.3 presents 

the snow model details as well as the simulation methodology. Results, discussion and 

conclusions are described in Sections 3.4, 3.5, and 3.6, respectively. A summary of the canopy 
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model is provided in Appendix A. 

3.1 Background 

Canopy models vary in their representation of radiative transfer (RT) from simple bulk 

approximations to complex treatments of the effects of individual canopy elements on 

attenuation, reflection and transmission of radiation. Many of the simpler models employ a one-

dimensional “big-leaf” canopy representation, which is most applicable over flat, homogeneous 

terrain (Baldocchi et al., 1987). In big-leaf models, canopy RT is treated with a two-stream 

approximation (Dickinson, 1983) and above-canopy radiation is attenuated by a two-parameter 

application of the Beer-Lambert law (Monsi and Saeki, 1953), which assumes the exponential 

reduction of radiation through a homogeneous medium (Shugart, 1984). The application of the 

Beer-Lambert law to above-canopy radiation is generally inadequate to resolve sub-canopy 

irradiance at sub-daily time scales, largely as a result of discontinuous canopy gaps (Reifsnyder 

et al., 1971). Exponential attenuation has, however, been shown to adequately estimate the net 

sub-canopy irradiance over longer periods (e.g. Larsen and Kershaw, 1996; Reifsnyder et al., 

1971) provided that the parameters are derived from field measurements (Bréda, 2003). Separate 

exponential attenuation coefficients for diffuse and direct radiation has been shown to partially 

explain time-varying canopy transmission as a consequence of snow interception and cloud 

cover (Stähli et al., 2009). In big-leaf models, canopy gaps are accounted for with a canopy 

openness fraction and the remaining fraction of vegetation is assumed to be randomly distributed 

(Nijssen and Lettenmaier, 1999). The assumptions inherent to canopy RT models parameterized 

with bulk canopy metrics make them difficult to apply to point-scale locations beneath a 
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discontinuous forest canopy.  

Semi-empirical studies conducted with physically realistic snowmelt models have 

reported that canopy height and stand density, two common bulk forest metrics, exert first-order 

control on sub-canopy cumulative shortwave irradiance and simulated snowmelt rates (e.g. Davis 

et al., 1997). More recent studies have used airborne scanning light detection and ranging 

(LiDAR) to represent the spatial arrangement of forest canopies (e.g. Essery et al., 2008a; van 

Leeuwen and Nieuwenhuis, 2010; Varhola et al., 2010a). As high-resolution vegetation data 

become more available, the use of detailed canopy metrics to improve snowmelt model 

representation of snow - atmosphere interactions must be explored.    

As mentioned in Chapter 1, physically based snowmelt models are well suited to evaluate 

the complex linkages between meteorology, forest cover, snow accumulation and melt, and the 

basin-scale water balance (e.g. Lehning et al., 2006; Pomeroy et al., 2007). The ability of a 

physically based snow – canopy model to simulate these processes is limited, in part, by the 

difficulty of obtaining detailed canopy structure information (Tribbeck et al., 2004). 

Additionally, the error associated with validating simulated snowmelt rates with in-situ 

measurements is large (Nijssen and Lettenmaier, 1999). This is particularly true when canopy 

models are parameterized by bulk canopy metrics. This study demonstrates many of these 

limitations resulting from scale issues.  

Plot-scale variability in the timing of melt onset and snowmelt duration influences the 

distribution of soil moisture (Bales et al., 2011; Molotch et al., 2009), infiltration, groundwater 

recharge, and streamflow (Seyfried and Wilcox, 1995). Detailed simulations of plot-scale 

variability could improve the representation of sub-grid variability in modeled 
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hydrometeorological states and fluxes (e.g. Claussen, 1991; Luce et al., 1999) and help to resolve 

related scaling issues (e.g. Blöschl, 1999). Improved simulations of snow processes at the plot-

scale could also inform the representativeness of satellite-derived snow covered area (SCA) to 

actual sub-canopy SCA (e.g. Hall et al., 1998; Klein et al., 1998; Molotch and Margulis, 2008).  

More detailed canopy representation in model structure and/or model parameterization 

may improve the accuracy of physical snowmelt models. For example, upward-looking 

hemispherical photography is an inexpensive method of estimating forest canopy structure and 

the likelihood that direct beam solar radiation is transmitted through the canopy (Hardy et al., 

2004). Hardy et al. (2004) improved simulated snowmelt rates using a photo-derived seasonal 

mean canopy transmissivity value compared to simulations with a bulk (i.e. Beer-Lambert type) 

reduction of above-canopy solar radiation. However, diurnal and seasonal variability in solar 

magnitude and the timing of the sun’s track across discontinuous canopy gaps limit the utility of 

seasonal mean transmissivity estimates. A measure of direct beam canopy transmissivity at a 

temporal resolution that adequately captures the diurnal and seasonal variability of sub-canopy 

shortwave irradiance may improve snowmelt simulations. To our knowledge, no study has 

applied direct beam canopy transmissivity as a time-variant input to a physically based snow 

model. 

3.2 Experimental design and methods 

The one-dimensional soil – snow – vegetation model SNOWPACK (Bartelt and Lehning, 

2002; Lehning et al., 2002a; Lehning et al., 2002b) was forced with observations of above-

canopy meteorology to simulate sub-canopy snowpack dynamics. The model was initialized at 
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locations of 24 ultrasonic snow depth sensors for water years 2008, 2009 and 2010; a total of 72 

sensor-years. For each sensor-year, three distinct scenarios were evaluated for their effect on 

model accuracy. The three scenarios specified different levels of canopy structure detail to the 

big-leaf canopy module: (i) Scenario N is the nominal scenario designed to represent a modeling 

case where no ground-based observations of canopy structure are available, necessitating the use 

of gridded satellite data or a land surface look-up table; this approach is commonly applied in 

distributed modeling studies (e.g. Wigmosta et al., 1994). The SNOWPACK canopy model 

parameters canopy openness and effective leaf area index ( ) were derived from satellite data 

at 30 m resolution and estimated from literature-based sources, respectively, as described in 

Section 2.2. The canopy parameters were chosen to be as representative as possible of the 

canopy conditions at snow depth sensor locations where models were initialized. (ii) Scenario 

NP is the ‘nominal-photo’ case in which upward-looking hemispherical canopy photos were 

taken at snow depth sensor locations where models were initialized. The photos were used to 

derive the SNOWPACK canopy model parameters canopy openness and  (see Section 2.2); 

this approach is common in point-scale modeling studies (e.g. Rutter et al., 2009) and is expected 

to yield more accurate estimates of these bulk parameters compared to Scenario N; and (iii) 

Scenario NPDBT builds upon the level of photo-derived canopy structure detail provided in the 

NP scenario with a modification to the structure of the canopy model that permits an explicit, 

time-variant treatment of solar direct beam canopy transmissivity (DBT) derived from the same 

photos (rather than a bulk representation) as described in Section 2.3. Three years of data from 

repeated snow surveys and a network of sub-canopy snow depth and soil moisture sensors were 

used to evaluate model performance. 

LAI '

LAI '
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3.2.1 Site description, instrumentation and hydrometeorology 

Work was conducted in the 7.22 km2 Wolverton basin of Sequoia National Park on the 

western slope of the southern Sierra Nevada, CA, U.S.A. (36.59ºN, 118.717ºW) (Figure 3.1). 

Musselman et al. (2012) provides a description of the basin and the four instrumented sites 

stratified across the basin’s range of elevation, aspect, and canopy cover (Figure 3.1, Tables 1-2).  

 

Figure 3.1. The Wolverton basin and its four instrumented research sites (red squares) in the southern Sierra 
Nevada, CA (top). The location of two meteorological towers (black diamonds) and an upper elevation snow 
course (yellow asterisk) are indicated. Elevation contours and lidar-derived vegetation heights within 60 m x 
60 m domains centered on each of the four sites are included. Red circles and reference numbers mark the 
locations of the six ultrasonic snow depth sensors at each site. 

At each site, six ultrasonic snow depth sensors (Judd Communications) recorded hourly 

snow depth (Figure 3.2). The data were processed to remove outliers and fill gaps following 

Lehning et al. (2002a). Volumetric soil water content (VWC; Campbell Scientific CS 616 
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sensors) and soil temperature sensors (T-107 sensors) were installed horizontally in the soil 

column beneath three of the six snow depth sensors at each site, for a total of 12 instrumented 

soil profiles. Only VWC data from -10 cm soil depths were used in this study as the primary 

interest was in meltwater leaving the base of the snowpack (Figure 3.2). The presented VWC 

data were uncalibrated and as such were only used to evaluate the timing of meltwater pulses in 

the soil. At each site, hourly soil temperature data were obtained at -10 cm, -30 cm, and -60 cm 

soil depths beneath three of the six snow depth sensors. Spatial averages of the three soil profiles 

provided hourly estimates of the site-specific soil temperature profile, which was assumed to be 

representative of the soil temperature beneath all six snow depth sensors at the respective sites. 

 

Figure 3.2. Observations of snow depth (colored lines) from six ultrasonic depth sensors and volumetric soil 
water content (black line) measured at a soil depth of -10 cm at each of the four research sites for water years 
2008, 2009, and 2010.   
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Table 3.1.  Terrain variables provided to the models initialized at locations of the six ultrasonic snow depth sensors 
at each of the four research sites. 

 

 
Table 3.2.  Canopy variables provided to the models initialized at locations of the six ultrasonic snow depth sensors 
at each of the four research sites. 

 

* Canopy openness was determined from Landsat-derived NLCD, 2001 canopy density.   
** Sky view factor (SVF) was determined from hemispherical canopy photos as the weighted average of all photo 
pixels from 65° zenith to nadir (0° zenith) (i.e. SVF65°). 
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Two seven-meter meteorological towers, each located near Sites 1 and 2 at 2232 m above 

sea level (asl) and Sites 3 and 4 at 2642 m asl, provided hourly observations of air temperature 

(Figure 3.3a), relative humidity (Figure 3.3b), and wind speed (Figure 3.3c) at an average sensor 

height of six meters. The towers are located in large canopy gaps and the collected data were 

assumed to be representative of above-canopy conditions (Figure 3.1).  
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Figure 3.3. Meteorological variables representing conditions at the lower (red) and upper (blue) elevation 
research sites including: (a) daily mean (line) and range (shading) of air temperature, (b) daily mean relative 
humidity, (c) maximum daily wind velocity, (d) cumulative annual precipitation for each water year (1 
October to 30 September), (e) hourly (gray) and daytime mean (points) shortwave radiation from the Topaz 
Lake meteorological station, and (f) daily mean (line) and range (shading) of longwave radiation.     

Snow density data were obtained from monthly snow pit measurements made at the 

instrument sites and approximately monthly California Cooperative Snow Survey (CCSS) 

measurements (Table 3). Snow pit density measurements, made in duplicate profiles with 1000 
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cm3 cutters, were assumed representative of the site-average snow density. CCSS snow course 

density data represent the average of Federal snow tube measurements made along multiple 

transects near Sites 3 and 4 (Figure 3.1). Observations from four (2008), six (2009) and four 

(2010) snow density surveys were used to estimate the SWE at individual snow depth sensors on 

each survey date (Table 3). The SWE at each sensor location was obtained using the site-average 

density and the sensor-specific depth. Surveys conducted before and after the date of maximum 

annual SWE were considered to represent the accumulation- and melt-seasons, respectively (see 

Table 3).  

Precipitation was recorded at two additional meteorological stations. The Lower Kaweah 

station (36.56611ºN, 118.7778ºW, 1890 m asl), operated by the National Park Service, includes a 

shielded, heated tipping bucket precipitation gauge. The station is located five km SW of the 

Wolverton basin and ~ 340 m lower in elevation. The Giant Forest station (36.562ºN, 

118.765ºW, 2027 m asl), operated by the US Army Corps of Engineers, includes a shielded 

storage precipitation gauge. The Giant Forest gauge is located 4.6 km SSW of the Wolverton 

basin and ~ 205 m lower in elevation. Data from the two precipitation gauges were merged in an 

effort to fill data gaps. Catch efficiency of precipitation gauges depends on the gauge and shield 

design, the wind speed, and the precipitation type (rain or snow) (Groisman and Easterling, 

1994). The catch efficiency of the two gauges is assumed to be equal and is specified according 

to Groisman and Easterling (1994) as 0.95 for rain and 0.4 for snow, which is near the lower end 

of the reported efficiency range but higher than used in other studies (e.g. Pierce et al., 2008). Air 

temperature is used as a simple proxy for precipitation type such that a catch efficiency of 0.4 is 

used at temperatures ≤ 1°C and 0.95 is specified at temperatures > 1°C. The corrected gauge 
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measurements are then scaled to the respective elevations of the four Wolverton basin research 

sites with seasonally dependent orographic precipitation adjustment factors derived in Thornton 

et al. (1997) as presented in Liston and Elder (2006a). Cumulative precipitation data for the three 

water years (Oct. 1 – Sep. 30, 2008 - 2010) at the two meteorological stations are shown in 

Figure 3d.  

Table 3.3. Dates, locations, and results of snow density surveys in the Wolverton basin for three snow seasons. 
Average snow densities at lower (Sites 1 and 2) and upper (Sites 3 and 4) elevations are used with the snow depth 
sensor measurements on the day of each survey to estimate SWE (mean and standard deviation) at each site. 
Shading indicates survey dates considered to represent the melt-season.  

 

CCS:  California Cooperative Snow Survey location (near Sites 3 and 4) 
*:  Density only measured at upper elevations and assumed representative of lower elevation sites. 
(#):  Number of operational snow depth sensors at a given site on the day of a snow density survey. 

 

While the two Wolverton meteorological stations were located in forest clearings, 

measurements of incoming shortwave ( SR ↓ ) and longwave ( LR ↓ ) radiation were affected by tall 

vegetation surrounding the stations. Instead, SR ↓  data used in this study were measured at a 
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station 8 km ENE of the Wolverton basin at Topaz Lake (3220 m asl), which is located above 

timberline and is minimally shadowed by local terrain. In a previous study, the SR ↓  data from 

Topaz Lake were found to adequately represent the regional above-canopy shortwave field (see 

Musselman et al., 2012) and were used without correction in the current study to represent SR ↓  

in the Wolverton basin (Figure 3e). LR ↓  data were obtained from the Emerald Lake 

meteorological station, located five km ENE of the Wolverton basin at elevation 2816 m asl. The 

temperature dependence of LR ↓  and differences in temperature between the Wolverton study 

sites and Emerald Lake must be considered. Therefore, the incoming atmospheric longwave 

radiation expected under clear sky conditions ( RL!clear
) was estimated for each of the Emerald 

Lake and the two Wolverton meteorological stations. The fluxes were estimated from local air 

temperature and relative humidity measurements as in Satterlund et al. (1979). The enhancement 

of longwave radiation by cloud cover was accounted for by computing the maximum of the 

hourly measured and clear-sky estimated fluxes at Emerald Lake. The fractional increase 

between hourly LR ↓  and RL!clear
 is represented as: 

max 1,
clear

L
L

L

R
f

R
↓

↓

⎛ ⎞
⎜ ⎟= ⎜ ⎟⎝ ⎠

         (1) 

The time-variant fraction fL  was used to adjust the hourly clear-sky estimates computed from 

measurements made at the two meteorological stations in the Wolverton basin, RL!clear ,Wolv
, as: 

RL!Wolv
= fLRL!clear ,Wolv

              (2)   

The hourly RL!Wolv
data for the lower and upper elevation Wolverton meteorological stations are 
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assumed to be representative of above-canopy longwave fluxes at Sites 1 and 2, and Sites 3 and 

4, respectively (Figures 1 and 3f). 

3.2.2 Canopy structure metrics 

Two levels of canopy structure detail are presented. The first, used in Scenario N, is a coarse 

approximation of canopy openness and effective leaf area index ( ) obtained from remote 

sensing and literature, respectively, with no in-situ canopy structure knowledge. Remotely 

sensed bulk canopy openness, defined as (1 – canopy density), was obtained from the National 

Land Cover Database (NLCD, 2001), which is a 30 m resolution product of Landsat Enhanced 

Thematic Mapper (ETM+) satellite data (Homer et al., 2004). The coarse approximation of  

was specified as a constant value for all point locations in the basin and was estimated from 

direct measurements of one-sided leaf surface area made in the greater Wolverton region by 

Spanner et al. (1990). However, direct LAI measurements are typically 25% to 50% higher than 

those obtained by indirect optical methods (see thorough review by Bréda, 2003 and references 

therein) such as hemispherical photography or the LAI-2000 Plant Canopy Analyzer (Li-COR, 

Nebraska, USA). Strictly, optical methods measure the plant area index, which is a more 

accurate metric of how all canopy elements, including wood area, combine to influence RT. The 

differences between the values provided by direct and indirect methods are a product of non-

random clumping of canopy elements at a variety of scales as well as the ratio of woody area to 

leaf area; all metrics that vary significantly within a single stand and are typically estimated with 

a high degree of uncertainty (Bréda, 2003). The average direct measurement of LAI reported by 

Spanner et al. (1990) of ~ 7.5 m2 m-2 was simply reduced by 30% to 5.25 m2 m-2 to be consistent 

with the indirect hemispherical photo measurement technique described below (hereafter, the 

LAI '

LAI '
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optical estimate of effective leaf area index is referred to as  to be consistent with the 

literature).  

The second and more detailed level of canopy structure, used in Scenarios NP and NPDBT, 

was measured in-situ by upward-looking hemispherical photographs taken directly beneath each 

of the 24 snow depth sensors. Figure 4a provides an example of a hemispherical photo taken at 

Site 3 beneath depth sensor 1. Readers are referred to Musselman et al. (2012) for a description 

of the photo acquisition and processing.  was estimated from photos following Norman and 

Campbell (1989) and accounting for a sloped surface as Schleppi et al. (2007) to range from 1.20 

to 4.88 m2 m-2 with an average of 2.72 m2 m-2 (Table 2). An estimation of canopy openness in all 

azimuth directions as viewed by a hemispherical photo requires a zenith angle (θ ) be specified 

to compute the sky view factor ( SVFθ ) as the hemispherical weighted sum of the fraction of sky 

pixels to total pixels from the specified zenith angle to nadir (Figure 4c). As terrain tended to 

enter the images at θ  values greater than ~ 70°, a zenith angle of 65° was chosen to compute 

SVFθ  from all photos. It should be noted that when iteratively computed at one-degree θ  angles 

from 1° to 90° for nearly 90 photos taken at the field site, in no case did SVFθ  increase when 

computed with θ  angles greater than 65° (not shown). Canopy openness at 24 snow depth sensor 

locations was obtained by computing SVFθ  from a zenith angle of 65° to nadir (see Table 2). 

LAI '

LAI '
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Figure 3.4. Example of a hemispherical canopy photo taken beneath snow depth sensor 1 at site 3. The (a) 
raw, georeferenced color photo is (b) processed to produce a binary representation of sky and non-sky 
elements, and analyzed to evaluate canopy openness metrics (c) SVFθ across the full range of zenith angles at 
one-degree increments and (d) directional SVF at 3° angular resolution, or a discretization of 120 azimuth 
and 30 zenith solid angles.      

3.2.3 Direct beam canopy transmissivity 

An explicit evaluation of the probability of solar beam transmission through the forest 

canopy at a given time and at the location of a hemispherical photograph required that photos be 

analyzed in discrete solid angles, or sky regions, specified by both azimuth and zenith angular 

increments. Hemispherical images taken at each of the 24 depth sensor locations were divided 
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into 120 azimuth and 30 zenith regions and the directional  was computed for each sky 

region (see example in Figure 3.4d). Methods of Musselman et al. (2012) were used to estimate 

the direct beam canopy transmissivity by sampling the directional  in the sky region 

corresponding to the solar position. Direct beam canopy transmissivity for the three water years 

at each photo location was estimated at one-minute instantaneous steps and averaged to ten-

minute estimates. Figure 3.5a illustrates the ten-minute canopy transmissivity at Site 3, depth 

sensor 1, estimated during daylight hours between the winter and summer solstices of water year 

2008. Examples of direct beam canopy transmissivity at the same location but averaged to 60-

minute, 30-minute and one-minute temporal resolutions are provided in Figures 5b-d. 

 

 

 

SVF

SVF
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Figure 3.5. Direct beam canopy transmissivity for daylight hours of all days (vertical axes) between the 
winter and summer solstices at the location of Site 3, sensor 1 determined from hemispherical photo by 
sampling the directional SVF in the sky direction defined by the solar coordinates at (a) 10-minute, (b) 60-
minute, and (c) 30-minute temporal aggregation and (d) one-minute instantaneous values. Temporal 
resolution at the diurnal scale describes the resolution of the horizontal axes while daily values are plotted 
along the y-axes. 

3.3 Modeling methods 

3.3.1 Snow model 

The SNOWPACK model was chosen for this study based on its documented performance 

in forested environments in the SnowMIP2 model inter-comparison project (Rutter et al., 2009). 

The model calculates the vertical exchange of mass and energy in multi-layered snow and soil 

profiles. The upper and lower boundary conditions are determined by measured atmospheric 

forcing and (if available) soil layer thermodynamic properties, respectively. When vegetation 

cover is present, the upper boundary conditions of the snow or bare ground surface are calculated 



 
 

63 

by a canopy module in terms of SR ↓ , LR ↓ , and turbulent heat exchange coefficients as outlined 

in Lehning et al. (2006). The SNOWPACK canopy module includes treatment of interception 

and throughfall of precipitation, evaporation of intercepted snow or rain, transpiration as well as 

the canopy influence on radiative and turbulent energy fluxes. The model treatment of shortwave 

radiation transmission is described in detail in Stähli et al. (2009). However, most details of the 

canopy model have not been published to date and the reader is provided a short summary in 

Appendix A. Hydrometeorological data (Figure 3) used to force the model represented above-

canopy fluxes. Hourly temperature data of a three-layer soil profile (i.e. 0 to -10 cm, -10 to -30 

cm, and -30 to -60 cm) were provided as forcing to determine the temperature gradient at the 

snow – soil interface (i.e. Dirichlet boundary conditions). Required soil parameters such as 

albedo (0.2), porosity (0.21), density (2200 kg m-3), thermal conductivity (3.8 W m-1 K-1), and 

specific heat (900 J kg-1 K-1) were estimated based on in-situ soil observations of the largely 

gravely loam. 

3.3.2 Canopy model modification 

Scenario NPDBT required a modification to how the canopy model treats direct beam SR ↓  

transmission. Rather than treat both direct and diffuse SR ↓  with a static canopy absorption factor 

(see (Eq. A1)), the photo-derived transmissivity of direct SR ↓  was specified together with 

hydrometeorological measurements as time-variant input data valid directly at the snow surface. 

The treatment of above-canopy diffuse shortwave and longwave fluxes was unchanged. 

Feedback processes within the canopy layer between attenuated shortwave radiation and 

reemitted longwave radiation were considered via the canopy temperature balance. The 
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modification was only applied in the case of the scenario NPDBT. 

3.3.3 Simulations 

The three model scenarios were initialized at locations of the 24 snow depth sensors for 

three water years. In addition to the 72 sensor-year simulations for each of the three model 

scenarios, the influence of temporal averaging of direct beam canopy transmissivity on the 

accuracy of Scenario NPDBT was explored. In this test, the Scenario NPDBT framework was used 

but the model was forced with direct beam canopy transmissivity estimated at one-minute 

(instantaneous) time steps, and averaging periods of 10-, 20-, 30-, and 60-minutes. The model 

forcing data were linearly interpolated accordingly and the five temporal test cases were run with 

the same inputs and structure. For all presented model scenarios, the third canopy structure 

parameter, canopy height, was specified as 40 m. The canopy extinction coefficient, , 

required by the canopy absorption factor (see (Eq. A1)) for all model scenarios was specified as 

0.7, slightly lower than reported by Sicart et al. (2004) with similar  values, lower canopy 

heights, and higher canopy density. On the other hand, the value is larger than 0.6 reported by 

Stähli et al. (2009). By design, model simulations were not calibrated to an objective function 

and the three canopy model parameters (i.e. canopy openness, , and canopy height) were 

specified as detailed above. Simulations were initialized at the start of each water year (i.e. 01 

October), rather than at maximum accumulation, to permit the model to most accurately 

represent snowpack properties such as the density profile. 

3.3.4 Model evaluation 

Model performance was evaluated against the following in-situ observations: 1) manual 

LAIk

LAI '
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SWE estimates; 2) continuous snow depth; 3) snow disappearance date, and 4) the timing of soil 

moisture increase at a soil depth of -10 cm. Automated snow depth measurements were used in 

conjunction with density observations from manual snow surveys (Table 3) to estimate location-

specific SWE on survey dates. At each sensor location, simulated SWE values at times 

corresponding to the survey dates were evaluated against measurements as the square root of the 

variance of the residuals (i.e. root mean square error; RMSE). Similarly, the model SWE bias 

was calculated as the average difference between modeled and measured SWE values. The bias 

was computed separately on SWE values obtained during accumulation- and melt-seasons, 

defined relative to the date of maximum accumulation (see Section 4.1).  

An evaluation of simulated and measured hourly (normalized) snow depth during the 

melt-season was used to infer the relative accuracy of simulated snowmelt rates. Simulated and 

measured snow depths were normalized by respective snow depths on specified melt-season 

dates. To focus on melt-driven ablation rather than post-accumulation compaction, the dates used 

to normalize the depth values were specified as six days after the last significant accumulation 

event for a given snow year. The six day period was deemed sufficiently long to permit the new 

snow to settle and beyond six days it was assumed that decreases in snow depth were caused by 

melt. These dates were 29 February, 2008, 19 April, 2009, and 01 May, 2010. The average 

(normalized) melt-season snow depth error, in percent, for each simulation and sensor-year was 

computed as the mean difference between modeled and measured values. The third model 

evaluation metric, error in the simulated snow disappearance date, was simply the difference, in 

days, between the simulated and measured snow disappearance dates. 

The final metric for model evaluation utilized the availability of soil moisture data from 
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sensors at a soil depth of -10 cm at three depth sensor locations at each of the four sites. Hence, 

the simulated timing of seasonal meltwater fluxes exiting the snowpack base, in mm per time 

step, was compared to the measured timing of the seasonal increase in VWC (at -10 cm soil 

depths). The initial timing of simulated snowmelt infiltration was determined as the first peak in 

meltwater flux exceeding 6 mm day-1 for three consecutive days during which time no liquid 

precipitation events occurred. The ‘first’ peak was defined as that occurring after continuous 

snow cover was recorded for a minimum of 30 days. The above criteria excluded from 

consideration early season accumulation and subsequent complete melt events, rain-on-snow 

events, and the slow release of meltwater throughout the snow-covered period due to ground heat 

fluxes. The date of measured snowmelt infiltration at -10 cm soil depth was determined as the 

first pulse exhibiting a minimum of 3% volumetric increase in VWC over three days during 

which time no liquid precipitation events occurred and after snow cover had persisted for a 

minimum of 30 days. The error was computed as the difference, in days, between the simulated 

and measured initial meltwater pulses. A slight time lag would be expected between the 

simulated meltwater exiting the snowpack and that being measured at -10 cm soil depth, such 

that a small degree of ‘error’ on the order of a day or two would occur even under conditions of 

ideal model performance.  

The evaluation of sensor-year simulations against the metrics listed above (other than soil 

moisture) was limited by depth sensor functionality. Thus, not all sensor-years could be 

evaluated with all metrics. For consistent inter-comparison of different sensor-years, SWE 

metrics were evaluated for those sensor-years that included at least one survey measurement 

made during both the accumulation- and melt-season. An exception was made for water year 
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2010, in which the 02 May survey was the last of the season and corresponded to maximum 

accumulation in some sensor locations but the melt-season in others. In this case, the 02 May, 

2010 survey was considered to represent the melt-season and the other three surveys the 

accumulation-season (Table 3). Of the 24 sensor locations, 12, 17 and 19 met this criterion in 

2008, 2009, and 2010, respectively. Similar data limitations influenced the other three model 

evaluation metrics. The normalization of melt-season snow depth was only applied to sensor-

years in which snow depth was recorded for at least 50% of the melt-season. This criterion was 

met at 16, 18, and 20 sensor locations in 2008, 2009 and 2010, respectively. The snow 

disappearance date was recorded at 17, 19, and 21 sensor locations in the three respective years. 

Of the 12 snow depth sensor locations with underlying soil moisture sensors, the timing of the 

seasonal increase in VWC was measured at 10, 8, and 8 locations in 2008, 2009, and 2010, 

respectively. 

The next section presents results from the suite of depth and density observations for 

three water years followed by an illustrative example of the three model scenarios at two 

different locations for the same season. Results are then summarized for the three model scenario 

runs conducted on all sensor-years. 

3.4 Results 

3.4.1 Depth and SWE measurements 

Compared to the 86-year historical record from CCSS measurements near Sites 3 and 4 

(Figure 1), maximum annual SWE was near the long-term average (~ 950 mm) in 2008, was 

48% below average in 2009, and was 43% above average in 2010. Seasonal maximum SWE was 
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estimated to coincide with density surveys conducted on 23 March, 2008; 21 March, 2009; and 

02 May, 2010 (Musselman et al., 2012). The average maximum SWE across all four sites was 

737 mm in 2008, 420 mm in 2009, and 1074 mm in 2010. The seasonal timing and duration of 

the melt-seasons are defined both by the date of maximum SWE and the date of snow 

disappearance. The date of snow disappearance varied markedly by year, site aspect and 

elevation, and between sensors at individual sites (Figure 6). The average snow disappearance 

dates across all sites were 25 May, 2008, 17 May, 2009, and 15 June, 2010. The average annual 

melt-season duration was 64, 57, and 45 days corresponding to seasonal average melt rates of 

11.5, 7.4, and 23.9 mm day-1 in 2008, 2009, and 2010, respectively. The standard deviation (σ) 

of the snow disappearance date determined at all sensor locations on an average, per-site basis 

was 10.4 days in 2008, 5.8 days in 2009, and 7.8 days in 2010. Water year 2008 exhibited the 

most variability in the date of snow disappearance of all three years. This is attributed, in part, to 

the 2008 melt-season having the longest duration, the fewest snow events (see Figure 4), and the 

least cloud cover (see Musselman et al. [2012]) of the three years. These prolonged melt 

conditions could be a potential cause of the pronounced sub-canopy snowpack variability 

observed in 2008. 
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Figure 3.6. Date of snow disappearance measured by the six ultrasonic snow depth sensors at each of the four 
sites for water years 2008, 2009, and 2010. The average and standard deviation of the snow disappearance 
date computed for the operational sensors at each site for the three years are indicated by the filled circles and 
vertical bars. 

A similar explanation could be applied to water year 2010, which exhibited the second 

most variable snow disappearance date despite having the shortest melt-season. However, rather 

than a prolonged melt-season, enhanced energy fluxes coincident with a later melt-season likely 

resulted in high variability in the date of snow disappearance. On average over all years, σ was 

greater (p<0.05) at Sites 2 and 3 (10.3 days) than at Sites 1 and 4 (5.6 days). This is attributed to 

Sites 1 and 4 being north-facing with relatively homogeneous aspect relative to Sites 2 and 3 

(Table 1). The observations indicate that both seasonal meteorology and physiography (i.e. 

terrain and canopy configuration) interact to determine the date of snow disappearance and the 

timing and duration of meltwater inputs. The high variability of the observations and the 

dynamic nature of sub-canopy snow processes provide the motivation for this modeling study. 
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3.4.2 Illustrative example of two different simulation results 

Results from Scenarios N, NP, and NPDBT  run at two sensor locations (site 2, sensor 2; 

and site 3, sensor 4) for water year 2008 exhibited different trends in the magnitude and sign of 

the respective melt-season model errors (Figure 3.7, upper panels). At both locations, minimal 

differences in snow depth or SWE were observed from initial accumulation until late-February, 

after which melt began in earnest and the scenario simulations diverged. Compared to 

measurements, the N, NP and NPDBT scenarios run at site 2, sensor 2 over-estimated SWE on 23 

March by 391.9, 429.5, and 211.6 mm, respectively. Snow had disappeared from the sensor 

location by the 27 April survey date, which was captured by NPDBT (i.e. 0 mm SWE) but 

Scenarios N and NP exhibited high positive SWE biases (Figure 3.7). The normalized N and NP 

predictions of melt-season snow depth had an average error of +20.8% and +18.4% and an error 

in the predicted snow disappearance date of +32 days and +28 days, respectively (Figure 3.7, 

bottom-left panel). The overestimation of normalized melt-season snow depth is analogous to an 

underestimation of snowmelt. The NPDBT model improved the predictions significantly for this 

sensor-year with an average normalized snow depth error of -0.2% and an error in the date of 

simulated snow disappearance of +7.5 days. The cumulative sub-canopy direct beam solar 

radiation from 29 February to 26 April (i.e. NPDBT snow disappearance date) was 470 MJ m-2, 

685 MJ m-2, and 852 MJ m-2 for the N, NP, and NPDBT scenarios, respectively (Figure 3.7). Note 

that the NP and NPDBT scenarios simulated 45.7% and 81.3% greater direct beam radiation than 

the nominal scenario N over this time period.  
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Figure 3.7. Simulations and measurements of snow depth (top) and SWE (center) at site 2, sensor 2 (left 
panels) and site 3, sensor 4 (right panels) for water year 2008. The simulated and measured melt-season snow 
depth normalized by the respective depth on February 29, 2008, six days after the last appreciable 
accumulation event (bottom panels) are plotted with the cumulative sub-canopy direct beam solar radiation 
(horizontal) simulated by the three scenarios (bottom panels, upper axes). Error bars on the reported SWE 
measurements represent a 5% uncertainty in both snow density and depth observations. 

All 2008 simulations run at the site 3, sensor 4 also accurately estimated SWE and depth 

in early winter and errors were more pronounced in the spring (Figure 7, right panels). Unlike 

simulations shown in the left-center panel of Figure 7 in which the nominal N and NP scenarios 

overestimated measured SWE, the same 2008 scenario runs at site 3, sensor 4 underestimated 

SWE by 95 mm and 43 mm, respectively (Figure 7, right-center panel). Scenario NPDBT slightly 

overestimated SWE by 24 mm. The normalized N and NP melt-season snow depth predictions 

had an average error of -18.5% and -16.0% and an error in the predicted snow disappearance 

date of -16 days and -10 days, respectively (Figure 7, lower-right panel). The underestimation of 



 
 

72 

normalized melt-season snow depth is analogous to an overestimation of snowmelt. The NPDBT 

model improved the predictions for this sensor-year with an average normalized snow depth 

error of -12.5% and a -7 day snow disappearance date error. The cumulative sub-canopy direct 

beam solar radiation from 29 February to 26 April was 836 MJ m-2, 807 MJ m-2, and 616 MJ m-2 

for the N, NP, and NPDBT scenarios, respectively (Figure 7, lower-right panel). Note that the 

NPDBT scenarios at both sensor locations in Figure 7 outperformed the nominal scenarios while 

simulating 81.3% more (site 2, sensor 2) and 26% less (site 3, sensor 4) cumulative direct beam 

solar radiation over the same time period (29 February to 26 April) (Figure 7, lower panels). The 

results suggest that the dynamic treatment of direct beam canopy transmissivity by the NPDBT 

scenario is able to correct for both positive and negative cumulative energy biases resulting from 

the use of static, bulk canopy transmissivity estimates.       

The model differences seen during the melt-season at the Site 2, sensor 2 location in 2008 

are also reflected in the simulated meltwater fluxes from the snowpack base compared to 

measured soil moisture at -10 cm depth at the same location (Figure 8). Timing differences in the 

initiation of the melt fluxes from the snowpack base simulated by the N and NP models were +9 

and +7 days, respectively (Figure 8). The NPDBT model improved these estimates with simulated 

initial meltwater flux from the snowpack base preceding the measured soil moisture increase by 

two days (Figure 8); note that the snowmelt flux would be expected to precede soil moisture 

response. All 2008 simulations run at the site 3, sensor 4 also accurately estimated SWE and 

depth in early winter and errors were more pronounced in the spring (Figure 7, right panels). 

Unlike simulations shown in the left-center panel of Figure 7 in which the nominal N and NP 

scenarios overestimated measured SWE, the same 2008 scenario runs at site 3, sensor 4 
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underestimated SWE by 95 mm and 43 mm, respectively (Figure 7, right-center panel). Scenario 

NPDBT slightly overestimated SWE by 24 mm. The normalized N and NP melt-season snow 

depth predictions had an average error of -18.5% and -16.0% and an error in the predicted snow 

disappearance date of -16 days and -10 days, respectively (Figure 7, lower-right panel). The 

underestimation of normalized melt-season snow depth is analogous to an overestimation of 

snowmelt. The NPDBT model improved the predictions for this sensor-year with an average 

normalized snow depth error of -12.5% and a -7 day snow disappearance date error. The 

cumulative sub-canopy direct beam solar radiation from 29 February to 26 April was 836 MJ m-

2, 807 MJ m-2, and 616 MJ m-2 for the N, NP, and NPDBT scenarios, respectively (Figure 7, lower-

right panel). Note that the NPDBT scenarios at both sensor locations in Figure 7 outperformed the 

nominal scenarios while simulating 81.3% more (site 2, sensor 2) and 26% less (site 3, sensor 4) 

cumulative direct beam solar radiation over the same time period (29 February to 26 April) 

(Figure 7, lower panels). The results suggest that the dynamic treatment of direct beam canopy 

transmissivity by the NPDBT scenario is able to correct for both positive and negative cumulative 

energy biases resulting from the use of static, bulk canopy transmissivity estimates. 

The model differences seen during the melt-season at the Site 2, sensor 2 location in 2008 

are also reflected in the simulated meltwater fluxes from the snowpack base compared to 

measured soil moisture at -10 cm depth at the same location (Figure 8). Timing differences in the 

initiation of the melt fluxes from the snowpack base simulated by the N and NP models were +9 

and +7 days, respectively (Figure 8). The NPDBT model improved these estimates with simulated 

initial meltwater flux from the snowpack base preceding the measured soil moisture increase by 

two days (Figure 8); note that the snowmelt flux would be expected to precede soil moisture 
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response. 

 
Figure 3.8.  Measured volumetric soil water content at -10 cm soil depth (left axes, bold line) and simulated 
meltwater flux from the snowpack base (right axes, thin line) from water year 2008 at the same site 2, sensor 
2 location and three model runs (N, top; NP, middle; NPDBT, bottom) shown in Figure 3.7 (left panels). Red 
arrows indicate model-simulated timing of the initial spring meltwater pulse from the snowpack base. Black 
arrows indicate the timing of the initial spring meltwater pulse as measured by a soil moisture sensor at -10 
cm. 
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3.4.3 Results from all sensor years 

3.4.3.1 SWE simulations 

On average across 62 operational sensor-years the N, NP, and NPDBT scenarios yielded 

relatively high SWE RMSE values of 151, 146 and 127 mm, respectively. During the three 

accumulation-seasons, no single scenario consistently reduced the SWE biases (Figure 3.9). 

During the melt-seasons, lower (upper) elevation SWE biases were positive (negative) for all 

scenarios (Figure 3.9). At lower elevations during the 2008 melt-season, the high positive biases 

in the N (316.6 mm) and NP (341.8 mm) scenarios were reduced by approximately 66% with the 

NPDBT scenario (106.4 mm) (Figure 3.9). Similar reductions in positive melt-season SWE biases 

obtained with the NPDBT scenario relative to the mean SWE biases of the two nominal scenarios 

were obtained at lower elevations in 2009 (74% reduction) and 2010 (45% reduction) (Figure 

3.9). The NP model scenarios reduced the average SWE RMSE and biases of the N scenarios by 

< 5%.  
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Figure 3.9. Biases in simulated SWE from the three model scenarios run at lower (Sites 1 and 2) and upper 
(Sites 3 and 4) elevation sensor locations during the 2008, 2009, and 2010 accumulation and melt-seasons 
respectively computed on measured and modeled SWE values before (left column) and after (right column) 
maximum accumulation. The error bars represent the mean bias ± the standard deviation of the bias. 

3.4.3.2 Snow disappearance date 

Across the 57 sensor-years in which measurements were available, the average error in 

the date of simulated snow disappearance was positively biased toward later snow cover by 7.7, 

7.4 and 1.7 days for the N, NP, and NPDBT scenarios, respectively. Relative to the N and NP 

scenarios, the NPDBT scenario reduced the mean bias in the snow disappearance date from 7.9 

and 7.6 to 0.6 days in 2008 and from 15.1 and 15.0 to 6.9 days in 2010 for the three respective 
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scenarios (see Figure 3.10). In 2009, a mean bias reduction was not observed; the N, NP and 

NPDBT scenarios had an average bias of -0.7, -1.2, and -3.1 days, respectively. 

The mean absolute error (MAE) values of the simulated snow disappearance date from 

all N scenarios (13.8 days) and NP scenarios (13.5 days) were reduced by ~ 37% to 8.7 days with 

the NPDBT scenario; 40%, 19%, and 43% average reductions in 2008 – 2010, respectively. The 

relative improvement between the N and NP model scenarios as indicated by the MAE in 

simulated snow disappearance date was noticeable in 21 of the 57 sensor-years, but the average 

improvement was less than two days and the difference was not statistically significant (Figure 

3.10). The NPDBT scenario reduced the average of the N and NP snow disappearance date errors 

in 40 of the 57 sensor-years (Figure 3.10). When evaluated on the basis of individual years, on 

average, the NPDBT model simulations for water years 2008 and 2010 showed significant 

improvements over the NP scenario in the predicted snow disappearance date of 6.0 (p<0.05) and 

9.2 (p = 0.01) days, respectively. In 2009, the mean reduction in snow disappearance date error 

between the NP and NPDBT runs was two days and the difference was not statistically significant. 

Model error and relative improvement also showed trends with elevation. When simulations 

from all years were evaluated, compared to the NP simulations, the lower (i.e. Sites 1 and 2) and 

upper (i.e. Sites 3 and 4) elevation NPDBT runs reduced the MAE in the predicted date of snow 

disappearance by seven and three days (p<0.01), respectively. 
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Figure 3.10. Simulated date of snow disappearance compared to depth sensor observation provided as model 
error (model – measurement) in number of days (y-axis) for each of the three model cases and for simulations 
conducted at locations of operational sensors (x-axis) at the four sites (panel rows) for water years 2008, 
2009, and 2010 (panel columns). Site-average errors and site mean absolute errors and standard deviations are 
indicated by the filled circles and vertical lines, respectively.   

3.4.3.3 Normalized melt-season snow depth 

Based on the 54 sensor-years evaluated for error in the normalized melt-season snow 

depth, the N and NP scenarios had a slight positive bias of 3.8% and 3.3%, respectively, while 

the NPDBT scenario had a slight negative bias of -1.1% (Figure 11). In 2008 and 2009, scenarios 

N and NP had positive biases and NPDBT exhibited negative biases; the average biases were less 

than 2%. In 2010, large positive melt-season snow depth biases of 8.4% and 8.3% from the N 
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and NP scenarios were reduced to 0.2% for the NPDBT scenarios (Figure 11). The absolute errors 

of the normalized melt-season snow depth for the three scenarios in 2010 were 11.2%, 10.6%, 

and 7.8%, respectively. The results indicate snowmelt simulations were generally improved with 

an explicit treatment of direct beam canopy transmissivity and improvements were greatest in the 

year with the latest melt-season. 

 

Figure 3.11. Normalized melt-season snow depth error, in percent, for each scenario run for sensor-years that 
recorded a minimum of half the time-steps over a period between six days after each year’s last appreciable 
accumulation event and the date of snow disappearance. Missing values represent either sensor-years in 
which the depth sensor did not record at least 50% of the melt-season or sensor-years in which depth data 
were missing on the specified normalization date.      
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3.4.3.4 Timing of meltwater soil infiltration 

In general, large differences were found between the simulated timing of meltwater 

exiting the snowpack base and the timing of initial seasonal increase in soil water content 

measured at -10 cm (Table 4). Overall, the NPDBT scenario reduced snowmelt infiltration timing 

errors by 50% in nearly half of the sensor-years compared to the N and NP model scenarios. At 

lower elevations, modeled meltwater flux timing occurred later than the measured snowmelt 

infiltration by 22, 20 and 10 days for scenarios N, NP, and NPDBT, respectively. At upper 

elevations, the modeled meltwater flux occurred 18 days earlier than observed for all three 

scenarios in 2008 and 2009; but occurred 15, 8 and 6 days later than observed in 2010 for the 

three respective scenarios. Improvements (greater than three days) in the predicted timing of 

initial melt flux between scenarios N and NP were only recorded in three sensor-years during 

which an average improvement of 13 days was observed (Table 4). Improvements gained over 

the N and NP model scenarios with the NPDBT scenario were observed in 11 sensor-years with an 

average improvement of 11 days. Interestingly, in no case did the NPDBT scenario increase the 

mean absolute melt flux timing error by more than one day compared to the N or NP scenarios 

(Table 4). 



 
 

81 

 
Table 3.4.  Lag / error, in number of days, between modeled date of initial spring meltwater flux from the snowpack 
base and the date of seasonal volumetric soil moisture increase measured at -10 cm beneath the soil surface at three 
snow depth sensor locations at each of the four sites for water years 2008, 2009 and 2010. Results from the three 
model scenarios at each sensor location and the mean absolute error (MAE) for each site for the three years are 
included. Missing values (-) reflect an incomplete soil moisture data record.  

 
*  The soil moisture sensors at Site 3 are positioned beneath snow depth sensors 3, 4 and 5. 

 

Despite the improvements with the explicit treatment of direct beam canopy 

transmissivity, the high MAE values in Table 4 (23 sensor-year MAE of 18 days with the NPDBT 

scenario) indicate substantial unresolved issues related to predicting the timing of melt fluxes 

into the soil system. This finding was surprising as maximum SWE and the date of snow 

disappearance were often simulated with a high degree of accuracy (see Section 5). The results 

highlight challenges with both the simulation and measurement of snowmelt runoff. Distinct 

melt-freeze layers on the order of 2 to 5 cm, a result of surface melting between snow events, 

were commonly observed in the snowpack. These icy melt-freeze layers were a result of surface 

melting between snow events and subsequent refreezing. The layers may have acted as barriers 
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to capillary flow and could have impeded preferential ‘finger’ flow formation by lateral 

dispersion [Waldner et al., 2004]. Most models are not designed to simulate these nonlinear 

meltwater dynamics. Similar heterogeneous flow patterns are known to exist in the soil matrix. 

In the case of pronounced lateral dispersion and heterogeneous preferential flow patterns, a 

single point measurement of near-surface soil water content may be inadequate to capture the 

snowpack runoff dynamics occurring over a larger spatial footprint. It should also be noted that 

any model misspecification of rain/snow input will influence the timing of melt fluxes as 

discussed in more detail below. 

3.4.4 Sensitivity to temporal averaging of direct beam canopy 

transmissivity 

The effect of averaging the direct beam canopy transmissivity over time periods of 60-

minutes, 30-minutes, 20-minutes, and 10-minutes as well as forcing the model with 1-minute 

instantaneous values was first examined at a single location (Figure 12). Relative to automated 

measurements, the mean error in the normalized depth simulated by models N, NP and the direct 

beam model run at 60-minute temporal resolution (i.e. NPDBT(60)) were +17.2%, +14.8%, and 

+13.7%, respectively (Figure 12, bottom panel), and errors in snow disappearance date for this 

sensor-year were +21, +19, and +20 days, respectively. Running the NPDBT model at a time step 

of 30 minutes reduced the normalized melt error by 50% and the snow disappearance date error 

by 33%. The error was further reduced at finer temporal resolution; the normalized melt errors of 

the model forced at 20-, 10-, and 1-minute resolution were +4.4%, +0.4% and -5.5%, 

respectively, and the simulated snow disappearance date errors for the three models were +12, 



 
 

83 

+7 and +1 days, respectively (Figure 12, bottom panel).       

 

Figure 3.11. Snow depth simulations and measurements during the 2010 water year at Site 3, sensor 1 (upper 
figure); the location of photos shown in Figures 4 and 5. The effect of averaging the direct beam canopy 
transmissivity used to force the NPDBT models is examined at 60-, 30-, 20-, and 10-minute averaging and 1-
minute instantaneous steps. Melt-season snow depth was normalized by the respective simulated or measured 
(black line) depth on May 1, 2010 (lower figure) to compare simulated melt rates to measured values. 

When all sensor-years were evaluated, improved results from running NPDBT at higher 

temporal resolution were not as ubiquitous as the sensor-year in Figure 12 illustrates. Compared 

to the simulated error in snow disappearance date predicted by scenario NP, the NPDBT(60) 

scenario reduced errors by four days in 2008 (p<0.05) and one day each in 2009 and 2010. The 

NP DBT(30) simulations further reduced error by two days in 2008, one day in 2009 and by seven 

days in 2010 (p<0.05). Reducing the time step from 30-minutes to 20-minutes showed no mean 

absolute error reduction in 2008 and 2009, and an error reduction of one day in 2010. Further 

reducing the time step from 20-minutes to 10-minutes showed no mean improvement for any 

year (not shown). Interestingly, increasing the time step from 10-minutes to 1-minute increased 
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the average model error of the 57 sensor-years in which snow disappearance was recorded by 

four days in 2008 and three days on average in 2009 and 2010 (not shown). Note that the error 

reductions reported above that were not statistically significant (i.e. p>0.05) were not provided 

with p-values. 

3.5 Discussion 

 Of the three SNOWPACK model scenarios tested, the bulk Scenario N exhibited the 

greatest overall error when evaluated against point metrics of SWE, snow disappearance date, 

and the relative timing of snowmelt soil infiltration. In scenario N, canopy openness values for 

depth sensor / simulation locations were sampled from the 30 m gridded canopy product. The 

short spacing (8 to 55 m) between sensor locations relative to the coarser grid scale of the 

satellite product caused three to four sensors at a given site to fall within the same grid element. 

In these instances, multiple neighboring sensor / simulation locations were assigned the same 

canopy openness value corresponding to the common NLCD grid cell. In these cases, because 

 was also held constant for scenario N, the only location-specific differences provided to the 

model at a given site were slope and aspect. The results highlight challenges associated with the 

evaluation of snowmelt models that use gridded vegetation data against ground-based (often 

point-scale) observation systems. This scale mismatch was implicit in the experimental design. A 

common source of uncertainty is faced by studies that evaluate gridded model output against 

point-scale automated station measurements without explicit consideration of the sub-grid 

representativeness of the station (Meromy et al., 2012). While it is possible that Scenario N 

would have been better evaluated against gridded measurements of snowpack processes, 
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Scenario NP was designed to test whether model skill was improved when parameterized with 

point-scale canopy measurements. Any improvement with Scenario NP over Scenario N would 

implicitly be a result of 1) removing this scale mismatch and 2) improving point-specific canopy 

model parameterization.  

Systematic model biases were not observed across all sites and years, but errors of similar 

direction and magnitude were observed at lower and upper elevation sites for particular years. 

These models errors were likely a combined effect of errors in the meteorological forcing data, 

the challenge of simulating mixed rain-snow precipitation events, and the lack of consideration 

of sub-grid scale canopy variability. For example, the high positive SWE bias at lower elevations 

in 2008 (Figure 9) were the result of a significant rain-on-snow event in early January as 

indicated by the increased soil moisture at sites 1 and 2 (see Figure 2). During this event, 

significantly more rain fell at lower elevations where air temperatures were above freezing but 

below the 1°C rain-snow temperature threshold specified to the model, resulting in a model 

misallocation of SWE to the snowpack that persisted as a positive bias through the season. In 

contrast, negative SWE biases were observed at upper elevations (Figure 9), possibly as a result 

of errors in the seasonal lapse rates used to estimate upper elevation precipitation. 

The minimal improvement over the bulk scenario N with the added photo-derived canopy 

structure detail provided to Scenario NP was surprising. On average the photo-derived  

specified to Scenario NP was 2.53 m2 m-2 less than that specified to the bulk model; a fact that 

should have significantly reduced the positive bias in snow cover persistence seen in Scenario N 

by permitting more radiation to pass through the canopy. In addition, hemispherical SVF (used in 

Scenario NP) has been found to exceed satellite-derived ‘viewable gap fraction’ (used in 
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Scenario N) as a result of off-nadir satellite view geometry, slope and aspect (Liu et al., 2004). 

However, the use of SVF65° rather than SVF90° would be expected to reduce the bias reported by 

Liu et al. (2004). Compared to the bulk Scenario N, the two photo-derived metrics would 

effectively reduce the model representation of canopy effects and theoretically should have 

reduced the bias in Scenario N snow cover persistence. Simulations of sub-canopy solar radiation 

are known to be highly sensitive to the value of the canopy extinction parameter kLAI (e.g. Jost et 

al., 2009). It is possible that the constant kLAI coefficient of 0.7 used in all scenarios was too high 

and could partially explain the minimal improvement between the N and NP scenarios. Potential 

radiative feedbacks in the canopy model could also explain the limited model improvement. For 

example, a reduction in simulated vegetation coverage would increase the canopy transmission 

of shortwave but reduce the canopy absorption and emission of longwave radiation. In a natural 

forest canopy, these radiative feedbacks are nonlinear three-dimensional processes, a thorough 

analysis of which is beyond the scope of this study. 

The limited accuracy of the N and NP scenarios points to challenges associated with the 

use of a big-leaf canopy module at the point-scale. Aside from parameter uncertainty, a Beer’s-

type exponential reduction of above-canopy shortwave radiation may be too coarse of a scaling 

method to approximate the in-situ radiation dynamics beneath a heterogeneous forest (Ni et al., 

1997). Of particular concern is the treatment of direct beam solar radiation because bulk canopy 

structure parameters are measured over an inordinately larger canopy area than impacts the direct 

beam. In addition, the non-uniform (and non-random) distribution of vegetation structure causes 

a many-to-one problem when using a bulk canopy openness metric (i.e. derived from photos or 

satellite). Many different canopy gap configurations can result in the same canopy openness 



 
 

87 

value. These different canopy configurations will influence mass and energy exchange 

differently, yet the differences would not be resolved with the single canopy openness metric. 

Rather than treat all fluxes with a bulk canopy treatment, an explicit consideration of detailed 

canopy structure may be more accurate; the NPDBT model was designed to test this hypothesis. 

   In general, significant improvements were gained from a modification of SNOWPACK 

to accept a time-variant input of direct beam canopy transmissivity derived from hemispherical 

photos. The benefit of the NPDBT scenario was particularly reflected in melt-season model results. 

Both positive and negative biases in melt-season SWE and snow disappearance date predicted by 

the N and NP scenarios were greatly reduced with the NPDBT scenario. The reductions of both 

positive and negative biases indicate the effectiveness of the direct beam modification; NPDBT is 

not simply globally increasing or decreasing the canopy transmission. The positive melt-season 

biases and subsequent improvements with the explicit treatment of direct beam canopy 

transmissivity suggest that the big-leaf model tends to underestimate shortwave canopy 

transmission during the melt-season when solar radiation is relatively high and the sun tracks 

across a higher and much larger sky area (see Figure 5b).  

The inter-annual differences in relative model improvement gained from the explicit 

treatment of the direct beam may be attributable to inter-annual differences in melt-season 

meteorology. Musselman et al. (2012) computed a clearness index from the same above-canopy 

shortwave radiation data used in this study for melt-seasons 2008-2010. The index identified 4, 

23, and 8 cloudy days for the three respective melt-seasons. The results indicate that the 

cloudiest year (i.e. 2009) showed the lowest degree of model improvement with the NPDBT 

scenario. Of the three years, 2009 also exhibited the least SWE and lowest variability in 
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measured snow disappearance date. Conversely, the melt-season errors in the bulk, nominal 

models were generally greater in magnitude and positive (indicating an underestimation of melt) 

in 2010 when snowmelt occurred later in the year, under conditions of enhanced energy fluxes. 

Of the three years evaluated, improvements gained by the direct beam modification were greatest 

under these conditions of enhanced energy, higher solar elevations, and reduced cloud cover. 

Positive and negative errors in the simulated timing of snowmelt soil infiltration (Table 

4) indicate substantial issues related to predicting the timing of melt fluxes into the soil system 

despite accurate representation of peak SWE and snow disappearance date. It is possible that a 

model misspecification of snow instead of rain at upper elevations during a January 4-7, 2008 

rain-on-snow event underestimated the liquid water absorbed by the snowpack; the soil moisture 

record (see Figure 2) indicates all liquid precipitation from this event at upper elevations was 

stored in the pack. As the liquid water content in a snowpack affects the thermodynamic 

properties as well as the melt dynamics and runoff production, particularly in areas of deep snow 

cover (Livneh et al., 2010), precipitation-type classification errors could significantly impact the 

simulated timing of snowmelt soil infiltration in addition to model weaknesses in representing 

water transport as discussed above.  

The improvement offered by NPDBT run at 10-minute resolution compared to the N and 

NP scenarios run at 60-minute time steps raises two main questions regarding: i) limitations of 

the Beer’s Law treatment of shortwave radiation through a discontinuous canopy; and ii) the time 

step required of direct beam canopy transmissivity to capture the mean sub-canopy shortwave 

irradiance over a given time period. While numerous studies have confirmed the former (e.g. Li 

et al., 1995; Ni et al., 1997; Nijssen and Lettenmaier, 1999; Yang et al., 2001), fewer studies 
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have conducted explicit sensitivity tests of the latter (e.g. Baldocchi et al., 1986; Reifsnyder et 

al., 1971). Sub-canopy shortwave irradiance in forests with numerous canopy gaps exhibits a 

general bimodal distribution as a result of sunflecks (i.e. higher mode) and shadows (i.e. lower 

mode) (Essery et al., 2008b) similar to what has been observed in the upper portions of 

continuous canopies (e.g. Norman and Jarvis, 1974; Ovington and Madgwick, 1955). 

Consequently, representing sub-canopy shortwave irradiance with a mean value is complicated, 

particularly when the median of the direct beam canopy transmissivity distribution is close to 

zero and the mean is sensitive to sunflecks (see Musselman et al., 2012). Hardy et al. (2004) 

suggest that choosing an optimum temporal resolution requires careful consideration of the data 

application. The ten-minute averages of one-minute instantaneous estimates (Figure 5a) were 

used in this study because this resolution was deemed adequate to capture the temporal dynamics 

of sunflecks on the forest floor relative to coarser time steps. Pearcy (1990) found that 

cumulative sub-canopy irradiance from sunflecks longer than 10 minutes could account for more 

than two-thirds of the daily shortwave irradiance. In addition, this approach was less 

computationally intensive and was more typical of meteorological measurement intervals than 

the one-minute scenario.  

The presence of canopy coverage is known to decrease snow model predictive accuracy, 

largely as a result of errors in simulating individual surface energy flux terms (Ellis et al., 2010; 

Rutter et al., 2009; Sicart et al., 2004) such as shortwave (Hardy et al., 2004) and longwave 

radiation and their associated feedbacks with canopy elements (Pomeroy et al., 2009). There are 

numerous uncertainties associated with atmospheric forcing (e.g. catchment-scale cloud cover 

patterns), individual model equations (e.g. the empirical disaggregation of shortwave into direct 
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and diffuse components), and parameters (e.g. the canopy extinction coefficient). Hemispherical 

photography represents a method of estimating high-resolution direct beam canopy 

transmissivity, thus minimizing a significant source of model uncertainty. The presented 

methods are simple and inexpensive compared to the requirements needed to maintain long-term 

sub-canopy radiation monitoring stations in forested regions. In addition, transmissivity values 

derived from photos taken in healthy conifer forests are generally valid over long time scales. 

The methods could be used to improve estimates of snowmelt dynamics at individual research 

sites for hydrological and ecological applications.  

The physical basis of the SNOWPACK model made it well suited for this study. Future 

work should evaluate the utility and potential differences of introducing direct beam canopy 

transmissivity measurements to other process-based models. Additionally, many questions 

remain regarding scale issues related to canopy parameters and the assumptions inherent to 

Beer’s-type canopy radiation models, particularly when applied to areas of steep terrain and 

heterogeneous canopy coverage. For example, research is needed that bridges observations made 

at forested catchment and plot-scales to quantify hydrometeorological variability (e.g. variance) 

in representations of mean states and fluxes at larger scales relevant to hydrologic and climate 

models. Future efforts will address some of these scale issues by applying the presented methods 

to airborne LiDAR data (e.g. Essery et al., 2008a) with an explicit treatment of longwave 

radiation (e.g. Pomeroy et al., 2009) within the distributed land surface model Alpine3D 

(Lehning et al., 2006) and snowpack reconstruction techniques (e.g. Durand et al., 2008a; 

Durand et al., 2008b; Molotch, 2009; Molotch and Margulis, 2008). Toward this goal, 

preliminary tests conducted in the Wolverton basin of voxel aggregation of multiple-return 
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discrete LiDAR data (e.g. Hagstrom et al., 2010) combined with an efficient ray tracing 

algorithm (e.g. Hagstrom and Messinger, 2011) and look-up table shows promise for producing 

high-resolution, spatially distributed estimates of direct beam canopy transmissivity. 

3.6 Conclusions 

When canopy model parameters canopy openness and  were obtained from satellite 

data at 30 m resolution and literature-based sources, respectively, the nominal model (Scenario 

N) was unable to resolve the highly variable sub-canopy snowpack dynamics. When the same 

two canopy model parameters were obtained from hemispherical photos (Scenario NP), 

consistently improved results were not obtained. When the nominal model was modified to 

accept a time series of photo-derived direct beam canopy transmissivity (Scenario NPDBT), the 

average error in the date of snow disappearance was improved by six days. The positive biases in 

melt-season SWE obtained at lower elevations with scenario N were reduced by no less than 

45% (2010) and as much as 74% (2009). The MAE of the simulated snow disappearance date 

was reduced by 40% in 2008, 19% in 2009, and 43% in 2010. Compared to soil moisture 

measurements, average improvements in the timing of snowmelt soil infiltration of 11 days were 

observed with the explicit consideration of direct beam canopy transmissivity. The optimum 

temporal resolution of the direct beam canopy transmissivity was determined to be 30-minute 

averages of one-minute instantaneous values; hourly averages performed no better than the N or 

NP scenarios and time steps finer than 30-minutes did not result in overall improvement. The 

model improvements gained by including time-variant photo-derived direct beam canopy 

transmissivity were greatest in 2010; a year with high SWE, a late melt-season, and low spring 
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cloud cover. The results illustrate the important contribution of direct beam shortwave radiation 

to the sub-canopy melt-season snowpack dynamics. The estimation of time-variant direct beam 

canopy transmissivity thus minimizes a significant source of snowmelt model uncertainty at the 

point-scale in forested regions. 

 

Chapter 4. Inter-annual snow accumulation and melt patterns 

in forested and alpine terrain 

This chapter evaluates distributed snow cover dynamics for the same time period and 

general region presented in Chapters 2 and 3 with a land surface model evaluated against multi-

scale observations. The work supplements and builds upon the results of the previous two 

chapters. In Chapter 2, canopy effects on snowmelt were found to vary as a result of distinct 

inter-annual differences in the timing and magnitude of maximum SWE. This chapter examines 

whether these and similar inter-annual snowmelt trends are detectable across larger gradients of 

elevation and vegetation cover. In Chapter 3, the nominal canopy model was found to under-

estimate seasonal snowmelt rates when maximum SWE occurred late in the spring. This chapter 

assesses inter-annual and seasonal patterns in the relative distribution of simulated catchment 

SWE. The sensitivity of the results to known limitations in the forcing data and the canopy 

model is discussed.  

Extensively validated model simulations of snow depth and SWE are then used to 

evaluate seasonal and inter-annual patterns of accumulation and melt. This approach is 

particularly useful to evaluate snow cover dynamics in places where few or no validation 



 
 

93 

measurements are available. For example, observations of SWE and depth are generally limited 

to small areas of seasonally snow-covered mountainous regions. Very few stations observe 

dynamics in steep alpine areas that contain the most SWE for the longest duration or at lower 

elevations where snow cover is transient or ephemeral, despite these areas contributing a large 

fraction of seasonal snow water resources (Hamlet et al., 2005). As a result, trends and patterns 

of snow deposition and melt in ephemeral snow zones are poorly documented, but this zone is 

expected to shift upward in elevation under warmer climate conditions and influence 

significantly larger areas and a greater fraction of regional water resources (Minder, 2010). The 

validated physically based snow model is a useful tool to evaluate seasonal and inter-annual 

trends in these regions. 

Two primary research questions motivate this study: 1) How well can a land surface 

model simulate inter-annual snow cover properties over a large and physiographically diverse 

area? and 2) How do inter-annual differences in seasonal meteorology impact the relative 

distribution of SWE and how are these patterns related to forest cover, elevation, and terrain?    

4.1 Study domain and observations 

4.1.1 The Kaweah River basin 

The work is conducted over a rectangular grid encompassing the 1,085 km2 Kaweah 

River basin on the western slope of the southern Sierra Nevada, California, USA (36.4ºN, 

118.6ºW) (Figure 4.1). The elevation of the catchment ranges from over 3800 m in the western 

peaks of Sequoia National Park to 250 m in the small town of Three Rivers, CA. The catchment 

represents ~ 72% of the contributing area of Lake Kaweah, formed by a terminus dam and 
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largely used for flood control of downstream agricultural and municipal lands (USGS, 2012). 

The land cover and climate vary significantly with elevation. Approximately 98% of the Kaweah 

River basin is comprised of four land cover types: conifer forest (58%), shrub (26%), bare soil / 

rock (10%), and grass / tundra (4%) (Figure 4.1). Lower elevation (< 1800 m asl) foothills are a 

mix of grassland, chaparral shrub and oak woodlands characterized by mild, wet winters and hot, 

dry summers. Winter snow cover at these lower elevations is intermittent and the average annual 

precipitation is 660 mm (NPS, 2012). Conifer forest stands of various species composition and 

density dominate the middle elevations between 2000 m and 3000 m asl, including red fir, 

Jeffrey pine, white fir, lodgepole pine, and Giant Sequoia. The climate of the middle elevations 

is characterized by cool, seasonally snow-covered winters and warm, dry summers. Average 

annual precipitation at these middle elevations is ~ 1080 cm (NPS, 2012). The forest vegetation 

of the sub-alpine zone, between 3000 m and 3600 m asl, is sparse and consists of scatter stands 

of lodgepole and foxtail pines. Winter precipitation at these upper elevations is not measured. 

Land cover at the highest elevations is composed of rock and alpine vegetation and snow cover 

persists from November to July in most years.  
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Figure 4.1. The elevation and land cover distribution of the 1,085 km2 Kaweah River basin (outlined in black) 
on the western side of the southern Sierra Nevada, California. The forested 7.22 km2 Wolverton and largely 
alpine 19.1 km2 Tokopah sub-basins are outlined in white. Approximately 98% of the Kaweah River basin is 
comprised of four primary land cover types (right). The figures at right highlight the elevation distribution of 
the primary land cover types relative to the distribution of the Kaweah River basin. 

4.1.1.1 Wolverton sub-basin 

The 7.22 km2 forested Wolverton sub-basin is described in detail in Chapters 2 and 3. It 

is representative of regional mid-elevation mixed conifer forests with tall, old growth trees with 

an average canopy density of 65%, interspersed with small grassy meadows. The location of the 

Wolverton sub-basin within the greater Kaweah River basin is indicated in Figure 4.1.  
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4.1.1.2 Tokopah sub-basin 

The 19.1 km2 Tokopah basin is representative of small headwater (i.e. upper elevation) 

basins in the southern Sierra Nevada having poorly developed soils, sparse vegetation, limited 

groundwater storage, and rapid hydrologic response (Tonnessen, 1991). The elevation of this 

gauged basin ranges from 2629–3487 m asl, with numerous alpine lakes, granitic bedrock, and 

forest cover restricted to small areas of the valley floor. Figure 4.1 indicates the location of the 

Tokopah basin within the greater Kaweah River basin. 
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Figure 4.2. Locations of 19 automated weather stations, seven monthly snow surveys, three automated snow 
stations, repeated basin-scale manual snow surveys, and the footprint of a 2010 airborne LiDAR snow survey 
within and surrounding the greater Kaweah River basin. Station numbers, ranked by elevation, correspond to 
those in Table 4.1. 

4.1.2 Meteorological measurements 

Hourly meteorological observations for the three water years (2008, 2009 and 2010) were 

available from 19 regional stations maintained by nine different state and government agencies 

and research institutes (Figure 4.2 and Table 4.1). Not all stations were continuously operational 
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and not all stations reported the same meteorological variables. Table 4.1 provides information 

about the stations and their measured variables. Air temperature was recorded at 15 stations and 

wind speed and relative humidity were each measured at 13 stations. The station coverage 

spanned a large elevation range (263 m to 3288 m asl) and spatial extent of the basin (Figure 2). 

Six stations in the Kaweah River basin measured precipitation. The Ash Mountain station at 527 

m asl provided the only low elevation precipitation measurements. The Lower Kaweah station 

(heated, shielded tipping bucket), and the Atwell, Giant Forest, Bear Trap Meadow, and Hockett 

Meadow stations (storage gauges) are located within an elevation band of 1926 m to 2592 m asl. 

Data from the Hockett Meadow station were not used because significant delays in the timing of 

measured precipitation and large post-event spikes were indicative of gauge error. The exclusion 

of the Hockett Meadow station limited the number of precipitation gauges at middle elevations to 

four within a much narrower elevation range (1926 to 2073 m asl) with no measurements 

available at higher elevations. Figure 4.3 shows the daily average temperature and accumulated 

weekly precipitation for 01 October 2007 to 30 September 2010 measured at the lower elevation 

Ash Mountain station and at middle elevations as averaged over the four stations. The high 

seasonality of annual precipitation and distinct differences in the precipitation magnitude and the 

seasonal temperature range between the lower and middle elevations is evident (Figure 4.3). The 

catch efficiency of the regional precipitation gauges was accounted for as described in Chapter 3. 
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Figure 4.3. Measured weekly cumulative precipitation (gray bars) and daily average temperature (black line) 
at the lower elevation Ash Mountain station (527 m asl) (left) and averaged at four mid-elevation stations 
(1926 m to 2073 m asl) (right).  

Downwelling shortwave and longwave radiation unobstructed by vegetation and 

surrounding terrain were measured at the Topaz Lake meteorological station in the Tokopah 

basin. These measurements were required by a radiosity model to estimate the incoming above-

canopy irradiance over the model domain. A description of the radiosity model is provided in 

Section 4.2.2.  
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Table 4.1. Meteorological station and snow measurement details. Station numbers are ranked by station elevation 
and correspond to those mapped in Figure 4.2. The variables measured at each location are listed: air temperature 
(Ta), relative humidity (RH), wind velocity (wv), precipitation (ppt), snow water equivalent (SWE), and snow depth 
(depth). 

 

*Meteorological	  variables	  used	  in	  this	  study.	  
APRSWXNET:	  Automatic	  Position	  Reporting	  System	  as	  a	  Weather	  NETwork	  
NPS:	  National	  Park	  Service	  (Sequoia	  and	  Kings	  Canyon	  National	  Parks)	  
CDF:	  California	  Department	  of	  Forestry	  
USACE:	  United	  States	  Army	  Corps	  of	  Engineers	  
BLM:	  Bureau	  of	  Land	  Management	  
SNRI:	  Sierra	  Nevada	  Research	  Institute,	  University	  of	  California	  Merced	  
ERI:	  Earth	  Research	  Institute,	  University	  of	  California	  Santa	  Barbara	  
CADWP:	  California	  Department	  of	  Water	  and	  Power	  
KRWA:	  Kaweah	  River	  Water	  Association	  



 
 

101 

4.2 Methods 

4.2.1 The Alpine3D land surface model 

Alpine3D (Lehning et al., 2006) is a land surface model with a particular emphasis on 

snow process representation. It has been used in the study of mountain hydrological processes in 

Switzerland and Austria (e.g. Groot Zwaaftink et al.; Michlmayr et al., 2008; Mott et al., 2008) 

including projections of future snow and runoff regimes (e.g. Bavay et al., 2009; Kobierska et 

al., 2011). A brief summary of the model is presented here and the reader is referred to these 

previous studies for detailed descriptions. At the core of Alpine3D is the one-dimensional 

SNOWPACK model presented in Chapter 3. The vegetation – snow – soil model includes the 

parameterized canopy module presented in Appendix A and used in the nominal model scenarios 

in Chapter 3. At each grid cell, a one-dimensional snow column composed of an arbitrary 

number of layers varies according to the grid cell-specific atmospheric forcing. Meteorological 

station data were statistically interpolated to determine the forcing variables at each grid cell. 

The interpolation methods are described in the following section.  

4.2.2 Meteorological interpolation methods 

Meteorological input (e.g. precipitation, air temperature, wind speed, relative humidity) 

measured at point locations were spatially distributed using the MeteoIO model (available 

online: https://slfsmm.indefero.net/p/meteoio). The model permits user-specified methods of 

filtering, resampling and spatially interpolating meteorological data. It is based on the MicroMet 

model of Liston and Elder (2006b) and is used in this study to establish physically appropriate 

above-canopy atmospheric forcing for each grid cell. In MeteoIO, the user can specify a 
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hierarchy of interpolation methods for each variable and statistical criteria to determine the 

optimal interpolation method.  

The result of each interpolation is evaluated through the use of a variable-specific rating 

method (R2) that accounts for the number of available stations as well as the quality of the data. 

For each time step and each interpolated variable, the algorithm that receives the highest score is 

used to interpolate that variable. Note that the interpolation algorithms are time-independent such 

that all parameters and variables that are automatically calculated are done so for each model 

time step with no memory of previous performance. Since elevation can have a profound 

influence on many of the meteorological variables, several of the interpolation methods (briefly 

described below) use (linear) elevation trends. The slope of the linear relation is computed from 

the available station data. To account for outliers in the data, if the correlation between the input 

data and the computed linear regression is less than 0.7, the regression will be re-calculated with 

one less point, cycling through all points. The best result is then used. Given the large number of 

meteorological stations in the Kaweah basin, this dynamic interpolation model is expected to be 

more accurate than the use of a single algorithm or constant lapse rate used in similar studies. 

4.2.2.1 Air temperature 

Air temperature was interpolated over the domain using an inverse distance weighting 

(IDW) algorithm with elevation detrending / reprojection. The lapse rate was computed from the 

data as described previously. If the R2 value was less than 0.6 for all iterations, a specified lapse 

rate of -0.008°C m-1 was used. If results from the IDW-lapse algorithm were still poor (R2 < 0.7), 

a simple linear regression with the specified constant lapse rate was computed and the best result 

from all interpolation methods was used to distribute air temperature over the domain. 
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4.2.2.2 Relative humidity 

 Relative humidity was interpolated as Liston and Elder (2006b) by computing the dew 

point temperature for each station point and interpolating with the same methods used for air 

temperature, described previously. 

4.2.2.3 Wind speed 

Wind speed was interpolated using a simple weighting method that accounts for terrain 

curvature and slope (see Liston and Elder, 2006b). However, because wind transport of snow 

was not considered in this study, the IDW-lapse algorithm may be sufficient to represent spatial 

wind speed fields.  

4.2.2.4 Precipitation 

The IDW-lapse algorithm was used to initialize the precipitation field. After 

initialization, grid cells that were at or below 0°C were modified according to the method 

described in Magnusson et al. (2011) and Huss et al. (2008). The method is a parametric 

approach that uses terrain curvature to simulate sloughing and avalanching of snow from steep 

slopes to flatter valley locations and has been shown to be successful in steep, alpine terrain. 

4.2.2.5 Incoming shortwave radiation 

A three-dimensional radiative transfer (i.e. radiosity) model was employed that treats 

terrain as a Lambertian emitter/reflector surface and the sky as an emitter surface of zero 

reflectivity (Helbig et al., 2009). The model required that incoming shortwave radiation be 

measured at a location where it was unobstructed by surrounding terrain or forest cover. The 
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model computed the direct and diffuse atmospheric corrections, accounting for the effects of 

local cloud cover. The respective contributions of the direct and diffuse components are modified 

through the consideration of shade and reflected irradiance from surrounding grid cells. 

Currently, the radiosity model does not account for cloud cover spatial heterogeneity; 

atmospheric corrections were computed at a single meteorological station and uniformly applied 

to the full domain. Solar radiation provided to the model was measured at the Topaz Lake station 

in the Tokopah basin. The three-year dataset is described in Chapters 2 and 3 and was well 

correlated (R = 0.93) with solar radiation measurements made at middle elevations in the 

Kaweah River basin (see Chapter 2).  

4.2.2.6 Incoming longwave radiation 

Longwave radiation was also measured at the Topaz Lake station. Atmospheric 

emissivity at the station was computed using the local air temperature and relative humidity. The 

emissivity was extrapolated across the model domain using a sky view approach defined in 

Lehning et al. (2006), which allows valley locations with reduced sky view to have higher 

thermal irradiance than ridge locations with more sky view. The approach accounted for the 

modification of incoming atmospheric longwave radiation by the contribution of that emitted 

from surrounding terrain. The extrapolated emissivity was then reconverted to longwave 

irradiance using the grid cell-specific interpolated air temperature described previously. 

4.2.3 Simulations 

Alpine3D was run over the greater Kaweah River basin (Figure 4.1) at 100 m horizontal 

grid spacing and hourly resolution for three water years (i.e. 01 October 2008 to 30 September 
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2010). The land cover type (Figure 4.1) and forest canopy density was obtained from the 2001 

National Land Cover Dataset (Homer et al., 2004). The native 30 m resolution of these products 

was up-scaled to 100 meters to match the model grid spacing; land cover type was resampled 

using a nearest-neighbor approach and canopy density was resampled with a cubic convolution 

computed on the nearest 16 cells. Simulations were run over a gridded domain composed of 412 

rows and 402 columns, rather than only on the basin itself. The larger domain encompasses the 

Kaweah River basin and also includes additional meteorological and SWE measurement stations 

just beyond the basin boundaries (Figure 4.2). Model output at the daily scale included 

distributed estimates of SWE, snow depth, surface temperature, and short- and long-wave 

surface irradiance.  

4.2.4 Model evaluation methods 

 Model results were evaluated against a suite of multi-scale manual and automated 

observations. This section describes the measurements. 

4.2.4.1 Automated SWE and depth measurements 

Daily SWE observations were obtained from three automated stations in the region (see 

Table 4.1 and Figure 4.2). One of the three stations also measured snow depth. Modeled snow 

depth and SWE fields were evaluated against these station observations. In addition to these 

three point measurements, the Wolverton sub-basin includes the extensive network of ultrasonic 

snow depth sensors described in Chapters 2 and 3. The four research sites each include six snow 

depth sensors and each site falls within a different 100 m x 100 m grid cell. The mean snow 

depth computed from six sensors at each site provided a robust estimate of the snow depth, and 
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thus the model error, at four grid cells in the forested Wolverton basin. Snow depth error values 

were computed as the difference between modeled and measured values when the simulated 

depth occurred beyond the observed range, otherwise the error was assumed to be negligible. 

The date of snow disappearance measured by the automated sensors also served as a useful 

metric of melt-season model performance.  

4.2.4.2 Repeated manual SWE and depth measurements 

In addition to automated hourly measurements, monthly manual SWE measurements 

were made as part of an extensive, multi-agency effort to monitor regional snow water resources 

(Table 4.1). Multiple SWE measurements made with Federal snow tubes are averaged over an 

area approximately equal to the model grid spacing. The survey measurements thus provide a 

SWE estimate that is more representative of the average value within a corresponding model grid 

cell than a single automated station measurement, but at monthly rather than daily time scales. 

Manual monthly SWE and depth surveys were conducted at six locations within the model 

domain between the months of February and May. Modeled snow depth and SWE were 

evaluated against observations made at the seven monthly manual survey locations. 

4.2.4.3 Distributed snow surveys 

Intensive ground-based surveys of the Wolverton and Tokopah sub-basins were 

conducted for two winter seasons (water years 2008 and 2009) to document SWE and depth 

distribution in these forested and alpine environments. Distributed snow depth surveys of the 

forested Wolverton basin were conducted during three annual campaigns timed to coincide with 

seasonal accumulation (mid-February), maximum accumulation (mid-March), and melt (late-
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April). A total of six surveys were conducted in the Wolverton sub-basin. The 2009 Tokopah 

surveys were similarly designed to capture seasonal snow distribution during accumulation 

(early-March), maximum accumulation (early-April), and melt (mid-May). In 2008, the Tokopah 

sub-basin was only surveyed at maximum accumulation (early-April).   

Segmented graduated aluminum probes were used to measure snow depth at pre-

determined locations (i.e. waypoints). Surveyors navigated to the waypoints using Geographic 

Position System (GPS) units. At each waypoint, three snow depth measurements each separated 

by five meters were made along a north-south axis. In 2008, Wolverton basin waypoints were 

spaced at 100 m. This spacing was increased to 250 m in 2009 to increase spatial coverage. 

Because similar surveys were conducted in the Tokopah basin in 1997 and 1998, for consistency 

and to promote comparison, locations where measurements were repeated for the earlier surveys 

were used as waypoints for the 2008 and 2009 surveys. Figure 4.4 illustrates the locations of 

measured snow depths for each survey. A total of 1480 waypoint measurements (4440 single 

depth measurements) were recorded during the two years. In addition, snow density and 

stratigraphy was recorded at multiple snow pit locations for each survey (see Figure 4.4). An 

undisturbed snow face was excavated to ground and snow density in duplicate columns was 

measured in 10 cm vertical intervals by weighing snow samples acquired with a 1000 cm3 cutter. 

In total, measurements of 25 snow pits were made in the two basins for the two years. 

The average snow density was used to estimate SWE at depth measurement locations, 

which represent the average of three depth measurements. Simulated SWE at model grid-

elements corresponding to the waypoint locations were then directly evaluated against the 

measurements. The potential uncertainty associated with the measurement / model scale disparity 
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is not considered here. 

 

Figure 4.4. Map illustrating snow depth and density measurements in the Wolverton and Tokopah basins in 
2008 and 2009. 

4.2.4.4 LiDAR snow depth 

 Airborne LiDAR surveys are arguably superior to traditional mapping and surveying 

techniques because of the high measurement accuracy, density, and the relatively large spatial 

extent. The National Center for Airborne Laser Mapping (NCALM) flew two scanning LiDAR 
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flights over the greater Wolverton and Tokopah sub-basins on 22-23 March, 2010 (snow-on) and 

in August, 2010 (snow-off) (see Figure 4.2). The average point densities for the snow-on and 

snow-off flights were 8.2 and 10.0 points m-2, respectively. Data filtering was conducted to 

separate ground / snow surface returns from non-surface returns (e.g. vegetation returns). The 

non-surface returns were removed and the surface point elevations were interpolated to a raster 

DEM with one-meter horizontal grid spacing (see thorough review of filtering algorithms and 

associated uncertainty by Meng et al., 2010). The same filtering algorithms were used on data 

from both flights and the surface elevation difference (i.e. ‘snow-on heights – snow-off heights’) 

produced a raster representing the snow depth for the snow-on flight date over a spatial domain 

determined by the overlap of the two flight footprints. 

4.3 Measurement results 

The snow depth, density, and SWE measurement results highlight inter-annual trends in 

accumulation and melt patterns both in time and space. Measurements made at one scale can be 

compared to those made at a larger scale. Such comparisons can be helpful to understand scale 

relationships of SWE and to identify limitations and/or utility of observations made at a 

particular scale to infer dynamics made at another.  

4.3.1 Distributed snow surveys 

Snow survey results are listed in Table 4.2. The measurements made in 2008 and 2009 

indicate similar seasonal and inter-annual trends documented previously in Chapters 2 and 3. For 

brevity these observations are not discussed here. An excellent example of scale relationships is 

seen between snow depth measured at the basin-scale as obtained by repeated surveys and the 
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snow depth measured by the network of automated sensors. The survey observations (hundreds 

of point measurements made over a large area at a discrete time) were compared to snow depth 

measured by the sensors (26 point measurements at hourly time steps). Figure 4.5 compares the 

range, mean, and standard deviation of snow depth from repeated Wolverton surveys to the 

observations of snow depth from the depth sensor network. The comparison is made for three 

surveys each in 2008 and 2009.       

Table 4.2. Summary statistics of the Wolverton and Tokopah snow surveys in 2008 and 2009. Missing data (-) 
values indicate no survey was conducted on that date. Figure 4.4 includes the exact dates of each survey. 

 

The network of 26 ultrasonic snow depth sensors captured the basin mean snow depth as 

determined from distributed survey measurements with accuracy greater than 85%. The results 

indicate that when sensors are carefully located to sample a basin’s range of elevation, aspect, 

and forest cover known to engender variability in snow depth, the observations may negate the 

need for basin-scale surveys by capturing the larger-scale mean and variability. A priori 

knowledge of snow distribution may thus be of great utility when determining the most efficient 

and effective sensor placement that minimizes the number of sensors required to estimate the 

mean and variance of basin-scale snow depth. For example, LiDAR data provide a level of detail 

necessary to evaluate basin-scale snow depth variability with a high degree of accuracy. A 

similar comparison of the 2010 depth sensor measurements to the snow depth measured by the 
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LiDAR flight, masked to the Wolverton basin extent, indicates that the depth sensor network 

captured the basin mean depth to within a 3% error (Figure 4.5). The LiDAR measurement 

results from the Wolverton and Tokopah sub-basins are presented below. 

 

Figure 4.5. Comparison of the mean and range of snow depth measured by the network of 26 ultrasonic 
sensors in the forested Wolverton basin and the range, mean, and standard deviation (std.) of snow depth 
measured from the repeated catchment-scale surveys in water years 2008 (top) and 2009 (middle) and depth 
measured by the LiDAR flight in 2010 (bottom). 

 

4.3.2 LiDAR snow depth 

The mean LiDAR-derived snow depth in the Wolverton basin on 23 March 2010 was 
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211±55 cm. The mean Tokopah snow depth was 279±110 cm. In both basins the median snow 

depth was within 1% of the basin mean depth, indicating limited influence of outliers (e.g. 

exorbitantly high snow depths) on basin mean snow depth. The standard deviation of the snow 

depth values in the forested Wolverton basin (26% of basin-mean) and the largely alpine 

Tokopah basin (39% of basin-mean) suggests that distinctly different physical processes impact 

the snow depth and its variability in the two basins. 

 

Figure 4.6. LiDAR-derived snow depth over the Wolverton and Tokopah basins. 

While LiDAR provides an immense level of detail on the distribution of snow depth in 

these alpine and sub-alpine environments, the depth data at the time of a single flight represents 

only a snapshot in time and does not capture the temporal dynamics of this variability. In Section 

4.4, the Alpine3D model is used to evaluate how the variability may change in both time and 

space. First, the accuracy of the land surface model to simulate these local and regional processes 

must be tested. In this context, the high-resolution of the LiDAR data was useful to evaluate 

model performance as well as sub-grid variability resulting from the scale discrepancy between 

the model and measurements.  
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4.3.3 Regional point-scale SWE and depth measurements 

Manual measurements of snow depth and SWE from regional surveys conducted monthly 

at seven locations in and surrounding the Kaweah River basin are provided in Table 4.3. SWE 

and depth from the three automated stations are presented and discussed in Section 4.4.  

Table 4.3. Snow depth and SWE data from monthly manual surveys in the region. Data available online: 
http://cdec.water.ca.gov/cgi-progs/snowQuery_ss. Surveys were conducted on approximately the first day of each 
listed month; months when surveys were not conducted are indicated (-). 

 

4.4 Alpine3D model results and discussion 

The model provides spatially distributed estimates of snow properties. Here, model 

simulations of snow depth and snow water equivalent are evaluated at daily time steps (1200 

local time). Examples of the simulated snow depth (Figure 4.7) and SWE (Figure 4.8) fields on 

01 April, 01 May, and 01 June for each of the three years are provided. In general, the monthly 

snapshots highlight seasonal and inter-annual variability in melt-season snowpack dynamics 

similar to the measurement and model results presented in Chapters 2 and 3.  
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Figure 4.7. Alpine3D simulated snow depth fields over the greater Kaweah River basin on the first day of the 
months of April, May, and June for years 2008, 2009, and 2010. The Tokopah, Wolverton, and Kaweah River 
basins are outlined and elevation contours correspond to those in Figure 4.1. 
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Figure 4.8. Alpine3D simulated snow water equivalent (SWE) over the greater Kaweah River basin on the 
first day of the months of April, May, and June for years 2008, 2009, and 2010. The Tokopah, Wolverton, 
and Kaweah River basins are outlined and elevation contours correspond to those in Figure 4.1. 

 

In this section, the distributed results are quantitatively evaluated against measurements. 

Alpine3D snow depth and SWE results are evaluated against measurements made at the multiple 

scales described in Section 4.3: i) point-scale automated stations, ii) multiple automated stations 
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within a single model grid cell, iii) multiple manual measurements (repeated monthly) made 

within single grid cells, iv) basin-scale manual point measurements, and v) basin-scale 

distributed LiDAR measurements. The snow depth model results are first evaluated in Section 

4.4.1, followed by the SWE results in Section 4.4.2. Finally, the inter-annual patterns are 

analyzed in Section 4.4.3.   

4.4.1 Snow depth 

4.4.1.1 Point-scale snow depth analysis 

The highest elevation automated snow station, and the only snow station outside of the 

Wolverton sub-basin to measure hourly snow depth, was at Farewell Gap (Table 4.1; Figure 4.2). 

The average model snow depth errors, computed on days when either or both of the modeled and 

measured values were nonzero, were +2.8 cm, -13.9 cm, and -9.3 cm in 2008, 2009 and 2010, 

respectively (Figure 4.9). Of note is the significant model underestimation of snow depth during 

water year 2009 as a result of underestimating a nearly sustained 16-day period of accumulation 

between 05 and 21 February during which 145 cm of accumulation was recorded but 101 cm 

were simulated. Despite the underestimation of a large snow accumulation event at Farewell Gap 

in 2009, the model exhibited high accuracy in the simulation of melt-season snow depth for all 

three years (Figure 4.9); the model accurately predicted the date of snow disappearance to the 

day in 2008, within two days in 2009, and within one day in 2010. The snow depth RMSE values 

were 13.4 cm, 23.3 cm, and 14.8 cm in 2008, 2009, and 2010, respectively.  
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Figure 4.9. Simulated and measured snow depth at the Farewell Gap station for the three water years. 

4.4.1.2 Sub-grid point-scale snow depth analysis 

A comparison of simulated snow depth at locations of the four research plots in the 

forested Wolverton sub-basin provides insight into how the model at 100 m resolution grid 

spacing compares to multiple sub-grid observations. The mean (absolute) annual model snow 

depth errors averaged at all sites were only +5.4 cm (8.0 cm), -1.2 cm (2.6 cm), and +1.3 (1.3 

cm) in 2008, 2009 and 2010, respectively (Figure 4.10). The results highlight a high degree of 

model accuracy in the prediction of snow depth when evaluated against multiple point-scale 

sensors located within a single model pixel. In general, snow depth model errors were most 

pronounced early in the accumulation season with lowest model errors during the melt season 

(Figure 4.10). For example, the snow disappearance date was within the observed range at all 

four sites in all three years. The only exception to this was at Site 4 in 2010 (see Figure 4.10) 

where the model simulated snow disappearance one day earlier than the earliest observed date. 
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Figure 4.10. Comparison of three years of simulated (daily) snow depth to the observed mean and range of 
snow depth measured by six automated sensors each within four grid cells corresponding to locations of the 
forested research sites in the Wolverton sub-basin. The associated error for each site and year is shown as the 
difference between modeled and measured values when the modeled values occur beyond the observed range. 

The model error seen in the February 2009 series of snow events that accumulated 145 

cm at the Farewell Gap station (Figure 4.9) and was significantly underestimated (44 cm or 

30.3%) by the model was not seen in the Wolverton basin where 111 cm were recorded and 

underestimated by only 15 cm (13.5%), on average. The difference in storm total (and model 

error) between the two sites could be a result of spatial variability of precipitation; significantly 

more precipitation may have fallen at Farewell Gap at a distance of 24 km from the Wolverton 

basin and in an area where precipitation was not measured. 

4.4.1.3 Distributed snow depth analysis 

Snow depth simulated by Alpine3D was compared to repeated monthly snow depth 
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measurements at seven survey locations. The comparison of seven model grid elements to snow 

depth survey measurements conducted in transects approximately equal to the model grid 

spacing potentially offers a higher degree of sub-grid representation than the high temporal, but 

single-point resolution of the automated snow depth sensor evaluated in Section 4.4.1.1. 

Additionally, the regional coverage of the monthly surveys (Figure 4.2) offers greater regional 

information than the network of 24 depth sensors presented in Section 4.4.1.2, at the expense of 

reduced temporal observation (i.e. monthly rather than hourly). Tables 4.4 – 4.6 include the 

model depth error for each of the seven stations for 2008, 2009, and 2010, respectively. Figure 

4.11 summarizes the seasonal average normalized snow depth error at all seven survey sites for 

each of the three years. In general, model depth error was highest when evaluated against survey 

data at the Giant Forest (i.e. Site #1; negative error, or underestimated snow depth) and Scenic 

Meadow (i.e. Site #7; positive error, or overestimated snow depth) survey locations (Figure 

4.11). These two survey locations represent the low and high elevation station end-members, 

respectively. The absolute depth error was highest at the Scenic Meadow survey site (i.e. Site #7 

in Figure 4.11) for all three years. It is possible that the site’s location on the leeward side of the 

Tokopah watershed is in a precipitation shadow that is not captured by the available precipitation 

gauges or by the statistical interpolation method. The same seasonal average normalized snow 

depth errors showed strong linear relationships (R2 > 0.80, p<0.01) with the distance of the 

survey location from the nearest precipitation gauge used to force the model (Figure 4.11, right 

panel). The results suggest that model errors increased both with distance and elevation from the 

nearest precipitation gauge, an indication that spatial precipitation patterns are not well 

represented by the available station measurements.  
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Overall, the model showed consistency in the degree and magnitude of normalized snow 

depth error for all years with the exception of the lowest elevation survey sites 1 and 2 in 2009, 

where the model underestimated depth (Figure 4.11). These negative errors at the lowest 

elevation survey site (i.e. Site 1, Giant Forest) are counterintuitive when considered in the 

context of the close proximity to a precipitation gauge. The model is particularly challenged at 

this site because it is heavily forested and in a region that experiences more rain-on-snow events 

compared to upper elevation snow survey locations. In general, model snow depth errors were 

greater later in the season (i.e. April and May) than during the accumulation season (Tables 4.4 – 

4.6).  

 

Figure 4.11. (Left): The Alpine3D normalized snow depth error computed against measurements made at 
manual snow survey locations (see Figure 4.2 and Table 4.1) as the seasonal average (February to April) error 
for each of the three years of the study. The survey number scheme is in order of increasing site elevation. 
(Right): The normalized snow depth error values plotted against the linear distance of survey locations from 
the nearest precipitation gauge used to force the model. The R2 values shown are statistically significant 
(p(0.05) < 0.01). 

Finally, snow depth simulations were evaluated against repeated catchment-scale survey 

measurements made in the Wolverton and Tokopah sub-basins. In the forested Wolverton sub-

basin, the model accurately represented the basin-mean snow depth well within one standard 

deviation of the measured values for three surveys conducted each in 2008 and 2009 (Figure 
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4.12). The model error was greatest on 28 April 2008 (18% overestimation) and 15 February 

2008 (19% underestimation). In the largely alpine Tokopah sub-basin, the model significantly 

overestimated the basin-mean snow depth by 58% compared to the April 2008 survey 

measurements (Figure 4.12). The model was unable to simulate the high measured snow depth 

variability. For example, the minimum and maximum measured (modeled) depths were 0 cm 

(147 cm) and 523 cm (377 cm), respectively (see range in Figure 4.12). The results suggest that 

the model is not capturing areas of very low or high snow depth, which were measured in regions 

of exposed rock cliffs and ridgelines where preferential deposition is driven by wind transport. 

These processes often occur at scales much smaller than the 100 m model resolution and the 

issue of sub-grid variability is best addressed with high-resolution LiDAR data. For example, 

Mott and Lehning (2010) found that the most realistic wind field and snow deposition patterns 

were obtained at very high model resolution (5 m) compared to results of the same models run at 

larger grid spacing (up to 50 m). In the next section, the model is evaluated against LiDAR data, 

but the issue of sub-grid variability is beyond the scope of the study. Compared to the April 2008 

survey results, in 2009 the basin-mean snow depth error values in the Tokopah were lower and 

were within one standard deviation of the measured values. Despite accurate depth simulation on 

02 March 2009, basin-mean depth was overestimated on 12 April (+37%) and 16 May (+34%) 

(Figure 4.12).  
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Figure 4.12. The mean (circles), standard deviation (bars), and range (shading) of snow depth in the 
Wolverton and Tokopah basins measured during catchment-scale surveys and simulated by Alpine3D.  

4.4.1.4 LiDAR snow depth analysis 

Compared to LiDAR-derived snow measurements obtained on 23 March 2010, Alpine3D 

significantly over-estimated snow depth (Figure 4.12). The mean error in the Tokopah sub-basin 

was 51 ± 70 cm, or a 27% over-estimation of the basin-mean measured value (see Section 4.3.2). 

The mean snow depth error in the Wolverton sub-basin was -2 ± 21 cm. In general, the model 

performed well at the forested lower elevations. Model errors were highest (positive, or an 

overestimation of depth) in areas that were steep and rocky with southerly aspects (see Figure 

4.13); these are areas of the Tokopah basin that typically do not hold significant snow because of 

exposure to wind (and subsequent scour) and solar radiation (and subsequent melt).  
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Figure 4.13. (Left panels) Error (modeled – measured) in simulated snow depth on 23 March 2010 determined 
from LiDAR measurements up-scaled to 100 m spatial resolution to match the model grid spacing. (Right 
panels) The model error normalized by the up-scaled snow depth measurements. Gray shading indicates the 
model domain beyond the measurement footprint. 

Because wind redistribution was not accounted for in these model runs, it is possible that the 

model overestimated deposition by ignoring scouring effects on the rocky, windward slopes. The 

additional snow cover (i.e. higher albedo) might have negated the simulated melt dynamics 

between patches of steep, wind-exposed rock and the strong solar radiation on the southerly 

aspects. This suggests that the model is not accurately simulating mid-winter melt and/or 

snowpack densification on these south-facing, high elevation slopes; the surface of which are 

largely exposed bedrock. 

4.4.2 SWE 

Similar to snow depth, when simulated SWE was evaluated against monthly snow survey 
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data, the errors were generally positive (i.e. the model overestimated SWE) at four of the seven 

survey sites (Figure 4.14 and Tables 4.4 – 4.6). For all three years, the seasonal average 

normalized SWE error was lowest at survey sites 1, 2, and 5 (Figure 4.14); note that these three 

survey locations (Giant Forest, Big Meadows, and Panther Meadow, respectively) are the closest 

of the seven survey sites to the precipitation gauges used to derive the model forcing. Much like 

the snow depth results presented above, SWE error was generally greater at the upper elevation 

survey sites that were furthest from nearest precipitation gauge and errors were lower at the 

middle elevation sites closest to the nearest precipitation gauge (Figure 4.14, right panel). The 

results support the hypothesis that much of the model error may be explained by precipitation 

forcing errors. At the lowest elevation survey site, SWE in 2008 was generally underestimated 

compared to survey measurements (Table 4.4).  

 

Figure 4.14. (Left): The Alpine3D normalized SWE error computed against measurements made at manual 
snow survey locations (see Figure 4.2 and Table 4.1) as the seasonal average (February to April) error for 
each of the three years of the study. The survey number scheme is in order of increasing site elevation. 
(Right): The normalized SWE error values plotted against the linear distance of survey locations from the 
nearest precipitation gauge used to force the model. The R2 values shown are statistically significant (p(0.05) < 
0.01). 

When modeled SWE was evaluated against Wolverton and Tokopah catchment-scale 

surveys, the basin-mean SWE was significantly greater than observed basin-mean SWE (i.e. 
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surveyed depth values multiplied by basin-average snow density measurements) (Figure 4.15). In 

2008, the model overestimated the Wolverton basin-mean SWE by 32%, 49% and 70% in 

February, March and April, respectively (Figure 4.15). In 2009, the model overestimated SWE 

by 14%, 53% and 27%, in February, March and April, respectively (Figure 4.15); note that 

February and April mean SWE values were well within the measured standard deviation. The 

overestimation of SWE in the Wolverton sub-basin differs significantly from the accurate 

simulation of the snow depth discussed in Section 4.4.1.3 and shown in Figure 4.11. The 

discrepancy is a result of a difference between measured and simulated snow density. Measured 

(modeled) basin-mean density values in the Wolverton basin were 364 kg m3 (496±35 kg m3), 

399 kg m3 (585±32 kg m3) and 439 kg m3 (440±110 kg m3) in February, March, and April 2008, 

respectively. Interestingly, the model tended to underestimate snow density late in the melt 

season, particularly at lower elevations when snow depths were < 40 cm. For example, the 

Wolverton basin-mean modeled snow density in April 2008 was highly variable because lower 

elevations that had very little snow remaining were erroneously simulated to have snow density 

values < 300 kg m3 while areas with deeper snow had values near 600 kg m3 (not shown). Future 

work should examine a potential model tendency to underestimate melt-season snow density 

values under conditions of low snow depth, when density values would be expected to remain 

high.     

Modeled basin-mean SWE in April 2008 in the Tokopah basin was overestimated by 

47% (Figure 4.15) whereas basin-mean depth was overestimated by 58% (see Figure 4.12). In 

this alpine area the model is slightly underestimating snow density (454 kg m3) compared to 

measurements (495 kg m3). The reason for the density discrepancy between the model and 
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measurements in the Wolverton basin is not immediately clear.         

 

Figure 4.15. The mean (circles), standard deviation (bars), and range (shading) of SWE in the Wolverton (left 
panels) and Tokopah (right panels) basins measured during catchment-scale surveys and simulated by 
Alpine3D.

 

 

Table 4.4. Alpine3D normalized snow depth and SWE error computed against monthly survey measurements made 
in the area of the greater Kaweah River basin for 2008. Reported error is the difference between the modeled and 
measured values normalized by the measured value. Months when the measured value was zero but the simulated 
value was non-zero are indicated by ‘na’. Months when surveys were not conducted are indicated (-).   
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Table 4.5. Alpine3D normalized snow depth and SWE error computed against monthly survey measurements made 
in the area of the greater Kaweah River basin as Table 4.4 but for 2009. 

 

Table 4.6. Alpine3D normalized snow depth and SWE error computed against monthly survey measurements made 
in the area of the greater Kaweah River basin for 2010. 

 

 

When compared to SWE measured during the monthly survey conducted at the Panther 

Meadow survey site in the Wolverton basin, the mean model errors were +14%, -10%, and 

+21% in 2008, 2009, and 2010, respectively (Tables 4.4 – 4.6). The errors were lower than the 

previous comparison of modeled SWE to catchment-scale (spatial-mean) survey measurements. 

The SWE discrepancy between the Panther Meadow monthly measurements (made with a 

Federal snow tube sampler) and the basin-scale measurements (derived from snowpit density 

measurements) are possibly a result of differences in reported density values. An evaluation of 

the model against continuous SWE data in the region provides additional insight into potential 
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sources of the SWE error discrepancy.  

In 2008 the model simulated SWE at the Giant Forest station with an RMSE of 49 mm 

and at the Big Meadows station with an RMSE of 39 cm (Figure 4.16). At the higher elevation 

Farewell Gap station the model overestimated SWE in 2008 with an RMSE of 127 mm. The 

errors shown in Figure 4.16 do not reflect the high errors seen in the basin-scale survey results. A 

simple comparison of density measured snow at the automated Farewell Gap station where both 

depth and SWE were recorded indicates that the seasonal maximum density in 2008 was 

generally greater than 550 kg m-3 and the density was consistently greater than 500 kg m-3 

between 25 March and the 30 May snow disappearance date; the mean density during this period 

was 551 kg m3. The melt-season density values both from the Federal snow tube measurements 

at Panther Meadow and the collocated automated depth sensor and snow ‘pillow’ at Farewell 

Gap (> 500 kg m3) are significantly greater than the density values measured in the Wolverton 

snowpits in the same year (< 440 kg m3). The errors could have resulted from measurement 

error, but the source of that error is not immediately clear. 

In general, Figure 4.16 illustrates low model error in the simulation of SWE. The lowest 

model errors were obtained at the Giant Forest station for all years (RMSE = 51 cm SWE) and at 

all sites in 2008. In 2009, the model underestimated SWE compared to measurements at the Big 

Meadows station (RMSE = 91 cm, normalized model error = -0.33), but accurately estimated 

SWE at Giant Forest (RMSE = 25 cm, normalized model error = -0.12), and Farewell Gap 

RMSE = 50 cm, normalized model error = -0.08) stations. In 2010, the model overestimated 

SWE by 15% at Giant Forest, 27% at Big Meadows, and 23% at Farewell Gap. The 2010 results 

from these automated SWE stations are consistent with the errors observed in snow depth fields 
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from the 2010 LiDAR flight in which positive depth errors generally increased with elevation 

(see Figure 4.13). 

 

Figure 4.16. Comparison of measured and simulated SWE at the three automated snow stations spanning the 
middle elevation range of the greater Kaweah River basin. 

Finally, the data from the three automated SWE stations can be used to evaluate how well 

the model predicts the date of snow disappearance. This date is of critical hydrological and 

ecological importance as it defines the end of snowmelt water input to the soil system. Because 

of scale issues with comparing point measurements to the modeled 100 m x 100 m grid element, 

a more robust comparison was obtained in the Wolverton basin where multiple automated snow 

depth sensors fell within individual model grid cells. The model accurately predicted the snow 
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disappearance date within the observed range (see Figure 4.10). The point comparison of SWE 

station measurements of snow disappearance date provides a less robust estimate of model skill, 

but over a much larger domain than the Wolverton basin evaluation. At all locations and for all 

three years, the model accurately predicted the date of snow disappearance with an accuracy of 

three days or better (see Figure 4.16). The exception to this was at the lower elevation Giant 

Forest station in 2010 when the model predicted snow disappearance ten days earlier than the 

measured date. In general, compared to all available automated measurements (27 total stations) 

Alpine3D accurately predicted the date of snow disappearance.  

4.4.3 Inter-annual accumulation and melt patterns 

The model results were used to evaluate inter-annual accumulation and melt patterns. 

Distinct patterns are evident. In particular, four metrics were computed for each year: 1) the date 

of maximum SWE; 2) the date of snow disappearance; 3) the spring melt duration computed as 

the number of days between the first two metrics; and 4) the fraction of that melt duration in 

which the daily SWE change was negative (i.e. melt was simulated). The next sections describe 

the computation of each of these metrics, evaluate the simulated values against automated station 

measurements, and finally inter-annual patterns are compared and discussed. 

4.4.3.1  Date of maximum SWE 

 

Maximum SWE was measured on 27 February 2008 at the middle elevation Giant Forest 

(Figure 4.17, lower-left panel) and Big Meadows (Figure 4.17, left-center panel) stations (see 

Table 4.7). This coincided with the timing of the last appreciable precipitation event of the 2008 
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season (see Figure 4.9), after which melt began at both stations as inferred from the SWE record. 

Conversely, maximum SWE was measured at the upper elevation Farewell Gap station five 

weeks later on 05 April 2008 (Table 4.7).  

 
Table 4.7. Date of maximum SWE measured and modeled at the three automated snow stations and modeled mean 
and standard deviation of the date of maximum SWE in the Wolverton and Tokopah basins for the three years of the 
study. 

 

The date coincided with the timing of the last (minor) precipitation event of the season and no 

melt was observed prior to this date. The three SWE records measured at different elevations are 

examples of an elevation transect across energy and precipitation gradients. Figure 4.17 

illustrates a distinct transition from the lower elevations where melt progresses quickly after the 

date of maximum SWE (e.g. Giant Forest) to middle elevations where melt is more temporally 

variable after maximum SWE (e.g. Big Meadows), to upper elevations where melt is delayed 

relative to lower elevations, causing the date of maximum SWE (and the subsequent melt) to 

occur later in year. 

Compared to measurements at the Giant Forest and Big Meadows automated stations, the 

dates of maximum SWE were simulated within one day in 2008, 2009, and 2010 (Table 4.7; note 

that a sensor error at Giant Forest prevented the observation of maximum SWE in 2009). Errors 

in simulated maximum SWE were observed at the higher elevation Farewell Gap station (Table 

4.7) in 2009 and 2010. These two years were characterized by significant spring snow 

accumulation that caused many ‘local maxima’ in the SWE time series (Figure 4.17) that are 



 
 

132 

close in magnitude to the seasonal (i.e. ‘global’) maximum SWE. For this reason, slight model 

errors in SWE on the order of 1% could result in errors in the simulated maximum SWE date 

exceeding one month (Table 4.7). On its own, the importance of the date of maximum SWE in 

the context of water availability can be ambiguous. However, when evaluated in conjunction 

with the date of snow disappearance and, particularly, the number of days between the two 

metrics, more information on general snowmelt dynamics is obtainable.    

 

 

Figure 4.17. Comparison of simulated and measured SWE (in mm) at the three automated stations for the 
three years. The station data are shown in increasing elevation (from lower to upper panels) to highlight the 
general later shift in the date of maximum accumulation and/or snow disappearance with elevation and the 
variable impact of this shift on melt duration. 

4.4.3.2  Date of snow disappearance and melt season duration 

When evaluated against automated sensors, Alpine3D was highly accurate in the 

predicted date of snow disappearance (see Figures 4.10 and 4.17 and Section 4.4.1). For all 

simulated years, the date of snow disappearance was determined as the first date that snow 

disappeared after the date of maximum SWE accumulation. When computed in this way, the 

metric has reduced physical meaning at lower elevations where snow cover melts out after each 

snow event (i.e. is ephemeral in nature). But since regional snow measurements were unavailable 



 
 

133 

at lower elevations where ephemeral snow cover persists, this study largely focused on snowmelt 

dynamics in regions with continuous seasonal snow cover. 

Figure 4.18 shows the regional distribution of the simulated date of maximum SWE 

(Figures 4.18a-c), snow disappearance date (Figures 4.18d-f), and the number of days between 

maximum SWE and snow disappearance (Figures 4.18g-i) for years 2008, 2009 and 2010. The 

locations of the three automated SWE stations are indicated in Figure 4.18 and the measurements 

plotted in Figure 4.17 are useful to evaluate the larger-scale trends shown in Figure 4.18. In 

general, the simulated date of snow disappearance varied smoothly across the terrain (Figure 

4.18d-f); it occurred earlier at lower elevations and on south aspects and later at upper elevations 

and on north aspects. The date of maximum SWE varied less consistently with elevation than the 

snow disappearance date, but when it did change, it occurred abruptly (Figure 4.18a-c). For 

example, in 2008 the date of maximum SWE was relatively constant at middle elevations but 

jumped to one month later at and above an elevation of approximately 2600 m. Similar 

‘breakpoints’ in the timing of maximum SWE were simulated in 2009 and 2010 at an elevation 

of approximately 2200 m and 2000 m asl, respectively. The breakpoint stands out clearly in 

spatial maps of the seasonal melt duration (Figure 4.18h-i). 

 In particular, the longest melt durations in the region are found to occur at middle 

elevations and the exact location of that band varies inter-annually. The melt duration generally 

increases from lower elevations to the middle elevation until this maximum SWE breakpoint is 

reached where the melt duration decreases significantly before increasing again with elevation. A 

great example of these melt duration dynamics is seen in the measured / modeled data at the 

three automated SWE stations that effectively transect this narrow elevation range in 2008 
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(Figure 4.17). The lowest elevation Giant Forest station is located lower in elevation than this 

melt duration breakpoint. The Big Meadows station is located just below the breakpoint where 

melt duration is longest, and the Farewell Gap station is located significantly above this 

breakpoint where the melt duration is shorter than at Big Meadows but longer than directly 

above the breakpoint (Figures 4.18). Figure 4.17 clearly shows strong agreement between the 

measured and simulated melt duration trends at the three sensor locations. The simulated melt 

duration was 58 days at Giant Forest, 75 at days Big Meadows, and 63 days at Farewell Gap, 

while the measured values were within two days of the simulated durations (Figure 4.17).  
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Figure 4.18. (a – c): Simulated date of maximum SWE in (a) 2008, (b) 2009, and (c) 2010. (d – f): Simulated 
date of snow disappearance for (d) 2008, (e) 2009, and (f) 2010. (g – i): Simulated snow melt duration 
computed as the number of days between the dates of maximum SWE and snow disappearance for (g) 2008, 
(h) 2009, and (i) 2010. Arrows indicate the approximate elevation of the melt duration ‘breakpoint’.  
Locations of the three automated stations are indicated.  
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Figure 4.19 illustrates the elevation distribution of the simulated melt duration shown in 

Figure 4.18 for each of the three years. The longer melt duration at middle elevations is apparent. 

The elevation band of the longest melt duration ranges from 2200 m to 2600 m asl in 2008, 2000 

m to 2400 m asl in 2009, and 1600 m to 2200 m asl in 2010. The longer melt duration occurred 

over a ~400 m elevation range in 2008 and 2009, and a slightly greater elevation range of ~600 

m in 2010. The previously mentioned ‘breakpoint’ is specified by the upper value of these 

ranges.   

 

Figure 4.19. Histograms of the elevation distribution of the simulated melt duration, in days, for the three 
years. 

The physical meaning of the melt breakpoint and this elevation band of prolonged melt 

duration is worth addressing. First, the term ‘melt duration’ to refer to the period of time between 

the dates of maximum SWE and snow disappearance is somewhat misleading in that melt does 

not necessarily occur over the entire period. Days that are below freezing and/or days with 

snowfall do frequently occur after the date of maximum accumulation. The fraction of this melt 

duration in which melt actively occurs (i.e. a negative daily change in SWE is simulated) is 

plotted in Figure 4.20. In 2008, a year with very little precipitation or cloud cover after 

maximum SWE, daily SWE loss occurred in 90% of the melt duration period (Figure 4.20). 

Generally, that percentage increased with elevation in 2008 and did not vary significantly in 
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spatial extent (note the large area of 90% values in Figure 4.20). In contrast, late-season snowfall 

and/or cloud cover characterized years 2009 and 2010. In these years, the same middle elevation 

bands had distinctly lower percentages (i.e. < 85%) of days after maximum accumulation in 

which melt occurred (Figure 4.20). As inferred from the automated station measurements within 

this elevation range, this is a result of mid-winter melt that reduces snowpack SWE and causes 

maximum SWE to occur earlier. In effect, any late season snowfall that might result in a later 

seasonal maximum SWE at higher elevations where colder temperatures limit mid-winter melt, 

would not exceed the mid-winter maximum SWE value at middle elevations where mid-winter 

melt regularly occurs. 

 

Figure 4.20. (top row): The simulated fraction of days, in percent, between the periods of maximum SWE and 
snow disappearance in which melt occurred for years 2008, 2009 and 2010. (bottom row): Histograms of the 
elevation distribution of the simulated fraction of days, in percent, after maximum SWE in which melt 
occurred for each of the three years. 

There is significant ambiguity with the use of the ‘date of maximum SWE’ metric to infer 
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melt timing and processes. As discussed previously, slight variations in seasonal SWE magnitude 

and/or melt rates can change the maximum SWE date by more than a month with little if any 

influence on the hydrology or ecology. A more comprehensive analysis of seasonal and inter-

annual snowmelt processes includes considering the number of days in which melt occurred 

normalized by the snow cover duration, and the average melt rate computed only on days in 

which melt occurred. Figure 4.21 (upper panels) shows the snow cover duration for each of the 

three years. The 2010 season recorded the latest snow disappearance date of the three years at the 

middle elevations as measured at the automated stations, but the shortest snow cover duration at 

the highest elevations (Figure 4.21 upper panels). This is a result of 2008 and 2009 both 

receiving early-season (i.e. October and November) snowfall that persisted as continuous snow 

cover at upper elevations but melted out at lower elevations, whereas the first snowfall of 2010 

did not occur until early December. 

The fraction of the snow-covered period in which melt was simulated (i.e. a net daily 

change in SWE < -0.6 mm day-1 was observed) showed interesting inter-annual variability in 

terms of where the majority of melt occurred (Figure 4.21 center panels). This metric is useful to 

infer seasonal water availability to the soil system. Many of the results were intuitive. For 

example, when snow-covered, the lowest elevations experienced snowmelt 80% to 100% of the 

time in all three years and the highest elevations were least prone to melt events in all three 

years.  
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Figure 4.21. (Top panels) The number of days with snow cover, (middle panels) the percent of the snow 
covered period in which daily net melt occurred, and (lower panels) the elevation distribution of the melt 
fraction shown in the middle panels for each of the three years (figure columns). 

 

Other results were less intuitive. For example, the upper elevations in 2010 experienced melt 
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~55% of the snow-covered period while in both 2008 and 2009 melt occurred during ~75% of 

the snow-covered period (Figure 4.21 center panels). The difference was caused by the early-

season snowfall in 2008 and 2009 that resulted in more (average) melt days than in 2010 when 

continuous snow cover at upper elevations began in December when solar elevations and air 

temperatures were lowest. Finally, as seen in the previous analysis of the melt duration, the 

middle elevations showed distinct differences in melt frequency. The bottom panels in Figure 

4.21 show the elevation distribution of the simulated melt frequency for the three years. In 2008 

and 2009, the middle elevations (~1800 m – 2200 m asl) had slightly lower frequency of melt 

(60%) than the upper elevations (~65%) and significantly lower frequency than the lowest 

elevations (75% - 100%). This discrepancy was not simulated in 2010 (Figure 4.21). While the 

differences in melt frequency between middle and upper elevations in 2008 and 2009 were 

slight, they are counter-intuitive and likely a result of the melt occurring over different time 

periods and at different rates at different elevations.  

 

Figure 4.22. The average melt rate computed only on days in which melt occurred for 2008, 2009, and 2010. 
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Figure 4.22 shows the average melt rate computed as the magnitude of daily SWE change 

only computed on days when the change in SWE was negative. The seasonal average melt rate 

generally increased with elevation. At lower elevations, where mid-winter melt occurred under 

generally lower temperatures and energy fluxes, the seasonal average melt rate was lowest (< 3 

mm day-1). Conversely, the upper elevations were simulated to have the greatest seasonal 

average melt rates of 6.5 mm day-1, 5.5 mm day-1, and 7.5 mm day-1 in 2008, 2009, and 2010, 

respectively. The high melt rates at the upper elevations are caused by melt occurring 

predominantly in the spring and early summer when temperatures and energy fluxes are greatest. 

The inter-annual variability simulated by Alpine3D supports the findings of Chapter 2, in which 

cloud cover and, implicitly, late-season precipitation, was found to explain a majority of the 

inter-annual snowmelt variability measured in the Wolverton basin. 

The results suggest that there exists a critical elevation zone that 1) remains continuously 

snow covered throughout the winter and early spring, 2) is prone to intermittent but significant 

inter-storm melt (i.e. SWE loss), 3) has an earlier date of maximum SWE as a result of early 

season melt that reduces snowpack SWE such that late season snowfall does not exceed the mid-

winter maximum value, and 4) provides the most sustained period of meltwater fluxes to the soil 

system. Furthermore, the elevation range of this critical band varies inter-annually depending on 

seasonal meteorology but generally overlapped the conifer forest elevation zone in all three years 

(see Figure 4.1). 
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4.5 Summary 

The results of the model evaluation highlight strengths and weaknesses in both the snow 

model and the extensive suite of multi-scale measurements. Overall, the model accurately 

estimated snow depth, SWE and the timing of snow disappearance at middle elevations. The 

model accuracy in terms of depth and SWE was most limited at the upper elevations, and 

particularly in the Tokopah basin compared to basin-scale survey measurements in 2008 and 

2009 and LiDAR measurements in 2010. Snow depth and SWE errors computed on monthly 

survey measurements made at seven locations in the greater Kaweah River basin were found to 

(linearly) become more positive with distance of the survey location from the nearest 

precipitation gauge. The results suggest that precipitation uncertainty is a critical limitation on 

snow model accuracy. Precipitation is possibly the most difficult variable to measure at the 

point-scale as well as to interpolate over complex terrain. Precipitation data used in the study 

were not measured above elevation 2073 m asl and linear lapse rates were computed to 

extrapolate lower elevation measurements to the higher elevations. The application of the linear 

lapse rate with an IDW statistical extrapolation of Liston and Elder (2006b) to precipitation data 

in regions that were great distances from and/or on opposite sides of large ridges from gauges 

were unlikely to represent complex orographics known to cause synoptic scale precipitation 

variability. 

Good model performance was noted when simulated depth was compared to catchment-

scale observations made in the forested Wolverton basin (six manual surveys and one LiDAR 

campaign), but SWE was overestimated by as much as 50%. It is possible that the precipitation 

lapse rates computed from gauge measurements made at the lower and middle elevations of the 
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Kaweah River basin are higher than might be measured between middle and upper elevations. 

Modeled melt-season basin-mean snow density values exceeded Wolverton snow pit 

measurements by greater than 15%, but were similar to those derived from local automated depth 

and SWE measurements. Compared to automated measurements, the normalized model SWE 

error was generally less than 10% but larger positive model biases near 25% were observed at 

the highest elevation stations in 2010, the season with the most precipitation. The model 

simulated the snow disappearance date within two days of the measured dates in nearly all cases. 

In locations and years where SWE was overestimated compared to automated station 

measurements but the snow disappearance date occurred within a few days of the measured 

value, the simulated melt rates must also have been overestimated. While this was not explicitly 

evaluated, these two errors (overestimating SWE and melt rate) must have counteracted each 

other.  

The clusters of automated snow depth sensors showed great utility in estimating sub-grid 

scale ranges of snow depth and snow disappearance dates. The model compared well to the mean 

snow depth at locations of the depth sensor clusters and was generally within the observed range, 

particularly during the melt season. The model also accurately predicted the date of maximum 

SWE accumulation in six of the eight sensor-years in which automated SWE measurements were 

available. The ability of the model to predict with high accuracy the dates of maximum SWE and 

snow disappearance made it useful to evaluate seasonal and inter-annual melt patterns. 

In summary, the above analyses of seasonal and inter-annual snowmelt patterns 

highlighted distinct melt differences between lower, middle, and upper elevations. Snowmelt was 

generally most frequent (70% - 95% of the snow-covered season) at the lower elevations where 
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snow cover was ephemeral and seasonal mean melt rates computed on days when melt was 

simulated were generally low (< 3 mm day-1). At upper elevations, melt occurred during less 

than 65% of the snow-covered period, it occurred later in the season, and mean melt rates were 

the highest of the region (> 6 mm day-1). Middle elevations remained continuously snow covered 

throughout the winter and early spring, were prone to frequent but intermittent melt, and 

provided the most sustained period of seasonal mean snowmelt (~ 5 mm day-1). The melt 

dynamics (e.g. timing and melt rate) unique to these middle elevations may be critical to the 

local forest ecosystem. Furthermore, the three years evaluated in this study indicate a marked 

sensitivity of this elevation range to seasonal meteorology, suggesting that it could be highly 

sensitive to future changes in climate. 

Chapter 5. Conclusions and Future Work 

5.1 Conclusions and original contributions 

The three studies described above represent an analysis of the distribution of snow 

properties in forested and alpine terrain. As previously noted, the overarching science question 

addressed in this thesis is: What are the limitations of physically based models in forested 

regions and how do model limitations observed at the plot-scale impact larger-scale estimates of 

snow water resources in mountainous terrain? This question has been addressed using a multi-

scale, multi-year measurement approach that documented the variability, and point-scale and 

spatially distributed modeling methods that simulated the observations. 

In Chapter 2, snowmelt rates measured for three years at forested research plots were 

presented. Estimates of sub-canopy direct beam solar irradiance and sky view factor (SVFθ) 
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derived from hemispherical photographs were used to explain the spatial distribution of observed 

melt rates. Cumulative direct beam irradiance during the observed snowmelt periods explained 

the most variability in melt rates for the most cloud-free melt season (58% in 2008; four cloudy 

days) and explained the least melt rate variability for the cloudiest melt season of the study (29% 

in 2009; 23 cloudy days). Conversely, sky view factor (SVFθ) explained the most variability in 

snow ablation rates under cloudier conditions (i.e. 87% in 2009) and the relationships were 

strongest when developed over the entire hemisphere.  

In Chapter 3, the two metrics studied in Chapter 2 (sub-canopy direct beam irradiance 

and SVFθ) were applied to a one-dimensional physically based soil-snow-vegetation model to 

test the utility of the metrics to simulate observed variability. Three model scenarios, each with a 

different level of canopy structure detail, were tested. Model simulations of the three water years 

initialized at the same snow depth sensor locations were evaluated against observations of snow 

water equivalent (SWE), snow disappearance date, and volumetric soil water content. When bulk 

canopy model parameters canopy openness and effective leaf area index were obtained from 

satellite and literature-based sources, respectively, the model was unable to resolve the variable 

sub-canopy snowmelt dynamics. When the canopy parameters were obtained from hemispherical 

photos, the model improvements were not statistically significant. However, when the model was 

modified to accept the photo-derived time-varying direct beam canopy transmissivity presented 

in Chapter 2, the error in the snow disappearance date was reduced by as much as one week and 

positive and negative biases in melt-season SWE and snow cover duration were significantly 

reduced. Errors in the timing of soil meltwater fluxes were reduced by 11 days on average. The 

optimum aggregated temporal model resolution of direct beam canopy transmissivity was 
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determined to be 30-minutes; hourly averages performed no better than the bulk canopy 

scenarios and finer time steps did not increase overall model accuracy. The improvements 

illustrate the important contribution of direct shortwave radiation to sub-canopy snowmelt and 

confirm the known non-linear melt behavior of snow cover.  

In Chapter 4, a distributed version of the snow-vegetation model used in Chapter 3 is 

applied to a large domain (~ 1,650 km2) spanning an elevation gradient in excess of 3500 m and 

land cover ranging from semi-arid grasslands to perennial snowfields. Results from three years 

of simulation were evaluated against a suite of multi-scale observations made across the 

seasonally snow-covered region. Specifically, model accuracy was evaluated: 1) in forested areas 

where model errors are typically highest, and 2) at upper elevations where the most snow water 

resources accumulate yet no precipitation measurements are available. Alpine3D accurately 

simulated snow depths in the middle elevation conifer forests compared to data from four 

clusters of six ultrasonic snow depth sensors covering the spatial extent of a model grid cell. At 

upper elevations, the model tended to overestimate SWE. The SWE errors could largely be 

explained (R2 > 0.80, p<0.01) by distance of the SWE measurement from the nearest 

precipitation gauge. The results suggest that precipitation uncertainty is a critical limitation on 

snow model accuracy. As observed at the point-scale in Chapter 3, depth and SWE errors at 

middle and upper elevations were greatest in 2010 when snowmelt was delayed until late spring. 

A comparison of simulated snow depth to LiDAR measurements in the alpine Tokopah basin 

indicated that the Alpine3D model overestimated basin-mean snow depth by 27%, particularly at 

the highest elevations and on south aspects in steep, rocky terrain. Additionally, the model is 

unable to capture much of the depth variability seen in the LiDAR data, possibly as a result of 
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not simulating wind transport and redeposition in the model. If the precipitation forcing errors 

could be improved to better represent basin mean snow depth, errors in the variability may be 

less important at larger scales relevant to snow water resources. 

The model accurately simulated the snow disappearance date within two days of the 

measured dates in nearly all cases where automated measurements were available, indicating 

good melt-season performance in middle elevation, forested regions in close proximity to 

precipitation gauges. An analysis of seasonal and inter-annual snowmelt patterns highlights 

distinct melt differences between lower, middle, and upper elevations. Snowmelt was generally 

more frequent at the lower elevations where snow cover was episodic, but the seasonal mean 

melt rates were generally low (< 3 mm day-1) because the melt occurred in mid-winter when sun 

elevations and temperatures were lowest. At upper elevations, melt occurred less than 65% of the 

snow covered period but when it did occur, the seasonal mean melt rates were the highest of the 

entire region. Middle elevations remain continuously snow covered throughout the winter and 

early spring, are prone to more frequent melt, have an earlier date of maximum SWE, and 

provide the most sustained period of meltwater fluxes to the soil system. The melt dynamics 

unique to these middle elevations may be critical to the local forest ecosystem. Furthermore, the 

elevation range of this snowmelt regime varies inter-annually with seasonal meteorology.  

In summary, it has been shown that snow water resources vary significantly in 

mountainous, forested terrain. This variability varies inter-annually as a result of complex 

interactions between seasonal meteorology, terrain, and vegetation. Furthermore, this study 

shows that the dynamic nature of physically based snow models have the potential to simulate 

this variability in complex, mountainous terrain. The series of studies has identified the utility 
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and limitations of physically based models to simulate snow depth and SWE in forested and 

alpine terrain. Notable findings include:  

1) Sub-canopy snowmelt rates vary inter-annually and that variability cannot reliably be 

explained with the same canopy metrics for each year;  

 

2) Sub-canopy direct beam solar irradiance was found to explain nearly 60% of the observed 

variability in sub-canopy seasonal melt rates for a largely cloud-free melt-season;  

 

3) Conversely, the sky view factor explained the most variability in seasonal melt rates 

during a very cloudy melt-season;  

 

4) When the metrics sky view factor and direct beam canopy transmissivity were provided to 

a modified one-dimensional snow model significant improvements in simulated melt 

rates and the timing of meltwater fluxes were obtained over the nominal model with bulk 

canopy representation;  

 

5) The distributed snow model most accurately simulates the basin-mean snow depth and 

SWE in regions in close proximity to precipitation gauges;  

 

6) Results highlight unique seasonal melt patterns in middle elevation forested areas where 

snow cover is consistent, melt is frequent, but the seasonal mean fluxes are reduced 

compared to higher elevation melt fluxes.  
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Several important caveats and limitations include: 1) error values in precipitation and 

solar radiation significantly impact the capacity of snow models to predict seasonal maximum 

SWE and melt patterns, respectively; 2) model SWE error increases with distance from the 

precipitation gauges used to derive the model forcing; 3) while the point-scale model showed 

improved results when modified to accept time-varying direct beam canopy transmissivity, 

currently no method exists to estimate this canopy metric over large areas (see Section 5.2); 4) 

combined, the results of the three studies imply that physically based models may be most 

limited in their predictive capacity as a result of precipitation uncertainty.   

These caveats and limitations highlight the need for future work as discussed in more 

detail below. Overall, the flexibility and fidelity of the presented methods and models make them 

valuable tools for quantifying and improving our understanding of hydrometeorological process 

interactions and their individual impacts on catchment hydrology and snow cover distribution. 

The Alpine3D model could be used to provide real-time estimates of snow water resources in 

mountainous areas, provided reliable measurements or estimates of meteorological forcing 

variables are available. 

5.2 Future work 

The next steps to improving snow model accuracy in forested and alpine mountainous 

areas include: 1) developing a spatially-distributed estimate of detailed direct beam canopy 

transmissity; 2) investigation of the optimal spatial and temporal scales at which to estimate net 

energy fluxes in forested areas and precipitation / redistribution in alpine areas; 3) evaluating 
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detailed forest canopy radiative transfer models (both photo- and LiDAR-derived canopy 

representations) against in-situ observations of sub-canopy direct and diffuse components; 4) 

further investigation of the canopy radiative transfer models, including uncertainty 

characterization at spatially-aggregated scales in steep and varied terrain; 5) evaluation of 

Alpine3D forced by high-resolution gridded regional climate model output over the Kaweah 

River basin compared to runs forced by interpolated ground-based meteorological observations; 

6) force Alpine3D with meteorological data representative of future climate conditions 

downscaled from a high-resolution regional weather model with boundaries forced with National 

Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) 

IPCC emission scenarios. 

One of the primary sources of model error was identified as precipitation forcing 

uncertainty, particularly at high elevations. Future efforts will evaluate the utility of a Bayesian 

reconstruction model technique (e.g. Durand et al., 2008a), to characterize precipitation patterns 

using snow covered area estimates based on visible and NIR satellite measurements. The 

approach could be used to improve estimates of precipitation patterns in alpine terrain where 

traditional measurements are not available. 

In regard to the forested elevations, an important addition to this work will be made by an 

ongoing research project to derive detailed canopy metrics including sky view factor (e.g. Essery 

et al., 2008a) and solar direct beam canopy transmissivity from airborne scanning LiDAR data. 

The technique will make possible distributed estimates of direct beam canopy transmissivity in 

the forested Wolverton basin. The results will be compared to estimates from hemispherical 

photographs and used to evaluate spatial patterns in sub-canopy shortwave irradiance. In an 
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inverse application, the model could be used to simulate the attenuation of direct sunlight by 

vegetation, which has been shown to warm canopy elements above the ambient air temperature 

by as much as 30° C (e.g. Pomeroy et al., 2009). The estimates will be used to improve canopy 

model representation of sub-canopy sensible heat fluxes, and longwave irradiance. Toward this 

goal, preliminary tests conducted in the Wolverton basin of voxel aggregation of multiple-return 

discrete LiDAR data (e.g. Hagstrom et al., 2010) combined with an efficient ray tracing 

algorithm (e.g. Hagstrom and Messinger, 2011) and look-up table shows promise for distributed 

applications of the current work. 

Potential applications of the distributed land surface model include real-time simulation. 

The snow model could be used to provide physically based initial conditions to streamflow 

forecast models. Additionally, the native PREVAH conceptual runoff model could be calibrated 

on historic streamflow data to provide real-time streamflow estimates for a basin of interest. 

Such analysis may be of interest to water resource management in regions where mountain 

snowpack represents a critical component of the water resource infrastructure. 

 

Appendix A. SNOWPACK canopy model description 

The SNOWPACK model treats the canopy as a single ‘big-leaf’ with a temperature Tc (K) and 

storage of intercepted water I (mm) characterized by three common input parameters: canopy 

height, LAI’ and canopy openness. The canopy temperature is calculated by solving an energy 

balance equation for the canopy layer, including shortwave and longwave radiation and the 
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turbulent energy fluxes. Heat storage in the canopy is assumed to be zero, thus the energy needed 

for phase change between frozen and liquid interception is neglected.    

The model uses a two-layer RT model for a single canopy layer adopted from Taconet et 

al. (1986), which takes into account multiple reflections between the canopy layer and the 

surface layer below (snow or bare soil). Absorption of SR ↓  and LR ↓  by the canopy layer is 

determined by the dimensionless absorption factor fσ : 

                   ( )1 exp 'f LAIk LAIσ = − −                           (A1) 

where LAIk  (-) is an extinction parameter that is a function of needle orientation and stand 

structure, and is typically between 0.4 and 0.8. The reflectance or absorption of incident SR ↓  and 

LR ↓  on the canopy elements is determined by the canopy layer albedo and emissivity, 

respectively. The canopy emissivity is assumed to be equal to unity, while the canopy albedo is 

treated as a dynamic function of intercepted rain or snow: 

 ( )1c wet wet wet dryα = f α + f α−   (A2) 

where fwet (-) is the fraction of the canopy covered by intercepted water calculated as the ratio of 

the interception storage and the interception capacity Imax: 

 ( )2/3/wet maxf = I I  (A3) 

and αwet (-) and αdry (-) are parameters for the albedo of wet and dry canopy, respectively. The 

albedo for the wet part of the canopy can be set differently for liquid and frozen interception. 

Typical values for needle leaf canopies are αdry=αwet,rain=0.1 and αwet,snow=0.3-0.4. The radiation 

fluxes for the two-layer canopy module are only applied to the fraction of the surface covered by 
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the canopy as defined by the canopy openness parameter and otherwise above-canopy SR ↓  and 

LR ↓  fluxes are permitted to pass to the ground surface unimpeded by the canopy layer. Model 

improvements have been made to enable a more dynamic treatment of canopy transmissivity 

than the static representation evaluated in this study. In the most recent model version, the 

canopy openness is assumed to be constant for LR ↓  and the diffuse fraction of SR ↓  (as in this 

study), whereas it is adjusted as a function of solar elevation angle and an assumed canopy 

geometry defined by the height and diameter of the trees following Gryning et al. (2001). The 

adsorption factor for direct solar radiation can now either be calculated using eq. (3) or 

optionally modified as a function of solar angle Ω following Chen et al. (1997). The combined 

transmission of direct and diffuse shortwave radiation is then given by: 

                           ( ) ( )' sin '1 e eLAI LAIk LAI k LAI
c diffuse diffusef fτ − Ω −= − +               (A4) 

where diffusef  (-) is the diffuse fraction of above-canopy global shortwave radiation. Future efforts 

will evaluate this dynamic, bulk treatment of canopy transmissivity against the results of the 

explicit, photo-derived methods presented here. 

 The maximum canopy interception rate ΔI (mm hr-1) of above-canopy precipitation P  

(mm hr-1) is calculated as a function of canopy storage saturation with an equation originally 

proposed by Merriam (1960), in the form given by Pomeroy et al. (1998b): 

                    
( ) ( )1

1 exp through
t max

max

f P
ΔI = c I I

IΔ

⎛ ⎞⎧ ⎫−⎪ ⎪⎜ ⎟− − −⎨ ⎬⎜ ⎟⎪ ⎪⎩ ⎭⎝ ⎠
   (A5) 

where cΔt is a time-step dependent parameter called the unloading coefficient, with a suggested 

value of 0.7 for hourly time steps (Pomeroy et al., 1998b), fthrough is the fraction of direct 
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throughfall set equal to the canopy openness parameter, and Imax (mm) is the maximum 

interception capacity. The latter is calculated as a linear function of LAI: 

                                               max LAII = i LAI                  (A6) 

where the parameter iLAI (mm) is assumed to be a constant for intercepted rain, and a function of 

the density of intercepted snow ρs,int (kg m-3) following Pomeroy et al. (1998b): 

                                        ( )0.27 46 /LAI max s,inti = i + ρ     (A7) 

Schmidt and Gluns (1991) reported estimates of the parameter imax (mm m-2) for spruce (5.9) and 

pine (6.6). The density of the intercepted snow ρs,int (kg m-3) is estimated as a function of air 

temperature (Lehning et al., 2002a). The interception is further assumed to be liquid above and 

frozen below the air temperature threshold for frozen precipitation (1°C) specified to the 

SNOWPACK model and used to determine precipitation gauge catch efficiency, described in 

Section 2.1. Thus, unloading of snow as a consequence of increased air temperature and reduced 

storage capacity is calculated whenever I exceedes Imax. 

The aerodynamic resistances for sensible and latent heat fluxes are calculated using a 

two-layer model that assumes logarithmic wind profiles above, within, and below the canopy 

adopted from (Blyth et al., 1999). The aerodynamic resistances from the canopy level to the 

reference level of the meteorological forcing data is calculated with the usual bulk formulation 

based on displacement height and surface roughness lengths of momentum and heat including a 

Monin-Obukhov stability correction following Högström (1996) and Beljaars and Holtslag 

(1991). An additional within-canopy resistance radd (s m-1) is added for the fluxes from the 

canopy surface and the snow surface to the canopy layer on the general form: 
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                                 ( )0m 0h
1ln /add LAI
*

r = z z f
u k

    (A8) 

where z0m and z0h are the surface roughness lengths of either the canopy or the snow surface, u* is 

the friction velocity estimated above the canopy, and k is the Von Kármán constant (0.4). The 

final term in (Eq. 9) , fLAI, is an exponential function of LAI: 

                            { }( )1 1 expLAI a,LAIf = +r LAI− − .    (A9) 

where the parameter ra,LAI is the maximum multiplicative increase. 
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