
UC Davis
UC Davis Electronic Theses and Dissertations

Title
Harmonic CUDA: Asynchronous Programming on GPUs

Permalink
https://escholarship.org/uc/item/9bd4t6v7

Author
Wapman, Jonathan Derek

Publication Date
2022

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9bd4t6v7
https://escholarship.org
http://www.cdlib.org/

Harmonic CUDA: Asynchronous Programming on GPUs

By

JONATHAN WAPMAN

THESIS

Submitted in partial satisfaction of the requirements for the degree of

MASTER OF SCIENCE

in

Electrical and Computer Engineering

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

John D. Owens, Chair

Jason Lowe-Power

Venkatesh Akella

Committee in Charge

2023

i

Copyright © 2022 by

Jonathan Wapman

All rights reserved.

To my family, girlfriend, friends, and everyone who helped me along the way...

ii

CONTENTS

List of Figures . v

List of Tables . vi

Abstract . vii

Acknowledgments . viii

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Harmonic CUDA . 2

1.3 Main Contributions . 3

2 Related Works 5

2.1 Hardware Asynchrony . 5

2.2 GPU Software Asynchrony . 5

2.3 CPU Software Asynchrony . 7

3 Programming Model 8

3.1 Motivation . 8

3.2 Nodes . 11

3.2.1 Specification . 11

3.2.2 Perspectives . 11

3.3 Connectors . 13

3.3.1 Specification . 13

3.3.2 Perspectives . 15

3.4 Dataflows . 16

3.4.1 Specification . 17

3.5 Interaction with CUDA . 17

3.6 Scheduling . 18

3.6.1 Asynchronous Scheduling . 18

3.6.2 Interleaved Scheduling . 18

iii

3.6.3 Bulk-Synchronous Scheduling . 19

3.6.4 Manual Scheduling . 19

3.6.5 Automatic Scheduling . 19

3.7 Summary . 20

4 Matrix Multiplication 22

4.1 Motivation . 22

4.2 Implementation . 23

4.3 Results . 25

5 GraphSage 27

5.1 Motivation . 27

5.2 Implementation . 28

5.2.1 Sparse Gather Stage . 29

5.2.2 Dense GEMM Stage . 30

5.3 Results . 30

6 Conclusion 33

6.1 Programming Model Evaluation . 34

6.1.1 Lessons Learned . 34

6.1.2 Next Steps . 35

6.1.3 Future Work . 37

iv

LIST OF FIGURES

3.1 Harmonic CUDA Memory Copy Dataflow . 9

3.2 Interleaved Node Scheduling. 19

4.1 Matrix Multiplication Tiling Hierarchy. 23

4.2 Matrix Multiplication Harmonic CUDA Dataflow. 24

4.3 GEMM Performance Results. 25

5.1 GraphSage Forward Pass Dataflow . 27

5.2 GraphSage Harmonic CUDA Dataflow . 29

v

LIST OF TABLES

3.1 Node Properties. 14

3.2 Connector Properties. 16

vi

ABSTRACT

Harmonic CUDA: Asynchronous Programming on GPUs

We introduce Harmonic CUDA, a dataflow programming model for GPUs that allows pro-

grammers to describe algorithms as a dependency graph of producers and consumers where

data flows continuously through the graph for the duration of the kernel. This makes it easier

for programmers to exploit asynchrony, warp specialization, and hardware acceleration. Using

Harmonic CUDA, we implement two example applications: Matrix Multiplication and Graph-

Sage. The matrix multiplication kernel demonstrates how a key kernel can break down into

more granular building blocks, with results that show a geomean average of 80% of cuBLAS

performance, and up to 92% when omitting small matrices, as well as an analysis of how to

improve performance in the future. GraphSage shows how asynchrony and warp specialization

can provide significant performance improvements by reusing the same building blocks as the

matrix multiplication kernel. We show performance improvements of 34% by changing to a

warp-specialized version compared to a bulk-synchronous implementation. This thesis evalu-

ates the strengths and weaknesses of Harmonic CUDA based on these test cases and suggests

future work to improve the programming model.

vii

ACKNOWLEDGMENTS

Graduate school is about the journey as well as the destination. In my journey at UC Davis I’ve

had the pleasure of working with some of the smartest, kindest, and most supportive people in

the world.

First, thank you to Professor John Owens. I truly appreciate your support throughout my

time at UC Davis. I’ve learned so much from you, both in and out of the classroom. I’m grateful

for your guidance and mentorship. I’m also grateful for your patience and understanding as I’ve

navigated the ups and downs of graduate school, and I’m excited to see what the future holds

for you and your research. I hope we’ll get more opportunities to work together in the future.

Thank you to my wonderful parents who supported me throughout graduate school. I was

able to pursue this path in large part because I knew I had them on my team, encouraging me

to pursue my passions both at school and elsewhere. And of course, Emily, Anna, Skye, Toby,

and Lily.

I would especially like to thank Sean Treichler and Aamer Jaleel. Their mentorship and

advice throughout my graduate school career have been invaluable. I was lucky to work directly

for Sean twice as an intern at NVIDIA Research, and Aamer and Sean spent considerable time

with me to provide feedback during weekly meetings even when I was no longer at NVIDIA.

Also at NVIDIA, I appreciate the guidance from Steve Keckler, who took me on as an intern

in the Architecture Research Group at NVIDIA, Michael Garland, who lead the Symphony

project I was lucky to be part of and gave me useful feedback on Harmonic CUDA in particular.

I also greatly enjoyed working with Jason Clemons, Po-An Tsai, Donghyuk Lee, Duane Merril,

Stephen Jones, and many others at NVIDIA.

Thank you very much to Serban Porumbescu, who spent many hours helping me edit my

thesis to clarify my ideas and find the right way to express them. Your page cutting skills are

legendary.

I would also like to thank all of my labmates, Muhammad Osama, Toluwa Odemuyiwa,

Agnieszka Lupinska, Chuck Rozhon, Daniel Loran, Yuxin Chen, Afton Geil, Jason Mak, Ve-

hbi Esref Bayraktar, Collin McCarthy, Ahmed Mahmoud, Zhongyi Lin, Rod Shojaei, Marjorie

Suresh, Mythreya Kuricheti, Annie Robinson, Chenfei Yao, Muhammad Awad, Kerry Seitz,

viii

and our postdocs Serban Porumbescu and Matthew Drescher. Whether it was talks in the lab,

Lazi Cow game nights, help answering difficult technical questions, or chats at our weekly

group meetings, I’ve appreciated getting to know all of you and I hope we have a chance to

work together again in the future.

Thank you also to everyone at UC Davis who supported me, including my committee mem-

bers, Professor Jason Lowe-Power and Professor Venkatesh Akella. I’ve learned a lot from

your classes and research feedback. Also to the incredibly helpful administrative staff, espe-

cially Sacksith Ekkaphanh and Michelle Walker.

Thank you to Carl Yang and Kevin Poulet, my managers and mentors at Waymo, who gave

me the opportunity to work on a really interesting project and helped me grow as a software

engineer. Waymo was an important experience for me, and I’m grateful for the opportunity to

work with you both. Also to David Sternberg, Laura Jones-Wilson, Ryan Goldhahn, Professor

Diego Yankelevich, and everyone who helped me prepare for graduate school.

Thank you to all my friends who supported me, particularly my former roommate Benjamin

Nilsen, my friend Kyle Westphal, and all of my friends from undergrad in Sacramento and

elsewhere (you know who you are).

Finally, thank you to Johanna Fröhling, my wonderful girlfriend of almost 3 years. Doing

graduate school during a pandemic isn’t an easy challenge, and I appreciate your continuous

support throughout graduate school. I’ll always remember the amazing experience of spending

6 months living in Germany during graduate school, and hearing you talk about “buffets” [29]

as if they’re the best part of graduate school (you’re not wrong [15]) always makes me laugh.

ix

Chapter 1

Introduction

1.1 Background and Motivation
Modern GPUs are more than just a group of thread processors. Over time, GPUs have added

specialized hardware units, such as Tensor Cores, of many varieties for machine learning and

dense linear algebra, Ray Tracing cores for realistic rendering, Direct Memory Access (DMA),

and Tensor Memory Accelerator (TMA) units for asynchronous memory movements between

off-chip and on-chip memory, and Transformer Engines for machine learning, with potentially

more to come [6, 8, 19, 25]. However, taking advantage of these specialized units typically re-

quires major code rewrites, and orchestrating data movement in a performant way often requires

skilled CUDA programming ability. The need to rewrite software for each new GPU architec-

ture is a major barrier to the adoption of new hardware features. NVIDIA may be able to

allocate these resources to commonly used and performance-critical libraries that automatically

bring new hardware features to end-users, but this does not apply to custom code written by

the users themselves. At the same time, GPU programming models have become increasingly

asynchronous (Section 2.1) and it is desirable to overlap computation with memory transfers or

differing types of computation depending on available accelerator features.

At a higher level of abstraction, NVIDIA and third parties provide many libraries that im-

plement critical GPU kernels such as matrix multiplication [18, 27], block-wide or device-wide

collective operations such as prefix sums or reductions [13, 21], or more complex algorithms

such as graph algorithms [10]. These libraries provide highly optimized implementations of

1

these kernels, but they lack flexibility. For example, a library such as CUTLASS [18] provides a

matrix multiplication kernel that utilizes the entire device and building blocks for implementing

custom device-wide kernels but does not support the warp-centric configuration necessary for

an application like GraphSage (Chapter 5). This inflexibility makes it difficult to take advantage

of the highly optimized kernels provided by these libraries, and instead, forces programmers to

write their own kernels from scratch. This is especially difficult for programmers who are not

experts in GPU programming, and who do not have the time or resources to optimize their ker-

nels. Even if NVIDIA were to update their libraries to support more flexible building blocks,

the user would still have to manage the connections between the building blocks (such as double

buffering or pipeline synchronization) and would need to explicitly manage which individual

building blocks to use depending on the desired compute location.

Additionally, CUDA libraries typically do not have the flexibility to perform an operation

at any level of the GPU’s compute hierarchy. A GPU programmer may want to perform an

operation with a single thread, warp, or block, a subset of a block, an entire grid, or a subset

of a grid. However, CUDA is not well-suited to elegantly expressing operations where the core

algorithm is the same even though the location of the data and the assigned compute group may

change.

1.2 Harmonic CUDA
To solve these challenges, we present Harmonic CUDA: a programming model for asynchronous

producer/consumer computation on modern GPUs that enables programmers to describe the

dataflow of their code, while relying on highly optimized backends to handle scheduling, syn-

chronization, hardware acceleration, and storage management. The primary goals of Harmonic

CUDA are:

• Computation/Location Abstraction: Programmers should be able to express the what

of their computations without worrying about the where or when. This allows program-

mers to focus on the algorithmic aspects of their code, and to rapidly experiment with

different mappings of computation to hardware.

• Performance: Programmers should be able to rely on Harmonic CUDA to use best-

2

available implementations for its backend, which may include highly optimized software

libraries, architecture-specific accelerators such as Tensor Cores, or future hardware and

software features as they become available. Harmonic CUDA’s Connector abstraction

provides abstractions around optimizations such as double buffering, storage synchro-

nization and management, and backend specialization based on the location of the data

buffer. Programmers should also be able to rely on an automatic Node scheduler to give

acceptable performance in a wide variety of situations. For more complex situations, pro-

grammers should be able to use manual scheduling to achieve the best performance. In

some cases, a Dataflow may be able to identify a common pattern of multiple Nodes in

the user’s program and optimize this into a more performant Dataflow.

• Composability: The programmer should be able to construct a Dataflow and treat that

Dataflow as an individual Node within other Dataflows. This enables programmers to

use third-party Dataflows without needing to understand the implementation of those

Dataflows, or to reuse their own Dataflows as a building block within a larger Dataflow.

• Programmability: Harmonic CUDA should be an intuitive programming model that

makes it easier for a programmer to think about their code in terms of data flow, and to

write code that is easy to understand and maintain. This includes a simple, easy-to-learn

programming model and API.

• Harmony: The programmer should be able to use Harmonic CUDA alongside traditional

CUDA code. This allows the programmer to write new features using Harmonic CUDA

without rewriting existing code, or to identify sections of existing code that would be more

performant or expressive using Harmonic CUDA. In contrast, other programming models

require programmers to rewrite their entire codebases to use the new programming model.

1.3 Main Contributions
This thesis presents the following primary contributions:

• Harmonic CUDA, a dataflow programming model for asynchronous producer/consumer

GPU computing (Chapter 3).

3

• An implementation of a memory copy kernel in Harmonic CUDA that shows the Har-

monic CUDA API and backend implementation (Chapter 3), and implementations of

matrix multiplication (Chapter 4) and GraphSage (Chapter 5) that demonstrate Harmonic

CUDA’s performance, the benefits of warp specialization, and the benefits of the reuse of

building blocks.

• An evaluation of the strengths and weakness of the Harmonic CUDA programming model

(Chapter 6.1).

• Analysis of future research directions and applications of Harmonic CUDA (Chapter 6).

4

Chapter 2

Related Works

2.1 Hardware Asynchrony
In recent years, GPUs have added more asynchronous functionality. NVIDIA’s Ampere archi-

tecture includes asynchronous Direct Memory Access (DMA) units that use dedicated hardware

units to copy sequential regions of memory directly from global memory to shared memory

without the need for intermediate copies to thread registers [19]. NVIDIA’s Hopper architec-

ture extends this concept to a Tensor Memory Access unit, which performs the same function

but for 2-dimensional tiles of a matrix [11, 25]. Additionally, there is a large body of research

into domain-specific accelerators [14], which feature asynchronously running hardware units

connected with intermediate buffers [29]. Harmonic CUDA addresses the programming chal-

lenge of efficiently targeting an increasing number of asynchronous by creating abstractions

around the actual implementation of logical operations and the data movements between them.

2.2 GPU Software Asynchrony
CudaDMA proposed an approach to divide a block on the GPU into DMA warps for perform-

ing memory transfers, and computation warps for performing any necessary computation [2].

CudaDMA provides robust evidence that warp specialization is a powerful strategy on GPUs,

and that it can improve the performance of a wide range of applications. CudaDMA primarily

provides the infrastructure for assigning threads to a warp group, and for synchronizing between

groups. However, we view CudaDMA’s principles as a key building block, but not a complete

5

asynchronous producer/consumer programming model.

Building on the concepts of CudaDMA, Warp Specialization is a well-studied method of

programming GPUs that researchers have used to improve the performance of a wide range of

applications including graph analytics, physics simulations, and combinatorial optimization [2–

4, 17, 22, 31]. To use warp specialization, a programmer defines separate paths in their kernel

that a warp can take. The warp then chooses one of these paths depending on some condition.

For example, the programmer may assign a warp to a memory movement path if the warp is re-

sponsible for moving data from global memory to shared memory, and to a computation path if

the warp is responsible for performing a computation on the data in shared memory. All warps

within the same block may continue to communicate with each other over shared memory and

may take advantage of efficient synchronization mechanisms. Warp specialization can improve

performance by increasing the size of a working set, by performing multiple independent com-

putations in parallel, or by reducing memory divergence [3]. While warp specialization can

often significantly improve the performance of a kernel, in practice it is not a commonly used

programming paradigm in part due to implementation difficulties. Even when programmers

use Warp Specialization, they tend to focus on a limited set of configurations, such as divid-

ing a block in half into memory access and computation warps. Harmonic CUDA provides a

more general approach to warp specialization that abstracts away the low-level details of warp

specialization and allows programmers to use more flexible specialization configurations.

Libcu++ [28] provides abstractions such as pipelines and barriers to manage asynchronous

GPU hardware. Harmonic CUDA leverages these primitives as building blocks to create a

higher-level programming abstraction.

Several works [1, 16] aim to hide complexities of asynchronous GPU programming (such

as synchronization, Direct Memory Accesses, and memory management) using a producer-

consumer model, but these focus on kernel-level dataflows between the CPU and one or more

GPUs. In contrast, Harmonic CUDA provides a programming model usable within a GPU

kernel at runtime. Additionally, while Harmonic CUDA may target heterogeneous systems for

future work, the programming model itself is fundamentally different, since it treats the CPU or

multiple GPUs as just another user-specified compute location.

6

2.3 CPU Software Asynchrony
LabView and Simulink are node-based graphical dataflow programming models commonly

used on the CPU [20, 23]. LabView and Simulink both provide libraries of Nodes that a pro-

grammer connects together in a dataflow to perform some computation, with typical examples

being signal processing or control loops. Harmonic CUDA differs in that it is a text-based pro-

gramming model that additionally provides for the concept of “where” to store and/or perform

computation.

StreamIt [32] is a text-based DSL for programming streaming applications, but this model

focuses primarily on signal processing, rather than on general-purpose parallel computing. It

also does not include any concept of “where” to store and/or perform computation beyond

offering support for CPU multi-threading.

In the Senders programming model [9], a “sender” object contains a computation that runs

asynchronously. The sender returns a single item (such as an int, pointer, struct, etc.) before

a dependent sender begins. Although it is an asynchronous programming model, the Senders

model is not a true producer/consumer dataflow pipeline where data flows continuously. Har-

monic CUDA is compatible with the Senders model. For example, programmers can use Har-

monic CUDA to more easily write a CUDA kernel that they can then launch as the computation

of a Sender.

There are many examples of parallel programming and dataflow programming languages

on both the GPU and the CPU [7]. In particular, Halide [30] similarly separates the logical

computation from a schedule, but is not a dataflow programming model.

7

Chapter 3

Programming Model

3.1 Motivation
Harmonic CUDA is a node-based asynchronous programming model for expressing computa-

tion as a dataflow of producers and consumers with the timing and physical location of compu-

tations abstracted away. We design the programming model to be productive for programmers,

performant, and support software composability. We also design the programming model to

take advantage of improvements in future architectures without changing code, and include

automatic and manual scheduling frameworks that provide good defaults for the average pro-

grammer and extended customizability for the expert programmer.

3.1.0.1 Overview

Figure 3.1 shows an example of a basic memory copy operation implemented as a Harmonic

CUDA Dataflow using two instances of data transformation (a producer and a consumer) and

an intermediate buffer. We include the full code for this example in Listing 1. The basic unit

of Harmonic CUDA is a Node, which is an abstraction of a program (Section 3.2). A Node

embodies tasks such as “perform a prefix sum on the elements given an input,” “perform ele-

mentwise additions on the two inputs,” or “do a matrix multiplication given two input matrices.”

A Node may run on a thread, a block, a subset of a block, an entire grid, or a subset of a grid. It

may have a software backend or a hardware-accelerated backend, and may coexist on the same

hardware with many other Nodes. Using this abstraction, the Node defines what the user wants

to do while giving the flexibility to easily change where the computation runs, and also gives

8

GPU
Memory

Memory
Mover

Warps 0 - 3

Memory
Mover

Warps 4 - 7

GPU
MemoryBuffer Memory

Node Node

Connector

Dataflow

Scheduler

Figure 3.1. A Harmonic CUDA Memory Copy Dataflow. The producer and consumer map
to an arbitrary compute location, and the buffers map to an arbitrary storage location. The
scheduler takes advantage of hardware asynchrony while respecting resource limitations.

the system the power to decide when it happens.

Connectors join Nodes and capture synchronization and storage management (Section 3.3).

The user provides Connectors with input and output Nodes as well as the intermediate data

storage location, while the Nodes and Connectors choose highly optimized backends based

on the functionality of the Nodes, the size of the data chunks transferred between Nodes, the

locations of the Nodes, and the locations of the intermediate data storage.

A Dataflow collects Nodes and Connectors into a single unit of computation and assists in

scheduling of Nodes onto hardware (Section 3.4). Furthermore, Dataflows are composable—

that is, they themselves can be used as a Node within a larger Dataflow.

Finally, Harmonic CUDA provides an automatic Node scheduler that is able to efficiently

schedule Nodes onto hardware for many common cases, and APIs that the programmer can use

to manually schedule Nodes onto hardware for more complex cases (Section 3.6).

To enable Harmonic CUDA to coexist alongside traditional CUDA, threads can interact

with aforementioned components. For example, Harmonic CUDA could provide Nodes whose

function is to read data from a thread-provided location, or to fill data into a location where

other GPU threads can consume the data directly.

9

1 __global__ memcpy_kernel(int *global_data, int size) {

2 __shared__ int shared_data[BUFFER_SIZE];

3

4 // Instantiate the nodes.

5 auto Global2Shared =

6 make_MemMover(BlockGroup, LocationGlobal, LocationShared, global_data,

7 shared_data, size * sizeof(int));

8

9 auto Shared2Global =

10 make_MemMover(BlockGroup, LocationShared, LocationGlobal, shared_data,

11 global_data, size * sizeof(int));

12

13 // Abstracts pipelining and storage management.

14 __shared__ ConnectorSharedState</*num_pipeline_stages=*/ 2>

memcpy_connector_shared_state;↪→

15 auto memcpy_connector = make_connector(Global2Shared, Shared2Global,

16 &memcpy_connector_shared_state);

17

18 // Incrementally build the dataflow.

19 auto BaseDF = make_dataflow();

20 auto [DF_Global2Shared, ID_Global2Shared] = BaseDF.add_node(Global2Shared);

21 auto [DF_Shared2Global, ID_Shared2Global] =

22 DF_Global2Shared.add_node(Shared2Global);

23

24 auto [DF_Connected, ID_Connected] =

25 DF_Shared2Global.add_connection(memcpy_connector);

26

27 // Execute the dataflow using the automatic scheduler.

28 DF_Connected.progress();

29 }

Listing 1: Memory Copy Example in Harmonic CUDA with Automatic Scheduling. The user
instantiates all Nodes and Connectors, builds the dataflow, and calls the Dataflow’s progress()
method.

3.1.0.2 Workflow

Programmers should use Harmonic CUDA in a three-step process. First, they should concep-

tualize their algorithm as a dependency graph of producers and consumers without considering

the physical mapping of computations or storage locations to the GPU. Next, they must instan-

tiate the dataflow in code and decide where to map the Nodes and Connectors to the GPU. Here,

simply supplying the correct flags is enough for the system to take care of the backend. Finally,

they should profile their kernel and adjust the mapping based on results, such as separating two

Nodes to make them warp-specialized or using shared memory instead of registers.

10

3.2 Nodes
3.2.1 Specification

A Node is an abstraction of data transformation and movement that specifies what computation

is being done. Where and when are instead specified by a programmer-provided compute lo-

cation parameter and by Harmonic CUDA’s scheduler. Nodes utilize NVIDIA’s “Cooperative

Groups” API [13] to specify which hardware unit(s) to use. The actual implementation of a

Node, or its Backend, may be highly optimized third-party CUDA backends, hardware acceler-

ators, or custom code written by the end user that builds on top of the Node framework. The

compiler can often determine the specific backend of a Node at compile time based on the loca-

tions of the input and output data of the Node, the compute location the Node runs on, and the

hardware capabilities of the GPU architecture. Other factors, such as runtime flags, may also

determine the backend of a Node.

To support the programmability goal, Harmonic CUDA provides Node templates that pro-

grammers can customize to their needs, either by building on top of a template or by providing

a concise lambda function that implements the Node’s behavior. This allows programmers to

easily create Nodes that are highly optimized for their specific use case, while still utilizing the

high-level programming model.

The following sections describe several “perspectives” of Nodes: what the programmer

cares about, what the backend implementer needs to know, and what the scheduler needs.

3.2.2 Perspectives
3.2.2.1 Node User

A Node user must understand at a high level what a Node does and what parameters to change

to control its behavior. Given a Node, the programmer is responsible for assigning the Node

to a Compute Location based on an algorithmic design decision. The programmer is also re-

sponsible for providing a Node with the correct inputs and outputs at all relevant ports. To run

the Node, the programmer should provide the desired batch size or total amount of data. This

can either be at runtime or compile time. Each Node includes a progress() method, which

instructs the Node to make forward progress given its available input data and output space.

The programmer must understand what action a given Node’s progress() method takes, and

11

1 __global__ memcpy_kernel(int *global_data, int size) {

2 __shared__ int shared_data[...];

3 auto Global2Shared = make_MemMover(/*compute_group=*/ GridGroup,

4 /*input_location=*/ LocationGlobal,

5 /*output_location=*/ LocationShared,

6 /*input_data=*/ global_data,

7 /*output_data=*/ shared_data,

8 /*size=*/ size * sizeof(int));

9 auto Shared2Global = make_MemMover(/*...*/);

10 // ...

11 }

Listing 2: Memory Copy Node Instantiation. The user provides the desired compute location
(GridGroup for the entire device) alongside the locations of the input and output data and the
size of the data.

must also understand what a Node requires to be “ready” or “finished.”

In practice, Nodes have many compile-time template parameters that make it overly verbose

to instantiate a Node using the form Node<float, 5, int, ...> where there may be any

number of template parameters that describe types, buffer sizes, compute location, and other

information that a Node requires for instantiation. To make it easier to instantiate a Node, each

Node provides a helper such as make MemMover(...) that takes in a set of parameters and

returns a Node with the correct template parameters. This helper is responsible for determining

the correct template parameters to use based on the parameters provided by the user. The auto

keyword hides the template parameter complexity from the programmer.

Listing 2 shows an example of how to instantiate two “MemMover” Nodes for a basic

Memory Copy example. Both Nodes map to a GridGroup and internally calculate indices

relative to other blocks. Alternatively, the user could assign each Node to a BlockGroup and

use Harmonic CUDA helpers to calculate global memory pointers and copy sizes per-block. The

LocationGlobal and LocationShared parameters allow Harmonic CUDA to make compile-

time optimizations. Variations of make MemMover could provide greater runtime flexibility but

higher runtime cost by omitting the need to specify input and output data locations at compile

time.

12

3.2.2.2 Node Implementer

It is the Node implementer’s responsibility to provide the functionality of the Node given the

input and output locations of the data, the target GPU architecture, the runtime flags of the

Node, or the compute location the Node is mapped to. As part of the implementation, the Node

must be able to query input and output Connectors to determine how much data is available

and where to read from or write to. Internally, a Node must implement is finished() and

is ready() methods that are for dynamic scheduling, along with any necessary internal state

tracking based on the total amount of data or the batch size. Finally, Nodes must perform all data

movement and transformation when calling the progress() method, including any internal

state updates. It is possible to implement several variants of the progress() method, such as

supplying pipelines or other synchronization variables as needed depending on the configuration

of the overall Dataflow.

Listing 3 shows an example of the MemMover backend from Listing 2, where we demon-

strate how for supported hardware such as Ampere GPUs, the Node can use the DMA engine

for asynchronous memory copies. This reduces register usage and allows threads to do other

work while copies complete.

3.2.2.3 Node Scheduler

From the scheduler’s perspective, the functionality of a Node is irrelevant. The scheduler only

needs to know if a Node is ready to run, if it is finished, and how much data it can process in a

single call to progress(). If the scheduler knows the Node’s batch size at compile time, it can

generate a static schedule for the Node, which has much less overhead than a runtime scheduler.

For the dynamic scheduler, is finished() and is ready() methods allow the scheduler to

make runtime decisions about which Node to run next.

3.3 Connectors
3.3.1 Specification

Connectors are responsible for managing the intermediate buffer storage between Nodes. A

Connector’s backing storage may be global memory, a shared memory buffer, thread-local reg-

13

Table 3.1. Interactions with Node properties from multiple perspectives.

Property Node User Node Implementer Scheduler

Node Functionality What a Node does at
a high level and what
parameters to change to
control its behavior

Provide highly-optimized
functionality given in-
put/output locations, ar-
chitecture, etc.

Functionality irrelevant
as long as the scheduler
finds a valid sequencing
of all Nodes

Worker and Thread as-
signment

Selects a group based on
algorithmic design deci-
sions

Must run the correct im-
plementation given a sup-
ported cooperative group

Schedules Nodes to co-
operative groups

Storage Management Must provide Nodes with
their input/output storage
locations

Must support querying
Connectors for data size
and offset

N/A

Batch size / Total size If the batch size(s) or to-
tal amount of data are
known at compile time,
provide this as template
parameters

N/A If sizes are known at
compile time, generate a
static Node schedule

Flow Control User must understand
what is required for a
Node to be ready or
finished

Node must implement
is finished() and
is ready() for dynamic
scheduling. Requires
internal state tracking.

Node must have both
methods, but the contents
are irrelevant.

progress() User must understand
what action an individual
progress() call per-
forms

Nodes must perform
all data movement and
transformation when
using progress(),
including internal state
updates. Several variants
of progress() inter-
faces possible, such as
supplying pipelines or
other synchronization
variables

Call progress() for
each Node and provide
Cooperative Groups and
synchronization variables
as appropriate

14

1 __device__ progress(int buffer_size, PipelineT &pipe) {

2 #if __CUDA_ARCH__ >= 800

3 // Special asynchronous copy for Ampere GPUs using DMA units.

4 cuda::memcpy_async(

5 this->get_compute_group(), this->output_base + this->output_offsett,

6 this->input_base + this->input_offset, buffer_size * sizeof(int), pipe);

7 #else

8 // For non-Ampere GPUs...

9 #endif

10 internal_state_update(buffer_size);

11 }

12

13 __device__ bool is_finished() { return elements_copied >= max_copies; }

14 __device__ bool is_ready(/*...*/) {

15 /* ... */

16

17 return !(input_elems_avail == 0 || output_space_avail == 0 ||

18 elements_copied >= max_copies);

19 }

Listing 3: Architecture-Specialized Node Backend. Since Ampere includes asynchronous
DMA units, we target a special case for Ampere while still providing a generic implementa-
tion for other architectures.

isters, or other specialized locations such as Tensor Core registers. Connectors must manage

synchronization between Nodes, handle optimizations such as double buffering, and assist the

scheduler by negotiating the amount of data that a single call to a Node’s progress() method

processes. In many ways, a Connector is similar to a Buffet [29], in that it has a fixed capac-

ity, both queue-like and array-like operations, and forms the basis of connections in a dataflow

graph.

3.3.2 Perspectives
3.3.2.1 Connector User

The programmer must provide the Connector information about how much storage it has to

manage, how many buffers it has, its batch size, and provide a shared state for the Connector.

Some parameters may be specified at compile time for better optimization, and others at run

time.

3.3.2.2 Connector Implementation

The Connector assists its input and output Nodes with synchronization, pipelining or barrier

operations as instructed by the scheduler. It must internally encapsulate any necessary pipelines

15

Table 3.2. Interactions with Connector properties from multiple perspectives.

Property Connector User Connector Implementer Scheduler

Synchronization N/A If instructed by scheduler, Node
implementation performs ap-
propriate pipeline/barrier opera-
tions

Connector chooses
the appropriate syn-
chronization between
two Nodes (pipelin-
ing, syncthreads,
etc)

Storage Management Must tell Connector
how much storage
it has, number of
buffers, and provide
a shared state for the
Connector

Must include pipelines or atom-
ics as needed for synchroniza-
tion, and track input/output off-
sets

N/A

Batch Size Negotia-
tion

Must specify Node
batch size (ideally as
a template parameter)

Nodes must query Connectors
to determine if enough data or
space is available, as well as in-
put/output offsets. May be com-
pile time or runtime

Must query Connec-
tors to determine the
batch size for Node
scheduling. This may
be compile time or
runtime.

1 __shared__ ConnectorSharedState memcpy_connector_shared_state;

2 auto memcpy_connector = make_connector(Global2Shared, Shared2Global,

3 &memcpy_connector_shared_state);

Listing 4: Connector Instantiation. The programmer provides the input and output Nodes as
well as shared state to assist in synchronization.

or synchronization helpers and provide Nodes with a way to query available space/data as well

as the read/write offsets.

3.3.2.3 Scheduler

Given two Nodes with user-specified compute locations, the Connector is responsible for choos-

ing the appropriate synchronization between the Nodes. This may be a pipeline, a syncthreads()

barrier, or potentially a no-op depending on Node behavior and configuration. The scheduler

must query the Connectors to determine the batch size for Node scheduling at either compile

time or runtime.

3.4 Dataflows

16

1 auto BaseDF = make_dataflow();

2 auto [DF_Global2Shared, ID_Global2Shared] = BaseDF.add_node(Global2Shared);

3 auto [DF_Shared2Global, ID_Shared2Global] =

4 DF_Global2Shared.add_node(Shared2Global);

5 auto [DF_Connected, ID_Connected] =

6 DF_Shared2Global.add_connection(memcpy_connector);

Listing 5: Dataflow Instantiaton. The user incrementally builds a Dataflow by adding Nodes
and Connectors in a functional programming style.

3.4.1 Specification

Dataflows represent an encapsulation of a diagram of Nodes and Connectors. To build a

Dataflow, programmers first instantiate a Node or Connector, and then add it to the Dataflow

in a functional programming style, where they incrementally build up a Dataflow by chain-

ing together Nodes and Connectors (Listings 2, 4, and 5). Depending on the configuration of

Nodes and Connectors, the Dataflow may be able to do higher-level reasoning to optimize the

application’s performance, such as fusing Nodes together.

To support Harmonic CUDA’s goal of composability, a programmer can pass a Dataflow as

a Node to another Dataflow. Note that while our prototype implementation of Harmonic CUDA

currently does not support this, the abstraction does, and it is a clear next step for future work,

with possible challenges being how to support the dynamic scheduling of a Dataflow that is

passed as a Node and how to handle cases where the programmer wants to map a complete

Dataflow to a variety of compute locations.

3.5 Interaction with CUDA
Harmonic CUDA aims to coexist with traditional CUDA code. To achieve this, threads can fill

data into an input buffer of a Dataflow, consume data from an output buffer of a Dataflow, or

interact with Node scheduling directly. The Node framework should also enable programmers

to pass in CUDA lambda functions as parameters to a Node. For example, an “Elementwise”

Node can consume elements one at a time from each input buffer. The programmer can then

define the functionality of the Node, such as elementwise addition, summation over the stream,

or some other operation.

17

3.6 Scheduling
3.6.1 Asynchronous Scheduling

Figure 3.1 shows an example of two memory movement Nodes mapped to different halves of the

same block (e.g., warps 0–3 of the reader and 4–7 of the writer) following the warp specializa-

tion approach in Section 2.2. The Nodes pass data between one another using a shared memory

buffer abstracted by the Connector. To optimize, the Connector can use double buffering, al-

lowing the reader and writer to work asynchronously and in parallel. The Connector handles

synchronization between the two Nodes using the “pipeline” abstractions from libcu++.

3.6.2 Interleaved Scheduling

The interleaved schedule presented in Figure 3.2 is logically the same Dataflow as before. How-

ever, in the interleaved schedule, the location to where the Nodes and Connector map are dif-

ferent. Now, both Nodes map to the same Cooperative Group, and the intermediate storage

location becomes registers rather than shared or global memory since threads do not need to

share data between one another. The functional end result of the algorithm is the same, but

not the implementation. In the previous asynchronous schedule, each Node completely owned

half of a block and repeatedly performed a single specific action as long as there was available

buffer space. Now, the two Nodes share the same compute resources through time slicing in a

pattern of read, write, read, write, read, etc. Additionally, while the previous example would

have been able to take advantage of Ampere’s asynchronous global-to-shared memory transfers,

the interleaved schedule does not. This is because the intermediate storage location is a register,

rather than shared memory. Rather, it could instead choose to use per-thread vector loads. The

backend of the Node is optimized to take advantage of the available hardware resources, and

can intelligently pick the correct backend depending on whether the Nodes are on the same or

different cooperative group, or depending on what intermediate buffer location they use. This

benefits the user because the user can experiment with different Node and Connector locations,

without having to manually write the performant implementation of each configuration.

18

Device
Memory Node 1

Warps 0 - 7

Shared Memory Node 2 Device
Memory

Figure 3.2. Interleaved Node scheduling where both Nodes share the resources of Warps 0–7
through time slicing.

3.6.3 Bulk-Synchronous Scheduling

Algorithms often require barriers between stages, and although Harmonic CUDA is a contin-

uous dataflow producer/consumer programming model, it also supports sequenced operations.

For example, a kernel where the programmer wants to perform an in-place sort followed by an

in-place scan, they can set the chunk size equal to the data array size, blocking the scan Node

until it has all available input data. Harmonic CUDA can also automatically determine if the

sort is in-place or not by analyzing input and output storage addresses, in both asynchronous

and interleaved schedules.

3.6.4 Manual Scheduling

The Manual Scheduling API enables advanced users to schedule Nodes to run on GPU hard-

ware. Programmers can query a Node’s readiness, invoke its progress() method, and set

termination conditions. Listing 6 shows an example of manual scheduling for the memory copy

example.

3.6.5 Automatic Scheduling

From the user’s perspective, the only automatic scheduling API is to call the run() method

on a Dataflow. In many cases the automatic scheduler is able to generate a static schedule

at compile time for some portions of the Dataflow. For example, in a GEMM example, the

scheduler knows some tile sizes (such as the sizes for the Tensor Cores) at compile time based

19

1 __global__ memcpy_kernel(int *global_data, int size) {

2

3 // INSTANTIATION ...

4

5 // Prime the pipeline

6 #pragma unroll

7 for (int i = 0; i < PIPELINE_STAGES - 1; i++) {

8 DF_Connected.get_node<ID_Global2Shared>().progress(BATCH_SIZE, pipe);

9 }

10

11 // Main scheduling loop.

12 while (!DF_Connected.get_node<ID_Global2Shared>().is_finished() &&

13 !DF_Connected.get_node<ID_Shared2Global>().is_finished()) {

14 DF_Connected.get_node<ID_Global2Shared>().progress(BATCH_SIZE, pipe);

15 DF_Connected.get_node<ID_Shared2Global>().progress(BATCH_SIZE, pipe);

16 }

17

18 // Finish the pipeline.

19 #pragma unroll

20 for (int i = 0; i < PIPELINE_STAGES - 1; i++) {

21 DF_Connected.get_node<ID_Shared2Global>().progress(BATCH_SIZE, pipe);

22 }

23 }

Listing 6: Manually-scheduled memory copy. The user primes the pipe, schedules Nodes as
long as there is data available, and then finally flushes the pipeline.

on the GPU architecture and the data type. In such cases, the automatic scheduler does not need

to make each Node query its Connector for available space and can perform other optimizations

such as unrolling. For schedules that cannot be determined at compile time, the automatic

scheduler queries Nodes to determine if they are ready to run, have enough input data, and have

enough output buffer space.

3.7 Summary
When programming with Harmonic CUDA, the programmer has several key design decisions

and implementation tasks. First, how can the programmer break down their algorithm into Har-

monic CUDA Nodes? In many cases, Harmonic CUDA has off-the-shelf Nodes a programmer

can use. In other cases, the programmer may need to implement the desired functionality on

top of Node templates in the Harmonic CUDA framework. Second, the programmer must con-

nect all Nodes together into a Dataflow, specify and allocate the intermediate storage locations

(future iterations of Harmonic CUDA should make this more automatic if possible), connect

20

all Nodes together into a Dataflow, and specify desired optimizations such as double buffering.

Finally, the programmer must determine which hardware units each Node maps to. This will

likely call for some trial-and-error experimentation. In many cases the programmer may want

to run all Nodes on the same cooperative group in the style of a traditional CUDA program, and

in other cases the kernel may benefit from Cooperative Group Specialization.

21

Chapter 4

Matrix Multiplication

4.1 Motivation
Generalized Matrix Multiplication (GEMM) is typically implemented as a device-wide oper-

ation. For example, cuBLAS, NVIDIA’s closed-source matrix multiplication library, supports

GEMM operations launched from the GPU or CPU that utilize the entire device. CUTLASS,

NVIDIA’s open-source matrix multiplication library, attempts to support more composability

in how the GPU handles tile sizes for a variety of matrix shapes, but this is still primarily at

the device level, where all threads, warps, or blocks in a GPU work together to solve a single

GEMM problem. This limits the ability of programmers to experiment with GEMM use cases

that do not require a full GPU or that combine GEMM building blocks with other operations

(e.g., Chapter 5). GEMM also commonly utilizes hardware acceleration units such as DMA,

TMA, or Tensor Core units.

As GPUs add more of these units over time, it is important for programmers to have abstrac-

tions around these logical operations so they do not need to do major code rewrites. To address

this, our Harmonic CUDA GEMM implementation provides generic building blocks for mem-

ory movement and compute in a way that abstracts away the location, size, or composition of

the building blocks. This allows us to utilize the same core building block no matter where our

input and output data sources are. For example, moving a 2D tile of a matrix is logically the

same operation whether it is a global-to-shared or a shared-to-register transfer, even though the

implementation may change.

22

Warp Tile Math InstructionBlocked GEMM

Global Memory Shared Memory Register File CUDA/Tensor Cores Global MemorySMEM

,

F

, ...

CUDA Cores

Epilogue
Tile

Epilogue
Functor

ModifyThread Block Tile

Figure 4.1. Matrix multiplication tiling hierarchy showing the 2D memory movement patterns
between global and shared memory, shared memory and registers, and so on. Image used with
permission, via CUTLASS [18].

4.2 Implementation
In contrast to Harmonic CUDA, CUTLASS only supports a fixed set of operations at each level

of the hierarchy. At the device level, this is the full GEMM operation; at the block level, a fixed-

size tile of the matrix; and at the warp level, a smaller fixed-size tile that corresponds to the size

of a tensor core, with separate implementations for data movement between each level. Har-

monic CUDA allows the programmer to reason about the matrix multiplication building blocks

at a higher level of abstraction, while allowing the backend to take care of the performance-

critical optimizations that could be provided by CUTLASS as a lower-level backend.

As shown in Figure 4.1, GEMM is a hierarchical algorithm. We first tile the output matrix in

global memory and iteratively read in tiles of the A and B matrices from global to shared mem-

ory. We then repeat this pattern, tiling a block-level output matrix for warps, and for threads,

and so on. Logically, these are all simply 2D tile movement patterns between different levels

of the memory hierarchy. In Harmonic CUDA we can express this as a single “2D Tile Mover”

Node regardless of the size of the tile, where it runs on the GPU, or the location of its inputs

or outputs. Finally, we include an “MMA” Node that performs the matrix multiplication and

accumulation for a single tile of the output matrix. By abstracting away any optimization de-

tails common in Matrix Multiplication kernels, we enable programmers to think about GEMM

as a small set of building blocks that move memory in 2D tiles between different levels of the

memory hierarchy. We show the Harmonic CUDA Dataflow in Figure 4.2.

Although at a high level the only Node the programmer needs to think about is the “2D Tile

23

2D Tile Mover

MMA

2D Tile Mover

2D Tile Mover

2D Tile Mover
Block 1/2 Block 1/2 Block

Shared

Global (C Matrix) Global (A Matrix) Global (B Matrix)

SharedShared

2D Tile Mover2D Tile Mover

Reg RegReg

Block Block Block

2D Tile Mover

2D Tile Mover

Block

Reg

Block

Shared

Global (D Matrix)

Figure 4.2. Matrix Multiplication using Harmonic CUDA 2D Tile Mover and MMA Nodes.

Mover” Node, internally, the Node specializes its backend based on the input and output loca-

tions, which compute group it is assigned to, whether the data is row- or column-major format,

the data type of the matrix, and other runtime and compile-time parameters. This specialization

should be invisible to the user. Similarly, for the MMA Node we logically map the MMA Node

to the entire block, where the inputs are registers. Although internally the MMA Node takes

advantage of the GPU’s Tensor Cores and complex logic for index mappings, this is again in-

visible to the user. The MMA Node could be alternatively mapped to a thread, a single warp,

or a subset of a block and still logically perform the correct implementation.

We adapt NVIDIA’s dmmaTensorCoreGemm example [26] as the backend for all Nodes,

modifying operations to support arbitrary cooperative groups. To match the implementation in

the sample code repository, we map the 2D Tile Mover Node to separate halves of each block for

the global-to-shared memory copies of A and B matrices, as this is more efficient than mapping

each to the entire block due to the required shared memory tile sizes. However, the strength

of Harmonic CUDA is that it is easy for the programmer to experiment with configurations of

24

0

2

4

6

8

10

12

14

16

18

128x1
28x1

28

256x2
56x2

56

512x5
12x5

12

1024x1
024x1

024

2048x2
048x2

048

4096x4
096x4

096

8192x8
192x8

192

16384x1
6384x1

6384

32768x3
2768x3

2768

6912x6
4x4

608

1152x1
152x1

152

2304x1
536x2

304

4608x3
072x4

608

9216x6
144x9

216

18432x1
228x1

8432

9216x6
144x1

8432

9216x6
144x3

6864

9216x6
144x7

3728

9216x6
144x1

47456

9216x6
144x3

072

9126x6
144x1

536

Th
ro

ug
hp

ut
 (T

FL
O

PS
)

Matrix Size (M,N,K)

Harmonic CUDA cuBlas

Figure 4.3. GEMM performance results evaluated over a range of matrix shapes including
square, perfectly-balanced, mixed aspect ratios, and GraphSage work-equivalent.

Nodes onto compute hardware; for example, mapping all Nodes to the same block would be

equally valid (albeit slower).

We manually schedule Nodes to allow optimal kernel performance. We assume a more

sophisticated automatic scheduler with minimal overhead could statically determine an appro-

priate schedule, as the compiler already knows the Tensor Core tile size at compile time. Note

that the programmer does not need to specify the tile size, as Nodes and Connectors automati-

cally select the implementation and size based on architecture capabilities, allocated resources,

and the data types of the operation.

4.3 Results
We compare our results in Figure 4.3 against cuBLAS, NVIDIA’s highly optimized, closed-

source GEMM library. We conduct all experiments on an NVIDIA A100 GPU using CUDA

Toolkit version 11.6. Matrices evaluated include square matrices (up to 32768 rows/columns),

tiles that are an integer multiple of SMs to avoid workload imbalance, mixed aspect ratios, and

(M, N, K) = (6912, 64, 4608), approximating the amount of work done in the GraphSage kernel

(Chapter 5). Our tests show a geomean average speedup of 0.8X vs. cuBLAS, but excluding the

3 smallest matrices, where cuBLAS has specialized routines for small matrices, our geomean

25

speedup improves to 0.92X.

We believe that the performance discrepancy between Harmonic CUDA and cuBLAS is

because although Harmonic CUDA currently takes advantage of the A100’s Tensor Cores

and DMA units, it lacks many of the low-level optimizations that cuBLAS performs such as

pipelined memory movement, assembly-level optimizations, heuristics for tile sizes, and many

others. As such, this performance discrepancy is expected. The goal of this experiment is not to

beat cuBLAS, but rather to show that we are able to express matrix multiplication as a dataflow

graph of producers and consumers with a moderately fast backend that allows straightforward

implementation and experimentation. We fully expect that in the future, given more develop-

ment time, an open-source library such as CUTLASS (which achieves performance parity with

cuBLAS) could instead become the backend of Harmonic CUDA’s GEMM Nodes. Note that the

primary barrier to implementing these optimizations in Harmonic CUDA is engineering time,

rather than limitations of the programming model itself. Pipelined memory movement fits per-

fectly into the “Connector” abstraction, assembly-level optimizations may form the backends of

Nodes, and heuristics for tile sizes are a fundamental part of the “Node” abstraction, where the

Node picks the appropriate backend implementation depending on the architecture, data type,

matrix size, and other parameters. We believe that the Harmonic CUDA programming model is

well-suited to these optimizations.

In the next chapter, we show how the building blocks used in this kernel can be adapted in

new, more flexible ways for another kernel that has similarities to the GEMM kernel, but with

application-specific requirements.

26

Chapter 5

GraphSage

5.1 Motivation
GraphSage is an algorithm for machine learning on graphs that samples the first-hop and second-

hop neighbors of the vertices of the graph and then uses features of these neighbors as inputs

to train a dense neural network [12]. Computationally, GraphSage is interesting because it in-

cludes both a sparse stage (multiple layers of indirection from sampling the first and second hop

154 M ops

Sample Sample Lookup Reduce

[][][]
Reduce

[][][]

1 KB 12 KB 144 KB 4608 KB

1536 KB

64 KB 1 KB

13 M ops

51 M ops

[][][]

Lookup [][][]

384 KB

9216 KB

Wenc

Wenc

W1

batch L1 neighbors
L2 neighbors

L2 data

L2 encoded

L1 data

L1 mean +
encoded

predictions

W2

Wout

8 KB

8 KB

32 KB

16 KB

Graph

Stage 0 Stage 1

Stage 2

Figure 5.1. GraphSage forward pass with the subset implemented in Harmonic CUDA high-
lighted in red. Stage 0 represents sparse gathers and Stage 1 represents repeated GEMM
operations. Reproduced with permission from Angshuman Parashar.

27

neighbors of a batch of vertices) and a dense stage (performing many matrix multiplications for

training the dense neural network). In this evaluation, we focus on only a portion of the forward

pass that isolates the sparse sampling stage and a subset of the dense stage in part as a way

to demonstrate the flexibility of the Harmonic CUDA programming model without adding too

much complexity to the evaluation and in part due to time constraints. We show the full forward

pass and highlight our specific implementation in Figure 5.1.

A naive approach to GraphSage on the GPU is to simply separate the algorithm into two

kernels. First, one kernel samples the first-hop and second-hop neighbors and stores their fea-

tures in global memory. Next, a second kernel performs the dense linear algebra operations.

This approach is suboptimal because it requires the first stage to perform an expensive global

memory write of all features, followed by an expensive global memory read from the second

stage to re-read all features. However, with Harmonic CUDA, it is possible to implement a more

optimized approach with minimal additional complexity that combines the two kernels into a

single Dataflow and stores the sampled neighbor features in intermediate on-chip buffers, only

writing the final output to off-chip memory. Additionally, with Harmonic CUDA, we can reuse

many of the building blocks of the previously described GEMM example in new ways to imple-

ment shared-memory linear algebra operations and can take advantage of warp specialization

to run the sparse and dense stages in parallel.

5.2 Implementation
We construct a Harmonic CUDA implementation of the GraphSage algorithm using building

blocks adapted from prior examples in a new context, as shown in Figure 5.2. The strength of

Harmonic CUDA is that nowhere in this implementation do we need to explicitly specify the

mapping of Nodes to compute resources or the actual implementations of any of the backends

of the Nodes. By thinking of GraphSage as a dataflow graph rather than as a sequence of

instructions to execute, we can easily experiment with different configurations of the Nodes and

can even do more abstract reasoning about how to map the algorithm to the GPU. For example,

by pipelining the sparse gather stage directly into the dense GEMM stage on-chip, rather than

separating these into separate kernels, we can eliminate a significant amount of memory traffic.

28

Gather
(Base)

Gather
(Bound) Reg

Reg
Random
Number

Generator
Gather

(Neighbors)
Gather

(Features: 32)Reg Shared

Neighbor Sampler

Global (Batch)
Mem

Mover Reg
Neighbor
Sampler

(First Hop)

Neighbor
Sampler

(Second Hop)
Shared Shared

Sparse

Global
(Weights)

2D Tile
Mover Shared MMA Reg

2D Tile Mover
(With Scaling) Shared

2D Tile
Mover

Global
(Result)

Dense

Figure 5.2. Top: GraphSage Neighbor Sampler Dataflow. Bottom: GraphSage Dataflow with
Sparse and Dense Stages.

In our experiments in the following sections, we evaluate GraphSage in two configurations: one

configuration where the sparse gather stage and the dense GEMM stage share the same compute

resources and time slice between them, and another configuration where we assign additional

threads dedicated to sparse gathers that send data to the GEMM stage over a shared memory

buffer. This is easy to perform since the only changes required are to change the compute

locations of the Nodes and to change the locations of the intermediate storage.

5.2.1 Sparse Gather Stage

In the sparse gather stage, the algorithm reads in the batch of vertices and samples 12 first-

hop neighbors per batch vertex and 12 second-hop neighbors per first-hop vertex, randomly

selected. A vertex with a degree less than 12 will sample duplicate neighbors. Our Harmonic

CUDA implementation reuses the “MemMover” Node from Chapter 3 and adds several new

Nodes for performing memory indirections (the “Gather” Node) and random sampling (the

“RandomNumberGenerator” Node). We also create a modular “Neighbor Sampler” dataflow

that we reuse multiple times for the first-hop and second-hop neighbor samples. As shown in

Figure 5.2, we can express this algorithm as a dataflow without thinking about how to parallelize

29

it, map it to hardware, or perform low-level optimizations. Instead, the programmer thinks

about the algorithm as an abstract sequence of logical transformations done to each vertex in

the batch, where data flows sequentially through the dataflow graph over time. The fact that

Nodes have parallel internal implementations and produce and consume data in a pipelined

manner is abstracted away from the programmer. The end result of this Dataflow is that for

each vertex input to a NeighborSampler Dataflow, the Dataflow outputs a 64×32 matrix of

feature values as well as a stream of the vertex indices corresponding to each matrix for each

second-hop neighbor of the batch vertices.

5.2.2 Dense GEMM Stage

Rather than using a device-wide GEMM where all blocks work on tiles of the same matrix

as seen in Chapter 4, our implementation of GraphSage uses a per-block GEMM where each

block repeatedly multiplies and accumulates samples of the second-hop vertex features with

a small weight matrix. Additionally, where in our GEMM implementation in Chapter 4 we

previously mapped the MMA Node to the entire block, in GraphSage, we can instead map

the MMA Node to only a portion of the block, leaving the rest of the block free to perform

the neighbor indirections to collect the features. We also have different 2D tile movement

patterns to consider. Where we previously iterated over tiles of B in global and shared memory,

GraphSage instead repeatedly uses the weight matrix as B, with the A matrix changing each

iteration. Harmonic CUDA’s abstractions allow us to easily reuse the existing building blocks,

where the only necessary change is a small modification to the flags that describe where the

MMA Node runs, the location of the inputs, and the size of the inputs.

5.3 Results
We compare a warp-specialized, asynchronously-scheduled GraphSage implementation in Har-

monic CUDA to a bulk-synchronous, interleaved configuration in Harmonic CUDA, showing

significant performance improvements and easier experimentation. To prove these speedups are

from more efficient hardware utilization, rather than additional hardware resources allocated

during warp specialization, we also compare against cuBLAS using a variant of GraphSage that

eliminates sparse lookups to isolate the performance of the dense GEMM stage.

30

5.3.0.1 GraphSage Performance

Our first Harmonic CUDA implementation is bulk-synchronous and interleaved. In it, we assign

all Nodes in the Dataflow to a full block (256 threads) and interleave sparse lookups with dense

GEMM operations, yielding a throughput of 8.78 TFLOPS. Harmonic CUDA’s flexibility al-

lows us to easily pivot our implementation to a different configuration. In this implementation,

we assign sparse lookups to an additional 64 threads, while keeping the GEMM on 256 separate

threads. This allows asynchronous scheduling with data passing over a double-buffered shared

memory Connector and improves throughput by 34% to 11.75 TFLOPS. The only thing we

have to do to make this change is to modify the single parameter that specifies which Coopera-

tive Group each Node runs on.

Now, does this performance improvement stem from the warp specialization approach or

from the additional 64 threads per block? Harmonic CUDA’s flexibility aids us in performing

this design exploration. To begin, we modify GraphSage to eliminate indirection from first-

and second-hop neighbor lookups, instead repeatedly using only batch vertex features. This

yields a throughput of 13.73 TFLOPS. Each block now only performs a series of small GEMM

operations to repeatedly multiply the batch feature matrices with the weight matrix. If this

GEMM-like kernel can perform on par with cuBLAS, we can conclude that because cuBLAS is

able to efficiently saturate the hardware, adding additional threads to this modified GraphSage

experiment would not improve performance.

5.3.0.2 GEMM Performance

We approximate the repeated small GEMM operations of the modified GraphSage kernel as if

they were tiles of a larger GEMM. Testing the equivalent matrix1 in cuBLAS, we achieve 14.6

TFLOPS. Since this is only a 6% improvement over the modified GraphSage kernel, we can

conclude that the GraphSage GEMM stage would not benefit from allocating an additional 64

threads (a 25% increase) to the stage.

1The equivalent matrix has M as the total batch vertices (108 blocks × batch size of 64), N as the weights per
feature (64), and K as the total number of features (12 first-hop neighbors× 12 second-hop neighbors per first-hop
neighbor × 32 features per second-hop neighbor) for (M,N,K) = (6192,64,4608).

31

5.3.0.3 Analysis

This GraphSage example highlights the advantages of considering the algorithm’s dataflow and

computation mapping separately. With Harmonic CUDA, the programmer can easily experi-

ment with different mappings of Nodes to compute resources. By relocating each Node and

the intermediate buffer storage with a simple parameter change, the formerly bulk-synchronous

kernel becomes warp-specialized, resulting in improved performance compared to the bulk-

synchronous version. Additionally, by viewing GraphSage as a Dataflow of building blocks,

we can easily express changes in computation and storage locations, keep intermediate results

on-chip, and reuse the building blocks from Chapter 4 in a new context.

32

Chapter 6

Conclusion

Harmonic CUDA demonstrates a novel approach to asynchrony on GPUs that creates an ab-

straction between what a computation does and when/where the computation happens, and is

designed to be performant, composable, easily programmable, and to coexist with the existing

CUDA programming model on NVIDIA GPUs. Rather than thinking about GPU code as a

sequence of operations to be executed by a thread, programmers can think about their code in

a fundamentally different way. Instead of thinking about how to manage threads and mem-

ory, programmers can think about how to connect building blocks together to form a larger

computation, where data flows through the compute graph over time. This approach to pro-

gramming is often more intuitive and easier to write and is particularly useful for programmers

who need to keep up with the zoo of hardware accelerators and highly optimized backends,

want low-level optimizations for efficient asynchrony, and want to compose pieces from a va-

riety of libraries together in novel ways. It also helps programmers scale their algorithm from

a thread all the way to an entire cluster of GPUs just by changing the specification of where

the algorithm’s Dataflow runs, which is a critical contribution both as threads become more

and more capable, and as parallel systems gain ever more levels of parallel hierarchy that users

want to target. Harmonic CUDA contrasts to other GPU programming models on GPUs that

demand to be the only programming model running on a GPU at a given time such as a DSL

with a custom CUDA backend compiler or a library that decides that you only need to do cer-

tain operations such as GEMM with the entire device. By being harmonious, Harmonic CUDA

ensures that a programmer can use it when it makes sense without large code rewrites, and can

33

fall back to traditional CUDA code as needed.We demonstrated Harmonic CUDA’s program-

ming model using a memory copy example and further evaluated the programming model on

two real-world examples. Matrix Multiplication shows that Harmonic CUDA programmers can

implement a key kernel in GPU computing that, while only achieving a geomean performance

of 80% of cuBLAS, shows a path forward to a highly-optimized implementation using cuBLAS

or CUTLASS as a backend. GraphSage shows that programmers can utilize Harmonic CUDA

to implement a real-world application while achieving significant performance improvements

over a bulk-synchronous implementation (a 34% improvement for GraphSage), and that imple-

menting this kernel is straightforward and intuitive when reusing the same building blocks as

the matrix multiplication kernel.

We identify several areas for future research. First, expanding Harmonic CUDA to new al-

gorithms that focus on irregular parallelism, specializations of subsets of a grid, and algorithms

that require more complex Dataflow graphs. We also believe that Harmonic CUDA should ex-

pand beyond a single GPU to groups of multiple GPUs on one Node or other architectures such

as CPUs and accelerators. This would allow the where abstraction to extend not just to layers of

the GPU’s memory hierarchy, but to CPU cores, domain-specific hardware, and heterogeneous

systems. It should also expand to clusters of multiple GPUs or multiple Nodes, where it has the

potential to make managing data orchestration in a distributed system easier. In addition, we

would like to further improve the model to make it as performant and easy-to-use as possible.

6.1 Programming Model Evaluation
6.1.1 Lessons Learned

Harmonic CUDA enables programmers to think about their algorithms in a fundamentally new

way. By thinking about their algorithm as a dataflow of building blocks, rather than as a se-

quence of instructions for a thread, warp, or block to run, the programmer can reason about

how an algorithm transforms data without needing to worry about how specifically to map the

algorithm to the GPU. When the programmer does want to map the algorithm to the GPU,

Harmonic CUDA’s ability to specify a Node’s functionality independently from its compute

location allows a program implementation that can scale from a single thread to a single GPU

34

to an entire cluster of GPUs. Depending on where the Node runs, the backend of the Node will

choose the most efficient implementation available. One of Harmonic CUDA’s most important

ideas is that any building block (such as a GEMM, tiled memory movement, or a reduction)

has use cases in many contexts that are not traditionally supported by GPU libraries and that a

programmer should be able to reuse the same building block in many applications and at many

different granularities.

It is important to note that the question of where to map a Node is an exercise for the

programmer. Harmonic CUDA does not claim to be able to automatically map a Node to the

best location for the programmer. What it does do is make this easy for the programmer to do

themselves. We believe that one of the biggest historical barriers to asynchrony on GPUs is the

challenge of managing the interactions between different compute units, and we believe that

Harmonic CUDA removes this barrier.

However, the Harmonic CUDA experiments in the previous sections do demonstrate sev-

eral challenges of writing both the Harmonic CUDA backend as well as kernels written with

Harmonic CUDA. On the backend, there is a risk that maintaining a robust library of Nodes

becomes too complicated, as each Node is expected to target a variety of compute locations,

compute capabilities, input and output data locations, runtime flags, compile-time flags, and so

on. We expect that although there may be some additional complexity, we will be able to build

on a foundation of core features that make up the majority of use cases. For example, NVIDIA’s

Cooperative Groups API provides some of the building blocks for managing arbitrary groups

of threads. To target the variety of hardware accelerators, backend developers can target these

slowly over time as new GPU releases include new hardware accelerators.

6.1.2 Next Steps

Harmonic CUDA’s scheduler is a key area for future development. The work in this thesis

provides a simple implementation of automatic scheduling for the memory copy kernel as a

demonstration. However, for the Matrix Multiplication and GraphSage kernels, we chose to use

manual Node scheduling to focus on the best-case scenario for the programming model. For

future work, the scheduler will need to be able to automatically schedule Nodes to maximize

performance. Additional work is required to make the automatic scheduler’s performance com-

35

petitive with manual scheduling and to support nested loops, as seen in the matrix multiplication

kernel. In some cases, this will require a static analysis of the dataflow graph to determine the

best scheduling order. This analysis will need to take into account the compute location of each

Node, the data location of each Node, and the compute capabilities of the hardware. In other

cases, the scheduler will need to be able to efficiently query and schedule Nodes at runtime.

The scheduler will also need to be able to avoid deadlocks that may occur when a Node has

multiple inputs or outputs that consume or produce data at varying rates.

An important task for Harmonic CUDA development going forward is to identify what the

core building blocks of GPU computing are. In many cases, this is simply to create wrappers

around common GPU primitives such as those found in CUB [21] or more flexible versions

of algorithms found in NVIDIA’s most-used libraries such as cuBLAS, cuSparse, and others.

However, there are likely other cases where the core building blocks are not as obvious, or

that they are so common that it would be redundant for a library to implement them (say, an

elementwise operation on two vectors). In particular, it is important to develop this suite of

Nodes with an eye toward which Nodes may gain future hardware acceleration capabilities.

Harmonic CUDA exposes a number of implementation-side tasks that future GPU archi-

tectures and programming models should implement to improve performance and programma-

bility. Harmonic CUDA shows the value of separating what computation is being done from

where the computation is being done. NVIDIA’s Cooperative Groups API [13] does this in

minor ways, for example by providing an arbitrary Cooperative Group as input to a prefix sum

or reduction function, but this is not a widespread practice across GPU libraries despite the

large benefits in the flexibility offered by this abstraction. Additionally, the Cooperative Groups

API does not support groups that are a subset of a grid (i.e. spanning multiple blocks). This

feature would be useful for kernels where data in multiple stages of a pipeline can be pro-

cessed by different groups of blocks, with a global memory buffer between them. Finally, we

observed that using Cooperative Grid synchronization methods was significantly slower than

a syncthreads() function call. Future GPUs should provide a hardware synchronization

primitive for Cooperative Groups that is as fast as syncthreads().

36

6.1.3 Future Work

One promising future research direction for Harmonic CUDA is to map the programming model

to additional architectures such as CPUs, AMD GPUs, and accelerators. This would enable pro-

grammers to use the model in a wider variety of domains, and would also allow for a more thor-

ough comparison of the model to other programming models. Since the programming model

abstracts the type of computation away from the backend, a programmer could use Harmonic

CUDA as an efficient way to specify the dataflow of an application, but then map the Nodes and

Connectors of the Dataflow to accelerator-specific hardware.

For long-term future work, Harmonic CUDA should expand to even more kernels. The

Breadth-First Search kernel is a good candidate for this, as it has irregular parallelism and load

balancing, which are both features that Harmonic CUDA is well-suited to handle. Prior BFS

works have shown the value of asynchronous programming models where parallel workers can

dynamically generate new work within a kernel and add it to a work queue [5]. The ConvNet

kernels are another good example, as they rely on CTA specialization for a performant imple-

mentation. Additionally, Harmonic CUDA should be able to scale to multi-GPU or multi-Node

systems. The programming model’s ability to hide backend details from the programmer makes

it well-suited to this task since all a programmer would need to do is change the location a Node

maps to. NVSHMEM [24] provides a powerful multi-GPU data sharing API that the program-

ming model could use as a backend.

37

REFERENCES

[1] Farhoosh Alghabi, Ulrich Schipper, and Andreas Kolb. A scalable software framework for
stateful stream data processing on multiple GPUs and applications. In GPU Computing
and Applications, pages 99–118. Springer Singapore, September 2014. doi: 10.1007/
978-981-287-134-3 7.

[2] Michael Bauer, Henry Cook, and Brucek Khailany. CudaDMA: Optimizing GPU memory
bandwidth via warp specialization. In Proceedings of the 2011 International Conference
for High Performance Computing, Networking, Storage and Analysis, SC ’11, pages 1–11,
November 2011. doi: 10.1145/2063384.2063400.

[3] Michael Bauer, Sean Treichler, and Alex Aiken. Singe: Leveraging warp specialization
for high performance on GPUs. In Proceedings of the 19th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, PPoPP ’14, pages 119–130, February
2014. doi: 10.1145/2555243.2555258.

[4] Zhi bin Huang, Guang-Tao Fu, Tian-Hao Fa, Dan-Yang Dong, Peng Bai, and Chen Xiao.
High performance ant colony system based on GPU warp specialization with a static-
dynamic balanced candidate set strategy. Future Generation Computer Systems, 125:136–
150, December 2021. doi: 10.1016/j.future.2021.06.041.

[5] Yuxin Chen, Benjamin Brock, Serban Porumbescu, Aydın Buluç, Katherine Yelick, and
John D. Owens. Atos: A task-parallel GPU scheduler for graph analytics. In Proceedings
of the International Conference on Parallel Processing, ICPP 2022, August/September
2022. doi: 10.1145/3545008.3545056.

[6] Jack Choquette, Oliver Giroux, and Denis Foley. Volta: Performance and programmabil-
ity. IEEE Micro, 38(2):42–52, April 2018. doi: 10.1109/MM.2018.022071134.

[7] Federico Ciccozzi, Lorenzo Addazi, Sara Abbaspour Asadollah, Björn Lisper, Abu Naser
Masud, and Saad Mubeen. A comprehensive exploration of languages for parallel com-
puting. ACM Comput. Surv., 55(2), January 2022. doi: 10.1145/3485008.

[8] William J. Dally, Stephen W. Keckler, and David B. Kirk. Evolution of the graphics pro-
cessing unit (GPU). IEEE Micro, 41(6):42–51, 2021. doi: 10.1109/MM.2021.3113475.

[9] Michał Dominiak, Georgy Evtushenko, Lewis Baker, Lucian Radu Teodorescu, Lee
Howes, Kirk Shoop, Michael Garland, Eric Niebler, and Bryce Adelstein Lelbach.
std::execution. C++ Standards Committee Papers, April 2022. URL https://www.

open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2300r5.html.

[10] Alex Fender, Brad Rees, and Joe Eaton. RAPIDS cuGraph. In Massive Graph Analytics,
pages 483–493. Chapman and Hall/CRC, May 2022. doi: 10.1201/9781003033707-22.

38

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2300r5.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2300r5.html

[11] Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and Margaret Martonosi.
Graphicionado: A high-performance and energy-efficient accelerator for graph analytics.
MICRO-49, October 2016. doi: 10.1109/micro.2016.7783759.

[12] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representa-
tion learning on large graphs. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems, NIPS’17, pages 1025–1035,
December 2017. URL https://proceedings.neurips.cc/paper/2017/file/

5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf.

[13] Mark Harris and Kyrylo Perelygin. Cooperative groups: Flexible CUDA
thread programming, October 2017. URL https://developer.nvidia.com/blog/

cooperative-groups/.

[14] Kartik Hegde, Hadi Asghari Moghaddam, Michael Pellauer, Neal Clayton Crago, Aamer
Jaleel, Edgar Solomonik, Joel S. Emer, and Christopher W. Fletcher. ExTensor: An accel-
erator for sparse tensor algebra. In Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture, MICRO-52, pages 319–333, October 2019. doi:
10.1145/3352460.3358275.

[15] Nadhira Hill. A grad student’s guide to free food, February 2019. URL https:

//eidolon.pub/a-grad-students-guide-to-free-food-8b7e7a6229f4.

[16] Dominique Houzet, Sylvain Huet, and Anis Rahman. SysCellC: a data-flow programming
model on multi-gpu. Procedia Computer Science, 1(1):1035–1044, May 2010. doi: https:
//doi.org/10.1016/j.procs.2010.04.115. ICCS 2010.

[17] Arpith Chacko Jacob, Alexandre E Eichenberger, Hyojin Sung, Samuel F Antao,
Gheorghe-Teodor Bercea, Carlo Bertolli, Alexey Bataev, Tian Jin, Tong Chen, Zehra Sura,
Georgios Rokos, and Kevin O’Brien. Efficient fork-join on GPUs through warp special-
ization. In 2017 IEEE 24th International Conference on High Performance Computing,
HiPC 2017, pages 358–367, December 2017. doi: 10.1109/HiPC.2017.00048.

[18] Andrew Kerr, Duane Merrill, Julien Demouth, and John Tran. CUTLASS: Fast lin-
ear algebra in CUDA C++, December 2017. URL https://devblogs.nvidia.com/

cutlass-linear-algebra-cuda/.

[19] Ronny Krashinsky, Olivier Giroux, Stephen Jones, Nick Stam, and Sridhar Ramaswamy.
NVIDIA Ampere architecture in-depth, May 2020. https://developer.nvidia.com/
blog/nvidia-ampere-architecture-in-depth/.

[20] MathWorks Corporation. Simulink, October 2022. URL https://www.mathworks.com/

help/simulink/index.html.

[21] Duane Merrill. CUB: Flexible library of cooperative threadblock primitives and other util-
ities for CUDA kernel programming. https://github.com/NVIDIA/cub, 2013–2022.

39

https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://developer.nvidia.com/blog/cooperative-groups/
https://developer.nvidia.com/blog/cooperative-groups/
https://eidolon.pub/a-grad-students-guide-to-free-food-8b7e7a6229f4
https://eidolon.pub/a-grad-students-guide-to-free-food-8b7e7a6229f4
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://www.mathworks.com/help/simulink/index.html
https://www.mathworks.com/help/simulink/index.html
https://github.com/NVIDIA/cub

[22] Nicholas Moore, Miriam Leeser, and Laurie Smith King. Kernel specialization provides
adaptable GPU code for particle image velocimetry. IEEE Transactions on Parallel and
Distributed Systems, 26(4):1049–1058, April 2015. doi: 10.1109/TPDS.2014.2317721.

[23] National Instruments Corporation. LabVIEW documentation, July 2022. URL https:

//www.ni.com/docs/en-US/bundle/labview/page/lvhelp/labview_help.html.

[24] NVIDIA Corporation. NVSHMEM, 2016. URL https://developer.nvidia.com/

nvshmem.

[25] NVIDIA Corporation. NVIDIA H100 tensor core GPU architecture, 2020. https://

resources.nvidia.com/en-us-tensor-core.

[26] NVIDIA Corporation. CUDA samples. https://github.com/NVIDIA/cuda-samples,
2022.

[27] NVIDIA Corporation. CUDA cuBLAS library (v11.6), 2022. http://developer.

nvidia.com/cublas.

[28] NVIDIA Corporation. libcu++: The C++ standard library for your entire system, Novem-
ber 2022. URL https://nvidia.github.io/libcudacxx/. Version 1.8.1.

[29] Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago, Kartik Hegde, Rang-
harajan Venkatesan, Stephen W. Keckler, Christopher W. Fletcher, and Joel Emer. Buffets:
An efficient and composable storage idiom for explicit decoupled data orchestration. In
Proceedings of the Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’19, pages 137–151, April
2019. doi: 10.1145/3297858.3304025.

[30] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Durand,
and Saman Amarasinghe. Halide: A language and compiler for optimizing parallelism,
locality, and recomputation in image processing pipelines. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’13,
pages 519–530. ACM Press, June 2013. ISBN 9781450320146. doi: 10.1145/2491956.
2462176.

[31] Rahul Sharma, Michael Bauer, and Alex Aiken. Verification of producer-consumer syn-
chronization in GPU programs. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’15, pages 88–98, June 2015.
doi: 10.1145/2737924.2737962.

[32] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. StreamIt: A language for
streaming applications. In R. Nigel Horspool, editor, Proceedings of the 11th International
Conference on Compiler Construction, Lecture Notes in Computer Science, pages 179–
196. Springer-Verlag, April 2002. ISBN 3-540-43369-4. doi: 10.1007/3-540-45937-5 14.

40

https://www.ni.com/docs/en-US/bundle/labview/page/lvhelp/labview_help.html
https://www.ni.com/docs/en-US/bundle/labview/page/lvhelp/labview_help.html
https://developer.nvidia.com/nvshmem
https://developer.nvidia.com/nvshmem
https://resources.nvidia.com/en-us-tensor-core
https://resources.nvidia.com/en-us-tensor-core
https://github.com/NVIDIA/cuda-samples
http://developer.nvidia.com/cublas
http://developer.nvidia.com/cublas
https://nvidia.github.io/libcudacxx/

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Background and Motivation
	Harmonic CUDA
	Main Contributions

	Related Works
	Hardware Asynchrony
	GPU Software Asynchrony
	CPU Software Asynchrony

	Programming Model
	Motivation
	Nodes
	Specification
	Perspectives

	Connectors
	Specification
	Perspectives

	Dataflows
	Specification

	Interaction with CUDA
	Scheduling
	Asynchronous Scheduling
	Interleaved Scheduling
	Bulk-Synchronous Scheduling
	Manual Scheduling
	Automatic Scheduling

	Summary

	Matrix Multiplication
	Motivation
	Implementation
	Results

	GraphSage
	Motivation
	Implementation
	Sparse Gather Stage
	Dense GEMM Stage

	Results

	Conclusion
	Programming Model Evaluation
	Lessons Learned
	Next Steps
	Future Work

