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SUMMARY

Rats readily switch between foraging and more complex navigational behaviors such as pursuit of 

other rats or prey. These tasks require vastly different tracking of multiple behaviorally significant 

variables including self-motion state. To explore whether navigational context modulates self-

motion tracking, we examined self-motion tuning in posterior parietal cortex neurons during 

foraging versus visual target pursuit. Animals performing the pursuit task demonstrate predictive 

processing of target trajectories by anticipating and intercepting them. Relative to foraging, 

pursuit yields multiplicative gain modulation of self-motion tuning and enhances self-motion 

state decoding. Self-motion sensitivity in parietal cortex neurons is, on average, history dependent 

regardless of behavioral context, but the temporal window of self-motion integration extends 

during target pursuit. Finally, many self-motion-sensitive neurons conjunctively track the visual 

target position relative to the animal. Thus, posterior parietal cortex functions to integrate the 

location of navigationally relevant target stimuli into an ongoing representation of past, present, 

and future locomotor trajectories.
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In brief

Alexander et al. examine rats pursuing visual targets and characterize emergent predictive 

behaviors. Relative to free exploration, pursuit elicits enhanced coding of self-motion in the 

parietal cortex over extended temporal durations. A subset of parietal cortex neurons code for 

self-motion state and egocentric position of the pursuit target simultaneously.

INTRODUCTION

Rodents exhibit pursuit behaviors in social, sexual, and predatory contexts (Calhoun, 1963; 

Eisenberg and Leyhausen, 1972; Kurtz and Adler, 1973). Pursuit requires continuous 

adjustment of movement plans as a function of past and current movement states and target 

position (i.e., in egocentric space). In primates, efficiency in chase behavior is enhanced by 

predictive movements based on the hypothesized trajectory of the target (Barnes et al., 2000; 

Yoo et al., 2020).

The demanding nature of pursuit behavior requires greater precision of sensorimotor 

processing than other forms of navigation such as free exploration (FE). Movement 

modulates sensory processing (Niell and Stryker, 2010; Vinck et al., 2015; Bouvier et 

al., 2020; Guitchounts et al., 2020), but the influence of behaviorally relevant sensory 

information on movement coding has received little attention in rodents. It is unclear 

whether types of navigation (e.g., pursuit [P] or FE) flexibly modulate movement processing 

to support behavior.
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In rodents, pursuit requires the dorsal striatum, superior colliculus (SC), and zona incerta 

(Schiller and Stryker, 1972; Cooper et al., 1998; Hoy et al., 2016, 2019; Shang et al., 2019; 

Zhao et al., 2019; Kim et al., 2019). Sensory cues relevant to predatory behavior (e.g., 

the sight, sound, or smell of prey) are potentially combined in areas such as posterior 

parietal cortex (PPC), which possesses reciprocal connectivity to sensorimotor cortical 

regions and projects to the SC and dorsal striatum (Reep et al., 1994; Wilber et al., 2015; 

Hovde et al., 2019; Gilissen et al., 2021). Lateralized PPC damage produces hemispatial 

neglect, impairing detection and orientation to stimuli present in contralateral space (Bisiach 

and Luzzatti, 1978; Behrmann et al., 1997). Thus, PPC functioning is critical for spatial 

awareness and attentional processes necessary to chase a moving goal.

PPC neurons exhibit sensitivity to self-motion (e.g., linear and angular speed), posture, 

and visual target position and movement direction (Kawano et al., 1980; Chen et al., 

1994; Whitlock et al., 2012; Rancz et al., 2015; Wilber et al., 2014, 2017; Andersen and 

Mountcastle, 1983; Sasaki et al., 2020; Mimica et al., 2018). PPC ensembles are sensitive 

to trajectory shape through space, position, task phase, and the integration of information 

over time (Nitz, 2006, 2012; Harvey et al., 2012; Goard et al., 2016; Pho et al., 2018; 

Minderer et al., 2019; Scott et al., 2017; Hwang et al., 2017; Akrami et al., 2018; Krumin 

et al., 2018; Morcos and Harvey, 2016). Furthermore, PPC may support coordinate system 

transformations critical for sensorimotor coordination necessary for target chasing (Cohen 

and Andersen, 2002; Save and Poucet, 2000; Angelaki and Cullen, 2008; Bicanski and 

Burgess, 2018). Here, we examined PPC dynamics as rats chased and intercepted a floor-

projected visual stimulus.

RESULTS

Rats perform a target pursuit task and exhibit shortcutting behavior

Rats (n = 6) performed a target-chasing task wherein they pursued and attempted to intercept 

a light target moving along the surface of an open arena in experimenter-generated pseudo-

random trajectories (RTs). On each trial, the rat engaged in pursuit behavior until it caught 

the light target, which was subjectively determined based off positional overlap (Figures 

1A and S1A; Videos S1, S2, and S3; see STAR methods). Following interception, the light 

target disappeared, a reward was delivered to a random position within the arena, and the 

light target reappeared hovering on the reward to guide retrieval. After consumption, the 

next trial began at a new position. During each session, rats averaged 33 RT pursuits for a 

median total duration of 134.6 s (interquartile range [IQR], 99.3–180.2 s; n = 132 sessions, 

IQR trial count = 24–41.8 trials) of a median 3.97 s in duration (IQR = 2.75–5.43 s).

To explore the effect of navigational uncertainty on animal behavior, we randomly inserted 

“characteristic trajectories (CTs)” of the visual target among the RTs (Figures 1B and 

S1B; Videos S4, S5, and S6, n = 11 CTs per session, IQR = 7–15, median total duration 

of CTs within a session = 32.2 s, IQR = 17.3–47.7 s). CTs possessed a reliable shape 

that involved moving outbound from the initiation point to the opposite side of the arena, 

performing a U-turn, and returning inbound to a location displaced approximately 25 cm 

from the start point (Figures 1B and S1D). In contrast to RTs, each instance of a CT 

started and finished at approximately the same positions within the allocentric reference 
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frame (as defined by visible distal cues; Figure S1D). As CTs involved movement along a 

stereotypical allocentric path, this trial type was distinct from RTs occurring within the same 

environment.

The presence of CTs introduced regularity in an otherwise stochastic navigational 

environment (Figure S1D). We questioned whether rats could learn the shape of the CT 

path through path integration despite its immersion among RTs. We hypothesized that after 

learning the existence of such a path, the animal would be able to predict the trajectory 

of the moving target during CTs and more closely track the stimulus compared with RTs. 

Indeed, temporal shifts of rat position relative to visual target position revealed that animals 

were approximately 250 ms (IQR = 200–300 ms) behind the location of the visual stimulus 

during random pursuits but only 150 ms (IQR = 100 −200 ms) behind during CTs (Figure 

1C; gray vertical line, mean temporal lag yielding highest correlation between rat and target 

position; n = 132, Wilcoxon rank-sum test, z = 6.25, p = 4.20 × 10−10).

To further characterize pursuit behavior, we examined the distance and angle of the light 

stimulus relative to the animal in egocentric coordinates, irrespective of allocentric position 

within the environment or current heading (Figure 1D). Throughout the entirety of the 

pursuit block, which included both target pursuits and subsequent reward retrievals, the 

visual target occupied the full range of egocentric bearings and distances relative to the 

animal (Figure 1D). During actual pursuits, target position was primarily localized to a 

90° range centered along the nasal axis of the animal regardless of trial form (i.e., CT or 

RT; Figure 1E). Distance to the target was slightly greater and more variable during CTs 

compared with RTs (RT median distance = 20.4 cm, IQR = 18.2–22.4; CT median = 21.7 

cm, IQR = 19.1–23.3, Wilcoxon rank-sum test, z = −2.34, p = 0.02; RT median distance 

range = 9.6 cm, IQR = 8.38–11.3, CT median distance range = 11.5 cm, IQR = 9.45–14.1, 

z = −3.77, p = 1.66 × 10−4). Egocentric bearing to the target was unchanged between trial 

types (RT median = −2.41° [CCW], IQR = −17.4 – 11.6; CT median = 4.53 [CW], IQR 

= −4.79 – 13.8, Wilcoxon rank-sum test, z = 1.92, p = 0.05), but the range of egocentric 

bearing was substantially reduced during CTs (RT median bearing range = 50.4°, IQR = 

44.1–56.9; CT median bearing range = 28.3°, IQR = 23.3–38.2, Wilcoxon rank-sum test, z = 

8.63, p = 6.17 × 10−18).

The increased maintenance of a consistent angular position relative to the visual cue on 

CTs indicated that rats had internalized the sequence of actions, headings, and positions that 

collectively composed these known paths. In support of this interpretation, rats demonstrated 

knowledge of the structure of CTs by exhibiting shortcutting behavior (Figure 1F; median 

shortcuts of CTs per session 11.1%, IQR = 0%–32.9%; n = 1 shortcut trials per session, 

IQR = 0–3). Shortcuts primarily involved interception of the visual target at the apex of the 

CT trajectory (Figure 1F; Videos S7, S8, and S9) but took many different forms (Figures 

S1C and S1D). Shortcuts involved navigation through the region bordered by outbound and 

inbound segments of the CT and could be distinguished from non-shortcut trials in two 

ways. First, rat distance to target increased on shortcut trials prior to interception (Figure 1G, 

distance shortcuts = 26.3 cm, IQR = 23.6–29.5 cm; CT = 22.3 cm, IQR = 19.9–24.9 cm; 

RT = 21.6 cm, IQR = 19.3–23.2 cm; Kruskal-Wallis test with Tukey-Kramer, n = 91, χ2 = 

54.0, p = 1.9 × 10−12). Second, egocentric bearing to the target was increased on shortcuts 
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compared with full CTs (Figure 1G, median bearing shortcuts = 29.2°, IQR = 10.0°–41.5°; 

CT = −1.4°, IQR = −8.4°–11.2°; RT = 13.4°, IQR = 0.2–20.8 cm; Kruskal-Wallis test with 

Tukey-Kramer, n = 91, χ2 = 60.2, p = 8.4 × 10−14). Variability in trial number, duration, 

and sensorimotor behavior precluded an indepth analysis of neural correlates supporting 

navigation during RT, CT, and shortcut trajectories in the current dataset. Regardless, our 

observations demonstrate that rats pursue moving visual stimuli and make predictions about 

target trajectories in an insightful manner.

Nonlinear self-motion correlates of PPC cells

We recorded 302 neurons from PPC (n = 5 rats, n = 113 sessions) during target chasing 

(Figure S2). For comparison, pursuit sessions were paired with preceding and/or succeeding 

FE sessions within the same arena and no visual target present. Pursuit blocks were longer 

in temporal duration than FE to yield adequate numbers of pursuits (pursuit block median 

length = 22.7 min, IQR = 21.1–25.1; FE median length = 12.3 min, IQR = 10.9–15.7), but 

animals engaged in target chasing behavior for only a brief amount of time within this period 

(median time pursuing target = 3.02 min, IQR = 2.32–3.92).

As a consequence of task structure, rats exhibited lower median linear speeds during the 

full pursuit session than during FE (Figure S3A). However, linear speeds during actual 

target pursuits were greater than those observed in FE (Figure S3A, n = 113 sessions, speed 

FE = 21.7 cm/s, IQR = 17.3–24.6 cm/s; full pursuit = 13.9 cm/s, IQR = 11.4–17.0 cm/s; 

median linear speed in pursuit = 47.6 cm/s, IQR = 44.7–51.7, Kruskal-Wallis test with 

Tukey-Kramer, n = 113, χ2 = 255.3, p = 3.67 × 10−56). Absolute angular velocity (AV) was 

highly similar between the two full sessions but was reduced during actual pursuit epochs 

as target pursuits were subjected to less abrupt angular deviations (Figure S3B, n = 113 

sessions, average absolute AV FE = 74.9°/s, IQR = 70.8°–78.9°/s; full pursuit = 78.9°/s, 

IQR = 75.1°–83.8°/s; actual pursuits = 59.0°/s, IQR = 53.5°–71.7°/s; Kruskal-Wallis test 

with Tukey-Kramer, n = 113, χ2 = 85.4, p = 2.85 × 10−19). Autocorrelations of self-motion 

variables revealed greater regularity during target chasing (Figures S3D and S3E).

We next calculated linear and angular velocity tuning curves for each task for all PPC 

neurons (Figure 2A). All analyses of neural data combined all phases of the pursuit session. 

Tuning curves were constructed on the basis of matched sampling of linear and angular 

velocities for pursuit and FE sessions. We fitted true and randomized tuning curves with a 

uniform distribution, a linear model, and a Gaussian-modified linear model (GML). Neurons 

with significant linear or GML model fits (relative to the uniform fit) and with significant 

within session reliability were deemed sensitive to self-motion.

A total of 56.6% (n = 171/302) of PPC neurons met criteria for either linear or angular speed 

tuning during either target pursuit or FE (Figures 2B and 2C). Linear speed tuning was more 

prominent in PPC (Figure 2B; 50.6%, n = 153/302) than angular speed related activation 

(Figure 2C; 28.8%, n = 87/302), and most angular tuned neurons were also sensitive to 

linear speed (79.3%, n = 69/87). 51.0% of all putative principal neurons were influenced by 

self-motion (45.3% linear velocity modulated, n = 111/245 principal cells, 25.3% angular 

velocity modulated, n = 62/245 principal cells, n = 62/87 [71.3%] of all angular velocity 

modulated including interneurons). Nearly all putative interneurons sensitive to movement 
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(80.7%, n = 46/57) were modulated by linear speed (91.3% n = 42/46); fewer were 

modulated by angular velocity (54.3%, n = 25/46).

For many cells, speed tuning curves appeared nonlinear. We therefore compared fits for the 

linear and GML models. Most linear speed-sensitive cells showed significant improvement 

to model fit when Gaussian terms were included, indicating high incidence of nonlinear 

relationships (Figure 2A; dashed lines; 75.8%, n = 116/153, F test linear versus linear + 

Gaussian, F(3,24) = [3.01–4480.2], p = [0–0.049]). Many nonlinear speed relationships 

resembled previously reported saturating speed tuning (Figure 2A; Hinman et al., 2016); 

others had firing rate peaks at specific linear speeds (Figure 2Aii). The latter group included 

a subset with peak rates during immobility (Figure 2Aiii). Most tuning curves of angular 

velocity-sensitive PPC cells were best fitted by GMLs (87.4%, n = 76/87, F test linear versus 

linear + Gaussian, F(3,29) = [2.96–130.43], p = [0–0.049]). Many angular speed tuning 

curves possessed Gaussian characteristics with receptive fields spanning restricted ranges of 

angular movements rather than linear functions transitioning between clockwise (CW) and 

counterclockwise (CCW) movements (Figures 2A and 2C).

PPC self-motion correlates exhibit two forms of gain modulation as a function of 
navigational context

Consistent with flexible recruitment of PPC during increased navigational demands, the 

number of neurons with self-motion sensitivity increased during pursuit (FE linear speed, n 

= 96/302, 31.8%; pursuit linear speed, n = 126/302, 41.7%; FE angular speed, n = 45/302, 

14.9%; pursuit angular speed, n = 72/302, 23.8%). Individual neurons exhibited similar 

firing as a function of self-motion between pursuit and FE even if the neuron only reached 

criterion for detection in one condition (Figures 2B and 2C; Spearman’s ρ FE versus Pursuit, 

median ρ linear speed = 0.60, IQR = 0.37–0.79; median ρ angular speed = 0.57, IQR = 

0.38–0.74).

We hypothesized that increased self-motion sensitivity during pursuit could arise from 

gain modulation of the relationship between self-motion and neuronal activation. We 

examined mean firing rate differences in self-motion tuning consistent with additive gain 

modulation that, despite potentially degrading self-motion selectivity, evidenced sensitivity 

to navigational context (Figure 3A). Subsets of PPC neurons exhibited increases or 

decreases in mean overall rate as a function of self-motion and behavioral epoch (Figures 

S4A and S4B). Figures 2B and 2C show all linear and angular speed tuning curves for both 

FE and pursuit blocks, split into subsets with increased (P > FE) or decreased (P < FE) firing 

rate during pursuit and sorted by position of peak self-motion tuning within their “preferred” 

navigational epoch.

Significant proportions of linear-speed-modulated cells had greater mean firing rates during 

pursuit than FE (binomial test for proportion of linear speed cells with greater activity in 

pursuit versus FE, n = 153, n P > FE = 101, p = 9.17 × 10−5; angular speed cells, n = 

87, n P > FE = 48, p = 0.39). Linear speed sensitive neurons with increased firing during 

pursuit (P > FE) returned to baseline firing during a second FE session (Figure S4B). PPC 

neurons composing the P < FE subset did not have systematic modulation and showed 
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greater similarity in mean firing rate for neighboring sessions, suggestive of ensemble drift 

or sustained state changes following task engagement (Figure S4B).

In addition to additive gain modulation, self-motion tuning differences between pursuit and 

FE could be restricted to specific ranges of movement speeds consistent with multiplicative 

gain modulation (Figures 3A and 3B). In support of this hypothesis, differences between 

pursuit and FE were associated with changes in the distribution of peaks in self-motion-

related activation (Figures 2B and 2C) and the profile of mean tuning across the full 

population (Figure 3C). We compared parameters of GML fits with self-motion tuning 

curves for pursuit and FE. The amplitude parameter of the GML (c) reflects additional 

activation above a linear fit and, thus, models within receptive field firing magnitude (Figure 

3B). PPC neurons exhibited significant amplitude alterations consistent with multiplicative 

gain modulation (Figures 3D and S4C). While we also observed slight differences in the 

magnitude and form of linear acceleration between pursuit and FE (Figures S3C-S3I), 

it is notable that PPC neurons that were (Figure S3G) or were not sensitive (Figure 

S3H) to linear acceleration showed no context related differences in multiplicative gain 

modulation (Figure S4J, speed + acceleration, n = 101; speed without acceleration n = 

52; Kolmogorov-Smirnov test, D = 0.09, p = 0.90). As was the case with mean rate 

changes between behaviors, amplitude gain alterations were, in most cases, modulated in 

a systematic fashion (Figures S4D and S4E). Within-receptive-field-amplitude differences 

were correlated with alterations of mean rate between pursuit and FE, indicating that many 

neurons were subjected to both additive and multiplicative gain modulation in pursuit versus 

FE (Figures 3A and 3D).

In pursuit, receptive field amplitude was increased for preferred linear speeds and decreased 

for preferred angular speeds (Figure S4C). These changes matched animal behavior during 

active target chasing wherein rats typically exhibited higher linear speeds and lower angular 

speeds compared with FE (Figure S3; recall that tuning curve calculation controlled for 

differences in self-motion sampling). In parallel with the pattern of changes to receptive field 

amplitude, the center parameter (d) of model fits (Figure 3B), corresponding to the location 

of the Gaussian component, shifted to higher linear speeds during pursuit compared with 

FE (Figure 3E; Wilcoxon sign rank test for zero median, n = 153, z = 2.47, p = 0.0134). 

Angular speed preferences were unchanged between pursuit and FE (Wilcoxon sign rank 

test for zero median P – FE, n = 87, z = −1.38, p = 0.17). Thus, both the gain and the 

profile of self-motion tuning curves were modulated to match animal behavior, indicating 

that self-motion correlates in PPC are highly adaptive to behavioral demands.

Decoding of self-motion state is modulated by navigational context

The observed multiplicative gain modulation suggested that the signal-to-noise ratio (SNR) 

for self-motion coding was altered as a function of task and greater in pursuit (Figure 3A). 

We tested this using a decoding analysis by training a maximum correlation classifier to 

predict linear and angular speed from firing rate (Figures 4A and S5). Classifier accuracy 

was quantified by correlating the predicted linear or angular speed with the true value, as 

exemplified in Figure 4A.
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Consistent with enhanced SNR for self-motion tuning in pursuit, linear speed decoding 

was significantly more accurate during pursuit for most PPC neurons with linear speed 

sensitivity (Figure 4B, binomial test for decoding accuracy of linear speed pursuit versus FE, 

n = 153, n P > FE = 103, p = 2.20 × 10−5; Wilcoxon rank-sum test, median accuracy (ρ) 

pursuit = 0.20, IQR = 0.1–0.32; ρ FE = 0.14, IQR = 0.05–0.28, z = 2.35, p = 0.02). There 

was no significant bias in angular speed decoding accuracy in pursuit versus FE (Figure S5, 

binomial test, pursuit versus FE, n = 87, n P > FE = 49, p = 0.28; Wilcoxon rank-sum test, z 

= 1.16, p = 0.25). Similar self-motion decoding results were observed when simultaneously 

recorded ensembles (n ≥ 5 neurons, n = 22 sessions) were utilized (Figures 4C, 4D, and S5, 

Wilcoxon rank-sum test, median ensemble decoding accuracy [ρ] of linear speed pursuit = 

0.5, IQR = 0.45–0.57; median ρ FE = 0.42, IQR = 0.34–0.48, z = 2.48, p = 0.013; angular 

speed ρ pursuit = 0.12, IQR = 0.08–0.15; angular speed ρ FE = 0.13, IQR = 0.09–0.17, z = 

1.19, p = 0.24).

Self-motion decoding is accurate for extended temporal windows during pursuit behavior

Spiking activity can exhibit temporally latent relationships to ongoing behavior (Figure S6). 

To test whether shifts in the temporal latency between spike trains and behavior would alter 

decoder accuracy, we shifted each neuron’s rate vector 2 s backward or forward in 100-ms 

increments relative to behavior and decoded self-motion. Importantly, if decoder accuracy 

increased during backward shifts, this implied that neuronal activation was correlated with 

the history of movement (i.e., retrospectively), whereas enhanced predictions following 

forward spike train shifts suggested that neuronal activation was prospectively related to 

locomotor state (Figures 5A and S6).

For most neurons, the preferred latency yielding maximal decoder accuracy was non-

instantaneous (Figures 5B-5D). Self-motion decoding accuracy at preferred latencies was 

significantly greater than the zero-lag instantaneous decoding for both FE and pursuit 

sessions (Figure 5E, Wilcoxon sign rank test, linear speed, n = 153, FE, z = −10.04, p 

= 9.8 × 10−24; pursuit, z = −9.78, p = 1.39 × 10−22; angular speed, n = 87, FE, z = −7.77, p = 

7.85 × 10−15; pursuit, z = −7.67, p = 1.68 × 10−14). Decoding at the preferred latency during 

FE did not surpass decoding accuracy at the preferred latency in target pursuit (Wilcoxon 

sign rank test, linear speed, n = 153, z = −3.75, p = 0.0001). The opposite pattern was 

observed for angular speed decoding, accuracy that was greater during FE across all possible 

latencies (Wilcoxon sign rank test, linear speed, n = 153, z = −3.75, p = 0.0001; angular 

speed, n = 87, z = 2.91, p = 0.004).

To quantify temporal relationships between spiking and self-motion, we compared model 

fits to decoding accuracy latency curves between pursuit and FE. Preferred latencies for 

linear speed decoding across the population were biased toward history dependence in both 

FE and pursuit yet only reached significance for pursuit (Figure 5F; Wilcoxon sign rank 

for zero median, linear speed, n = 153, median FE = −10.9 ms, IQR = −313.5–210.7 ms, 

z = −1.14, p = 0.26; median pursuit = −57.3 ms, IQR = −280.3–181.4 ms, z = −2.12, p 

= 0.03). Distributions of preferred latencies also skewed retrospectively for angular speed 

decoding (Figure 5F; Wilcoxon sign rank for zero median, angular speed, n = 87, median 

FE = −252.8 ms, IQR = −371.7–106.2 ms, z = −6.08, p = 1.19 × 10−9; median pursuit 
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= −189.4 ms, IQR = −411.4 to −66.1 ms, z = −4.75, p = 2.02 × 10−6). Overall, there 

were no significant changes in preferred latency for individual neurons between pursuit and 

FE, indicating that although parietal cortex neurons are more responsive to the history of 

self-motion, this preference is rigid and not task dependent (Figure 5G; Wilcoxon sign rank 

for zero median difference in preferred latencies, linear speed, z = −1.17, p = 0.24; angular 

speed, z = 1.34, p = 0.18). Similar retrospective biases and extended self-motion-encoding 

temporal windows were observed when we used a previously implemented self-referenced 

displacement analysis (Figure S6).

Examination of the temporal profile of decoding accuracy suggested that PPC neurons may 

exhibit extended temporal windows of movement integration under pursuit (Figures 5B-5D). 

To quantify the time window over which the spiking activity of individual neurons is related 

to past, present, and future self-motion states, we compared the width parameters of model 

fits with decoding latency curves between the two behavioral tasks (Figures 5H and 5I). The 

temporal window for accurate linear speed decoding was significantly longer in duration 

during pursuit compared with FE (Figure 5H; Wilcoxon sign rank test, n = 148, median 

pursuit – FE = 280 ms, IQR = 0.00–523 ms, z = −6.97, p = 3.13 × 10−12). The decoding 

window for angular speed was similarly extended during pursuit despite overall greater 

decoding accuracy during FE (Figure 5I; Wilcoxon sign rank test, n = 86, median pursuit – 

FE = 228 ms, IQR = 85–427 ms, z = −6.69, p = 2.31 × 10−11).

The temporal duration of accurate self-motion decoding may arise as an artifact of the 

increased continuity of behavior during pursuit (Figures S3D and S3E). Numerous aspects 

of the data suggest that this is not the case. First, movement continuity was statistically 

greater in pursuit for linear speed (Figures S3D and S3E), yet the duration of decoding was 

temporally extended for both angular and linear speed during target chasing. If the extended 

window was epiphenomenal to behavior, we would not expect to also observe it for angular 

speed decoding. Furthermore, behavioral similarity over extended temporal windows was 

primarily driven by the presence of trial-like structure during pursuit, which resulted in the 

animal spending more time immobile than during FE (Figure S3). We analyzed spike train 

shifted decoding after excluding time frames in which the animal was not moving (speed < 

5 cm/s). Longer windows of self-motion decoding during target pursuit were again observed 

when differences in immobility were accounted for (Wilcoxon sign rank test, linear speed, n 

= 152, median pursuit – FE = 149 ms, IQR = −40 to 402 ms, z = −5.81, p = 6.21 × 10−9; 

angular speed, n = 86, median pursuit – FE = 206 ms, IQR = 80–366 ms, z = −6.75, p = 1.48 

× 10−11). Collectively, these results indicate that the largest subset of parietal cortex neurons 

track the previous self-motion state of the animal irrespective of navigational context yet 

exhibit self-motion-related activation over elongated temporal durations during increased 

navigational demands (i.e., target chasing).

Parietal cortex tracks visual target position in egocentric coordinates

We next examined whether and how the pursuit target itself is integrated into PPC firing 

patterns. We hypothesized that neurons in PPC would be responsive to the bearing and/or 

distance of the target in egocentric coordinates. However, accurate detection of neurons that 

track the position of the visual target relative to the animal is complicated by the fact that 
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pursuit behavior requires simultaneous covariation of spatial and self-motion variables that 

are known to modulate activation in cortical neurons.

Accordingly, we implemented a generalized linear model (GLM) to examine the relative 

influence of spatial (position and head direction), self-motion (angular and linear speed), 

and target position (egocentric bearing and distance to the visual target) on the probability 

of spiking (Figure 6A). We also included predictors for egocentric boundary vector-related 

tuning, a property of some PPC neurons (Gofman et al., 2019; Alexander et al., 2020). 

Many PPC neurons were significantly modulated by combinations of behavioral and spatial 

predictors (Figure 6B). As expected, large proportions of cells were sensitive to linear 

and angular speed. We also found large percentages of PPC neurons possessing sensitivity 

to the position of boundaries relative to the animal (Figures S7A and S7B). Consistent 

with integration of target location into PPC firing activities, 33% of PPC neurons (n = 

100/302) had significant decrements to model fit when the predictor for egocentric visual 

target position was dropped from the model (Figure 6B; “VT”). Approximately one-half of 

neurons with egocentric boundary correlates were also modulated by the egocentric position 

of the visual target, suggesting that neurons with this coding property can map and integrate 

the egocentric position of multiple environmental features simultaneously (Figure S7C). 

Furthermore, nearly one-half of neurons with self-motion sensitivity also responded to the 

position of the target relative to the animal (Figure 6F).

To visualize the responses of target-sensitive neurons, we computed rat-to-target egocentric 

ratemaps using, for each spike and position frame, the bearing and distance to the visual 

target relative to the animal (Figure 6C). Robust target position-receptive fields tended to fall 

into one of two forms: (1) restricted receptive fields possessing both a bearing and distance 

component (Figures 6C and 6D, bottom rows) or (2) broader receptive fields primarily 

sensitive to egocentric bearing to target (Figure 6D, top row). Preferred bearings were 

distributed bilaterally with an average tuning width of approximately 70° (Figure 6E). The 

distribution of preferred distances fell within two modes ranging from animal proximal (<20 

cm) to more distal (>30 cm), potentially reflecting the two forms of target-to-rat-receptive 

fields. The distribution of preferred bearings was skewed in front of the animal for neurons 

with significant target sensitivity and reliable bearing tuning across non-overlapping task 

epochs (Figure 6E). Accordingly, preferred bearings behind the animal likely reflect the 

influence of other covariates on rat-to-target ratemaps (e.g., actions, position of boundaries, 

etc.).

Finally, we suspected that multiplicative gain modulation of self-motion-related activation 

could emerge in neurons that simultaneously tracked the visual target. In support of this 

hypothesis, linear-speed-sensitive neurons with target sensitivity had significantly greater 

differences in within-receptive-field amplitude (i.e., multiplicative gain) and mean rate (i.e., 

additive gain) between pursuit and FE than the subset of neurons that did not possess 

responsivity to the target (Figure 6G; linear speed amplitude difference: VT, n = 65, median 

= 1.02 Hz, IQR = 0.50–1.85 Hz; no VT, n = 88, median = 0.57 Hz, IQR = 0.27–0.93 

Hz; Kolmogorov-Smirnov test, D = 0.32, p = 8.46 × 10−4; linear speed mean difference: 

VT, median = 0.86 Hz, IQR = 0.41–1.16 Hz; no VT, n = 88, median = 0.49 Hz, IQR = 

0.16–0.98 Hz; Kolmogorov-Smirnov test, D = 0.27, p = 0.008). No significant differences 
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were observed between the populations of angular velocity-sensitive neurons with or without 

visual target sensitivity (Figure 6G; angular speed amplitude difference, D = 0.14, p = 

0.81; mean difference, D = 0.19, p = 0.44). These results indicated that gain modulation of 

linear speed tuning potentially arose from the multiplexing of movement commands with 

information relating to the target position in egocentric coordinates.

DISCUSSION

We developed an ethologically inspired paradigm wherein rats pursued moving visual targets 

in a manner akin to hunting or social chase behaviors (Calhoun, 1963). We established that 

(1) rats can be trained to chase purely visual stimuli and (2) rats exhibit predictive behaviors 

manifesting as shortcuts to target interception for learned trajectories. We also demonstrated 

that self-motion tuning in PPC is strongly impacted by navigational context. Specifically, 

the relationship between spiking activity and self-motion was subject to both mean rate 

modulation and multiplicative gain modulation, which yielded enhanced decodability of 

movement in pursuit relative to FE. Finally, we showed that individual PPC neurons 

tracked both self-motion and the egocentric position of the visual target. Collectively, 

these results indicate that PPC adaptively codes for multiple task-relevant idiothetic and 

external variables over temporal integration windows related to the statistics of goal-directed 

behavior.

Prediction, shortcuts, and memory

Pursuit behaviors demand continuous tracking of a target and mirroring of its trajectories. 

If the trajectory of the target can be predicted on the basis of previous experience, pursuit 

behaviors may also include attempts at target interception. Such behavior would require 

short-term memory processes involving motion integration and prediction. Indeed, pursuit 

on probe trials using a “characteristic” path having a stable shape and location evidenced 

seconds-long integration of trajectories. This manifested as shortcutting behavior yielding 

interception of the target’s path. Shortcuts occurred even though the full trajectories 

themselves could not be viewed in full at any given moment. Thus, predictive behaviors 

in our data demonstrate that male rats can learn route shapes and quickly recognize known 

trajectories of the target as a simple function of time-integrated experience. The emergence 

of inferential behavior in our task established a behavioral framework by which prediction in 

freely moving rodents can be further examined.

Adaptive PPC self-motion tuning and gain modulation

We examined PPC neurons that, in navigating rodents, exhibit conjunctive encoding of 

egocentric goal location, locomotor actions such as turning, and progress through a route 

(Chen et al., 1994; Whitlock et al., 2012; Wilber et al., 2014, 2017; Nitz, 2006, 2012). 

Consistent with previous reports, the majority of PPC neurons were tuned to linear and/or 

angular speed during both pursuit and FE but that this tuning was dynamically modulated 

in several ways as a function of task (Whitlock et al., 2012). The profiles of movement-

related tuning took many forms including nonlinear functions (Hinman et al., 2016). Tuning 

functions became more nonlinear during pursuit producing greater proportions of neurons 

sensitive to self-motion compared with FE (Figure 2).
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PPC neurons exhibited increased mean rates during chase behavior, even with control for 

self-motion differences between each locomotor regimen (Figures 2 and S3). This presented 

as additive gain modulation across the range of velocities examined. Multiplicative gain 

modulation was also observed and was primarily restricted to tuning curve peaks during 

pursuit (Figures 3 and S4). This parallels multiplicative gain modulation observed in sensory 

cortices wherein multimodal contextual information increases response magnitude without 

altering base receptive field properties (Ferguson and Cardin, 2020; Niell and Stryker, 2010; 

Salinas and Thier, 2000). Our data provide evidence of such gain modulation for idiothetic 

signals in freely moving rats.

Adaptation of self-motion tuning curves as a function of task was seen in two other ways 

that were related to differences in movement between FE and pursuit. During chasing, target 

pursuit dictated rat movement at higher linear speeds with fewer abrupt changes to angular 

velocity. In keeping with these changes in the distributions of self-motion, firing rate peaks 

in tuning curves shifted to higher linear speeds. Moreover, decoding of self-motion was 

enhanced for linear speed but not angular speed in pursuit, again matching shifts in behavior 

required to perform the task. Thus, adaptations in PPC self-motion tuning followed variation 

in how the animal moved within the environment between navigation tasks.

Self-motion integration in PPC

Evidence for self-motion integration, as opposed to instantaneous self-motion coding, 

was established by shifting spike trains relative to behavioral data and determining the 

accuracy of self-motion prediction (Figure 5). The distribution of optimal latencies between 

instantaneous firing rate and self-motion was broad but biased to retrospective tuning in 

contrast to earlier reports of primarily anticipatory responses in PPC (Moore et al., 2017; 

Whitlock et al., 2012). It is possible that the observed history-dependent bias is related 

to pursuit behavior. Many PPC neurons are conjunctively sensitive to movement, sensory, 

and spatial variables. It is unlikely that individual PPC neurons would always function 

in an anticipatory or history-dependent manner, as this would require tight covariance 

among these variables. We also note that retrospective bias in linear speed decoding 

reached significance only under pursuit conditions, that some neurons were reliably tuned 

prospectively, and that temporal offsets in peak tuning accuracy were generally stable across 

conditions. Retrospective biases reported here extend previous work showing that PPC is 

critical for decision making based on prior trial outcomes to the domain of navigation 

(Morcos and Harvey, 2016; Hwang et al., 2017; Akrami et al., 2018; Runyan et al., 

2017). Furthermore, retrospective coding of self-motion could support memory processes 

critical for the internalization of characteristic routes required for the execution of predictive 

shortcuts. In this interpretation, PPC operates as the history-tracking component of a cross-

regional implementation of a Kalman filter for prediction. If so, movement-related correlates 

in the region might be driven by motor efference copy entering PPC from M2.

Across neurons, self-motion prediction accuracy exceeded chance for temporal relationships 

between spiking and behavior on the order of seconds extending both behind and ahead in 

time. Temporally extended windows of linear speed decoding have previously been reported, 

suggesting that movement tracking at behaviorally relevant timescales is a general property 
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of cortex (Dannenberg et al., 2019). PPC neuronal activity exhibited these temporally 

extended relationships to self-motion in both FE and pursuit. Because this same population 

of neurons exhibits tuning that spans all combinations of linear and angular velocity values, 

it follows that PPC populations together reflect the past, present, and future trajectory of the 

animal.

Such time-lagged tuning of locomotor states perhaps explains why PPC ensembles produce 

unique firing patterns for all positions along a path even when specific actions such as 

left/right turns and directions of travel repeat multiple times (Nitz, 2006, 2012). Under 

such conditions, route positions sharing the same momentary linear and angular velocity 

combination may nevertheless differ in the linear and angular velocity sequences that 

precede them.

Critically, self-motion temporal integration of PPC neurons was extended during pursuit 

where linear and angular speeds were sustained for longer temporal durations. In this way, 

the tuning properties of PPC neurons adapted to the distribution of locomotor variables in 

different locomotor regimens. We speculate that such adaptation allows the system to encode 

task-related locomotor sequences and their associated trajectories over a range of distances 

per unit time (Andersen and Cui, 2009).

Mechanisms of PPC adaptation and efferent targets

The most obvious sensory difference between pursuit and FE is the presence of the visual 

target. We recorded in medial PPC (mPPC/V2m), where there is less innervation from 

primary visual cortex or thalamic visual areas (Reep et al., 1994; Nitz, 2009; Wilber et 

al., 2015; Olsen and Witter, 2016; Olsen et al., 2017). However, it is important to note 

that analogous anatomical regions in mice are considered part of the higher visual cortex 

(Glickfeld and Olsen, 2017; Hovde et al., 2019; Gilissen et al., 2021) and that mPPC 

receives dense afferents from dysgranular RSC (dRSC) where visually evoked responsivity 

has been reported (Fischer et al., 2020; Mao et al., 2020; Powell et al., 2020; Zhuang 

et al., 2017). Unsurprisingly, we find that a subset of PPC neurons were sensitive to the 

egocentric position of the visual target. Accordingly, the observed changes to firing rate 

gain, self-motion decoding, and non-instantaneous trajectory integration could result purely 

from increased activity relating to the presence of a visual stimulus (Keshavarzi et al., 2022). 

Beyond the influence of purely visually evoked excitation, the target undoubtedly engages 

arousal and attentional mechanisms known to modulate cortical activation and facilitate gain 

modulation (Ferguson and Cardin, 2020; Reynolds et al., 2000; Vinck et al., 2015; Bucci 

et al., 1998; Colby and Goldberg, 1999; Tingley et al., 2014; Stitt et al., 2018). Further 

investigation of the role of visual and attentional processing streams, including the role of 

the basal forebrain, on the observed adaptations to self-motion processing in PPC during 

pursuit behavior is needed (Disney et al., 2007; Goard and Dan, 2009; Minces et al., 2017; 

Záborszky et al., 2018; Fu et al., 2014; Ferguson and Cardin, 2020).

Conclusions

We conclude that changes to PPC dynamics during pursuit illustrate systematic and flexible 

processing recruitment in the service of behavioral demands associated with a specific 
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navigational context. Pursuit-related changes to PPC self-motion computations appear ideal 

for coordinating movement and trajectories at multiple timescales in response to the position 

of visual targets and may complement the pursuit-related dynamics in the striatum, SC, and 

hypothalamus by enabling predictive behaviors (Schiller and Stryker, 1972; Cooper et al., 

1998; Hoy et al., 2016, 2019; Shang et al., 2019; Zhao et al., 2019; Kim et al., 2019).

Limitations of the study

There are important limitations to consider with respect to the current study. First, and most 

critical in our opinion, is the lack of a comparison of neural dynamics between random, 

characteristic, and shortcut trajectories. Unfortunately, the lack of standardization in spatial 

position, self-motion, temporal duration, and overall occurrence of different trial types 

precluded an indepth analysis of any differences in neural activity between them. Future 

work should automate the presentation of the visual stimulus in a closed-loop manner to 

more closely match these variables across different trajectory types. In addition, we were 

unable to determine how the presence of visual stimuli and changes to behavioral demands 

independently influence neural activity patterns in the current experimental design. The 

inclusion of a second, non-behaviorally relevant, visual stimulus in follow-up studies would 

enable a dissociation of these factors. Beyond changes to the task, additional experiments 

should seek to manipulate PPC neural circuits during different epochs associated with 

predation behavior. Although we doubt that PPC inactivation would not produce behavioral 

impairments, it would be interesting to explore the influence of PPC afferent and efferent 

connectivity with respect to predictive shortcuts. Finally, an examination of sex differences 

on pursuit behavior would be an excellent avenue of future research.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, Andrew S. Alexander (asalexan@gmail.com).

Materials availability—This study did not generate any new reagents.

Data and code availability

• Datasets supporting the current study will be shared by the lead contact upon 

request.

• Original code has been deposited at Zenodo (https://doi.org/10.5281/

zenodo.6081293).

• Any additional information required to reanalyze the data reported in this paper 

is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Male Long-Evans rats (n = 6, 3–6 months of age) served as behavioral subjects and were 

housed individually and kept on a 12-h light/dark cycle. Animals were habituated to the 

colony room and handled daily for a period of 1–2 weeks prior to training on the visual 
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target chasing task. Rats were food restricted to approximately 85–90% of their free-fed 

weight. Water was available continuously. All experimental protocols adhered to AALAC 

guidelines and were approved by IACUC and the UCSD Animal Care Program.

METHOD DETAILS

Target chasing behavior—Animals were trained to pursue a moving light stimulus in a 

122 cm diameter circular arena for reward. The visual stimulus was a 1.25 cm dot from a 

bright green laser pointer controlled by one of two experimenters in the experimental room. 

The arena was placed on a table 92 cm above the ground. Boundaries of the arena were 2.5 

cm in height and fixed distal cues were outside of the arena across all sessions. Prior to the 

initiation of training all rats were handled extensively.

Acquisition of visual target pursuit behavior required behavioral shaping over approximately 

1–2 months of training. Rats were initially habituated to the arena for 1 week by randomly 

placing cereal bits around the arena and allowing the animal to free forage for 20 min per 

day. After arena habituation the visual stimulus was introduced. During this stage, 5–10 

cereal pieces would be present on the arena at any given time and the experimenter would 

direct the visual stimulus to hover on top of rewards that the animal was about to ingest. 

After the animal acquired a reward that the light stimulus was positioned on, the stimulus 

would shut off in order to create an association between the visual target and reward. 

After approximately 1 week of this process the next phase of shaping began. In the third 

stage, a single cereal piece was tossed to a random position in the arena at a time. The 

visual stimulus hovered over the reward and shut off when the animal retrieved it. This 

step repeated continually for a 20-30-min session for approximately 1–2 weeks or until the 

animal was readily running to the visual target/reward position. In the final shaping phase, 

the onset of the stimulus would occur in the absence of a reward in the arena. Because 

the visual target was associated with reward, the animal would approach it. Prior to the rat 

reaching the stimulus, the experimenter would move the visual target smoothly away from 

the animal and in most cases the rat would engage in pursuit. If the rat intercepted the 

stimulus it would disappear, and a reward would be tossed into a random location within the 

arena. The visual target would then reappear hovering over the reward location, and again 

disappear after the animal retrieved the reward. Following reward consumption, the next 

trial would begin by activating the visual stimulus in a pseudorandom location within the 

arena and the aforementioned process would repeat. Over approximately a 1-month period 

(duration was dependent on the behavior of individual rats), the length of pursuit could be 

extended without causing the animal to lose interest or become frustrated.

After shaping, rats would chase the visual target for approximately 25 min per day during 

concurrent in vivo electrophysiological recordings. The visual target primarily moved in 

pseudorandom trajectories (RTs) but characteristic trajectories (CTs) of the target were 

also instantiated after animals were frequently chasing the visual target. For CTs, the light 

target would execute a stereotypical path that began and ended at the same approximate 

allocentric locations within the arena and recording room. CTs occurred less frequently than 

RTs and were randomly interspersed throughout the target pursuit block. Two CTs were 

utilized across animals. CT1 moved from north to south and required the animal to execute 
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a clockwise U-Turn while CT2 moved from east to west and required a counterclockwise 

U-Turn (Figure S1). Target pursuit blocks could occur before or after free foraging sessions 

conducted in the same arena (approximately 10–20 min). In a subset of recordings, the 

pursuit session was conducted between two free foraging sessions of approximately 10–15 

min each.

Surgery—After readily engaging in 20+ pursuits of the visual target in a session, rats 

were surgically implanted with tetrode arrays (twisted sets of four 12 micrometer tungsten 

wires or 17 micrometer platinum-iridium wires) fitted to custom-fabricated microdrives that 

allowed movement in 40 μm increments. Each microdrive contained 4 tetrodes. Rats were 

implanted with 3 total microdrives positioned in either posterior parietal cortex (PPC) or 

retrosplenial cortex (RSC, data not shown). Rats were anesthetized with isoflurane and 

positioned in a stereotaxic device (Kopf Instruments). Following craniotomy and resection 

of dura mater overlying cortical regions, microdrives were implanted relative to bregma 

(PPC, A/P −3.8 mm, M/L ± 2.2 mm, D/V −0.5 mm; RSC, A/P −5.8 mm, M/L ± 0.7–1.2 

mm, D/V −0.5mm, 10–12° medial/lateral angle). Recordings were conducted primarily from 

deeper cortical layers (IV-VI) although exact laminar location is difficult to ascertain with 

drivable electrode arrays so we did not parse PPC neurons into deep versus superficial 

sub-groups. 1 of the 6 rats trained on the behavior did not have a PPC implant and is 

therefore included in behavioral analyses (Figure 1) but not included in analyses of neural 

data (remaining figures).Further, two rats performed the task well but had low single unit 

yields in PPC (KB09 = 4 total neurons; KB10 = 7 total neurons). These animals are included 

in pooled data analyses as even within these small populations examples of the broader 

findings were observed. 2 of the 3 remaining rats yielded approximately 50 neurons (LP06 

= 46 total neurons; KB20 = 51), while the final rat yielded a substantially greater number 

of cells (KB19 = 194 neurons). Examples of the main behavioral observations (including 

shortcuts), additive and multiplicative gain modulation, enhanced movement decoding over 

extended temporal windows, and egocentric visual target mapping were observed in all 

rats. However, to verify that the main effects described in the study were not driven by 

one animal, we dropped KB19 from all pooled analyses and found that main results were 

recapitulated.

Recordings—Each microdrive had one or two electrical interface boards (EIB-16, 

Neuralynx) individually connected to amplifying headstages (20×, Triangle Biosystems). 

Signals were initially amplified and filtered (50×, 150 Hz) on the way to an acquisition 

computer running Plexon SortClient software. Here the signal was digitized at 40 kHz, 

filtered at 0.45–9 kHz and amplified 1–15X (to reach a total of 1,000–15,000X). Electrodes 

were moved ventrally (40 μm) between recordings to maximize the number of distinct units 

collected for each animal. Single-units were manually identified using Plexon OfflineSorter 

software. Primary waveform parameters utilized were peak height, peak-valley, energy, and 

principal components.

Animal position was tracked at 60 Hz using a camera set 305 cm above the recording room 

floor. Plexon’s CinePlex Studio software was utilized to separately detect blue and red LED 

tracking lights affixed to the recording implant. Lights sat approximately 4.5 cm apart and 
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were positioned perpendicular to the length of the animal’s head. During the target chasing 

paradigm, the green visual stimulus was simultaneously tracked using the same software.

Histology—Animals were perfused with 4% paraformaldehyde under deep anesthesia. 

Brains were removed and sliced into 50 μm sections and Nissl-stained to identify the 

trajectory and depth of electrode wires in PPC and RSC. Boundaries of each region were 

defined in accordance with our previous work as well as the Paxinos and Watson and Zilles 

atlases (Paxinos and Watson, 2006; Zilles, 2012). All tetrodes were determined to be within 

the bounds of mPPC. Documented micro-drive depth across recordings and final electrode 

depth observed in histology were compared and found to be compatible in all cases.

Identification of pursuits and shortcuts—Pseudorandom (RTs), characteristic (CTs), 

and shortcut trials were identified using a custom graphical user interface (GUI) designed 

in MATLAB. The GUI enabled fine resolution scoring of starts and ends of runs. Starts of 

runs were identified as timepoints wherein the visual target and rat began moving coherently. 

Ends of runs were identified as timepoints wherein the rat intercepted the visual target 

and the visual target disappeared (i.e. tracking of the target was lost). CTs were easily 

identifiable relative to RTs because of their consistent shape and position in the environment. 

The total amount of CTs identified using tracking data were cross-referenced with recording 

logs from each session. Shortcuts were also readily identified, as they were similar to CTs 

but the animal intercepted the target at an earlier point and the target disappeared. Median 

egocentric bearing and distance (described below) across all position samples from all RTs, 

CTs, and shortcuts were compared and verified identification of the different trial types.

Latency between position of rat and visual target—To assess the temporal 

proximity of rat pursuit of the visual target between pseudorandom trajectories (RTs) and 

characteristic trajectories (CTs) the x- and y-position of the animal was concatenated and 

shifted in time relative to the position of the visual target in 50 ms increments and similarity 

was assessed via Spearman’s correlation (ρ) at each lag. Latency was defined as the shift in 

rat position that yielded maximal correlation. This often required shifting backwards in time 

to match the rat position to the prior position of the target (e.g. the animal is now at the same 

position that the visual target was 150 ms ago).

Autocorrelations of movement variables—To assess differences in movement 

statistics between free exploration (FE) and pursuit (P) we calculated autocorrelations 

(‘xcorr’ in MATLAB) of linear and angular speed (Figure S3C). To determine the temporal 

continuity of movement behavior we found the temporal lag wherein the autocorrelation 

dropped below 0.25 for each recording session. Rats exhibited more similar linear speed for 

extended temporal windows during P when compared to FE. Continuity of angular speed 

was more similar between FE and P, but FE had significantly greater temporal lags (Figure 

S3D).

Analysis of the egocentric position of the visual target position relative to 
the animal—For each position frame of each recording session, the instantaneous distance 

between the rat and the visual target was calculated as the Euclidean distance in centimeters 

(cm) between the average x- and y-positions of tracking lights on the animal and the 
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tracked position of the target. The instantaneous egocentric bearing to the visual target was 

calculated as the difference between the rat’s heading direction and the inverse tangent of the 

difference between x- and y-positions of the visual target and the rat.

To examine the distribution of target occupancy relative to the animal, occupancy maps were 

generated by binning egocentric distance in 2.5 cm increments (up to 65 cm) and egocentric 

bearing in 5° angular bins. Differences in egocentric target occupancy between RTs and 

CTs were assessed by generating target occupancy maps separately for each trial type. 

We summated across distance and bearing bins to create marginalized occupancy vectors 

for egocentric bearing and distance separately, then fit these with Gaussian-modified linear 

models (GML) using the built-in ‘fit’ function in MATLAB. As the GML model is utilized 

in multiple analyses throughout the paper we define it now. GMLs took the form:

f(x) = a + b ∗ x + c ∗ exp − (x − d)2

e2

Where a and b are the intercept and slope of the linear fit and c, d, and e are the amplitude, 

center, and standard deviation of the additive Gaussian function. To quantify differences 

in target distance, bearing and bearing deviation, we compared the center and standard 

deviations of model fits between RTs and CTs.

Construction of self-motion tuning curves and normalization of behavior free 
foraging and pursuits—Behavior-matched angular and linear speed and acceleration 

tuning curves were constructed for all neurons. Within a recording session, we discretized 

linear speed into 29 bins spanning 0 to 45 cm/s (1.6 cm/s bins) for free exploration (FE) and 

target pursuit (P) separately. Angular speed (34 bins ranging from −180° to +180° in 10.6° 

increments) and linear acceleration (30 bins ranging from −75 cm/s2 to +75 cm/s2 in 5 cm/s2 

increments) were similarly binned. For each self-motion variable, the minimum occupation 

across all speed bins across both FE and P epochs was identified. We next computed 1000 

tuning curves for each individual neuron for P and FE(s), each time sub-sampling from all 

possible spike train indices (within P or FE) at a given speed bin to match this minimum 

occupation time minus an additional 1 s to allow for some variability in the speed bin 

with lowest sampling. All tuning curves depicted in the manuscript are the mean (±s.e.) 

of these 1000 sub-sampled tuning curves. Using this method all self-motion tuning curves 

were behaviorally matched between FE and P as well as across speed bins. We repeated 

this process for each neuron after randomly shifting the spike train relative to self-motion 

behavior (within FE and P blocks) 1000 times to generate random (null) self-motion tuning 

curves. Reliability of tuning curves was assessed within a behavioral epoch by repeating this 

process but for non-overlapping odd and even minutes within a session, then assessing their 

similarity using Spearman’s correlation (ρ).

Fitting self-motion tuning curves, model comparisons, and identification of 
significant tuning—Each tuning curve for each neuron was fit with a uniform function, 

linear fit, and the GML model described above. All randomized tuning curves for each 

neuron were also fit with these models. F-tests were run to compare the residuals of all 
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combinations of model fits. Any neuron with a true p value for either uniform versus 

linear or uniform versus GML fits that was less than the 1st percentile of the same tests 

conducted on the neuron’s corresponding null self-motion tuning curves was considered to 

have significantly nonuniform tuning to self-motion. The final subset of neurons identified 

to have significant self-motion sensitivity passed this metric for at least one session (i.e. 

FE1, P, or FE2) and had a reliability score (Spearman’s ρ, as described above) that was 

greater than the 99th percentile of the distributions of reliability scores calculated from 

each neuron’s null self-motion tuning curves. Significant nonlinearity of tuning curves was 

attributed to neurons with p values from F-tests of linear versus GML fits that were less than 

the 1st percentile of the distributions of p values computed from similar tests conducted on 

model fits to null self-motion tuning curves. All percentile tests were done within neuron 

and behavioral task (i.e. from the distribution of p values on model fits to all 1000 of the null 

self-motion tuning curves calculated from randomly shifting that neuron’s spike train within 

pursuit or free exploration).

Assessment of gain modulation—Additive gain in self-motion tuned neurons for FE 

or P was determined by peak normalizing self-motion tuning curves for each epoch by the 

maximum firing rate value across tuning curves taken from all behavioral sessions, then 

taking the mean difference between these normalized tuning curves between P and FE. 

Neurons with mean differences less than zero prefer FE (P < FE) while neurons mean 

differences above zero prefer P (P > FE). To assess multiplicative gain, we examined 

differences in the amplitude parameter of GML model fits to tuning curves between P 

and FE. Systematic modulation of both additive and multiplicative gain was assessed by 

comparing differences in mean rate or peak amplitude between all combinations of P, FE1, 

and FE2 for the subset of self-motion tuned neurons recorded in two FE conditions.

Decoding of self-motion—Decoding of self-motion at the level of single neurons 

was conducted using a maximum correlation coefficient classifier taken from the Neural 

Decoding Toolbox (Meyers, 2013); http://www.readout.info/). Spike times for a given 

neuron were matched to behavioral position samples to generate a spike train with the same 

temporal resolution as the position tracking system (60 Hz). Spike trains were smoothed 

with a Gaussian filter with a 200 ms standard deviation and partitioned into 50% training 

and 50% test datasets. The classifier was trained on the instantaneous firing rate vector 

with self-motion (either linear or angular speed) as the response variable. Self-motion was 

binned in the same manner as for analysis of tuning curves described above. The training 

data was used to generate a template by learning the mean firing rate associated with each 

class (i.e. speed). Predictions on test data are chosen by finding the class with the smallest 

square difference between the template and a given test sample (i.e. a single firing rate 

bin in the spike train). Decoding was performed ten times using different 50/50 randomly 

selected splits of train and test data and accuracy was assessed via Spearman’s correlation 

between predicted and true self-motion. All correlations reported are the average across each 

decoding iteration.

Decoding of self-motion using simultaneously recorded PPC ensembles was conducted with 

a naïve Bayes classifier again using the Neural Decoding Toolbox. Ensembles ranged in size 
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from 5 to 12 PPC neurons and the classifier was trained on the same spike trains generated 

for single neuron prediction and self-motion response variables. Training data was used to 

calculate the discretized mean firing rates for each neuron for each class (i.e. speed bin) and 

the log likelihood function is calculated using these rates as lambda parameters to define 

Poisson distributions for each neuron. For a single test point, the probability of observing 

the combination of mean firing rates across the ensemble is calculated for each class and 

multiplied across all neurons to give a likelihood of being at each speed. The speed with 

the highest likelihood is the predicted self-motion state. Data was partitioned in the same 

manner as outlined above and prediction accuracy was again assessed using Spearman’s 

correlations and averaged across decoding iterations.

Self-motion decoding latency analysis—To quantify the temporal relationship 

between neural activation and self-motion decoding, we additionally ran the maximum 

correlation coefficient classifier analysis for single neurons after shifting the spike train 
relative to behavior incrementally. Specifically, the spike train was shifted from −2 s to 

+2 s in 100 ms increments relative to a fixed behavioral response variable (e.g. linear or 

angular speed). The shifted variable is key to interpretation as the temporal relationships 

relative to the reference vector dictate whether lagged relationships are prospective (i.e. 

anticipatory) or retrospective (i.e. history-dependent). Because we shifted the spike train, 

backwards shifts relative to behavior mean spiking occurred after the response variable 

(i.e. speed), while forward shifts relative to behavior mean spiking occurred before the 

response variable. Increased decoding accuracy for the former indicates history-dependent 

relationships between neural activity and behavior while the latter evidences anticipatory 

relationships.

For each temporal lag iteration, the decoder was trained and tested as described above. 

Accuracy was again assessed by correlating the self-motion prediction associated with each 

spike train lag with the true self-motion. These values were stored in a 41-bin vector for 

each neuron which we refer to as the ‘Decoding accuracy latency curve.’ These curves 

were fit with the GML model and center and width parameters were extracted to assess 

the preferred latency and decoder width for each neuron, respectively. For all decoding 

analyses, including the instantaneous decoding described above, real decoding accuracy was 

compared to the 99th percentiles of decoding accuracy taken from a null distribution for each 

neuron following circular shifts of the spike train relative to self-motion for durations greater 

than 2 s for 41 iterations (the number of spike train shifts in the latency analysis).

Self-motion displacement analysis—Analyses were conducted according to prior 

work (Alexander et al., 2020; Whitlock et al., 2012). Briefly, angular heading displacement 

and distance travelled were calculated between all position samples using a sliding 100 

ms temporal window. These values were transformed to the Cartesian coordinate system 

to generate x- and y-displacement values in centimeters, which were binned into a 

displacement occupancy map and convolved with a 2D Gaussian spanning 3 cm. The 

same process was repeated for displacement values that co-occurred with an individual 

neuron’s spike times to generate a ratemap reflecting the firing rate of a cell as a function of 
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self-motion displacement. For each neuron, this process was repeated for multiple shifts of 

the spike train forwards and backwards in time from −2 s to 2 s in 50 ms increments.

Self-motion displacement maps were quantified in two ways. First, we repeated the above 

process for non-overlapping odd and even minute time bins and utilized a Spearman’s 

correlation to assess the reliability of self-motion related firing for each ratemap as a 

function of the spike train lag. Second, we calculated the coherence of each ratemap by 

correlating the firing rate in each displacement map bin with the mean firing rate of all 

adjacent bins.

Generalized linear models (GLMs)—To test the influence of multiple behavioral 

and spatial variables on the activity of PPC neurons simultaneously we utilized a GLM 

framework (https://github.com/hasselmonians/pippin). The probability of spiking in a given 

behavioral frame (60 Hz) is described by an inhomogeneous Poisson process, where the 

spiking probability in a given position sample is described by the continuous variable λ:

P(Spike ∣ t) = e−λ(t)

λ = λFR ∗ λLV ∗ λAV ∗ λHD ∗ λPos ∗ λEB ∗ λV T

Where:

λFR = β0
λLV = v1S
λAV = a1A

λHD = ℎ1 cos(φ) + ℎ2 sin(φ)
λPos = ρ1x + ρ2y + ρ3x2 + ρ4y2 + ρ3xy

λEB = ε1d + ε2d2 + ε3 sin(θ) + ε4 cos(θ) + ε5d ∗ sin(θ) + ε6d ∗ cos(θ)
λV T = ω1d + ω2d2 + ω3 sin(θ) + ω4 cos(θ) + ω5d ∗ sin(θ) + ω6d ∗ cos(θ)

Where β0 defines the baseline firing rate of the neuron. All subscripted variables are fit 

coefficients weighting the other (time-varying) variables. S is the running speed of the 

animal and A is the angular displacement of the animal, as described above. φ is the head 

direction, and x and y are measurements of the animal’s position in the environment in 

centimeters. Finally, d is the animal’s distance from the center of the environment (EB) or 

the distance to the visual target (VT), and θ is the egocentric angle to the center of the 

environment (EB) or the egocentric angle to the visual target (VT). VT predictors are not 

included in GLMs for FE as no target was present.

Coefficients were determined by fitting to maximize log likelihood (MATLAB function 

‘glmfit’) of the experimental spike train given the behavioral variables. Model selection was 

completed in a stepwise fashion in order to identify the simplest model. On each iteration, 

we added the predictor which increased model fit (on average of 5-folds) the most, and was 

statistically significant compared to a Chi-Square distribution (degrees of freedom equal to 

the number of coefficients set to zero, p ≤ 0.001). We then dropped any predictor which no 

longer had a significant contribution (p > 0.05). This process was repeated until the model 
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converged. While theoretically the change in log likelihood should follow a Chi-Square 

distribution, this is only the case when the spike train has been fit well (e.g. including all 

neuron-neuron coupling terms). We therefore also compared the change in log likelihood 

to that from 1000 randomly shuffled spike trains, giving an empirical null-distribution and 

results were similar to the Chi-Square approach. Example spike trains for each model were 

generated by evaluating lambda for each behavioral time point (‘glmeval’ in MATLAB) and 

using this as the input to a random Poisson Generator (‘poissrnd’ in MATLAB).

Rat-to-target ratemaps and quantification—To visualize and characterize the 

receptive fields of neurons with significant tuning to the egocentric position of the target 

using the GLM we created rat-to-target ratemaps. Rat-to-target ratemaps were constructed 

by finding the egocentric distance and bearing to the target at the time of all spikes for a 

given neuron within the pursuit session (see section on egocentric target position above). 

These values were used to generate spike-target-occupancy maps which were normalized by 

the time the visual target spent in each egocentric distance by bearing bin to generate the 

rat-to-target ratemaps depicted in Figure 6. As target occupancy drastically dropped at 40 cm 

away from the animal, the radial axis on rat-to-target ratemaps was restricted to values below 

this distance. Rat-to-target ratemaps were smoothed with a Gaussian kernel with a 5 cm × 20 

° standard deviation.

Preferred bearing, tuning width, and preferred distance of individual neurons that were 

determined to have significant sensitivity to the egocentric position of the visual target using 

the generalized linear model were quantified in a similar fashion to the target occupancy 

maps, again using parameters of GML fits. We examined these characteristics for all 

neurons determined to possess sensitivity to the egocentric position of the target using 

the generalized linear model as well as the distributions for neurons that were significantly 

sensitive and possessed reliability in the strength (mean resultant length, MRL) and direction 

of their visual target related tuning across non-overlapping halves of the pursuit session 

(blue distributions in Figure 6E).

Egocentric boundary ratemaps and 2D spatial ratemaps—Egocentric boundary 

ratemaps (EBRs) were constructed as previously described using previously published 

code (https://github.com/hasselmonians/EgocentricBoundaryCells; Hinman et al., 2019; 

Alexander et al., 2020). In brief, the egocentric bearing and distance to all boundaries are 

calculated for all behavioral position samples and spike times for a given neuron. These 

values are utilized to create boundary and spike-boundary occupancy maps which reflect the 

position of the boundaries (<62.5 cm from the animal) relative to all animal position samples 

within a session and relative to all times in which a spike occurred for a given neuron. 

Egocentric bearing is anchored to the allocentric head direction of the animal at every 

behavioral sample such that the animal is facing upwards in the polar matrices containing 

this occupancy information. EBRs are constructed for each cell by normalizing the spike-

boundary occupancy map by the amount of time each egocentric boundary distance by 

bearing bin was occupied as shown in Figure S7. Ratemaps were smoothed by convolving 

EBRs with a 2.5 cm × 3° Gaussian kernel.
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2D spatial ratemaps were constructed in a similar manner as above but using the x- and 

y-position of the rat in centimeters relative to the external environment. Rat position was 

discretized into 3 × 3 cm bins. For a given neuron, the rat position at the time of all spikes 

was determined to generate a spike occupancy map which was normalized by the total time 

each spatial position was occupied to generate a 2D spatial ratemap. Raw ratemaps were 

smoothed by convolving with a Gaussian kernel with a 6 cm2 standard deviation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Unless otherwise stated, nonparametric tests with a p value threshold at 0.05 were used 

for all statistical comparisons. Median and IQR are provided for all distributions in which 

comparisons were made.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Rats pursue moving visual targets and make predictions about their paths

• Pursuit behavior enhances self-motion coding in parietal cortex via gain 

modulation

• Pursuit increases timescale of instantaneous trajectory mappings in parietal 

cortex

• Parietal cortex neurons conjunctively code self-motion and egocentric target 

position
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Figure 1. Rats pursue visual targets and exhibit spatial shortcuts on known trajectories
(A) Rats chase a floor-projected visual target moving in pseudo-random trajectories (RTs). 

Top left: all paths throughout an example target pursuit session (light gray), all RT pursuit 

paths (dark gray), and all RTs of the visual target (blue). Remaining plots depict 5 example 

pursuits with trial-starting location (X), approximate location of target interception (circle), 

and path to reward retrieval (purple) marked. Rat trajectories are depicted in light gray and 

target trajectories are in blue.

(B) Top left: all paths throughout an example target pursuit session (light gray), all pursuits 

along the characteristic trajectory (CTs; dark gray), and all characteristic paths of the visual 

target (blue). Remaining plots depict 3 example characteristic trajectories marked as in (A).

(C) Quantification of the temporal relationship between the animal and the visual target. 

Top plot: animal (x, dark gray; y, light gray) and target position (x, blue; y, light blue) 

across time on an example CT. Arrows illustrate temporal lag between rat and visual target 

position. Middle plot: correlation between rat and target position as a function of temporal 

shift of rat position relative to the target during RTs. Black line, mean of all trials. Purple 

lines, individual sessions. Bottom plot: same as above but for CTs. Position correlation 

curves are right shifted during CTs relative to RTs, indicating that rat and target positions 

were more temporally proximal during CTs. Vertical gray lines depict latency with peak 

correlation for each trial type.

(D) Mapping of visual target relative to the rat in egocentric coordinates. Top left: scheme 

for examining egocentric relationship between visual target and rat (see STAR methods). 

Bottom left: illustration of egocentric position of target relative to the rat independent of 

allocentric position or heading in the 120-cm-diameter circular environment. Top right: all 

visual target positions relative to the animal during mobility within an example pursuit 

session. Bottom right: mean target occupancy in egocentric coordinates across all animals 

and pursuit sessions (n = 132).
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(E) Top: mean target occupancy in egocentric coordinates for all RTs across all animals and 

sessions. Bottom: same as above but for all CTs.

(F) Same as in (A and B), but for CT trials in which the animal executed a spatial shortcut 

(S).

(G) Median distance and bearing to the visual target for RT, CT, and S trials.

See also Figure S1; Videos S1, S2, S3, S4, S5, S6, S7, S8, and S9.
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Figure 2. Nonlinear self-motion correlates of PPC are modulated by navigational demands
(A) Linear (top) and angular (bottom) speed tuning curves for 6 PPC neurons (columns, 

mean ± SE). Dashed lines are best model fit and are shown only for tuning curves that had 

significant modulation. Aii, a neuron with Gaussian-like nonlinear linear speed tuning; Aiii, a 

neuron with robust firing during immobility.

(B) Linear speed tuning curves for both FE and pursuit epochs for all PPC neurons with 

significant modulation. Top plots: linear speed tuning curves for neurons that had greater 

mean activation during FE (left column), sorted by peak linear speed bin in FE. Bottom 

plots: linear speed tuning curves for neurons that had greater mean activation during pursuit 

(right column), sorted by peak linear speed bin in pursuit.

(C) Same as (B), but for neurons with significant angular speed tuning.

See also Figures S2 and S3.
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Figure 3. Gain modulation of self-motion tuning as a function of navigational demand
(A) Schematic of additive (top) and multiplicative (bottom) gain modulation on self-motion 

tuning curves. Gray curve depicts hypothetical relationship between self-motion and firing 

rate for a baseline session. Colored curves depict hypothetical relationship between self-

motion and firing rate for a session in which either multiplicative or additive gain 

modulation manifests. Additive gain modulation reduces the signal-to-noise ratio (SNR; 

SNRa < SNR), while multiplicative gain produces an enhanced SNR for the modulated 

session (SNRm > SNR).

(B) Three PPC neurons with rate differences between FE and pursuit that are concentrated 

at specific linear (top row) or angular (bottom row) speeds. Left plot depicts parameters 

of Gaussian-modified linear fits. Sloped dashed lines indicate linear regression. Self-motion 

receptive fields are fitted by an additive Gaussian function. The center (D) and amplitude (C) 

of the Gaussian map, the peak of the self-motion receptive field, and its magnitude above the 

linear fit, respectively.

(C) Shaded line plots depict mean population tuning for linear (top) and angular (bottom) 

speed-sensitive neurons for pursuit (pink) and FE sessions (gray). Dashed lines depict mean 

percent difference in firing rate as a function of speed (dark blue, PPC neurons with greater 

activation in pursuit than FE [P > FE]; light blue, PPC neurons with greater activation in FE 

[P < FE]).

(D) Peak normalized differences in receptive field amplitude between pursuit and free 

explore (▴μAmp) versus difference in mean firing rate (▴μFR) for PPC neurons with 

significant linear and/or angular speed correlates.

(E) Position of linear and angular receptive fields for pursuit versus FE.

See also Figures S3 and S4.
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Figure 4. Multiplicative gain modulation produces enhanced dynamic range and decoding of 
self-motion correlates
(A) Left: a linear speed-sensitive neuron with multiplicative gain modulation. Right: 

decoding of linear speed using spiking activity of the same neuron in FE (top) and pursuit 

(bottom). Correlation (Spearman’s rho, ρ) between predicted speed (black/pink) and true 

speed (gray) is indicated above each plot.

(B) Linear speed decoder for pursuit versus FE. Inset: median + IQR of decoder accuracy for 

FE (black) and pursuit (purple).

(C) Left plot: linear speed tuning curves for 8 simultaneously recorded PPC neurons in 

FE and pursuit. Rows, linear speed tuning curves of the same neurons recorded in both 

conditions. Colormap, low (purple) to maximum firing (yellow) across both sessions. Right: 

example population decoding of linear speed for FE (top) and pursuit (bottom).

(D) Ensemble decoding accuracy for pursuit versus FE.

See also Figure S5.
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Figure 5. History-dependent spiking correlates are informative about self-motion state over 
extended temporal windows
(A) Schematic of temporal relationship among spiking, self-motion, and decoding. Top: gray 

and purple lines, real and predicted linear speed, respectively. Gray shading, times of speed 

change. Colored arrows, direction of spike train temporal shift. Bottom: hypothetical spike 

trains for a single neuron with instantaneous (black), retrospective (pink), or prospective 

(blue) sensitivity to speed.

(B) Decoder accuracy as a function of spike train temporal shift for 4 PPC neurons in both 

FE (gray) and pursuit conditions (purple). Left column: 2 PPC neurons sensitive to linear 

speed. Right column: 2 PPC neurons sensitive to angular speed. Gray horizontal lines, the 

99th, 50th, and 1st percentiles of randomized decoding accuracy (see STAR methods). Dots, 

preferred latency of spike train temporal shift yielding peak decoding.

(C) Decoding accuracy latency curves for all linear-speed-sensitive neurons, sorted by 

preferred latency within FE (left) and pursuit (right).

(D) Same as in (C), but for all angular speed sensitive neurons.

(E) Comparison between decoding accuracy at instantaneous (gray) and preferred latency 

(pink) across sessions for linear (top) and angular (bottom) speed sensitive neurons.

(F) Distribution of preferred shift latencies for linear and angular speed neurons in pursuit 

and FE.

(G) Differences in preferred latency between pursuit and FE for linear and angular speed 

neurons.

(H) Left: decoding accuracy latency curve for a linear-speed-sensitive cell in pursuit and FE 

with corresponding model fits (dashed lines). Colored horizontal bars are plotted at ~50% of 

the peak to visualize width differences between sessions. Right: decoder in pursuit versus FE 

for linear speed sensitive neurons.

(I) Same as in (H) but for the temporal window of angular speed decoding.

See also Figure S6.
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Figure 6. PPC neurons track self-motion and the egocentric position of the visual target
(A) Schema of generalized linear modeling (GLM) framework. Left column: illustrations 

of different predictor classes. Right column: 17.5 s of Z-scored values for the different 

predictor classes. Black lines, directional predictors. Shaded colors, all other predictors. 

Bottom plots: GLM-derived probability of spiking for each timestamp (lambda) and real 

spike train.

(B) Proportion of all PPC neurons sensitive to each predictor class (diagonal) and all 

pairwise combinations of predictor classes (off diagonal) for FE (left) and pursuit (right). 

LV, linear velocity; AV, angular velocity; HD, head direction; Pos, allocentric position; EB, 

egocentric boundary; VT, visual target.

(C) Rat-to-target ratemaps. Left plot: heatmap of egocentric occupancy of target relative 

to the rat (white, low occupancy; blue, high occupancy). Middle: trajectory plot of all 

egocentric target positions (gray) and positions where a single neuron spiked (blue). Right: 

rat-to-target ratemap of a neuron active when the target is to the animal’s front left.

(D) Rat-to-target ratemaps for 9 PPC neurons with significant sensitivity to the egocentric 

position of the target. Top row: 3 neurons with broad bearing selectivity and limited 

target distance information. Bottom 2 rows: 6 neurons with more restricted target-position-

receptive fields possessing both bearing and distance components.

(E) Properties of egocentric target receptive fields. Left: preferred bearing of all PPC 

neurons with significant tuning to the target in gray. Dark blue, preferred bearing for PPC 

neurons with reliable bearing. Middle: widths of egocentric bearing tuning. Right: preferred 

distances to visual target. All colors as in left plot.
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(F) PPC neuron with simultaneous sensitivity to the egocentric position of the visual 

target and self-motion with pursuit related gain modulation. Left plot: rat-to-target ratemap. 

Middle plot: linear speed tuning curves in pursuit (purple) and FE (black). Right: angular 

speed tuning curves for both sessions.

(G) Left 2 plots: cumulative density functions of absolute difference in receptive field 

amplitude (i.e., multiplicative gain) between pursuit and FE for linear and angular speed-

sensitive neurons conjunctively sensitive to target position (VT, purple) or not (VT, gray). 

Significant rightward shift of VT curve indicates that neurons with target sensitivity 

exhibited greater gain modulation. Right 2 plots: same as left plots, but for absolute 

difference in mean rate (i.e., additive gain) between self-motion-sensitive neurons with or 

without VT sensitivity.

See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, peptides, and recombinant proteins

Isoflurane MWI Cat #: NDC 13985-528-60

Buprenorphine MWI Cat #: 29308

Gold plating solution Sifco Cat #: 80535500

Paraformaldehyde Fisher 30525-89-4

Experimental models: Organisms/strains

Male Long Evans rats Charles River Labs

Software and algorithms

OfflineSorter Plexon

MATLAB v2016b MathWorks

Plexon SortClient Plexon

Other

Microdrives Custom built

17 μm Platinum-Iridium tetrode wire California fine wire co. Cat #: CFW0011873

12 μm Tungsten wire California fine wire co. Cat #: 100211
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