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ABSTRACT OF THE DISSERTATION

Delaunay-based Global Optimization Algorithms and their Applications

by

Pooriya Beyhaghi

Doctor of Philosophy in Engineering Sciences with a Specialization in Computational
Science

University of California, San Diego, 2016

Professor Thomas Bewley, Chair

A new class of derivative-free optimization algorithms is developed to solve, with

remarkable efficiency, a range of practical nonconvex optimization problems whose func-

tion evaluations are computationally (or experimentally) expensive. These new algorithms,

which are provably convergent under the appropriate assumptions, are response surface

methods which iteratively minimize metrics based on an interpolation of existing data-

points and a synthetic model of the uncertainty of this interpolant, which itself is built

on the framework of a Delaunay triangulation over the existing datapoints. Unlike other

response surface methods, our algorithms can employ any well-behaved interpolation strat-

xvi



egy.

An important subproblem in α-DOGS is the estimation of the averaging process

in stationary ergodic processes. A new approach for determining this quantity is also pre-

sented which is mathematically rigorous and numerically accurate. There are six main

algorithms developed in this class thus far (only four of them are presented in this thesis)

which address a wide range of practical optimization problems. The first algorithm, dubbed

∆-DOGS, efficiently minimizes expensive objective functions inside linearly-constrained

feasible domains. The second algorithm, ∆-DOGS(C), extends ∆-DOGS to handle effi-

ciently more general convex search domains. The third algorithm incorporates a grid into

∆-DOGS to achieve better convergence by performing fewer function evaluations at the

boundary of feasibility. The fourth algorithm, dubbed α-DOGS, efficiently minimizes ob-

jective functions which are noisy, generally derived by taking the statistics of stationary

and ergodic random processes. An important subproblem in α-DOGS is the estimation of

the averaging process in stationary ergodic processes. A new approach for determining this

quantity is also presented which is mathematically rigorous and numerically accurate.

Rigorous convergence analyses of all of the algorithms proposed are presented,

and necessary conditions to guarantee convergence to the global minimum are provided.

For validation, the algorithms proposed have been tested on both well-known benchmark

optimization problems as well as some new application-oriented optimization problems in

ship design; some illustrative results will be shown.

xvii



Chapter 1

Introduction

An important class of optimization problems is the simulated ( or experiment)-

based optimization problems whose objective or constrained functions are obtained by a

computationally (or experimentally) expensive process. There are two main classes of

numerical optimization algorithms. The first class is the Derivative-based methods which

find a local solution to the optimization problem efficiently. Moreover, they can solve high

dimensional problems; however, they have two main limitations: First, they can only find a

local minimum of the objective function. Furthermore, the information of the derivative or

a valid estimate for it is needed for their implementation. The second class is the Derivative-

free methods that are suitable for those optimization problems that neither the derivative of

f (x) nor its accurate numerical approximation is readily available, as is the case when f (x)

is nonsmooth. This is common situations in which the function f (x) is derived either from

an experiment or many types of numerical simulations.

The goal of this thesis is to present a new class of derivative-free optimization al-

gorithms which are mathematically rigorous and computationally efficient for low dimen-

sional problems (n<10). These methods develop a framework to construct a new class of

1



2

methods which minimizes nonconvex and stochastic objective functions.

Chapter 2 introduces a new derivative-free optimization algorithm ∆-DOGS for

nonconvex functions within a feasible domain bounded by linear constraints. Convergence

to the global minimum is guaranteed for twice differentiable functions with bounded Hes-

sian and is found to be remarkably efficient even for many functions which are not differ-

entiable. Like other Response Surface Methods, at each optimization step, the algorithm

minimizes a metric combining an interpolation of existing function evaluations and a model

of the uncertainty of this interpolation. By adjusting the respective weighting of these two

terms, the algorithm incorporates a tunable balance between global exploration and local

refinement; a rule to adjust this balance automatically is also presented. Unlike other meth-

ods, any well-behaved interpolation strategy may be used. The uncertainty model is built

upon the framework of a Delaunay triangulation of existing datapoints in parameter space.

A quadratic function which goes to zero at each datapoint is formed within each simplex

of this triangulation; the union of each of these quadratics forms the desired uncertainty

model. Care is taken to ensure that function evaluations are performed at points that are

well situated in parameter space; that is, such that the simplices of the resulting triangula-

tion have circumradii with a known bound. This facilitates well-behaved local refinement

as additional function evaluations are performed.

Chapter 3 present a modification for ∆-DOGS ( ∆-DOGS(C)) that solve that opti-

mization that the feasible domain is nonlinearly constrained (but convex) domain. Unlike

∆-DOGS, the initialization step of ∆-DOGS(C) only choose n + 1 feasible datapoints in-

stead of all vertices of the feasible domain. Therefore, the convex hull of the initial points

does not cover the whole feasible domain. In this way, as the algorithm proceeds, additional

feasible datapoints are added in such a way that the convex hull of the available datapoints
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efficiently increases towards the boundaries of the feasible domain. Similar to ∆-DOGS, at

each step of the algorithm, a search function is defined based on an interpolating function

which passes through all available datapoints and a synthetic uncertainty function which

characterizes the distance to the nearest datapoints. This uncertainty function, in turn, is

built on the framework of a Delaunay triangulation, which is itself based on all available

datapoints together with the (infeasible) vertices of an exterior simplex which completely

contains the feasible domain. The search function is minimized within those simplices of

this Delaunay triangulation that do not include the vertices of the exterior simplex. If the

outcome of this minimization is contained within the circumsphere of a simplex which in-

cludes a vertex of the exterior simplex, this new point is projected out to the boundary of

the feasible domain. For problems in which the feasible domain includes edges (due to

the intersection of multiple twice-differentiable constraints), a modified search function is

considered in the vicinity of these edges to assure convergence.

Chapter 4 introduces another modification of the algorithm of chapter 2 which re-

duces the number of function evaluation on the boundary of feasibility as compared with

the original ∆-DOGS. One of the problems associated with the basic ∆-DOGS is the poor

behavior of the generated uncertainty function near the boundary of feasibility which leads

to significantly more function evaluations along the boundary of feasibility that might not

be necessary. To address this issue, another search function is introduced which has an

improved behavior near the boundary of search domain. Additionally, the data points are

quantized on the Cartesian grid over the search domain, both of which lead to a reduced

number of datapoint accumulating on the boundary of feasibility, and faster overall conver-

gence.

Chapter 5, extends ∆-DOGS to solve efficiently those problems for which the pro-
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cess of performing a function evaluation is inaccurate, but the accuracy which can be im-

proved by increasing the cost (e.g, the averaging time) associated with function evaluation.

The particular case focused on in our work is when the true objective function is the infinite

time-averaged value of a statistic of a stationary ergodic process. Most existing derivative-

free optimization algorithms that are implemented for minimizing problems with noisy

function evaluations use estimates with the same level of accuracy for all data points that

are considered in the optimization process. In this chapter, we developed a unique frame-

work that employs the function evaluations with various amount of accuracy at different

points in the feasible domain. These variations in the accuracy of the estimation processes

remarkably reduce the total cost of the optimization process. Furthermore, the proof of

convergence to the global minimum under specific conditions is established.

An important subproblem of α-DOGS is the uncertainty quantification (UQ) of the

averaging process of a stationary ergodic random processes. In Chapter 6, we develop an

unbiased framework to quantify the uncertainty of such averaging process. The mathemat-

ical properties of this estimator is analyzed, and its behavior is compared with the existing

methods on both synthetic dataset as well as data obtained from turbulence simulations.

Finally, in Chapter 7, one of the optimization algorithm developed here, is applied

to the hydrofoil of a racing catamaran, with the objective of maximizing its lift/drag ratio

at a fixed working condition, illustrating the effective implementation of the present work

on an application of significant engineering interest.

1.1 Organization of the thesis

The content of this thesis may be summarized as follows: Chapter 2 presents ∆-

DOGS as a global optimization algorithm which can minimize any nonconvex objective
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function inside a linearly constrained domain.

Chapter 3 presents ∆-DOGS(C), which extent ∆-DOGS to convex nonlinear con-

strained problems.

Chapter 4 addresses one of the performance issues associated with the original ∆-

DOGS which leads to a significant amount of improvement in the speed of convergence.

Chapter 5 develops an optimization algorithm, dubbed as α-DOGS, which mini-

mizes those objective functions that are obtained by taking the infinite time-averaged statis-

tics of a stationary ergodic process.

Chapter 6 addresses an important subproblem in α-DOGS, quantifying the uncer-

tainty associated with time of stationary ergodic random processes.

Finally, Chapter 7 implements ∆-DOGS on a problem of hydrofoil design.



Chapter 2

Delaunay-based Optimization for

Linearly constrained domain:

∆-DOGS

2.1 Introduction

In this chapter, a new derivative-free optimization algorithm is presented to mini-

mize a (possibly nonconvex) function subject to linear constraints on a bounded feasible

region in parameter space1:

minimize f (x) with x ∈ L = {x|Ax ≤ b}, (2.1a)
1Taking a and b as vectors, a ≤ b implies that ai ≤ bi ∀i.

6
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where x ∈ Rn, f : Rn → R, A ∈ Rm×n, b ∈ Rm, and L is assumed to be bounded. A special

case of this problem, with simpler “box” constraints, is also considered:

minimize f (x) with x ∈ L box = {x|a ≤ x ≤ b}, (2.1b)

where a, b ∈ Rn. Derivative-free algorithms are well suited for such problems even if

neither the derivative of f (x) nor its accurate numerical approximation is readily available,

as is the case when f (x) is nonsmooth. This is common in situations in which the function

f (x) is derived either from an experiment or from many types of numerical simulations.

An important class of derivative-free algorithms, dating back to the 1960s, is Direct

Search Methods, as reviewed in [1]. An early and famous algorithm in this class is the

Nelder-Mead simplex algorithm, variations of which are implemented in several numerical

optimization packages. This method is examined in, e.g., [2]. Another category of Direct

Search Methods, called Adaptive Direction Search Algorithms, includes the Rosenbrock

[3] and Powell [4] methods. More modern methods in this class, dubbed Pattern Search

Methods, are characterized by a series of exploratory moves on a regular pattern of points

in parameter space called a grid (often, the Cartesian grid is used); the Generalized Pattern

Search (GPS) is a typical example. The efficiency and convergence of such algorithms is

examined in [5] and [6].

In general, Direct Search Methods identify a local minimum of a function from

some initial guess in parameter space. The harder problem of attempting to identify accu-

rately the global minimum of a nonconvex function f (x), with as few function evaluations

as possible, is an issue of significant interest.

Response Surface Methods employ an underlying (inexpensive-to-compute, differ-

entiable) model of the actual (expensive-to-compute, possibly nondifferentiable) function
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of interest in order to summarize the trends evident in the available datapoints, at which

the function has already been evaluated, over the entire feasible region in parameter space

as the iteration proceeds. The Trust Region method is one of the first optimization algo-

rithms appearing in the literature which uses such a model; however, the model used by this

method does not use all of the available datapoints at each step. Other Response Surface

Methods, such as the Expected Improvement algorithm [7], typically use all available dat-

apoints to build an inexpensive and useful model (often called a “surrogate”) of the actual

function of interest. An insightful review of global optimization methods based on such

surrogate functions is given by [8].

The most popular surrogate function used in such global optimization schemes is

the Kriging method [9], [10], [11], which inherently builds both an estimate of the func-

tion itself, p(x), as well as a model of the uncertainty of this estimate, e(x), over the entire

feasible domain of parameter space. With this interpolation strategy, the function is mod-

eled as a Gaussian random variable at every point within the feasible domain of parameter

space. This stochastic model is constructed carefully, such that the variance of the random

variable is zero, and the expected value of the random variable is equal to the (known)

function value at each datapoint available in parameter space. Away from the datapoints,

the expected value of the random variable in the Kriging model effectively interpolates the

known function values, and the variance of the random variable is greater than zero, ef-

fectively quantifying the distance in parameter space to the nearest available datapoints.

As eloquently described in [8], the estimate p(x) and the uncertainty of the estimate, e(x),

provided by this model may be used together to identify a point in the feasible domain with

a high probability of a reduced function value. A particularly efficient algorithm for global

optimization is the Surrogate Management Framework (SMF; see [12]), which combines
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the Expected Improvement algorithm with a Generalized Pattern Search. This algorithm

was significantly extended in [13], in which the search is coordinated by a grid derived

from a dense sphere packing, with significantly improved uniformity of grid points over

parameter space as compared with the Cartesian grid, in order to accelerate convergence.

The Kriging interpolation strategy has various shortcomings, the most significant of

which is the numerical stiffness of the computational problem of fitting the Kriging model

to the datapoints, and the subsequent inaccuracy of this fit. This problem is exacerbated

when there are many datapoints available, some of which are clustered in a small region of

parameter space, as illustrated in Appendix 2.4. Furthermore, both the computation of the

Kriging interpolant itself, as well as the minimization over the feasible region of parameter

space of the search function based on this interpolant, are nonconvex optimization prob-

lems; both of these problems must be solved with another global optimization algorithm,

which represents a sometimes significant computational expense.

As discussed above, modern Response Surface Methods need both an estimate of

the function itself as well as a model of the uncertainty of this estimate over the entire

feasible domain of parameter space. Most interpolation methods, other than Kriging, don’t

provide this. For the specific case of interpolation with radial basis functions, an uncertainty

function has been proposed and used by [14].

The Response Surface Method proposed in this work is innovative in the way it fa-

cilitates the use of any well behaved interpolation strategy that the user might favor for the

particular problem under consideration. [In the present work, our numerical examples use

polyharmonic spline interpolation, which is reasonably well behaved even when the avail-

able datapoints are clustered in various regions of parameter space; this interpolation strat-

egy is fairly standard, though other interpolation schemes could easily be used in its place.]
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To accomplish this, the present work proposes an artificially-generated function modeling

the “uncertainty” of the interpolant based on the distance to the nearest datapoints. This

uncertainty model is built directly on the framework of a Delaunay triangulation of the

available datapoints in parameter space.

The structure of the chapter is as follows. Section 2.2 discusses how the present

algorithm may be initialized. Section 5.2 then proposes a simple strawman form of the al-

gorithm based on the present ideas, laying out the essential elements of the final algorithm

and analyzing its various properties, including a proof of convergence under the condi-

tions that (a) the underlying function of interest f (x) has bounded Lipshitz norm, and (b)

the maximum circumradii of the simplicies in the triangulations are bounded as the algo-

rithm proceeds. This simple strawman form of the optimization algorithm, however, fails

to ensure condition (b). Section 2.5 modifies the strawman form of the optimization al-

gorithm proposed previously by, when necessary, adjusting the points in parameter space

at which new function evaluations are performed, thereby ensuring condition (b). Sec-

tion 2.6 presents a rule to adjust the parameter which tunes the balance between global

exploration and local refinement as the iteration proceeds. Section 2.7 addresses how the

algorithm may be modified to run efficiently using parallel computations. In Section 7.4,

the algorithm proposed is applied to a select number of test functions in order to illustrate

its behavior. Some conclusions are presented in Section 7.5.

2.2 Initialization

The optimization algorithm developed in this chapter is initialized as shown in Al-

gorithm 2.1.

as described in detail in the remainder of §2.2. The optimization algorithm developed in
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Algorithm 2.1 Initialization of ∆-DOGS

1: perform function evaluations at all of the vertices of the feasible domain L,
2: remove all redundant constraints from the rows of Ax ≤ b, and
3: project out any equality constraints implied by multiple rows of Ax ≤ b; in other

words, we project the feasible domain onto the lower dimensional space that satisfies
the equality constraints.

later sections then builds a Delaunay triangulation within the convex hull of the available

function evaluations, which coincides with the feasible domain itself, and incrementally

updates this Delaunay triangulation at each new datapoint (that is, at each new feasible

point x ∈ L at which f (x) is computed as the iteration proceeds). This approach is justified

by the following result, which is proved in [15]:

Theorem 1. The convex hull of the vertices of a bounded domain L constrained such that

Ax ≤ b is equivalent to the domain L itself.

Due to the simplicity of step (A) of Algorithm 2.1, this step is recommended for

most low-dimensional problems. In high-dimensional problems bounded by many linear

constraints, however, the feasible domain might have a lot of vertices, and it might be

unnecessarily expensive to follow such an approach; in such cases, chapter 3 of this work

demonstrates how this initialization step may be cleverly sidestepped.

In the case of box constraints, (2.1b), step (A) of Algorithm 2.1 corresponds to 2n

function evaluations which are trivial to enumerate.

In the more general case of linear constraints, (2.1a), identifying the vertices of the

feasible domain is slightly more involved. We proceed as follows:

Definition 1. The active set of the constraints Ax ≤ b at a given point x̂ ∈ Rn in parameter

space, denoted Aa(x̂) x̂ = ba(x̂), is given by those constraints (that is, by those rows of Ax ≤ b)

that hold with equality at x̂. A feasible point x̂ (satisfying Ax̂ ≤ b) is called a vertex of the
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feasible domain (that is, the set of all x ∈ Rn such that Ax ≤ b) if rank(Aa(x̂)) = n.

A simple brute-force method to find all of the vertices of the feasible domain then follows:

1) Check the rank of all
(

m
n

)
n × n linear systems that may be chosen from the m > n

rows of Ax ≤ b.

2) For those linear systems in step 1 that have rank n, solve Aa(x̂) x̂ = ba(x̂).

3) For each solution found in step 2, check to see if Ax̂ ≤ b; if this condition holds, it is

a vertex.

The set of points thus generated is then scrutinized to eliminate duplicates. This brute-

force method is tractable only in relatively low-dimensional problems (note that most

problems that are viable candidates for derivative-free optimization are, in fact, fairly low-

dimensional). The number of vertices is typically much less than the number of linear

systems considered by this method; for example, m = 20 constraints in n = 10 dimen-

sions requires us to examine 184, 756 n× n matrices in step 1, and would typically result in

roughly M ∼ O(103) vertices.

Finding the M vertices of an n-dimensional polyhedron is a well-known problem

in convex analysis; see, e.g., [16], [17] and [18]. These papers suggest a somewhat more

involved yet significantly more computationally efficient iterative procedure, based on the

simplex method, to find the vertices of the feasible domain in problems that are high-

dimensional and/or have many linear constraints. With this approach, a pivot operation is

used to move from one vertex of the feasible domain to its neighbors (the vertex v1 and v2

are called neighbors if their active sets differ in exactly one row). The number of linear

solves required by this approach is O(nM).

Step (B) of Algorithm 2.1 then removes all redundant constraints given by the re-

dundant rows of Ax ≤ b. Each row of Ax ≤ b is checked at each vertex of the feasible
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domain. Those rows that are not satisfied as equalities at at least n distinct vertices are

eliminated, as they do not play a role in defining an (n − 1)-dimensional face of the fea-

sible domain. Of the rows that remain, the rows of the augmented matrix
[
A b

]
that are

multiples of other rows are also eliminated, as they define identical faces.

Finally, step (C) of Algorithm 2.1 projects out all equality constraints in the problem

formulation, as algorithms for the construction of an n-dimensional Delaunay triangulation

will encounter various problems if the feasible domain actually has dimension less than n.

In the case of (2.1a), equality constraints may easily be found and projected out, resulting

in a lower-dimensional optimization problem. To illustrate, consider {x1, x2, . . . , xM} as

the set of vertices of the feasible domain of x, computed as described above. Define the

n × (M − 1) matrix C as follows:

C =

[
(x1 − x2) (x1 − x3) · · · (x1 − xM)

]
. (2.2)

The rank r of the matrix C is the rank of the optimization problem at hand. If r < n, there

are one or more equality constraints to contend with. In this case, taking the reduced QR

decomposition C = QR, the r linearly-independent columns of Q provide a new basis in

which the optimization problem may be written. Defining x = x1+Q x, a new r-dimensional

optimization problem is posed in the space of x ∈ Rr, and the feasible domain of x is defined

by (AQ)x ≤ b − Ax1.

2.3 Strawman form of algorithm

In this part, the essential basis of the optimization algorithm is presented. The

general framework of ∆-DOGS is presented in 2.2. The main novelty of this algorithm
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Algorithm 2.2 Strawman of ∆-DOGS

1: Prepare the problem for optimization by executing Algorithm 2.1, as described in §2.2.
Assume that the resulting optimization problem is n dimensional, and that the feasible
domain L has M vertices. Then, proceed as follows:

2: Take the set of initialization points S 0 as all M of the vertices of the feasible domain L
together with one or more user-specified points of interest on the interior of L.

3: Evaluate the function f (x) at each of these initialization points. Set k = 0.
4: Calculate (or, for k > 0, update) an appropriate interpolating function pk(x) through all

points in S k.
5: Calculate (or, for k > 0, update) a Delaunay triangulation ∆k over all of the points in

S k.
6: For each simplex ∆k

i of the triangulation ∆k:

a. Calculate the circumcenter zk
i and the circumradius rk

i of the simplex ∆k
i .

b. Define the local uncertainty function

ek
i (x) = (rk

i )2 − ‖x − zk
i ‖

2. (2.3)

c. Define the local search function

sk
i (x) = pk(x) − K ek

i (x). (2.4)

d. Minimize the local search function sk
i (x) within ∆k

i .

7: Find the smallest of all of the local minima identified in step 6d. Evaluate f (x) at this
new datapoint xk, and set S k+1 = S k ∪ {xk}. Increment k and repeat from step 4 until
convergence.
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is the new construction of the uncertainty function. The local uncertainty functions ek
i (x)

model the uncertainty in the unexplored regions within each simplex of the triangulation

∆k at step k. As discussed in §2.3.1, the union of these simplices coincides precisely with

feasible domain of parameter space. The global uncertainty function ek(x) and the global

search function sk(x) are defined over the feasible domain as ek
i (x) and sk

i (x), respectively,

within each simplex ∆k
i . Note that ek(x) reaches zero by construction at each datapoint, and

ek(x) reaches a maximum within each simplex as far from all of the available datapoints as

possible; it is shown in §2.3.2 that ek(x) is Lipschitz. In §2.3.3, a method of simplifying the

searches performed in step 6d of Algorithm 2.2 is discussed.

The (single, constant) tuning parameter K specifies the trade-off in Algorithm 2.2

between global exploration (which is emphasized for large K) and local refinement (which

is emphasized for small K). In §2.3.4, global convergence of Algorithm 2.2 is proved for

functions f (x) with bounded Lipshitz norm, assuming sufficiently large K and boundedness

of the circumradii of the triangulation generated by Algorithm 2.2. In §2.5, a small but

technically important modification of the Algorithm 2.2 is introduced which guarantees

boundedness of the circumradii of the triangulation generated as the iteration proceeds.

2.3.1 Characterizing the triangulation

The uncertainty function in Algorithm 2.2 is built on the framework of a Delaunay

triangulation of the feasible domain with, in a certain sense, maximally regular simplices,

which we now characterize.

Definition 2. Consider the (n + 1) vertices {V0, V1, . . . , Vn} ∈ R
n such that the vectors

(V0−V1), (V0−V2), . . . , (V0−Vn) are linearly independent. The convex hull of these vertices

is called a simplex (see, e.g., [19, p. 32]). Associated with this simplex, the circumcenter
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z is the point that is equidistant from all n + 1 vertices, the circumradius r is the distance

between z and any of the vertices Vi, and the circumsphere is the set of all points within a

distance r from z.

Lemma 1. For any simplex, the circumcenter is unique.

Proof. Assume z is equidistant from V0, . . . ,Vn, i.e.

‖V0 − z‖ = ‖V1 − z‖ = · · · = ‖Vn − z‖

For i = 1, . . . , n, simplification leads to:

V2
0 − 2VT

0 z = V2
i − 2VT

i z

⇒ 2 (V0 − Vi)T z = V2
0 − V2

i .

Thus, z is equidistant from all vertices if

2


(V0 − V1)T

...

(V0 − Vn)T


z =


V2

0 − V2
1

...

V2
0 − V2

n


. (2.5)

This system has a unique solution if the matrix on the LHS is nonsingular; which follows

from the linear independence of (V0 − V1), (V0 − V2), . . . , (V0 − Vn) in Definition 2. �

The two following definitions are taken from [20].

Definition 3. If S is a set of points in Rn, a triangulation of S is a set of simplices whose

vertices are elements of S such that the following conditions hold:
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• Every point in S is a vertex of at least one simplex in the triangulation. The union of

all of these simplices fully covers the convex hull of S .

• The intersection of two different simplices in the triangulation is either empty or a

k-simplex such that k = 0, 1, . . . , n−1. For example, in the case of n = 3 dimensions,

the intersection of two simplices (in this case, tetrahedra) must be an empty set, a

vertex, an edge, or a triangle.

Definition 4. A Delaunay triangulation is a triangulation (see Definition 3) such that the

intersection of the open circumsphere around each simplex with S is empty. This special

class of triangulation, as compared with other triangulations, has the following properties:

• The maximum circumradius among the simplices is minimized.

• The sum of the squares of the edge lengths weighted by the sum of the volumes of the

elements sharing these edges is minimized.

Delaunay triangulations exhibit an additional property which makes them essential in Al-

gorithm 2.2. By the definitions of ek
i (x) and ek(x) above, it follows that ek

i (x) = ek(x) within

the simplex ∆k
i . The following may be established if the triangulation ∆k is Delaunay:

Lemma 2. Assume the triangulation ∆k is Delaunay. For any i and any feasible point

x ∈ L, ek(x) ≥ ek
i (x).

Proof. By Theorem 1 and Definition 3, since x ∈ L, a simplex ∆k
j exists which contains x

(that is, x ∈ ∆k
j). We must show that, for all i , j, ek

i (x) ≤ ek
j(x). By construction, ek

j(x) = 0

at the vertices of simplex ∆k
j; since the triangulation is Delaunay (see Definition 4), these

vertices are not inside the circumsphere of the simplex ∆k
i . Thus, ek

i (x) ≤ 0 at the vertices
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of simplex ∆k
j. It follows simply from the definition of ek

i (x) that, for all x ∈ L,

ek
i (x) − ek

j(x) = (rk
i )2 − (rk

j)
2 − |zk

i |
2 + |zk

j |
2 + 2(zk

i − zk
j)

T x;

that is, ek
i (x) − ek

j(x) is a linear function of x. Since ek
i (x) − ek

j(x) ≤ 0 at the vertices of

simplex ∆k
j, it follows that ek

i (x) − ek
j(x) ≤ 0 everywhere within simplex ∆k

j. �

Remark 1. Lemma 2 holds only for Delaunay triangulations, not arbitrary triangulations.

Lemma 2 is used in §2.3.3 to simplify the searches performed in step 6d of Algorithm 2.2.

Remark 2. In step 3a of Algorithm 2.2, linear systems of the form given in (2.5) must be

solved in order to find the circumcenter of each simplex. The use of Delauney triangulations

improves the accuracy of these numerical solutions. If the ratio between the circumradius

and the maximum distance between two edges of a simplex is large, this system is ill con-

ditioned. Delaunay triangulations (see Definition 4) minimize the maximum circumradius

of the simplices in the triangulation, thereby minimizing the worst-case ill conditioning of

the linear systems of the form given in (2.5) that need to be solved.

The determination of Delaunay triangulations is a benchmark problem in computa-

tional geometry, and a large number of algorithms have been proposed; extensive reviews

are given in [21] and [20]. Qhull 2, Hull 3, and CGAL-DT 4 are among the most commonly-

used approaches today for computing Delaunay triangulations in moderate dimensions. In

the present work, a Delaunay triangulation must be performed over a set of initial eval-

uation points, then updated at each iteration when a new datapoint is added. Hence, the

incremental method originally proposed in [22] is particularly appealing. The New-DT

2http://www.qhull.org. Accessed 29 June 2016
3http://netlib.org/voronoi/hull.html. Accessed 3 June 2016
4http://www.cgal.org. Accessed 3 June 2016
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and Del-graph algorithms (see [23] and [24]) are the leading, memory-efficient implemen-

tations of this incremental approach; the present work implements the Del-graph algorithm.

The most expensive step of Algorithm 2.2, apart from the function evaluations, is

the minimization of sk
j(x) (in step 6d) in each simplex ∆k

j. The cost of this step is pro-

portional to the total number of simplices S in the Delaunay triangulation. As derived in

[25], a worst-case upper bound for the number of simplices in a Delaunay triangulation

is S ∼ O(N
n
2 ), where N is the number of vertices and n is the dimension of the problem.

As shown in [26] and [27], for vertices with a uniform random distribution, the number of

simplices is S ∼ O(N).

2.3.2 Smoothness of the uncertainty

We now characterize precisely the smoothness of the uncertainty function proposed

in Algorithm 2.2.

Lemma 3. The function ek(x) is C0 continuous.

Proof. Consider a point x on the boundary between two different simplices ∆k
i and ∆k

j with

circumcenters zk
i and zk

j and local uncertainty functions ek
i (x) and ek

j(x). By Definition 3,

the intersection of ∆k
i and ∆k

j, when it is nonempty, is another simplex of lower dimension,

denoted here simply as ∆. The projection of zk
i and zk

j on the lower-dimensional hyperplane

that contains ∆ is by construction its circumcenter, denoted here as z. Thus, the lines from

zk
i to z and from zk

j to z are perpendicular to the simplex ∆. Now consider x∆ as one of the

vertices of the simplex ∆. Some trivial analysis of the triangles zk
i − x − z and zk

i − x∆ − z
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give:

ek
i (x) = ‖zk

i − x∆‖
2
− ‖zk

i − x‖2,

‖zk
i − x∆‖

2 = ‖zk
i − z‖2 + ‖z − x∆‖

2,

‖zk
i − x‖2 = ‖zk

i − z‖2 + ‖z − x‖2.

Combining these three equations gives

ek
i (x) = ‖z − x∆‖

2
− ‖z − x‖2.

By similar reasoning, we obtain

ek
j(x) = ‖z − x∆‖

2
− ‖z − x‖2.

Hence, ek
i (x) = ek

j(x) for all x ∈ ∆ (that is, at the interface of simplices ∆k
i and ∆k

j). �

The continuity of ek(x) is illustrated in 2D in Figure 2.1, where two neighboring

simplices (triangles) with vertices {(0.2, 0), (0, 1), (1, 1)} and {(0, 1), (1, 1), (0.5, 2)} are

represented.

We now establish a stronger property, that the uncertainty function is Lipschitz.

Lemma 4. The function ek(x) generated by Algorithm 2.2 at the kth iteration is Lipschitz

within the convex polyhedron L, with a Lipschitz constant of rk
max, where rk

max is the maxi-

mum circumradius of the triangulation ∆k.

Proof. We first show that ek(x) is Lipschitz inside each simplex; we then show that ek(x) is

Lipschitz everywhere.
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Figure 2.1: The uncertainty function ek(x) over two neighboring simplices in two
dimensions.

Assume first that x1 and x2 are inside the simplex ∆k
i , with circumcenter zk

i and

circumradius rk
i . By (3.14), we have

ek(x1) − ek(x2) = ‖x2 − zk
i ‖

2
− ‖x1 − zk

i ‖
2.

Now, assume that z∗ is a projection of zk
i along the line from x1 to x2, and that xM is the

midpoint between x1 and x2. It follows that

| ‖x2 − zk
i ‖

2
− ‖x1 − zk

i ‖
2
| = | ‖x2 − z∗‖2 − ‖x1 − z∗‖2 |

= 2 ‖z∗ − xM‖‖x1 − x2‖.

Since

‖z∗ − xM‖ ≤ max (‖z∗ − x1‖, ‖z∗ − x2‖) ≤ rk
i ,
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we have

|ek(x1) − ek(x2)| ≤ 2 rk
i ‖x1 − x2‖. (2.6)

Thus, the uncertainty function ek(x) is Lipschitz inside each simplex.

In order to prove that ek(x) is Lipschitz over the entire feasible domain L, consider

now x1 and x2 as two arbitrary points inside L, and define a series of points t1, t2, . . . , tm on

the line segment between x1 to x2 such that t1 = x1 and tm = x2, and such that each couple

(ti, ti+1) lies within the same simplex, with circumradius ri. In other words, each point ti for

1 < i < m must be at the interface between two neighboring simplices along the line from

t1 = x1 to tm = x2. In this framework, we have

|ek(x1) − ek(x2)| ≤
m−1∑
i=1

|ek(ti) − ek(ti+1)|.

Since ti and ti+1 are in the same simplex, (2.6) gives

|ek(ti) − ek(ti+1)| ≤ 2 rk
i ‖ti − ti+1‖.

Since t1, t2, . . . , tm lie along the same line, we have

‖t1 − tm‖ =

m−1∑
i=1

‖ti − ti+1‖.

Combining these three equations, we have

|ek(x1) − ek(x2)| ≤ 2 max
1≤i≤m−1

(rk
i ) ‖x1 − x2‖

≤ 2 rk
max ‖x1 − x2‖. �
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2.3.3 Minimizing the search function

At iteration k of Algorithm 2.2, the search function sk(x) = pk(x) − Kek(x) must

be minimized over x ∈ L. Recall that, within each simplex ∆k
i in the triangulation, the

uncertainty function ek(x) is defined by sk
i (x) = pk(x) − Kek

i (x) for x ∈ ∆k
i . In order to

minimize sk(x) over the entire feasible domain L, the minima xk
min,i must first be found

within each simplex ∆k
i as follows:

xk
min,i = argminx∈∆k

i
sk

i (x); (2.7a)

the global minimum xk
min = argminx∈Lsk(x) is then given by xk

min = xk
min,imin

where

imin = argmini∈{1,...,S k}

[
sk

i (xk
min,i)

]
, (2.7b)

where S k is the number of simplices in the triangulation ∆k. In other words, in order to

find xk
min, we must first solve S k nonconvex optimization problems with linear constraints

x ∈ ∆k
i . This computational task is significantly simplified by following result.

Lemma 5. If the linear constraints x ∈ ∆k
i in the optimization problems defined in (2.7a) are

relaxed to the entire feasible domain, x ∈ L, the resulting value of xk
min remains unchanged.

Proof. By Lemma 2, for any feasible point x ∈ L and for any i such that 1 ≤ i ≤ S k,

ek(x) ≥ ek
i (x). More precisely,

ek(x) = max
i∈{1,...,S k}

[
ek

i (x)
]
.
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Since K is a positive real number,

sk(x) = pk(x) − K ek(x) = min
i∈{1,...,S k}

[
pk(x) − K ek

i (x)
]
.

By the definition of xk
min

sk(xk
min) = min

x∈L

[
sk(x)

]
.

Combining the above equations and swapping the order of the minimization gives

sk(xk
min) = min

x∈L
min

i∈{1,...,S k}

[
p(x) − K ek

i (x)
]

= min
i∈{1,...,S k}

min
x∈L

[
p(x) − K ek

i (x)
]
.

It can be observed that minx∈L[p(x) − K ek
i (x)] is just the optimization problem (2.7a) with

the linear constraint x ∈ ∆k
i relaxed to x ∈ L; thus, when this constraint is relaxed in this

manner in (2.7), the resulting value of sk(xk
min) remains unchanged. �

At each iteration k, we thus seek to minimize the local search function sk
i (x) for

x ∈ L for each i ∈ {1, . . . , S k}; if for a given i the minimizer of sk
i (x) lies outside of ∆k

i , that

minimizer is not the global minimum of sk(x). Hence, we may terminate and reject any

such search as soon as it is seen that the minimizer of sk
i (x) lies outside of ∆k

i .

Using a local optimization method with a good initial guess within each simplex, the

local minimum of sk
i (x) within the simplex ∆k

i , if it exists, can be found relatively quickly.

For the smooth local search functions sk
i (x) we use in the present work, we have analytic

expressions for both the gradient and the Hessian; these expressions play a valuable role in

the local minimization of these functions.

Recall that the local search functions sk
i (x) considered in Algorithm 2.2 are linear
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combinations of the local uncertainty functions ek
i (x) and the user’s interpolation function

of choice, pk(x). The local uncertainty function ek
i (x) is a quadratic function whose gradient

and Hessian are

∇ek
i (x) = −2 (x − xsi), ∇2ek

i (x) = −2 I.

For the polyharmonic spline interpolation method used in the present numerical implemen-

tation, analytical expressions for the gradient and Hessian of the interpolation function are

derived in the appendix. If a different interpolation strategy is used, for the purpose of

the following discussion, we assume that analytical expressions for the gradient and the

Hessian of the interpolation function are similarly available.

In order to locally minimize the function sk
i (x) within each simplex, a good initial

guess of the solution is valuable. To generate such an initial guess analytically, consider

the result of a simplified optimization problem obtained by implementing piecewise linear

interpolation of the datapoints at the vertices of the simplex ∆k
i , together with the local

uncertainty function ek
i (x). Following this approach, we rewrite the coordinates of a point

inside the simplex ∆k
i as a linear combination of its vertices:

x = Xi w,

where Xi is an n × (n + 1) matrix whose columns are the coordinates of the n + 1 vertices

of the simplex ∆k
i , and w is an (n + 1)-vector with components w j that form a partition of

unity; that is,
n+1∑
j=1

w j = 1, w j ≥ 0 j = 1, 2, . . . , n + 1,
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which may be written compactly in matrix form as

[
1 . . . 1

]
w = 1, −Iw ≤ 0. (2.8)

In each simplex ∆k
i , we thus minimize a new search function sk

i (w) defined as

sk
i (w) = Yi w − K

[
R2

i − (Xi w − zk
i )

T (Xi w − zk
i )
]

= K wT XT
i Xi w + (Yi − 2K(zk

i )
T Xi) w

+ K [(zk
i )

T zk
i − R2

i ]. (2.9)

where Yi is an 1 × (n + 1) row vector whose elements are the function values at the n + 1

vertices of the simplex ∆k
i . Minimization of (2.9), subject to the constraints (2.8), can be

performed exceptionally quickly using convex quadratic programming. This optimization

gives a vector of weights w0, which defines the initial guess for the local minimization of

the function sk
i (x) within the simplex ∆k

i . Since we have analytic expressions for the gra-

dient and Hessian of sk
i (x), and a good initial guess of its minimum, we can apply either

a Trust Region method, or Newton’s method with Hessian modification, in order to find

quickly the minimum of sk
i (x). Newton’s method is a line search algorithm with a descent

direction derived based on both the gradient and the Hessian of the function; because of

the nonconvexity of sk
i (x), Hessian modification is required to ensure convergence. The

Hessian modification that has been used in our numerical code is modified Cholesky fac-

torization [28], and the line search algorithm used is a backtracking line search algorithm

(Algorithm 3.1 in [29]). Convergence of this local optimization algorithm is proved in [29].
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2.3.4 Convergence of Algorithm 2.2

Before analyzing the convergence properties of Algorithm 2.2, we establish a useful

lemma.

Lemma 6. Assume that the function of interest f (x) and the interpolating function pk(x) at

step k > 0 of Algorithm 2.2 are continuously twice differentiable functions with bounded

Hessians. Denote λmax(·) as the maximum eigenvalue of its argument, and K is chosen as

follow

K > λmax(∇2 f (x) − ∇2 pk(x))/2 (2.10)

for all x located in the feasible domain L. Then, there is a point x̃ ∈ L for which

sk(x̃) ≤ f (x∗), (2.11)

where x∗ is a global minimizer of f (x).

Proof. Consider ∆k
i as a simplex in ∆k which includes x∗. Since the uncertainty function ek

i

is defined for all x inside the simplex ∆k
i as

ek
i (x) = (rk

i )2 − (x − zk
i )

T (x − zk
i ),

the Hessian of the uncertainty function ek
i is simply

∇2ek
i (x) = −2 I.
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Now define a function G(x) for all x ∈ L such that

G(x) = pk(x) − K ek(x) − f (x), (2.12)

and thus

∇2G(x) = (∇2 pk(x) − ∇2 f (x)) + 2 K I. (2.13)

By choosing K according to (2.10), the function G(x) is strictly convex inside the closed

simplex that includes x∗; thus, the maximum value of G(x) is located at one of its vertices

(see, e.g. Theorem 1 of [30]). Moreover, by construction, the value of G(x) at the vertices

of this simplex is zero; thus, G(x∗) ≤ 0, and therefore sk(x∗) ≤ f (x∗). �

Lemma 6 allows us to establish the convergence of Algorithm 2.2.

Theorem 2. At step k ≥ 0 of Algorithm 2.2, assume that S k is the set of available data-

points, that the function of interest f (x) and the interpolating function pk(x) are continu-

ously twice differentiable functions, and that Lp is a Lipschitz constant of pk(x). Assume

also that K satisfies (2.10). Define x∗ and xk as the global minimizers of f (x) and the

search function sk(x) at step k, respectively, and rk
max as the maximum circumradius of the

triangulation ∆k; then

0 ≤ min
z∈S k

f (z) − f (x∗) ≤ εk where (2.14a)

εk = (L f + Lp + 2Krk
max) ·min

i<k
‖xi − xk‖. (2.14b)

Proof. Select that i, with i < k, such that δ = ‖xi− xk‖ is minimized. By the Lipschitz norms
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of pk(x) and (2.6), we have

‖pk(xi) − pk(xk)‖ ≤ Lp δ,

and ‖ek(xi) − ek(xk)‖ ≤ 2 rk
max δ.

Noting that sk(x) = pk(x) − Kek(x), we have

‖sk(xi) − sk(xk)‖ ≤ (Lp + 2 Krk
max) δ.

Since xi is one of the evaluation points at the k-th step, at this point the value of the uncer-

tainty function ek(xi) is zero, and the values of the interpolant pk(xi) and the function f (xi)

are equal. That is,

sk(xi) = pk(xi) − K ek(xi) = f (xi). (2.15)

Since xk is taken to be the global minimum of sk(x) and K satisfies (2.10), based on Lemma

6, sk(xk) ≤ f (x∗); Thus,

f (x∗) ≥ sk(xk) ≥ sk(xi) − (Lp + 2 K rk
max) δ

= f (xi) − (Lp + 2 Krk
max) δ

≥ [ f (xk) − L f δ] − (Lp + 2 K rk
max) δ,

⇒ f (x∗) ≥ f (xk) − (L f + Lp + 2 K rk
max) δ. �

Remark 3. Algorithm 2.2 begins from a set of initial datapoints, and computes one new

datapoint at each iteration. In this setting, (2.14) provides a (sometimes conservative)

termination certificate that guarantees that a desired degree of convergence εdes has been
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attained. Algorithm 2.2 is simply marched in k until εk ≤ εdes, where εk is defined in (2.14b).

Note that, if rk
max is bounded, εk → 0 in the limit in which k → ∞. Thus, there is a

finite k for which εk ≤ εdes.

Remark 4. The existence of a bound Lp on the Lipschitz norm of pk(x) is required. The

Lipschitz norm Lp of the interpolation pk(x) is, in general, cumbersome to compute. Subject

to the above stated assumptions, a simpler way to prove convergence of (and, to certify

a termination criterion for) Algorithm 2.2 that ensures that (2.14a) is attained for some

εk ≤ εdes is to calculate εk using linear interpolation, for which it can be shown that Lp ≤ L f ,

thereby replacing (2.14b) with

εk = (2 L f + 2Krk
max) ·min

y∈S k
‖xk − y‖.

Remark 5. In addition to the required assumptions of a bound Lp for the Lipschitz norm

of pk(x), and existence of K which (2.10) holds, a bound for the maximum circumradius

rk
max of the triangulation ∆k is also required. In general, algorithm 2.2 cannot guaranty this

property. A slight but technically important change to Algorithm 2.2 is presented in the

next section to address this issue.

2.4 Polyharmonic spline interpolation

The algorithms described above require the gradient and Hessian of the interpolant

being used to facilitate Newton-based minimizations of the search function. Since our nu-

merical tests all implement the polyharmonic spline interpolation formula, we now derive

analytical expressions of the gradient and Hessian in this case.

The polyharmonic spline interpolation p(x) of a function f (x) in Rn is defined as
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a weighted sum of a set of radial basis functions ϕ(r) built around the location of each

evaluation point, plus a linear function of x:

p(x) =

N∑
i=1

wi ϕ(r) + vT


1

x

 , (2.16)

where ϕ(r) = r3 and r = ‖x − xi‖.

The weights wi and vi represent N and n + 1 unknowns, respectively, to be determined

through appropriate conditions. First, we match the interpolant p(x) to the known values

of f (x) at each evaluation point xi, i.e. p(xi) = f (xi); this gives N conditions. Then, we

impose the orthogonality conditions
∑

i wi = 0 and
∑

i wixi j = 0, j = 1, 2, . . . , n. This

gives n + 1 additional conditions. Thus,


F VT

V 0



w

v

 =


f (xi)

0

 where

Fi j = ϕ(‖xi − x j‖) and

V =


1 1 . . . 1

x1 x2 . . . xN

 .
(2.17)

The gradient and Hessian of p(x) may now be written as follows:

∇p(x) = ∇


N∑

i=1

wi‖x − xi‖
3 + vT


1

x




= 3
N∑

i=1

wi‖x − xi‖(x − xi) + v̄,
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where v̄ = [v2, v3, ..., vn+1]T , and

∇2 p(x) = ∇2


N∑

i=1

wi‖x − xi‖
3 + vT


1

x




= 3
N∑

i=0

wi

(
(x − xi)(x − xi)T

‖x − xi‖
+ ‖x − xi‖In×n

)
.

Note that the calculation of the weights of a polyharmonic spline interpolant re-

quires the solution of a (N +n+1)× (N +n+1) linear system. This system is not diagonally

dominant, and does not show an easily-exploitable sparsity pattern facilitating fast factor-

ization techniques. Nevertheless, since our algorithm adds only one point to the set of N

evaluation points at each iteration, we can avoid the solution of the new linear system from

scratch, and instead implement a rank-one update at each iteration as follows. First, for

the set of initial points, we calculate the inverse A =
[

F VT

V 0

]
. This step is somewhat time

consuming, but reduces the computations required in subsequent steps. Using Matrix In-

version Lemma, we then update the inverse of A with the new information given at each

step as follows:

A−1
N+1 =

AN bT

b 0

−1

=

A−1
N + A−1

N bT bA−1
N /c −A−1

N bT /c

−bA−1
N /c 1/c

 , (2.18)

where b is a vector of length n + 1 defined as b =
[

1 xN+1
]T , and c = −bA−1

N bT is a scalar.

Multiplication of A−1
N+1 in (2.18) with the vector

[
f (xi) 0 f (xN+1)

]T gives the vector of weights

in an unordered fashion, i.e.
[

wi vi wN+1)
]T . Therefore, before adding the new function eval-

uation in the following iteration and performing the next rank-one update, it is necessary to
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permute the matrix A−1
N+1, given by

A−1
N+1 =


F VT ϕ(‖xN+1 − xi‖)T

V 0
[
1 xN+1

]
ϕ(‖xN+1 − xi‖)

 1

xN+1

 0


−1

,

such that the desired 2 × 2 block form at the next iteration is recovered:

PA−1
N+1PT =

F+ VT
+

V+ 0


−1

=



F ϕ(‖xN+1 − xi‖)T VT

ϕ(‖xN+1 − xi‖) 0
[
1 xN+1

]
V

 1

xN+1

 0



−1

.

After this permutation, it is possible to apply the Matrix Inversion Lemma (2.18) at the

following step.

Remark 6. Another fast method to find the coefficients of radial basis functions is described

in [31]. Since the present algorithms build the dataset incrementally, the method described

above is less expensive in the present case.

As mentioned earlier, variations of Kriging interpolation are often used in Response

Surface Methods, such as the Surrogate Management Framework, for derivative-free opti-

mization. DACE (see [32]) is one of the standard packages used for numerically computing

the Kriging interpolant. Figures 2.2a and 2.2b compare of the polyharmonic spline inter-

polation method described above and the Kriging interpolation method computed using

DACE, as applied to the test function f (r) = r ∗ sin 1/r, where r2 = x2 + y2 with N = 1004

data points. The data points used in this example are the 4 corners of a square domain,

and 1000 random-chosen points clustered within a small neighborhood of the center of the
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a The error of the polyharmonic spline interpolation interpolant (5.7).
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b The error of the Kriging interpolant with a Gaussian model for the
corrrelation, computed using DACE.

Figure 2.2: Comparison of polyharmonic spline interpolation and Kriging interpolant.
The difference between the actual function, f (r) = r ∗ sin 1/r, where r2 = x2 + y2, and its
interpolant for two different interpolation strategies when 1000 function evaluations are

clustered near the center of a square domain.

square, which highlights the numerical challenge of performing interpolation when grid

points begin to cluster in a particular region, which is common when a response surface
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method for derivative-free optimization approaches convergence. Figures 2.2a and 2.2b

plot the difference between the real value of f and the value of the corresponding inter-

polants.

An observation which motivated the present study is that, in such problems, the

Kriging interpolant is often spurious in comparison with other interpolation methods, such

as polyharmonic splines. Note that various methods have been proposed to regularize such

spurious interpolations in the presence of clustered datapoints, such as combining inter-

polants which summarize global trends with interpolants which account for local fluctu-

ations. Our desire in the present effort was to develop a robust response surface method

that can implement any good interpolation strategy, the selection of which is expected to

be somewhat problem dependent.

2.5 Bounding the circumradii

In the previous section, we established that Algorithm 2.2 converges to the global

minimum of the cost function under two assumptions: (a) the underlying function of inter-

est f (x) is Lipschitz and twice differentiable with bounded Hessian, and (b) the maximum

circumradii of the simplicies in the triangulations are bounded as the algorithm proceeds.

Without assumption (a), or something like it, not much can be done to assure global conver-

gence, beyond requiring that the grid becomes everywhere dense as the number of function

evaluations approaches infinity. Assumption (b), however, is problematical, as Algorithm

2.2 doesn’t itself ensure this condition. In this section, we make a small but important

technical adjustment to Algorithm 2.2 to ensure that condition (b) is satisfied.

Distributing points in Rn such that the resulting Delaunay triangulation of these

points has a bounded maximum circumradius is a common problem in 2D and 3D mesh
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generation (see [33], [34], [35]). Applying known strategies for this problem to the present

application is challenging, however, due to the incremental nature of the point generation,

the interest in n > 3, the large number and nonuniform distribution of points generated, and

the possibly sharp corners of the feasible domain itself. In this section, we thus develop a

new method for solving this problem that meets these several challenges.

The feasible domain L considered is defined in (2.1a); we assume for the remainder

of this section that the problem is n-dimensional, is bounded by m constraints which result

in M vertices of the feasible domain, that all redundant constraints have been eliminated

[see step (B) of Algorithm 2.1], and that all equality constraints implied by the condition

Ax ≤ b have been projected out of the problem [see step (C) of Algorithm 2.1].

Definition 5. Consider P as a point in L, aT
i x ≤ bi as a constraint which is not active (that

is, equality) at P, and Hi as the (n − 1)-dimensional hyperplane given by equality in this

constraint. The feasible constraint projection of P onto Hi is the point PL defined as the

outcome of the following procedure:

0. Set k = 1 and P1
L = P.

1. Define mk
a as the number of active constraints at Pk

L, and Hk
L as the hyperplane (with

dimension less than or equal to n) implied by this set of constraints. If mk
a = n − 1,

set PL = Pk
L and exit.

2. If mk
a > 0 and there is no vertex of L that is contained within both Hk

L and Hi, set

PL = Pk
L and exit.

3. Obtain Pk
R as the point which is contained within both Hk

L and Hi, and has minimum

distance from PL. If Pk
R ∈ L, set PL = Pk

R and exit.
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aTi x = bi

P = P 1
L

PL = P 1
R

a Complete, termination at step 3 of iteration
k = 1.

aTi x = bi

P = P 1
L

P 2
L

P 1
RPL = P 2

R

b Complete, termination at step 3 of iteration
k = 2.

aTi x = bi

P = P 1
L

PL = P 2
L

P 1
R

c Incomplete, termination at step 1 of iteration
k = 2.

aTi x = bi

P = P 1
L

PL = P 2
L

P 1
R

d Incomplete, termination at step 2 of iteration
k = 2.

Figure 2.3: Feasible constraint projections of various points P onto the constraint
aT

i x ≤ b.
.

4. Otherwise, set Pk+1
L as the intersection of the line segment from Pk

L to Pk
R with the

boundary of L, increment k, and repeat from step 1.

If the above-described procedure exits at step 3, and thus PL ∈ Hi, then PL is said to be a

complete feasible constraint projection; otherwise (that is, if the procedure exits at step 1 or

2), PL is said to be an incomplete feasible constraint projection. The procedure described

above will terminate after some k steps, where k < n; the Pk
L for k < k are referred to as

intermediate feasible constraint projections.

Some examples of complete and incomplete feasible constraint projections are given in

Figure 2.3.
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Lemma 7. Consider the Pk
L as the intermediate feasible constraint projections at each step

k ≤ k of a feasible constraint projection (see Definition 5), which exits at iteration k, of

some point P ∈ L onto the hyperplane Hi defined by the constraint aT
i x ≤ bi. For any point

V which lies within the intersection of Hk
L and Hi,

‖P − V‖
‖P − PT ‖

≤
‖Pk

L − V‖

‖Pk
L − Pk

T ‖
(2.19)

for k ≤ k, where PT and Pk
T are the projections of P and Pk

L on Hi.

Proof. In the procedure described in Definition 5, at each step k, if Pk
R is in L; then Pk+1

L =

Pk
R. By construction, V is in the intersection of Hk

L and Hi, and Pk
R is the point in the

intersection of Hk
L and Hi that has minimum distance from Pk

L; it thus follows that
−−−−→
Pk

LPk
R is

perpendicular to
−−−→
Pk

RV . Since Pk+1
L is a point on the line between Pk

L and Pk
R, it follows that

−−−−−→
Pk+1

L Pk
R is also perpendicular to

−−−→
Pk

RV . Thus,

‖Pk
L − V‖2 = ‖Pk

L − Pk
R‖

2 + ‖V − Pk
R‖

2,

‖Pk+1
L − V‖2 = ‖Pk+1

L − Pk
R‖

2 + ‖V − Pk
R‖

2,

‖Pk+1
L − Pk

R‖ ≤ ‖P
k
L − Pk

R‖,

‖Pk
L − V‖

‖Pk
L − Pk

R‖
≤
‖Pk+1

L − V‖

‖Pk+1
L − Pk

R‖
. (2.20)

Since Pk
L, Pk+1

L and Pk
R are collinear and Pk

R is on the hyperplane aT
i x = bi, it follows that

‖Pk+1
L − Pk

R‖

‖Pk
L − Pk

R‖
=
‖Pk+1

L − Pk+1
T ‖

‖Pk
L − Pk

T ‖
. (2.21)

Combining (2.20) and (2.21) over several steps k and noting that P1
L = P, (2.19) follows.

�
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Definition 6. Consider P as a point in a set of points S in the convex polyhedra L, aT
i x = bi

as a constraint which is not active at P, and Hi as the hyperplane defined by this constraint.

The points Pk
L are taken as the intermediate feasible constraint projections of P onto Hi (see

Definition 5, which we take as exiting at iteration k). With respect to some parameter r > 1,

the point P is said to be poorly situated with respect to the constraint aT
i x ≤ bi if the feasible

constraint projection is complete and, for any point V ∈ S which is in both Hk
L and Hi,

‖Pk
L − V‖

‖Pk
L − Pk

R‖
> r, ∀ 1 ≤ k ≤ k; (2.22)

otherwise, the point P is said to be well situated with respect to the constraint aT
i x ≤ bi.

The set of data points S is a well-situated set if, for all pairs of points P ∈ S and constraints

aT
i x ≤ bi defining L, P is well-situated with respect to the constraint aT

i x ≤ bi.

Remark 7. It is easy to verify that the set of vertices of the feasible domain L is itself a

well-situated set for any r > 1.

The important property of a well-situated set S is that the maximum circumradius

of the Delaunay triangulation of S is bounded by r [the factor used in (2.22), which will be

considered further at the end of §2.5] and some parameters related to L. These geometric

parameters are identified in Definitions 7 and 8, and existence of a bound for the maximum

circumradius is proved in Theorem 3, based on Lemmas 9 and 10.

Definition 7. Consider Aa(V) as the set of active constraints at a vertex V of a feasible

domain L with redundant constraints eliminated [see step (B) of Algorithm 2.1], and all

equality constraints removed [see step (C) of Algorithm 2.1]. Since there are no redundant

constraints, Aa(V) includes exactly n constraints which are linearly independent. Consider

aT
i x ≤ bi as a constraint in Aa(V), and Ai

a(V) as the set of all active constraints at V except



40

ai

vi

θi(V )

aT
i

x = bi

V

Figure 2.4: The skewness of a vertex V with respect to constraint aT
i x ≤ bi in n = 3

dimensions is defined as S i(V) = 1/cos(θi(V)), where θi(V) is the angle indicated.

{aT
i x ≤ bi}. It can be observed that the space defined by Ai

a(V) is a ray from V. In other

words, each point in this one-dimensional space can be written as V + α vi, where α is a

positive real number. Defining θi(V) as the angle between ai and vi, the skewness of the

vertex V with respect to the constraint aT
i x ≤ bi is defined as S i(V) = 1/ cos(θi(V)). The

skewness of the feasible domain L, denoted S (L), is the maximum of S i(V) over all vertices

V and active constraints aT
i x ≤ bi at V.

Remark 8. If the feasible domain L is defined by simple box constraints (a ≤ x ≤ b), then

the skewness of all vertices with respect to all active constraints (and, thus, the skewness

of the domain L itself) is equal to 1. In n = 2 dimensions, the skewness of each vertex is

simply S i(V) = 1/|sin(θ)|, where θ is the angle of vertex V. In n = 3 dimensions, the value

of θi(V) is illustrated in Figure 2.4. Note that, in general, S i(V) ≥ 1.
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Lemma 8. Consider V as a vertex of L, and Aa(V) as the set of constraints active at V.

Consider some point x ∈ L at which the set of active constraints, denoted Aa1(V), is a

proper subset of Aa(V). Denote aT
i x ≤ bi as a constraint in Aa(V) which is not in Aa1(V).

Define x1 as the projection of x onto the hyperplane defined by aT
i x = bi, and define x2 as

the projection of x onto the hyperplane defined by the union of aT
i x = bi and Aa1(V). Then,

1 ≤
‖x − x2‖

‖x − x1‖
≤ S i(V) ≤ S (L). (2.23)

Proof. Consider x3 as the point in the hyperplane defined by Ai
a(V) with minimum distance

from x, where Ai
a(V) is identified in Definition 7. By construction, ‖x− x3‖ ≥ ‖x− x2‖; note

that x3 is also in the hyperplane defined by Aa1(V). Moreover, according to Definition 7,

‖x − x3‖/‖x − x1‖ = S i(V). �

Definition 8. For each pair of vertices V of L and constraints aT
i x ≤ bi not active at

V, VL is defined as the projection of V onto the hyperplane defined by aT
i x = b. Define

L1 = maxx,y∈L ‖x − y‖ as is the diameter of L. The aspect ratio κ(L) is taken as the maximum

value of L1/‖V − VL‖ for all pairs of vertices V and constraints aT
i x ≤ bi not active at V.

Lemma 9. Consider S as a set of feasible points in L (including the vertices of L) which

is well-situated (see Definition 6) with factor r. Then, for each pair of points P ∈ S and

constraints aT
i x ≤ bi not active at P, there is a point V ∈ S such that aT

i V = bi and

1 ≤
‖P − V‖
‖P − PT ‖

≤ max {rS (L), κ(L)}, (2.24)

where PT is taken as the projection of P onto the hyperplane Hi, and S (L) and κ(L) are the

skewness and aspect ratio of the feasible domain L.
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VL

V

||V
L
�

V
||

L
1

aT
i x = bi

1

Figure 2.5: Aspect ratio of the convex polyhedra. This figure represent the aspect ratio
of the convex polyhedra L. Note that the vertex V and constraint aT

i x = bi has minimum
distance from all pair of vertex and constraints, and L1 is the diameter of the polyhedra

L. The aspect ratio is equal to κ(L) =
L1

V−VT
where ‖V − VT ‖ and L1 are shown.
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Proof. Consider PL as the feasible constraint projections of P onto Hi (see Definition 5,

which we take as exiting at iteration k). According to this procedure, there are three possible

termination conditions, each of which is considered below.

First, consider the case in which the feasible constraint projection is terminated at

step 2. In this case, PL = Pk
L, and there is no vertex of L that is contained within both Hk

L

and Hi. Therefore, the point in intersection of the feasible domain L and the hyperplane Hk
L

which has minimum distance from the hyperplane Hi is a vertex of L, denoted V . Thus,

‖V − VT ‖ ≤ ‖PL − PLT ‖, (2.25)

where PLT , Pk
T and VT are the projections of PL, Pk

L and V onto Hi; thus, PLT = Pk
T . Further,

at each step of the procedure of feasible constraint projection (Definition 5), the distance

of the point considered to Hi is reduced. Thus,

‖PL − PLT ‖ = ‖Pk
L − Pk

T ‖ ≤ ‖P − PT ‖. (2.26)

Using (2.25) and (2.26),

‖V − VT ‖ ≤ ‖P − PT ‖ (2.27)

On the other hand, ‖P − V‖ ≤ L1, where L1 is the diameter of the feasible domain L. Thus,

‖P − V‖
‖P − PT ‖

≤
L1

‖V − VT ‖
≤ κ(L). (2.28)

Next, consider the case in which the feasible constraint projection is terminated at

step 1. In this case, the number of active constraints at PL is ma = n − 1, and PL = Pk
L. If

there is no vertex of L that is contained within both Hk
L and Hi, the situation is similar to
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the previous case, and (2.28) again follows. On the other hand, if there is a vertex V of L

which is in both Hk
L and Hi, then it follows from Lemma 7 that

‖P − V‖
‖P − PT ‖

≤
‖PL − V‖
‖PL − PLT ‖

. (2.29)

Note that Aa(PL) is a proper subset of Aa(V) which does not include the constraint aT
i x ≤

bi, and V is the only point which is in both Hk
L and Hi, as the intersection of n linear

independent hyperplanes is a unique point. Therefore, via Lemma 8 (taking x = PL and

thus, by construction, x1 = PLT and x2 = V),

‖PL − V‖
‖PL − PLT ‖

≤ S i(V) ≤ S (L) (2.30)

Using (2.29) and (2.30)
‖P − V‖
‖P − PT ‖

≤ S (L) ≤ rS (L). (2.31)

Finally, consider the case in which the feasible constraint projection is terminated

at step 3, and thus the process is complete, and PL = Pk
R. Since P is well situated with

respect to the constraint aT
i x ≤ bi (see Definition 6), there is a k ∈ {1, 2, . . . , k} and a point

V ∈ S which is in both Hk
L and Hi such that

‖Pk
L − V‖

‖Pk
L − Pk

R‖
≤ r. (2.32)

Since V is in both Hk
L and Hi, there is a vertex of L, denoted W, which is in both Hk

L and

Hi. Moreover, Pk
L is not in Hi, and Aa(Pk

L) is a proper subset of Aa(W). Denote again Pk
T

as the projection of Pk
L on the hyperplane Hi. Via Lemma 8 (taking x = Pk

L and thus, by
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construction, x1 = Pk
T and x2 = Pk

R), it follows that

‖Pk
L − Pk

R‖

‖Pk
L − Pk

T ‖
≤ S i(W) ≤ S (L). (2.33)

Combining (2.32) and (2.33),
‖Pk

L − V‖

‖Pk
L − Pk

T ‖
≤ rS (L)

Thus, via Lemma 7, it follows that

‖P − V‖
‖P − PT ‖

≤
‖Pk

L − V‖

‖Pk
L − Pk

T ‖
≤ rS (L). (2.34)

�

Lemma 9 allows us to show that the maximum circumradius of a Delaunay trian-

gulation of a well-situated set of points is bounded. In order to do this, some additional

lemmas and definitions are helpful.

Definition 9. A simplex ∆x in a Delaunay triangulation ∆k of a set of points S (including

the vertices of L) which has the maximum circumradius among all simplices is called a

maximal simplex. Note that a given triangulation might have more than one maximal

simplices.

A simplex ∆x is called a candidate simplex if either (a) the circumcenter of ∆x

is inside or on the boundary of ∆x, or (b) an n − 1 dimensional face p of this simplex

forms part of the boundary of L corresponding to equality in the constraint aT
i x ≤ bi, and

the circumcenter of ∆x violates this constraint. Case (a) is denoted an interior candidate

simplex, and case (b) is denoted a boundary candidate simplex.
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a An interior candidate simplex is maximal. b A boundary candidate simplex is maximal.

Figure 2.6: Candidate simplices in triangulation. The position of candidate simplices for
a representative triangulation. Hatched triangles are interior candidate simplices, and

triangles filled with stars are boundary candidate simplices. The dark shaded area is the
maximal simplex.

Lemma 10. There is a maximal simplex in a Delaunay triangulation ∆k of a set of points

S (including the vertices of L) which is a candidate simplex.

Proof. Consider ∆x as a maximal simplex of a Delaunay triangulation ∆k. If ∆x is a candi-

date simplex, then the lemma is true. Otherwise, define p as an n − 1 dimensional face of

this simplex, lying within an n − 1 dimensional hyperplane H, in which V , the vertex of ∆x

that is not in H, and Z, the circumcenter of ∆x, are on opposite sides of H, and none of the

n − 1 dimensional boundaries of L lie within H.

Then there is a simplex ∆1
x which is a neighbor of ∆x that shares the face p. Define

V ′ as the vertex of ∆1
x which is not in H, and Z′ as the circumcenter of ∆1

x. Since the

triangulation is Delaunay

‖Z − V‖ ≤ ‖Z − V ′‖ and ‖Z′ − V ′‖ ≤ ‖Z′ − V‖. (2.35)

Define ZT as the projection of both Z and Z′ on H (by construction, they have the same

projection), and VT and V ′T as the projections of V and V ′ on H, respectively. By the
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assumption, Z and V ′ are on one side of H, and V is on the other side. Thus, (2.35) implies

‖VT − ZT ‖
2 + [‖ZT − Z‖ + ‖V − VT ‖]2 ≤ ‖V ′T − ZT ‖

2 + [‖V ′ − V ′T ‖ − ‖ZT − Z‖]2. (2.36)

Moreover, regardless of the position of Z′, we may write

‖Z′ − V ′‖2 ≥ ‖V ′T − ZT ‖
2 + [‖V ′ − V ′T ‖ − ‖ZT − Z′‖]2,

‖Z′ − V‖2 ≤ ‖VT − ZT ‖
2 + [‖V ′ − V ′T ‖ + ‖ZT − Z′‖]2;

thus, due to (2.35),

‖V ′T − ZT ‖
2 + [‖V ′ − V ′T ‖ − ‖ZT − Z′‖]2 ≤ ‖VT − ZT ‖

2 + [‖V − VT ‖ + ‖ZT − Z′‖]2. (2.37)

Adding (2.36) and (2.37) gives

‖ZT − Z‖‖V − VT ‖ − ‖V ′ − V ′T ‖‖ZT − Z′‖ ≤ ‖V − VT ‖‖ZT − Z′‖ − ‖V ′ − V ′T ‖‖ZT − Z‖,

and thus

‖ZT − Z‖[‖V − VT ‖ + ‖V ′ − V ′T ‖] ≤ ‖ZT − Z′‖[‖V − VT ‖ + ‖V ′ − V ′T ‖],

‖Z − ZT ‖ ≤ ‖Z′ − ZT ‖. (2.38)

Define W as a common vertex of ∆x and ∆′x, noting that W must be in H. Since Z − ZT and

Z′ − ZT are perpendicular to ZT −W, (2.38) gives

‖Z −W‖ ≤ ‖Z′ −W‖. (2.39)
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It may be shown analogously that, if (2.35) is a strict inequality, then (2.39) is a strict

inequality as well. Further, since ∆x is a maximal simplex, ‖Z − W‖ ≥ ‖Z′ − W‖; thus,

the inequality (2.39) must be an equality, and ∆x and ∆′x are both maximal. We may also

conclude that5 (2.35) must also be an equality, which implies that Z and Z′ are, in fact, the

same point.

Now define F as the polygon which is equal to the union of those simplices of ∆k

whose circumcenter is Z; note that all of the simplices that make up F are maximal. If Z is

inside F, the simplex which includes Z is an interior candidate simplex. If Z is not inside

F then, by the above reasoning, any boundary of F which Z is on the opposite side of must

also be a boundary of L, and the simplex in F which shares this boundary is a boundary

candidate simplex. �

Theorem 3. Consider ∆k as an n dimensional Delaunay triangulation of a set of well-

situated points S ∈ L (including the vertices of L), with factor of r. Then

Rmax ≤ L2rn−1
1 where r1 = max {rS (L), κ(L)},

where Rmax is the maximum circumradius, L2 is the maximum edge length in all simplices,

and S (L) and κ(L) are the skewness and aspect ratio of L.

Proof. This theorem is shown by induction on n, the dimension of the problem. For n =

1, the circumcenter of any simplex is located in L, and the lemma is trivially satisfied.

Assuming the theorem is true for the n−1 dimensional case, we now show that the theorem

is also true for the n dimensional case.

Consider ∆x as a maximal simplex of the n dimensional Delaunay triangulation ∆k,

with circumcenter Z, which is also a candidate simplex (see Lemma 10). If ∆x is an interior
5The logic for this conclusion is as follows: if (i) a ≤ b and (ii) a < b → c < d, then, if c = d, then a = b.
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candidate simple, it includes its circumcenter, and the lemma is trivially satisfied, since Z

is located in L. Otherwise, ∆x is a boundary candidate simplex, and there is a constraint

aT
i x ≤ bi bounding L which is active at n vertices of ∆x, and Z violates this constraint.

Denote Hi as the n − 1 dimensional hyperplane which contains this constraint.

Consider P as the vertex of ∆x which is not in Hi. Define ZT and PT as the projec-

tions of Z and P onto Hi, and W as a vertex of ∆x which is in Hi; then

‖Z − P‖ = ‖Z −W‖,

[‖Z − ZT ‖ + ‖P − PT ‖]2 + ‖ZT − PT ‖
2 = ‖Z − ZT ‖

2 + ‖ZT −W‖2

2‖ZT − Z‖‖P − PT ‖ + ‖P − PT ‖
2

= ‖ZT −W‖2 − ‖ZT − PT ‖
2

(2.40)

By construction ZT is the circumcenter of an n − 1 dimensional simplex ∆1
x which includes

all vertices of ∆x except P. Note that restriction of ∆k onto the hyperplane Hi is itself an

n−1 dimensional Delaunay triangulation. In other words, for any point V ∈ S that is in Hi,

‖ZT − V‖ ≥ ‖ZT −W‖

‖PT − V‖ ≥ ‖ZT − V‖ − ‖ZT − PT ‖

‖PT − V‖ ≥ ‖ZT −W‖ − ‖ZT − PT ‖

‖ZT −W‖2 − ‖ZT − PT ‖
2 = (‖ZT −W‖ + ‖ZT − PT ‖)(‖ZT −W‖ − ‖ZT − PT ‖)

According to equation (2.40), ‖ZT − W‖ ≥ ‖ZT − PT ‖; it thus follows from the above

equations that

‖ZT −W‖2 − ‖ZT − PT ‖
2
≤ 2‖ZT −W‖‖PT − V‖. (2.41)
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Combining (2.40) and (2.41), we may write

‖ZT − Z‖‖P − PT ‖ ≤ ‖ZT −W‖‖PT − V‖ (2.42)

Furthermore, by construction, ZT − Z and P − PT are perpendicular Hi to ; therefore,

‖Z −W‖2 ≤ ‖ZT −W‖2[1 +
‖V − PT ‖

2

‖P − PT ‖
2 ]

‖P − V‖2 = ‖V − PT ‖
2 + ‖P − PT ‖

2

‖Z −W‖ ≤ ‖ZT −W‖
‖P − V‖
‖P − PT ‖

(2.43)

On the other hand, since S is well-situated with factor of r, according to Lemma 9, there is

a point V in S which is in Hi, and

‖P − V‖
‖P − PT ‖

≤ r1. (2.44)

Note that, if S is well situated with factor of r, the subset of points of S which

lie within Hi, denoted S i, are also well situated with factor of r. Since ‖ZT − W‖ is the

circumradius of the n − 1 dimensional simplex ∆1
x of the Delaunay triangulation of S i, by

the inductive hypothesis,

‖ZT −W‖ ≤ L2rn−2
1

Applying (2.43) and (2.44), it thus follows from the above condition that

‖Z −W‖ ≤ L2rn−1
1

Since ‖Z −W‖ is equal to the maximum circumradius of ∆k, the theorem is proved. �
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We now use Theorem 3 to perform a slight modification of Algorithm 2.2 in a way

that ensures the set of datapoints remains well situated, with factor r, as the iteration pro-

ceeds. In this way, a bound for the maximum circumradius of the Delaunay triangulations

generated by the algorithm is assured.

Algorithm 2.2 is initialized with the vertices of L. By Remark 7, this set of points

is well situated. Algorithm 2.2 then (a) adds to this initial set of points a number of user

specified points of interest, and then (b) adds (at step 5) a new datapoint [selected carefully,

as described in the algorithm] to the existing set of datapoints at each iteration, until con-

vergence. We now modify Algorithm 2.2 such that each time a new datapoint P is added, in

both steps a and b above, an adjustment Q to the location of point P is made, if necessary,

in order to ensure that set of datapoints remains well situated. This adjustment is performed

as follows.

Algorithm 2.3 Assume S is a well-situated set of points, and P is a candidate point to be added to
this set (after adjustment, if necessary).

1: Set Q=P.
2: Find a constraint aT

i x ≤ bi for which P is not in a well situated position. If none can be
found, stop the algorithm, and return Q.

3: Replace Q by the feasible constraint projection of Q on aT
i x ≤ bi (see Definition 5).

4: Repeat from step 1 until the algorithm stops.

Note that Aa(Q) includes the active constraints of P. At each step of the above

algorithm, an additional constraint is added. Thus, the above algorithm stops after at most

n − 1 iterations. In Lemma 11, we show that Algorithm 2.2 still converges, even if we add

Q instead of P at each iteration.

Lemma 11. Consider S as a well-situated set of points in L, and Q as the outcome of
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Algorithm 2.3 from input P. Then,

min
x∈S
‖P − x‖ ≤ ρ ·min

y∈S
‖Q − y‖, (2.45)

ρ = [2r2
1 (1 −

1
r2 )]−

n−1
2 , (2.46)

r1 = max {rS (L), κ(L)}. (2.47)

Proof. Consider y ∈ S as a point which minimizes ‖Q − y‖. If a constraint aT
i x ≤ bi exists

in Aa(Q) which is not active at y, since S is well-situated, according to Lemma 9, there is a

point y1 ∈ S such that aT
i x ≤ bi is active at it, and

‖y − y1‖

‖y − yT ‖
≤ r1, (2.48)

where yT is the projection of y on the hyperplane aT
i x = bi. By construction,

‖y − Q‖2 = ‖y − yT ‖
2 + ‖yT − Q‖2,

‖y − Q‖ ≥
‖y − yT ‖ + ‖yT − Q‖

√
2

,

‖y1 − Q‖ ≤ ‖y1 − yT ‖ + ‖yT − Q‖,

‖y − Q‖
‖y1 − Q‖

≥
1
√

2

‖y − yT ‖ + ‖yT − Q‖
‖y1 − yT ‖ + ‖yT − Q‖

. (2.49)

Using (2.48) and (2.49), we have:

‖y − Q‖
‖y1 − Q‖

≥
1
√

2 r1

. (2.50)

Using (2.50), recursively over the k ≤ n − 1 binding constraints at point Q, we will
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derive that there is a point yk ∈ S k in which Aa(Q) ⊆ Aa(yk), and

‖y − Q‖
‖yk − Q‖

≥ (
1
√

2 r1

)n−1. (2.51)

Take V = yk; then we will show that

‖P − V‖
‖Q − V‖

≤ (1 −
1
r2 )−

n−1
2 . (2.52)

According to Algorithm 2.3, Q is derived by a series of successive complete feasi-

ble constraint projections of a point P onto various constraints of L which are active at Q.

Assume that m feasible constraint projections are performed in during the process of Algo-

rithm 2.3, and {P1, P2, . . . , Pm+1} is the series of points which are generated by Algorithm

2.3. In this way, P1 = P, Pm+1 = Q, and Pi for 1 < i ≤ m + 1 is the feasible-constraint-

projection of Pi−1 onto a constraint of L demoted by aT
i x ≤ bi.

Define Pi, j
L as the intermediate feasible constraint projection of Pi onto constraint

aT
i x ≤ bi, at step j, and Hi, j

L as the hyperplane (with dimension less than or equal to n)

implied by Aa(Pi, j
L ). Then denote Pi, j

R as a point in the intersection of Hi and Hi, j
L , that has

minimum distance from Pi, j
L . (This is similar to Pk

R in Definition 5).

Since the point Pi is poorly situated position with respect to the constraint aT
i x ≤ bi,

and Aa(Pi, j
L ) ⊆ Aa(Q), and therefore V is in both Hi and Hi, j

L ,

‖Pi, j
L − V‖

‖Pi, j
L − Pi, j

R ‖
> r

‖Pi, j
L − V‖2 = ‖Pi, j

L − Pi, j
R ‖

2 + ‖Pi, j
R − V‖2

‖Pi, j+1
L − V‖

‖Pi, j
L − V‖

≥
‖Pi, j

R − V‖

‖Pi, j
L − V‖

≥

√
1 −

1
r2
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Moreover, at each iteration of the feasible constraint projection, a linearly indepen-

dent constraint is added to the set of active constraints, therefore, step 3 of the procedure of

feasible boundary projection could happened at most n − 1 times. Thus, (2.52) is satisfied

which shows (2.45) when Aa(Q) ⊆ Aa(V). Furthermore, by using (2.51) and (2.52), (2.45)

is satisfied when Aa(Q) * Aa(V).

�

Theorem 4. Algorithm 2.2, with the adjustment described in Algorithm 2.3, will converge

to the global minimum of the feasible domain L if the parameter K satisfies (2.10), and

pk(x) is Lipschitz with a single Lipschitz constant Lp for all steps k.

Proof. Consider S k as the set of datapoints at step k, xk as the global minimizer of sk(x),

and x′k as the outcome of Algorithm 2.3 for input xk. Denote δk and δ1
k as follows:

δ1
k = min

y∈S k
‖xk − y‖, δk = min

y∈S k
‖x′k − y‖.

Note that S k+1 = S k ∪ {x′k}.

0 ≤ min
z∈S k

f (z) − f (x∗) ≤ (Lp + 2Krk
max)δ1

k , (2.53)

where rk
max is the maximum circumradius of a Delaunay triangulation for S k, and Lp is the

Lipschitz constant of pk(x).

Since S k is a well-situated set with factor of r, according to Theorem 3,

rk
max ≤ L2rn−1

1 . (2.54)
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where r1 and L2 are constants. Moreover, via Lemma 11,

δ1
k ≤ ρδk, (2.55)

where ρ is a constant defined in (2.46). Thus, using (2.53), (2.54) and (2.55), it follows that

0 ≤ min
z∈S k

f (z) − f (x∗) ≤ εk (2.56a)

εk = ρ(Lp + 2KL2rn−1
1 )δk. (2.56b)

Since the feasible domain L is bounded, δk → 0 as k → ∞. Thus, Algorithm 2.2, with

the adjustment described in Algorithm 2.3 incorporated, will achieve εk ≤ εdes in finite k,

where εk defined in (2.56b) for any specified εdes > 0. �

Remark 9. The parameter r > 1 represents a balance between two important tendencies

of Algorithm 2.2, with the adjustment described in Algorithm 2.3. For the r → 1, many

feasible constraint projections are performed, and thus many datapoints are computed on

the boundary of F; as a result, a restrictive bound on the maximum circumradius of the

triangulation is available. On the other hand, as r is made large, fewer feasible constraint

projections are performed, and thus fewer datapoints are computed on the boundary of F;

as a result, the bound on the maximum circumradius of the triangulation is less restrictive.

A good balance between these two competing objectives seems to be given by r = c
√

n

where c is an O(1) constant; note that Algorithm 2.2 is recovered in the r → ∞ limit.
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2.6 Adapting K

The tuning parameter K in Algorithms 2.2 and 2.3 specifies the trade-off between

global exploration, which is emphasized for large K, and local refinement, which is em-

phasized for small K. In this section, we develop a method to adjust the tuning parameter

K at each iteration k in such a way as to maximally accelerate local refinement while still

assuring global convergence.

The method builds on the fact that, if there exists an x̃ such that pk(x̃) − K ek(x̃) ≤

f (x∗) where f (x∗) is a global minimum of f (x) at each step k of Algorithm 2.2, then (2.11)

is sufficient to establish convergence in Theorems 2.2 and 4, and (2.10) may be relaxed.

Furthermore, it is not necessary to choose constant value for K in Algorithm 2.2, instead

we may adapt Kk at each step k in such a way that Kk ≥ 0 is bounded and pk(x̃)−Kk ek(x̃) ≤

f (x∗) at each step k of Algorithm 2.2.

If y0 is a known lower bound for f (x) over the feasible domain L, then if we choose

Kk adaptively at each step of Algorithm 2.2 such that

0 ≤ Kk ≤ Kmax, (2.57a)

∃ x̃ ∈ L pk(x̃) − Kk e(x̃) ≤ y0, (2.57b)

then the Algorithm 2.2 will converge to a global minimizer.

Note that reduced values of Kk accelerate local convergence. Thus, at each step

k, we seek the smallest value of Kk which satisfies (2.57). The optimal Kk can be found

simply as follows

Kk = min
pk(x) − y0

ek(x)
. (2.58)

It is trivial to verify that the x which minimizes (2.58) also minimizes the corresponding
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search function pk(x) − Kk ek(x). Thus, an alternative definition of the search function is

sk
a(x) =

pk(x)−y0
ek(x) , which has a same minimizer as sk(x) = pk(x) − Kkek(x) for the optimal

value of Kk given in (2.58).

If at some step k, the solution of (2.58) is negative, we take Kk at that step as zero,

and the adaptive search function as sk
a(x) = pk(x).

The new search function sk
a(x) =

pk(x)−y0
ek(x) is defined piecewise, similar to the original

search function. Thus, we have to solve several optimization problems with linear con-

straints in order to minimize sk
a(x) in L. Following similar reasoning as in Lemma 5, we

can relax these constraints: for each simplex ∆k
i , we can instead minimize sk

a,i(x) =
pk(x)−y0

ek
i (x)

in the intersection of the circumsphere ∆k
i and the feasible domain L.

Again in order to minimize sk
a,i(x) for each simplex, a good initial guess is required.

In each simplex ∆k
i , a minimizer generally has a large value of ek

i (x); therefore, the projec-

tion of the simplex’s circumcenter onto the simplex itself is a good initialization point for

searching for the minimum of sk
a,i(x). This initial point for each simplex is denoted x̂k

i .

As before, with this initial guess for the minimum of sk
a,i(x) in each simplex, we can

find the global minimum using a Newton method with Hessian modification. We thus need

the gradient and Hessian of the function sk
a,i(x):

∇(
pk(x) − y0

ek
i (x)

) =
∇(pk(x))

ek
i (x)

− (p(x) − y0)
∇ek

i (x)

ek
i (x)2

∇2(
pk(x) − y0

ek
i (x)

) =
∇2(pk(x))

ek
i (x)

−
(∇pk(x))(∇ek

i (x))T

ek
i (x)2

−
(∇ek

i (x))(∇p(x))T

ek
i (x)2

+ (pk(x) − y0)(−
∇2ek

i (x)

ek
i (x)2

+ 2
∇ek

i (x)∇ek
i (x)T

ek
i (x)3

)
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Algorithm 2.4 ∆-DOGS with adaptive K parameter.
This algorithm is identical to Algorithm 2.2 except for step 6.c and 6.d, which at step k
initially defines the local search functions (upon which the global search function is built)
as

sk
a,i(x) =

pk(x) − y0

ek
i (x)

, (2.59)

and at step 6.d, the minimizer of sk
a,i(x) is calculated instead of sk

i (x). but then, if a point x
is encountered during this search for which pk(x) < y0, subsequently redefines the global
search function for step k as sk

a(x) = pk(x)

Remark 10. Newton’s method doesn’t always converge to a global minimum. Thus, the

result of the search function minimization algorithm at step k, xk, is not necessarily a global

minimizer of sk
a(x). However, the following properties are guaranteed:

if sk
a(x) = pk(x), then pk(xk) ≤ y0; (2.60a)

if sk
a(x) =

pk(x) − y0

ek(xk)
, then

sk
a(xk) ≤ sk

a(x̂k
j) ∀∆

k
j ∈ ∆k. (2.60b)

Recall that x̂k
j is the maximizer of ek

j(x) in ∆k
j(x).

In the following theorem we prove the convergence of Algorithm 2.4 to the global

minimum of f (x). Convergence is based on the conditions in (3.17); note that global mini-

mization of the search function sk
a(x) at each iteration k is not required.

Theorem 5. Algorithm 2.4, with the modification described in Algorithm 2.3 incorporated,

will converge to the global minimum of the feasible domain L if f (x) and pk(x) are twice

differentiable functions with bounded Hessian, and all pk(x) are Lipschitz with the same

Lipschitz constant.

Proof. Define S k, rk
max, and Lk

2 as the set of datapoints, the maximum circumradius of ∆k,

and the maximum edge length of ∆k, respectively, where ∆k is a Delaunay triangulation
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of S k. Define xk as the outcome of Algorithm 2.4, which at step k satisfies (3.17), and

define x′k as the outcome of Algorithm 2.3 from input xk. According to Algorithm 2.3,

S k+1 = S k ∪ {x′k}. Since f (x) and pk(x) are twice differentiable with bounded Hessian,

constants K f and Kp f exist such that

K f ≥ λmax(∇2 f (x))/2, (2.61a)

Kp f ≥ λmax(∇2( f (x) − pk(x))/2. (2.61b)

Define Lp as a Lipschitz constant of pk(x) for all steps k of Algorithm 2.2. Define y1 ∈ S k

as the point which minimizes δ = minx∈S k ‖x − xk‖.

We will now show that

min
z∈S k

f (z) − f (x∗) ≤ ε̄k, (2.62)

ε̄k =

√
2rk

maxK f LpLk
2δ + [2rk

max max{Kp f ,K f } + Lp]δ,

where x∗ is a global minimizer of f (x∗).

During the iterations of Algorithm 2.4, there two possible cases for sk
a(x). The

first case is when sk
a(x) = pk(x). In this case, via (3.17a), pk(xk) ≤ y0, and therefore

pk(xk) ≤ f (x∗). Since y1 ∈ S k, it follows that pk(y1) = f (y1). Moreover, Lp is a Lipschitz

constant for pk(x); therefore,

pk(y1) − pk(xk) ≤ Lp δ, f (y1) − pk(xk) ≤ Lp δ,

f (y1) − f (x∗) ≤ Lp δ, min
z∈S k

f (z) − f (x∗) ≤ Lp δ,

which shows that (2.62) is true in this case.
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The other case is when sk
a(x) =

pk(x)−y0
ek(x) . For this case, consider ∆k

j as a simplex in

∆k which includes x∗. Define L(x) as the unique linear function for which L(Vi) = f (Vi),

where Vi are the vertices of the simplex ∆k
j. According to Lemma 6 and (2.61a), there is an

x̃ ∈ ∆k
j

L(x̃1) − K f ek(x̃1) ≤ f (x∗). (2.63)

Since L(x) is a linear function, it takes its minimum value at one of its vertices; thus,

min
z∈S k

f (z) − f (x∗) ≤ K f ek(x̃1).

Recall x̂k
j is the point in simplex ∆k

j which maximizes ek
j(x) inside the closed simplex ∆k

j;

therefore, ek(x̃1) ≤ ek(x̂k
j), and

min
z∈S k

f (z) − f (x∗) ≤ K f ek(x̂k
j). (2.64)

On the other hand, according to Lemma 4, 2 rk
max is the Lipschitz norm for the uncertainty

function, y1 ∈ S k, and thus ek(y1) = 0; hence,

ek(xk) ≤ 2 rk
max δ.

If ek(x̂k
j) ≤ ek(xk),

min
z∈S k

f (z) − f (x∗) ≤ 2 rk
max K fδ;

therefore, (2.62) is satisfied. Otherwise,

f (x∗) − y0

ek(x̂k
j)
≤

f (x∗) − y0

ek(xk)
. (2.65)
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Using (2.60b) and (3.51), it follows:

pk(xk) − f (x∗)
ek(xk)

≤
pk(x̂k

j) − f (x∗)

ek(x̂k
j)

. (2.66)

According Lemma 6 and (2.61b), there is an x̃2 ∈ ∆k
j such that

pk(x̃2) − Kp f ek(x̃2) ≤ f (x∗).

Since x̃2 ∈ ∆k
j and Lp is a Lipschitz constant for pk(x), it follows that

pk(x̂k
j) − LpLk

2 − Kp f ek(x̂k
j) ≤ f (x∗),

pk(x̂k
j) − f (x∗)

ek(x̂k
j)

≤ Kp f +
LpLk

2

ek(x̂k
j)
. (2.67)

Using (2.66), (2.67), and the fact that Lp and 2 rk
max are Lipschitz constants for pk(x) and

ek(x), it follows:

pk(xk) − f (x∗) ≤ [Kp f +
LpLk

2

ek(x̂k
j)

]ek(xk),

pk(y1) − f (x∗) ≤ [2rk
max(Kp f +

LpLk
2

ek(x̂k
j)

) + Lp]δ.

Note that y1 ∈ S k; thus, pk(y1) = f (y1) ≥ minz∈S k f (z), and

min
z∈S k

f (z) − f (x∗)

≤ [2rk
max(Kp f +

LpLk
2

ek(x̂k
j)

) + Lp]δ. (2.68)
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Using (2.64) and (2.68), it follows:

min
z∈S k

f (z) − f (x∗) ≤ [2rk
max Kp f + Lp]δ +

2rk
max K f Lk

2Lp

minz∈S k f (z) − f (x∗)
δ.

Since x∗ is a global minimizer of f (x), minz∈S k f (z) ≥ f (x∗), and therefore

[min
z∈S k

f (z) − f (x∗)]2 ≤ 2rk
maxK f LpLk

2δ + [2rk
maxKp f + Lp][min

z∈S k
f (z) − f (x∗)]δ.

Apply the quadratic inequality 6 , and the triangular inequality, it follows:

min
z∈S k

f (z) − f (x∗) ≤
√

2rk
maxK f LpLk

2δ + [2rk
maxKp f + Lp]δ.

The above equation implies that (2.62) is true for this case too. Thus, (2.62) is true

for all possible cases.

Moreover, by construction, S k is a well situated set; thus, by Theorem 3,

rk
max ≤ Lk

2rn−1
1 , (2.69)

Furthermore, via Lemma 11,

δ ≤ ρ δk, (2.70)

where ρ is defined as in (2.46), and δk = minx∈S k ‖x′k − x‖. Note that the L2
k are bounded,

and define L2 as an upper bound for the L2
k for all k. Using (2.62), (2.69) and (2.70), it

6If A, B,C > 0, and A2 ≤ AB + C then A ≤ B +
√

C.
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follows that,

0 ≤ min
z∈S k̂

f (z) − f (x∗) ≤ εk, where

εk = Aδk + Bδk,

A =

√
2ρrk

maxK f LpLk
2,

B = ρ[2rk
max max{Kp f ,K f } + Lp].

Since the feasible domain is bounded, δk → 0 as k̂ → ∞. Moreover, A and B are two

constants; therefore, εk → 0 as k → ∞; thus, the global convergence of Algorithm 2.4,

with Algorithm 2.3 incorporated, is assured. �

Remark 11. Globally minimizing the search function sk
a(x) at each step k is not required in

Algorithm 2.4; it is enough to have (3.17) to guarantee convergence. In contrast, the search

function sk(x) must be globally minimized in order to guarantee convergence of Algorithm

2.2.

Since performing Newton’s method for minimizing the search function is not re-

quired for global convergence, in practice, we will perform Newton’s method only in those

simplices whose initial points x̂k
j have small values for the adaptive search function sk

a(x).

In general, performing Newton iterations in more simplices reduces the number of function

evaluations required for convergence, but increases the cost of each optimization step.

2.6.1 Using an inaccurate estimate of y0

It was shown in Theorem 5 that, using Algorithm 2.4 with a lower bound y0 for the

function, convergence to a global minimum of the function is guaranteed. However, it is

observed in Section 7.4 that, if y0 is not an accurate lower bound for the global minimum,
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the speed of convergence is reduced. In this subsection, we study the behavior of Algo-

rithm 2.4, when the estimated value of y0 is slightly larger than the actual minimum of the

function of interest.

Theorem 6. Assume that f (x) and pk(x) are twice differentiable functions with bounded

Hessian, and all pk(x) are Lipschitz with the same Lipschitz constant. Then, for any small

positive ε > 0, there is a finite iteration k of Algorithm 2.4, with the modification described

in Algorithm 2.3 incorporated, such that a point z ∈ S k exists for which:

f (z) −max{ f (x∗), y0} ≤ ε, (2.71)

where f (x∗) is the global minimum of f (x).

Proof. To prove this theorem, we use the notations defined in the proof of Theorem 5. Note

that, if y0 ≤ f (x∗), the theorem is true based on Theorem 5. Otherwise, similar to (2.62),

we will show that

min
z∈S k

f (z) − y0 ≤

√
2rk

maxK f Lk
2Lpδ + [Lp + 2rk

maxKp f ]δ.

As stated previously, during the iterations of Algorithm 2.4, there two possible cases for

sk
a(x). The first case is when sk

a(x) = pk(x). In this case, via (3.17a), pk(xk) ≤ y0. Since

y1 ∈ S k, it follows that pk(y1) = f (y1). Moreover, Lp is a Lipschitz constant for pk(x);
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therefore,

pk(y1) − pk(xk) ≤ Lp δ,

f (y1) − pk(xk) ≤ Lp δ,

f (y1) − y0 ≤ Lp δ,

min
z∈S k

f (z) − y0 ≤ Lp δ,

which shows that (3.47) is true in this case.

The other case is when sk
a(x) =

pk(x)−y0
ek(x) . In this case, (2.60b) is satisfied. Now,

similar to the proof of Theorem 5, define ∆k
j as a simplex in ∆k which includes a global

minimizer x∗. Following the same reasoning as in the proof of Theorem 5, (2.64) is true.

Moreover, y0 ≥ f (x∗), and thus

min
z∈S k

f (z) − y0 ≤ K f ek(x̂k
j).

In addition, if minz∈S k f (z) ≤ y0, the theorem is trivial, otherwise, the above equation may

be modified to
1

ek(x̂k
j)
≤

K f

minz∈S k f (z) − y0
. (2.72)

Note that (2.67) is true in this case too. Using (2.60b), y0 ≥ f (x∗), and the Lipschitz

properties of pk(x) and ek(x), it follows that

min
z∈S k

f (z) − y0

≤ [2rk
max(Kp f +

LpLk
2

ek(x̂k
j)

) + Lp]δ. (2.73)



66

Using (2.72), (2.73), and minz∈S k f (z) ≥ y0, it follows that

[min
z∈S k

f (z) − y0)]2 ≤ 2rk
maxK f LpLk

2δ + [2rk
maxKp f + Lp][min

z∈S k
f (z) − f (x∗)]δ.

It follows from the above equation that (2.62) is true for all possible cases. Note that (2.69)

and (2.70) are true in this theorem too; thus, with similar reasoning, it follows:

0 ≤ min
z∈S k̂

f (z) − y0 ≤ εk, εk = A
√
δk + Bδk,

A =

√
2ρL2

2rn−1
1 K f Lp, B = ρ[Lp + 2L2rn−1

1 Kp f ].

where δk = minx∈S k ‖x′k − x‖. Since the feasible domain is bounded, δk → 0 as k → ∞;

thus, εk → 0 as k → ∞. �

Remark 12. Theorem 6 shows that if an inaccurate guess for the lower bound y0 of the

function f (x) is used, Algorithm 2.4 will converge to a point whose function value is equal

to or below the estimate y0. In other words, Algorithm 2.4 will first converge to a point

whose function value is less than y0, and then perform only local refinements thereafter,

taking sk(x) = pk(x) for later iterations.

2.7 Parallelization

Parallel computing is one of the most powerful tools of modern numerical methods.

In expensive optimization problems, performing an optimization of the type discussed here

on a single CPU is relatively slow. The algorithms presented above only accommodate

serial computations, with one function evaluation performed in each step.

The present algorithms are intended for problems with expensive function evalua-
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tions. Other than these function evaluations, the most expensive part of the present algo-

rithms are the search function minimizations. Constructing the Delaunay triangulation is

also somewhat expensive in high-dimensional problems; however, this is made negligible

in comparison with the other parts of the algorithm when an Incremental method is used to

update the Delaunay triangulation from one step to the next.

The search function minimization allows for straightforward parallel implementa-

tion. As described before, we must minimize the local search functions sk
i (x) [or, in Algo-

rithm 2.4, sk
a,i(x)] within each simplex of the Delaunay triangulation at step k; this task is

embarrassingly parallel.

The other expensive part (which will be the most expensive part in many applica-

tions) is the function evaluations themselves. We may modify Algorithms 2.2 and 2.4 to

perform np function evaluations in parallel. To accomplish this, we need to identify np new

points to evaluate at each step.

During Algorithm 2.2 or 2.4, xk is derived by minimizing sk(x) = pk(x) − Kek(x) or

sk
a(x) =

pk(x)−y0
ek(x) . Note that, at each step, the uncertainty function ek(x) is independent from

the interpolation pk(x) and the function values themselves. Thus, we can modify ek+1(x)

without performing the cost function evaluation at xk. This idea may be implemented as

follows

Note that minimizing ski(x) for 0 < i < np is a relatively easy task, since ski(x) =

ski−1(x) in most of the simplices, and the incremental implementation of the Delaunay tri-

angulation can be used to flag the indices of those simplices that have been changed by

adding xk
i to S k

i−1(x) (see [22]).

Remark 13. It is easy to show that the modification proposed in Algorithm 2.5 preserves

the convergence properties of Algorithms 2.2 and 2.4. The parameter c at step 4.d plays
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Algorithm 2.5 In this algorithm, a modification for Algorithm 2.2 is presented is which, at each
step k, identifies np new points to evaluate in parallel at each step. Note that this approach extends
immediately to Algorithm 2.4.

Take the set of initialization points S 0 as all M of the vertices of the feasible domain L
together with one or more user-specified points of interest on the interior of L. Evaluate
the function f (x) at each of these initialization points in parallel. Perform a Delaunay
triangulation for S 0. Set k = 0.
Calculate (or, for k > 0, update) an appropriate interpolating function pk(x) through all
points in S k.
Calculate x0

k as the minimizer of sk(x) (see step 3 and 4 of Algorithm 2.2). This task may
be done in parallel for each simplex.
Replace x0

k with the outcome of Algorithm 2.3 from input x0
k , then take S k

1 = S k ∪ {x0
k}.

For each substep i ∈ {1, 2, . . . , np − 1}, do the following:

a. Incrementally calculate the Delaunay triangulation for data points for S k
i in order

to derive the new uncertainty function eki(x).

b. Derive xi
k as a global minimizer of ski(x) = pk(x) − Keki(x).

c. Calculate δk
i = miny∈S k

i
‖xi

k − y‖,

and δk
0 = miny∈S k ‖x0

k − y‖.

d. If δk
i ≤ cδk

0 for some c with 0 < c ≤ 1, replace xi
k with a global minimizer of eki(x).

e. Replace xi
k with the outcome of Algorithm 2.3 from input xi

k.

f. Take S k
i+1(x) = S k

i ∪ {x
i
k}.

Take S k+1 = S k
np

, and evaluate the function at

{x0
k , x

1
k , . . . , x

np−1
k } in parallel.

6. Repeat from step 2 until δk
0 ≤ δdes.
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a significant role in the convergence rate; large c forces more of the function evaluations

to be related strictly to global exploration, whereas small c allows function evaluations to

potentially get dense in regions away from the global minimum. Intermediate values of c

are thus preferred, as discussed further in §2.8.5.

2.8 Results

To evaluate the performance of our algorithms, we applied them to the minimization

of the some representative test functions (see [36]):

• One dimension

Weierstrass function: 7 Taking N � 1 (N = 300 in the simulations performed here),

f (x) =

N∑
i=0

1
2i cos(3iπ x) (2.74)

• Two dimensions

Parabolic function:

f (x, y) = x2 + y2 (2.75)

Schwefel fuction: Defining c = 418.982887,

f (x, y) = c − x sin
( √
|x|

)
− y sin

( √
|y|

)
(2.76)

7The parameters of the Weierstrass function used in this chapter do not satisfy the condition assuring
nondifferentiability everywhere that Weierstrass originally identified; however, according to [37], these pa-
rameters indeed assure nondifferentiability of the Weiertrass function everywhere as N → ∞.
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Rastrigin function: Defining A = 2,

f (x, y) = 2 A + x2 + y2 + −A cos(2π x) − A cos 2π y (2.77)

Rosenbrock function: Defining p = 10,

f (x, y) = (1 − x2) + p (y − x2)2 (2.78)

• Higher dimensions

Rastrigin function: Defining A = 2,

f (xi) = A n +

n∑
i=1

[
x2

i − A cos(2π xi)
]

(2.79)

Rosenbrock function: Defining p = 10,

f (xi) =

n−1∑
i=1

[
(1 − xi)2 + p (xi+1 − x2

i )2
]

(2.80)

Except where otherwise stated, each simulation was initialized solely with function

evaluations at each vertex of the feasible domain; that is, no user-specified points were

used during the initialization. What follows is a description of the results of the simulations

performed.

Also, unless otherwise stated, each test result reported incorporates Algorithm 2.3

into Algorithms 2.2 and 2.4, with parameter r = 2
√

n.
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2.8.1 Nondifferentiable 1D case

The Weierstrass function is a classical example of a nondifferentiable function, for

which derivative-based optimization approaches are ill-suited. Note that the proofs of con-

vergence of the present algorithms, as developed above, don’t even apply in this case;

however, it is seen that the algorithms developed converge quickly regardless.

We sought a global minimum of this test function over the domain [−2, π]. For this

test function (only), the set of initial data points was taken as S 0 = {−2, 0.5, π}. The result

using Algorithm 2.2 with K = 0 is illustrated in Figure 2.7a, the result using Algorithm 2.2

with K = 100 is illustrated in Figure 2.7b, and the result using Algorithm 2.4 (with adaptive

K, taking y0 = −2, which is the known lower bound of f (x)) is illustrated in Figure 2.7c.

The optimizations were terminated when minx∈S k‖xk − x‖ ≤ 0.01.

It is seen in the K = 0 case that the optimization routine terminated prematurely,

and the global minimum of the problem was not identified; it is thus seen that the global

exploration part of the algorithm (for K > 0) is important. It is seen in the K = 100 case

that global convergence was achieved, and that 34 function evaluations were required for

convergence. It is seen in the adaptive K case that global convergence was achieved more

rapidly, requiring only 17 function evaluations for convergence.

2.8.2 Box constraints

2D parabola

The first 2D test function considered is a parabola (2.75). This simplistic test was

made to benchmark the effectiveness of the algorithm on a trivial convex optimization

problem. The function considered has a global minimizer at (0, 0) in the feasible domain
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Figure 2.7: ∆-DOGS on Weierstrass function. Implementation of Algorithms 2.2 and
2.4 for the Weierstrass function (2.74). Actual function (solid), function evaluations

(squares), and interplant after the final function evaluation (dashed).
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xi ∈ [−π, 4] (the center of the domain is shifted away from the origin to make the minimum

nontrivial to find). Again, the optimizations were terminated when minx∈S k‖xk − x‖ ≤ 0.01.

For this problem, for both small K (K = 0.3, see Figure2.8a) and larger K (K = 1, see

Figure 2.8b), global convergence was achieved; 16 function evaluations were required for

convergence of this simple function with K = 0.3, and 29 function evaluations were re-

quired for convergence with K = 1. For the larger value of K, a bit more global exploration

is evident. Taking K = 0 in the present case again results in premature termination of the

optimization algorithm, at the very first step, and the global minimum in not identified

Given exact knowledge of y0, the behavior of Algorithm 2.4 for this simple test

function is remarkable, and the algorithm converges in only 6 function evaluations (that

is, two function evaluation after evaluating the function at the vertices of L). As shown

in Figure 2.8d, taking y0 as a bound on the minimum, y0 = −0.1, the algorithm requires

a few more iterations (19 function evaluations are needed). In this case, Algorithm 2.4

actually performs a function evaluation very near the global minimizer within the first two

iterations, similar to the case when y0 = 0; however, the algorithm continues to explore a

bit more, until it confirms that no other minima with reduced function values exist near this

point.

2D Schwefel

The second 2D test function considered is the Schwefel function (2.76), which is

characterized by nine local minima over the domain considered, xi ∈ [0, 500], with the

global minimizer at (420.968746, 420.968746), and global minimum of f (x∗) = 0. The

optimizations were terminated when minx∈S k‖xk − x‖ ≤ 1. As shown in Figure 2.9a, for

K = 0.03, the algorithm fails to converge to the global minimum, as not enough global
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Figure 2.8: ∆-DOGS on 2D parabola. Location of function evaluations using
Algorithms 2.2 and 2.4 applied to the 2D parabola (2.75).

exploration is performed. As shown in Figure 2.9b, taking K = 0.2, and thus performing

more global exploration, the algorithm succeeds in finding the global minimum after 87

function evaluations. As shown in Figure 3.8d, using adaptive K based on accurate knowl-

edge of global minimum y0 = 0, the result is similar to the K = 0.3 case, but only 36

function evaluations are performed; convergence is seen to be especially rapid once the

neighborhood of the global minimum was identified. As shown in Figure 2.9d, using adap-

tive K based on a bound on the global minimum, y0 = −20, the algorithm continues to

explore a bit more, now requiring 64 function evaluations for convergence. As shown in
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Figure 2.9e, using adaptive K based on an inaccurate guess of the bound on the global min-

imum, y0 = 20, convergence is similar to the case with y0 = 0 (Figure 3.8d), with actually

a bit faster convergence (now requiring 26 function evaluations for convergence), because

global exploration is suspended (that is, K is driven to zero) once function values below

y0 are discovered, with the algorithm thereafter focusing solely on local refinement; recall

from Theorem 6 that, in this case, the algorithm may stop any time after function values

below y0 are discovered, and convergence to a neighborhood of the global minimum is not

assured.

2D and 3D Rastrigin

The third test function considered is the Rastrigin function. We first consider the

2D case (2.77), which is characterized by 36 local minima over the domain considered,

xi ∈ [−2, π], with the global minimum at the origin. The results for this test function

are presented in Figures 2.10b, 2.10a, and 2.10c, and are similar to the Schewefel test case.

Algorithm 2.2 fails to converge to the global minimum when K = 10, which is too small for

this problem, and more extensive global exploration was performed when K = 20, in which

case convergence was achieved in 63 function evaluations. More efficient convergence was

obtained when Algorithm 2.4 (adaptive K) was used with an accurate value of y0 = 0,

requiring only 30 function evaluations for convergence.

In Figure 2.11, we consider the 3D case (2.79), which is characterized by 216 local

minima over the domain considered, xi ∈ [−2, π], with the global minimum at the ori-

gin. We applied Algorithm 2.4 with an accurate value of y0 = 0, and terminated when

minx∈S k‖xk − x‖ ≤ 0.01. During the first iteration after the initialization, a point was ob-

tained with function value close to the global minimum; however, several more iterations



76

0 100 200 300 400 500
0

100

200

300

400

500

a Algorithm 2.2 with K = 0.03.
0 100 200 300 400 500
0

100

200

300

400

500

b Algorithm 2.2 with K = 0.2.

0 100 200 300 400 500
0

100

200

300

400

500

c Algorithm 2.4 with y0 = 0.
0 100 200 300 400 500
0

100

200

300

400

500

d Algorithm 2.4 with y0 = −20.

0 100 200 300 400 500
0

100

200

300

400

500

e Algorithm 2.4 with y0 = 20.

Figure 2.9: ∆-DOGS on 2D Schwefel function. Location of function evaluations in
Algorithms 2.2 and 2.4 on the 2D Schwefel function (2.76).
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Figure 2.10: ∆-DOGS on 2D Rastrigin function. Location of function evaluations in
Algorithms 2.2 and 2.4 on the 2D Rastrigin function (2.77).
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Figure 2.11: Implementation of Algorithm 2.4 with y0 = 0 on the 3D Rastrigin function
(2.79).

were required until the algorithm stopped after 50 iterations (i.e., including the vertices of

L, 58 function evaluations).

2D and 3D Rosenbrock

The next test function considered is the Rosenbrock function. We first consider the

2D case (2.78), which is characterized by a single minimum over the domain considered,

xi ∈ [−2 2], with the global minimum at (1, 1), and a challenging, nearly flat valley along

the curve y = x2 where the global minimum lies. In this test function, the optimizations

were terminated when minx∈S k‖xk − x‖ ≤ 0.01; since the valley is so flat in this case,

the accuracy of the converged solution is a strong function of the termination criterion,

and significantly relaxing this criterion leads to inaccurate results. As shown in Figure

2.12a, for K = 5, the algorithm fails to converge to the global minimum, as not enough

global exploration is performed. As shown in Figure 2.12b, a larger value of the tuning

parameter, K = 20, facilitates more thorough global exploration over the domain, with

the function evaluations concentrating along the valley, and convergence is achieved in 70
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Figure 2.12: ∆-DOGS on 2D Rosenbrock function. Location of function evaluations in
Algorithms 2.2 and 2.4 on the 2D Rosenbrock function (2.78).
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Figure 2.13: ∆-DOGS on 3D Rosenbrock function. Implementation of Algorithm 2.4
with y0 = 0 on the 3D Rosenbrock function (2.80).

function evaluations. As shown in Figure 2.12c, applying Algorithm 2.4 (adaptive K) using

an accurate value of y0 = 0 focused the function evaluations even better along the valley of

the function, and convergence is achieved in only 34 function evaluations.

In Figure 2.13, we consider the 3D case (2.80), which is again characterized by

a single minimum over the domain considered, xi ∈ [−2 2], with the global minimum at

(1, 1, 1), and a challenging region near the 3D curve x3 = x2
2 = x4

1 where the function is

nearly “flat”. We applied Algorithm 2.4 with an accurate value of y0 = 0, and terminated

when minx∈S k‖xk − x‖ ≤ 0.01. Similar to the 2D case, after a brief exploration of the

feasible domain, the algorithm soon concentrates function evaluations near the x3 = x2
2 = x4

1

curve where the reduced function values lie, as shown in Figure 2.13b, and convergence is

achieved in 76 iterations.

2.8.3 General linear constraints

The above tests were all performed using simple box constraints (2.1b), a ≤ x ≤ b.

We now test the performance of Algorithm 2.4 with y0 = 0 when more general linear
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constrains (2.1a) are applied, Ax ≤ b.

We first consider the 2D Rastrigin function (2.77) with the following linear con-

straints:

−2 ≤ x, x ≤ π, −2 ≤ y, (2.81a)

y ≤ π, x ≤ y, x + y ≤ 1. (2.81b)

During the initialization step, after finding the vertices of L, it is determined that three

constraints are redundant. Thus, the feasible domain (in general, a convex polyhedron) is

actually a simplex in this case, bounded by other three constraints. The global minimum

in this case lies on one of the constraint boundary; as shown in Figure 2.14, Algorithm 2.4

converges after initially exploring the feasible domain with 17 function evaluations.

Next, consider the 2D Rosenbrock function (2.78) with the following linear con-

straints:

−2 ≤ x ≤ 2, −2 ≤ y ≤ 2, (2.82a)

−2.2 ≤ x + y, x + y ≤ 2.2. (2.82b)

During the initialization step, it is determined that none of the constraints are redundant,

since each constraint is active at exactly two vertices. As shown in Figure 2.15, the feasible

domain in this case is a convex polygon with six vertices. The global minimum in this case

lies near, but not on the constraint boundary. As expected, the results are quite similar to

the case with box constraints (see Figure 2.12), and the global minimum is found with 27

function evaluations.

Finally, we considered the 3D Rastrigin and Rosenbrock functions, (2.79) and
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(2.80), with the following linear constraints:
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Figure 2.16: Implementation Algorithm 2.4 on the 3D Rastrigin function (2.79) with
linear constraints.
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Figure 2.17: [∆-DOGS on 3D Rosenbrock function with linear constraints. As in Figure
2.16 for the 3D Rosenbrock function (2.80).
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−2 ≤ xi ≤ 2 for 1 ≤ i ≤ 3, (2.83a)

x1 + x2 + x3 ≤ 3, (2.83b)

x1 − x2 − x3 ≤ 0. (2.83c)

During the initialization step, it is determined that the constraint x1 ≤ 2 is the only redun-

dant constraint, since each of the other constraints is active at at least three of the vertices.

The feasible domain in this case is a convex polyhedron with 10 vertices; it turns out that

the constraint in (2.83) is active at six vertices, so one of the faces of this polyhedron is a

hexagon. As shown in Figures 2.16 and 2.17, the behavior of Algorithm 2.4 is similar to

the corresponding tests with box constraints discussed previously. Note, of course, that all

function evaluations performed by Algorithm 2.4 are evaluated at feasible points.

2.8.4 Feasible constraint projections

We now explore the role of the feasible boundary projections introduced in Defi-

nition 5, and incorporated into Algorithm 2.3, on the convergence of Algorithm 2.2 with

K = 1, focusing specifically on the impact of the r parameter, taking r = 1.05, r = 5 and

r = 30. We perform this test using the 2D parabolic function (2.75) subject to the following

linear constraints:

x ≤ 0.1, −1.1 ≤ y, y − x ≤ 0.5. (2.84)

The location of the function evaluations for different values of r is shown in Figure 2.18.

Recall that 1 < r < ∞, with the r → ∞ limit suppressing all feasible constraint

projections. It is observed that, for small values of r, the algorithm tends to explore more
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on the boundaries of the feasible domain, and for large values of r, the triangulation is

more irregular, with certain function evaluations clustered in a region far from the global

minimum. Intermediate values of r are thus preferred.

Figure 2.19 plots the maximum circumradius rk
max of the Delaunay triangulation

∆k, as well as the upper bound for rk
max, during the optimization using Algorithm 2.2 with

Algorithm 2.3 incorporated using different values of r. The maximum circumradius rk
max is

seen to be reduced when smaller values of r are used; however, the cases with r = 1.05 and

r = 5 are not noticeably different in this respect. Another important observation is that the

bound on the maximum circumradius, given by (2.54), is also reduced when smaller values

of r are used; however, this bound is seen to be quite conservative in this example.

2.8.5 Parallel performance

We now test the performance of the constant-K version of Algorithm 2.5 on the

Weierstrass function (2.74), over the domain [−2, π] using np = 3 processors, taking K =

15 and, in turn, c = 0, c = 0.5 and c = 1. The optimizations were terminated when

minx∈S k‖xk− x‖ ≤ 0.01. Algorithm 2.5 fails to converge to the global minimum when c = 0,

as multiple function evaluations are performed at a single step k that are close to each other

in this case, which causes premature termination of the algorithm. Algorithm 2.5 converges

to the global minimum for c = 0.5 in 18 function evaluations, and for c = 1 in 21 function

evaluations; it is thus seen that intermediate values of c are preferred. In the c = 0.5 case,

after the initialization, 6 iterations were executed, with 7 function evaluations performed in

parallel during each iteration.

Testing Algorithm 2.2 with K = 15 on the same problem, it is seen that fewer

(in this case, 13) function evaluations are required by the serial version of the algorithm,
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Figure 2.18: Role of feasible boundary projection. The location of function evaluations
by Algorithm 2.2, with Algorithm 2.3 incorporated, for different values of r. The cost

function is simple quadratic function whose minimizer is an interior point within a
feasible domain given by a right triangle.
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rk

max of ∆k, as a function of k, for the optimizations illustrated in Figure 2.18. Solid line,
dashed line, and dot-dashed line are the results for r = 1.05, r = 5 and r = 30

respectively.

as the location of each new function evaluation is based on the trends revealed in all of

the previous function evaluations. However, the total number of iterations that need to be

executed in this case is increased from 6 to 10, thus demonstrating the benefit of the parallel

algorithm when performing function evaluations in parallel is possible.

2.9 Conclusions

In this chapter, we have presented a new response surface method for derivative-

free optimization of nonconvex functions within a feasible domain L bounded by linear

constraints. The chapter developed five algorithms:

• Algorithm 2.1 showed how to initialize the problem, identifying the vertices of L,

eliminating the redundant constraints, and projecting the equality constraints out of

the problem.

• Algorithm 2.2 presented the essential strawman form of the method. It uses any well-

behaved interpolation function of the user’s choosing, and a synthetic piecewise-

quadratic uncertainty function built on the framework of a Delaunay triangulation.
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A search function given by a linear combination of the interpolation and a model of

the uncertainty is minimized at each iteration. The search function itself is piece-

wise smooth, and may in fact be nonconvex within certain simplices of the Delaunay

triangulation. A valuable feature of the algorithm is that global minimization of the

search function within each simplex is, in fact, not required at each iteration; conver-

gence to the global minimum can be guaranteed even if the algorithm only locally

minimizes the search function within each simplex at each iteration. Unfortunately,

this simple algorithm contains an important technical flaw: it does not ensure that the

triangulation remains well behaved as new datapoints are added.

• Algorithm 2.3 showed how to correct the technical flaw of Algorithm 2.2 by perform-

ing feasible constraint projections, when necessary, to ensure that the triangulation

remains well behaved, with bounded circumradii, as new datapoints are added.

• Algorithm 2.4 showed how to use an estimate for the lower bound of the function to

maximally accelerate local refinement while still ensuring convergence to the global

minimum.

• Algorithm 2.5 showed how to efficiently parallelize the function evaluations on np

processors at each step of the algorithm.

Four adjustable parameters were identified in the above algorithms, and their effects

quantified in numerical tests:

• Algorithm 2.2 introduced a tuning parameter K > 0, which governs the balance

between global exploration and local refinement. For sufficiently large K applied

to smooth functions (that is, Lipschitz, twice-differentiable, and bounded Hessian),

convergence to a neighborhood of the global minimum is guaranteed in a finite num-

ber of iterations. For larger values of K, exploration becomes essentially uniformly
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Figure 2.20: Parallel ∆-DOGS. Comparison of Algorithm 2.5, for various values of c,
and Algorithm 2.2, all with K = 15, on the Weierstrass function considered previously.
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.

over L.

• Algorithm 2.3 introduced a tuning parameter r > 1 which controls how frequently

feasible constraint projections are performed. Small values of r leads to function

evaluations accumulating on the boundaries of L, and a more uniform triangulation

with reduced maximum circumradius. Large values of r leads to fewer function

evaluations on the boundaries of L, and less uniform triangulations. Intermediate

values of r are thus preferred.

• Algorithm 2.4 uses a tuning parameter y0, which is an estimate for the global mini-

mum. Convergence of Algorithm 2.4 was found to be remarkably rapid when y0 was
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an accurate estimate of the global minimum, both for smooth functions, and even

certain nonsmooth functions, like Weierstrass, characterized by exploitable trends

of the global shape of function. (For problems without such exploitable trends, the

algorithm was well behaved, exploring essentially uniformly over the feasible do-

main.) When y0 is less than the global minimum, convergence of Algorithm 2.4 to

a global minimizer is guaranteed, though more global exploration is typically per-

formed in the process. When y0 is greater than the global minimum, convergence

of Algorithm 2.4 to a value less than or equal to y0 is guaranteed, with some local

refinement performed thereafter.

• Algorithm 2.5 uses a tuning parameter c which controls how much closer evaluation

points are allowed to get during the parallel substeps of the iteration. Global conver-

gence is guaranteed for 0 < c ≤ 1. Small values of c allow function evaluations to get

dense far from the global minimum during the parallel substeps, and slows conver-

gence. Large values of c force the algorithm to focus primarily on global exploration,

again slowing convergence. Intermediate values of c are thus preferred.

The algorithms described above were tested in Matlab, and Python and C++ im-

plementations of these algorithms are currently being developed; for more information

regarding availability of these codes, please contact the authors via email. Of course, as

with any derivative-free optimization algorithm, there is a curse of dimensionality, and

optimization in only moderate dimensional problems (i.e., n < 10) is expected to be nu-

merically tractable; a key bottleneck of the present code as the dimension of the problem

increases is the overhead required with the enumeration of the triangulation. The parallel

version of the algorithm is expected to be particularly efficient in cases requiring substantial

global exploration; in cases focusing primarily on local refinement, the speed up provided
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by performing function evaluations in parallel is anticipated to be reduced.

In next chapter, we extend the algorithms developed here to convex domains bounded

by arbitrary convex constraints. In Part 3 of this work, we extend the algorithms developed

here to approximate function evaluations, each of which is obtained via statistical averaging

over a finite number of samples.
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Chapter 3

Delaunay-based Optimization for convex

domain: ∆-DOGS(C)

3.1 Introduction

In this chapter, a new derivative-free optimization algorithm is presented to mini-

mize a (possibly nonconvex) function subject to convex constraints1 on a bounded feasible

region in parameter space:

minimize f (x) with x ∈ L = {x|ci(x) ≤ 0,∀i = {1, 2, . . . ,m}}, (3.1)

where ci(x) : Rn → R are assumed to be convex, and both f (x) and the ci(x) assumed to

be twice differentiable. Moreover, the feasible domain L is assumed to be bounded with a

nonempty interior (note that this assumption is only technical: if a given feasible domain

1The representation of a convex feasible domain as stated in (3.1) is the standard form used, e.g., in [19],
but is not completely general. Certain convex constraints of interest, such as those implied by linear matrix
inequalities (LMIs), can not be represented in this form. The extension of the present algorithm to feasible
domains bounded by LMIs will be considered in future work.

92
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has an empty interior, relaxing these constraints by ε generates a feasible domain with a

nonempty interior; further related discussion on this matter is deferred to the last paragraph

of §3.5.2.).

The algorithms developed in Chapter I were restricted to problems with linear con-

straints, as the domain searched was limited to the convex hull of the initial datapoints,

which in Part I was taken as all vertices of the (there, polyhedral) feasible domain. Another

potential drawback of the approach taken in Part I was the expense of the initialization of

the algorithm: 2n initial function evaluations were needed in the case of box constraints,

and many more initial function evaluations were needed when there were many linear con-

straints. This chapter addresses both of these issues.

Constrained optimization problems have been widely considered with local opti-

mization algorithms in both the derivative-based and the derivative-free settings. For global

optimization algorithms, the precise nature of the constraints on the feasible region of pa-

rameter space is a topic that has received significantly less attention, as many global opti-

mization methods (see for e.g., [12, 38, 39, 8, 40, 11 ,41, 42]) have very similar implemen-

tations in problems with linear and nonlinear constraints.

There are three classes of approaches for Nonlinear Inequality Problems (NIPs)

using local derivative-based methods. Those in the first class, called sequential quadratic

programming methods (see [43, 44]), impose (and, successively, update) a local quadratic

model of the objective function f (x) and a local linear model of the constraints ci(x) in or-

der to estimate the local optimal solution at each step. These models are defined based on

the local gradient and Hessian of the objective function f (x), and the local Jacobian of the

constraints ci(x), at the datapoint considered at each step. Those in the second class, called

quadratic penalty methods (see [45, 46, 47]), perform some function evaluations outside
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of the feasible domain, with a quadratic term added to the cost function which penalizes

violations of the feasible domain boundary, and solves a sequence of subproblems with

successively stronger penalization terms in order to ultimately solve the problem of inter-

est. Those in the third class, called interior point methods (see [43]), perform all function

evaluations inside the feasible domain, with a log barrier term added to the cost function

which penalizes proximity to the feasible domain boundary (the added term goes to infinity

at the domain boundary), and solves a sequence of subproblems with successively weaker

penalization terms in order to ultimately solve the problem of interest.

NIPs are a subject of significant interest in the derivative-free setting as well. One

class of derivative-free optimization methods for NIPs is called direct methods, which in-

cludes the well-known General Pattern Search (GPS) [48] methods which restrict all func-

tion evaluations to lie on an underlying grid which is successively refined. GPS meth-

ods were initially designed for unconstrained problems, but have been modified to address

box-constrained problems [49], linearly-constrainted problems, and smooth nonlinearly-

constrained problems [50]. Mesh Adaptive Direct Search (MADS) algorithms [51, 52, 53,

54] are modified GPS algorithms that handle non-smooth constraints. GPS and MADS

algorithms have been extended in [13] to handle coordination with grids (that is, non-

Cartesian grids) given by n-dimensional sphere packings, which significantly improves

efficiency in high dimensional problems.

The leading class of derivative-free optimization algorithms today is known as Re-

sponse Surface Methods. Methods of this class leverage an underlying inexpensive model,

or “surrogate”, of the cost function. Kriging interpolation is often used to develop this

surrogate [12]; this convenient choice provides both an interpolant and a model of the un-

certainty of this interpolant, and can easily handle extrapolation from the convex hull of the
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data points out to the (curved) boundaries of a feasible domain bounded by nonlinear con-

straints. Chapter 2 summarized some of the numerical issues associated with the Kriging

interpolation method, and developed a new Response Surface Method based on any well-

behaved interpolation method, such as polyharmonic spline interpolation, together with a

synthetic model of the uncertainty of the interpolant built upon a framework provided by a

Delaunay triangulation.

Unfortunately, the uncertainty function used in chapter 2 of this study is only de-

fined within the convex hull of the available datapoints, so the algorithms described in Part

I do not extend immediately to more general problems with convex constraints. The present

chapter develops the additional machinery necessary to make this extension effectively, by

appropriately increasing the domain which is covered by convex hull of the datapoints as

the algorithm proceeds. As in chapter 2, we consider optimization problems with expensive

cost function evaluations but computationally inexpensive constraint function evaluations;

we further assume that the computation of the surrogate function has a low computational

cost. The algorithm developed in chapter 3 of this study has two significant advantages

over those developed in chapter 2: (a) it solves a wider range of optimization problems

(with more general constraints), and (b) the number of initial function evaluations is re-

duced (this is significant in relatively high-dimensional problems, and in problems with

many constraints).

The chapter is structured as follows. Section 3.2 discusses briefly how the present

algorithm is initialized. Section 3.3 presents the algorithm. Section 3.4 analyzes the con-

vergence properties of the algorithm. In Section 3.5, the optimization algorithm proposed is

applied to a number of test functions with various different constraints in order to quantify

its behavior. Conclusions are presented in Section 3.6.



96

3.2 Initialization

In contrast to the algorithms developed in Part I, the algorithm developed here is

initialized by performing initial function evaluations at only n + 1 feasible points. There

is no need to cover the entire feasible domain by the convex hull of the initial datapoints;

however, it is more efficient to initialize with a set of n + 1 points whose convex hull has

the maximum possible volume.

a Step 1. b Step 2. c Step 3. d Steps 4-6.

Figure 3.1: Representation of Algorithm 3.1 on an illustrative example.

Before calculating the initial datapoints to be used, a feasible point x f which sat-

isfies all constraints must be identified. The feasible domain considered [see (3.1)] is

L = {x|ci(x) ≤ 0, 1 ≤ i ≤ m}, where the ci(x) are convex. The convex feasibility problem

(that is, finding a feasible point in a convex domain) is a well-known problem in convex

optimization; a number of effective methods are presented in [45, 55]. In this chapter, the

convex feasibility problem is solved by minimizing the following quadratic penalty func-

tion

P1(x) =

m∑
i=1

max(ci(x), 0)2, (3.2)

where P1(x) is simply the quadratic penalty function used by quadratic penalty methods for

solving NIPs. Since the ci(x) are convex, P1(x) is also convex; thus, if the feasible domain

is nonempty, any local minimizer of P1(x) is feasible. Note that the feasible domain is

empty if the minimum of P1(x) is greater than 0.
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Note that P1(x) is minimized via an iterative process which uses the Newton direc-

tion at each step, together with a line search, in order to guaranty the Armijo condition.

Hessian modification [28] may be required to find the Newton’s direction, since P1(x) is

not strictly convex. An example of this procedure to find a feasible point from an initial

infeasible point is illustrated in Figure 3.1a.

The point x f generated above is not necessarily an interior point of L. Note that

the interior of L is nonempty if and only if the MFCQ (Mangasarian-Fromovitz constraint

qualification) holds at x f (see Proposition 3.2.7 in [56]). Checking the MFCQ at point x f

is equivalent to solving a linear programming problem [57], which either (a) generates a

direction towards the interior of L from x f (from which a point xT on the interior of L is

easily generated), or (b) establishes that the interior is empty. The optimization algorithm

developed in this chapter is valid only in case (a).

Starting from this interior feasible point xT , the next step in the initialization identi-

fies another feasible point that is, in a sense, far from all the boundaries of feasibility. This

is achieved by minimizing the following logarithmic barrier function:

P2(x) = −

m∑
i=1

log(−ci(x)). (3.3)

It is easy to verify that P2(x) is convex, and has a unique global minimum. Note that since

initial point is an interior point, P2(x) can be defined at it. This function is also minimized

via Newton’s method; the line search at each step of this minimization is confined to the

interior of the feasible domain. The outcome of this procedure, denoted X0, is illustrated in

Figure 3.1b.

After finding the interior point X0 from the above procedure, a regular simplex2 ∆

2A simplex is said to be regular if all of its edges are equal.
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whose body center is X0 is constructed. Finding the coordinates of a regular simplex is well-

known problem in computational geometry (see, e.g., §8.7 of [58]). The computational cost

of finding a regular simplex is O(n2), which is insignificant compared with the rest of the

algorithm.

Before continuing the initialization process, a new concept is introduced which is

used a few times in this chapter.

Definition 10. The prolongation of point M from a feasible point O onto the feasibility

boundary ∂L, is the unique point on the ray from O that passes through M which is on

the boundary of feasibility. In order to find the prolongation of M from O on L, first the

following 1D convex programming problem has to be solved.

max
α∈R

α, (3.4)

subject to ci(O + α (M − O)) ≤ 0, ∀ 1 ≤ i ≤ m.

Then, N = O + α (M − O), the prolongation point. It is easy to observe that N is located

on the boundary of L. Since α = 0 is a feasible point for (3.2), it can be solved using the

interior point method [43]. The computational cost of this subproblem is not significant if

the computational cost of the constrained functions ci(x) are negligible.

Based on the above definition, the initialization process is continued by prolonga-

tion of the vertices of the regular simplex from X0 onto L. As illustrated in Figure 3.1c,

the simplex so generated by this prolongation has a relatively large volume, and all of its

vertices are feasible. The algorithm developed in the remainder of this chapter incremen-

tally increases the convex hull of the available datapoints towards the edges of the feasible

domain itself. This process is generally accelerated if the volume of the initial feasible
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simple is maximized.

The feasible simplex generated above is not the feasible simplex of maximal vol-

ume. As illustrated in Figure 3.1d, we next perform a simple iterative adjustment to

the feasible vertices of this simplex to locally maximize its volume3. That is, denoting

V– {∆{V1,V2, . . . ,Vm+1}} as the volume of an m-dimensional simplex with corners

{V1,V2, . . . ,Vm+1}, we consider the following problem:

maximize V– {∆{V1,V2, . . . ,Vn+1}},

where{V1,V2, . . . ,Vn+1} ∈ L. (3.5)

The problem of finding p > 2 points in a convex subset ofR2 which maximizes its enclosing

area is a well-known problem in the fields of interpolation, data compression, and robotic

sensor networks. An efficient algorithm to solve this problem is presented in [59]. Note

that (3.5) differs from the problem considered in [59] in three primary ways:

• (3.5) is defined in higher dimensions (n ≥ 2);

• the boundary of the domain L is possibly nondifferenible, whereas the problem in

[59] assumed the boundary is twice differentiable;

• (3.5) is easier in the sense that a simplex is considered, not a general convex polyhe-

dron.

As a result of these differences, a different strategy is applied to the present problem, as

described below.

Consider V1,V2, . . . ,Vn+1 as the vertices of a simplex ∆x. The volume of ∆x may be

3The problem of globally maximizing the volume of a feasible simplex inside a convex domain is, in
general, a nonconvex problem. We do not attempt to solve this global maximization, which is unnecessary in
our algorithm.
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written:

V–(∆x) =
V–(∆′x)LVk

n
, (3.6)

where ∆′x is the n − 1 dimensional simplex generated by all vertices except Vk, Hk is the

n− 1 dimensional hyperplane containing ∆′x, and LVk is the perpendicular distance from the

vertex Vk to the hyperplane Hk.

By (3.6), LVk must be maximized to maximize the volume of the simplex if the

other vertices are fixed. Furthermore, it is easily verified that the perpendicular distance of

a point p to the hyperplane Hk, characterized by aT
k x = bk, is equal to |(aT

k p − bk)/(aT
k ak)|;

thus,

Vk = argmax
p∈L
|aT

k p − bk|. (3.7)

Solving the optimization problem (3.7) is equivalent to finding the maximum of two

convex optimization problems with linear objective functions. The method used to solve

these two convex problems is the primal-dual-barrier method explained in detail in [60] and

[43].

Based on the tools developed above, (3.5) is solved via the following procedure:

Algorithm 3.1 Completion of initialization of ∆-DOGS(C)

Find a point X in L = {x|ci(x) ≤ 0, 1 ≤ i ≤ m} by minimizing P1(x) defined in (3.2); then,
goes to the interior of L by checking the MFCQ condition.
Starting from X; then, goes to another feasible point X0 which is far from the constraint
boundaries by minimizing P2(x) defined in (3.3).
Generate a uniform simplex with body center X0; denote the vertices of this simplex
X1, X2, . . . , Xn+1.
Determine V1,V2, . . . ,Vn+1 as the prolongations of X1, X2, . . . , Xn+1 from X0 to the bound-
ary of L.
For k = 1 to n+1, modify Vk to maximize the distance from the hyperplane which passes
through the other vertices by solving (3.7).
If all modification at step 6 are small, stop the algorithm; otherwise repeat from 5.

Definition 11. The simplex ∆i obtained via Algorithm 3.1, is referred to the initial simplex.
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Definition 12. For each vertex Vk of the initial simplex, the hyperplane Hk, characterized

by aT
k x = bk, passes through all vertices of the initial simplex except Vk. Without loss

of generality, the sign of the vector ak may be chosen such that, for any point x ∈ L,

aT
k x ≤ akVk. Now define the enclosing simplex ∆e as follows:

∆e = {x | aT
i x ≤ aT

i Vi, 1 ≤ i ≤ n + 1};

note that the feasible domain L is a subset of the enclosing simplex ∆e.

Lemma 12. Consider V1,V2, . . . ,Vn+1 as the vertices of the initial simplex ∆i, and

P1, P2, . . . , Pn+1, as those of the enclosing simplex ∆e given in Definition 12; then

pk =

n+1∑
j=1

V j − nVk. (3.8)

Proof. Define pk according to (3.8). Then, for all i , k,

aT
i pk =

n+1∑
j=1

aT
i V j − naT

i Vk.

According to Definition 12, aT
i V j = bi, ∀ j , i; thus, above equation is simplified to:

aT
i pk = aT

i Vi.

Thus, n of the independent constraints on the enclosing simplex given in Definition 12 are

binding at pk, and thus pk is a vertex of ∆e. �

Definition 13. Consider P1, P2, . . . , Pn+1 as the vertices of the enclosing simplex ∆e, and O
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as its body center. The vertices of the exterior simplex ∆E are defined as follows:

Ei = O + κ(Pi − O) (3.9)

where κ > 1 is called the extending parameter.

The relative positions of the initial, enclosing, and exterior simplices are illustrated

in Figure 3.2. It follows from (3.8) and (3.9) that
∑

Vi =
∑

Pi =
∑

Ei; that is, the initial,

enclosing, and exterior simplices all have the same body center, denoted O.

Remark 14. In this chapter, the following condition is imposed on the extending parameter

κ:

κ ≥
2 maxy∈L‖y − O‖

n min1≤i≤n+1‖Vi − O‖
, (3.10)

where O is the body center of the initial simplex, and {V1,V2, . . . ,Vn+1} are the vertices of

the initial simplex. In §3.4, it is seen that this condition is necessary to ensure convergence

of the optimization algorithm presented in §3.3. In general, the value of maxy∈L{‖y−O‖} in

not known and is difficult to obtain4; however, the following upper bound is known,

max
y∈L
‖y − O‖ ≤ n max

1≤i≤n+1
‖Vi − O‖.

Thus, by choosing κ as follows, (3.10) is satisfied:

κ =
2 max1≤i≤n+1‖Vi − O‖
min1≤i≤n+1‖Vi − O‖

. (3.11)

Definition 14. The vertices of the initial simplex ∆i, together with its body center O, form
4This is a maximization problem for a convex function in a convex compact domain. This problem is

studied in [61].
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Figure 3.2: Illustration of the initial, enclosing and exterior simplices for an elliptical
feasible domain.

Figure 3.3: Representation of the boundary (hashed) and interior (non-hashed) simplices
in the Delaunay triangulation of a set of feasible evaluation points together with the three

vertices of the exterior simplex.

z
k

i
x
px

Figure 3.4: Illustration of a convex boundary projection: the solid circle indicates the
feasible domain, x is the initial point, zk

i is the circumcenter of a boundary simplex ∆k
i

containing x, the dashed circle indicates the corresponding circumsphere, and xp is the
feasible boundary projection.
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the initial evaluation set S 0
E. The union of S 0

E and the vertices of the exterior simplex form

the initial triangulation set S 0
T .

Remark 15. After constructing S 0
E and S 0

T , a Delaunay triangulation ∆0 over S 0
T is calcu-

lated. If the body center O and a vertex E of the exterior simplex ∆E are both located in any

simplex of the triangulation ∆0; then E′ is defined as the intersection of segment OE with

the boundary of L, and E′ is added to both S 0
E and S 0

T , and the triangulation is updated.

After at most n + 1 modifications of this sort, the body center O is not located in the same

simplex of the triangulation as any of the vertices of the exterior simplex. As a result, the

number of points in S 0
E and S 0

T are at most 2n + 3, and 3n + 4 respectively. The sets S 0
E and

S 0
T are used to initialize the optimization algorithm presented in the following section.

3.3 Description of the Optimization Algorithm

In this section, we present an algorithm to solve the optimization problem defined

in (3.1). We assume that calculation of the constraint functions ci(x) are computationally

inexpensive compared to the function evaluations f (x), and that the gradient and Hessian

of ci(x) are available.

Before presenting the optimization algorithm itself, some preliminary concepts are

first defined.

Definition 15. Consider ∆k as a Delaunay triangulation of a set of points S k
T , which in-

cludes the vertices of the exterior simplex ∆E. As illustrated in Figure 3.3, there are two

type of simplices:

a. boundary simplices, which include at least one of the vertices of the exterior simplex

∆E, and
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b. interior simplices, which do not include any vertices of the exterior simplex ∆E.

Definition 16. For any boundary simplex ∆x ∈ ∆k which includes only one vertex of the

exterior simplex ∆E, the n − 1 dimensional simplex formed by those vertices of ∆x of which

are not in common with the exterior simplex is called a face of ∆x.

Definition 17. For each point x ∈ L, the constraint function g(x) is defined as follows:

g(x) = max
1≤ j≤m

{c j(x)}. (3.12)

For each point x in a face F ∈ ∆k, the linearized constraint function with respect to the face

F, gF
L (x), is defined as follows:

cF
j,L(x) =

n∑
i=1

wic j(Vi), (3.13a)

gF
L (x) = max

1≤ j≤m
{cF

j,L(x)}, (3.13b)

where the weights wi ≥ 0 are defined such that

x =

r∑
i=1

wiVi with
r∑

i=1

wi = 1.

Definition 18. Consider x as a point which is located in the circumsphere of a boundary

simplex in ∆k. Identify ∆k
i as that boundary simplex of ∆k which includes x in its circume-

sphere and which maximizes g(zk
i ). The prolongation (see Footnote 10) of zk

i from x onto the

boundary of feasibility is called a feasible boundary projection of the point x, as illustrated

in Figure 3.4.
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Algorithm 3.2 ∆-DOGS(C)

As described in previous section, prepare the problem for optimization by (a) executing
Algorithm 3.1 to find the initial simplex ∆i, (b) identifing the exterior simplex ∆E as
described in Definition 13.
Take S 0

E and S 0
T as the initial evaluation set and the initial triangulation set, respectively.

Evaluate f (x) at all points in S 0
E. Set k = 0.

Calculate (or, for k > 0, update) an interpolating function pk(x) that passes through all
points in S k

E.
Perform (or, for k > 0, incrementally update) a Delaunay triangulation ∆k over all points
in S k

T .
For each simplex ∆k

i of the triangulation ∆k which includes at most one vertex of the
exterior simplex, define Fk

i as the corresponding face of ∆k if ∆k
i is a boundary simplex,

or take Fk
i = ∆k

i itself otherwise. Then:

a. Calculate the circumcenter zk
i and the circumradius rk

i of the simplex Fk
i .

b. Define the local uncertainty function ek
i (x) as

ek
i (x) = (rk

i )2 − (x − zk
i )

T (x − zk
i ). (3.14)

c. Define the local search function sk
i (x) as follows: if ∆i

k is an interior simplex, take

sk
i (x) =

pk(x) − y0

ek
i (x)

; (3.15)

otherwise, take

sk
i (x) =

pk(x) − y0

−g
Fk

i
L (x)

, (3.16)

where y0 is an estimate (provided by the user) for the value of the global minimum.

d. Minimize the local search function sk
i (x) in Fk

i .

If a point x at step 3 is found in which sk(x) ≤ y0, then redefine the search sk
i (x) = pk(x)

in all simplices, and take xk as the minimizer of this search function in L; otherwise, take
xk as the minimizer of the local minima identified in step 3d.
If xk is not inside the circumsphere of any of the boundary simplices, define x′k = xk; oth-
erwise, define x′k as the feasible boundary projection (see Definition 18) of xk. Perform
a function evaluation at x′k, and take S k+1

E = S k
E ∪ {x

′
k} and S k+1

T = S k
T ∪ {x

′
k}.

Repeat from step 3 until minx∈S k{‖x′k − x‖} ≤ δdes.
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Remark 16. Algorithm 2.2 generalizes the adaptive K algorithm developed in chapter 2 of

this work to convex domains. We could similarly extend the constant K algorithm developed

in chapter 2 by modifying (3.15) and (3.16) as follows: if ∆i
k is an interior simplex, take

sk
i (x) = pk(x) − K ek

i (x);

otherwise, take

sk
i (x) = pk(x) + K gFk

i
L .

Such a modification might be appropriate if an accurate estimate of the Hessian of f (x) is

available, but an accurate estimate of the lower bound y0 of f (x) is not.

Remark 17. At each step of Algorithm 2.2, a feasible point x′k is added to L. If Algorithm

3.2 is not terminated at finite k, since the feasible domain L is compact, the sequence of x′k

will have at least one convergent subsequence, by the Bolzano Weierstrass theorem. Since

this subsequence is convergent, it is also Cauchy; therefore, for any δdes > 0, there are two

integers k and m < k such that ‖x′m − x′k‖ ≤ δdes. Thus, minx∈S k{‖x′k − x‖} ≤ δdes; thus, the

termination condition will be satisfied at step k. As a result, Algorithm 3.2 will terminate

in a finite number of iterations.

Definition 19. At each step of Algorithm 3.2, and for each point x ∈ L, there is a simplex

∆k
i ∈ ∆k which includes x. The global uncertainty function ek(x) is defined as ek(x) = ek

i (x).

It is shown in Part I (Lemmas 3 and 4) that ek(x) is continuous and Lipchitz with Lipchitz

constant of rk
max, the maximum circumradius of ∆k, and that the Hessian of ek(x) inside each

simplex, and over each face F of each simplex, is −2 I.

There are three principle difference between Algorithm 3.2 above and the corre-

sponding algorithm proposed in chapter 2 for the linearly-constrained problem:
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• In the initialization, instead of calculating the objective function at all of the vertices

of feasible domain (which is not possible if the constraints are nonlinear), the present

algorithm is instead initialized with between n + 2 and 2n + 3 function evaluations.

• The local search function is modified in the boundary simplices.

• The feasible boundary projections used in the present work are analogous to (but

slightly different from) Algorithm 3 of chapter 2, which applies one or more feasible

constraint projections.

3.3.1 Minimizing the search function

As with ∆-DOGS, the most expensive part of Algorithm 3.2, separate from the

function evaluations themselves, is step 3 of the algorithm. The cost of this step is pro-

portional to the total number of simplices S in the Delaunay triangulation. As derived in

[25], a worst-case upper bound for the number of simplices in a Delaunay triangulation is

S ∼ O(N
n
2 ), where N is the number of vertices and n is the dimension of the problem. As

shown in [26, 27], for vertices with a uniform random distribution, the number of simplices

is S ∼ O(N). This fact limits the present algorithm to be applicable only for relatively low

DOF problems (say, n<10). In practice, the most limiting part of step 3 is the memory

requirement imposed by the computation of the Delaunay triangulations. Thus, the present

algorithm itself is applicable only to those problems for which Delaunay triangulations can

be performed amongst the datapoints.

In this section, we describe some details and facts that simplifies certain other as-

pects of step 3 (besides the Delaunay triangulations). In general, there are two type of

simplices in ∆k whose definition of the search function is different.

In the interior simplices ∆k
i , the function sk

i (x) =
pk(x)−y0

ek
i (x)

has to be minimized in ∆k
i .
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One important property of ek(x) which makes this problem easier is ek(x) = max j∈S ek
j(x)

(Lemma 2), and as it shown in Lemma 5, if sk(x) is minimized in L rather than ∆k
i , the

position of point xk would not be changed. Another important issue is the method of ini-

tialization for the minimization of sk
i (x). To accomplish this, we choose a point x̂k

i which

maximizes ek
i (x) as the initial point for the minimization algorithm. Note that, if the cir-

cumcenter of this simplex is included in this simplex, the circumcenter is the point that

maximizes ek
i (x); otherwise, this maximization is a simple quadratic programming prob-

lem. The computational cost of calculating x̂k
i is similar to that of calculating xk

c. After the

initializations described above, the subsequent minimizations are performed using New-

ton’s method with Hessian modification via modified Cholesky factorization (see [28]) to

minimize sk
i (x) within L. It will be shown (see Theorem 7) that performing Newton’s

method is actually not necessary to guaranty the convergence of Algorithm 3.2, and having

a point whose value sk(x) is less than the initial points is sufficient to guaranty the conver-

gence; however, performing Newton minimizations at this step can improve the speed of

convergence. In practice, we will perform Newton minimizations only in a few simplices

whose initial points have small values for sk(x).

For the boundary simplices ∆k
i , the function sk

i (x) is defined only over the face Fk
i

of ∆k
i . The minimization in each boundary simplex is initialized at the point x̃k

i which

maximizes the piecewise linear function −gFk
i

L (x); this maximization may be written as a

linear programming problem with the method described in §1.3, p. 7, in [62]. Similarly, it

can be seen that initialization with these points is enough to guaranty the convergence; thus,

it is not necessary to perform the Newton method after this initialization. In our numerical

implementation, the best of these initial points are considered for the simulation; however,

the implementation of Newton minimizations on these faces could further improve the
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speed of convergence.

Remark 18. As in Algorithm 4 of chapter 2, since Newton’s method doesn’t always con-

verge to a global minimum, xk is not necessarily a global minimizer of sk(x). However, the

following properties are guaranteed:

if sk(x) = pk(x), then pk(xk) ≤ y0; (3.17a)

otherwise sk(xk) ≤ sk
j(x̂k

j) ∀∆
k
j ∈ ∆k, (3.17b)

and sk(xk) ≤ sk
j(x̃k

j) ∀Fk
j ∈ ∆k. (3.17c)

Recall that x̂k
j is the maximizer of ek

j(x) in the interior simplex ∆k
j ∈ ∆k, and x̃k

j is the

maximizer of −gF
L (x) over the face Fk

j of the boundary simplex ∆k
j ∈ ∆k. These properties

are all that are required by Theorem 7 in order to establish convergence.

3.4 Convergence analysis

In this section, the convergence properties of Algorithm 3.2 are analyzed. The

structure of the convergence analysis is similar to that in chapter 2.

In this section, the following conditions for the function of interest, f (x), the con-

straints ci(x), and the interpolating functions pk(x) are imposed.

Assumption 1. The interpolating functions pk(x), for all k, are Lipchitz with the same

Lipchitz constant Lp.

Assumption 2. The function f (x) is Lipchitz with Lipchitz constant L f .

Assumption 3. The individual constraint functions ci(x) for 1 ≤ i ≤ m are Lipchitz with

Lipchitz constant Lc.
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Assumption 4. A constant Kp f exists in which

Kp f > λmax(∇2( f (x) − pk(x))/2), ∀x ∈ L and k > 0.

Assumption 5. A constant K f exists in which

K f > λmax(∇2( f (x))/2), ∀x ∈ L.

Assumption 6. A constant Kg exists in which

Kg > λmax(∇2(ci(x))/2), ∀x ∈ L.

Before analyzing the convergence of Algorithm 3.2, some preliminary definitions

and lemmas are needed.

Definition 20. According to the construction of the initial simplex, its body center is an

interior point in L; thus, noting (3.12), g(O) < 0. Thus, the quantity LO = maxy∈L‖y −

O‖/(−g(O)) is a bounded positive real number.

Lemma 13. Each vertex of the boundary simplices of ∆k, for all steps of Algorithm 3.2, is

either a vertex of the exterior simplex or is located on a boundary of L.

Proof. We will prove this lemma by induction on k. By construction, O is not in any

boundary simplex of ∆0, and all other points of S k
E are on the boundary of L; therefore, the

lemma is true for the base case k = 0. Assuming the lemma is true for the case k − 1, we

now show that it follows that the lemma is also true for the case k.

At step k of Algorithm 3.2, we add a point x′k to the triangulation set S k
T . As de-

scribed step 5 of Algorithm 3.2, this point arises from one of two possible cases.
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In the first case, xk is not located in the circumsphere of any boundary simplex, and

a feasible boundary projection is not performed; as a result, x′k = xk is an interior point of L.

In this case, the incremental update of the Delaunay triangulation at step k does not change

the boundary simplices of ∆k−1 (see, e.g., section 2.1 in [23]), and thus the lemma is true in

this case.

In the other case, xk is located in the circumsphere of a boundary simplex, and a

feasible boundary projection is performed; thus, x′k is on the boundary of L. Consider ∆x

as one of the new boundary simplices which is generated at step k. By construction, xk is

a vertex of ∆x. Define F as the n − 1 dimensional face of ∆x which does not include xk.

Based on the incremental construction of the Delaunay triangulation, F is a face of another

simplex ∆′x at step k−1. Since ∆x is a boundary simplex, F includes a vertex of the exterior

simplex; thus, ∆′x is a boundary simplex in ∆k−1; thus, each vertex of F is either a boundary

point or a vertex of the exterior simplex; moreover, x′k is a boundary point. As a result, ∆x

satisfies the lemma. For those boundary simplices which are not new, the lemma is also

true, by the induction hypothesis. Thus, the lemma is also true in this case. �

Definition 21. For any point x ∈ L, the interior projection of x, donated by xI , is defined

as follows: If x is located inside or on the boundary of an interior simplex, put xI = x;

otherwise, xI is taken as the point of intersection, closest to x, of the line segment Ox with

the boundary of the union of the interior simplices. Thus, xI is located on a face of the

triangulation.

Lemma 14. Consider x as a point in L which is not located in the union of the interior

simplices at step k of Algorithm 3.2. Define xI as the interior projection of x (see Definition

21). Then,

pk(xI) − f (x) ≤ ek(xI){Kp f + L f KgLO} − L f LOgF
L (xI), (3.18)
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where ek(x) is the uncertainty function, gF
L (x) is the linearized constraint function (see

Definition 17) with respect to a face F which includes xI , and L f , Kp f , Kg, and LO are

defined in Assumptions 10, 4 and 6 and Definition 20, respectively.

Proof. By Definition 21, xI is a point on the line segment Ox; thus,

xI = x
‖O − xI‖

‖O − x‖
+ O
‖x − xI‖

‖O − x‖
.

Define {V1,V2, . . . ,Vn} as the vertices of F, and Gk
j(x) = cF

j,L(x)− c j(x)−Kgek(x), where cF
j,L

is the linear function defined in (3.13a). First we will show that Gk
j(x) is strictly convex in

F. Since cF
j,L(x) is a linear function of x in F, and ∇2ek(x) = −2 I (see (3.14)), it follows

that

∇2Gk
j(x) = −∇2{c j(x)} + 2 Kg I. (3.19)

According to Assumption 6 ∇2Gk
j(x) > 0 in F; thus, it is strictly convex; therefore, its

maximum in F is located at one of the vertices of F. Furthermore, by construction, Gk
j(Vi) =

0; thus, GF
j (xI) ≤ 0, and

c j(xI) ≥ cF
j,L(xI) − Kgek(xI) ∀ 1 ≤ j ≤ m,

g(xI) ≥ gF
L (xI) − Kgek(xI), (3.20)

where g(x) is defined in Definition 17. Since the ci(x) are convex, g(x) is also convex; thus,

g(xI) ≤ g(x)
‖O − x1‖

‖O − x‖
+ g(O)

‖x − xI‖

‖O − x‖
. (3.21)

Since x ∈ L, g(x) ≤ 0. Since O is in the interior of L, g(O) < 0; from (3.20) and (3.21), it
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thus follows that

gF
L (xI) − Kgek(xI) ≤ g(O)

‖x − xI‖

‖O − x‖
,

‖x − xI‖ ≤
‖x − O‖
−g(O)

{Kgek(xI) − gF
L (xI)}.

By Definition 20, this leads to

‖x − xI‖ ≤ LO{Kgek(xI) − gF
L (xI)}. (3.22)

Now define T (x) = pk(x)− f (x)−Kp f ek(x). By Assumption 4 and Definition 19, similar to

Gk
j(x), T (x) is also strictly convex in F, and T (Vi) = 0; thus,

pk(xI) − Kp f ek(xI) ≤ f (xI). (3.23)

Furthermore, L f is a Lipchitz constant for f (x); thus,

f (xI) − f (x) ≤ L f ‖x − xI‖. (3.24)

Using (3.22),(3.23), and (3.24), (3.18) is satisfied. �

Remark 19. If x is a point in an interior simplex, it is easy to show [as in the derivation of

(3.23)] that (3.18) is modified to

pk(x) − f (x) ≤ Kp f ek(x). (3.25)

Lemma 15. Consider F as a face of the union of the interior simplices at step k of Algo-

rithm 3.2, x as a point on F, and gL
F(x) as the linearized constraint function on F as defined
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in Definition (17). Then,

−gL
F(x) ≤ Lc

√
ek(x). (3.26)

Proof. By Assumption 11, the ci(x) are Lipchitz with constant Lc. Thus, by (3.13a), the

cL
i,F(x) are Lipchitz with the same constant. Furthermore, the maximum of a finite set of

Lipchitz functions with constant Lc is Lipchitz with the same constant (see Lemma 2.1 in

[63]). Define {V1,V2, . . . ,Vn} as the vertices of F; then, by Lemma 13, Vi is on the boundary

of L; thus, gL(Vi) = 0 for all 1 ≤ i ≤ n, and

−gL
F(x) ≤ Lc min

1≤i≤n
{‖x − Vi‖}. (3.27)

Now define {w0,w1, . . . ,wn} as the weights of x in F (that is, x =
∑n

j=0 w jV j where

wi ≥ 0 and
∑n

j=0 w j = 1), z as the circumcenter of F, and r as the circumradius of F. Then,

for each j,

r2 = ‖V j − z‖2 = ‖V j − x‖2 + ‖x − z‖2 + 2 (V j − x)T (x − z).

Multiplying the above equations by w j and taking the sum over all j, noting that
∑n

j=0 w j =

1, it follows that

r2 =

n∑
j=0

w j‖V j − x‖2 + ‖x − z‖2 + 2
n∑

j=1

w j(V j − x)T (x − z).
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Since
∑n

j=0 w j(V j − x) = 0, this simplifies to

r2 =

n∑
j=0

w j‖V j − x‖2 + ‖x − z‖2,

n∑
j=0

w j‖V j − x‖2 = r2 − ‖x − z‖2,

n∑
j=0

w j‖V j − x‖2 = ek(x), (3.28)

ek(x) ≥ min
0≤i≤n
{‖x − Vi‖}

2. (3.29)

Since both side of (3.29) are positive numbers, we can take square root of the both sides;

moreover, Lc is a positive number.

Lc

√
ek(x) ≥ Lc min

1≤i≤r
{‖x − Vi‖}. (3.30)

Using (3.27) and (3.30), (3.26) is satisfied. �

Note that, by (3.28), the global uncertainty function ek(x) defined in (3.14) and

Definition 19 is simply the weighted average of the squared distance of x from the vertices

of the simplex that contains x.

The other lemma which is essential for analysis the convergence of Algorithm 3.2,

is that the maximum circumradius of ∆k is bounded.

Lemma 16. Consider ∆k as a Delaunay triangulation of a set of triangulation points S k
T

at step k. The maximum circumradius of ∆k, rk
max, is bounded as follows:

rk
max ≤ κL1

√
1 +

(
κ

L1

2(κ − 1)δO

)2
, (3.31)
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where L1 is the maximum edge length of the enclosing simplex ∆e, κ is the extending pa-

rameter (Definition 13), and δO is the minimum distance from O (the body center of the

exterior simplex) to the boundary of ∆e.

Proof. Consider ∆x as a simplex in ∆k which has the maximum circumradius. Define z as

the circumcenter of ∆x, and x as a vertex of ∆x which is not a vertex of the exterior simplex.

If z is located inside of the exterior simplex ∆E, then,

rk
max = ‖z − x‖ ≤ L1κ, (3.32)

which shows lemma in this case. If z is located outside of ∆E, then define zp as the point

closest to z in the exterior simplex. That is,

zp = argminy∈∆E
‖z − y‖

subject to aT
i,E y ≤ bi,E,∀ 1 ≤ i ≤ n + 1, (3.33)

where aT
i,E y ≤ bi,E defines the i’th face of the exterior simplex. Define Aa(Zp) as the set of

active constraints at Zp in the constraints of (3.33), and v as a vertex of the exterior simplex

in which all constraints in Aa(zp) are active at zp; then, using the optimality condition at Zp,

it follows that

(z − zp)T (zp − v) = 0,

‖z − v‖2 = ‖z − zp‖
2 + ‖v − zp‖

2. (3.34)

Now consider p as the intersection of the line segment zx with the boundary of the exterior
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simplex; then,

‖z − x‖ = ‖z − p‖ + ‖p − x‖. (3.35)

Furthermore, by construction,

‖z − zp‖ ≤ ‖z − p‖. (3.36)

Since p is on the exterior simplex ∆E, and x is inside of the enclosing simplex ∆e, it follows

that

‖p − x‖ ≥ (κ − 1)δO. (3.37)

Note that x is a vertex of the simplex ∆x, and v is a point in S k. Since the triangula-

tion ∆k is Delaunay, v is located outside of the interior of the circumsphere of ∆x. Recall, z

is the circumcenter of ∆x; thus,

Rx = ‖x − z‖ ≤ ‖z − v‖, (3.38)

where Rx is the circumcenter of L. Using (3.34), (3.35) and (3.38) it follows that

‖z − p‖2 + ‖p − x‖2 + 2‖z − p‖‖p − x‖ ≤ ‖z − zp‖
2 + ‖v − zp‖

2. (3.39)

By (3.36), (3.37) and (3.39), it follows that

2(κ − 1)δO‖z − zp‖ ≤ ‖z − zp‖
2.

Note that ‖v − zp‖ ≤ κL1; thus,

‖z − zp‖ ≤ κ
2 L2

1

2(κ − 1)δO
. (3.40)



119

Combining (3.34) and (3.40), noting that rk
max ≤ ‖z − v‖, (3.31) is satisfied. �

The final lemma which is required to establish the convergence of Algorithm 3.2,

given below, establishes an important property of the feasible boundary projection.

Lemma 17. Consider ∆k as a Delaunay triangulation of Algorithm 3.2 at step k, and x′k as

the feasible boundary projection of xk. If the extending parameter κ satisfies (3.10), then,

for any point V ∈ S k,
‖V − x′k‖
‖V − xk‖

≥
1
2
. (3.41)

Proof. If a feasible boundary projection is not performed at step k, x′k = xk, and (3.41) is

satisfied trivially. Otherwise, consider ∆k
i in ∆k as the boundary simplex, with circumcenter

Z and circumradius R, which is used in the feasible boundary projection (see Definition

18). First, we will show that, for a value of κ that satisfies (3.10), Z is not in L. This fact is

shown by contradiction; thus, first assume that Z is in L. Define A as a shared vertex of ∆k
i

and the exterior simplex, and V1,V2, . . . ,Vn+1 as the vertices of the initial simplex ∆i (see

Definition 11). Since the body center of the exterior simplex O ∈ S k
T , and ∆k is Delaunay,

‖O − Z‖ ≥ ‖A − Z‖,

‖O − Z‖ ≥ min
y∈L
{‖A − y‖},

‖O − Z‖ + ‖O − y‖ ≥ min
y∈L
{‖A − y‖} + ‖O − y‖,

2 max
y∈L
{‖O − y‖} ≥ ‖O − A‖,

‖O − A‖ ≥ nκ min
1≤ j≤n+1

{‖O − V j‖},

2 max
y∈L
{‖y − O‖} ≥ nκ min

1≤ j≤n+1
{‖V j − O‖}. (3.42)

However, (3.42) is in contradiction with (3.10); thus, Z is not in L; therefore, by Definition
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18, x′k is on the line segment Zxk.

Now we will show (3.41). Consider Vp as the orthogonal projection of V onto the

line through xk, x′k and Z; then, we may write Vp = βxk and, by construction:

‖V − xk‖
2 = ‖V − Vp‖

2 + ‖Vp − xk‖
2,

‖V − x′k‖
2 = ‖V − Vp‖

2 + ‖Vp − x′k‖
2,

‖V − Z‖2 = ‖V − Vp‖
2 + ‖Vp − Z‖2.

Since Z is outside of L, xk is in L, x′k is on the boundary of L, and they are collinear ; then,

there is a real number 0 ≤ α ≤ 1, such that x′k = Z + α (xk − X), which leads to

‖Vp − xk‖
2 = ‖Vp − Z‖2 + 2(Z − Vp)T (xk − Z) + 2‖xk − Z‖2,

‖Vp − x′k‖
2 = ‖Vp − Z‖2 + 2α(Z − Vp)T (xk − Z) + 2α2‖xk − Z‖2.

Therefore, above equations are simplified to.

‖V − xk‖
2 = ‖V − Z‖2 + 2(Z − Vp)T (xk − Z) + 2‖xk − Z‖2,

‖V − x′k‖
2 = ‖V − Z‖2 + 2α(Z − Vp)T (xk − Z) + 2α2‖xk − Z‖2.

By defining β =
(Z−Vp)T (xk−Z)
‖xk−Z‖‖V−Z‖ and γ = ‖xk−Z‖

‖V−Z‖ ; the above equation is simplified to:

‖V − x′k‖
2

‖V − xk‖
2 =

1 + 2αβγ + α2γ2

1 + 2 βγ + γ2 . (3.43)

By construction, xk is inside the circumsphere of ∆k
i . Moreover, ∆k is a Delaunay triangu-

lation for S k, and V ∈ S k; thus, V is outside the interior of circumsphere of ∆k
i . As a result,
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‖Z − xk‖ ≤ ‖Z − V‖. Moreover, γ is trivially positive; thus, 0 ≤ γ ≤ 1. Now we identify

lower and upper bounds for β:

−‖Z − Vp‖‖xk − Z‖ ≤ (Z − Vp)T (xk − Z) ≤ ‖Z − Vp‖‖xk − Z‖,

‖Z − Vp‖ ≤ ‖Z − V‖,

−‖Z − V‖‖xk − Z‖ ≤ (Z − Vp)T (xk − Z) ≤ ‖Z − V‖‖xk − Z‖,

−1 ≤ β ≤ 1.

The right hand side of (3.43) is a function of α, β, γ. Moreover, it is shown that 0 ≤ α ≤ 1,

−1 ≤ β ≤ 1, and 0 ≤ γ ≤ 1. In order to show (3.41), It is sufficient to prove that

the minimum of this three dimensional function, denoted by Γ(α, β, γ), in the box that

characterized its variable is 1
4 .

The function Γ is a fractional linear function of β, thus,

Γ(α, β, γ) ≥ min{Γ(α,−1, γ),Γ(α, 1, γ)},

Γ(α, 1, γ) = (
1 + αγ

1 + γ
)2 ≥

1
(1 + γ)2 ≥

1
4
,

Γ(α,−1, γ) = (
1 − αγ
1 − γ

)2 ≥ (
1 − γ

(1 − γ)
)2 ≥ 1,

Γ(α, β, γ) ≥
1
4
. (3.44)

Using (3.43) and (3.44), (3.41) is verified. �

Finally, using the above lemmas, we can prove the convergence of Algorithm 3.2 to

the global minimum in the feasible domain L.

Theorem 7. If Algorithm 3.2 is terminated at step k, and y0 ≤ f (x∗), then there are real
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bounded numbers A1, A2, A3 such that

min
z∈S k

f (z) − f (x∗) ≤ A1 δdes + A2

√
δdes + A3

4
√
δdes. (3.45)

Proof. Define S k
E, S k

T , rk
max, and Lk

2 as the evaluation set, the triangulation set, the maxi-

mum circumradius of ∆k, and the maximum edge length of ∆k, respectively, where ∆k is a

Delaunay triangulation of S k
T . Define xk as the outcome of Algorithm 3.2 though step 4,

which at step k satisfies (3.17), and x′k as the feasible boundary projection of xk on L.

Define y1 ∈ S k
E as the point which minimizes δ = minx∈S k

E
‖x − xk‖, and the param-

eters {A, B,C,D, E} as follows:

A = max{K f + L f KgLO, L f LO}, (3.46a)

B = max{Kp f + L f KgLO, L f LO}, (3.46b)

C = max{4 A rk
max, Lp + 4 B rk

max}, (3.46c)

D = 2 max{A Lc

√
2rk

max, B Lc

√
2 rk

max,√
Lc Lk

2 Lp A rk
max}, (3.46d)

E =

√
2 Lc Lk

2 Lp A
4
√

2 rk
max. (3.46e)

We will now show that

min
z∈S k

f (z) − f (x∗) ≤ Cδ + D
√
δ + E

4√
δ, (3.47)

where x∗ is a global minimizer of f (x∗).

During the iterations of Algorithm 3.2, there two possible cases for sk(x). The

first case is when sk(x) = pk(x). In this case, via (3.17a), pk(xk) ≤ y0, and therefore
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pk(xk) ≤ f (x∗). Since y1 ∈ S k
E, it follows that pk(y1) = f (y1). Moreover, Lp is a Lipchitz

constant for pk(x); therefore,

pk(y1) − pk(xk) ≤ Lp δ, f (y1) − pk(xk) ≤ Lp δ,

f (y1) − f (x∗) ≤ Lp δ, min
z∈S k

e

f (z) − f (x∗) ≤ Lp δ.

which shows that (2.62) is true in this case.

The other case is when sk(x) = (pk(x) − y0)/ek(x) in the interior simplices, and

sk(x) = (pk(x) − y0)/(−gF
L (x)) on the faces of ∆k. For this case, we will show that (2.62) is

true when x∗ is not in an interior simplex. When x∗ is in an interior simplex, (2.62) can be

shown in an analogous manner.

Define Fk
i as a face in ∆k which includes x∗I , the interior projection (see Definition

18) of x∗, and ∆k
i as an interior simplex which includes x∗I . Define x̂k

i and x̃k
i as the points

which maximize ek
i (x) and −gFk

i
L (x) in ∆k

i and Fk
i , respectively, where ek

i (x) and −gFk
i

L (x) are

the local uncertainty function in ∆k
i and the linearized constraint function (see Definition

17) in Fk
i .

According to Lemma 14 and (3.46b),

pk(x∗I ) − f (x∗) ≤ B ek(x∗I ) − B gFk
i

L (x∗I ),

pk(x∗I ) − f (x∗) ≤ B ek
i (x̂k

i ) − B gFk
i

L (x̃k
i ). (3.48)

Further, by replacing the linear interpolation pk(x) with the linear function Lk
i (x), in which

Lk
i (x) = f (x) at the vertices of F, and using minz∈S k f (z) ≤ Lk(x∗I ) and the fact that the
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Hessian of Lk
i (x) is zero, and noting (3.46a), (3.48) may be modified to:

min
z∈S k

E

{ f (z)} − f (x∗) ≤ A ek
i (x̂k

i ) − A gFk
i

L (x̃k
i ). (3.49)

If the search function at xk is defined by (3.15), take êk = ek(xk); on the other hand,

if it is defined by (3.16), take êk = −g
Fk

j

L (xk) where Fk
j is the face of ∆k which includes xk.

Since 2 rk
max is a Lipchitz constant for ek(x) (see Lemma 4 in chapter 2), by using

Lemma 15 above, it follows

êk ≤ max{2 rk
maxδ, Lc

√
2 rk

maxδ},

êk ≤ 2 rk
maxδ + Lc

√
2 rk

maxδ (3.50)

If ek
i (x̂) − gFk

i
L (x̃k

i ) ≤ 2 êk, then by (3.49) and (3.50), (2.62) is satisfied. Otherwise,

dividing f (x∗) − y0 ≥ 0 by this expression with the opposite inequality,

2 f (x∗) − 2 y0

ek
i (x̂) − g

Fk
i

L (x̃k
i )
<

f (x∗) − y0

êk
. (3.51)

Using (2.60b), (3.17c) and (3.51)5

pk(xk) − y0

êk
≤

pk(x̂k
i ) − y0

ek
i (x̂k

j)
,

pk(xk) − y0

êk
≤

pk(x̃k
i ) − y0

−g
Fk

i
L (x̂k

j)
,

pk(xk) − f (x∗)
êk

≤
pk(x̂k

i ) + pk(x̃k
i ) − 2 f (x∗)

ek
i (x̂k

j) − g
Fk

i
L (x̂k

j)
.

According to Assumption 9, Lp is a Lipchitz constant for pk(x); noting max{‖x̂k
i − x∗I‖, ‖x̃

k
i −

5If x ≤ a/b, x ≤ c/d, and b, d > 0 then x ≤ (a + c)/(b + d).
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x∗I ‖} ≤ Lk
2 and (3.48), the above equation thus simplifies to

pk(xk) − f (x∗)
êk

≤ 2 B +
2 Lk

2 Lp

ek
i (x̂k

j) − g
Fk

i
L (x̂k

j)
,

f (y1) − pk(xk) ≤ Lpδ,

f (y1) − f (x∗) ≤ Lpδ + êk{2 B +
2 Lk

2Lp

ek
i (x̂k

j) − g
Fk

i
L (x̂k

j)
}.

Using (3.50), (3.49) and f (x∗) ≤ minz∈S k{ f (z)} ≤ f (y1), it follows:

min
z∈S k
{ f (z)} − f (x∗) ≤

Lpδ + êk{2 B +
2 Lk

2LpA
minz∈S k{ f (z)} − f (x∗)

},

[min
z∈S k
{ f (z)} − f (x∗)]2 ≤

2 Lk
2LpAêk + {Lpδ + 2 B ek}[min

z∈S k
{ f (z)} − f (x∗)].

Perform the quadratic inequality6 on the above, and the triangular inequality7 on the square

root of (3.50), it follows that:

min
z∈S k
{ f (z)} − f (x∗) ≤

√
2 Lk

2 Lp A êk + [Lpδ + 2 B êk],√
êk ≤

√
2 rk

max

√
δ +

√
Lc

4
√

2 rk
maxδ.

By using above equations and (3.50), (2.62) is satisfied.

According to Lemma 16, rk
max is bounded above; since Lk

2 is also bounded, since

the feasible domain is bounded, it follows that C, D and E are bounded real numbers.

6If A, B,C > 0, and A2 ≤ C + BA then A ≤
√

C + B.
7If x, y > 0, then

√
x + y ≤

√
x +
√

y.
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Furthermore, according to Lemma 17,

min
z∈S k
‖x′k − y‖ ≥

δ

2
. (3.52)

Since ‖x′k − y‖ = δdes, we have

min
z∈S k
{ f (z)} − f (x∗) ≤ εk,

where εk = 2Cδdes + D
√

2δdes + E 4
√

2δdes (3.53)

Thus, (3.45) is satisfied for A1 = 2 C, A2 =
√

2 D, and A3 =
4√2 D. �

In the above theorem, it is shown that a point can be obtained whose function value

is arbitrarily close to the global minimum, as long as Algorithm 3.2 is terminated with a

sufficiently small value for δdes. This result establishes convergence with respect to the

function values for a finite number of steps k. In the next theorem, we present a property of

Algorithm 3.2 establishing its convergence to a global minimizer in the limit that k → ∞.

Theorem 8. If Algorithm 3.2 is not terminated at step 6, then the sequence {x′k} has an

ω-limit point 8 which is a global minimizer of L.

Proof. Define zk as a point in S k that has the minimum objective value. By construction,

f (zr) ≤ f (zl), if r > l; thus, f (zk) is monotonically non-increasing. Moreover, according to

Theorem 7,

f (zk) − f (x∗) ≤ A1δk + A2

√
δk + A3

4
√
δk, (3.54)

where δk = min
x∈S k
{‖x − xk‖},

8The point x̂ is an ω-limit point (see [64]) of the sequence xk, if a subsequence of xk converges to x̂.
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where f (x∗) is the global minimum. According to Remark 17, for any arbitrarily small

δ > 0, there is a k such that minx∈S k{‖x − xk‖} ≤ δ; thus,

f (zk) − f (x∗) ≤ A1δ + A2

√
δ + A3

4√
δ. (3.55)

Thus, for any ε > 0 ; there is a k such that 0 ≤ f (zk) − f (x∗) ≤ ε. Now consider x1

as an omega-limit point of the sequence {zk}; thus, there is a subsequence {ai} of {zk} that

converges to x1. Since f (x) is continuous,

f (x1) = lim
i→∞

f (ai) = f (x∗), (3.56)

which establishes that the x1 is a global minimizer of f (x). �

Remark 20. Theorems 7 and 8 ensure that Algorithm 3.2 converges to the global minimum

if y0 ≤ f (x∗); however, if y0 > f (x∗), in a manner analogous to Theorem 6 in chapter 2, it

can be shown that Algorithm 3.2 converges to a point where the function value is less than

or equal to y0.

3.5 Results

In this section, we apply Algorithm 3.2 to some representative examples in two

and three dimensions with different types of convex constraints to analyze its performance.

Three different test functions for f (x), where x = [x1, x2, . . . , xn]T , are considered:

Parabolic function:

f (x) =

n∑
i=1

x2
i . (3.57)
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Rastrigin function: Defining A = 2,

f (x) = A n +

n∑
i=1

[
x2

i − A cos(2π xi)
]
. (3.58)

Shifted Rosenbrock function9: Defining p = 10,

f (x) =

n−1∑
i=1

[
(xi)2 + p (xi+1 − x2

i − 2 xi)2
]
. (3.59)

In the unconstrained setting, the global minimizer of all three test functions considered is

the origin.

Another essential part of the class of problems considered in (3.1) is the constraints

that are imposed; this is, in fact, a central concern of the present chapter.

Note that all simulations in this section are stopped when miny∈S k{‖y − xk‖} ≤ 0.01.

3.5.1 2D with circular constraints

We first consider 2D optimization problems in which the feasible domain is a circle.

In problems such as this, in which there is only one constraint (m = 1), gL
F(x) = 0 for all

faces F at all steps. Thus, no searches are performed on the faces; rather, all searches

are performed in the interior simplices, with some points xk (that is, any point xk that

lands within the circumsphere of a boundary simplex) projected out to the feasible domain

boundary.

9This is simply the classical Rosenbrock function with its unconstrained global minimizer shifted to the
origin.
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In this subsection, two distinct circular constraints are considered:

(x1 + 1.5)2 + (x2 + 1.5)2 ≤ 5.5, (3.60a)

(x1 + 1.5)2 + (x2 + 1.5)2 ≤ 3.8. (3.60b)

The constraint (3.60a) includes the origin (and, thus, the global minimizer of the test func-

tions considered), whereas the constraint (3.60b) does not. For the problems considered in

this subsection, we take κ = 1.4 for all simulations performed, which satisfies (3.10).

It is observed that, for test functions (3.57) and (3.58), the global minimizer in

the domain that satisfies (3.60b) is x∗ = [−0.1216;−0.1216], and the global minima are

f (x∗) = 0.0301 and f (x∗) = 0.8634, respectively. For the Rosenbrock function (3.59), the

global minimizer is at x∗ = [−0.0870;−0.1570], and the global minimum is f (x∗) = 0.0085

[it is easy to check that this point is KKT (see [19]), and that the problem is convex].

Algorithm 3.2 is implemented for six optimization problems constructed with the

above test functions and constraints. In each problem, the parameter y0 in Algorithm 3.2 is

chosen be a lower bound for f (x∗). Two different cases are considered: one with y0 = f (x∗),

and one with y0 < f (x∗).

The first two problems consider the parabolic test function (3.57), first with the

constraint (3.60a), then with the constraint (3.60b). For these problems, in the case with

y0 = f (x∗) (that is, f (x∗) = 0 for constraint (3.60a), and f (x∗) = 0.0301 for constraint

(3.60b)), a total of 8 and 7 function evaluations are performed by the optimization algorithm

for the constraints given by (3.60a) and (3.60b), respectively (see Figures 3.5a and 3.5g).

This remarkable convergence rate is, of course, due to the facts that the global minimum is

known and both the function and the curvature of the boundary are smooth.
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For the two problems related to the parabolic test function in the case with y0 <

f (x∗) (we take y0 = −0.1 in both problems), slightly more exploration is performed before

termination; a total of 15 and 13 function evaluations are performed by the optimization

algorithm for the constraints given by (3.60a) and (3.60b), respectively (see Figures 3.5d

and 3.5j). Another observation is that, for the constraint given by (3.60b), more function

evaluations on the boundary are performed; this is related to the fact that the function value

on the boundary is reduced along a portion of the boundary.

The next two problems consider the Rastrigin test function (3.58), first with the

constraint (3.60a), then with the constraint (3.60b). With the constraint (3.60a), this prob-

lem has 16 local minima in the interior of the feasible domain, and 10 constrained local

minima on the boundary of L; with the constraint (3.60b), it has 12 local minima in the

interior of the feasible domain, and 4 constrained local minima on the boundary of L. For

these problems, in the case with y0 = f (x∗) (that is, f (x∗) = 0 for constraint (3.60a), and

f (x∗) = 0.8634 for constraint (3.60b)), a total of 41 and 38 function evaluations are per-

formed by the optimization algorithm for the constraints given by (3.60a) and (3.60b), re-

spectively (see Figures 3.5b and 3.5h). As expected, more exploration is needed for this test

function than for a parabola. Another observation for the problem constrained by (3.60b)

is that two different regions are characterized by rather dense function evaluations, one in

the vicinity of the global minimizer, and the other in a neighborhood of a local minima (at

x1 = [−1; 0]) where the cost function value ( f (x1) = 1) is relatively close to the global

minimum f (x∗) = 0.8634.

For the two problems related to the Rastrigin test function in the case with y0 <

f (x∗) (we take y0 = −0.2 for the problem constrained by (3.60a), and y0 = 0.5 for the

problem constrained by (3.60b)), more exploration is, again, performed before termination;
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a total of 70 and 64 function evaluations are performed by the optimization algorithm for

the constraints given by (3.60a) and (3.60b), respectively (see Figures 3.5e and 3.5k). For

the problem constrained by (3.60b), three different regions are characterized by rather dense

function evaluations: in the vicinity of [−1; 0], in the vicinity of [0; −1], and in the vicinity

of the global minimizer at [−0.1216;−0.1216].

The last two problems of this subsection consider the Rosenbrock test function

(3.59), first with the constraint (3.60a), then with the constraint (3.60b). This challenging

problem is characterized by a narrow valley, with a relatively flat floor, in the vicinity of

the curve x2 = x2
1. For these problems, in the case with y0 = f (x∗) (that is, f (x∗) = 0

for constraint (3.60a), and f (x∗) = 0.0085 for constraint (3.60b)), a total of 29 and 31

function evaluations are performed by the optimization algorithm for the constraints given

by (3.60a) and (3.60b), respectively (see Figures 3.5c and 3.5i).

For the two problems related to the Rosenbrock test function in the case with

y0 < f (x∗) (we take y0 = −0.5 in both problems), more exploration is performed before

termination; a total of 47 and 54 function evaluations are performed by the optimization

algorithm for the constraints given by (3.60a) and (3.60b), respectively (see Figures 3.5f

and 3.5l). As with the previous problems considered, exact knowledge of f (x∗) signifi-

cantly improves the convergence rate. Additionally, such knowledge confines the search

to a smaller region around the curve y = x2, and fewer boundary points are considered for

function evaluations.
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Figure 3.5: ∆-DOGS(C) on 2D circle. Location of function evaluations when applying
Algorithm 3.2 to the 2D parabola (3.57), Rastrigin function (3.58), and Rosenbrock

function (3.59), in a circle.
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Figure 3.6: ∆-DOGS(C) on 2D ellipce. Implementation of Algorithm 3.2 with y0 = 0 on
the 2D Rastrigin problem (3.58) within the ellipse (3.61).

3.5.2 2D with elliptical constraints

The next two constraints considered are diagonally-oriented ellipses with aspect

ratios 4 and 10:

(x + y + 3)2 + 16 (x − y)2 ≤ 10, (3.61a)

(x + y + 3)2 + 100 (x − y)2 ≤ 10. (3.61b)

These constraints are somewhat more challenging to deal with than those considered in

§3.5.1. As in §3.5.1, gL
F(x) = 0 for all faces F at all steps; thus, no searches are performed

on the faces.

The Rastrigin function has 4 unconstrained local minimizers inside each of these

ellipses. Additionally, there are 6 constrained local minimizers on the boundary (3.61a);
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note that there are no constrained local minimizers on the boundary (3.61b).

In this subsection, Algorithm 3.2 is applied to the 2D Rastrigin function (3.58) for

the two different elliptical constraints considered. The unconstrained global minimizer of

this function is at x∗ = [0, 0], where the global minimum is f (x∗) = 0; this unconstrained

global minimizer is contained within the feasible domain for both (3.61a) and (3.61b). We

take y0 = f (x∗) = 0 for all simulations reported in this subsection.

For the problems considered in this subsection, we take κ = 2 for all simulations

performed, which satisfies (3.10). Note that, though the aspect ratio of the feasible domain

is relatively large (especially in (3.61b)), the minimum distance of the body center of the

initial simplex from its vertices is relatively large; thus, a relatively small value for extend-

ing parameter κmay be used. As seen in Figure 3.6, for the cases constrained by (3.61a) and

(3.61b), the simulations are terminated with 24 and 60 function evaluations, respectively.

This indicates that the performance of the algorithm depends strongly on the aspect ratio of

the feasible domain, as predicted by the analysis presented in §3.4, as the parameter Kg in

Assumption 6 increases with the square of the aspect ratio of the elliptical feasible domain

[see the explicit dependence on Kg in (3.46) and (2.62)]. In the case constrained by (3.61b),

Figure 3.6d shows that the global minimizer lies outside of the smallest face of the initial

simplex, and is situated relatively far this face. In this case, the reduced uncertainty ek(x)

across this small face (a result of the fact that its vertices are close together) belies the sub-

stantially larger uncertainty present in the feasible domain far outside the initial simplex,

in the vicinity of the global minimizer; this, in effect, slows convergence. Note that this

situation only occurs when the curvature of the boundary is large. An alternative approach

to address problems with large aspect ratio is to eliminate the highly-constrained coordi-

nate direction(s) altogether, solve a lower-dimensional optimization problem, then locally
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Figure 3.7: ∆-DOGS(C) on combined constrained. Implementation of Algorithm 3.2
with y0 = f (x∗) on the 2D Rastrigin function (3.58) with constraints (3.62), with and

without searching over the faces.

optimize the original problem in the vicinity of the lower-dimensional optimal point. Note

that, through the construction of the enclosing simplex (see Definition 12), the highly-

constrained coordinate directions can easily be identified and eliminated.

3.5.3 2D with multiple constraints

In this subsection, Algorithm 3.2 is implemented for problems characterized by the

union of multiple linear or nonlinear constraints on the feasible domain, which specifically

causes corners (that is, points at which two or more constraints are active) in the feasible

domain. In such problems, the value of gL
F(x) is nonzero at some faces of the Delaunay

triangulations; Algorithm 3.2 thus requires searches over the faces of the triangulations.

The example considered in this subsection quantifies the importance of this process of

searching over the faces of the triangulations in such problems.

The test function considered in this subsection is the 2D Rastrigin function (3.58),
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and the feasible domain considered is as follows:

c1(x) = (x1 + 2)2 + (x2 + 2)2 ≤ 2 × 1.92, (3.62a)

c2(x) = x1 ≤ −0.1. (3.62b)

The Rastrigin function in the feasible domain characterized by (3.62) has 18 local minima

inside the feasible domain, and 7 constrained local minima on the boundary of the feasible

domain.

Note that the unconstraint global minimizer of (3.58) is not in the domain defined

by the constraints (3.62).

The global minimizer of (3.58) within the feasible domain defined by (3.62) is

x∗ = [−0.1;−0.1], and the global minimum is f (x∗) = 0.7839.

In order to benchmark the importance of the search over the faces of the triangula-

tions in Algorithm 3.2, two different optimizations on the problem described above (both

taking y0 = f (x∗) and κ = 1.4) are performed. In the first, we apply Algorithm 3.2. In the

second, the same procedure is applied; however, the search over the faces of the triangula-

tion is skipped.

As shown in Figure 3.7b, Algorithm 3.2 requires only 35 function evaluations be-

fore the algorithm terminates, and a point in the vicinity of the global minimizer is found.

In contrast, as shown in Figure 3.7c, when the search over the faces of the triangulation is

skipped in Algorithm 3.2, 104 function evaluations are required before the algorithm ter-

minates. In problems of this sort, in which the constrained global minimizer is at a corner,

Algorithm 3.2 requires searches over the faces in order to move effectively along the faces

into the corner.
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Note also in Figure 3.7b that, when a point in the corner is the global minimizer,

Algorithm 3.2 converges slowly along the constraint boundary towards the corner. A poten-

tial work-around to this problem might be to switch to a derivative-free local optimization

method (e.g. [52, 13, 50]) when a point in the vicinity of the solution near a corner is

identified.

3.5.4 3D Problems

To benchmark the performance of Algorithm 3.2 on higher-dimensional problems,

it was applied to the 3D parabolic (3.57), 3D Rastrigin (3.58) and 3D Rosenbrock (3.59)

test functions with a feasible domain that looks approximately like the D-shaped feasible

domain illustrated in Figure 3.7 rotated about the horizontal axis:

c1(x) =

3∑
i=1

(xi + 2)2 ≤ 3 × 1.952, (3.63a)

c2(x) = x1 ≤ −0.05. (3.63b)

The constrained global minimizer x∗ for the 3D parabolic and 3D Rastrigin test func-

tions in this case is at the corner [−0.05;−0.05;−0.05], where both constraints are ac-

tive. The constrained global minimizer x∗ for the 3D Rosenbrock test functions is at

[−0.05;−0.0975;−0.1875], where one of the constraints [c2(x)] is active.

Algorithm 3.2 with y0 = 0 and κ = 1.4 was applied to the problems described above.

As shown in Figure 3.8, the parabolic, Rastrigin, and Rosenbrock test cases terminated

with 15, 76 and 87 function evaluations, respectively. As mentioned in the last paragraph

of §3.5.3, convergence in the first two of these test cases is slowed somewhat from what

would be achieved otherwise due to the fact that the constrained global minimum lies in



138

0 5 10 15
0

10

20

30

40

50

a Function values for Parabola
(3.57).

0 20 40 60 80

5

10

15

20

25

30

35

40

45

50

b Function values for Rastrigin
(3.58).

0 20 40 60 80 100
0

10

20

30

40

50

c Function values for
Rosenbrock (3.59).

0 5 10 15
0

2

4

6

8

10

12

d c1(x) at evaluated points for
Parabola.

0 20 40 60 80
0

2

4

6

8

10

12

e c1(x) for Rastrigin.
0 20 40 60 80 100

0

2

4

6

8

10

12

f c1(x) for Rosenbrock.

0 5 10 15
−6

−5

−4

−3

−2

−1

0

1

g c2(x) at evaluated points for
Parabola.

0 20 40 60 80
−6

−5

−4

−3

−2

−1

0

1

h c2(x) for Rastrigin.
0 20 40 60 80 100

−6

−5

−4

−3

−2

−1

0

1

i c2(x) for Rosenbrock.

Figure 3.8: ∆-DOGS(C) in 3D. Algorithm 3.2 applied to the 3D parabolic (3.57),
Rastrigin (3.58), and Rosenbrock (3.59) test functions, with a feasible domain defined by

(3.63).
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Figure 3.9: ∆-DOGS versus ∆-DOGS(C). Implementation of Algorithm 3.2 of the
present chapter, and Algorithm 4 of chapter 2, to a parabolic test function constrained by

a decagon.

a corner of the feasible domain. Note that the Rastrigin case is fairly difficult, as this

function is characterized by approximately 140 local minima inside the feasible domain,

and 50 local minima on the boundary of the feasible domain; nonetheless, Algorithm 3.2

identifies the nonlinearly constrained global minimum in only 76 function evaluations.

3.5.5 Linearly constrained problems

In this section, Algorithm 3.2 is compared with Algorithm 4 in chapter 2 of this

work (the so-called “Adaptive K” algorithm) for a linearly constrained problem with a

smooth, simple objective function, but a large number of corners of the feasible domain.

The test function considered is the 2D parabola (3.57), and the set of constraints

applied is

ai =

[
cos(2 π i/m) sin(2 π i/m)

]T

,

bi = 2.5 cos(π/m) −
[
1 1

]
ai,

aT
i x ≤ bi, 1 ≤ i ≤ m. (3.64)

The feasible domain characterized by (3.64) is a uniform m-sided polygon with m vertices.
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The feasible domain contains the unconstrained global minimum at [0, 0], and y0 = f (x∗) =

0 is used for both simulations reported.

The initialization of Algorithm 4 in chapter 2 requires m initial function evaluations,

at the vertices of the feasible domain; the case with m = 10 (taking r = 5, as discussed in §4

of chapter 2) is illustrated in Figure 3.9a, and is seen to stop after 15 function evaluations

(that is, 5 iterations after initialization at all corners of the feasible domain).

In contrast, as illustrated Figure 3.9c, Algorithm 3.2 of the present chapter (taking

κ = 1.4), applied to the same problem, stops after only 10 function evaluations (that is,

6 iterations after initialization at the vertices of the initial simplex and its body center).

Note that one feasible boundary projection is performed in this simulation, as the global

minimizer is not inside the initial simplex.

These simulations show that, for linearly-constrained problems with smooth ob-

jective functions, it is not necessary to calculate the objective function at all vertices of

the feasible domain. As the dimension of the problem and/or the number of constraints

increases, the cost of such an initialization might become large. Using the algorithm devel-

oped in the present chapter, it is enough to initialize with between n + 2 and 2n + 3 function

evaluations.
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3.5.6 Role of the extending parameter κ

The importance of the extending parameter κ is now examined by applying Algo-

rithm 3.2 to the Rastrigin function (3.58) within a linearly-constrained domain:

x ≤ 0.1, (3.65a)

−1.1 ≤ y, (3.65b)

y − x ≤ 0.5. (3.65c)

The Rastrigin function (3.58) has 3 local minimizers inside this triangle, and there are not

any constrained local minimizers on the boundary of this triangle.

The feasible domain includes the unconstrained global minimizer in this case; thus,

the constrained global minimizer is [0, 0]. Two different values of the extending parameter

are considered, κ = 1.1 and κ = 100. It is observed (see Figure 3.10) that, for κ = 1.1,

the algorithm converges to the vicinity of the solution in only 12 function evaluations; for

κ = 100, 16 function evaluations are required, and the feasible domain is explored more.

The main reason for this phenomenon is related to the value of the maximum cir-

cumradius (see Figures 3.10b and 3.10d). In the κ = 100 case, Algorithm 3.2 performs

a few unnecessary function evaluations, close to existing evaluation points, at those itera-

tions during which the maximum circumradius of the triangulation is large. The κ = 1.1

case better regulates the maximum circumradius of the triangulation, thus inhibiting such

redundant function evaluations from occurring.



142

−1.5 −1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

a Evaluation points for κ = 1.1.
0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

3.5

4

b The maximum circumradius for κ = 1.1.

−1.5 −1 −0.5 0 0.5 1

−1.5

−1

−0.5

0

0.5

1

c Evaluation points for κ = 100.
0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

3.5

4

d The maximum circumradius for κ = 100.

Figure 3.10: Role on the extension factor of the exterior simplex. Implementation of
Algorithm 3.2 with y0 = 0 on 2D Rastrigin problem (3.58) in a triangle characterized by

(3.65) with κ = 1.1 and κ = 100.

3.5.7 Comparison with other Derivative-free methods

In this section, we briefly compare our new algorithm with two modern benchmark

methods among derivative free optimization algorithms. The first method considered is

MADS (mesh adaptive direction search; see [53]), as implemented in the NOMAD soft-

ware package [65]. This method (NOMAD with 2n neighbors) is a local derivative-free

optimization algorithm which can handle constraints on the feasible domain. The second

method considered is SMF (surrogate management framework; see [12]). This algorithm

is implemented in [66] for airfoil design10. This method is a hybrid method that combines

a generalized pattern search with a krigining based optimization algorithm.

The test problem considered here for the purpose of this comparison is the min-

10Though this code is not available online, we have obtained a copy of it by personal communication from
Prof. Marsden.
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imization of the 2D Rastrigin function (3.58), with A = 3, inside a feasible domain L

characterized by the following constraints:

c1(x) = x ≤ 2, c2(x) = (x − 2)2 + (y + 2)2 ≤ 8. (3.66)

In this test, for Algorithm 3.2, the value of y0 = f (x∗) = 0 was used, and the

termination condition, similar to the previous sections, is taken by minx∈S k‖x − xk‖ ≤ 0.01.

Results are shown in Figure 3.11.

Algorithm 3.2 performed 19 function evaluations (see Figure 3.11a), which includes

some initial exploration of the feasible domain, and more dense function evaluations in the

vicinity the global minimizer. Note that, since Algorithm 3.2 uses interpolation during its

minimization process, once it discovers a point in the neighborhood of the global solution,

convergence to the global minimum is achieved rapidly.

The SMF algorithm similarly performs both global exploration and local refine-

ment. However, the number of function evaluations required for the same test problem

increases to 66 (see Figure 3.11b). The reasons for this appear to be essentially twofold.

First, the numerical performance of the polyharmonic spline interpolation together with

our synthetic uncertainty function appear to behave favorably as compared with Kriging,

as also observed in chapter 2 of this work. Second, the search step of the SMF [66] was not

designed for nonlinearly constrained problems. In other words, the polling step is the only

step of SMF that deals with the complexity of the constraints.

Unlike Algorithm 3.2, MADS is not designed for global optimization; thus, there is

no guaranty of convergence to the global minimum. In this test, two different initial points

were considered to illustrate the behavior of MADS. Starting from x0 = [1.9;−π] (see Fig-

ure 3.11c), MADS converged to a local minimizer after 19 function evaluations; however,
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this local minimum is not the global solution. Starting from x0 = [1;−1] (see Figure 3.11d),

MADS converged to the global minimizer at [0, 0] after 59 function evaluations.

In the above tests, we have counted those function evaluations that are performed

within L, as the constraint functions ci(x) are assumed to be computationally inexpensive.

Note that Algorithm 3.2 does not include any function evaluations outside of L.

Although this particular test shows a significant advantage for Algorithm 3.2 com-

pared to the SMF and MADS tests, more study is required to analyze properly the perfor-

mance of this algorithm. An important fact about this algorithm is that it’s performance

is dependent on the interpolation strategy used; this dependence will be studied in future

work. A key advantage of Algorithm 3.2 is that it lets the user choose the interpolation

strategy to be implemented; the best choice might well be problem dependent.

3.6 Conclusions

In this chapter, the derivative-free global optimization algorithms developed in

chapter 2 of this study were extended to the optimization of nonconvex functions within a

feasible domain L bounded by a set of convex constraints. The chapter focused on extend-

ing Algorithm 4 of chapter 2 (the so-called Adaptive K algorithm) to convex domains; we

noted in Remark 16 that the extension of Algorithm 2 of chapter 2 (the so-called Constant

K algorithm) may be extended in an analogous fashion.

We developed three algorithms:

• Algorithm 3.1 showed how to initialize the optimization by identifying n + 1 points

in L which maximize the volume of the initial simplex generated by these points. An

enclosing simplex was also identified which includes L.

• The initial simplex identified by Algorithm 3.1, together with its body center with up
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Figure 3.11: Comparison of ∆-DOGS(C) with SMF and MADS. Implementation of (a)
Algorithm 3.2, (b) SMF, and (c,d) MADS on minimization of the 2D Rastrigin function

(3.58) inside the feasible domain characterized by (3.66).
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to n + 1 additional points to better separate the interior simplices from the boundary

simplices in the Delaunay triangulations to be used.

• Algorithm 3.2 then presented the optimization algorithm itself, which modified the

Algorithms of chapter 2 in order to extend the convex hull of the evaluation points to

cover the entire feasible domain as the iterations proceed. An important property of

this algorithm is that it ensures that the triangulation remains well behaved (that is,

the maximum circumradius remains bounded) as new datapoints are added.

In the algorithm developed, there are two adjustable parameters. The first parameter

is y0; this is an estimate of the global minimum, and has a similar effect on the optimization

algorithm as seen in Algorithm 4 of chapter 2. The second parameter is κ > 1, which

quantifies the size of the exterior simplex. It is shown in our analysis (§3.4) that, for

1 < κ < ∞, the maximum circumradius is bounded. In practice, it is most efficient to

choose this parameter as small as possible while respecting the technical condition (3.10)

required in order to assure convergence.

The performance of the algorithm developed is shown in our results (§3.5) to be

good if the aspect ratio of L of the feasible domain is not too large. Specifically, the curva-

ture of each constraint ci(x) is seen to be as significant to the overall rate of convergence as

the smoothness of the objective function f (x) itself. It was suggested in §3.5 that, in fea-

sible domains with large aspect ratios, those directions in parameter space that are highly

constrained can be identified and eliminated from the global optimization problem; after

the global optimization is complete, local refinement can be performed to optimize in these

less important directions.

Another challenging aspect of the algorithm developed is its reduced rate of conver-

gence when the global minimizer is near a corner of the feasible domain. This issue can be
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addressed by switching to a local optimization method when it is detected that the global

minimizer is near such a corner (that is, when multiple values of ci(x) are near zero).

In future work, we extend the algorithms developed to problems in which function

evaluations are inexact, and can be improved with additional computational effort. More-

over, this algorithm will be applied on a wide range of test problems. In particular, the

performance of the present algorithm depends on the particular interpolation strategy used

(unlike various other response surface methods, this method is not limited to a specific type

of interpolation strategy).
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Chapter 4

Implementation of Cartesian grids to

accelerate Delaunay-based

derivative-free optimization

4.1 Introduction

In this chapter, a derivative-free optimization algorithm is presented to minimize a

(possibly nonconvex) function subject to bound constraints 1:

minimize f (x) with x ∈ L = {x|a ≤ x ≤ b}, a < b. (4.1)

where x ∈ Rn, f : Rn → R, a, b ∈ Rm.

The algorithm developed here is a modification of the original Delaunay-based op-

timization derivative-free algorithm developed in chapter 2. In this chapter, we will assume

1Taking a and b as vectors, a ≤ b implies that ai ≤ bi ∀i.
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that there is a target value f0 which is achievable (∃ x ∈ L such that f (x) ≤ f0), and the

goal is to find a point such that f (x) ≤ f0. As done in Algorithm 2 of [67], the present

algorithm can easily be extended to problems for which a target value of f0 is unavailable.

For simplicity, in this chapter, we will assume that this target value f0 is known.

The structure of this chapter is as follows: Section 4.2 presents the modified algo-

rithm, and all the tools that are needed. Section 4.3 analyzes the convergence properties of

the new optimization algorithm, and the technical conditions that are required to guarantee

its convergence to the desired solution. Section 4.4 applies both the original and the mod-

ified optimization algorithm to a representative example. Some conclusions are presented

in Section 4.5.

4.2 Delaunay-based optimization algorithm using carte-

sian grid

In this section, we present in Algorithm 4.1, a new optimization algorithm, dubbed

in ∆-DOGS(Z), and its essential elements. Before explaining Algorithm 4.1, some prelim-

inary concepts are required.

Definition 22. The Cartesian grid of level ` for the feasible domain L = {x|a ≤ x ≤ b},

denoted by L`, is defined as follow:

L` =

{
x|x = a +

1
N

(b − a) ⊗ z, z ∈ {0, 1, . . . ,N}
}
, where N = 2`.

The quantizater of a point x on a grid L`, denoted x`q, is a point on the grid which has

the minimum distance from x. Note that this quantization process might have multiple
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a Quantization of an interior
point

x

xℓ
q

b Quantization of a boundary
points

δ L
ℓ

c Maximum quantization error
of the grid

Figure 4.1: Representation of a 2D grid with level ` = 1, the quantization process, and
the the maximum quantization error. The gridpoints are shown by open squares in the
figures. The point x is shown by the star in left and middle figures, and its quantization
process is illustrated by an arrow. In middle figure, it is observed that the point xq is on

the boundary in which xq is located.

solutions; in this case, any of these solutions is acceptable. The maximum quantization

radius (i.e., in the language of sphere packing theory, the "covering radius") of the grid δL`

is defined as follows:

δN = max
x∈L`
‖x − xq‖ =

‖b − a‖
2N

. (4.2)

Remark 21. There are three important property for the the Cartesian grid which are used

in our optimization algorithm.

a. The grid of level ` covering the feasible domain L in an n dimensional space has

(N + 1)n grid points.

b. lim`→∞ δL` = 0.

c. Consider xq as a quantization of x onto a L`, then Aa(x) ⊆ Aa(xq), where Aa(x) is the

set of active constraints at x0. This point is illustrated in Fig. 4.1.

Definition 23. Consider x as a point in L, and S as a nonempty set of points in L such

that z ∈ S is the closest point in S from x. The pair (x, S ) is called activated if and only if
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Figure 4.2: A
ctivated step illustration. The set S is shown by black squares. The point x1 is not

activated, since z1 (the closest point in S to x1) is not on the same boundary of L that x1

lies. The point x2 is activated, since z2 (the closest point in S to x2) is located on the same
boundary of L that x2 lies.

Aa(x) ⊆ Aa(z), where Aa(x) is the set of active constraints at x. (Note that the domain L has

a total of 2 n constraints.)

Remark 22. If there are multiple points z which share the minimum distance from x in S ,

then the pair (x, S ) is activated if, for all such z, Aa(x) ⊆ Aa(z).

Remark 23. If x is an interior point in L, then the pair (x, S ) is activated for any nonempty

set S . However, if x is on the boundary of L, the pair (x, S ) is activated or not based on the

position of x and the points in S (see Fig. 4.2)

Definition 24. Consider S as a set of points in L which is partitioned into two subsets,

S = S E ∪ S U , as follows:

• The evaluated points are denoted by S E, where the function values are available.

• The support points are denoted by S U , where the function values are not available.

Note that the support points will be helpful when developing the triangulation.
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Consider p(x) as an interpolating function that passes through the points in S E. The con-

tinuous and discrete search function are defined as follows:

Continuous Search function: sk
c(x) =


pk(x)− f0

ek(x) , if pk(x) ≥ f0,

pk(x) − f0, otherwise,

(4.3)

Discrete Search function: sk
d(x) =


pk(x)− f0

Dis{x,S E }
, if pk(x) ≥ f0,

pk(x) − f0, otherwise,

(4.4)

where e(x) is the uncertainty function constructed with all points in S , and Dis{x, S E} =

minz∈S E‖x − z‖.

Remark 24. Note that the continuous search function is similar to the search function

defined in [67, 68]. An important difference to note, however, is that the interpolating

function p(x) and the uncertainty function e(x) are defined based on two different set of

points.

Remark 25. The value of the discrete search function is only defined at the points in S U .

Now we have all the tools necessary to present the modified optimization algorithm

considered in this work. The following three key modifications to ∆-DOGS are performed

to obtain Algorithm 4.1:

1. The datapoints in Algorithm 4.1 lie on the Cartesian grid, which is occasionally re-

fined as the iteration proceeds.

2. At each iteration, two different sets of points exist, S E and S U . Function evaluations

are available only for the points in S E.
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a p(x), e(x), S E and S U . b sc(x) and sd(x).

Figure 4.3: Illustration of continuous and discrete search function. Figure (a) illustrates:
(solid line) the interpolating function p(x), (dashed line) the uncertainty function e(x),

(black square) evaluation points S E , and (stars) support points S U . Figure (b) illustrate:
(sold line) the continuous search function sk

c(x) and (closed circles) the discrete search
functions sk

d(x).

3. Two different search functions, sc(x) and sd(x), are considered at each iteration. One

of them, sc(x) is minimized over the entire feasible domain L, and the other, sd(x), is

minimized only over the points in S U .

The complete algorithm is presented in Algorithm 4.1. It is observed that there are four

possible cases at each iteration of this Algorithm:

a. In the first case, the pair (xk, S ) is not activated. This step is called an inactivated

step which adds yk to S k
U , and no function evaluation is performed.

c. In the second case, the pair (xk, S ) is activated and sk
d(wk) < sk

d(xk). This step is

called an activated replacing step which removes zk from S k
U , and adds it to S k

E, and

calculates f (wk).

b. In the third case, the pair (xk, S ) is activated, sk
d(xk) ≤ sk

d(wk), and yk < S k
E. This step

is called an activated improving step which adds a new point yk is added to S k
E, and

calculates f (xk).
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d. In the last case, the pair (xk, S ) is activated, sk
d(xk) ≤ sk

d(wk), and yk < S k
E. This step

is a mesh refinement step which Note refinement Ll. Note that the evaluation point

set and support points will not be changed at this step.

Remark 26. The activated improving and replacing steps of Algorithm 4.1 are illustrated

in Fig. 4.4. Note that, in 1D, all steps are activated.

Algorithm 4.1 The modified Delaunay-Based optimization algorithm

1: Set k = 0 and initialize `. Take the initial set of support points S 0
U as all 2n vertices of

the feasible domain L. Choose at least n + 1 points on the initial grid which are affinely
independent, put them in evaluation points set S 0

E, and calculate f (x) at each of these
points.

2: Calculate (or, for k > 0, update) an appropriate interpolating function pk(x) through all
points in S k

E.
3: Calculate (or, for k > 0, update) a Delaunay triangulation ∆k over all of the points in

S k = S k
U ∪ S k

E.
4: Find xk as the minimizer of the continuos search function sk

c(x) (see Definition 24) in L,
and yk as its quantization on the grid L`. Whenever yk or zk is not unique, the algorithm
selects one of the available options.

5: Find wk as the minimizer of the discrete search function sk
d(x) (see Definition 24) in

S k
U .

6: If the pair (xk, S k) is not activated (see Definition 23), then, S k+1
U = S k

U∪{yk}, increment
k, and repeat from 2.

7: Elseif sk
d(wk) ≤ sk

d(xk), then calculate f (wk). S k+1
E = S k

E ∪ {wk}, S k+1
U = S k

U − {wk}, and
increment k. If f (wk) > f0, then repeat from 2; otherwise, stop the algorithm.

8: Elseif yk < S k
E, then calculate f (yk), S k+1

E = S k
E ∪ {yk}, increment k. If f (yk) > f0, then

repeat from 2; otherwise, stop the algorithm.
9: Else increment both ` and k, and repeat from 2.

10: Endif

4.2.1 Restriction of the decrease of the interpolating function

In this subsection, we will describe a small modification of Algorithm 4.1 which

improves its convergence. At each step, the functions sk
c(x) and sk

d(x) have to be minimized.

Note that if sk
c(xk) < 0, or sk

d(xk
d) < 0, then there is a point in L for which p(x) < f0. Since

xk is taken as the minimizer of sk
c(x), then pk(xk) < f0.
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d sk(x) and sk
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Figure 4.4: Illustration of improving (first two) and replacing step(second row) of
Algorithm 4.1. Left figures: (dashed line) the interpolating function pk(x), (solid line)

the objective function f (x), (open squares) evaluated points S k
E (starts) support points S k

U
by dashed line, solid line, square and star markers respectively. Right figures: (solid line)
the continuous search function sk

c(x), (closed squares) the discrete search function sk
d(x),

(open square) the global minimizer of the continuous search function xk.
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Definition 25. Those steps of Algorithm 4.1 for which pk(xk) ≤ f0, which is equivalent to

min{sk
c(xk), sk

d(xk
d)} < 0, are called extreme decreasing steps.

At each extreme decreasing step of Algorithm 4.1, if pk(x) is substantially less than

f0, then the value of the interpolation may not be reliable. This situation can happen only

when xk is far from the available datapoints. In this case, we will find a point in which

pk(x) = f0 and which is close to the existing datapoints, and evaluate the function there

instead. This approach is akin to the trust region approach, is more promising, as it is based

on a more reliable value for the interplant.

To accomplish this, consider xm as a point in S k
E which has the minimum objective

function value. By construction, pk(xm) > f0 (otherwise, the algorithm is already termi-

nated). Since step k is considered to be extreme decreasing, pk(xk) < f0. Thus, there is

a point x̄ (not necessary unique) on the segment between xm and xk such that pk(x̄) = f0.

Finding x̄ (see Fig. 4.5) is a simple one-dimensional root finding problem for the computa-

tionally inexpensive function pk(x) − f0. We use the false position method to find x̄. Then,

the point xk is replaced by x̄.

In summary, for each step of Algorithm 4.1, there are two possible situations:

a. Step k is not extreme decreasing, and thus,

sk
c(x) > 0∀x ∈ L, and sk

d(x) > 0 ∀x ∈ S k
U .

b. Step k is extreme decreasing, and after the above modification, p(xk) = f0. In this

case, we simply remove yk from S k
U , if it is already there, and add yk to S k

E (and

calculate f (yk)) if it is not already there. If yk is already in S k
E, we refine the mesh.
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xm

xk

x̂

Figure 4.5: Illustration of a extreme decreasing step of Algorithm 4.1: (dashed line) the
interpolating function pk(x), (solid line) the objective function f (x), (open squares)

evaluated points S k
E (starts) support points S k

U by dashed line, solid line, square and star
markers respectively. The solid horizontal line indicates the target value of f0.

4.3 Analysis of the Algorithm

In this section, we analyze the convergence properties of Algorithm 4.1. If the

algorithm terminates after finite number of steps k, then a point xk is found for which the

function value is less or equal to the target value f0; otherwise, all computed values of

the objective function are greater than the target value. In this section, we will show, in

the latter case, that a limit point of the datapoints that are obtained in the evaluation set S E

includes a feasible point whose objective function is equal to the target value. Therefore, for

this analysis, we will assume that Algorithm 4.1 proceeds for infinite number of iterations.

Before analyzing the convergence property of Algorithm 4.1, we will show that

Algorithm 4.1 includes an infinite number of mesh refinements. To show this, a preliminary

lemma is first established.

Lemma 18. Consider k as an inactivated step of Algorithm 4.1; then, yk < S k.

Proof. We establish this lemma by contradiction. Assume that yk ∈ S k, and step k is

inactivated; therefore, there is a point zk ∈ S k that has minimum distance from xk, and
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Aa(xk) * Ax(zk). Since all point in S k are on the grid L` of step k, and yk is a quantizer of

xk on this grid, ‖xk − yk‖ ≤ ‖xk − zk‖. On the other hand, since yk ∈ S k and zk is the closest

point to xk in S k, then ‖xk − yk‖ ≥ ‖xk − zk‖. This leads to ‖xk − zk‖ = ‖xk − yk‖. As a result;

the point zk is also a quantizer of xk which is in contradiction with Aa(xk) * Aa(zk). �

Theorem 9. There are an infinite number of mesh refinement steps if Algorithm 4.1 pro-

ceeds without terminating.

Proof. This theorem is also estabshied by contradiction. Assume that there are a finite

number of mesh refinement steps as Algorithm 4.1 proceeds, then all datapoints must lie

on a grid with some level `. At each step of Algorithm 4.1, if it is activated improving,

then |S k
E | and |S k| are both incremented by one. If it is activated replacing, then |S k

E | is

incremented by one and |S k| is fixed. if it is inactivated, then |S k
E | is fixed and |S k

E | is

incremented by one. Therefore, at each step of the algorithm which is not mesh refinement,

we will increment the value of |S k|+ |S k
E | by at least one. Since the number of points on the

grid of level ` is finite, we must have only finite number of iterations which are not mesh

refinements, which is in contradiction with the fact that there are infinite number of steps

for Algorithm 4.1. �

We now analyze the convergence of Algorithm 4.1. To do this, the following con-

ditions are imposed for the objective and interpolating functions.

Assumption 7. The interpolating functions pk(x), objective function f (x), and pk(x)− f (x)

are Lipschitz with the same Lipschitz constant L̂.
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Assumption 8. A constant K̂ > 0 exists in which

∇2{ f (x) − pk(x)} + 2 K̂ I > 0, ∀x ∈ L and k > 0, (4.5)

∇2{pk(x)} − 2 K̂ I < 0, ∀x ∈ L and k > 0, (4.6)

∇2{ f (x)} − 2 K̂ I < 0, ∀x ∈ L. (4.7)

Before analyzing the convergence properties of Algorithm 4.1.

Lemma 19. Consider G(x) as a twice differentiable function such that ∇2G(x)−2 K1I ≤ 0,

and x∗ ∈ L as a local minimizer of G(x) in L. Then, for each x ∈ L such that Aa(x∗) ⊆ Aa(x),

we have:

G(x) −G(x∗) ≤ K1‖x − x∗‖2. (4.8)

Proof. Define function G1(x) = G(x) − K1 ‖x − x∗‖2. By constrction, G1(x) is concave;

therefore,

G1(x) ≤ G1(x∗) + ∇G1(x∗)T (x − x∗),

G1(x∗) = G(x∗), ∇G1(x∗) = ∇G(x∗),

G(x) ≤ G(x∗) + ∇G(x∗)T (x − x∗) + K1 ‖x − x∗‖2.

Since the feasible domain is a bounded domain, the constrained qualification holds; there-

fore, x∗ is a KKT point. Therefore, using Aa(x∗) ⊆ Aa(x) leads to ∇G(x∗)T (x − x∗) = 0,

which verifies (4.8).

�

Lemma 20. Consider k as a step of Algorithm 4.1 which is activated and extreme decreas-
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ing. Then

pk(zk) − f0 ≤ 2 {K + K̂}‖xk − zk‖
2, (4.9)

where K = sk
c(xk) > 0.

Proof. Since xk is a global minimizer of sk
c(x) =

pk(x)− f0
ek(x) , and sk

c(x) ≥ 0 for all x ∈ L, then

xk is a global minimizer of T k(x) = pk(xk)− K ek(x) too, and T k(xk) = f0 (see §5 in [67] for

discussion of why). Consider ∆k
i ∈ ∆k as the simplex which includes xk. By construction,

ek(xk) = ek
i (xk). Define T k

i (x) = pk(x)−K ek
i (x), then T k

i (x) is a twice differentiable function

in L, and

∇2T k
i (x) = ∇2{pk(x)} + 2 KI, ∇2T k

i (x) − 2{K̂ + K}I ≤ 0.

By Lemma (2), ek
i (zk) ≤ ek(zk), which leads to T k(x) ≤ T k

i (x) for all points x ∈ L, xk is

a global minimizer of T k(x), and T k(xk) = T k
i (xk). Therefore, xk is a global minimizer of

T k
i (x) as well.

Since step k is activated, Aa(xk) ⊆ Aa(zk); thus, using Lemma 19, we have:

T k
i (zk) − T k

i (xk) ≤ 2 {K + K̂}‖zk − xk‖
2.

T k(zk) ≤ T k
i (zk), T k(xk) = T k

i (xk),

T k(zk) − T k(xk) ≤ 2 {K + K̂}‖zk − xk‖
2,

T k(zk) − f0 ≤ 2 {K + K̂}‖zk − xk‖
2.

Since zk ∈ S k
E, ek(zk) = 0 and pk(zk), which leads to T k(zk) = pk(zk) which shows (4.9). �

Lemma 21. Consider x∗ as a global minimizer of f (x) in L. Then, for each step of Algo-
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rithm 4.1 which is not extreme decreasing, we have:

min{
sk

c(x∗)

K̂
,min

z∈S k
U

{
sk

d(z)

L̂
}} ≤ 2. (4.10)

Proof. Consider ∆k
i as a simplex in ∆k which includes x∗ whose vertices are {Vk

1 ,V
k
2 , . . . ,V

k
n+1}.

Define Lk(x) as the unique linear function in ∆k
i such that L(Vk

i ) = 2 f (Vk
i ) − pk(Vk

i ), and

define Gk(x) = pk(x) + Lk(x) − 2 K̂ek(x) − 2 f (x). Then, for each vertex Vk
i (x) of ∆k

i ,

Gk(Vi) = pk(Vi) + Lk(Vk
i ) − 2K̂ek(Vi) − 2 f (Vk

i ) = 0.

Moreover, since ∇2Lk(x) = 0, and ∇2ek(x) = −2 I inside the simplex ∆k
i , then according to

Assumption 10, ∇2Gk(x) ≥ 0. Thus, Gk(x) is convex in ∆k
i , and its maximum is located at

one of its vertices; therefore,

Gk(x∗) ≤ 0, pk(x∗) + Lk(x∗) − 2 f (x∗) − 2 K̂ek(x∗) ≤ 0.

Since f0 is assumed to be achievable, f0 ≥ f (x∗), and thus

pk(x∗) + Lk(x∗) − 2 f0 − 2 K̂ek(x∗) ≤ 0.
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Since x∗ ∈ ∆k
i and Lk(x) is linear, it follows that

min
1≤ j≤n+1

Lk(Vk
j ) ≤ Lk(x∗),

min
1≤ j≤n+1

{2 f (Vk
j ) − pk(Vk

j )} = min
1≤ j≤n+1

Lk(Vk
j ),

min
z∈S k
{2 f (z) − pk(z)} ≤ min

1≤ j≤n+1
{2 f (Vk

j ) − pk(Vk
j )},

pk(x∗) − f0 − 2 K̂ek(x∗) + min
z∈S k
{2 f (z) − pk(z) − f0} ≤ 0. (4.11)

Define ẑ as the closest point to z in S k
E. By construction, pk(ẑ) − f (ẑ) = 0. Furthermore, by

Assumption 9, the function pk(x) − f (x) is Lipschitz with constant L̂, and thus

pk(z) − f (z) ≤ L̂‖z − ẑ‖ = L̂ Dis(z, S k
E),

pk(z) − 2 L̂ Dis(z, S k
E) ≤ 2 f (z) − pk(z). (4.12)

Using (4.11) and (4.12) leads to:

pk(x∗) − f0 − 2 K̂ek(x∗) + min
z∈S k
{pk(z) − f0 − 2 L̂Dis(z, S k

E)} ≤ 0. (4.13)

Since step k is not a mesh refinement, pk(x) − f0 > 0 for all x ∈ L. Thus, 1
sk

d(x)
and 1

sk
c(x)

are

well defined functions everywhere in L, and equation (4.13) can be rewritten as:

(pk(x∗) − f0)(1 −
2 K̂

sk
d(x∗)

) + min
z∈S k
{(pk(z) − f0)(1 −

2 L̂
sk

d(z)
)} ≤ 0 (4.14)

Since pk(x∗) − f0 > 0 and pk(z) − f0 > 0 ∀z ∈ S k, (4.10) is verified. �

Lemma 22. Consider k as a mesh refinement step of Algorithm (4.1) which is not extreme
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decreasing. Then

min
z∈S k

E

f (z) − f0 ≤ max{3 L̂ δk, 6 K̂ δ2
k}, (4.15)

where δk is the maximum discretization error of the Cartesian grid L` at this step.

Proof. Since step k is mesh refinement, by construction, sk
d(xk) ≤ sk

d(wk). Additionally, xk

and wk are the global minimizer of sk
c(x) and sk

d(x) in L and S k
U respectively. Thus, by using

(4.10) in Lemma 21, we have:

min{
sk

c(xk)

K̂
,

sk
d(xk)

L̂
} ≤ 2. (4.16)

There are two possible cases: In the first case, sk
c(xk) ≤ 2K̂; thus, using Lemma 20, we

have:

pk(yk) − f0 ≤ 2 [2K̂ + K̂]‖xk − yk‖
2 = 6 K̂‖yk − xk‖

2.

Since yk ∈ S k
E, f (yk) = pk(yk). Furthermore, ‖xk − yk‖ ≤ δk; thus, (4.15) is verified in this

case. In the second case, sk
d(xk) ≤ 2L̂. Since yk ∈ S k

E, and all points in S k
E are on the grid

L`, it follows that Dis(xk, S k
E) = ‖xk − yk‖ = δk, and thus

pk(xk) − f0 ≤ 2 L̂‖xk − yk‖, pk(yk) − pk(xk) ≤ L̂‖xk − yk‖,

f (yk) − f0 ≤ 3 L̂‖xk − yk‖ ≤ 3 L̂δk.

Thus, (4.15) is shown for both cases. �

Remark 27. If step k of Algorithm 4.1 is a mesh refinement and extreme decreasing, then

pk(xk) = f0. Additionally, pk(x) is Lipschitz with constant L̂; therefore,

pk(yk) − f0 ≤ L̂‖xk − yk‖ ≤ L̂δk. (4.17)
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Moreover, yk ∈ S k
E, then

f (yk) − f0 ≤ L̂‖xk − yk‖ ≤ L̂δk. (4.18)

Theorem 10. If Algorithm 4.1 is not terminated at any step, then the set S∞ = limk→∞ S k

has a limit point, denoted v ∈ L, such that f (v) = f0.

Proof. According to Theorem 9, there is an infinite number of mesh refinement steps dur-

ing the execution of Algorithm 4.1, denoted here {k1, k2, . . . }. Define vi = argminz∈S ki f (z).

According to Lemma 22 and Remark 27, we have:

f (vi) − f0 ≤ max{3 L̂ δki , 6 K̂ δ2
ki
}, (4.19)

Since Algorithm 4.1 is not terminated at any step, f (vi)− f0 ≥ 0. Additionally, limi→∞ δki =

0, which leads to limi→∞ f (vi) = f0. �

4.4 Results

In this section, we will check the performance of Algorithm 4.1 and compare it with

the original ∆-DOGS, Algorithm 2 in [67], as summarized in ∆-DOGS. The test function

which is considered is the n-dimensional Styblinski Tang function, which is a benchmark-

ing test problem for global optimization:

f (x) =

n∑
i=1

x4
i − 16 x2

i + 5 xi

2
− 39.16616 n, where L = {x| − 5 ≤ xi ≤ 5}. (4.20)

An initial grid level of `0 = 3 is considered, and the algorithm continuous until the grid level

of ` = 8 is terminated. Note that ∆-DOGS is terminated when Dis(xk, S k) ≤ 0.05, which

leads to a comparable order of accuracy for both methods (i.e. the maximum quantization
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error of level 8 is close to 0.05). The initial datapoints in S 0
E are constructed by n + 1 points

as follows:

S 0
E =

{
x0, x0 +

bi − ai

2`0
ei,∀i ∈ {1, 2, . . . , n}

}
. (4.21)

For each i, ei is one of the main coordinate directions, and x0 is an initial point on the grid of

level `0. In this section, we have considered two different choices of x0 for the initialization

of Algorithm 4.1.

The position of the datapoints that are used during the optimization process are il-

lustrated in Fig. 4.6 for the n=2 dimensional implementation. It is observed that, for a bad

initial point for Algorithm 4.1, the convergence to the global minimum is achieved with

similar number of function evaluation as with ∆-DOGS. For good initial point, Algorithm

4.1 converges much faster. There is a noticeable differences in their result reported which

gives Algorithm 4.1 a significant advantage for higher-dimensional problem (see Fig. 4.7

and Table 4.1). Specially, much less accumulation of datapoints on the boundary of the fea-

sible domain is observed. This is due to the fact that the boundary points that are needed for

∆-DOGS are simply needed to regularize the triangulation. Algorithm 4.1 avoids this need

by dividing S k into the evaluated points S k
E and support points S k

U , and thus explores the

interior of feasible domain more extensively which instead explores the interior of the fea-

sible domain more extensively. Therefore, a significant improvement of Algorithm 4.1 over

∆-DOGZ in the speed of convergence compare is seen in Table 4.1), with this improvement

is especially pronounced as n is increased.
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Figure 4.6: Implementation of ∆-DOGS and Algorithm 4.1 (with two different initial
points) on problem (4.20) in 2D: (open square) evaluated points, (stars) support points.
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Figure 4.7: The convergence history of ∆-DOGS and Algorithm 4.1 on optimization
problem (4.20) (first row) 3, (second row) 4, and (third row) 5 dimensional problems.
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Table 4.1: The summary of implementation of Algorithm 4.1 and ∆-DOGS on problems
(4.20) in n = 2, 3, 4 and 5 dimensions.

Dimension Algorithm initial point fn.
evals

# of
support
points

2
∆-DOGS N/A 29 N/A

Algorithm 4.1
xi = 0 31 6

xi = −2 11 8

3
∆-DOGS N/A 50 N/A

Algorithm 4.1
xi = 0 36 32

xi = −2 11 8

4
∆-DOGS N/A 76 N/A

Algorithm 4.1
xi = 0 59 69

xi = −2 12 16

5
∆-DOGS N/A 295 N/A

Algorithm 4.1
xi = 0 132 112

xi = −2 13 32

4.5 Conclusions

In this chapter, we have modified the original Delaunay-based derivative-free op-

timization algorithm ∆-DOGS, proposed in [67], in order to accumulate fewer points on

the boundary feasibility, and instead exploring the interior of the feasible domain more ex-

tensively. The Algorithm 4.1 has three main modifications as compared with the original

algorithm:

• Two different sets of points are considered during the optimization procession: eval-

uation points and support points. The latter set helps to regulate the triangulation

developed.

• Since the uncertainty function is zero at some points which are not in the evaluation

set, another metric for the search function at these points.

• The datapoints that are used in the Algorithm 4.1 lie on a Cartesian grid.
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Similar to the original algorithm, and any other derivative-free optimization algorithm,

there is a curse of dimensionality, and optimization in only moderate dimensional prob-

lems (i.e., n . 10) is expected to be numerically tractable. A key bottleneck of the present

code as the dimension of the problem is increased is the overhead associated with the enu-

meration of the triangulation. One of the limitations of the algorithm presented here is its

restriction to bound constrained domains. Note that the original Delaunay-based optimiza-

tion algorithm developed in [67] can handle any linearly-constrained domains. Another

potential weakness is that the Cartesian grid present used is not the best option for the dis-

cretization (see [13]). In future work, the algorithm developed here will be modified to

deal with general linearly-constrained domains, and different lattices will be considered. In

later studies, more benchmarking test problems and application-based optimization prob-

lems will also be considered.
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Chapter 5

A derivative-free optimization for

efficiently minimizing the infinite

time-averaged statistics

5.1 Introduction

In this chapter, the Delaunay-based derivative-free optimization algorithm devel-

oped in previous chapters is modified to minimize an objective function, f (x) : Rn → R,

obtained by taking the infinite-time average of a discrete-time ergodic process g(x, k) for

k = 1, 2, 3, . . . such that

f (x) = lim
N→∞

1
N

N∑
k=1

g(x, k), (5.1a)

where, for k & k̄, g(x, k) is assumed to be statistically stationary. The feasible domain in

which the optimal design parameter vector x ∈ Rn is sought is a bound constrained domain

L = {x|a ≤ x ≤ b} where a < b ∈ Rn. (5.1b)

169
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Note that calculating the true value of f (x) for any x is impossible; f (x) can only be approx-

imated as the average of g(x, k) over some finite number of samples N. The truth function

f (x) is typically a smooth function of x, though it is often nonconvex; computable approxi-

mations of f (x), however, are generally nonsmooth in x, as the truncation error (associated

with the fact any approximation of f (x) must be computed with finite N) is effectively

decorrelated from one approximation of f (x) to the next.

Minimizing (5.1a) within the feasible domain (5.1b) is the subject of interest in

host of practical applications, such as the optimization of stiffness and shape parameters

and feedback control gains in mechanical systems and manufacturing processes involving

turbulent flows, the setting of airline ticket prices, etc. Remarkably, however, there are very

few optimization algorithms today ([69] and [70] being notable exceptions) that specifi-

cally address problems of this form, which instead are typically handled using classical

derivative-free optimization approaches which, quite inefficiently, approximate each func-

tion evaluation with the same amount of sampling. Though many such classical derivative-

free optimization approaches effectively keep function evaluations far apart in parameter

space until convergence is approached, thereby mitigating somewhat the effect of uncer-

tainty in the function evaluations, at least for a while, they are not specifically designed to

adjust the amount of sampling associated with each individual function evaluation, making

function evalutations more accurate (and, thus, more expensive), as required, as conver-

gence is approached. The algorithm presented here, in contrast, automatically adjusts the

sampling associated with each function evaluation as convergence is approached. Three

existing classes of algorithms that might be considered to optimize problems of the form

given in (5.1) are discussed further below.

The first is based on a convex production planning model [71], using the dynamic
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programming principle to find an optimal solution. This modeling has been analyzed in

both the discrete [72] and continuous [73, 74] settings. This approach is appropriate for

control problems in which an adaptive controller is implemented with a large number of

design parameters.

The second is based on an adjoint formulation (see, e.g., [75, 76, 77, 78]), which

calculates the gradient of the function of interest at each iteration based on an adjoint com-

putation. This method is very powerful for many problems in which essentially exact func-

tion evaluations are available, and scales exceptionally well to problems with many design

parameters. However, for problems of the form (5.1), such as the optimization of airfoil

shapes for turbulent flows, classical adjoint formulations are not suitable. This issue is ad-

dressed in a clever way in [79] and [80], where a novel method to alleviate it is presented.

Nevertheless, this approach still only assures local convergence, and is highly sensitive to

the accuracy of the mathematical model which is used for adjoint-based computations of

the gradient.

The third is the class of derivative-free methods, which are indeed the most promis-

ing class of approaches for problems of the present form. These methods are also imple-

mented for shape optimization in airfoil design [66], as well as in online optimization [69].

With such methods, only values of the function evaluations themselves are used, and nei-

ther a derivative nor its estimate is needed. The best methods of this class strive to keep

function evaluations far apart in parameter space until convergence is approached, thereby

mitigating somewhat the effect of uncertainty in the function evaluations. This class of

methods generally handles feasibility boundaries quite well, and may be used to globally

minimize the function of interest. However, this class of method scales quite poorly with

dimension of the problem. The surrogate management framework [12] and Bayesian algo-
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rithms [81, 11, 7, 70] are amongst the best derivative-free methods available today, and are

implemented for minimizing a problem of the form in (5.1) in [66, 82, 83, 84].

For problems of the form (5.1), [69] and [70] are perhaps the two most closely re-

lated chapters to the present in the literature. In [69], a clever Lipschitzian optimization

algorithm is presented which uses measurements with differing amounts of accuracy; this

approach builds specifically upon accurate knowledge of the Lipchitz norm of the truth

function. Proof of convergence of the algorithm proposed is provided in [69]. In [70],

a promising Kriging-based algorithm of the surrogate management framework family is

proposed, in a manner which increases the sampling of new measurements as convergence

is approached. However, this method does not selectively refine existing measurements,

which is a key contributor to the efficiency of the algorithm developed herein. Also, rigor-

ous proof of convergence of the algorithm proposed in [70] is unavailable.

In this chapter, a highly efficient and provably convergent new optimization ap-

proach is developed for problems of the form given in (5.1). The structure of the remainder

of the chapter is as follows: Section 5.2 lays out all of the new elements that compose the

new optimization approach, as well as the new algorithm itself, dubbed α-DOGS. Section

5.4 analyzes the convergence properties of the new algorithm, and establishes conditions

which are sufficient to guaranty its convergence to the global minimum. Section 7.4 applies

the new algorithm to a selection of model problems in order to illustrate its behavior. Some

conclusions are presented in Section 5.6.

5.2 Description of Algorithm:

This section presents the essential elements of the new optimization algorithm,

dubbed α-DOGS, which is designed to efficiently minimize a function f (x) given by (5.1a)
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within the feasible domain L defined by (5.1b). We begin by introducing some fundamental

concepts.

Definition 26. Take S as a set of points xi, for i = 1, . . . ,M, at which the function f (x)

in (5.1a) has been approximated; drawing a parallel to the nomenclature commonly used

in estimation theory, we refer to any such approximation of f (x), developed with a finite

number of samples Ni, as a measurement, denoted yi:

yi = y(xi,Ni) =
1
Ni

Ni∑
k=1

g(xi, k). (5.2)

Any such measurement yi has a finite uncertainty associated with it, which may made small

by increasing Ni.

Remark 28. For many problems, there is an initial transient such that, for k < k̄, the

assumption of stationarity of g(x, tk) is not valid. For such problems, the initial transient in

the data can be detected using the approach developed in [85] and set aside, and the signal

considered as stationary therafter. In such problems, to increase the speed of convergence

of the statistics, the finite sum used for averaging the samples in (5.2) is modified to begin

at k̄ instead of beginning at 1.

Since, for k > k̄, g(x, k) is statistically stationary, each measurement yi is an unbi-

ased estimate of the corresponding value of f (xi). We assume that a model for the standard

deviation quantifying the uncertainty of this measurement, denoted σi = σ(xi,Ni), is also

available. Since g(x, t) is a stationary ergodic process, for any point xi ∈ L,

lim
Ni→∞

y(xi,Ni) = f (xi), lim
Ni→∞

σ(xi,Ni) = 0. (5.3)
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Remark 29. If a stationary ergodic process g(x, k) at some point xi ∈ L is independent

and identically distributed (IID), then σ(xi,Ni) = σ(xi, 1)/
√

Ni; otherwise, estimates of

σ(xi,Ni) can be developed using standard uncertainty quantification (UQ) procedures, such

as those developed in [86, 87, 88, 89, 90]. The discrete-time process g(x, k) may often

be obtained by sampling a continuous-time process g(x, t) at timesteps tk = kh for some

appropriate sample interval h. For sufficiently large h, the samples of this continuous-time

process g(x, k) are often essentially IID; however, with the appropriate UQ procedures in

place, significantly smaller sample intervals h will lead to a given degree of convergence

in a substantially shorten period of time t, albeit with increased storage.

Definition 27. Define S as a set of measurements yi, for i = 1, 2, . . . ,M, at corresponding

points xi and with standard deviation σi. We will call a regression p(x) for this set of

measurements a strict regression if, for some constant β,

|p(xi) − yi| ≤ βσi, ∀ 1 ≤ i ≤ M. (5.4)

Based on the concepts defined above, Algorithm 5.1 presents our algorithm to ef-

ficiently and globally minimize a function of the form (5.1a) within a feasible domain

defined by (5.1b). At each iteration k of this algorithm, S k denotes the set of M points xi,

for i = 1, 2, . . . ,M, at which measurements have so far been made; for each point xi ∈ S k,

yi = y(xi,Ni) denotes the measured value, σi = σ(xi,Ni) denotes the uncertainty of this

estimate, and Ni quantifies the sampling performed thus far at point xi. Note that the values

of M, Ni, yi, `, α, and K are all updated from time to time as the iterations proceed, and

are thus annotated with a k superscript at various points in the analysis of §5.4 to remove

ambiguity. Akin to Algorithm 2.2, at iteration k, pk(x) is assumed to be a strict regression
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Algorithm 5.1 The new optimization algorithm, dubbed α-DOGS, for minimizing the function f (x)
in (5.1a) within the feasible domain L defined in (5.1b).

1: Set k = 0 and initialize the algorithm parameters α, K, γ, β, `, N0, and Nδ as discussed
in §5.2. Take the initial set of M sampled points, S 0, as the 2n vertices of the feasible
domain L = {x|a ≤ x ≤ b} together with any user-supplied points of interest quantized
onto the grid L`. Take Ni = N0 for i = 1, . . . ,M, and compute an initial measurement
yi = y(xi,N0) and corresponding uncertainty σi = σ(xi,N0) for each point xi ∈ S 0.

2: Calculate a strict regression pk(x) for all M available measurements.
3: Calculate (or, for k > 0, update) a Delaunay triangulation ∆k over all of the points in

S k.
4: Determine x j as the minimizer (and, j as the corresponding index), over all xi ∈ S k, of

the discrete search function sk
d(xi), defined as follows:

sk
d(xi) = min{pk(xi), 2 yi − pk(xi)} − ασk

i for i = 1, . . . ,M. (5.5)

5: Find x ∈ L that minimizes the continuous search function sk
c(x), defined as follows:

sk
c(x) = pk(x) − K ek(x) for x ∈ L. (5.6)

Denote z` as the quantization of z onto the grid L`.
6: If sk

c(z) > sk
d(x j) and N j < γ 2` where N j is the current number of samples taken at x j,

then take Nδ additional samples at x j, update N j ← N j + Nδ, update the measurement
y j = y(x j,N j) and uncertainty σ j = σ(x j,N j), increment k, and repeat from 2.

7: Otherwise, if z` < S k, then set xM+1 = z` and S k+1 = S k ∪ {xM+1}, take NM+1 = N0,
compute the measurement yM+1 = y(xM+1,N0) and uncertainty σM+1 = σ(xM+1,N0),
increment M and k, and repeat from 2.

8: Otherwise, increment both ` and k, adjust the algorithm parameters such that α ←
α + αδ and K ← 2 K, and repeat from 2.

(for some value of β) of the current set of measurements yi, and ` is the current grid level.

At each iteration of Algorithm 5.1, there are three possible situations, corresponding

to three of the numbered iterations of this algorithm:

(6) The sampling of an existing measurement is increased. This is called a supplemental

sampling iteration.

(7) A new point is identified, and an initial measurement at this point is added to the

dataset. This is called an identifying sampling iteration.
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z
xj

a An identifying sampling iteration

z
xj

b A supplemental sampling iteration.

Figure 5.1: Representation of one iteration in Algorithm 5.1 in different situations:
(solid line) truth function f (x), (dashed line) the regression pk(x), (dash-dot line)

continuous search function sk
c(x), (closed squares) sk

d(x), and (asterix) z. In figure (a),
sk

c(z) < sk
d(x j); it is thus an identifying sampling iteration. In figure (b), sk

c(z) > sk
d(x j); it

is thus an supplemental sampling iteration.

(8) The mesh coordinating the problem is refined and the algorithm parameters α and K

adjusted. This is called a grid refinement iteration.

Figure 5.1 illustrates supplemental sampling and identifying sampling iterations of Algo-

rithm 5.1.

Algorithm 5.1 depends upon a handful of algorithm parameters, the selection of

which affects its rate of convergence, explored in §5.5, though not its proof of convergence,

established in §5.4. The remainder of this section discusses heuristic strategies to tune these

algorithm parameters, noting that this tuning is an application-specific problem, and alter-

native strategies (based on experiment or intuition) might lead to more rapid convergence

for certain problems.

The first task encountered during the setup of the optimization problem is the def-

inition of the design parameters. Note that the feasible domain considered during the
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optimization process is characterized by simple upper and lower bounds for each design

parameter; normalizing all design parameters to lie between 0 and 1 is often helpful.

The second challenge is to scale the function f (x) itself, such that the range of the

normalized function f (x) over the feasible domain L is about unity. If an estimate of the

actual range of f (x) is not available a priori, we may estimate it at any given iteration us-

ing the available measurements. Following this approach, at any iteration k with available

measurements {y1, y2, . . . , yM}, all measurements yi, as well as the corresponding uncer-

tainty of these measurements σi, may be scaled by a factor rs wherever used in iteration k

of Algorithm 5.1 where, for that iteration, rs is computed such that

r =
1

max1≤i≤M{yi} −min1≤i≤M{yi}
, rs = rl + R(r − rl) − R(r − ru),

where R(x) is the ramp function. So defined, rs is a “saturated” version of the factor r,

constrained to lie in the range rl ≤ rs ≤ ru. Note that scaling the yi and σi does not interfere

with the proof of the convergence of the algorithm, provided in §5.4, but can improve

its performance. In the numerical simulations performed in §5.5, we take rl = 10−3 and

ru = 103.

For problems which are IID with no initial transient, N0 = Nδ = 1 is a reasonable

starting point; increasing N0 and Nδ ultimately reduces the number of iterations of the

algorithm (and, thus, the number of Delaunay triangulations) required for convergence, but

generally increases slightly the total amount of sampling performed. Suggested values of

other algorithm parameters, which work well in the numerical simulations reported in §5.5

but the values of which do not affect the proof of convergence provided in §5.4, include

α0 = αδ = 0.5, K0 = 0.5, `0 = 3, β = 4, and γ = 100.
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5.3 Polyharmonic spline regression

The algorithm described in this chapter depends upon a smooth regression pk(x)

(see Assumption 9). The best technique for computing the regression is problem dependent.

A key advantage of our Delaunay-based approach in the present work is that it facilitates

the use of any suitable regression technique, subject to it satisfying the “strict” regression

property given in Definition 27. Since our numerical tests all implement the polyharmonic

spline regression technique, the derivation of this regression technique is briefly explained

in this appendix; additional details may be found in [31].

The polyharmonic spline regression p(x) of a function f (x) in Rn is defined as

a weighted sum of a set of radial basis functions ϕ(r) built around the location of each

measurement point, plus a linear function of x:

p(x) =

N∑
i=1

wi ϕ(r) + vT


1

x

 , (5.7)

where ϕ(r) = r3 and r = ‖x − xi‖.

The weights wi and vi represent N and n + 1 unknowns. Assume that {y(x1), y(x2),

. . . , y(xn)} is the set of measurements, with standard deviations {σ1, σ2, . . . , σ2}. The wi

and vi coefficients are computed by minimizing the following objective function, which

expresses is a tradeoff between the fit to the observed data and the smoothness of the re-

gressor:

Lp(x) =

N∑
i=1

[ (p(xi) − y(xi))
σi

]2
+ λ

∫
B
|∇m p(x)|, (5.8)

where B is a large box domain containing all of the xi, and ∇m p(x) is the vector including all

m derivatives of p(x) (see [91]). It is shown in [91] that the first-order optimality condition
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for the objective function (5.8) is as follows:

p(xi) − y(xi) + ρσ2
i wi = 0, ∀1 ≤ i ≤ N, (5.9)

where ρ is a parameter proportional to λ. In summary, the coefficient of the regression can

be derived by solving:


F VT

V 0



w

v

 =


f (xi)

0

 , (5.10)

Fi j = ϕ(‖xi − x j‖) + ρδi, j σ
2
i , V =


1 1 . . . 1

x1 x2 . . . xN

 ,
where δi, j is the Kronecker delta.

The problem which is left to solve when computing the regression is to find an

appropriate value of ρ ∈ [0,∞). Solving (5.10) for any value of ρ gives a unique regression,

denoted p(x, ρ). The parameter ρ is then obtained by a predictive mean-square error criteria

developed in §4.4 in [31], which is given by imposing the following condition:

T (ρ) =

N∑
i=1

[
p(xi, ρ) − y(xi)

σi
]2 = 1. (5.11)

For ρ → ∞, wi → 0, and the solution of (5.10) is a weighted mean-square linear

regression, which is obtained by solving (5.11). If T (∞) ≤ 1, we take this linear regression

as the best current regression for the available data. Otherwise, we have T (∞) > 1 and (by

construction) T (0) = 0; thus, (5.11) has a solution with finite ρ > 0 which gives the desired

regression.

If T (∞) > 1, we thus seek a ρ for which for T (ρ) = 1. Following [31], using (5.10),
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(5.11) simplifies to:

T (ρ) = ρ

N∑
i=1

wi,ρ σ
2
i = 1, (5.12)

where wi,ρ is the wi which is obtained by solving (5.10). Define Dw and Dv as the vectors

whose i-th elements are the derivatives of wi and vi with respect to ρ, then

T ′(ρ) =

N∑
i=1

Dwiσ
2
i + ρ

N∑
i=1

Dwi,ρσ
2
i ,

F VT

V 0



Dw

Dv

 +


ρΣ2 0

0 0



w

v

 =


0

0

 ,
where Σ2 is a diagonal matrix whose i-the diagonal element is ρσ2

i . Therefore, the analytic

expression for the derivative of T (ρ) is available. Thus, (5.11) can be solved quickly using

Newton’s method.

The regression process presented here, imposing (5.12) as suggested by [31], is

designed to obtain a regression which is reasonably smooth. However, there is no guaranty

that this particular regression satisfies the strictness property required in the present work

(see Definition 27). Note, however, that by imposing ρ = 0, the regression is made strict

for arbitrary small β. Thus, to satisfy strictness for a given finite β, the value of ρ must

sometimes be decreased from that which satisfies (5.12), as necessary.

5.4 Analysis of α-DOGS

We now analyze the convergence of Algorithm 5.1. We first present some prelimi-

nary definitions.
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Definition 28. The point ηk ∈ S is called the candidate point at iteration k if

ηk = argminz∈S k{yk(z) + αkσk(z)}. (5.13)

Define f (x∗) as the global minimum of f (x) in L, then the regret is defined as

rk = f (vk) − f (x∗). (5.14)

The definition of the regret given above is common in the optimization literature

(see, e.g., [92, 69, 83]). We show in this section that, under the following assumptions, the

regret of the optimization process governed by Algorithm 5.1 will converge to zero:

Assumption 9. A constant K̂ exist such that, for all k > 0 and x ∈ L,

−2 K̂ ≤ ∇2 pk(x) ≤ 2 K̂, −2 K̂ ≤ ∇2 f (x) ≤ 2 K̂.

Assumption 10. There is a real positive function E(x) : R+ → R+, which has the following

properties:

a. E(x) is continuous and monotonically increasing.

b. E(x) is bounded such that

E(x) ≤ Q, sup
x∈R+

E(x) = Q. (5.15)

c. For all x ∈ L and N ∈ N, we have:

∣∣∣∣ 1
N

N∑
k=1

g(x, k) − f (x)
∣∣∣∣ = |y(x,N) − f (x)| ≤ E(σ(x,N)). (5.16)
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d. limx→0+ E(x)→ 0.

Assumption 11. There are real numbers α > 0 and θ ∈ (0 1], such that

σ(x,N) ≤ αN−θ ∀x ∈ R, N ∈ N. (5.17)

Note that, if the stationary process g(x, k) has a short-range dependence, like ARMA

processes, the parameter θ = 0.5. However, for different θ, this general model can also

handle stationary processes with long-range dependence, like Fractional ARMA processes.

Moreover, at any given point x ∈ L, σ(x,N) is a monotonically nonincreasing function of

N. This condition means that, by increasing the averaging interval, the uncertainty of the

estimate must not increase.

Remark 30. Assumption 2 is a stronger condition than ergodicity of g(x, k). Recall that

ergodicity of g(x, k) is equivalent to the convergence of y(x,N) to f (x) as N → ∞, which is

the straightforward outcome of Assumptions 10 and 11. In Assumption 10, the convergence

of the sample mean is assumed to be bounded by a function of σ(x,N) of the form specified.

Lemma 23. For any point x ∈ L and real positive number 0 < ε < Q,

|y(x,N) − f (x)| −
Q

E−1(ε)
σ(x,N) ≤ ε, (5.18)

Proof. If σ(x,N) ≤ E−1(ε) then, since E(x) is an increasing function, by (5.16), we have:

E(σ(x,N)) ≤ E(E−1(ε)) = ε ⇒ |y(x,N) − f (x)| ≤ ε.
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Otherwise, σ(x,N) > E−1(ε); thus, again by (5.16), we have

Q
E−1(ε)

σ(x,N) ≥ Q ⇒ |y(x,N) − f (x)| − Q ≤ E(σN) − Q ≤ 0,

Thus, (5.18) is verified for both cases. �

Lemma 24. During the execution of Algorithm 5.1, there are an infinite number of mesh

refinement iterations.

Proof. This lemma is shown by contradiction. If Algorithm 5.1 has a finite number of mesh

refinement iterations, then there is an integer number ¯̀ such that the mesh L ¯̀ contains all

datapoints obtained by the algorithm. Since the number of datapoints on this mesh is finite,

only a finite number of points must be considered, which leads to having a finite number of

identifying sampling iterations.

Since the number of identifying sampling and mesh refinement iterations are finite,

there must be an infinite number of supplemental sampling iterations. At each supple-

mental sampling iteration, the averaging length of the estimate at an existing datapoint is

incremented by Nδ ≥ 1. Since only a finite number of points is considered, a datapoint

exists for which the estimate is improved for an infinite number of supplemental sampling

iterations. As a result, there is an supplemental sampling iteration, such that N j > γ2 ¯̀,

which is in contradiction with the assumption of having finite number of mesh refinement

iterations. �

Lemma 25. Consider z, x j, and x∗ as global minimizers of sk
c(x), sk

d(x), and f (x), respec-

tively. Note that sk
d(x) is only defined for the points in S k, but sk

c(x) and f (x) are defined
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over the feasible domain L. Define Mk as:

Mk = min{sk
c(z) − f (x∗), sk

d(x j) − f (x∗)}. (5.19)

Then,

lim sup
k→∞

Mk ≤ 0. (5.20)

Proof. By Lemma 24, there are infinite number of mesh refinement iterations during the

execution of Algorithm 5.1. Thus,

lim
k→∞

Kk = ∞, lim
k→∞

αk = ∞. (5.21)

As a result, for any 0 < ε < Q, there is a kε such that, if k > kε, then

Kk ≥ 3 K̂ and αk ≥
2 Q

E−1(ε)
. (5.22)

Consider ∆k
x∗ as a simplex in ∆k, a Delaunay triangulation for S k, that contains x∗.

Define M(x) : ∆k
x∗ → R as the unique linear function in ∆k

x∗ such that

M(Vk
j ) = 2 f (Vk

j ) − pk(Vk
j ),

where Vk
j are the vertices of ∆k

x∗ . Define G(x) : ∆k
x∗ → R as follows:

G(x) = sk
c(x) + M(x) − 2 f (x) = pk(x) + M(x) − 2 f (x) − Kk ek(x).
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By construction, G(Vk
j ) = 0. Moreover:

∇2G(x) = ∇2{pk(x) − 2 f (x)} + 2 Kk I.

Using Assumption 9 and (5.22), G(x) is strictly convex in simplex ∆k
x∗ . Since G(x) = 0 at

the vertices of ∆k
x∗ , then G(x∗) ≤ 0.

Moreover, since M(x) is a linear function, then

min
x∈S k

[2 f (x) − pk(x)] ≤ min
1≤ j≤n+1

[2 f (Vk
j ) − pk(Vk

j )] ≤ M(x∗),

sk
d(x) ≤ [2 f (x) − pk(x)] + 2 (yk(x) − f (x)) − αkσ(x). (5.23)

Using (5.18) in Lemma 23 and (5.22) leads to:

2 yk(x) − 2 f (x) − αkσ(x) ≤ 2 ε. (5.24)

Combining (5.23) and (5.24) leads to:

sk
d(x) ≤ [2 f (x) − pk(x)] + 2 ε.

Since x j is the minimizer of the sk
d(x),

sk
d(x j) ≤ min

x∈S k
[2 f (x) − pk(x)] + 2 ε ≤ M(x∗) + 2 ε.



186

Furthermore, z is the global minimizer of sk
c(x) and G(x∗) ≤ 0; therefore,

sk
c(z) ≤ sk

c(x∗) ≤ 2 f (x∗) − M(x∗),

sk
c(z) + sk

d(x j) ≤ 2 f (x∗) + 2 ε. (5.25)

Thus, for any ε > 0 and k > k̂ε, (5.25) is satisfied; therefore, (5.20) is verified. �

Lemma 26. If {k1, k2, . . . } are the mesh refinement iterations of Algorithm 5.1, then

lim sup
i→∞

{
y(ηki ,Nki

ηki
) − f (x∗) + αkiσ(ηki ,Nki

ηki
)
}
≤ 0, and (5.26a)

lim
i→∞

σ(ηki ,Nki

ηki
) = 0, (5.26b)

where ηki is the candidate point at iteration ki and x∗ is a global minimizer of f (x) in L.

Proof. Consider z as a global minimizer of ski
c (x) in L, and z` as its quantization on L`.

Since iteration ki is a mesh refinement, z` ∈ S ki . Consider ∆
ki
j as a simplex in the Delaunay

triangulation ∆ki which contains z. According to the uncertainty function eki(x),

eki(z`) ≥ eki
j (z`), eki(z) = eki

j (z),

ski
c (z`) − ski

c (z) = pki(z`) − pki(z) + Kki(eki(z) − eki(z`)),

ski
c (z`) − ski

c (z) ≤ pki(z`) − pki(z) + Kki(eki
j (z) − eki

j (z`)).

Using the property of the Cartesian grid quantizer and its quantizer, Aa(z) ⊆ Aa(z`). Accord-

ing to Assumption 9 and the construction of the uncertainty function introduced, ∇2{pki(x)−

Kkieki
j (x)} − {K̂ + 2 Kki}I ≤ 0; thus, by Lemma 19 and the fact (see Lemma 5 in [93] for
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proof) that z globally minimizes pki(x) − Kkieki
j (x),

ski
c (z`) − ski

c (z) ≤ {K̂ + 2 Kki}‖z` − z‖2. (5.27)

Define δki as the maximum quantization error at iteration ki, then ‖z` − z‖ ≤ δki . On the

other hand, z` ∈ S ki , which leads to ski
c (z`) = pki(z`), and

pki(z`) ≤ ski
c (z) + {K̂ + 2 Kki}δ2

ki
. (5.28)

At each mesh refinement iteration of Algorithm 5.1, there are two possibilities. In the first

case, ski
c (z) ≤ ski

d (x j); since x j is a minimizer of ski
d (x), then

pki(z`) ≤ ski
d (z`) + {K̂ + 2 Kki}δ2

ki
,

ski
d (z`) ≤ pki(z`) − αkiσ(z`,Nki

z` ),

σ(z`,Nki
z` ) ≤

{K̂ + 2 Kki}

αki
δ2

ki
. (5.29)

Using (5.19) (see Lemma 25) and (5.28) leads to

pki(z`) − f (x∗) ≤ Mki + {K̂ + 2 Kki}δ2
ki
. (5.30)

Since the regression is strict,

y(z`,Nki
z` ) − pki(z`) ≤ βσ(z`,Nki

z` ). (5.31)
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Using (5.29), (5.30), and (5.31) leads to

y(z`,Nki
z` ) − f (x∗) ≤ Mki + {K̂ + 2 Kki}δ2

ki
+ β

[ {K̂ + 2 Kki}

αki
δ2

ki

]
. (5.32)

In the second case, ski
c (z) > ski

d (x j), then by the construction of Mki (see (5.19)),

ski
d (x j) − f (x∗) = Mki . (5.33)

Moreover, since iteration ki is mesh refinement, then the sampling N j ≥ γ2`. Thus, using

Assumption 11,

σ(x j,Nki
x j

) ≤ α γ−θ2−θ`. (5.34)

Furthermore, the regression pki(x) is strict which leads to:

y(x j,Nki
x j

) − ski
d (x j) ≤ (β + αki)σ(x j,Nki

x j
) (5.35)

Using (5.33), (5.34), and (5.35) leads to

y(x j,Nki
x j

) − f (x∗) ≤ Mki + (β + αki)αγ−θ2−θ`. (5.36)

Note that ηki is the candidate point at iteration ki. Thus, using (5.29), (5.32), (5.34),

and (5.36), and the construction of candidate point (see Definition 28),

y(ηki ,Nki

ηki
) − f (x∗) + αkiσ(ηki ,Nki

ηki
) ≤ Mki+

max
{
(β + αki)αγ−θ2−θ`, (K̂ + 2 Kki)δ2

ki
+ β

[ (K̂ + 2 Kki)
αki

δ2
ki

]}
+αki max

{
αγ−θ2−θ`,

(K̂ + 2 Kki)
αki

δ2
ki

}
. (5.37)
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On the other hand,

δki =
‖b − a‖

2`0+i , αki = α0 + iαδ, Kki = K0 2i, `ki = `0 + i. (5.38)

By substituting (5.38) in (5.37) and using (5.20) (see Lemma 25), (5.26a) is verified. Fur-

thermore, using Assumption 10, we have

|y(ηki ,Nki

ηki
) − f (ηki)| ≤ E(ηki ,Nki

ηki
) ≤ Q. (5.39)

Thus, using (5.26a), f (ηki) − f (x∗) > 0, and (5.39) leads to

lim sup
i→∞

{
− Q + αkiσ(ηki ,Nki

ηki
)
}
≤ 0.

Since σ(ηki ,Nki

ηki
) ≥ 0 and limi→∞ α

ki = ∞, (5.26b) is verified.

�

Theorem 11. Consider ηk as the candidate point at iteration k of Algorithm 5.1, then

lim
k→∞

f (ηk) = f (x∗). (5.40)

Proof. At any iteration k > k1, take ki < k as the most recent mesh refinement iteration of

Algorithm 5.1. Then ηki ∈ S k, and

y(ηk,Nk
ηk) + αkσ(ηk,Nk

ηk) ≤ y(ηki ,Nk
ηki

) + αkσ(ηki ,Nk
ηki

). (5.41)



190

Using Assumption 10 leads to:

|y(ηki ,Nk
ηki

) − y(ηki ,Nki

ηki
)| ≤ E(σ(ηki ,Nki

ηki
)) + E(σ(ηki ,Nk

ηki
)),

y(ηk,Nk
ηk) + αkσ(ηk,Nk

ηk) ≤ y(ηki ,Nki

ηki
) + αkσ(ηki ,Nki

ηki
)+

E(σ(ηki ,Nki

ηki
)) + E(σ(ηki ,Nk

ηki
)).

By construction, since the sampling at ηki at iteration k is greater than or equal to its sam-

pling at iteration ki, σ(ηki ,Nk
ηki

) ≤ σ(ηki ,Nki

ηki
). Since the function E(x) is nondecreasing,

y(ηk,Nk
ηk) + αkσ(ηk,Nk

ηk) ≤ y(ηki ,Nki

ηki
) + αkσ(ηki ,Nki

ηki
) + 2 E(σ(ηki ,Nki

ηki
)).

Using (5.26) in Lemma 26, Assumption 10, and αk = αki + αδ, leads to:

lim sup
k→∞

y(ηk,Nk
ηk) − f (x∗) + αkσ(ηk,Nk

ηk) ≤ lim sup
k→∞

{
αδσ(ηki ,Nki

ηki
)
}

= 0. (5.42)

Similar to the proof of (5.26b), it is thus again easy to show

lim
i→∞

σ(ηk,Nk
ηk) = 0.

On the other hand, based on Assumption 10, and optimality of f (x∗)

f (ηk) + αkσ(ηk,Nk
ηk) − f (x∗) − E(σ(ηk,Nk

ηk)) ≤ y(ηk,Nk
ηk) + αkσ(ηk,Nk

ηk) − f (x∗),

lim
k→∞

E(σ(ηk,Nk
ηk)) = 0,

lim sup
k→∞

f (ηk) − f (x∗) ≤ 0.
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Since f (ηk) − f (x∗) ≥ 0, (5.40) is verified. �

5.5 Results

We now illustrate the performance of Algorithm 5.1 on some representative exam-

ples. The function g(x, k) in (5.1a) is assumed to be a discrete-time statistically stationary

random ergotic process. In this section, we further assume that g(x, k) is IID in the index

k, and that the variation of g(x, k) from the truth function f (x) is homogeneous in x. In

particular, we take σ(xi, 1) = 0.3, and

g(x, k) = f (x) + vk where vk = N(0, 0.09).

In this section, two different test functions for f (x) are considered within the simple

feasible domain L = {x|0 ≤ xi ≤ 1 ∀i}, the shifted parabolic function

f (x) =

n∑
i=1

(xi − 0.3)2, (5.43)

with a global minimizer in L of x∗i = 0.3 and a corresponding global minimum of f (x∗) = 0,

and the scaled Schwefel fuction

f (x) = 1.6759 n −
n∑

i=1

xi

2
sin(500 |xi|), (5.44)

with a global minimizer in L of x∗i = 0.8419 and a corresponding global minimum of

f (x∗) = −1.6759 n. We will consider these two functions in n = 1, 2, and 3 dimensions.

One-dimensional representations of these functions are illustrated in Fig 5.2: for

the shifted parabolic function (5.43), the truth function (unknown to the optimization al-
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a Shifted parabolic function (5.43).
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Figure 5.2: Illustration of test problems (5.43) and (5.44). (solid line) truth function
f (x), and (dashed line) a set of measurements yi computed with a single sample at each

measurement, Ni = 1.

gorithm) is a simple parabola, whereas for the scaled Schwefel fuction (5.44), the truth

function is a smooth nonconvex function with four local minima. Note that the perturba-

tions present in several measurements of these functions, computed with finite Ni, result

in a complicated, nonsmooth, nonconvex behavior. This chapter shows how to efficiently

minimize such functions based only on such noisy measurements, automatically refining

the measurements (by increasing the sampling) as convergence is approached.

The optimizations are initialized with measurements of sample length N0 = 1 at the

vertices of L. Figure 5.3 illustrates the application of Algorithm 5.1 after k = 100 iterations

in the 1D case, taking N0 = Nδ = 1 additional sample (at either a new measurement point,

or at an existing measurement point) at each iteration of the algorithm. In Figure 5.3a,

the sampling Ni after k = 100 iterations (plus the 2 initial sample points, for a total of

102 samples) at the M = 5 measured points yi indicated, enumerated from left to right, is

{4, 14, 82, 1, 1}; in Figure 5.3b, the sampling Ni after 100 iterations at the 7 measured points

indicated is {2, 1, 1, 9, 23, 65, 1}. Both results clearly show that the algorithm focuses the

bulk of its sampling in the immediate vicinity of the minimum, where the accuracy of
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Figure 5.3: Illustration of Algorithm 5.1 on model problems (5.43) and (5.44) in 1D
after 100 iterations, taking N0 = Nδ = 1: (solid line) the truth function f (x), and (error

bars) the 66 percent confidence intervals of the measurements.

the measurements is especially important, while avoiding unnecessary sampling far from

the minimum, where the accuracy of the measurements is of reduced importance. It is

also seen that more exploration is performed for the scaled Schwefel function than for the

shifted parabolic function, as a result of its more complex underlying trend.

Since the function evaluation process in these tests has a stochastic component, Al-

gorithm 5.1 was next applied an ensemble of three separate tests, for both model problems

discussed above, in each of three different cases with increasingly higher dimension (that

is, n = 1, n = 2, and n = 3). The convergence histories of these simulations are illustrated

in Figures 5.4 and 5.5.

To better quantify the performance of the algorithm proposed, we now introduce

the following concept.

Definition 29. Assume that the stationary process g(x, k) is IID, and that the nominal vari-

ance σ(xi, 1) = σ0 for all points xi ∈ L. As mentioned in Remark 29, denoting Ni as the

total number of samples taken at point xi, the uncertainty of the corresponding measure-

ment yi given by (5.2) is σi = σ(xi,Ni) = σ0/
√

Ni. If we assume that all of sampling of the
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algorithm is performed at a single point, the uncertainty of this single measurement after

k samples would thus be σ0/
√

k, which we refer to as the reference error. This function is

indicated in Figures 5.4 and 5.5 by a solid line of slope −1/2 in log-log coordinates.

It is remarkable to note that, in all 18 of the optimizations reported in Figures 5.4

and 5.5, in which we have again taken 1 new sample at each iteration, the regret function of

Algorithm 5.1 is eventually diminished to a value substantially smaller than the reference

error. That is, the value of the regret at the end of these optimizations is actually substan-

tially less than the uncertainty of a single measurement, assuming that all of the sampling

is done at a single point.

Figures 5.4 and 5.5 also report the number of datapoints which are considered by the

optimization algorithm as the iterations proceed. This number is important in optimization

problems for which the function evaluations are obtained from simulations which have

an (expensive) initial transient, which must be set aside before sampling the statistic of

interest, as discussed further in Remark 28. It is observed, as in the 1D case illustrated

in Figure 5.3, that the number of datapoints that are considered for the shifted parabolic

function is less than that for the scaled Schwefel function. Further, the regret function

converges faster to the general proximity of the global solution, in about 10 to 50 iterations,

for the shifted parabolic function. This result is reasonable, since the underlying function

in the shifted parabolic case is simpler.

5.6 Conclusions

This chapter presents a new optimization algorithm, dubbed α-DOGS, for the min-

imization of functions given by the infinite-time average of stationary ergodic processes
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Figure 5.4: Implementation of Algorithm 5.1 on parabolic test problem (5.43).
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Figure 5.5: Implementation of Algorithm 5.1 on Schwefel test problem (5.44).
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in the computational or experimental setting. Two search functions are considered at each

iteration. The first is a continuous search functions, sk
c(x), defined over the entire feasible

space x ∈ L, combining a strict regression pk(x) of the available datapoints together with a

uncertainty function characterizing the distance of any given point in the feasible domain

from the nearest measurements, and built on the framework of a Delaunay triangulation

over all available measurements at that iteration. The second is a discrete search func-

tion, sk
d(xi), defined over the available measurements xi ∈ S k. A comparison between the

minima of these two search functions is made in order to decide between further sampling

(and, therefore, refining) an existing measurement, or sampling at a new point in parameter

space. The convergence of the algorithm is established in problems for which

a. The underlying truth (infinite-time averaged) function, as well as the regressions

computed at each iteration k, are twice differentiable.

b. The stationary process g(x, k) upon which the truth function f (x) is generated, in

(5.1a), is ergodic, and the convergence of the averaging process to the underlying

truth function is bounded by a monotonic function of a computable uncertainty func-

tion (see Assumption 10).

c. The uncertainty of the time averaging process decays exponentially to zero (see As-

sumption 11); this is true for almost all stationary models of random processes.

The α-DOGS algorithm performs and refines measurements with different amounts

of sampling in different locations in the feasible region of parameter space as necessary.

By so doing, the total cost of the optimization process is substantially reduced as com-

pared with using existing derivative-free optimization strategies, with the same amount of

sampling at different locations in parameter space. Computational experiments demon-
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strate that the algorithm developed ultimately devotes most of its sampling time to points

in parameter space near to the global minimum. Further, these computational experiments

indicate that the regret function (see Definition 28) eventually diminishes to a value that is

actually substantially less than the uncertainty of a single measurement, assuming that all

of the sampling is done at a single point.

In future work, the α-DOGS algorithm will be applied to additional benchmark and

application-based optimization problems, including shape optimization for airfoils and hy-

drofoils. For problems in which the function is determined computationally (from, e.g.,

numerical simulations of turbulent flows), the extension of the present framework to, as

convergence is approached, simultaneously (a) refine the computational grid, and (b) in-

crease the measurement sampling, is also under development.
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Chapter 6

A multiscale, asymptotically unbiased

approach to uncertainty quantification

in the numerical approximation of

infinite time-averaged statistics

6.1 Introduction

Statistical characterizations are essential in many scientific and engineering prob-

lems. For example, statistical measures such as turbulent kinetic energy (TKE), skin fric-

tion drag, pressure drop, and velocity correlation lengths are of fundamental importance in

characterizing turbulent flowfield fluctuations in a time-averaged sense or, if the system is

not statistically stationary, in an ensemble-averaged sense (without loss of generality, the

present chapter focuses on time averaging in the statistically stationary setting). In prac-

tice, only a finite number of samples are available in order to approximate such statistics;

199
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it is thus important to quantify the expected deviation between the quantity measured, ob-

tained with a finite number of samples, and the infinite-time-averaged statistic of interest.

This quantity is often referred to as time-averaging error, but is sometimes referred to in

the turbulence literature as random error [90] or sampling error [94]; for simplicity, the

remainder of this chapter simply calls it averaging error.

Estimation of the averaging error plays a key role in determining necessary run

times in the large-eddy simulation (LES) and direct numerical simulation (DNS) of turbu-

lent flows of engineering interest; such simulations are often extremely computationally

expensive. The importance of determining the averaging error is especially pronounced in

optimization problems, such as shape optimization [95], using derivative-free optimization

approaches, as such optimization codes perform and compare many different simulations

or experiments, at a variety of different sets of feasible values of the design parameters, in

search of the optimum point in parameter space. In chapter 5, a derivative-free optimization

algorithm has been developed specifically for the efficient minimization of time-averaged

statistics of the type considered in this chapter. Accurate uncertainty quantification is of

fundamental importance in the effectiveness of such an approach, which adjusts the amount

of sampling associated with each individual function evaluation, making function evalua-

tions more accurate (and, thus, more expensive), as required, as convergence is approached.

As mentioned in the abstract, if the measured samples are i.i.d. (such as thermo-

couple measurements, for which the noise is often well modelled as white), the standard

deviation, εN , of a finite-sample approximation of an infinite-time-average statistic (that is,

the “averaging error”) is given by

εN = σ
√

1/N, (6.1a)
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where σ is the standard deviation of a single sample, and N is the number of samples

taken. However, in most problems of interest, the measured samples are not i.i.d.; in such

problems, convergence is even slower.

In a numerical simulation of a continuous-time chaotic system that is assumed to

behave in a stationary ergodic manner, such as a turbulent flow, with sampling times of

tk = k h for some sampling interval h, it is actually the total simulation time T , not the

total number of samples taken N, that best represents the computational expense of a given

measurement. There are four main approaches available in the literature for estimating the

averaging error in such problems. The first, developed in [96], imposes the following infor-

mative model for the standard deviation of the average over a simulation time T , assuming

essentially continuous sampling:

ε̂(T ) = σ
√

2 τ f /T , (6.1b)

where σ is the standard deviation (from the infinite-time average) of a single sample, ε̂(T )

is a model of the averaging error after time T , and τ f is a modeling parameter, referred to

as the integral time scale, which is introduced to model the largest decorrelation timescale

of the samples of the system. The integral time scale τ f is studied extensively in [97, 98].

This model is found to be effective in practice only if the simulation time divided by the

integral time scale, T/τ f , is relatively large, and is thus of specifically limited utility for

UQ; regardless, it is a very revealing starting point, as discussed further in the following

paragraph.

In the discrete sampling setting considered in this chapter, we take h as the sampling

interval, and thus N = T/h as the number of samples taken over a simulation of length

T . If h is taken as so large that the samples are effectively decorrelated, (6.1a) holds;
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note that this relation may in fact be recovered by redefining τ f = h/2 in the discrete

realization of the model given in (6.1b). As h is made smaller for a given T and τ f , more

samples are taken, but they begin to become correlated (and, thus, do not each provide

independent information). The relation given by (6.1b) sets an approximate lower bound

on the averaging error over a simulation of length T , assuming continuous sampling. Thus,

comparing (6.1b) and (6.1a), taking c/N = 2 τ f /T where c is some ∼ O(10) constant, and

noting that N = T/h, reveals that

h = 2 τ f /c (6.2)

is a reasonable value for the sampling interval h in a given problem; sampling substantially

more frequently than this will not substantially reduce ε(T ), whereas sampling substan-

tially less frequently than this provides less information, thus increasing ε(T ). Note further

that, if h is taken as unnecessarily small (and, thus, N as unnecessarily large), then the over-

head associated with storing these samples may become significant, and the errors related

to the finite precision of the arithmetic used may corrupt the computation of the average.

This effectively motivates one to pick an appropriate intermediate sampling interval h ac-

cording to (6.2), for which samples are indeed correlated with each other. A well-designed

UQ method, such as that designed in the present chapter, is thus required to estimate the

uncertainty of the approximation of the averaged statistic of interest determined from these

samples.

A second approach for estimating the averaging error in such problems is to model

the autocorrelation function with a simple exponential decay such that

ρ̂(k) = exp(−α f k), (6.3)
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where α f is a fitting parameter, then using this model to estimate the averaging error. With

this approach, the parameter α f is determined from the available data via empirical model-

ing of the autocorrelation function [99]. Unfortunately, the data upon which this empirical

model of the autocorrelation function is built often has spurious oscillations, which can

lead to inaccuracies in the estimation of the averaging error. Filtering methods have been

shown in [100, 101, 102, 90] to alleviate this problem somewhat, though special care is

required in its implementation.

A third approach for estimating the averaging error is known as batch mean methods

(see, e.g., [103, 104, 105, 106]). With such methods, the N available samples are divided,

in an ad hoc fasion, into p non-overlapping blocks of length n = N/p, and the averaged

values for these smaller blocks computed to generate another random process. This new

process is closer to i.i.d.; the overall averaging error can then be estimated from the nominal

deviations of these block averages from their overall average divided by the square root of

p. A central challenge with this approach is the determination of the block length n that

works best for a given sample size N.

In the fourth approach for estimating the averaging error, a statistical model of the

random process is imposed, where the parameters of this model are determined via a max-

imum likelihood formulation [107]. The statistical model which is typically considered in

this setting is an autoregressive moving average (ARMA) process (see, e.g., [108] and [94]).

A significant challenge with this approach is the presence of systematic error (a.k.a. “bias”)

in the uncertainty quantification which does not diminish to zero as the simulation time is

increased, as quantified further in §6.4 below.

In this chapter, we present a new method for quantifying the expected squared av-

eraging error of a finite-time-average approximation of an infinite-time-average statistic
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of a stationary ergodic process. The method developed (in §6.2) is multiscale, meaning

that it is based on an autocorrelation model that is tuned to the data to fit the statistic of

interest at a range of different timescales. The method developed is proven in §6.3 to be

asymptotically unbiased (see Definition 30), meaning that the expected squared averaging

error asymptotically converges like Q/
√

N for the same value of Q as the actual system, if

it is modelled as a random process with the correct (that is, infinite-time-averaged) mean,

variance, and autocorrelation. The maximum likelihood formulation of [107], which is a

leading competing UQ strategy, is shown to not satisfy this valuable property. An auto-

mated procedure to identify the initial transient in a dataset is also reviewed. A primary

application that motivates this work is turbulence research, though many other applications

are also envisioned.

The structure of the remainder of the chapter is as follows: Section 6.1.1 reviews

a framework to automatically identify the initial transient of a dataset. Once this portion

of the dataset is set aside, the remainder of the dataset is modeled as a realization of a

stationary ergodic process. Section 6.2 presents our new method to calculate the averaging

error for the stationary part of the dataset. Section 6.3 analyzes the salient properties of

the new method. Section 6.4 implements the method developed on synthetic data derived

from an autoregressive (AR) model, on data derived from the Kuramoto-Sivashinsky (KS)

equation, and on data derived for a low-Reynolds number turbulent channel flow DNS at

Reτ = 180.

6.1.1 Identification of the initial transient

In this section, we review three automated procedures to identify approximately

the initial transient of a dataset. As stated previously, this is an important first step in
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developing an asymptotically unbiased quantification of uncertainty of the average in the

applications of interest.

The first approach identifies the smallest transient time such that, by its removal, a

second-order stationarity condition is satisfied by the remainder of the dataset. The second-

order stationarity condition may be tested in two different ways:

a. the Priestley-Subba-Rao test [109], which is based on a time-varying Fourier spec-

trum analysis, and

b. the Wavelet Spectrum test [110], which is based on a time-varying wavelet-based

analysis.

These two tests are designed to validate or invalidate the stationarity of a given random

process, rather than establishing the “degree” of stationarity of a dataset, which is perhaps

more appropriate for the problems of interest here.

The second approach determines the initial transient based on von Neumann’s ran-

domness test [111, 112, 113, 114], which uses a batch means approach which divides, in an

ad hoc fashion, the N available samples into p non-overlapping blocks of length n = N/p,

then analyzes the distribution of the averages of each block. Such a heuristic procedure,

which is somewhat computationally expensive, often leads to acceptable results. Indeed, in

problems for which there is a specific time t1 after which the state of the system is exactly

statistically stationary1, the method developed in [85] is shown to identify t1 correctly in

the limit that the simulation time T goes to infinity.

The third approach, which is implemented in the present work and is computation-

ally quite inexpensive, was originally introduced in [115, 116, 117] for numerical simula-

1Note that this is not precisely the case in the problems of interest here, in which a continuous-time chaotic
system exponentially approaches an attractor.
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tions in systems engineering and finance. This approach is well-suited for calculating an

unbiased estimate of the infinite time-averaged value of a statistic, as it is specifically de-

signed to find an estimate of the average with minimum uncertainty. Take {X1, X2, . . . , XN}

as a dataset modelled as a realization of a random process with N samples; the initial tran-

sient of this dataset is estimated via this approach by solving the following optimization

problem:

k̂ = argmin
1≤k≤ N

2

1
(N − k − 1)2

N∑
i=k+1

(Xi − X̄k,N)2 where X̄k,N =
1

N − k

N∑
i=k+1

Xi. (6.4)

That is, this approach selects the number of initial samples k̂ to set aside in order to mini-

mize an estimate of σ2/(N − k̂), which is (within a multiplicative constant) an estimate of

the squared uncertainty, ε2
N−k̂

, of the averaged value of the remainder of the dataset. This

optimization problem can be solved in O(N2) flops using a brute force method, or with

O(N) flops using a more advanced optimization algorithm (see, e.g., [118, 119]).

6.2 Estimation of the averaging error

In this section, we present a new multiscale technique to estimate the averaging

error of a dataset modelled as a stationary ergodic random process xi. Define an additional

random variable, referred to as the sample mean ys, such that

ys =
1
s

s∑
i=1

xi,
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and identify the mean µ, variance σ2, and autocorrelation function ρ(k) such that

µ = E[xi] = E[ys], σ2 = E[(xi − µ)2], ρ(k) =
E[(xi − µ)(xi+k − µ)]

σ2 . (6.5)

The expected squared averaging error, defined as the expected value of the square of the

deviation of the sample mean ys from the true mean µ, is given (see §1 of [107]) by

ε2
s = E[(ys − µ)2] =

σ2

s

[
1 + 2

s−1∑
k=1

(1 −
k
s
) ρ(k)

]
. (6.6)

Note that ε2
s → 0 as s → ∞, as the process is ergodic, and that (6.6) reduces to (6.1a) in

the limit that the samples are i.i.d. It follows immediately from (6.6) that

E[y2
s] = µ2 + ε2

s = µ2 +
σ2

s

[
1 + 2

s−1∑
k=1

(1 −
k
s
) ρ(k)

]
. (6.7)

Now consider a sequence of N statistically stationary random variables, x1 to xN .

An unbiased estimate of µ can be developed from this sequence leveraging the following

definition of the shifted sample means

m`,`+s =
1
s

`+s∑
i=`+1

xi for ` = 0, 1, . . . ,N − s, (6.8a)

each of which is considered as a random variable with a distribution identical to that of ys.

Note that the shifted sample means are not independent. In practice, in the spirit of a batch

means method, we will consider only those shifted sample means m`,`+s corresponding to

non-overlapping blocks such that ` ∈ Ls = {0, s, 2 s, . . . , (ps − 1) s} where ps = bN
s c. Define

also the mean-squared shifted sample mean, m̄2
s , as the mean-squared value of m`,`+s for
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these ps nonoverlapping blocks,

m̄2
s =

1
ps

∑
`∈Ls

m2
`,`+s; (6.8b)

the random variable m̄2
s has the same expected value as y2

s , but reduced variance.

We will denote2 {X1, X2, . . . , XN} as a dataset modelled as a realization, of length

N, of the random process xi described above. Corresponding realization values of the

sample mean, the shifted sample means, and the mean-squared shifted sample mean are

denoted by Ys, M`,`+s, and M̄2
s , respectively. The value of M̄2

s computed from this dataset

provides an estimate of the expected mean of y2
s that is accurate for values of s that are

small enough that there are several blocks to average over; we thus only consider in this

work the mean-squared shifted sample mean m̄2
s , and its realization value M̄2

s , for s ≤ qN

where qN = b
√

Nc.

We now define a model quantity ε̂2
s , in an analogous form as the expected squared

averaging error ε2
s in (6.6), such that

ε̂2
s =

σ̂2

s

[
1 + 2

s−1∑
k=1

(1 −
k
s
) ρ̂(k; θ̂)

]
, (6.9)

where σ̂ is an model (i.e., an estimate) of the variance σ, and ρ̂(k; θ̂) is a model3 of the au-

tocorrelation function ρ(k), with its adjustable model parameters assembled into the vector

θ̂:

ρ̂(k; θ̂) =

m∑
i=1

Âi τ̂
k
i where θ̂ = [Â1, Â2, . . . , Âm, τ̂1, τ̂2, . . . , τ̂m], (6.10)

2That is, random variables in this work are indicated by lowercase letters, and corresponding realizations
of these random variables are indicated by uppercase letters.

3Models of the autocorrelation function of various statistics of interest, in a number of chaotic systems of
interest, have been studied broadly (e.g., autocorrelations of some statistics in turbulent flows are discussed
in [97, 120]). The autocorrelation model given in (6.10) is typical in such studies.
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where the feasible domain Ω for the θ̂ parameters is the linearly constrained domain

0 ≤ τ̂i < 1,
m∑

i=1

Âi = 1. (6.11)

We now denote, by {θ̂N , σ̂N , µ̂N}, optimized values of {θ̂, σ̂, µ̂} based on the sequence

{x1, . . . , xN} of length N. These optimized values are determined by solving the following

optimization problem:

{θ̂N , σ̂N , µ̂N} = argmin f (θ̂, σ̂, µ̂) =

qN∑
s=1

[
gs(θ̂, σ̂, µ̂)

]2 where (6.12a)

gs(θ̂, σ̂, µ̂) = µ̂2 +
σ̂2

s

[
1 + 2

s−1∑
k=1

(
1 −

k
s
)
ρ̂(k; θ̂)

]
− m̄2

s , (6.12b)

where m̄s is derived from the sequence {x1, . . . , xN} via (6.8), while imposing that the last

term in the sum in (6.12a) vanishes, gqN (θ̂N , σ̂N , µ̂N) = 0, in addition to the feasibility of

the parameters of the autocorrelation model, θ̂ ∈ Ω [see (6.11)], as well as σ̂ ≥ 0 and

µ̂ ≥ 0. In other words, we seek to find the best model parameters, {θ̂N , σ̂N , µ̂N}, such that

the expression for E[y2
s] in (6.7), leveraging the model values µ̂ and σ̂ and the model of

the autocorrelation in (6.10), ρ̂(k; θ̂), exactly matches the unbiased estimate m̄2
s of y2

s at

s = qN = b
√

Nc, while the sum of the squares of the mismatch of these quantities over all

the batch lengths 1 ≤ s < qN is minimized. That is, the tuning of the available parameters

in the model, {θ̂, σ̂, µ̂}, is performed in such a way as to accurately match the model [given

in (6.9)] of the expected squared averaging error [given by (6.6)], at a range of different

timescales s, to the information available in the sequence {x1, . . . , xN}; we thus refer to the

approach developed as a multiscale fit.

In this work, for any given realization of the sequence, {X1, . . . , XN}, the optimiza-
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Algorithm 6.1 Estimation of the expected averaging error ε2
N = E[(yN − µ)2} of a set of data

{X1, X2, . . . , XN} modelled as a realization of a stationary random process {x1, x2, . . . , xN}.

1: for each s ∈ {1, 2, . . . , b
√

Nc} do
2: Calculate M`,`+s via (6.8a) for all ` ∈ L = {0, s, 2 s, . . . , (bN

s c − 1)s}.
3: Compute the mean-squared value M̄2

s of the M`,`+s for all ` ∈ L via (6.8b).
4: Solve the optimization problem (6.12) to find the optimized model parameters
{θ̂N , σ̂N , µ̂N}.

5: Generate an estimate of the averaging error, ε̂2
N , with (6.9), using the autocorrela-

tion model given by ρ̂(k; θ̂) in (6.10), implementing the optimized parameter values
{θ̂N , σ̂N , µ̂N} determined in step 5.

tion problem defined by (6.12) is solved using SNOPT [121], which is an advanced Se-

quential Quadratic Programming (SQP) method. Though the application of such a solver

to a problem of this form is entirely straightforward, the optimization problem given in

(6.12) is nonconvex, and thus SNOPT might only find a local minimum. The resulting

framework for estimating the averaging error is summarized in Algorithm 6.1.

Analytical expressions for the derivatives of f (θ̂, σ̂, µ̂) and gs(θ̂, σ̂, µ̂) are useful in

the optimization process. The derivatives of the these functions are given as follows:

∇ f (θ̂, σ̂, µ̂) = 2
∑
s=1

gs(θ̂, σ̂, µ̂)∇gs(θ̂, σ̂, µ̂),

∂gs(θ̂, σ̂, µ̂)
∂µ̂

= 2 µ̂,
∂gs(θ̂, σ̂, µ̂)

∂σ̂
=

2 σ̂
s

[
1 + 2

s−1∑
k=1

(1 −
k
s
)

m∑
i=1

Âiτ̂
k
i

]
,

∂gs(θ̂, σ̂, µ̂)
∂Âi

=
σ̂2

s

[
2

s−1∑
k=1

(1 −
k
s
) τ̂k

i

]
, 1 ≤ i ≤ m,

∂gs(θ̂, σ̂, µ̂)
∂τ̂i

=
σ̂2

s

[
2

s−1∑
k=1

Âi k (1 −
k
s
) τ̂k−1

i

]
, 1 ≤ i ≤ m.
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6.3 Analysis of the estimator

We now analyze various properties of the new estimation technique, presented in

§6.2 and summarized in Algorithm 6.1, applied to a stationary random process {x1, x2, . . . }.

The mean µ, variance σ2, and autocorrelation ρ(k) of the random process xi considered are

defined as in (6.5).

If the autocorrelation function ρ(k) is summable, then it follows from (6.6) that the

expected squared averaging error, ε2
s , approaches zero like the reciprocal square root of s

times a constant Q, that is,

lim
s→∞

s ε2
s = Q for finite Q. (6.13)

It is natural to seek a UQ method that satisfies the same property; this notion is made

precise by the following definition and theorem.

Definition 30. The random process as is called an asymptotically unbiased estimate of the

expected squared averaging error εs if

lim
s→∞

s (E[as] − ε2
s) = 0. (6.14)

Theorem 12. The random process ε̂2
s in (6.9), the N’th element of which is obtained by

implementing Algorithm 6.1 on the first N elements of the random process xi, provides an

asymptotically unbiased estimate of ε2
s in (6.6).

Proof. The model of the autocorrelation function (6.10), with parameters as optimized by

Algorithm 6.1, is necessary summable (since the τi < 1 for all i). Denote ε̂2
s,N as the

model, given by (6.9), of the expected squared averaging error over a sequence of length s,

implementing the optimized parameters {θ̂N , σ̂N , µ̂N} derived from a sequence of length N.
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It follows that

lim
s→∞

s ε̂2
s,N = Q̂N , for finite Q̂N . (6.15)

By construction, the parameters θ̂N , σ̂N , µ̂N , Q̂N , and ε̂qN ,N are random variables, as they are

derived from the random process xi. Moreover, these variables are obtained by solving the

optimization problem (6.12); therefore, the equality constraint of the optimization problem,

gqN (θ̂, σ̂, µ̂) = 0 where qN = b
√

Nc, must be satisfied:

µ̂2
N + ε̂2

qN ,N − m̄2
qN ,N = 0. (6.16)

Since m̄2
qN ,N is unbiased, E[m̄2

qN ,N] = µ2 +ε2
qN

. Taking the expected value of (6.16), it follows

that

E[µ̂2
N] + E[ε̂2

qN ,N] − µ2 − ε2
qN

= 0. (6.17)

Multiplying the above equation by qN and rearranging gives

qN(E[µ̂2
N] − µ2) + (E[qN ε̂

2
qN ,N] − qNε

2
qN

) = 0. (6.18)

Thus, taking the limit as N → ∞ (and, therefore, qN → ∞) and substituting (6.13) and

(6.15), it follows that

lim
N→∞

qN(E[µ̂2
N] − µ2) + E[Q̂N] − Q = 0.
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Since Q and Q̂N are bounded,

lim
N→∞

E[µ̂2
N] = µ2, lim

N→∞
E[Q̂N] = Q,

lim
N→∞

N(E[ε̂2
N] − ε2

N) = lim
N→∞

E[Q̂N] − Q = 0. �

We have thus established that the implementation of Algorithm 6.1 on any realiza-

tion of a stationary random process xi results in an unbiased estimate of the averaging error.

This is a valuable property of the present method for estimating the averaging error, as it

implies that the uncertainty quantification does not have any systematic error in the limit of

large N. Note that certain other leading methods for uncertainty quantification, such as that

developed in [107], based on a maximum likelihood formulation, do not share this valuable

property.

6.4 Numerical simulations

We now apply the algorithm developed in section 6.2 for estimating the averaging

error to three different datasets generated as follows:

1. A synthetic autoregressive process of order six, AR(6).

2. Statistics of the kinetic energy of the Kuramoto-Sivashinsky (KS) equation.

3. Statistics of the TKE from a DNS of a turbulent channel flow at Reτ = 180.

For the purpose of comparison, in all three cases, the averaging error is estimated

using the maximum likelihood approach.

Also, for comparison, the expected squared averaging error ε2
s , given by (6.6), is

calculated based on accurate values of µ, σ2, and ρ(k). For the dataset generated by AR(6),
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the true values of µ, σ2, and ρ(k) are available, so the true value of ε2
s is directly computable.

To develop a “truth model” for the UQ of the other datasets, since analytical expressions for

µ, σ2, and ρ(k) are not available in these cases, we simply apply the algorithm developed

above for very large N (at least 30 times larger than the maximum value of N considered

in the plots). This approach provides a very large number of samples to average over when

approximating ε2
s numerically.

6.4.1 Autoregressive model

We first apply the new UQ method developed in §6.2 to a dataset generated by an

autoregressive (AR) model of the general form

xi =

n∑
k=1

αk xi−k + εi; (6.19)

for the present study, we take εi = N(0, σ2
ε ). After an initial transient (related to the

specified n initial values of xi) has passed, this system is statistically stationary, with a

mean of µ = 0 and, defining the unnormalized autocorrelation function γ(k) = σ2 ρ(k) =

E{(xi − µ)(xi+k − µ)}, the values of γ(k) related (see [107]) by

γ(0) =

n∑
j=1

α jγ( j) + σ2
ε , (6.20a)

γ(h) =

n∑
j=1

α jγ(h − j) for h > 0. (6.20b)

Noting that γ(k) = γ(−k), the first n+1 values of γ may be determined by solving the linear

system of equations, known as the Yule-Walker equations, given by (6.20a) together with

(6.20b) for h = 1, . . . , n; additional values of γ(k) are then given directly by (6.20b). Note
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further that σ2 = γ(0), and ρ(k) = γ(k)/σ2.

In the simulations reported here, we consider an AR(6) process (that is, we take

n = 6) with εi = N(0, σ2
ε ) where σ2

ε = 0.1, and

α1 = 3.1378, α2 = −3.9789, α3 = 2.6788, α4 = −1.0401, α5 = 0.2139, α6 = −0.0133.

The poles of the difference equation corresponding to this AR(6) model are given by

{
0.1, 0.95, 0.8, 0.7, 0.25 +

√
3/2, 0.25 −

√
3/2

}
.

After the initial transient has passed, the system in (6.20) reveals that the standard deviation

σ = 24.97, and that the autocorrelation function ρ(k), for k = 0, 1, 2, . . ., is:

ρ(k) = {1, 0.9967, 0.9870, 0.9716, 0.9516, 0.9277, 0.9010, 0.8722, 0.8418, . . .}.

The typical behavior of the AR(6) model described above is illustrated in Figure 6.1.

Figure 6.2 illustrates the behavior of the transient time estimation method reviewed

in §6.1.1 on the ensemble of 1000 simulations summarized in Figure 6.1. Initialization

with x−5 = . . . = x0 = 0, as illustrated in Figure 6.2a, shows that, for about 75% of the

ensemble members considered, the minimization problem given by (6.4) results simply in

k̂ = 1. This is entirely to be expected, as the transient estimation method implemented in

this work is not based on a second-order stationarity condition, but rather simply on the

minimization of the average squared value of (Xi − X̄) over the remaining samples. Thus,

even though the AR(6) system is clearly not statistically stationary in the first few samples

in this case, the particular transient estimation method implemented is insensitive to this
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a Initialization: x−5 = . . . = x0 = 0.
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b Initialization: x−5 = . . . = x0 = 100.
Figure 6.1: Simulation of the AR(6) model described in §6.4.1, evolving away from

different initial values of xi as indicated. (dot-dashed lines) Representative realizations.
(solid line) Ensemble mean and (gray region) ensemble mean +/− ensemble variance,

computed over 1000 ensemble members.
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a Initialization as in Figure 6.1a.
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b Initialization as in Figure 6.1b.
Figure 6.2: Histogram of the transient time estimates (see §6.1.1) for the AR(6) model

described in §6.4.1, computed over 1000 ensemble members.
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fact.

Initialization with x−5 = . . . = x0 = 100, as illustrated in Figure 6.2b, shows a much

more typical behavior of the transient time estimation method selected for the problems

of interest in this work. In this case, the minimization problem given by (6.4) results in

an average value of k̂ = 40, which is very nearly the value one would select by eye given

the (very significant) advantage of hindsight, as embodied by the ensemble average results

depicted in Figure 6.1b. This is indeed remarkable, as each transient time calculation is

based solely on an individual ensemble member, each of which has significant random

fluctuations associated with it (see the dot-dashed curves of Figure 6.1b).

Figure 6.3 illustrates the performance of Algorithm 6.1 on an ensemble of 30 datasets

obtained via simulation of the AR(6) model described above, taking x−5 = . . . = x0 = 0 and

k̂ = 0, with realization lengths of N = {27:14}. For the purpose of comparison, we have also

estimated the averaging error using the maximum likelihood approach applied to an AR(3)

model; to facilitate a fair comparison, the same number of model parameters is used for

both methods. We also compare with the expected squared averaging error given by (6.6),

with the exact formulae for µ, σ, and ρ as determined by solution of (6.20).

It is clearly evident for moderate to large realization lengths, N & 2000, that the

performance of the uncertainty quantification method given by Algorithm 6.1 is remarkably

better than that given by the MLE-based approach. In particular, it is distinctly evident

that the estimates given by Algorithm 6.1 are asymptotically unbiased (see Definition 30),

whereas the estimates generated by the MLE-based approach are not (as the underlying

AR(3) model used in the MLE-based approach can not entirely capture the dynamics of

the AR(6) system). For small realization lengths N, the performance of the estimators are

similar.



218

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

Figure 6.3: Implementation of UQ on AR(6) data. Implementation of Algorithm 6.1 and
the MLE-based UQ approach on an ensemble of 30 simulations of the AR(6) model

described in §6.4.1. (horizontal axis) Averaging length N, (vertical axis) averaging error
εN . (red dotted-dashed line) Ensemble average and (red error bars) ensemble variance of
the estimate of the averaging error given by Algorithm 6.1. (blue dashed line) Ensemble

average and (blue error bars) ensemble variance of the estimate of the averaging error
given by the MLE-based approach, using an AR(3) model. (sold black line) Actual

averaging error, based on (6.6) with the true values of µ, σ2, and ρ(k).
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6.4.2 Kuramoto-Sivashinsky equation

We next apply the new UQ method to a dataset derived from a simulation of the

Kuromoto-Sivashinsky (KS) equation,

ut + uxxxx + uxx + u ux = 0 for 0 ≤ x < L, (6.21)

with periodic boundary conditions u(0) = u(L). The statistic we consider in this work is

the spatially-averaged value of the energy, defined as

e(t) =
1
L

∫ L

0
u2(x, t) dx. (6.22)

The KS PDE is simulated in this work using a dealiased pseudospectral method for com-

puting spatial derivatives, and a low-storage Implicit-Explicit Runge-Kutta (IMEXRK)

scheme [122, 123] for marching in time.

In the simulations reported here, we take L = 200, Nx = 512, ∆x = L/Nx ≈ 0.391,

and ∆t = 0.2. The initial field is taken as

u(x, 0) = sin(0.5 π x) + sin(0.85 π x) + 0.2 v, v = N(0, 1). (6.23)

After the initial transient has passed, the KS system defined above approaches a chaotic

attractor, as indicated in Figure 6.4a.

The transient identification method reviewed in §6.1.1 is again implemented to de-

tect and set aside the initial transient in the dataset. A typical estimate of the transient time

is illustrated in Figure 6.4; after setting aside this initial transient, the remainder of the

dataset appears to be approximately statistically stationary.
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Figure 6.4: Evolution of (solid line) the kinetic energy in a simulation of the KS model
described in §6.4.2 versus the number of timesteps taken, including (vertical dashed line)

the identification of the initial transient.
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Figure 6.5: Implementation of UQ on KS dataset. Implementation of Algorithm 6.1 and
the MLE-based UQ approach on a single simulation of the KS model described in

§6.4.2. Horizontal axis is the number of samples taken, with one sample per timestep.
Line types are identical to those in Figure 6.3, with the error bars removed because only
a single simulation is shown. Note that accurate estimates, not exact values, are used for

µ, σ2, and ρ(k) when computing the actual averaging error.
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Sampling every timestep after the initial transient (see Figure 6.4) is set aside, the

averaging error was computed with realization lengths of N = {28 : 213} = {256 : 8192},

incrementing by powers of two. Note that, since we take ∆T = 0.2, this is equivalent to

taking T = 0.2 ∗ N = {50 : 3268} time units of the original KS equation. Again, the

averaging error is estimated using Algorithm 6.1 and the MLE-based approach, with an

AR(3) model incorporated. We also compare with the expected squared averaging error

given by (6.6), with the accurate values for µ, σ, and ρ as determined from a simulation 30

times longer than the the longest simulation reported here.

As observed in Figure 6.5, the performance of the UQ method developed here is sig-

nificantly improved as compared with the MLE-based approach, especially as the number

of samples is increased.

6.4.3 Navier-stokes equations

Finally, we apply the UQ method to a dataset generated by a DNS of a low Reynolds

number incompressible 3D turbulent channel flow (see, e.g., [124, 125]). Periodic bound-

ary conditions are applied in the streamwise direction, x, and the spanwise direction, z;

homogeneous Dirichlet boundary conditions on the velocity are applied at the walls in the

wall-normal direction, y.

Following [120], the incompressible Navier-Stokes equation is implemented in a

2-variable formulation of the wall-normal components of velocity and vorticity (other ve-

locity, vorticity, and pressure components may be computed from these two components

as needed). The simulation, which used the code developed in [126], used a dealiased

pseudospectral method for computing spatial derivatives in the x and z directions, and the

compact finite difference method [127] for computing spatial derivatives in the y direction.
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The CN/RKW3 method [128] was used for time integration.

In the simulations reported here, we consider a spatial domain with 0 ≤ x ≤ 2π,

0 ≤ y ≤ 2, and 0 ≤ z ≤ 2π, a grid of Nx = 128, Ny = 64, and Nz = 128, Reynolds number

Reτ = 180, and timesteps of ∆t = 0.01. The simulation is performed for N = 105 timesteps,

and the statistic that is analyzed is turbulent kinetic energy (TKE).

As indicated in Figure 6.6, the transient identification process is completely analo-

gous to that in the KS case.

Sampling every timestep after the initial transient (see Figure 6.6) is set aside, the

averaging error was computed with realization lengths of N = {29 : 212} = {512 : 4096},

incrementing by powers of two. Note that, since we take ∆T = 0.01, this is equivalent to

taking T = 0.01 ∗ N = {5.12 : 40.96} time units of the original NS equation. Again, the

averaging error is estimated using Algorithm 6.1 and the MLE-based approach, with an

AR(18) model incorporated. We also compare with the expected squared averaging error

given by (6.6), with the accurate values for µ, σ, and ρ as determined from a simulation

much longer than the the longest simulation reported here.

Again, as observed in Figure 6.7, the performance of the UQ method developed here

is seen to be significantly improved as compared with the MLE-based approach, especially

as the number of samples is increased.

6.5 Conclusions

A new approach has been developed to quantify the uncertainty associated with

finite-time-average approximations of infinite-time-average statistics of statistically sta-

tionary ergodic processes. For applications of this new UQ approach that are derived

from continuous-time chaotic systems like turbulent flows, an adequate sampling inter-
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Figure 6.6: Evolution of (solid line) the turbulent kinetic energy in a simulation of the
Reτ = 180 channel flow model described in §6.4.3 versus the number of timesteps taken,

including (vertical dashed line) the identification of the initial transient.
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Figure 6.7: Implementation of UQ for the simulation of channel flow. Implementation of
Algorithm 6.1 and the MLE-based UQ approach on a single simulation of the Reτ = 180
channel flow model described in §6.4.3. Horizontal axis is the number of samples taken,

with one sample per timestep. Line types are identical to those in Figures 6.5 and 6.3.

val h is identified in (6.2), and an effective method for removing the initial transient from

the dataset is reviewed in §6.1.1. Chapter 5 illustrates how an effective UQ approach of
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this sort can be directly leveraged for maximally-efficient derivative-free optimization of

infinite-time-averaged statistics of chaotic systems which depend upon a handful of ad-

justable parameters.

The new UQ method is presented in §6.2 and analyzed mathematically in §6.3.

This analysis reveals that, for long simulations, the UQ so determined is asymptotically

unbiased; this important property is not guaranteed by various competing UQ methods,

such as the leading method developed in [107], which based on a maximum likelihood

formulation.

The new UQ method is tested in §6.4 on datasets generated by an AR(6) process,

by the Kuramoto-Sivashinsky equation, and by a low-Reynolds number turbulent channel

flow DNS. Results are compared with both the leading UQ approach developed in [107], as

well as the expected deviation of the sample mean ys from the true mean µ, as quantified by

(6.6), based on accurate values of the true mean µ, the variance σ2, and the autocorrelation

ρ(k).

It is observed that the method developed here has a significant improvement from

that provided by the approach in [107], especially as the realization length N is increased.
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Chapter 7

Simulation-based optimization of the

hydrofoil

of a flying catamaran

7.1 Introduction

Hydrofoils play an increasingly important role in the design of high-performance

sailboats and catamarans. The 34th America’s Cup (San Francisco, 2013) highlighted the

importance of efficient hydrofoil design, and the Class Rule for the 35th America’s Cup

(Bermuda, 2017), to be held on 48-foot catamarans, even further emphasizes their impor-

tance: as hydrofoil design is now one of the few features of the sailboat design left open

in the competition rules. Hydrofoils also play an increasingly important role on many sail-

boats outside of high-profile America’s Cup races, including the Hydroptere (a large, fast

trimaran), the International Moth class of small, fast sailing hydrofoils, and foil boards,

which are now quite popular for high-speed kiteboarding.
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Accurate hydrofoil performance assessment and design optimization is, in general,

a time-consuming and computationally expensive undertaking. Challenges are present in

both the physical and the numerical modeling: complex physics including boundary lay-

ers, free-surface effects, and cavitation generally require high-fidelity numerical codes and

large computational resources to assure accurate results. Direct Numerical Simulations

(DNS), Large Eddy Simulations (LES), and Reynolds-Averaged Navier-Stokes (RANS)

simulations, however, are often unaffordable in the design phase, which often requires a

significant number of design iterations. Approximate performance estimates derived from

computationally inexpensive models, such as vortex-lattice methods, are generally suffi-

cient for tuning the handful of adjustable parameters characterizing such designs. Numer-

ical models of this sort are already well developed and used extensively for the design of

rigid wings [129], and are applied here for the related problem of hydrofoil optimization.

In this chapter, we consider the application of our new derivative-free optimization

algorithm dubbed ∆-DOGS(C) to the design of a 3D hydrofoil with seven adjustable pa-

rameters. The computationally inexpensive vortex-lattice model implemented in AVL (the

Athena Vortex Lattice code; see [130]) is used to compute the lift and drag coefficients of

the hydrofoil.

This chapter is organized as follows. In §7.2, we describe the AVL model, discuss

its limitations, and presents a careful validation based on experimental results from the

literature. Next, §7.3 describes the parametrization of the hydrofoil used in the present

optimization, and the reasoning behind the particular choice of parameters used. The results

of our optimization study are presented in §7.4, and conclusions are drawn in §7.5.
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Figure 7.1: Illustration of the AVL model. AVL model: the foil is discretized by vortices
along the spanwise direction and extending to infinity past the foil (dotted line).

7.2 Foil model and validation

The numerical model at the basis of our optimization is AVL [130]. AVL computes

the inviscid lift and drag coefficients based on a vortex-lattice discretization of the foil, see

Figure 7.1 and [131] for a more detailed description. The viscous drag is computed based

on the local lift coefficient CL from the foil sections’ CD (CL) curve, where CD is the drag

coefficient [132].

AVL implements a “free surface” boundary condition in the form of a constant-

pressure, constant-height horizontal plane: this is known to be a good approximation of a

real free surface in the limit of high Froude numbers [133, chapt. 6], correctly capturing the

changes in the inviscid lift and drag. In contrast, this approximation is unable to capture

other effects associated to the presence of a free surface, e.g. wave drag, whose relative

importance grows at lower Froude numbers. It is therefore an informative exercise to eval-

uate the model results against experimental data: to this purpose we use the water-tank

measurements of a rectangular hydrofoil having an aspect ratio of 10 and a NACA641-412
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Table 7.1: Comparison between AVL and experimental results

AVLa Expb Errc %Errd

depth = 0.84c dCL/dα 0.071 0.071 0.000 0.0%

(Fnh = 10.48) α(CL = 0) -3.28 -3.3 0.0 0.6%

CD(CL = 0.4) 0.01378 0.016 -0.002 13.9%

CD(CL = 0.6) 0.02476 0.028 -0.003 11.6%

depth = 3.84c dCL/dα 0.0817 0.083 -0.001 1.6%

(Fnh = 4.97) α(CL = 0) -3.15 -3.2 0.1 1.6%

CD(CL = 0.4) 0.01167 0.014 -0.002 16.6%

CD(CL = 0.6) 0.01981 0.022 -0.002 10.6%

Only significant digits are reported in each column.
a AVL result, viscous coefficients obtained from [132]
b Data from [134], values are for the highest speed tested in the deepest tank
c AVL − Exp
d
∥∥∥∥AVL−Exp

Exp

∥∥∥∥
foil section, as reported in [134].

Table 7.1 presents numerical results and experimental measurements for the dCL/dα

coefficient (α being the angle of attack in degrees), the angle of attack for zero lift α(CL =

0), and for the total drag coefficients CD at two lift conditions of CL = 0.4, 0.6. Two depths

of submergence h = 0.84 c and h = 3.84 c, c being the hydrofoil chord, are tested. The

submergence depth h is measured as the distance between the undisturbed free surface and

the quarter-chord location of the foil. The two configurations correspond to experimental

values of the depth-based Froude number Fnh = U√
g h

= 10.48 and 4.97 respectively.

AVL results for lift (first two rows for each depth entry) are obtained by a least-

square fit of a straight line through CL(α) data computed for the −3.5 < α < 6.0 range;
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all significant decimal digits are reported. Drag results are obtained by running the AVL

model with the desired lift as a constraint; the viscous drag is obtained from wind-tunnel

measurements reported in [132].

Experimental data are obtained from figure 10 and 11 of [134]: only results for

the largest water tank and the highest speed measured, equivalent to a chord-based Froude

number Fnc = U
√

g c ≈ 10, are used. All significant digits, intended as the decimal digits that

can be reliably obtained by digitalization of the figures in [134], are reported in the table.

Agreement between numerical and experimental data for the hydrofoil lift is ex-

tremely good, with an error always lower than 2% for both depths tested. Agreement for

the drag is at first sight less accurate, with the numerical model consistently underesti-

mating the experimental drag coefficient by ∆CD ≈ 0.002, or 10 − 15%. Nonetheless,

discrepancies in the drag coefficients have to be considered with care: the fact that the

difference between numerical and experimental results, at 0.002, is independent of depth,

suggests that such discrepancy is not related to the lack of wave drag modeling in AVL:

wave drag is expected to strongly depend on depth. We suggest three alternative causes:

(i) differences in the experimental Reynolds number between [134] (Re = 1.5 × 106) and

[132] (Re = 3.0 × 106), (ii) differences in the free stream turbulence levels in the water-

tank measurement of [134] and the wind tunnel measurement of [132], causing a different

boundary layer transition location and/or (iii) the way drag measurements are obtained in

[134] — i.e. by first measuring the total drag of the strut-hydrofoil combination and then

subtracting the drag of the strut measured alone, thus neglecting effects associated to the

struct-foil interaction.

Independently of the reason behind the discrepancies in the drag coefficient, we re-

mark that the AVL model (i) correctly captures the lift properties of the foil at both tested
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Figure 7.2: Parametrization of the foil. Left: front view in the y − z plane; right:
planform view. The shape of the foil is defined by seven parameters defining two rational

Bezier curves: z1, dy and dz, together with the weight w1.

depths and (ii) correctly captures the changes in drag associated to changes in lift coeffi-

cient and depth. For the purpose of this work, we consider the AVL model to be validated.

Further comparisons with experimental results, as well as with numerical results based on

more accurate codes, will be pursued in the future.

7.3 Parametrization of the foil

Because of their computational cost, global optimization methods are limited in the

number of optimization variables, or parameters, that can be optimized. The choice of the

geometry parametrization is then a fundamental step of the optimization process.

The foil parametrization is visualized in Figure 7.2. The reference system used has

z as the vertical coordinate, y as the horizontal crossflow coordinates and x as the horizontal

stream-wise coordinate. A curvilinear coordinates s is defined along the quarter-chord of

the foil, with origin at the free surface.

The main parameter is the planform area S . A minimum surface is required in order

to have a physically achievable lift coefficient, representing a lower bound for the feasible
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domain. The optimization process will then balance the contribution of the viscous drag —

proportional to the foil surface — and of the inviscid drag — proportional to the square of

the lift coefficients or, equivalently, to the inverse of the foil surface.

The other parameters govern the lift distribution by describing the foil shape in the

y − z plane and the chord distribution along the curvilinear s. Both the shape of the foil’s

quarter-chord and the chord distribution are represented using Bezier curves

x(t) =

∑n
i=0 bi,nPiwi∑n

i=0 bi,nwi
bi,n =

(
n
i

)
ti (1 − t)n−i (7.1)

where x = (y, z), Pi = (yi, zi) are the control points marked in red in Figure 7.2 and wi are

the weights of the control points.

7.3.1 Parametrization of the solver

The two more important parameters governing the solver behavior are the estimate

of a bound for the objective function value y0 = max (L/D) = max (CL/CD) and the stop-

ping criteria δ0, identifying a minimum distance in parameter space. Additionally, bounds

for the parameters must be computed to identify the feasible domain.

The objective function bound, y0, can be obtained using classical aerodynamic the-

ory. The drag coefficient for a foil of aspect ratio AR and elliptic spanwise load is:

CD =
C2

L

π AR
+ CDν (CL) (7.2)

where CDν (CL) is the drag coefficient for the two dimensional foil section and can be

obtained from experimental data [132] or computationally inexpensive numerical mod-

els [135]. Figure 7.3 shows drag coefficients for the NACA641-412 foil section (left) and
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efficiency curves for an aspect ratio 10 foil with elliptic load based on (7.2) (right). No

free-surface effect is taken into account. Curves are shown for two different values of the

boundary layer transition parameter nc = 4, 9 as well as for a fully turbulent boundary layer.

Both the maximum achievable efficiency and the corresponding optimal lift coefficient CL

strongly depend on the transition location of the boundary layer. In the rest of this work,

we consider the case for nc = 4, corresponding to a high level of free-stream turbulence.

The corresponding estimated bound for the efficiency is y0 = 38.
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Figure 7.3: NACA641-412 wing section polar curves. Viscous drag coefficients are
computed with XFoil [135]. Experimental drag coefficients from [132] are marked with

+.

7.4 Optimization results

The optimization of the L/D ratio for the surface lifting foil described by the

parametrization in Figure 7.2 is performed for a design vertical and horizontal lift S Cz =

0.120 and S Cy = 0.066, with constraints on the parameters as given in Table 7.2. The

vortex lattice method implemented in AVL is used to compute lift and inviscid drag, with
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Table 7.2: Foil parametrization and bounds

0.2 ≤ S ≤ 0.5

0.5 ≤ z1 ≤ 1.5 0.5 ≤ dy ≤ 1.5 −0.3 ≤ dz ≤ 0.3 4.3 ≤ w1 ≤ 11

0.05 ≤ ctip ≤ 0.5 1.5 ≤ wc ≤ 11

the free surface modeled as an horizontal constant pressure surface. The viscous drag co-

efficient is obtained by interpolation from experimental wind-tunnel data [132]. Validation

of the model has been provided in §7.2.

The convergence history for the optimization process is shown in Figure 7.5. An

efficiency larger than 32 is obtained after only 23 function evaluations, but approximately

160 function evaluations are needed to reach the maximum value 36.81.

Figure 7.6 shows the optimal geometry identified by the optimization algorithm, as

well as the ensemble of the geometries tested. The optimal parameters are

It can be remarked that only dy takes its maximum allowed value. At the same
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Table 7.3: Optimal parameters for two different bounds for dy

parameter dy ≤ 1.50 dy ≤ 2.00

S 0.305 0.305

z1 0.89 1.30

dy 1.50 2.00

dz -0.29 -0.27

w1 7.25 4.33

ctip 0.21 0.43

wc 2.58 3.60

L
D 36.81 47.60

α 3.78699 3.29558

β 0.02691 -0.07407

time, this does not correspond to the maximum spanwise length of the foil which would

be obtained for a 90◦ angle between the shaft (the vertical part) and the tip (the horizontal

part).

7.5 Conclusions

The recently published, ∆−DOGS global optimization algorithm has been applied

to the design of a flying-catamaran hydrofoil, with the goal of maximizing the lift-drag ratio

for a specified working condition. The vortex-lattice model implemented in AVL is used

to compute the foil’s lift and drag characteristics, after being validated with experimental

data. While a first-guess, L-shaped, constant chord design with z1 = dy = 1.5 and the same
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surface area S = 0.3050 has efficiency L/D ≈ 15, the optimized foil efficiency is above 35.

This work shows how computationally inexpensive numerical models can be successfully

coupled with efficient, recently developed global optimization algorithms, providing design

guidance for the early stages of the design process.

We nonetheless remark that the model implemented in AVL is valid at chord based

Froude numbers Fnc ≈ 10 . Below that, unmodeled wave generation becomes important

[133, section 6.8] while above that phenomena like cavitation or ventilation kicks in. As a

comparison, the foil of an AC72 boat, having a 0.7m chord and sailing at 40 knots (20m/s)

has Fnc = 20
√

9.81·0.7
= 7.63. The use of more computationally intensive, high-fidelity nu-

merical codes for optimization purposes will be investigated in future work.
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Chapter 8

Conclusions and future work

In this thesis, we develop a new class of derivative-free optimization algorithms

which minimize nonconvex and computationally expensive functions whose function eval-

uation process are not accurate. The methods presented here can be classified as the re-

sponse surface methods which use a surrogate function to predict the behavior of the objec-

tive function in the regions which are not known. Unlike other response surface methods,

our optimization algorithms can employ any interpolation strategy which is smooth. The

main novelty in these methods is the introduction of an artificial uncertainty function build

on the concept of the Delaunay triangulation. In this thesis, four optimization algorithms

are introduced:

The first algorithm called ∆-DOGS is the basic algorithm that minimizes a gen-

eral objective function within a linearly constrained domain. This algorithm is initialized

by performing function evaluations at all vertices of the feasible domain. Afterward, at

each step, a metric based on an interpolating strategy and the artificial uncertainty function

based on the delay triangulation is minimized to estimated the position of the next func-

tion evaluation. We have proved the convergence to the global minimum for general twice

238
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differentiable functions. This optimization algorithm has two main limitations. First, the

number of simplifies in the construction of the Delaunay triangulation grows rapidly as the

dimension of the problem increases. The second issue is the initialization process which

needs function evaluations at all vertices of the feasible domain.

The second algorithm called ∆-DOGS(C) modifies the basic algorithm to deal with

nonlinear (but convex) constrained domain. This approach uses less number of function

evaluations at the initial step, and will use only n + 1 number of initial function evaluations

in the n dimensional problem. Moreover, this algorithm performs less exploration in the

region which are far from the solution compare to the basic ∆-DOGS.

The third algorithm called ∆-DOGS(Z), addresses an important issue of the basic

algorithm which is the nonsmooth behavior of the uncertainty function close to the bound-

ary of the feasibility. This issue exacerbates when the objective function has sharp variation

close to the boundary of the search domain. This issue is addresses in the new algorithm by

defining a new uncertainty function on the boundary of the feasibility. Moreover, this algo-

rithm implements a Cartesian grid which regularizes the data points during the optimization

algorithm which improves the convergence speed of the algorithm.

The fourth algorithm called α-DOGS is designed to solve those objective functions

that are obtained by taking the time-averaged statistics of a stationary ergodic random pro-

cess. The main novelty of this approach was to use different averaging length at different

data point in the feasible domain during the optimization process. In this way, the total

computational time of the optimization process is significantly reduced. One of the chal-

lenging subproblems in α-DOGS is to quantify the uncertainty of averaging process in

the stationary ergodic processes. We have also developed a new approach to solving this

subproblem which has better performance compare to the existing methods.
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Finally, we have validated these optimization algorithms by implementing one of

them on an application based optimization problem in ship design.

As future work, more application-based and benchmarking test problems will be

studied. Moreover, these methods will be extended to solve those optimization problems

which has unknown constraints. We will also study those optimization problems that has an

inaccuracy in the input parameter of the function evaluation process. Note that these prob-

lems are different from the problems that are addressed in chapter 5, since the inaccuracy

would be in the parameter space rather than the function evaluation processes.



Bibliography

[1] R. M. Lewis, V. Torczon, Pattern search methods for linearly constrained minimization,
SIAM Journal on Optimization 10 (3) (2000) 917–941.

[2] W. Spendley, G. R. Hext, F. R. Himsworth, Sequential application of simplex designs in
optimisation and evolutionary operation, Technometrics 4 (4) (1962) 441–461.

[3] H. Rosenbrock, An automatic method for finding the greatest or least value of a function,
The Computer Journal 3 (3) (1960) 175–184.

[4] M. J. Powell, An efficient method for finding the minimum of a function of several variables
without calculating derivatives, The computer journal 7 (2) (1964) 155–162.

[5] V. J. Torczon, Multi-directional search: a direct search algorithm for parallel machines, Ph.D.
thesis, Citeseer (1989).

[6] V. Torczon, On the convergence of pattern search algorithms, SIAM Journal on optimization
7 (1) (1997) 1–25.

[7] M. Schonlau, W. J. Welch, D. R. Jones, A data-analytic approach to bayesian global optimiza-
tion, in: Department of Statistics and Actuarial Science and The Institute for Improvement
in Quality and Productivity, 1997 ASA conference, 1997.

[8] D. R. Jones, A taxonomy of global optimization methods based on response surfaces, Journal
of global optimization 21 (4) (2001) 345–383.

[9] D. G. Krige, A statistical approach to some mine valuation and allied problems on the wit-
watersrand, Ph.D. thesis (1951).

[10] G. Matheron, Principles of geostatistics, Economic geology 58 (8) (1963) 1246–1266.

[11] C. E. Rasmussen, Gaussian processes for machine learning.

[12] A. J. Booker, J. Dennis Jr, P. D. Frank, D. B. Serafini, V. Torczon, M. W. Trosset, A rigorous
framework for optimization of expensive functions by surrogates, Structural optimization
17 (1) (1999) 1–13.

[13] P. Belitz, T. Bewley, New horizons in sphere-packing theory, part ii: lattice-based derivative-
free optimization via global surrogates, Journal of Global Optimization 56 (1) (2013) 61–91.

[14] H.-M. Gutmann, A radial basis function method for global optimization, Journal of Global
Optimization 19 (3) (2001) 201–227.

241



242

[15] A. Alexandrov, Convex polyhedra, gosudarstv, Izdat. Tehn.-Teor. Lit., Moscow-Leningrad.

[16] M. L. Balinski, An algorithm for finding all vertices of convex polyhedral sets, Journal of the
Society for Industrial and Applied Mathematics 9 (1) (1961) 72–88.

[17] M. Manas, J. Nedoma, Finding all vertices of a convex polyhedron, Numerische Mathematik
12 (3) (1968) 226–229.

[18] T. Matheiss, D. S. Rubin, A survey and comparison of methods for finding all vertices of
convex polyhedral sets, Mathematics of operations research 5 (2) (1980) 167–185.

[19] S. Boyd, L. Vandenberghe, Convex optimization, Cambridge university press, 2004.

[20] H. Borouchaki, P. L. George, F. Hecht, P. Laug, E. Saltel, Delaunay mesh generation gov-
erned by metric specifications. part i. algorithms, Finite elements in analysis and design 25 (1)
(1997) 61–83.

[21] R. A. Dwyer, A faster divide-and-conquer algorithm for constructing delaunay triangulations,
Algorithmica 2 (1-4) (1987) 137–151.

[22] D. F. Watson, Computing the n-dimensional delaunay tessellation with application to voronoi
polytopes, The computer journal 24 (2) (1981) 167–172.

[23] S. Hornus, J.-D. Boissonnat, An efficient implementation of delaunay triangulations in
medium dimensions, Ph.D. thesis, INRIA (2008).

[24] J.-D. Boissonnat, O. Devillers, S. Hornus, Incremental construction of the delaunay trian-
gulation and the delaunay graph in medium dimension, in: Proceedings of the twenty-fifth
annual symposium on Computational geometry, ACM, 2009, pp. 208–216.

[25] P. McMullen, The maximum numbers of faces of a convex polytope, Mathematika 17 (02)
(1970) 179–184.

[26] R. A. Dwyer, Higher-dimensional voronoi diagrams in linear expected time, Discrete & Com-
putational Geometry 6 (3) (1991) 343–367.

[27] R. A. Dwyer, The expected number of k-faces of a voronoi diagram, Computers & Mathe-
matics with Applications 26 (5) (1993) 13–19.

[28] P. E. Gill, W. Murray, Newton-type methods for unconstrained and linearly constrained opti-
mization, Mathematical Programming 7 (1) (1974) 311–350.

[29] J. Nocedal, S. Wright, Numerical optimization, Springer Science & Business Media, 2006.

[30] K. L. Hoffman, A method for globally minimizing concave functions over convex sets, Math-
ematical Programming 20 (1) (1981) 22–32.

[31] G. Wahba, Spline models for observational data, Vol. 59, Siam, 1990.

[32] S. N. Lophaven, H. B. Nielsen, J. Søndergaard, Dace-a matlab kriging toolbox, version 2.0,
Tech. rep. (2002).



243

[33] X.-Y. Li, Generating well-shaped d-dimensional delaunay meshes, Theoretical Computer
Science 296 (1) (2003) 145–165.

[34] X.-Y. Li, S.-H. Teng, Generating well-shaped delaunay meshed in 3d, in: Proceedings of the
twelfth annual ACM-SIAM symposium on Discrete algorithms, Society for Industrial and
Applied Mathematics, 2001, pp. 28–37.

[35] J. R. Shewchuk, Delaunay refinement algorithms for triangular mesh generation, Computa-
tional geometry 22 (1) (2002) 21–74.

[36] X.-S. Yang, Appendix a: test problems in optimization, Engineering optimization (2010)
261–266.

[37] G. H. Hardy, Weierstrass’s non-differentiable function, Transactions of the American Math-
ematical Society 17 (3) (1916) 301–325.

[38] R. Horst, P. M. Pardalos, Handbook of global optimization, Vol. 2, Springer Science & Busi-
ness Media, 2013.

[39] D. R. Jones, C. D. Perttunen, B. E. Stuckman, Lipschitzian optimization without the lipschitz
constant, Journal of Optimization Theory and Applications 79 (1) (1993) 157–181.

[40] R. Paulavicius, J. Zilinskas, Simplicial global optimization, Springer, 2014.

[41] B. O. Shubert, A sequential method seeking the global maximum of a function, SIAM Journal
on Numerical Analysis 9 (3) (1972) 379–388.

[42] A. Zhigljavsky, A. Zilinskas, Stochastic global optimization, Vol. 9, Springer Science &
Business Media, 2007.

[43] P. E. Gill, W. Murray, M. A. Saunders, M. H. Wright, Inertia-Controlling Methods for Gen-
eral Quadratic Programming, SIAM Review 33 (1) (1991) 1–36.

[44] P. E. Gill, W. Murray, M. A. Saunders, SNOPT: An SQP Algorithm for Large-Scale Con-
strained Optimization, SIAM Journal on Optimization 12 (4) (2002) 979–1006.

[45] D. P. Bertsekas, On penalty and multiplier methods for constrained minimization, SIAM
Journal on Control and Optimization 14 (2) (1976) 216–235.

[46] B. Kort, D. Bertsekas, A new penalty function method for constrained minimization, in:
Decision and Control, 1972 and 11th Symposium on Adaptive Processes. Proceedings of the
1972 IEEE Conference on, IEEE, 1972, pp. 162–166.

[47] B. W. Kort, D. P. Bertsekas, Combined primal-dual and penalty methods for convex program-
ming, SIAM Journal on Control and Optimization 14 (2) (1976) 268–294.

[48] V. Torczon, On the convergence of pattern search algorithms, SIAM Journal on optimization
7 (1) (1997) 1–25.

[49] R. M. Lewis, V. Torczon, Pattern search algorithms for bound constrained minimization,
SIAM Journal on Optimization 9 (4) (1999) 1082–1099.



244

[50] R. M. Lewis, V. Torczon, A globally convergent augmented lagrangian pattern search algo-
rithm for optimization with general constraints and simple bounds, SIAM Journal on Opti-
mization 12 (4) (2002) 1075–1089.

[51] M. A. Abramson, C. Audet, J. E. Dennis, S. L. Digabel, OrthoMADS: A Deterministic
MADS Instance with Orthogonal Directions (2009).

[52] C. Audet, J. E. Dennis, A Pattern Search Filter Method for Nonlinear Programming without
Derivatives, SIAM Journal on Optimization 14 (4) (2004) 980–1010.

[53] C. Audet, J. E. Dennis, Mesh Adaptive Direct Search Algorithms for Constrained Optimiza-
tion, SIAM Journal on Optimization 17 (1) (2006) 188–217.

[54] C. Audet, J. E. Dennis, A Progressive Barrier for Derivative-Free Nonlinear Programming,
SIAM Journal on Optimization 20 (1) (2009) 445–472.

[55] P. Combettes, Hilbertian convex feasibility problem: Convergence of projection methods,
Applied Mathematics and Optimization 35 (3) (1997) 311–330.

[56] F. Facchinei, J.-S. Pang, Finite-dimensional variational inequalities and complementarity
problems, Springer Science & Business Media, 2007.

[57] O. L. Mangasarian, S. Fromovitz, The fritz john necessary optimality conditions in the pres-
ence of equality and inequality constraints, Journal of Mathematical Analysis and Applica-
tions 17 (1) (1967) 37–47.

[58] H. S. M. Coxeter, Regular polytopes, Courier Corporation, 1973.

[59] S. Susca, F. Bullo, S. Martínez, Gradient algorithms for polygonal approximation of convex
contours, Automatica 45 (2) (2009) 510–516.

[60] P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, M. H. Wright, On projected newton bar-
rier methods for linear programming and an equivalence to Karmarkar’s projective method,
Mathematical Programming 36 (2) (1986) 183–209.

[61] P. B. Zwart, Global maximization of a convex function with linear inequality constraints,
Operations Research 22 (3) (1974) 602–609.

[62] D. Bertsimas, J. N. Tsitsiklis, Introduction to Linear Optimization, Vol. 30, 1997.

[63] J. Heinonen, Lectures on Lipschitz analysis, Univ., 2005.

[64] H. L. Smith, P. Waltman, The theory of the chemostat: dynamics of microbial competition,
Vol. 13, Cambridge university press, 1995.

[65] S. Le Digabel, Algorithm 909: Nomad: Nonlinear optimization with the mads algorithm,
ACM Transactions on Mathematical Software (TOMS) 37 (4) (2011) 44.

[66] A. L. Marsden, M. Wang, J. E. Dennis, Jr., P. Moin, Optimal Aeroacoustic Shape Design
Using the Surrogate Management Framework, Optimization and Engineering 5 (2) (2004)
235–262.



245

[67] P. Beyhaghi, D. Cavaglieri, T. Bewley, Delaunay-based derivative-free optimization via
global surrogates, part I: linear constraints, Journal of Global Optimization (2015) 1–52.

[68] P. Beyhaghi, T. Bewley, Delaunay-based derivative-free optimization via global surrogates,
part II: Convex constraints, Journal of Global OptimizationUnder review.

[69] R. Kleinberg, A. Slivkins, E. Upfal, Multi-armed bandits in metric spaces, in: Proceedings
of the fortieth annual ACM symposium on Theory of computing, ACM, 2008, pp. 681–690.

[70] J. Snoek, H. Larochelle, R. P. Adams, Practical bayesian optimization of machine learning
algorithms, in: Advances in neural information processing systems, 2012, pp. 2951–2959.

[71] F. Modigliani, F. E. Hohn, Production planning over time and the nature of the expectation
and planning horizon, Econometrica, Journal of the Econometric Society (1955) 46–66.

[72] J. R. Hosking, Fractional differencing, Biometrika 68 (1) (1981) 165–176.

[73] S. P. Sethi, G. L. Thompson, What is Optimal Control Theory?, Springer, 2000.

[74] S. P. Sethi, Q. Zhang, H.-Q. Zhang, Average-cost control of stochastic manufacturing sys-
tems, Vol. 54, Springer Science & Business Media, 2005.

[75] R. M. Hicks, P. A. Henne, Wing design by numerical optimization, Journal of Aircraft 15 (7)
(1978) 407–412.

[76] A. Jameson, S. Yoon, Lower-upper implicit schemes with multiple grids for the euler equa-
tions, AIAA journal 25 (7) (1987) 929–935.

[77] J. Reuther, A. Jameson, J. Farmer, L. Martinelli, D. Saunders, Aerodynamic shape optimiza-
tion of complex aircraft configurations via an adjoint formulation, Vol. 96, NASA Ames
Research Center, Research Institute for Advanced Computer Science, 1996.

[78] J. J. Reuther, A. Jameson, J. J. Alonso, M. J. Rimllnger, D. Saunders, Constrained multipoint
aerodynamic shape optimization using an adjoint formulation and parallel computers, part 2,
Journal of aircraft 36 (1) (1999) 61–74.

[79] Q. Wang, P. Moin, G. Iaccarino, Minimal repetition dynamic checkpointing algorithm for
unsteady adjoint calculation, SIAM Journal on Scientific Computing 31 (4) (2009) 2549–
2567.

[80] Q. Wang, Forward and adjoint sensitivity computation of chaotic dynamical systems, Journal
of Computational Physics 235 (2013) 1–13.

[81] V. Picheny, D. Ginsbourger, Y. Richet, G. Caplin, Quantile-based optimization of noisy com-
puter experiments with tunable precision, Technometrics 55 (1) (2013) 2–13.

[82] A. L. Marsden, M. Wang, J. E. Dennis Jr, P. Moin, Suppression of vortex-shedding noise via
derivative-free shape optimization, Physics of Fluids 16 (10) (2004) 83–86.



246

[83] N. Srinivas, A. Krause, S. M. Kakade, M. W. Seeger, Information-theoretic regret bounds for
gaussian process optimization in the bandit setting, Information Theory, IEEE Transactions
on 58 (5) (2012) 3250–3265.

[84] C. Talnikar, P. Blonigan, J. Bodart, Q. Wang, Parallel optimization for les, in: Proceedings of
the Summer Program, 2014, p. 315.

[85] H. P. Awad, P. W. Glynn, On an initial transient deletion rule with rigorous theoretical sup-
port, in: Proceedings of the 38th conference on Winter simulation, Winter Simulation Con-
ference, 2006, pp. 186–191.

[86] J. Beran, Statistics for long-memory processes, Vol. 61, CRC Press, 1994.

[87] J. Beran, Maximum likelihood estimation of the differencing parameter for invertible short
and long memory autoregressive integrated moving average models, Journal of the Royal
Statistical Society. Series B (Methodological) (1995) 659–672.

[88] D. Lenschow, J. Mann, L. Kristensen, How long is long enough when measuring fluxes and
other turbulence statistics?, Journal of Atmospheric and Oceanic Technology 11 (3) (1994)
661–673.

[89] T. A. Oliver, N. Malaya, R. Ulerich, R. D. Moser, Estimating uncertainties in statistics
computed from direct numerical simulation, Physics of Fluids (1994-present) 26 (3) (2014)
035101.

[90] S. T. Salesky, M. Chamecki, N. L. Dias, Estimating the random error in eddy-covariance
based fluxes and other turbulence statistics: the filtering method, Boundary-layer meteorol-
ogy 144 (1) (2012) 113–135.

[91] J. Duchon, Splines minimizing rotation-invariant semi-norms in sobolev spaces, in: Con-
structive theory of functions of several variables, Springer, 1977, pp. 85–100.

[92] S. Bubeck, R. Munos, G. Stoltz, C. Szepesvari, X-armed bandits, The Journal of Machine
Learning Research 12 (2011) 1655–1695.

[93] P. Beyhaghi, D. Cavaglieri, T. Bewley, Delaunay-based derivative-free optimization via
global surrogates, part i: linear constraints, Journal of Global Optimization 1–52.

[94] T. A. Oliver, N. Malaya, R. Ulerich, R. D. Moser, Estimating uncertainties in statistics
computed from direct numerical simulation, Physics of Fluids (1994-present) 26 (3) (2014)
035101.

[95] A. L. Marsden, M. Wang, J. E. Dennis Jr, P. Moin, Optimal aeroacoustic shape design using
the surrogate management framework, Optimization and Engineering 5 (2) (2004) 235–262.

[96] J. L. Lumley, H. A. Panofsky, The structure of atmospheric turbulence.

[97] J. Wyngaard, O. Coté, The budgets of turbulent kinetic energy and temperature variance in
the atmospheric surface layer, Journal of the Atmospheric Sciences 28 (2) (1971) 190–201.



247

[98] K. Sreenivasan, A. Chambers, R. Antonia, Accuracy of moments of velocity and scalar fluc-
tuations in the atmospheric surface layer, Boundary-Layer Meteorology 14 (3) (1978) 341–
359.

[99] S. Alimohammadi, D. He, Multi-stage algorithm for uncertainty analysis of solar power fore-
casting, in: IEEE Power & Energy Society, General Meeting Conference, 2016.

[100] N. L. Dias, M. Chamecki, A. Kan, C. M. Okawa, A study of spectra, structure and correlation
functions and their implications for the stationarity of surface-layer turbulence, Boundary-
layer meteorology 110 (2) (2004) 165–189.

[101] A. M. Yaglom, Correlation theory of stationary and related random functions, Springer, 1987.

[102] R. Theunissen, A. Di Sante, M. Riethmuller, R. Van den Braembussche, Confidence estima-
tion using dependent circular block bootstrapping: application to the statistical analysis of
piv measurements, Experiments in Fluids 44 (4) (2008) 591–596.

[103] M. Bernardes, N. Dias, The alignment of the mean wind and stress vectors in the unstable
surface layer, Boundary-layer meteorology 134 (1) (2010) 41–59.

[104] A. Gluhovsky, E. Agee, A definitive approach to turbulence statistical studies in planetary
boundary layers, Journal of the atmospheric sciences 51 (12) (1994) 1682–1690.

[105] D. N. Politis, H. White, Automatic block-length selection for the dependent bootstrap,
Econometric Reviews 23 (1) (2004) 53–70.

[106] A. Suarez-González, J. C. López-Ardao, C. Lopez-García, M. Rodríguez-Pérez,
M. Fernández-Veiga, M. E. Sousa-Vieira, New simulation output analysis techniques: a batch
means procedure for mean value estimation of processes exhibiting long range dependence,
in: Proceedings of the 34th conference on Winter simulation: exploring new frontiers, Winter
Simulation Conference, 2002, pp. 456–464.

[107] J. Beran, Statistics for long-memory processes, Vol. 61, CRC Press, 1994.

[108] J. R. Hosking, Fractional differencing, Biometrika 68 (1) (1981) 165–176.

[109] M. Priestley, T. S. Rao, A test for non-stationarity of time-series, Journal of the Royal Statis-
tical Society. Series B (Methodological) (1969) 140–149.

[110] G. Nason, A test for second-order stationarity and approximate confidence intervals for lo-
calized autocovariances for locally stationary time series, Journal of the Royal Statistical
Society: Series B (Statistical Methodology) 75 (5) (2013) 879–904.

[111] E. K. Lada, N. M. Steiger, J. R. Wilson, Performance evaluation of recent procedures for
steady-state simulation analysis, IIE Transactions 38 (9) (2006) 711–727.

[112] A. C. Mokashi, J. J. Tejada, S. Yousefi, A. Tafazzoli, T. Xu, J. R. Wilson, N. M. Steiger,
Performance comparison of mser-5 and n-skart on the simulation start-up problem, in: Pro-
ceedings of the Winter Simulation Conference, Winter Simulation Conference, 2010, pp.
971–982.



248

[113] S. Robinson, New simulation output analysis techniques: a statistical process control ap-
proach for estimating the warm-up period, in: Proceedings of the 34th conference on Winter
simulation: exploring new frontiers, Winter Simulation Conference, 2002, pp. 439–446.

[114] A. Tafazzoli, J. R. Wilson, N-skart: A nonsequential skewness-and autoregression-adjusted
batch-means procedure for simulation analysis, in: Winter Simulation Conference, Winter
Simulation Conference, 2009, pp. 652–662.

[115] K. P. White, An effective truncation heuristic for bias reduction in simulation output, Simu-
lation 69 (6) (1997) 323–334.

[116] K. P. White Jr, M. J. Cobb, S. C. Spratt, A comparison of five steady-state truncation heuris-
tics for simulation, in: Proceedings of the 32nd conference on Winter simulation, Society for
Computer Simulation International, 2000, pp. 755–760.

[117] K. Hoad, S. Robinson, R. Davies, Automating warm-up length estimation, in: Proceedings
of the 40th Conference on Winter Simulation, Winter Simulation Conference, 2008, pp. 532–
540.

[118] P. Beyhaghi, D. Cavaglieri, T. Bewley, Delaunay-based derivative-free optimization via
global surrogates, part i: linear constraints, Journal of Global Optimization (2015) 1–52.

[119] P. Beyhaghi, D. Cavaglieri, T. Bewley, Delaunay-based derivative-free optimization via
global surrogates, part II: Convex constraints, Journal of Global Optimization (2016) 1–52.

[120] J. Kim, P. Moin, R. Moser, Turbulence statistics in fully developed channel flow at low
reynolds number, Journal of fluid mechanics 177 (1987) 133–166.

[121] P. E. Gill, W. Murray, M. A. Saunders, Snopt: An sqp algorithm for large-scale constrained
optimization, SIAM review 47 (1) (2005) 99–131.

[122] D. Cavaglieri, T. Bewley, Low-storage implicit/explicit runge–kutta schemes for the simu-
lation of stiff high-dimensional ode systems, Journal of Computational Physics 286 (2015)
172–193.

[123] D. Cavaglieri, P. Beyhaghi, T. Bewley, Low-storage imex runge-kutta schemes for the sim-
ulation of navier-stokes systems, in: 21st AIAA computational fluid dynamics conference,
San Diego, CA, 2013.

[124] P. Moin, K. Mahesh, Direct numerical simulation: a tool in turbulence research, Annual
review of fluid mechanics 30 (1) (1998) 539–578.

[125] R. D. Moser, J. Kim, N. N. Mansour, Direct numerical simulation of turbulent channel flow
up to re= 590, Phys. Fluids 11 (4) (1999) 943–945.

[126] P. Luchini, M. Quadrio, A low-cost parallel implementation of direct numerical simulation
of wall turbulence, Journal of Computational Physics 211 (2) (2006) 551–571.

[127] W. Y. Kwok, R. D. Moser, J. Jiménez, A critical evaluation of the resolution properties of
b-spline and compact finite difference methods, Journal of Computational Physics 174 (2)
(2001) 510–551.



249

[128] J. Kim, Control of turbulent boundary layers, Physics of Fluids (1994-present) 15 (5) (2003)
1093–1105.

[129] K. Graf, A. Hoeve, S. Watin, Comparison of full 3d-rans simulations with 2d-rans/lifting line
method calculations for the flow analysis of rigid wings for high performance multihulls,
Ocean Engineering 90 (2014) 49–61.

[130] M. Drela, H. Youngren, AVL Athena Vortex Lattice, http://web.mit.edu/drela/
Public/web/avl/.

[131] J. Katz, A. Plotkin, Low-speed aerodynamics, Vol. 13, Cambridge University Press, 2001.

[132] I. H. Abbott, A. E. Von Doenhoff, Theory of wing sections, including a summary of airfoil
data, Courier Corporation, 1959.

[133] O. M. Faltinsen, Hydrodynamics of high-speed marine vehicles, Cambridge university press,
2005.

[134] K. L. Wadlin, C. L. Shuford, J. R. McGehee, A theoretical and experimental investigation
of the lift and drag characteristics of hydrofoils at subcritical and supercritical speeds, Tech.
rep., Langley Aeronautical Laboratory, Langley Field, Va (1955).

[135] M. Drela, M. B. Giles, Viscous-inviscid analysis of transonic and low reynolds number air-
foils, AIAA journal 25 (10) (1987) 1347–1355.




