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Beam response to rf-generator noise in the presence
of higher-harmonic passive cavities

M. Venturini
Lawrence Berkeley National Laboratory, University of California, Berkeley, California 94720, USA

(Received 13 February 2022; accepted 11 May 2022; published 23 May 2022)

We examine the effect of higher-harmonic passive cavities (HHCs) on the beam response to rf noise.
Upon invoking certain assumptions to make the problem tractable, we employ Vlasov methods to show that
when the dipole approximation applies the HHCs have a generally limited impact. Beam loading in the
main cavity is included in the analysis. We illustrate our results and the limitations of our model in
application to the Lawrence Berkeley National Laboratory ALS (Advanced Light Source) and the future
ALS Upgrade (ALS-U) offering validation against macroparticle simulations.

DOI: 10.1103/PhysRevAccelBeams.25.054404

I. INTRODUCTION

Higher harmonic rf cavities (HHCs) are often employed
in storage rings for bunch lengthening or other purposes
[1–9]. Although the impact on collective instabilities has
been extensively studied [10–21], not as much attention has
been devoted to their effect on the beam response to
external perturbations and in particular rf noise [22–24].
Because in typical applications, HHCs work by reducing
the restoring force responsible for the longitudinal oscil-
lations, hence reducing the incoherent synchrotron tune,
one would intuitively expect that the HHC should enhance
the beam response to low-frequency noise. In fact, this is
not generally the case.
The conventional approach to the problem [25,26] is not

applicable when the single-particle motion is highly non-
linear, the regime in which HHCs are preferably operated,
and one has to resort to Vlasov methods [10–13]. These are
not very well suited to treat the problem in its full generality
but they provide valuable insight when applied to specific
cases and under certain approximations. Here we focus on
high-energy electron storage rings with a double-frequency
rf system consisting of a main and a passive higher-
harmonic cavity, with the latter tuned for nearly perfect
flattening of the total rf voltage. In the presence of a
uniformly filled beam and in the regime where the total rf
potential is dominated by the quartic term, the single-
particle motion admits an approximate description, which
is simple enough to permit a derivation of the solution of
the linearized Vlasov equation in analytical form. We use
this solution to study the coupled-bunch mode-zero beam

response in the dipole approximation to a time-dependent
perturbation of the generator phase. A full account of beam
loading in the main cavity is a defining aspect of this study.
The main result is the analytical expression for the beam

response function found in Sec. IV. The preceding Secs. II
and III, and related Appendixes, review the essential
features of beam loading and present a derivation of the
beam response function in the single-particle linear regime
(i.e., without HHC); these results are well known but they
are reported in some detail for completeness and to ease the
introduction of the Vlasov equation. Finally, in Sec. V, we
illustrate the significance of our findings with numerical
examples inspired by Advanced Light Source (ALS) and its
future upgrade.

II. EXPRESSIONS FOR THE
CAVITIES’ VOLTAGE

A. Main cavity

Following the standard approach, we model the main
cavity as an equivalent RLC-circuit consisting of two ac
current generators (external rf generator and circulating
beam current) connected in parallel to a load [27–29]. The
load has the cavity fundamental mode impedance, charac-
terized by the loaded shunt impedance RL1 and quality
factor QL1. Written as a function of the time-of-flight
coordinate τ relative to the synchronous particle, the
combined voltage is a sinusoidal wave with peak amplitude
V and synchronous phase ψs

VmainðτÞ ¼ V cosðωrfτ þ ψ sÞ
¼ Vg cosðωrfτ þ ψ s;gÞ − Vb cosðωrfτ − ϕr1 −Φ1Þ;

ð1Þ

where Vg and Vb are the external-generator and beam-
loading peak voltages
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Vg ≡ IgRL1 cosϕr1; ð2Þ

Vb ≡ 2IavgRL1F1 cosϕr1: ð3Þ

The detuning angle ϕr1 measures the difference between
the generator frequency ωrf and the cavity resonance
frequency. The model presupposes a uniformly filled beam
of identical bunches circulating in a ring with all rf buckets
occupied, and hence with average current Iavg ¼ eNωrf=2π
(N is the bunch population); Ig is the generator current. The
beam-induced voltage depends on amplitude F1 and phase
Φ1 of the complex-number form factor defined as the FT
of the bunch profile ρðτÞ normalized to unity, ρ̃ðωÞ ¼R
dτ ρðτÞeiωτ, evaluated at the fundamental harmonic:

F1eiΦ1 ¼ ρ̃ðωrfÞ. Finally, ψ s;g ¼ ψ s − ϕr1 − θL is the gen-
erator-voltage synchronous phase. It depends on the load-
ing angle θL ¼ ðθV − θgÞ, the difference between the total
voltage θV and generator current θg phases relative to the
lab time t, see Appendix A. For later use, note that taking
the derivative and setting τ ¼ 0 in (1) yields

Vg sinψ s;g ¼ V sinψ s − Vb sinðϕr1 þΦ1Þ: ð4Þ

It is an exercise in trigonometry (see e.g., [27,29]) to show
that θL depends on the beam loading Y ¼ 2IavgRL1F1=V
and other parameters as

tan θL ¼ Y sinðψ s þΦ1Þ − tanϕr1

1þ Y cosðψ s þΦ1Þ
: ð5Þ

This formula has significance for machine operation as the
required generator power is minimized when θL ¼ 0
[27,28], giving the following prescription for the detuning
angle ϕr1:

tanϕr1 ¼
2IavgRL1F1

V
sinðψ s þΦ1Þ: ð6Þ

At equilibrium with Φ1 ≃ 0 and sinψ s > 0 (beam-phase
stability) the rhs of the above equation is positive and
therefore ϕr1 > 0.

B. Passive higher-harmonic rf cavity

Lacking an external generator, the voltage in a passive
HHC is entirely due to beam loading. The expression for
the voltage is similar to the second term on the rhs of (1):

VHHCðτÞ ¼ −2IavgRnFn cosϕrn cosðnωrfτ − ϕrn −ΦnÞ;
ð7Þ

with the difference that now Rn and ϕrn represent the
HHC shunt impedance and detuning angle, and the beam
form factor is evaluated at the n harmonic of ωrf :
FneiΦn ¼ ρ̃ðnωrfÞ. If there is no coupler, in a passive

HHC, the only control parameter is the detuning ϕrn.
For bunch lengthening, ϕrn is adjusted to flatten the total
(main cavityþ HHC) voltage. The condition where the
slope (first-order derivative) of the HHC voltage cancels
off that of the main cavity is approximately (see e.g., [19])

sin 2ϕrn ≃ −
V sinψ s

IavgnRnFn
; ð8Þ

implying that ϕrn < 0; the approximation stems from
ignoring the precise form of the equilibrium and assuming
Φn ≃ 0.
For a given average beam current, there exists a special

value of the shunt impedance Rn such that the second-order
derivative of the total voltage also vanishes (assuming a
uniform beam fill). With these settings (which following
common language wewill refer to as “optimal”), the single-
particle (i.e., incoherent) synchrotron tune is linear with the
oscillation amplitude and the equilibrium bunch form is a
very good approximation of a flattop, see Eq. (39), in which
case Φn ¼ 0. The HHC-modified synchronous phase is
cosψ s ¼ ½n2=ðn2 − 1Þ� cosψ s0, where cosψ s0 is the phase
without HHC. (In the following, the notation ψ s will
indicate the appropriate synchronous phase for the system
under consideration whether or not it includes the HHC.)

III. SIMPLE DERIVATION OF THE BEAM
RESPONSE (NO HHC)

We start from the single-particle equations of longi-
tudinal motion

dτ
dt

¼ αcδ; ð9Þ

dδ
dt

¼ eVmainðτÞ −U0

E0T0

; ð10Þ

where αc > 0 (ultrarelativistic approximation) is the
momentum compaction, T0 is the revolution time, E0 is
the design beam energy, δ is the relative deviation from the
design energy, and e > 0 is the elementary charge.
We regard the amplitude of the generator phase errorΔθg

as a first-order perturbation and make use of results from
Appendix A to do a combined first-order expansion in τ
and Δθg of both the generator and beam-loading compo-
nents of VmainðτÞ, see Eqs. (A13) and (A14). With the
energy lost by the synchronous particle given by
U0 ¼ eV cosψ s ¼ Vg cosψ s;g − Vb cosϕr1, we can then
combine (9) and (10) to obtain

d2τ
dt2

¼ −
eαcωrf

E0T0

�
τVg sinψ s;g þ ðτ − hτiÞVb sinϕr1

−
Δθg
ωrf

Vg sinψ s;g

�
; ð11Þ

where h·i is the average over the bunch longitudinal density.
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Absent noise (Δθg ¼ 0) and with the beam at equilib-
rium, the bunch profile is a zero-average Gaussian.
Therefore hτi ¼ 0 and the single-particle motion obeys

d2τ
dt2

¼ −
eαcωrf

E0T0

½Vg sinψ s;g þ Vb sinϕr1�τ

¼ −
eαcωrfV sinψ s

E0T0

τ ¼ −ω2
sτ; ð12Þ

where we have made use of (4) with Φ1 ¼ hτi ¼ 0 and
recognized the expression for the (incoherent) synchrotron
tune

ω2
s ¼

eαcωrfV sinψ s

E0T0

: ð13Þ

If the beam is not at equilibrium and instead undergoes
rigid dipole oscillations driven by a generator-phase per-
turbation, the beam-centroid equation of motion is obtained
by taking the average h·i of both sides of (11) over the
bunch distribution. By doing so, the second term in the
brackets (the beam-loading term) vanishes and therefore

d2hτi
dt2

¼ −
eαcωrfVg sinψ s;g

E0T0

�
hτi − Δθg

ωrf

�
: ð14Þ

We conclude that in contrast to the incoherent tune, the
coherent tune

ω2
c1 ¼

eαcωrfVg sinψ s;g

E0T0

ð15Þ

depends on the generator voltage-amplitude and synchro-
nous phase rather than the total voltage-amplitude and
synchronous phase. An alternate expression for ωc1 follows
from (2) and (4): with Φ1 ¼ 0,

ω2
c1 ¼

eαcωrf

E0T0

½V sinψ s − IavgRL1F1 sin 2ϕr1�

¼ ω2
s

�
1 − IavgRL1F1

sin 2ϕr1

V sinψ s

�
; ð16Þ

showing that ωc1 ≤ ωs as in normal operations ϕr1 > 0. If
the condition (6) is satisfied, the coherent tune can be

written as ω2
c1 ¼ ω2

sð1 − Y2 cos2 ϕr1Þ ¼ ω2
sð1−Y

2 cos2 ψ s
1þY2 sin2 ψ s

Þ.
From Eq. (16), in the requirement that ω2

c1 be positive,
we recognize the dc Robinson stability condition

IavgRL1F1

sin 2ϕr1

V sinψ s
< 1: ð17Þ

Inserting γd ¼ τ−1d > 0 to capture radiation damping, the
equation of motion (14) becomes

d2hτiðtÞ
dt2

þ 2γd
dhτiðtÞ
dt

þ ω2
c1hτiðtÞ ¼

ω2
c1

ωrf
ΔθgðtÞ; ð18Þ

and taking the Fourier transform yields the transfer func-

tion hτ̃iðωÞ ¼ − ω2
c1

ωrf

Δθ̃gðωÞ
ω2þ2iγω−ω2

c1
. Finally, with Δφ̃bðωÞ ¼

ωrfhτ̃iðωÞ, the generator-phase to beam-phase transfer
function is

Δφ̃b

Δθ̃g
¼ −

ω2
c1

ω2 þ 2iγdω − ω2
c1
: ð19Þ

The simple derivation carried out here is incomplete in that
it misses the Robinson damping (or possibly antidamping)
term associated with beam loading. This term can be
recovered by extending the framework of this section
(see e.g., [13,25,30,31]); we omit the derivation since that
term will appear in Sec. IVA from solving the Vlasov
equation.
In linear approximation, the equations of motion (9)

and (10) can be regarded as the canonical equations

associated with Hamiltonian H ¼ H0 þHg, where H0 ¼
αc
2
δ2 þ ω2

s
2αc

τ2 and

Hg ¼ −τω2
c1ΔθgðtÞ=ðωrfαcÞ: ð20Þ

IV. BEAM RESPONSE DERIVED FROM THE
VLASOV EQUATION

The linearized Vlasov equation is solved upon writing
the bunch distribution function in the longitudinal phase
space as the sum of the equilibrium f0ðτ; δÞ and a small
perturbation fðτ; δ;ωÞ ¼ f0ðτ; δÞ þ e−iωtf1ðτ; δ;ωÞ. We
will denote with ρ0ðτÞ and ρ1ðτÞ the associated longitudinal
densities. At equilibrium the total voltage is the sum of (1)
and (7):

V0ðτ; ρ0Þ ¼ V cosðωrfτ þ ψ sÞ
− 2IavgRnFn cosϕrn cosðnωrfτ − ϕrn −ΦnÞ:

ð21Þ

The notation emphasizes the voltage dependence on the
form of the equilibrium ρ0 through the form factor
amplitude Fn and phase Φn. We assume that the main-
cavity parameters are dynamically adjusted to maintain the
main-cavity voltage V on target. Upon defining the rf
potential

U0ðτ; ρ0Þ ¼ −
Z

τ eV0ðτ0; ρ0Þ − U0

E0T0

dτ0; ð22Þ

the equilibrium is found by solving the Haissinski equation
ρ0ðτÞ ¼ e−U0ðτ;ρ0Þ=αcσ2δ=

R
e−U0ðτ0;ρ0Þ=αcσ2δdτ0, where σδ is the
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equilibrium rms energy spread [19,32]. The first-order
perturbation to the Hamiltonian for particle motion at
equilibrium H0 ¼ αcδ

2=2þ U0ðτ; ρ0Þ is

H1ðτÞ ¼ −
Z

τ eV1ðτ0; ρ1Þ
E0T0

dτ0; ð23Þ

with V1ðτ;ρ1Þ¼−Iavg
P∞

p¼−∞ ρ̃1ðpωrfÞZðpωrfþωÞe−ipωrfτ;
where Z ¼ Zð1Þ þ ZðnÞ is the sum of the main cavity and
HHC fundamental-modes’ impedance (Appendix B). Upon
introducing the action-angle variables ðJ;φÞ and the oscil-
lation frequency ωsðJÞ ¼ ∂H0=∂J, we are led to the linear-
ized Vlasov equation in f1:

−iωf1 þ ωsðJÞ
∂f1
∂φ −

∂f0
∂J

∂H1

∂φ ¼ ∂f0
∂J

∂Hg

∂φ : ð24Þ

The equation is solved by mode analysis (see Appendix C
for the details) under the assumption that the canonical
transformation to action-angle variables has the form
τ ¼ rðJÞ cosφ, with the single-particle oscillation amplitude

rðJÞ being a function of the action only. This form captures
the two cases of interest in this paper: (i) linear motion (no
HHC) and (ii) optimalHHC tuning. It is exact in the first case;
approximate but reasonably accurate in the second [11].
Radiation damping is accounted for heuristically by insertion
of a mode-dependent term, see Eq. (C1). The rhs term of
Eq. (24) involves the external-generator noise term:Hg is the
same as (20) with ΔθgðtÞ ¼ e−iωtΔθ̃gðωÞ. In action-angle
variables,

∂Hg

∂φ ¼ ω2
c1Δθ̃gðωÞ
ωrfαc

rðJÞ sinφ; ð25Þ

withωc1 as in (16).Once the solution toEq. (24) is known, the
beam-centroid response is calculated as

Δφ̃bðωÞ ¼ ωrfhτ̃iðωÞ ¼ ωrf

Z
τf1ðτ; δ;ωÞdτdδ; ð26Þ

with the final result

Δφ̃b

Δθ̃g
≃
ω2
c1

αc

G1;1

1þ iÎ½G1;1ζ1 þ Gn;nζn� þ Î2½G1;1Gn;n − ðG1;nÞ2�ζ1ζn
ð27Þ

for the beam response function, where

Î ¼ eωrfIavg
E0T0

ð28Þ

(units of Hz2=Ω) is the scaled beam current parameter;

ζ1ðωÞ ¼
X
p¼�1

pZð1Þðpωrf þ ωÞ; ð29Þ

ζnðωÞ ¼
X
p¼�n

pZðnÞðpωrf þ ωÞ ð30Þ

are the effective impedances associated with the funda-
mental modes of the main and harmonic cavity; and the
functions Gp;qðωÞ are defined in (C13).

A. No HHC (short-bunch approximation)

In the absence of HHC ðζn ¼ 0Þ, the beam response
function (27) reduces to

Δφ̃b

Δθ̃g
¼ ω2

c1

αc

1
1

G1;1ðωÞ þ iÎζ1ðωÞ
: ð31Þ

Because the longitudinal motion in the rf bucket is linear
and the synchrotron tune ωs is independent of the oscil-
lation amplitude, the evaluation ofG1;1ðωÞ defined in (C13)

is trivial; after expanding the Bessel functions to first order
(short-bunch approximation, ωrfστ ≪ 1), we have

G1;1 ≃
4πωs

ω2 þ 2iγdω − ω2
s

Z
∞

0

∂f0
∂J

r2

4
dJ

¼ −
αc

ω2 þ 2iγdω − ω2
s
; ð32Þ

since 2π
R∞
0 dJf0ðJÞ ¼ 1 and for linear motion

r ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jαc=ωs

p
. Expanding the main-cavity effective

impedance through first order is generally a good approxi-
mation, so that ζ1ðωÞ ≃ ζ1ð0Þ þ ζ01ð0Þω with ζ1ð0Þ and
ζ01ð0Þ given in (B5) and (B7), Eq. (31) becomes

Δφ̃b

Δθ̃g
¼ −

ω2
c1

ω2 þ 2iω½γd − αc
Î
2
ζ01ð0Þ� − ½ω2

s þ iαcÎζ1ð0Þ�
:

ð33Þ
Inspection of the denominator leads to the following

identification of the coherent mode frequency ωc and
Robinson damping rate γR:

ω2
c ¼ ω2

s þ iαcÎζ1ð0Þ ¼ ω2
s þ ðω2

c1 − ω2
sÞ ¼ ω2

c1 ð34Þ

γR ¼ −
1

2
αcÎζ01ð0Þ ¼ 2

eαcIavg
E0T0

RL1QL1 sin 2ϕr1 cos2 ϕr1:

ð35Þ
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In (34), we made use of (16) with F1 ≃ 1 and the definitions
(28) and (B5) for the current parameter Î and ζ1ð0Þ to write

iαcÎζ1ð0Þ ¼ αcÎRL1 sin 2ϕr1 ¼
eαcωrfIavg

E0T0

RL1 sin 2ϕr1

¼ eαcωrfV sinψ s

E0T0

IavgRL1 sin 2ϕr1

V sinψ s
¼ ω2

s − ω2
c1:

ð36Þ

The third equality above follows from multiplying the
numerator and denominator by V sinψ s. In conclusion, we
have recovered the expression (19) for the beam response
function but adjusted to have γtot ¼ γd þ γR in place of γd,
thus now accounting for Robinson damping.

B. HHC with optimum tuning

With optimum HHC settings, the rf total potential is
dominated by the quartic term ∝ τ4 and the canonical
transformation from action angle to the longitudinal coor-
dinate is approximately τ≃rðJÞcosφ, where rðJÞ ¼
½ ffiffiffi

π
p

σ2τJ=ð
ffiffiffi
2

p
σδÞ�1=3 [11]. The quantities relevant in the

calculation include the single-particle oscillation frequency
ωsðrÞ, a function linear in r, the average oscillation
frequency hωsi ¼

R
dφ

R
dJf0ðJÞωsðJÞ within a bunch

at equilibrium, and the equilibrium f0:

ωsðrÞ ¼
23=4π3=2

Γ2ð1=4Þ hωsi
r
στ

≃ 0.712 × hωsi
r
στ

; ð37Þ

hωsi ¼
2 × 23=4π

Γ2ð1=4Þ
αcσδ
στ

≃ 0.803 ×
αcσδ
στ

; ð38Þ

f0ðrÞ ¼
23=4

Γ2ð1=4Þστσδ
e−2π

2r4=½Γ4ð1=4Þσ4τ �; ð39Þ

where Γð1=4Þ ≃ 3.62 is the Euler function. All these
quantities are expressed in terms of the optimum equilib-
rium rms bunch length στ

σ2τ ¼ σδ
4π

ffiffiffi
3

p
=Γ2ð1=4Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn2 − 1Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
αcE0T0

eVω3
rf sinψ s

s
: ð40Þ

With the above formulas in hand, the functions Gp;qðωÞ
introduced in (C13) can be written as

Gp;q ¼−
4π

ω2
rfpq

Z
∞

0

∂f0
∂r

ωsðrÞJ1ðpωrfrÞJ1ðqωrfrÞdr
ω2þ 2iγdω−ω2

sðrÞ

¼−
16× 21=4

pqΓð1=4Þω2
rfhωsiσδστ

×
Z

∞

0

dxe−x
4 x4J1ðpc2ωrfστxÞJ1ðqc2ωrfστxÞ

ω̂2þ 2iγ̂dω̂− x2
; ð41Þ

where ω̂ ¼ c1ω=hωsi and γ̂d ¼ c1γd=hωsi are the scaled
(and dimensionless) frequency and radiation damping

rate with numerical coefficients c1 ¼ Γð1=4Þffiffi
2

p
π
≃ 0.816 and

c2 ¼ Γð1=4Þ
21=4

ffiffi
π

p ≃ 1.72. Because radiation damping is included

(γ̂d > 0) and the ω̂’s of interest are real numbers, the x
integral is properly defined along the entire positive
real axis.
The response function (27), with Gp;q as in (41), is not

particularly revealing without resorting to a numerical cal-
culation, see Sec. V. It is instructive to consider the jω̂j ≫ 1
limit in the approximation where the Bessel functions in
(41) are expanded to first order, although typically this
approximation applied toGn;n tends not to be very accurate.
Nevertheless, taking this limit

R
∞
0 dxe−x

4

x4J1ðpc2ωrfστxÞ×
J1ðqc2ωrfστxÞ≃ ð3=64ÞΓð1=4Þ×pqω2

rfσ
2
τ , and we find

G1;1 ≃ Gn;n ≃ −
g11αc

ω2 þ 2iγdω
; ð42Þ

with numerical coefficient g11 ¼ 6π3

Γ4ð1=4Þ≃ 1.08. Equation (27)

becomes

Δφ̃b

Δθ̃g
≃

g11ω2
c1

ω2 þ 2iγdω − iαcg11ÎζðωÞ

≃
g11ω2

c1

ω2 þ 2iω½γd − αcg11 Î
2
ζ0ð0Þ� − i½αcg11Îζð0Þ�

; ð43Þ

where we expanded the total effective impedance ζðωÞ ¼
ζ1ðωÞ þ ζnðωÞ through the first order in ω. Inspecting the
denominator, we can read off the coherent-mode oscillation
frequency ωc and Robinson damping γR:

ω2
c ≃ iαcg11Îζð0Þ ¼ g11

�
ω2
c1 þ

�
1

Fn
− 1

�
ω2
s

�
; ð44Þ

γR ≃ −
1

2
αcg11Îζ0ð0Þ

¼ 2g11
eαcIavg
E0T0

ðRL1QL1 sin 2ϕr1cos2ϕr1

þ RnQn sin 2ϕrncos2ϕrnÞ; ð45Þ

having used

iαcÎζ1ð0Þ ¼ iαcÎRL1 sin 2ϕr1 ¼
eαcωrfIavg

E0T0

RL1 sin 2ϕr1

¼ ω2
s − ω2

c1; ð46Þ

iαcÎζnð0Þ ¼ αcÎnRn sin2ϕrn ¼
eαcωrfIavg

E0T0

nRn sin2ϕrn

¼ eαcωrfV sinψ s

E0T0

IavgnRn sin2ϕrn

V sinψ s
¼−

ω2
s

Fn
: ð47Þ
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Equation (46) is similar to (36). The last equality in (47)
follows from (8). Here ωs and ωc1 represent the incoherent
and coherent tunes that would be observed in a similar
storage ring without HHC if synchronous phase ψ s and
detuning ϕr1 were the same as when the HHC is present.
With reference to Eq. (44), for light sources, a typical value
for the form-factor amplitude is aboutFn ≃ 0.9 implying that
1=Fn − 1 is a small number. In the particular case where
ωc1 ≃ ωs1 and recalling g11 ≃ 1.08, Eq. (44) is consistent
with ωc being within about 10% of ωc1. Numerical studies
based on the more accurate formula indicate that, for typical
machine parameters, the difference tends to be smaller.

V. NUMERICAL EXAMPLES

A. The ALS

We discuss two examples. The first, based on ALS, is
meant to provide a confirmation of our model; the second,
based on the ALS-U [33], to highlight its limitations. The
relevant parameters of the two machines are reported in
Table I.
The ALS has currently three normal-conducting, third-

harmonic single-cell cavities for a total Rs ¼ 5.1 MΩ
impedance not far from Rs ¼ 5.9 MΩ, the optimum shunt
impedance for the nominal 500 mA current. The optimum
(rms) bunch length is just below σz ¼ 17 mm. Because the
ALS operates with a single but relatively long (10%) gap in
the beam fill, transient beam-loading effects are strong
enough to prevent the attainment of the theoretical bunch
lengthening [34]. For the purpose of this exercise, the ideal
uniform-fill operational scenario is assumed.

The theory predicts that the beam response with and
without HHCs is very close, a result confirmed by macro-
particle simulations with ELEGANT [35], see Fig. 1 (left
images). The simulations were carried out using ELEGANT’s
“pseudo-mode” functionality, which effectively allows one
to model a uniformly populated multibunch beam by
tracking only particles in a single bunch. This is adequate
for studying the mode-zero multibunch collective motion.
Tracking was done with 10k particles/bunch over about
100k turns with a user-defined sinusoidal perturbation
applied to the main-cavity generator phase.
The response function was calculated based on the

beam-centroid output recorded at every turn by carrying
out a simple discrete Fourier transform (DFT). We found
that even with the allowance of enough time for the initial
transients to die off, the DFT result showed sensitivity to
the choice of the exact range number of turns. Therefore we
repeated the DFT using varying length data records
between 20k and 100k turns. The data points (error bars)
in the figures represent the average response (rms spread).
In the simulations, the HHC tuning was set so as to yield
the “optimum” bunch length.

B. The ALS-U

The longitudinal dynamics of the ALS-U will be notably
different from that of the ALS. The lower main rf cavity
voltage (0.6 vs 1.2 MV) and momentum compaction
(2 × 10−4 vs 9 × 10−4) will result in a markedly lower
incoherent synchrotron tune. The present project goal is to
maintain the existing two main rf cavities. The β ≃ 3
coupling coefficient of these cavities is low compared to

FIG. 1. Amplitude of the beam-centroid response to a sinusoidal perturbation of the rf generator phase with frequency f ¼ ω=2π, in
the presence (top) and absence (bottom) of higher-harmonic passive cavities as calculated by macroparticle simulations (dots) and theory
(curves). The curves with/without 3HCs are from Eq. (27) [with the functions Gp;q defined in (41)] and (33), respectively. The peak
frequency response is higher and the peak amplitude is lower in the ALS (left) compared to the ALS-U (right). Note the difference in
scale in both the horizontal and vertical axes.
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the ALS-U optimum (β ≃ 10) and a coupler modification
will be made to increase β. Here we assume optimum β.
The ALS-U is being designed with two single-cell third-

harmonic cavities for a total Rs ¼ 1.4 MΩ, somewhat
larger than the Rs ¼ 0.76 MΩ optimum [36]. Extensive
simulations of the ALS-U indicate that with the 3HCs tuned
to yield the optimum bunch length (στ ≃ 15 mm), the beam
exhibits an ac Robinson-like instability with the signature
of dipole-quadrupole coupling. Simulations also show that
the instability, which saturates to persistent bunch-centroid
and length oscillations, can be suppressed with a conven-
tional bunch-by-bunch longitudinal feedback (LFB) system
but the LFB is not included in the results reported here. The
simulated beam response to a main-cavity generator-phase
sinusoidal perturbation is shown in the Fig. 1 top-right
image and, as expected, differs somewhat from the theory
in the dipole approximation. The simulations indicate a
resonant peak at about 1.3 kHz, while the theory places the
dipole coherent motion frequency just above 1 kHz. (In
the picture we do not report the simulated response close
to the peak because the occurring instability interferes with
the response beyond linear theory.)
In the absence of harmonic cavities, the simulated

response follows the expected behavior (bottom-right
image): No instability is observed in this case, implying
that the coupled dipole/quadrupole instability is indeed

caused by the 3HC. The comparison with the ALS response
suggests that ALS-U is potentially more sensitive to rf
noise: because of the lower resonant frequency (the rf noise
scales with some inverse power of frequency) and because
of the higher peak response. Either reason, though, is
essentially neutral to the presence of HHC, depending on
the lattice and main-cavity parameters (specifically, the
lower peak value in the ALS response is due to the larger
Robinson damping contributed by the main cavity).

VI. CONCLUSIONS

The main conclusion to be drawn from this study is the
realization of the limited role that passive higher-harmonic
cavities play in determining the beam response when the
dipole approximation applies.
In general, the beam-response function has the character-

istics of a resonance, with peak frequency and peak
amplitude related to the real and imaginary parts of the
complex eigenfrequency of the system coherent mode(s).
Mathematically, the singularities of the response function
in the complex-ω plane are the roots of the dispersion
equation that identify the coherent modes’ eigenfrequen-
cies. As it turns out, the real part of the dipole-motion
eigen-frequency is largely determined by the main-cavity
parameters, and specifically the external generator syn-
chronous phase and voltage.

TABLE I. Relevant ALS-U and ALS parameters.

ALS-U ALS

Beam energy, E0 2.0 GeV 1.9 GeV
Circumference, C0 196.5 m 196.8 m
Average beam current, Iavg 500 mA 500 mA
Momentum compaction, αc 2.03 × 10−4 0.9 × 10−3

Energy loss/turn, U0 (w/IDs) 0.314 MeV (no IDs) 0.228 MeV
Synchronous phase without/with HHC, ψs 58.37=53.84 deg 79.04=77.66 deg
Energy relative spread, σδ 1 × 10−3 9.6 × 10−4

Longitudinal radiation damping time, τd 7.8 ms 5.0 ms

Natural bunch length (no HHC), σz0=στ0 3.93 mm/13.1 ps 5.01 mm/16.7 ps
Stretched bunch length (with HHC), σz=στ 15.0 mm/50.0 ps 16.7 mm/55.9 ps
Harmonic number h 328 328
Generator rf frequency, ωrf 500.394 MHz 499.654 MHz
Main-cavity voltage, V 0.6 MV 1.2 MV
Main-cavity loaded coupling factor, β 10.64 2.75
Main-cavity loaded RL1=QL1, 0.8422 MΩ=3; 094 2.616 MΩ=9; 611
Main-cavity detuning (no HHC), ϕr1=fr1 50 deg =96 kHz 64.9 deg =55.6 kHz
Main-cavity detuning (with HHC), ϕr1=fr1 49 deg =91 kHz 64.5 deg =54.5 kHz
Beam-loading parameter, Y 1.40 2.18

HHC higher-harmonic number, n 3 3
HHC Rn=Qn 1.4 MΩ=34; 000 5.1 MΩ=21; 000
HHC detuning angle/frequency ϕrn=frn −82.4 deg =−165 kHz −85.1 deg =−416 kHz
Synchronous frequency (no HHC), ωs=2π 2.5 kHz 8.22 kHz
Synchrotron tune (no HHC), νs ¼ ωs=ω0 0.0016 0.0054
Average synchronous frequency (with HHC), hωsi=2π 0.54 kHz 2.98 kHz
Robinson damping time (no HHC), τR 6.2 ms 0.40 ms
Robinson nominal damping time (with HHC), τR 7.1 ms 0.41 ms
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At first it may seem surprising that the presence of
passive HHCs, which affect significantly the single-particle
motion, should not have a more visible impact on the
coherent motion of a bunch as a whole, an observation
already made, e.g., in [24]. But this is not unlike dipole
motion in other contexts. For example, coherent transverse
betatron oscillations in the presence of (direct) space
charge are entirely dependent on the external focusing,
not interparticle forces. Where HHCs can potentially have a
more noticeable role is in the modification of Robinson
damping, with a consequence on the response peak
amplitude rather than its frequency. The effect is dependent
on the system specific parameters. In both the examples
discussed here, the Robinson antidamping contributed by
the HHC happens to be modest compared to the Robinson
damping from the main cavity and radiation damping.
We qualify these conclusions by emphasizing their

validity in the dipole approximation. HHCs can, however,
induce significant dipole/quadrupole coupling (see [16,24]
and the ALS-U example in Sec. V) with the effect of a more
noticeable modification of the beam-response resonant
frequency. There is no conceptual difficulty in writing
an extended beam-response theory to include dipole/quad-
rupole coupling (this with an account of a longitudinal
feedback system will be reported elsewhere; elements
of this theory are already in Refs. [11,13,16,24]). Less
obvious is how the formalism can be generalized to include
the “overstretching” regime, where the HHC tuning is set to
the point where the total rf potential develops a double well
and conventional perturbation theory does not apply. This
generalization would be of interest since it would apply to a
regime where simulations indicate that the dipole/quadru-
pole coupling becomes more prevalent.
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APPENDIX A: MAIN-CAVITY TOTAL VOLTAGE

A uniformly filled electron beam consisting of identical
bunches with population N and profile ρðτÞ concentrated at
τ ≃ 0 and observed at the cavity has instantaneous current

IðtÞ ¼ −eN
X∞

m¼−∞
ρðt −mTrf − t0Þ: ðA1Þ

Interacting with the cavity fundamental mode associated
with the wake function W (see Appendix B), the beam
induces the voltage VbðtÞ ¼

R
Iðt0ÞWðt − t0Þdt0. In the

frequency domain, upon changing the integration variable
from t0 to τ0 ¼ t0 −mTrf − t0,

VbðtÞ ¼ −
eN
2π

Z
dωZðωÞ

Z
dt0ρðt0 −mTrf − t0Þe−iωðt−t0Þ

¼ −
eN
2π

X∞
m¼−∞

Z
dωZðωÞe−iωteiωmTrfeiωt0

×
Z

dτ0ρðτ0Þeiωτ0 : ðA2Þ

Introducing the Fourier transform ρ̃ðωÞ ¼ R
dτρðτÞeiωτ

and the Poisson sum formula
P∞

m¼−∞ eiωmTrf ¼
2π

P∞
p¼−∞ δðωTrf − 2πpÞ, we find

VbðtÞ ¼−eN
X∞
p¼−∞

Z
dωδðωTrf − 2πpÞZðωÞρ̃ðωÞe−iωðt−t0Þ

¼−
eN
Trf

X∞
p¼−∞

ZðωrfpÞρ̃ðωrfpÞe−iωrfpðt−t0Þ: ðA3Þ

Assume that the impedance of the main-cavity fundamental
mode is sufficiently narrow band and only the p ¼ �1
terms contribute to the sum, we conclude (Iavg ¼ eN=Trf ):

VbðtÞ ≃ −IavgZðωrfÞρ̃ðωrfÞe−iωrf ðt−t0Þ þ c:c:

¼ −2IavgRsF1 cosϕr1 cosðωrft − ϕr1 −Φ1 − ωrft0Þ;
ðA4Þ

where we have made use of (B1) and (B4) to write
ZðωrfÞ ¼ Rs cosϕr1eiϕr1 and introduced the amplitude F1

and phase Φ1 of the bunch complex-number form-factor

F1eiΦ1 ≡ ρ̃ðωrfÞ: ðA5Þ

For a short bunch ρ̃ðωrfÞ ≃
R
dτð1þ iωrfτ − ω2

rfτ
2=

2ÞρðτÞ ¼ 1 − ω2
rfhτ2i=2þ iωrfhτi, and therefore F1 ≃ 1 −

ω2
rfσ

2
τ=2 and

Φ1 ≃ ωrfhτi: ðA6Þ
Equation (A4) can be cast in the phasor notation as

VbðtÞ ¼ Refe−iωrf tṼbg; ðA7Þ

with beam-voltage phasor Ṽb ¼ ZðωrfÞĨb and beam-cur-
rent phasor Ĩb ¼ −2IavgF1eiΦ1eiωrf t0. Similarly, phasors can
be used to represent the generator and total voltages

VgðtÞ ¼Refe−iωrf tṼgg ¼ IgRL1 cosϕr1 cosðωrft−ϕr1þ θgÞ;
ðA8Þ

VðtÞ ¼ Refe−iωrf tṼg ¼ V cosðωrftþ θVÞ; ðA9Þ
where we wrote Ṽ ¼ Ve−iθV for the total voltage phasor
and, based on the RLC circuit model, Ṽg ¼ ZðωrfÞIge−iθg .
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A test particle with time-of-flight coordinate τ travels
through the cavity at times t ¼ t0 þ nT0 þ τ. The require-
ment that in Eq. (A9) the synchronous particle (τ ¼ 0) sees
the synchronous phase ψ s defines t0 ¼ ðψ s − θVÞ=ωrf .
Inserting t ¼ t0 þ nT0 þ τ in (A4),

VbðτÞ ¼−2IavgRsF1 cosϕr1 cosðωrfτ−ϕr1−Φ1Þ; ðA10Þ

and similarly inserting in (A8),

VgðτÞ ¼ IgRL1 cosϕr1 cosðωrfτ þ ψ s − θV − ϕr1 þ θgÞ;
ðA11Þ

which leads to the definition ψ s;g ¼ ψ s − θV − ϕr1 þ θg for
the generator voltage synchronous phase. In conclusion,
with the generator and beam peak voltages defined in (2)
and (3) we can write the total main-cavity voltage as

V cosðωrfτ þ ψ sÞ ¼ Vg cosðωrfτ þ ψ s;gÞ
− Vb cosðωrfτ − ϕr1 −Φ1Þ: ðA12Þ

The generator voltage is susceptible to amplitude
(Ig ¼ Ig0 þ ΔIg) or phase (θg ¼ θg0 þ Δθg) noise. The
amplitude perturbation is generally less significant and
in this paper is neglected. Since we are not interested in
absolute timing, it does no harm to set θg0 ¼ 0.
We are interested in the first-order expansions of Vg in

the combined τ andΔθg (i.e., we regard and neglect τΔθg as
second order) and of Vb in ðτ −Φ1=ωrfÞ ¼ ðτ − hτiÞ where
we made use of Eq. (A6) to represent Φ1:

VgðτÞ ≃ Vg cosψ s;g − τVgωrf sinψ s;g − ΔθgVg sinψ s;g;

ðA13Þ

VbðτÞ ≃ −Vb cosϕr1 − ðτ − hτiÞVbωrf sinϕr1: ðA14Þ

APPENDIX B: rf CAVITY FUNDAMENTAL-
MODE IMPEDANCE

At time t > 0, the induced-voltage response of an rf
cavity fundamental mode to the passage of a pointlike
charge at t ¼ 0 is described by the wake function
WðtÞ¼2αRe−αt½cosðω̄tÞ− α

ω̄sinðω̄tÞ�, where α¼ωr=ð2QÞ,
ω̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
r − α2

p
¼ ωr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=ð2QÞ2

p
, and ωr is the reso-

nant frequency; WðtÞ ¼ 0 for t ≤ 0 (causality). The asso-
ciated impedance ZðωÞ ¼ R∞

−∞ dteiωtWðtÞ is

ZðωÞ ¼ R
1þ iQðωr

ω − ω
ωr
Þ ¼ R cos½ϕðωÞ�eiϕðωÞ; ðB1Þ

with the angle ϕðωÞ defined as

tanϕðωÞ ¼ Q

�
ω

ωr
−
ωr

ω

�
≃ 2Q

ω − ωr

ωr
: ðB2Þ

Note that in the convention adopted here ϕðωÞ is positive
for ω − ωr > 0. It is understood that the main cavity R and
Q should be interpreted as the loaded shunt impedance
RL1 ¼ RU1=ð1þ βÞ and quality factor QL1 ¼ QU1=
ð1þ βÞ, where β is the coupling factor and RU1 and
QU1 are the unloaded quantities. For passive HHCs without
couplers, there is no ambiguity; if a coupler is present, the
loaded R and Q should be used.
We are interested in the Taylor expansion of the effective

impedance ζqðωÞ in ω about the frequency �qωrf (q ¼ 1

for the main cavity and q ¼ n for the HHC):

ζqðωÞ≡
X
p¼�q

pZðpωrf þ ωÞ ≃ iqR sin 2ϕr

−
�
4Q
ωrf

R sinð2ϕrÞcos2ϕr

�
ω

−
�
i
2QRcos2ϕr

qω2
rf

½cos 2ϕr

þ 2Qðsin 2ϕr þ sin 4ϕrÞ�
�
ω2 ðB3Þ

where ϕr ≡ ϕðω ¼ qωrfÞ, with

tanϕr ≃ 2Q
qωrf − ωr

ωr
; ðB4Þ

is the detuning angle. In the cases studied in this paper, the
second-order term is small in the range of interest and can
be neglected. Through first order, we write the effective
total impedance for the combined main cavity and HHC as
ζðωÞ ≃ ζð0Þ þ ζ0ð0Þω with ζð0Þ ¼ ζ1ð0Þ þ ζnð0Þ, ζ0ð0Þ ¼
ζ01ð0Þ þ ζ0nð0Þ, and

ζ1ð0Þ ¼ iRL1 sin 2ϕr1; ðB5Þ

ζnð0Þ ¼ inRn sin 2ϕrn; ðB6Þ

ζ01ð0Þ ¼ −ð4RL1QL1=ωrfÞ sin 2ϕr1 cos2 ϕr1; ðB7Þ
ζ0nð0Þ ¼ −ð4RnQn=ωrfÞ sin 2ϕrn cos2 ϕrn: ðB8Þ

APPENDIX C: DERIVATION OF THE RESPONSE
FUNCTION FROM THE SOLUTION OF THE

LINEAR VLASOV EQUATION

The prevalent method to solve the linearized Vlasov
equation involves the azimuthal/radial mode decomposi-
tion f1ðφ; J;ωÞ ¼

P∞
m¼−∞ RmðJ;ωÞeimφ. Written in terms

of the scaled current parameter Î ¼ eωrfIavg=E0T0 and
derivative of the bunch equilibrium f00 ¼ ∂f0=∂J, Eq. (24)
becomes [19,27]
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ðωþ ijmjγd −mωsÞRm

þ 2πimÎf00
X∞
p¼−∞

Zðpωrf þ ωÞ
pω2

rf

H�
m;pðJÞ

×
X∞

m0¼−∞

Z
∞

0

dJ0Rm0 ðJ0ÞHm0;pðJ0Þ ¼ rhs; ðC1Þ

where the term ijmjγd, with γd ≡ τ−1d > 0, is meant to
capture the effect of radiation damping [37] and
Hm;pðJÞ ¼ ð2πÞ−1 R 2π

0 eimφþipωrfr cosφdφ ¼ imJmðpωrfrÞ,
Jm being the Bessel function. The rhs of (C1) has the form

rhs ¼ if00

Z
2π

0

dφe−imφ
∂Hg

∂φ ¼ iΔΘ̃gðωÞf00
rðJÞ
2π

×
Z

2π

0

dφe−imφ sinφ

¼ δ1jmjsignðmÞΔΘ̃gðωÞf00
rðJÞ
2

; ðC2Þ

where ΔΘ̃gðωÞ≡ ω2
c1Δθ̃gðωÞ=ðωrfαcÞ is the normalized

generator phase error. We proceed by assuming the dipole
approximation and retaining only the terms m ¼ �1 in the
azimuthal-mode expansion, which is sensible as the driving
term (C2) is dipolar in nature. However, as discussed in
Sec. V, the quadrupole mode could be driven indirectly by
this excitation if a strong dipole/quadrupole coupling were
present; in that case, the effect would not be captured in the
dipole approximation.
Having introduced the short hand Zp ≡ Zðpωrf þ ωÞ ¼

Zð1Þðpωrf þ ωÞ þ ZðnÞðpωrf þ ωÞ for the total impedance,

JðpÞjmj ¼ JjmjðpωrfrÞ for the relevant Bessel function and

used J−mðxÞ ¼ −JmðxÞ, the left side of Eq. (C1) can be cast
in the form (m ¼ �1)

ðωþ iγd −mωsÞRm

þ 2πimÎ
f00
ω2
rf

X
p

pZp
JðpÞ1

p

�Z
∞

0

dJ0R1

JðpÞ1

p

þ
Z

∞

0

dJ0R−1
JðpÞ1

p

�
¼ rhs: ðC3Þ

With the further definition rpm ¼ R∞
0 dJRmJ

ðpÞ
1 =p, and

exploiting the assumption that the main and harmonic
cavity fundamental-mode impedances are narrow band
about the fundamental ωrf and higher nωrf harmonic,
respectively, we split the impedance sum into two separate
sums:

X
p

pZp
JðpÞ1

p
½rp1 þ rp−1� ≃

X
p¼�1

pZð1Þ
p

JðpÞ1

p
½rp1 þ rp−1�

þ
X
p¼�n

pZðnÞ
p

JðpÞ1

p
½rp1 þ rp−1�:

ðC4Þ
Observing that J1ð−pxÞ ¼ −J1ðpxÞ and therefore

JðpÞ1 =p ¼ JðjpjÞ1 =jpj and r−pm ¼ rpm, the two terms on the

rhs of (C4) read ðZð1Þ
1 − Zð1Þ

−1Þr1Jð1Þ1 and nðZðnÞ
n −

ZðnÞ
−nÞrnJðnÞ1 =n, respectively, having introduced r1 ≡ r11 þ

r1−1 and rn ≡ rn1 þ rn−1. With this result and the further

definition ζq ≡ qðZðqÞ
q − ZðqÞ

−qÞ, where q ¼ 1 or n, we can
write (C3) as

ðωþ iγd −mωsÞRm þ 2πim
Î
ω2
rf

f00

�
ζ1J

ð1Þ
1 r1 þ ζn

JðnÞ1

n
rn
�

¼ mΔΘ̃gf00
r
2
: ðC5Þ

Next, multiply the above equation by JðqÞ1 =q, divide by
ðωþ iγd −mωsÞ, integrate over the action J

rqm þ 2πim
Î
ω2
rf

�
ζ1r1

q

Z
f00J

ð1Þ
1 JðqÞ1 dJ

ωþ iγd −mωs

þ ζnrn

nq

Z
f00J

ðnÞ
1 JðqÞ1 dJ

ωþ iγd −mωs

�
¼ mΔΘ̃g

q

Z ðr=2Þf00JðqÞ1 dJ
ωþ iγd −mωs

ðC6Þ
and introduce the functions

Gp;q
m ðωÞ≡ 2π

ω2
rfpq

Z
dJ

f00J
ðpÞ
1 JðqÞ1

ωþ iγd −mωs
; ðC7Þ

Dq
mðωÞ≡ 2π

ω2
rfq

Z
dJ

ðr=2Þf00JðqÞ1

ωþ iγd −mωs
; ðC8Þ

to write (C6) as

rqm þ imÎ½ζ1r1G1;q
m þ ζnrnG

n;q
m � ¼ mΔΘ̃g

ω2
rf

2π
Dq

m: ðC9Þ

More explicitly, for m ¼ �1, the above equation translates
into

rq1 þ iÎ½ζ1r1G1;q
1 þ ζnrnG

n;q
1 � ¼ ΔΘ̃g

ω2
rf

2π
Dq

1; ðC10Þ

rq−1 − iÎ½ζ1r1G1;q
−1 þ ζnrnG

n;q
−1 � ¼ −ΔΘ̃g

ω2
rf

2π
Dq

−1: ðC11Þ

Upon taking the sum of the two equations above, first with
q ¼ 1 and then q ¼ n, we obtain the system
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�
1þ iÎζ1G1;1 iÎζnGn;1

iÎζ1Gn;1 1þ iÎζnGn;n

��
r1

rn

�
¼ ΔΘ̃g

ω2
rf

2π

�
D1

Dn

�
;

ðC12Þ

having introduced the following additional functions:

Gp;qðωÞ≡Gp;q
1 −Gp;q

−1

¼ 4π

ω2
rfpq

Z
dJf00

ωsðJÞJ1ðpωrfrÞJ1ðqωrfrÞ
ω2 þ 2iγdω − ω2

sðJÞ
;

ðC13Þ

and

DqðωÞ≡Dq
1 −Dq

−1

¼ 4π

ω2
rfq

Z
dJf00

ðr=2ÞωsðJÞJ1ðqωrfrÞ
ω2 þ 2iγdω − ω2

sðJÞ
: ðC14Þ

In Eqs. (C13) and (C14), we neglected γ2d compared to ω2
s .

The approximate solution of (C12)

r1 ¼ ω2
rf

2π
ΔΘ̃g

D1 − iÎζnðDnG1;n −D1Gn;nÞ
det

≃
ω2
rf

2π
ΔΘ̃g

D1

det
;

ðC15Þ

rn ¼ ω2
rf

2π
ΔΘ̃g

Dn þ iÎζ1ðDnG1;1 −D1G1;nÞ
det

≃
ω2
rf

2π
ΔΘ̃g

Dn

det
;

ðC16Þ

where

det≡1þ iÎðG1;1ζ1 þ Gn;nζnÞ þ Î2½G1;1Gn;n − ðG1;nÞ2�ζ1ζn
ðC17Þ

is inserted in (C5) to find

ðωþ iγd − ωsÞR�1 ≃ ΔΘ̃gf00
r
2

��1

det

�
: ðC18Þ

The approximation in (C18) comes from neglecting
terms proportional to ΔΘ̃gÎ and ΔΘ̃gÎ

2. Equation (C18)
leads to

R1 þ R−1 ¼ f00
rωs

ω2 þ 2iγdω − ω2
s

ΔΘ̃gðωÞ
det

; ðC19Þ

and finally

hτi ¼ π

Z
dJðR1 þ R−1Þr ¼

ΔΘ̃gðωÞS1ðωÞ
det

; ðC20Þ

with

S1ðωÞ ¼ π

Z
dJf00

r2ωs

ω2 þ 2iγdω − ω2
s
: ðC21Þ

For short bunches, the following approximations typi-
cally hold: S1 ≃ G1;1 ≃ ωrfD1. On the assumption that this
is true, hτi≡ Δφ̃b=ωrf ≃ ΔΘ̃gðωÞG1;1= det, and finally the
response function reads

Δφ̃b

Δθ̃g
≃
ω2
c1

αc

G1;1

det
: ðC22Þ
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