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ABSTRACT OF THE THESIS

Aerodynamics of Tsuji Burners with Augmented Fuel Injection

by

Brandon Li

Master of Science in Engineering Sciences (Aerospace Engineering)

University of California San Diego 2021

Professor Antonio Sanchez, Chair

This thesis addresses the aerodynamics of Tsuji burners, involving a flame developing

from the forward stagnation region of a cylindrical porous fuel injector placed in an air

stream. Attention is focused on cases when the fuel-injection velocity is comparable to the

outer air velocity, so that the boundary layer is blown off from the cylinder surface. In the

resulting flow, the flame is embedded in the thin mixing layer that forms about the stream

surface separating the outer air stream from the fuel stream, both having in general different

density. The flow structure, nearly inviscid outside the mixing layer, is investigated here for

cases where the porous fuel injector is placed in a uniform air stream or at the center of a

symmetrical planar counterflow configuration. In both cases the velocity on the air side of

x



the mixing layer is potential, while the velocity found on the fuel side is rotational, because

fuel injection generates vorticity through the requirement that fuel emerges normal to the

cylinder surface. It is shown that introduction of a density-weighted streamfunction reduces

the problem to the case of constant-density flow, with the density-square-root-weighted ratio

of injection velocity to free-stream velocity Λ emerging as the only controlling parameter.

The numerical solution, involving the determination of the vorticity distribution through

an iterative scheme, provides the structure of the flow, including the location of the flame

and associated strain-rate distribution. Numerical results are presented for values of Λ

ranging from small injection velocities Λ � 1 to large injection velocities Λ � 1. The

inviscid results reported here in the limit of vanishingly small injection velocities Λ� 1

indicate that the outer air velocity never approaches the classical solution corresponding to

potential flow with Λ = 0, a result with important implications for the analysis of flames

stabilized in Tsuji burners.
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Chapter 1

Introduction

Tsuji burners have been used to investigate laminar counterflow flames for over 50

years [1]. As indicated in the schematic shown on the left-hand side of Fig. 1.1, the flame

is established in the forward stagnation-point region of a porous cylinder of radius a placed

in a uniform air stream of velocity U∞, with the fuel released by injection perpendicular

to the cylinder surface with velocity Ui. In most applications, the Reynolds number

Re = ρAU∞a/µA (based on the density ρA and viscosity µA of the air stream) is large and

the injection velocity Ui is small, of order Ui ∼ U∞/Re1/2, so that the streamline separating

the external air flow from the fuel flow lies in the near-wall boundary layer of characteristic

thickness δ = a/Re1/2 � a that develops over the forward side of the cylinder. Effects of

molecular transport are confined to this boundary layer, where the fuel and the air mix and

react, while the flow outside is nearly inviscid, with an azimuthal velocity component on

the outer edge of the boundary layer that can be approximated near the forward stagnation

point by the potential flow solution. In this forward stagnation region the solution in the

reacting boundary layer is selfsimilar [2], determined by the value of the local strain rate

(i.e. 2U∞/a, according to the potential solution). The reacting boundary layer, containing

the flame, continues developing along the cylinder wall away from the stagnation region,
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until separation eventually occurs.

Figure 1.1: A schematic view of the flow field in Tsuji burners with Ui ∼ U∞/Re1/2

(left plot) and with Ui ∼ U∞ (right plot).

The flow structure depicted on the left-hand side of Fig. 1.1, corresponding to

injection velocities Ui ∼ U∞/Re1/2 � U∞, changes drastically when the fuel is injected

with velocities that are comparable to U∞, displacing the stagnation point at distances of

order a away from the cylinder surface, as shown on the right-hand side of Fig. 1.1. For

Re � 1, mixing and reaction occur only in a thin mixing layer of characteristic thickness

δ = a/Re1/2 � a localized at the fluid interface separating the incoming air flow from the

injected fuel gas. At leading order in the limit Re � 1 the reacting mixing layer emerges

as a free surface rs(θ) separating two regions of inviscid flow, as indicated in Fig. 1.1. The

outer flow is potential, because the air stream carries no vorticity, but the inner flow is

rotational, because the injected fuel stream has vorticity, as needed for the injection velocity

to be normal to the cylinder surface. Besides the classical Tsuji burner, consideration will

be given to the case of a porous cylinder placed at the center of a planar counterflow with

strain rate A∞, a configuration that has been recently proposed for studying transition
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from counterflow to coflow flames [3]. The two configurations investigated here are shown

in Fig. 1.2.

We begin below by formulating the problem for general order-unity values of the

Reynolds number Re = ρAUca/µA based on the characteristic air velocity Uc = U∞ or

Uc = A∞a. Consideration of the limit Re � 1 will be seen to reduce the problem to that

of inviscid flow, with the solution depending in general on two parameters, namely, the

fuel-to-air density ratio ρF/ρA and the fuel-to-air velocity ratio Ui/Uc. Use of a density-

weighted vorticity-streamfunction formulation [4, 5] further reduces the problem to the

constant-density case, with Λ = (ρF/ρA)1/2Ui/Uc entering as the only governing parameter.

The solution involves the determination of the vorticity distribution on the cylinder surface,

which will be computed numerically for different values of Λ. The solution provides the

location of the forward stagnation point and the associated local value of the strain rate.

The shape of the streamline separating the two reactant streams and the streamwise

variation of the velocity will also be obtained.

Figure 1.2: The two flow configurations investigated here. For both, the streamlines
shown correspond to the case Λ = 1.
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Chapter 2

Formulation of the problem

The two porous-burner configurations investigated here are shown in Fig. 1.2. The

cylinder radius a and characteristic velocity Uc (Uc = U∞ for the uniform-flow configuration

and Uc = A∞a for the counterflow configuration) will be used to scale the problem,

yielding dimensionless cylindrical coordinates (r, θ) and corresponding velocity v = (vr, vθ).

Following standard convention, the azimuthal angle θ is to be measured counterclockwise

from the horizontal rightward ray, with the uniform air flow approaching from θ = π and

the counterflow air streams approaching from θ = ±π/2. Because of the existing symmetry,

it suffices to give the solution in either the half plane 0 ≤ θ ≤ π (for uniform flow) or in

the first quadrant 0 ≤ θ ≤ π/2 (for the counterflow).

The air density ρA and temperature TA will be used to define a dimensionless density

ρ and a dimensionless temperature T . Similarly, the transport properties of the air stream

will be used to define a dimensionless viscosity µ, heat conductivity k, and molecular

diffusivity Di of species i. Buoyancy forces are neglected in the analysis, an appropriate

simplification for small combustors with sufficiently large Froude numbers U2
c /(ga)� 1.

For the low-Mach-number conditions prevailing in applications, the steady form of the

conservation equations [6] for a reacting gas mixture with constant specific heat cp reduce
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to

∇ · (ρv) = 0 (2.1)

ρv · ∇v = −∇p+
1

Re
∇ · [µ(∇v +∇vT )] (2.2)

ρv · ∇T =
1

PrRe
∇ · (k∇T )−

∑
N

ṁi

(ρAUc/a)

hi
(cpTA)

, (2.3)

ρv · ∇Yi =
1

SciRe
∇ · (ρDi∇Yi) +

ṁi

ρAUc/a
, (2.4)

where p represents the spatial pressure differences scaled with ρAU
2
c , Pr is the Prandtl

number and Yi, hi, and Sci denote the mass fraction, enthalpy of formation, and Schmidt

number of species i. The production rate ṁi of chemical species i, identically zero in the

feed streams, must be evaluated for a given chemistry description in terms of the local

values of T and Yi. The above equations must be supplemented with expressions for the

temperature and composition dependences of the dimensionless transport coefficients k, µ,

and Di and with the equation of state written in the low-Mach-number form

ρT
∑
i

(YiWA/Wi) = 1, (2.5)

with Wi and WA denoting, respectively, the molecular mass of species i and the mean

molecular mass of the air stream. In integrating the problem one needs to specify the

temperature and composition of the air stream as r →∞ and of the fuel stream at r = 1,

with corresponding boundary velocity distributions given by

 (vr, vθ)→ (cos θ, sin θ) (uniform flow)

(vr, vθ)→ r[cos(2θ),− sin(2θ)] (counterflow)
(2.6)

as r →∞ and

vr − Ui/Uc = vθ = 0 (2.7)
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at r = 1.

2.1 The limit Re � 1

In the inviscid limit Re� 1 molecular transport becomes negligible in (2.2)–(2.4).

In the absence of mixing, the chemical reaction cannot proceed, so that (2.3) and (2.4)

reduce to v · ∇T = v · ∇Yi = 0, indicating that the temperature and composition of

the steady flow, and therefore also the density according to (2.5), remain constant along

streamlines. As a result, there exists a fluid interface r = rs(θ) separating an external

region with density ρ = 1 from an internal region with density ρ = ρF/ρA. This separating

interface r = rs(θ) is a tangential discontinuity, with the velocity on the outer and inner

sides satisfying

|v+|2 = (ρF/ρA)|v−|2, (2.8)

as follows from conservation of head along the boundary streamlines, with the superscripts

+ and − denoting conditions at r = r+
s and r = r−s , respectively.

The problem can be conveniently formulated in terms of the streamfunction ψ,

defined such that

vr =
1

r

∂ψ

∂θ
and vθ = −∂ψ

∂r
. (2.9)

For the planar flow investigated here, the vorticity

ω =
1

r

∂

∂r
(rvθ)−

1

r2

∂vr
∂θ

(2.10)

satisfies

vr
∂ω

∂r
+
vθ
r

∂ω

∂θ
= 0, (2.11)

as can be seen by taking the curl of the inviscid form of (2.2). Equation (2.11) reveals

6



that the vorticity is conserved along streamlines, so that ω = ω(ψ). Using (2.9) in (2.10)

provides

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂θ2
= −ω(ψ), (2.12)

as an equation for ψ in terms of the unknown function ω(ψ). The boundary conditions

needed for integrating (2.12) are different for the two flow configurations depicted in Fig. 1.2.

For example, for the uniform air-flow configuration the streamfunction satisfies



ψ − (Ui/U∞) (θ − π) = ∂ψ/∂r = 0 at r = 1 for 0 ≤ θ ≤ π

ψ = 0 at θ = π for 1 ≤ r <∞

ψ → r sin θ as r →∞ for 0 < θ ≤ π

ψ = −π(Ui/U∞) at θ = 0 for 1 ≤ r <∞

(2.13)

when account is taken of the symmetry present in the problem. The arbitrary value

of ψ along r = rs(θ) is selected to be ψ = 0, with the air/fuel sides corresponding to

positive/negative values of ψ, respectively. The separating surface r = rs(θ) is an unknown

free boundary to be determined with use made of the additional boundary condition (2.8)

written in the form

[(
∂ψ

∂r

)2

+
1

r2

(
∂ψ

∂θ

)2
]+

=

(
ρF
ρA

)[(
∂ψ

∂r

)2

+
1

r2

(
∂ψ

∂θ

)2
]−

at ψ = 0. (2.14)

The function ω(ψ) is related to the unknown distribution of vorticity on the cylinder wall

ωw(θ) through

ω =

 0 for ψ ≥ 0

ωw[(U∞/Ui)ψ + π] for − π(Ui/U∞) ≤ ψ ≤ 0
. (2.15)

7



2.2 Reduction to the case of equal densities

The free-boundary problem defined in (2.12)–(2.15) determines ψ(r, θ) along with the

vorticity distribution ωw(θ) and the separating surface rs(θ) for given values of Ui/U∞ and

ρF/ρA. As shown in [4, 5], the solution can be simplified by incorporating a renormalization

factor (ρF/ρA)1/2 in the definition of new kinematic variables

ω̂ = (ρF/ρA)1/2ω and ψ̂ =

 ψ for ψ > 0

(ρF/ρA)1/2ψ for ψ < 0
. (2.16)

The conservation equation for the streamfunction becomes

1

r

∂

∂r

(
r
∂ψ̂

∂r

)
+

1

r2

∂2ψ̂

∂θ2
= −ω̂(ψ̂). (2.17)

For the case of uniform air flow (left-hand side of Fig. 1.2) the boundary conditions are



ψ̂ − Λ (θ − π) = ∂ψ̂/∂r = 0 at r = 1 for 0 ≤ θ ≤ π

ψ̂ = 0 at θ = π for 1 ≤ r <∞

ψ̂ → r sin θ as r →∞ for 0 < θ ≤ π

ψ̂ = −πΛ at θ = 0 for 1 ≤ r <∞

(2.18)

and the relation between the rescaled vorticity and its distribution on the cylinder surface

ω̂w(θ) is

ω̂ =

 0 for ψ̂ ≥ 0

ω̂w(ψ/Λ + π) for − πΛ ≤ ψ̂ ≤ 0
. (2.19)
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On the other hand, for the case of an external counterflow (right-hand side of Fig. 1.2) the

boundary conditions are



ψ̂ − Λ (θ − π/2) = ∂ψ̂/∂r = 0 at r = 1 for 0 ≤ θ ≤ π/2

ψ̂ = 0 at θ = π/2 for 1 ≤ r <∞

ψ̂ → (r2/2) sin(2θ) as r →∞ for 0 < θ ≤ π/2

ψ̂ = −(π/2)Λ at θ = 0 for 1 ≤ r <∞

(2.20)

and the rescaled vorticity satisfies

ω̂ =

 0 for ψ̂ ≥ 0

ω̂w(ψ/Λ + π/2) for − πΛ/2 ≤ ψ̂ ≤ 0
. (2.21)

The dynamic condition (2.14) is automatically satisfied, thereby removing the need to

consider the separating surface rs(θ) as a free boundary. As can be seen, the reduced

formulation depends on the single governing parameter Λ, defined as

Λ =

(
ρF
ρA

)1/2
Ui
U∞

(2.22)

in (2.18) and

Λ =

(
ρF
ρA

)1/2
Ui
A∞a

(2.23)

in (2.20). The solutions depicted in Fig. 1.2 correspond to Λ = 1.

The solution to the above problem determines ψ̂(r, θ) as well as the vorticity

distribution on the cylinder surface ω̂w(θ). The latter is ultimately determined by the

condition that the fuel is injected perpendicular to the wall, in that there is a single

distribution ω̂w(θ) for which ∂ψ̂/∂r = 0 at r = 1. For example, if the fuel were injected

9



with zero vorticity, then the stream function would be given by the potential-flow solution

 ψ̂p = (r − 1/r) sin θ + Λ(θ − π) (uniform flow)

ψ̂p = (r2 − 1/r2) sin(2θ)/2 + Λ(θ − π/2) (counterflow)
(2.24)

with corresponding nonzero values ∂ψ̂/∂r = 2 sin θ (uniform flow) and ∂ψ̂/∂r = 2 sin(2θ)

(counterflow) at r = 1. It is worth noting that the potential solution given in the second

equation of (2.24) has been reasoned to be sufficiently accurate for the analysis of porous

burners in the counterflow configuration [3]. The predictive capability of this description,

which neglects the presence of vorticity on the fuel side of the flame, is to be assessed

through comparison with our numerical results.

10



Chapter 3

The numerical scheme

The computation of ω̂w(θ) emerges as a complicating characteristic in the numerical

integration that warrants specific attention, as explained below. To facilitate the solution,

it is convenient to express the stream function in the form ψ̂ = ψ̂p + ψ̂r, where ψp is

the potential distribution given by (2.24) and ψ̂r is the rotational component, the latter

determined by integration of

1

r

∂

∂r

(
r
∂ψ̂r
∂r

)
+

1

r2

∂2ψ̂r
∂θ2

= −ω̂(ψ̂p + ψ̂r). (3.1)

with boundary conditions



ψ̂r = ∂ψ̂r/∂r + 2 sin θ = 0 at r = 1 for 0 ≤ θ ≤ π

ψ̂r = 0 at θ = π for 1 ≤ r <∞

ψ̂r → 0 as r →∞ for 0 ≤ θ ≤ π

ψ̂r = 0 at θ = 0 for 1 ≤ r <∞

(3.2)

11



for uniform external flow and

ψ̂r = ∂ψ̂r/∂r + 2 sin(2θ) = 0 at r = 1 for 0 ≤ θ ≤ π/2

ψ̂r = 0 at θ = π/2 for 1 ≤ r <∞

ψ̂r → 0 as r →∞ for 0 ≤ θ ≤ π/2

ψ̂r = 0 at θ = 0 for 1 ≤ r <∞

(3.3)

for external counterflow. The injection velocity Λ does not appear in the boundary

conditions for ψ̂r and only enters through ψ̂p. The numerical method used will be nearly

identical for the uniform flow and counterflow. The only differences are the grid and

boundary conditions, as specified above.

The domain is set up in cartesian coordinates with a cylinder of radius 1 at the

origin. This means the cartesian form of (3.1) must be solved. (3.1) is first converted into

the weak form so that it can be used with finite element methods. [7] This is done by

multiplying (3.1) by a test function T and then integrating over the domain. By applying

integration by parts to the left hand side, the order of the differential equation is reduced.

The first order derivatives disappear due to the boundary conditions. Therefore, written in

weak form the governing equation simplifies to

−
∫
V

∂ψ̂r
∂x

∂T

∂x
−
∫
V

∂ψ̂r
∂y

∂T

∂y
= −

∫
V

T ω̂ (3.4)

where
∫
V

denotes integration over the computational domain.

The injection velocity Λ does not appear in the boundary conditions for ψ̂r; it enters

only through ψ̂p, which may offer a simplification. The general strategy is to solve the

Poisson equation for ψ̂r and calculate ∂ψ̂r/∂r at r = 1 for 0 < θ < π to evaluate the

difference ∆ between that function and −2 sin θ, on that boundary, which must vanish to

satisfy the first boundary condition. The assumed function −ω̂(θ) is then increased by an

12



amount proportional to this difference ∆, and the solution process is repeated, again and

again, until the difference ∆ is less than at least 10−2. The iterative scheme is initialized

with the known potential solution, which corresponds to ψ̂r = 0 and −ω = 0, and the

increase at each step may best be taken to be the difference ∆ divided by Λ. Usually only

a small number (5 or 10) of iterations is needed, but that number increases substantially

as Λ decreases below 0.1.

In the indicated procedure, the constancy of the vorticity along streamlines enables

the source term in the Poisson equation to be evaluated throughout the field as a function

of the stream function, but the stream function is unknown. That necessitates an inner

sub-iteration in which, for each Poisson-equation solution, the stream function is evaluated

as a function of r and θ from the previous solution. As previously mentioned, the initial

stream function used is the potential solution. This sub-iteration should be continued until

subsequent solutions throughout the field change by less than two significant figures, and

in this work it was continued until the change was less than 10−5.

By combining the iterative methods for the vorticity distribution on the cylinder

and the stream function, it is always possible to find a solution with zero tangential velocity

for any Λ > 0. Stability problems were often encountered, so a number of methods were

used to facilitate convergence including incorporation of a relaxation factor for the vorticity

and stream function and implementation of an adaptive mesh.
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Chapter 4

Selected numerical results

The problems defined above in (2.17)–(2.21) were solved numerically using the

iterative scheme described in an Appendix. Results were obtained for injection conditions

corresponding to values of Λ in the range 0.1 ≤ Λ ≤ 10, with selected illustrative results

presented below in Figs. 4.1–4.4.

Streamlines and accompanying vorticity distributions are shown in Fig. 4.1. Note

that, in the inviscid limit Re � 1 considered here, the boundary streamline rs(θ), marked

in each plot with a thicker line, provides the approximate location of the flame (with small

relative errors of order of the dimensionless mixing-layer thickness Re−1/2). As can be seen

from the evolution of the flow for increasing Λ, the outward flame displacement associated

with augmented fuel injection is much more pronounced for uniform external flow, while for

the counterflow the linearly increasing velocity of the external streams exerts a confining

effect that precludes the flame from moving far away from the cylinder.

For the inviscid planar flow analyzed here vorticity remains constant along stream-

lines and is identically zero in the outer air stream. In the fuel stream, its distribution

is determined by the injection process, with corresponding distributions shown by color

contours in Fig. 4.1. The important effect of vorticity is illustrated by comparing the numer-

14



UNIFORM FLOW COUNTERFLOW

Figure 4.1: The upper half of each panel represents the streamlines and vorticity
distribution corresponding to the uniform flow configuration for different values of Λ
obtained by integration of (2.17) with boundary conditions (3.2) (uniform flow) or (3.3)
(counterflow). The lower half shows the streamlines of the corresponding potential flow,
evaluated with use made of (2.24). In the uniform-flow plots (left-hand side) the spacing
used for the streamfunction is δψ̂ = 2 on the air side ψ̂ > 0 and δψ̂ = (0.1, 1, 2) for
Λ = (0.1, 2, 10) on the fuel side ψ̂ < 0, except for the inset corresponding to Λ = 0.1,
which uses δψ̂ = 0.05. In the counterflow plots (right-hand side) the spacing used
for the streamfunction is δψ̂ = (1, 2, 2) for Λ = (0.1, 2, 10) on the air side ψ̂ > 0
and δψ̂ = (0.05, 1, 1) for Λ = (0.1, 2, 10) on the fuel side ψ̂ < 0, except for the inset
corresponding to Λ = 0.1, which uses δψ̂ = 0.02.
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ical results with the potential-flow solution (2.24), including the corresponding boundary

streamlines


rs =

√
1 +

[
(π−θ)Λ
2 sin θ

]2

+ (π−θ)Λ
2 sin θ

(uniform flow)

rs =

{√
1 +

[
(π/2−θ)Λ

sin(2θ)

]2

+ (π/2−θ)Λ
sin(2θ)

}1/2

(counterflow)

. (4.1)

The observed differences are more dramatic in cases with small injection Λ� 1, where the

amount of vorticity needed at injection to satisfy the condition of zero tangential velocity

is very large. As can be seen in the plots, for these cases with small injection velocity, the

boundary streamline of the potential-flow solution tends to remain at distances of order

rs−1 ∼ Λ from the cylinder surface. By way of contrast, when vorticity is accounted for, the

boundary streamline separates from the surface. For the counterflow, separation, occurring

at θ ' π/4, yields to the formation of a low-velocity closed cavity. For uniform external

flow the boundary streamline detaches at θ ' 3π/4 and evolves downstream to produce a

massive wake with vanishing fluid motion, markedly different from that encountered in the

potential-flow solution.

UNIFORM FLOW COUNTERFLOW

Figure 4.2: The functions ω(ψ) = ωw(θ) for selected values of Λ.

A more detailed quantification of the vorticity generated in the fuel-injection process

is given in Fig. 4.2. The amount of vorticity decreases for increasing injection velocities.
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To understand this, one can use the potential solution (2.24) to evaluate the tangential-to-

normal velocity ratio on the cylinder surface, yielding 2 sin θ/Λ for external uniform flow

and 2 sin(2θ)/Λ for external counterflow. Since this ratio is inversely proportional to Λ,

the local spin needed to deflect the injection velocity in the direction normal to the surface

is smaller for larger Λ. Correspondingly, the vorticity generated at injection is small for

large injection velocities and large for small injection velocities, that being the behavior

displayed in Fig. 4.2.

UNIFORM FLOW COUNTERFLOW

Figure 4.3: The radial location of the stagnation point and corresponding strain rate
obtained by integration of (2.17) (solid curves) and from evaluation of the potential-flow
streamfunction expressions (2.24) (dashed curves).

As previously mentioned, the diffusion flame sits within the mixing layer that forms

about the boundary streamline rs(θ) originating from the forward stagnation point. Since

the strain rate acting on the flame can be anticipated to be largest at that point, extinction
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is more likely to occur there, so that there is interest in characterizing the local flow.

The results, given in Fig. 4.3, include the stagnation-point radial location rs(π) (uniform

flow) and rs(π/2) (counterflow) and the associated strain rate Âo, which can be evaluated

from the local value of −r−1
s ∂2ψ̂/∂r∂θ. It is worth noting that the value of Âo can be

used to determine the corresponding dimensional value of the strain rate acting on the

stagnation-point flow, needed to investigate flame extinction. The values are different on the

air and fuel sides, as follows from (2.16). Thus, for uniform flow the strain rate is Âo(U∞/a)

on the air side and Âo(U∞/a)(ρA/ρF )1/2 on the fuel side, while for the counterflow the

strain rate is ÂoA∞ on the air side and ÂoA∞(ρA/ρF )1/2 on the fuel side.

To further assess departures from the potential solution, Fig. 4.3 displays results

computed from the analytical expressions (2.24), including the stagnation-point radial

location  rs(π) =
√

1 + (Λ/2)2 + Λ/2 (uniform flow)

rs(π/2) =
{√

1 + (Λ/2)2 + Λ/2
}1/2

(counterflow)
(4.2)

and corresponding stagnation-point strain rate

 Âo = −1
r

∂2ψ̂p

∂r∂θ
= r2s(π)+1

r3s(π)
(uniform flow)

Âo = −1
r

∂2ψ̂p

∂r∂θ
= 2[r4s(π/2)+1]

r4s(π/2)
(counterflow)

. (4.3)

The comparison indicates that the potential solution describes with sufficient accuracy the

location of the stagnation point and the local strain field for the case of the counterflow

configuration, in agreement with the previous findings [3]. In contrast, the departures

observed are significantly larger for uniform flow, for which the approximate strain-rate

description provided by the potential solution is unsatisfactory for all values of Λ, with

relative errors becoming larger for increasing injection velocities. For the case of small

injection velocities Λ� 1, the strain rate computed numerically approaches a limiting value

Âo ' 1.2, markedly different from the potential flow prediction Âo = 2. These order-unity

18



differences are consistent with the large differences in streamline patterns reported in

Fig. 4.1 for uniform flow with Λ = 0.1. The result has important implications for the

analysis of flames stabilized in Tsuji burners, in that the value of the strain rate exerted by

the air stream on the flame near the stagnation region for small injection is ' 1.2U∞/a,

and not the widely employed potential result 2U∞/a.

UNIFORM FLOW COUNTERFLOW

Figure 4.4: The distribution of velocity along the separating streamline ψ = 0 for
selected values of Λ.

In the limit Re � 1, mixing and reaction in confined to the mixing layer that

separates the two streams. The problem can be analyzed using as local coordinates the

distance s measured along the dividing streamlines rs(θ) and the associated transverse

coordinate n, both indicated on the left-hand-side plot of Fig. 1.2. The velocities on the

air and fuel side of the mixing layer satisfy (2.8). The corresponding equations for the

strained mixing layer, given for instance in [8], depend on the outer flow through the

local value of the strain rate, which can be computed from the streamwise variation of the

velocity on the air and fuel sides of the separating streamline ∂|v+|/∂s and ∂|v−|/∂s, where

|v+| = |∂ψ̂/∂n|s and |v−| = |∂ψ̂/∂n|s(ρA/ρF )1/2, with |∂ψ̂/∂n|s denoting the magnitude

of the gradient of ψ̂ at rs(θ). The variation of |∂ψ̂/∂n|s with s is shown for completeness

in Fig. 4.4. As previously anticipated, the largest slope is found at s = 0, corresponding to

the forward stagnation point, where the flame would be subject to the highest strain rate.
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Chapter 5

Conclusions

Our numerical analysis, exploiting the limit Re � 1 while accounting for the

important effects of vorticity, has unveiled a number of interesting characteristics of Tsuji

burners for cases where the fuel injection is strong enough to blow the boundary layer away

from the cylinder surface. A formulation has been derived that reduces the dependence

of the flow to a single parameter, namely, a density-weighted injection velocity, defined

in (2.22) and (2.23) for the two flow configurations considered in our paper. The analysis

reveals, in particular, significant differences between the potential solution, involving a

nonzero velocity component on the surface of the porous cylinder, and the solution with

fuel injection normal to the cylinder surface prevailing in most applications. In the limit of

small injection velocities, the analysis reveals early separation of the fuel-air interface from

the vicinity of the cylinder. For the cylinder of radius a immersed in a uniform air flow

with velocity U∞, separation leads to the formation of a large wake, with the result that

the potential flow solution becomes inaccurate everywhere. The results seem to indicate

that the classical assumption that the strain rate for the flame near the forward stagnation

point is approximately given by the potential-flow value 2U∞/a might have to be revisited.

To try to further clarify this important aspect of the weak-injection limit, as well as the
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structure of the flow in the opposite limit of large injection velocities, specific consideration

should be given in future work to the asymptotic structure of the solution for Λ� 1 and

Λ� 1.

Material from this thesis is currently being prepared for publication in Combustion

Science and Technology and Combustion and Flame. This thesis is coauthored with Sánchez,

Antonio; Graña, José; and Williams, Forman. The thesis author is the primary author of

this material.
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