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System Identification of Alfred Zampa Memorial Bridge Using 
Dynamic Field Test Data  

by 

Xianfei He1, Babak Moaveni2, Joel P. Conte3, Member, ASCE,  

Ahmed Elgamal4, Member, ASCE, and Sami F. Masri5, Member, ASCE 

Abstract 

The Alfred Zampa Memorial Bridge (AZMB), a newly built long-span suspension bridge, is located 

32km northeast of San Francisco on interstate Highway I-80. A set of dynamic field tests were conducted 

on the AZMB in November 2003, just before the bridge opening to traffic. These tests provided a unique 

opportunity to identify the modal properties of the bridge in its as-built condition with no previous traffic 

loads or seismic excitation. A benchmark study on modal identification of the AZMB is performed using 

three different state-of-the-art system identification algorithms based on ambient as well as forced 

vibration measurements. These system identification methods consist of: (1) the multiple-reference 

natural excitation technique combined with the eigensystem realization algorithm, (2) the data-driven 

stochastic subspace identification method, and (3) the enhanced frequency domain decomposition 

method. Overall, the modal parameters identified using these system identification methods are found to 

be in very good agreement for each type of tests (ambient and forced vibration tests). For most vibration 

modes, the natural frequencies and mode shapes identified using the two different types of test data also 

match very well. However, the modal damping ratios identified from forced vibration test data are in 

general higher than those estimated from ambient vibration data. The identified natural frequencies and 
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mode shapes are finally compared with their analytical counterparts from a three-dimensional finite 

element model of the AZMB. The modal properties of the AZMB presented in this paper can be used as 

baseline in future health monitoring studies of this bridge. 

CE Database subject headings: Alfred Zampa Memorial Bridge; dynamic field tests; modal properties; 
system identification; natural excitation technique; stochastic subspace identification; enhanced frequency 
domain decomposition. 

Introduction 

Experimental modal analysis has been widely used in the civil engineering research community to extract 

structural modal parameters (e.g., natural frequencies, damping ratios and mode shapes) from vibration 

measurements. In classical experimental modal analysis, the frequency response functions (FRFs) in the 

frequency domain or impulse response functions (IRFs) in the time domain are usually the basis of 

system identification algorithms, which produce accurate estimates of modal parameters provided that the 

signal-to-noise ratio of the dynamic measurement data is high enough. However, it is very difficult to 

obtain FRFs or IRFs in dynamic field tests of civil structures, since typically only the structure dynamic 

response (output) can be measured in such tests. Especially in the case of large and flexible bridges (such 

as suspension and cable-stayed bridges) with natural frequencies of the predominant vibration modes in 

the range 0-1Hz, it is extremely challenging and costly to provide controlled excitation for significant 

level of response. Thus, system identification methods based on response-only measurements (output-

only) have received increasing attention and have been applied successfully in the civil engineering 

community in recent years.  

Output-only system identification methods can be classified into two main groups, namely (1) 

frequency domain methods, and (2) time domain methods. The major frequency domain methods, such as 

the peak picking (PP) method, the frequency domain decomposition (FDD) technique (Brincker et al. 

2000) and the enhanced FDD (EFDD) technique (Brincker et al. 2001), are developed based on response 

auto/cross-spectral densities. Time domain output-only system identification methods can be subdivided 

into two categories, namely (1) two-stage methods, and (2) one-stage methods. In the two-stage 

approaches, free vibration response estimates, including random decrement functions and response 
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correlation functions, are obtained in the first stage from response measurements, and then modal 

parameters are identified in the second stage using any classical system identification algorithm based on 

impulse/free response function estimates. These classical system identification algorithms include the 

Ibrahim time domain (ITD) method (Ibrahim and Mikulcik 1977), the multiple-reference Ibrahim time 

domain (MITD) method (Fukuzono 1986), the least-squares complex exponential (LSCE) method 

(Brown et al. 1979), the polyreference complex exponential (PRCE) method (Vold et al. 1982), and the 

eigensystem realization algorithm (ERA) (Juang and Pappa 1985). In contrast to two-stage approaches, 

one-stage system identification methods such as the data-driven stochastic subspace identification (SSI-

DATA) method (Van Overschee and De Moor 1996) can be used to identify modal parameters based on 

output-only measurements directly.  

In this study, three different output-only system identification algorithms were applied to dynamic 

field test data collected from the Alfred Zampa Memorial Bridge (AZMB), a newly built long span 

suspension bridge in California, USA. These methods consist of: (1) the multiple-reference natural 

excitation technique (James et al. 1993) combined with ERA (MNExT-ERA), a two-stage time-domain 

system identification method; (2) SSI-DATA, a one-stage time-domain system identification method; and 

(3) EFDD, a non-parametric frequency domain system identification method which is a sophisticated 

extension of the well-known peak picking technique. Different system identification methods provide 

modal parameter estimators with different intra-method and inter-methods statistical properties (bias, 

variance, co-variance), which depend on the amplitude and frequency content of the input excitation, the 

degree of violation of the assumed amplitude stationarity, etc. Recently, the authors have investigated the 

effects of such factors on the performance of the three system identification methods used in this study, 

based on the dynamic response of a structure (7-story reinforced concrete building) simulated using a 

three-dimensional nonlinear finite element model (Moaveni et al. 2007). It was found that for all three 

methods, the estimation bias and variability for the natural frequencies and mode shapes are very small 

and the estimation uncertainty of the damping ratios is significantly higher than that of the natural 

frequencies and mode shapes. It was also found that the EFDD method tends to underestimate the 
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damping ratios of modes with relatively low contribution. In this paper, the modal parameters of the 

AZMB identified using different methods and data from different types of tests are compared for cross-

validation purposes and also to investigate the performance of these output-only system identification 

methods applied to real bridge vibration data corresponding to different excitation sources. Finally, the 

identified natural frequencies and mode shapes are compared with their analytical counterparts obtained 

from a 3D finite element model used in the design phase of the AZMB. 

Alfred Zampa Memorial Bridge 

The Carquinez Strait, located about 32km northeast of San Francisco, carries the Sacramento River into 

San Francisco Bay. Before construction of the AZMB, the strait was spanned by two steel truss bridges 

built in 1927 and 1958, respectively, which provide a vital link on the interstate Highway I-80 corridor. 

The AZMB is the third bridge crossing the Carquinez Strait and it will replace the original bridge built in 

1927. With a main span of 728m and side spans of 147m and 181m, the AZMB is the first major 

suspension bridge built in the United States since the 1960s. Fig. 1 shows the overall dimensions of the 

bridge. The design and construction of the AZMB incorporates several innovative features that have not 

been used previously for a suspension bridge in the USA, namely (1) orthotropic (aerodynamic) steel 

deck; (2) reinforced concrete towers; and (3) large-diameter drilled shaft foundations. The AZMB is also 

the first suspension bridge worldwide with concrete towers in a high seismic zone.  

147 728 181
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Fig. 1.   Overall dimensions of the AZMB and instrumentation (accelerometers) layout (unit: m) 
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A set of dynamic field tests were performed on the AZMB in November 2003, just prior to its 

opening to traffic. These tests included ambient vibration tests (mainly wind-induced) and forced 

vibration tests based on controlled traffic loads and vehicle-induced impact loads. The controlled traffic 

loads consisted of two heavy trucks (about 400kN each) traversing the bridge in well defined relative 

positions and at specified velocities, while the impact loads were generated using one or both trucks 

driving over triangular shaped steel ramps (60cm long and 10cm high) designed and constructed 

specifically for these tests. Four traffic load patterns and seven vehicle-induced impact loads 

configurations were used in the forced vibration tests. The vibration response of the bridge was measured 

through an array of 34 EpiSensors ES-U (uni-axial) and 10 EpiSensor ES-T (tri-axial) force-balanced 

accelerometers from Kinemetrics Inc. installed at selected locations (stations) along both sides of the 

bridge deck covering the entire length of the bridge (Fig. 1). Along the west side of the bridge deck, 14 

stations were instrumented with either a single EpiSensor ES-T or three EpiSensors ES-U at each station 

to measure the vertical, transversal and longitudinal motion components. The east side of the bridge deck 

was instrumented with 22 EpiSensors ES-U at 11 stations (i.e., two uni-axial accelerometers per station) 

measuring the vertical and transversal motion components. Instead of roving accelerometers around to the 

different measurement stations with fixed accelerometers at one or more reference stations (as commonly 

done for dynamic testing of bridges), a total of 64 channels of acceleration response data were recorded 

simultaneously in the tests described above, consisting of 25 vertical, 25 horizontal, and 14 longitudinal 

motion components. These dynamic field tests provided a unique opportunity to determine the dynamic 

properties of the AZMB in its as-built (baseline) condition with no previous traffic loads or seismic 

excitation. More details about the bridge and the dynamic tests performed can be found elsewhere (Conte 

et al. 2007). 
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Brief Review of System Identification Methods Used 

Eigensystem Realization Algorithm  

The eigensystem realization algorithm (ERA) was developed by Juang and Pappa (1985) for modal 

parameter identification and model reduction of linear systems. The discrete-time state-space 

representation of a finite dimensional, linear time invariant system of order n is given by 

( 1) ( ) ( )z Az Buk k k+ = +  (1a) 

( ) ( ) ( )x Cz Duk k k= +   (1b) 

where ,  , ,  A B C D   n n n l m n m l´ ´ ´ ´Î Î Î Î  = state-space matrices in discrete form; ( )z nk Î  = state 

vector; ( )u lk Î  = load vector (vector of loading functions); and 

[ ]1 2( ) ( ) ( ) ( )x   Tm
mk x k x k x kÎ = , a column vector of size m (= number of measured/output 

channels) which represents the system response at discrete time ( )t k t= D  along the m  measured degrees 

of freedom (DOFs). Free vibration response (i.e., ( ) 0u k = ) of the system can be obtained as  

(0) (0)x Cz= ; (1) (0)x CAz= ; 2(2) (0)x CA z= ; ( ) (0)x CA z kk =  (2) 

Based on the free vibration response vector, the following ( )m s s   Hankel matrix is formed 

( )

( ) ( 1) ( 1)

( 1) ( 2) ( )
( 1)

( 1) ( ) ( 2( 1))

x x x

x x x
H

x x x




   


s

m s s

k k k s

k k k s
k

k s k s k s
´ ´

é ù+ + -ê ú
ê ú+ + +ê ú- = ê ú
ê ú
ê ú+ - + + -ë û

  (3) 

where s = an integer that determines the size of the Hankel matrix. A singular value decomposition of 

Hankel matrix (0)Hs  is performed as 

(0)
T

n ns T
n p T

p p

Σ 0 V
H UΣV U U

0 Σ V

é ùé ù
ê úé ù ê ú= = ê ú ê úë û ê ú ê úë û ë û

 (4) 

The singular value decomposition is partitioned according to the selected number n of largest singular 

values as shown in the above equation in which the diagonal matrix Σ  is split up in two diagonal sub-

matrices: Σn and Σ p  which contain the n largest singular values (corresponding to the order of the 
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realized system) and remaining p smallest singular values (corresponding to computational errors or 

noise), respectively. Then, state-space matrices A and C can be estimated as 

1/ 2 1/ 2(1)A Σ U H V ΣT s
n n n n
- -=     and    1/ 2C E U ΣT

m n n=  (5a, b) 

in which [   ]E I 0T
m m= , and Im is the m m´ unit matrix. Based on matrices A and C, the modal 

parameters (natural frequencies and damping ratios) of / 2N n=  vibration modes can be obtained as 

2 1 ln( ) /i i tw l -= D         and       2 1cos( (ln( )))i ianglex l -=- ,          1,  2,  , i N=  (6a, b) 

where th
i il =  eigenvalue of matrix A and tD  = sampling time. It should be noted that 2 1il -  and 2il  (i = 

1, 2, …, N) are complex conjugate pairs of eigenvalues, each pair corresponding to a vibration mode, i.e., 

the natural frequency and damping ratio obtained from 2 1il -  are the same as those obtained from 2il . The 

vibration mode shapes are obtained as 

2 1C Ti i-= ⋅f  (7) 

where Ti  denotes the thi  eigenvector of matrix A. Similarly, 2 1T i-  and 2T i  , (i = 1, 2, …, N), are complex 

conjugate pairs of eigenvectors, each pair corresponding to a vibration mode. 

Natural Excitation Technique Combined with ERA 

The basic principle behind the natural excitation technique (NExT) is that the theoretical cross-correlation 

function of the response processes along two different DOFs of an ambient (broad-band) excited structure 

has the same analytical form as the impulse response function (or, more generally, the free vibration 

response) of the structure (James et al. 1993; Farrar and James 1997; Caicedo et al. 2004). Once an 

estimation of the cross-correlation vector is obtained for a given reference channel, the ERA method 

reviewed above can be used to estimate the modal parameters.  

In order to improve the reliability and accuracy of the identified modal parameters, the multiple-

reference NExT-ERA (MNExT-ERA) method (He et al. 2006) was applied as an extension of NExT-

ERA. The issue of multiple-reference was also discussed extensively and applied by Peeters and De 

Roeck (1999) in the context of the covariance-driven stochastic subspace identification method. In 
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MNExT-ERA, instead of using a single (scalar) reference response channel as in NExT-ERA, a vector of 

reference channels (multiple reference channels) is used to obtain an output cross-correlation matrix. The 

correlation matrix between an N-DOF response vector ( )X t  (e.g., nodal displacements, velocities, or 

accelerations) and a subset of this response vector, ( )Xr t  (with rN  reference channels), is defined as 

1 2
( ) ( ) ( ) ( )

X X X X X
R R R Rr r r r

Nr
r

X X X
N N

t t t t
´

é ù= ê úë û
 (8) 

It can be seen that each column of the cross-correlation matrix ( )X XR r t  is a cross-correlation vector 

between the system response vector and a single (scalar) reference response. The cross-correlation matrix 

( )X XR r t  is then used to form Hankel matrices for application of ERA and identifying modal parameters. 

The basic idea behind the use of multiple reference channels (as opposed to the classical approach of 

using a single reference channel) is to avoid missing modes in the NExT-ERA identification process due 

to the proximity of the reference channel to nodes of these modes. In the case that a single cross-

correlation vector does not contain significant information about a given vibration mode, the latter can 

still be identified accurately in MNExT-ERA through output cross-correlation functions based on other 

reference channels. In MNExT-ERA, the ERA is applied in its multiple-input, multiple-output 

formulation, but instead of forming the Hankel matrix based on the free vibration response of a truly 

multiple-input system, the block Hankel matrix is formed by including rN  cross-correlation vectors with 

different reference channels. 

Data-driven Stochastic Subspace Identification 

The stochastic discrete-time state-space representation of a finite dimensional, linear time invariant 

system of order n can be extended from Eq. (1) to 

( 1) ( ) ( )z Az wk k k+ = +  (9a) 

( ) ( ) ( )x Cz vk k k= +  (9b) 

where state-space matrices A and C are the same as in Eq. (1): A = state transition matrix, which 

completely characterizes the dynamics of the system through its eigenproperties, and C = output matrix 
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that specifies how the inner states are transformed into the measured system response/output; ( )w nk Î  

= process noise due to external disturbances and modeling inaccuracies (i.e, missing high-frequency 

dynamics); and ( )v mk Î  = measurement noise due to sensor inaccuracies. Since the input ( )u k , see Eq. 

(1), is unknown and it is impossible to distinguish the input information from the noise terms ( )w k  

and ( )v k , the input is implicitly included in these noise terms. Both noise terms ( )w k  and ( )v k  are 

assumed to be zero mean, white vector sequences. Data-driven stochastic subspace identification (SSI-

DATA) is a method to estimate state-space matrices A and C using output-only measurements directly. 

Compared to two-stage time-domain system identification methods such as NExT-ERA, SSI-DATA does 

not require any pre-processing of the data to calculate auto/cross-correlation functions or auto/cross-

spectra of output data. In addition, robust numerical techniques such as QR factorization, singular value 

decomposition (SVD) and least squares are involved in this method. The procedure of extracting the state-

space matrices A and C can be summarized as follows: (1) Form the output Hankel matrix and partition it 

into “past” and “future” output sub-matrices; (2) Calculate the orthogonal projection of the row space of 

the “future” output sub-matrix into the row space of the “past” output sub-matrix using QR factorization; 

(3) Obtain the observability matrix and Kalman filter state estimate via SVD of the projection matrix; and 

(4) Using the available Kalman filter state estimate, extract the discrete-time system state-space matrices 

based on a least squares solution. Once the system state-space matrices are determined, the modal 

parameters can be obtained by using Eqs. (6) and (7). More details about stochastic subspace 

identification can be found in (Van Overschee and De Moor 1996). 

Enhanced Frequency Domain Decomposition 

The frequency domain decomposition (FDD) method, a non-parametric frequency-domain approach, is an 

extension of the basic frequency domain (BFD) approach referred to as peak picking technique. 

According to the FDD technique, the modal parameters are estimated through SVD of the power spectral 

density (PSD) matrix performed at all discrete frequencies. Considering a lightly damped system, the 

number of vibration modes contributing significantly to a given cross-spectral density (CSD) function at a 
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particular frequency is limited to a small number (usually 1 or 2). Through the above mentioned SVD, 

CSD functions are decomposed into single-degree-of-freedom (SDOF) CSD functions, each 

corresponding to a single vibration mode of the dynamic system. In the EFDD method (Brincker et al. 

2001), the natural frequency and damping ratio of a vibration mode are identified from the SDOF CSD 

function corresponding to that mode. For this purpose, the SDOF CSD function is taken back to the time 

domain by inverse Fourier transformation, and the frequency and damping ratio of the mode considered 

are estimated from the zero-crossing times and the logarithmic decrement, respectively, of the 

corresponding SDOF auto-correlation function. 

System Identification Results 

System identification of the AZMB was performed based on both ambient and forced vibration test data. 

During the dynamic tests, the bridge acceleration response at various points (stations) was sampled at a 

rate of 200Hz resulting in a Nyquist frequency of 100Hz, which is much higher than the frequencies of 

interest in this study (< 4Hz). The 20 minutes long ambient vibration test data used in this study were 

collected just after midnight local time, while there were no construction activities on the bridge. 

Therefore, the bridge ambient vibrations were driven mainly by wind (Test No. 18, Conte et al. 2007). Fig. 

2 shows the bridge vertical acceleration response at the midpoint, south quarter point and near the south 

end of the main span on the west side of the bridge deck (i.e., stations 0W, 3SW, and 5SW, respectively) 

measured during the ambient vibration test. The Fourier amplitude spectrum of the vertical acceleration 

response measured at station 3SW is shown in Fig. 3. For long-span suspension bridges such as the 

AZMB, the natural frequencies of the lower (and predominant) vibration modes lie in the range 0-1Hz. 

However, from Fourier amplitude spectra of the measured acceleration responses, it was observed that 

vibration modes with natural frequencies in the range 1-4Hz were also significantly excited in the ambient 

vibration test. The vibration modes above 1Hz were excited as much as those below 1Hz. Despite the fact 

that the amplitude of the measured ambient vibration response is much lower than that of the forced 
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vibration response (see Fig. 4), the ambient vibration data was found to be very clean (i.e., high signal-to-

noise ratio) especially for identifying the lower vibration modes (with natural frequencies below 1Hz). 
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Fig. 2.   Vertical acceleration response measured during the ambient vibration test 
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Fig. 3.   Fourier amplitude spectrum of vertical acceleration response at station 3SW  
measured during the ambient vibration test 
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As described in the previous section, two types of forced vibration tests were performed on the 

AZMB, namely (1) controlled traffic load tests, and (2) vehicle-induced impact tests. In the vehicle-

induced impact tests, the load applied to the bridge departed from an ideal impulse load due to the 

continuous motion of the truck on the bridge before and after the impact, which causes errors in 

identifying the damping ratios (He et al. 2006). Therefore, the bridge vibration data from the vehicle-

induced impact tests were not used to identify the bridge modal parameters in this study. Although the 

AZMB has a total of four traffic lanes, the trucks could only use the two middle lanes during the tests. Six 

different controlled traffic load tests were performed: (1) both trucks crossing over the bridge in parallel 

at the velocity of 48km/h; (2) one truck crossing over the bridge at the velocity of 48km/h; (3) both trucks 

crossing over the bridge in opposite directions at the velocity of 48km/h; (4) both trucks crossing over the 

bridge in opposite directions at the velocity of 24km/h; (5) one truck crossing over the bridge at the 

velocity of 24km/h; and (6) both trucks crossing over the bridge in parallel at the velocity of 24km/h 

(Conte et al. 2007). Due to the limited duration of each test (100 seconds for Tests No. 1, 2, 3 and 200 

seconds for Tests No. 4, 5, 6) and the requirement of high frequency resolution (to resolve closely-spaced 

vibration modes) in the system identification, the bridge vibration measurements from the six different 

tests are concatenated back to back resulting in a total duration of 900 seconds (15 minutes). As an 

illustration, Fig. 4 shows the bridge vertical acceleration response at the midpoint, south quarter point and 

near the south end of main span on the west side of the bridge deck (i.e., stations 0W, 3SW, and 5SW, 

respectively) measured during the six forced vibration tests. The amplitude of vibration of the bridge 

during the first 300 seconds (trucks moving at 48km/h) is larger than during the last 600 seconds (trucks 

moving at 24km/h). By comparing Fig. 2 and Fig. 4, it is observed that the amplitude of the bridge 

vibration in the forced vibration tests is approximately one order of magnitude larger than that in the 

ambient vibration test. The Fourier amplitude spectrum of the vertical acceleration response measured at 

station 3SW during the six forced vibration tests is shown in Fig. 5. It is observed that during the 

controlled traffic load tests, the vibration modes with natural frequency above 1Hz (higher vibration 
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modes) are more significantly excited than those with natural frequency below 1Hz (lower vibration 

modes), which renders the latter more difficult to identify.  
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Fig. 5.   Fourier amplitude spectrum of vertical acceleration response at station 3SW  
measured during the six controlled traffic load tests 

 

In this study, both lower vibration modes (with natural frequency below 1Hz) and higher vibration 

modes (with natural frequency in the range 1-4Hz) were identified. However, if all the vibration modes in 

the frequency range 0-4Hz are considered in a single identification for each set of measurement data (i.e., 

ambient or forced vibration data), then based on the stabilization diagram a very high model order must 

be selected to avoid missing any of the vibration modes of interest. Selection of a high order for the 

realized model leads to a large number of mathematical (non-physical) modes, which will obstruct the 

identification of the true physical vibration modes of the bridge. Thus, in order to improve the 

computational efficiency and avoid missing modes in the system identification process, the lower 

vibration modes (with natural frequencies below 1Hz) and higher vibration modes (with natural 

frequencies above 1Hz) are identified separately by applying to the bridge vibration data a low-pass 

Butterworth infinite impulse response (IIR) filter of order 7 with a cut-off frequency of 1Hz and a band-

pass finite impulse response (FIR) filter of order 1024 with lower and upper cut-off frequencies of 1Hz 

and 4Hz, respectively. Only vertical response measurements were used to identify the higher vibration 

modes.  
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System Identification Results Based on Ambient Vibration Data 

In the implementation of MNExT-ERA, stations 1NE, 2SW, 3NW, and 4SE were used as reference 

stations and response correlation functions were estimated through inverse Fourier transformation of the 

corresponding PSD functions. Estimation of the PSD functions was based on Welch-Bartlett method 

using 300 second long (60,000 points) Hanning windows with 50 percent overlap, in order to reduce the 

effects of spectral leakage. In order to increase the computational efficiency of the system identification 

procedure, the estimated auto/cross-correlation functions were down-sampled to 10Hz and 40Hz for 

identifying lower and higher vibration modes, respectively. After down-sampling, the Nyquist frequency 

is still much higher than the frequency range of interest (£  1Hz for lower vibration modes and £  4Hz 

for higher vibration modes). The down-sampled estimated auto/cross-correlation functions were then used 

to form Hankel matrices for applying ERA in the second stage of the modal identification. Due to the fact 

that the accelerometer measuring the vertical response at station 5SE was not functioning properly, the 

Hankel matrix constructed using vertical vibration data for identifying lower vibration modes has 

dimensions (21 200) (4 200)    (21 stations, 4 reference stations), while the Hankel matrix based on 

horizontal vibration data has dimensions (22 200) (4 200)    (22 stations). For identifying the higher 

vibration modes, a Hankel matrix of dimensions (21 400) (4 400)    was constructed. The natural 

frequencies and damping ratios of the identified vibration modes are reported in Table 1 together with 

those identified using the two other methods. It should be noted that the modal parameters of some 

significant higher vertical vibration modes (beyond the sixth symmetric and anti-symmetric vertical 

modes) are not reported here, because the corresponding mode shapes could not be classified/recognized 

due to insufficient spatial density of the sensor network deployed along the bridge deck. 

In applying SSI-DATA to identify the modal parameters of the lower vibration modes, the filtered 

measured data were first down-sampled to 10Hz and then used to form the output Hankel matrix 

composed of 100 block rows with either 21 rows in each block (21 vertical channels) for identifying 

vertical modes or 22 rows in each block (22 horizontal channels) for identifying horizontal modes. In 
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identifying the higher vibration modes using SSI-DATA, the filtered measured data were first down-

sampled to 40Hz and then used to form the output Hankel matrix composed of 50 block rows with 21 

rows in each block (21 vertical channels). The identified natural frequencies and damping ratios are 

reported in Table 1.  

Table 1.   System identification results based on the ambient vibration data 

Modes 
Natural frequencies [Hz] Damping ratios [%] MAC values 

MNEXT -
ERA 

SSI-
DATA 

EFDD 
MNEXT -

ERA 
SSI-

DATA 
EFDD 

MNExT 
& SSI 

MNExT 
& EFDD 

SSI & 
EFDD 

1-S-H 0.159 0.158 0.161 1.29 0.50 2.47 1.000 1.000 1.000 
1-S-V 0.194 0.193 0.193 0.27 0.21 0.89 0.998 1.000 0.997 

1-AS-V 0.204 0.201  1.98 1.36  0.991   
2-S-V 0.258 0.258 0.259 0.21 0.23 1.00 1.000 1.000 1.000 

2-AS-V 0.350 0.350 0.349 0.15 0.20 0.66 1.000 1.000 1.000 
1-AS-H 0.361 0.365 0.361 1.68 0.49 0.92 0.985 0.987 0.998 

 0.414 0.414 0.415 0.23 0.13 0.72 1.000 1.000 1.000 
1-S-T 0.469 0.471 0.476 1.29 0.17 0.48 0.976 0.994 0.991 
3-S-V 0.484 0.483 0.484 0.15 0.21 0.71 0.996 0.997 0.999 

 0.561 0.561 0.562 0.16 0.15 0.34 0.997 1.000 0.996 
3-AS-V 0.645 0.645 0.645 0.09 0.11 0.42 1.000 1.000 1.000 
1-AS-T 0.738 0.741 0.737 0.18 0.34 0.28 0.986 0.995 0.995 
4-S-V 0.799 0.799 0.799 0.16 0.23 0.34 0.998 0.999 1.000 

4-AS-V 0.958 0.956 0.957 0.27 0.15 0.17 0.994 0.973 0.986 
2-S-T 1.003 1.007  2.97 0.58  0.980   

4-AS-V 1.036 1.035 1.038 0.11 0.22 0.24 0.994 0.997 0.987 
5-S-V 1.160 1.174 1.165 0.18 0.36 0.50 0.991 1.000 0.992 

5-AS-V 1.345  1.343 0.46  0.11  0.950  
2-AS-T 1.367 1.360 1.362 1.00 0.26 0.19 0.934 0.806 0.875 
6-S-V 1.572 1.575 1.570 0.63 0.30 0.14 0.988 0.997 0.994 
3-S-T 1.684 1.689 1.685 0.17 0.09 0.26 0.988 0.998 0.992 

3-AS-T 2.029 2.025 2.034 0.34 0.13 0.14 0.647 0.940 0.781 
4-S-T 2.331 2.340  0.21 0.32  0.318   

4-AS-T 2.671 2.673 2.676 0.40 0.45 0.00 0.673 0.881 0.740 
5-S-T 2.949 2.948 2.947 0.27 0.13 0.08 0.682 0.996 0.706 

5-AS-T 3.273 3.271 3.301 0.59 0.15 0.00 0.910 0.420 0.363 
 

Notes: (1) In the first column, S = Symmetric; AS: = Anti-Symmetric; H, V, T = Horizontal, Vertical, and 
Torsional mode, respectively. 

 (2) An empty cell in the first column indicates that the corresponding mode is neither a symmetric nor an 
anti-symmetric mode. 

 (3) An empty cell in the second through sixth column indicates that the natural frequency and/or damping 
ratio is not available because the corresponding vibration mode was missed in the identification process.  
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In the application of MNExT-ERA and SSI-DATA in this study, a stabilization diagram was used to 

determine the “optimum” order of the realized system from which the modal parameters are extracted. 

For example, in identifying the modal parameters of the lower vibration modes (below 1Hz) using SSI-

DATA based on the ambient vibration data, the order of the realized system was determined as n = 32. 

In the implementation of EFDD, the 20 minutes long filtered ambient vibration data were also down-

sampled to 10Hz and 40Hz for identifying lower and higher vibration modes, respectively. Estimation of 

the PSD functions was based on Welch-Bartlett method using 300 seconds long Hanning windows with 

50 percent overlap. The modal frequencies were estimated at peak locations (i.e., peak picking) in the first 

singular value versus frequency plot and the mode shapes were estimated by the first singular vector at 

the corresponding frequencies (Brincker et al. 2001). The SDOF CSD functions are estimated from the 

first singular value plot using a modal assurance criterion (MAC) (Allemang and Brown 1982) higher 

than 0.95 between the estimated mode shape and the singular vectors at discrete frequencies around the 

natural frequency. The modal parameters estimated using EFDD are given in Table 1.  

From Table 1, it is observed that the natural frequencies identified using the three system 

identification methods considered here are in excellent agreement, except for a few modes which could 

not be identified by all three methods such as the first anti-symmetric vertical mode (1-AS-V) missed 

using EFDD and the 5-AS-V mode missed by the SSI-DATA method. The fact that certain modes (1-AS-

V, 2-S-T, 5-AS-V, 4-S-T) could not be identified by all three methods is likely due to the low relative 

participation of these modes to the measured dynamic responses. It is found that the relative difference in 

the identified damping ratios obtained using different methods is significantly larger than that of the 

corresponding identified natural frequencies. This is a well known fact widely reported in the structural 

identification literature, namely that the estimation uncertainty of damping ratios is inherently higher (by 

more than an order of magnitude for the coefficient of variation) than that of the corresponding natural 

frequencies. The following facts are also worth noting regarding the identification of damping ratios: (1) 

The estimation uncertainty of the damping ratios is generally higher for output-only than for input-output 

system identification methods, since the input signals do not strictly satisfy the broadband assumption 



Submitted to Journal of Structural Engineering, ASCE 

 -17-

behind the formulation of output-only methods. Different methods provide modal parameter estimators 

with different intra-method and inter-methods statistical properties (bias, variance, co-variance), which 

depend on the frequency content of the input excitation and the level of violation of the assumed 

amplitude stationarity. (2) Linear viscous damping is assumed in the structural model underlying the 

system identification, which in many cases may not characterize well the actual energy dissipation 

mechanisms of the structure. This is a source of modeling uncertainty/error that will contribute to the 

uncertainty of the identified modal damping ratio.  Although the damping ratio estimates provided by this 

study have a relatively large variability across methods (compared to natural frequencies), they are all in a 

reasonable range (i.e., positive and less than 3%) compared to other structural identification studies 

reported in the literature with double digit and/or negative damping ratios. Furthermore, estimated 

damping ratios reveal more reliably/clearly imperfections in data pre-processing and parameter estimation 

than the estimated natural frequencies. Therefore, the reasonable estimated damping ratios obtained in 

this study validate/verify the extensive numerical operations involved in the advanced system 

identification methods used. The accuracy of the estimated damping ratios could be improved by using 

longer duration of response measurements (to be recorded first), larger amplitude ambient excitation. 

However, the estimation uncertainty of the damping ratios will always remain above some lower bound 

from estimation theory (e.g., Cramer-Rao bound) and the fact that linear viscous damping is only at best a 

very approximate model of the dissipative forces within a structure further aggravates the situation. It is 

worth noting that the EFDD method provides near zero modal damping ratios for some higher torsional 

modes (4-AS-T, 5-S-T, 5-AS-T) and appears to underestimate these damping ratios compared to the other 

two methods (see Table 1). Finally, it is worth mentioning that the identified modal damping ratios might 

be influenced by the aerodynamic damping induced by the wind-structure interaction.  

The vibration mode shapes identified using MNExT-ERA, SSI-DATA, and EFDD are complex 

valued. Fig. 6 represents in polar plots (i.e., rotating vectors in the complex plane) the mode shapes of the 

AZMB (main span only) identified using MNExT-ERA based on ambient vibration data. These polar 

plots have the advantage to show directly the extent of the non-proportional damping characteristics of a 

vibration mode. If all complex valued components of a mode shape vector are collinear (i.e., in phase or 

180 degrees out of phase), this vibration mode is said to be classically (or proportionally) damped. On the 
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other hand, the more these mode shape components are scattered in the complex plane, the more the 

vibration mode is non-classically (or non-proportionally) damped. However, measurement noise, 

estimation errors, and modeling errors could also cause a “true” classically damped mode to be identified 

as non-classically damped. Fig. 6 shows that most of the vibration modes identified in this study are either 

perfectly or nearly classically damped except for some higher vibration modes (5-AS-V, 2-AS-T, 3-AS-T, 

4-S-T, 4-AS-T).  
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Fig. 6.   Polar plot representation of vibration mode shapes identified using MNExT-ERA based on 
ambient vibration data 
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A 3D representation of the normalized mode shapes for these identified vibration modes is given in 

Fig. 7. Normalization was performed by projecting all mode shape components onto their principal axis 

(in the complex plane) and then scaling this projected mode shape vector for a unit value of its largest 

component. The identified space-discrete mode shapes were interpolated between the sensor locations 

using cubic splines along both sides of the bridge deck and straight lines along the deck transverse 

direction. Since the accelerometers at stations 6SW, 6SE, 7SE, 6NE and 7NE could not be recorded, the 

vibration mode shapes are plotted over the bridge main span only and are based on the assumption that 

the motion of the bridge deck at the towers is restrained in both the horizontal and vertical direction. In 

addition, the vertical acceleration response at station 5SE was not recorded properly during the tests, and 

the mode shape components at stations 5NE and 5SW were used to estimate the component at station 5SE 

based on the symmetric or anti-symmetric property of vibration modes. From Fig. 7, it is observed that: (1) 

the identified mode shapes with natural frequencies of 0.41Hz and 0.56Hz (observed only over the main 

span in this study) are neither symmetric nor anti-symmetric with respect to the centerline of the main 

span, and (2) the identified modes with natural frequencies of 0.96Hz and 1.04Hz have similar mode 

shapes (i.e., 4-AS-V). Additional measurement stations on the towers and approach spans (which have 

different lengths) are needed to identify the corresponding bridge global mode shapes.  

MAC values were computed in order to compare corresponding mode shapes identified using 

different system identification methods and are reported in Table 1. The high MAC values obtained for 

most vibration modes indicate an excellent agreement between the mode shapes identified using different 

methods based on ambient vibration data. The low MAC values of higher torsional modes such as 4-S-T 

(i.e., fourth symmetric torsional mode) and 5-AS-T (i.e., fifth anti-symmetric torsional mode) indicate 

that the accuracy of these identified mode shapes is not as high as that for lower vibration modes, which 

could be due to the low participation (relative to other modes) of these modes to the measured bridge 

response.  
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Fig. 7.   3D representation of normalized vibration mode shapes identified using MNExT-ERA based on 
ambient vibration data  

 

System Identification Results Based on Forced Vibration Data 

The system identification methods MNExT-ERA, SSI-DATA, and EFDD were also applied to identify 

the bridge modal parameters based on forced vibration test data. MNExT-ERA and EFDD were 

implemented in exactly the same way as for ambient vibration data. However, in applying SSI-DATA to 
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identify the higher vibration modes, an output Hankel matrix was formed composed of 60 block rows 

instead of 50 (for ambient vibration data) due to the fact that the forced vibration tests are of shorter 

duration than the ambient vibration test. The modal parameters identified using these three methods based 

on the forced vibration data are reported in Table 2.  

Table 2.   System identification results based on forced vibration test data 

Modes 
Natural frequencies [Hz] Damping ratios [%] MAC values 

MNEXT -
ERA 

SSI-
DATA 

EFDD 
MNEXT -

ERA 
SSI-

DATA 
EFDD 

MNExT 
& SSI 

MNExT 
& EFDD 

SSI & 
EFDD 

1-S-H 0.160 0.165 0.161 3.56 1.53 0.89 0.998 0.998 0.999 
1-AS-V 0.174 0.172 0.176 9.11 6.84 0.00 0.697 0.711 0.517 
1-S-V 0.194 0.193 0.195 1.77 1.23 0.97 0.961 0.998 0.966 
2-S-V 0.257 0.256 0.252 1.00 0.47 1.72 0.998 0.997 0.993 

2-AS-V 0.349 0.348 0.349 0.59 0.39 1.07 0.996 1.000 0.996 
1-AS-H 0.366 0.368 0.361 1.98 1.67 0.66 0.956 0.954 0.944 

 0.407 0.408 0.405 2.02 2.52 0.82 0.842 0.916 0.788 
1-S-T 0.473 0.469 0.479 0.81 0.36 0.00 0.989 0.998 0.988 
3-S-V 0.478 0.484  1.76 1.51  0.902   

 0.561 0.559 0.564 1.30 0.97 0.39 0.974 0.956 0.983 
3-AS-V 0.645 0.644 0.647 1.02 0.79 0.63 0.997 0.986 0.982 
1-AS-T 0.736 0.736 0.733 0.30 0.25 0.50 0.996 0.998 0.996 
4-S-V 0.794 0.795 0.794 0.36 0.21 0.53 0.994 0.997 0.997 

4-AS-V 0.954 0.953 0.950 0.33 0.16 0.44 0.988 0.987 0.998 
2-S-T  0.998   0.91     

4-AS-V 1.028 1.034 1.028 0.48 0.29 0.15 0.964 0.974 0.945 
5-S-V 1.152 1.184 1.152 0.41 1.42 0.40 0.980 0.999 0.982 

5-AS-V 1.334 1.360 1.333 1.00 1.44 0.07 0.941 0.996 0.945 
2-AS-T 1.366  1.367 0.52  0.00  0.664  
6-S-V 1.563 1.557 1.567 0.84 0.44 0.19 0.998 0.999 0.998 
3-S-T 1.687 1.699 1.685 0.31 0.36 0.09 0.843 0.932 0.965 

3-AS-T 2.019 2.021 2.022 0.27 0.22 0.20 0.949 0.967 0.958 
4-S-T  2.334   0.41     

4-AS-T 2.656 2.657 2.654 0.23 0.13 0.25 0.905 0.972 0.894 
5-S-T 2.951 2.943 2.957 0.11 0.23 0.11 0.821 0.853 0.689 

5-AS-T  3.275   0.26     
 

The identified natural frequencies using different methods are found to be in excellent agreement. The 

modal damping ratios of some vibration modes such as 1-AS-V, 1-S-T, and 2-AS-T identified using 

EFDD are near zero. Excluding these modes, the modal damping ratios estimated using the different 

methods are in reasonable agreement, especially those identified using MNExT-ERA and SSI-DATA. 

The high MAC values obtained for most vibration modes indicate an excellent agreement between the 
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mode shapes identified using different methods based on forced vibration test data. The low MAC values 

obtained for a few modes, such as the 1-AS-V and the mode with a natural frequency of 0.41Hz, could be 

due to the low relative participation of these modes to the measured forced vibration response of the 

bridge. 

By comparing the average values of the modal parameters (natural frequencies and modal damping 

ratios) identified using the three methods based on the ambient vibration data (see Table 1) with their 

counterparts identified based on the forced vibration data (see Table 2), it is found that: (1) The natural 

frequencies identified using the two types of test data are in excellent agreement except for the 1-AS-V 

mode. The significant difference in the identified natural frequencies for this mode reflects the difficulty 

in identifying it due to its very low relative contribution to the bridge vibration response in both the 

ambient and forced vibration tests. Thus, this mode could not be reliably identified. (2) The order (in 

terms of natural frequency) of vibration modes 1-S-V and 1-AS-V identified based on ambient vibration 

data is swapped over when these modes are identified based on forced vibration data. (3) The identified 

modal damping ratios are response amplitude dependent. For most vibration modes, especially for the 

lower vibration modes, the modal damping ratios identified using forced vibration data are higher than 

those identified using ambient vibration data as clearly shown in Fig. 8. The order of the vibration modes 

used in the figure corresponds to the sorted natural frequencies identified based on forced vibration data. 

Fig. 9 shows the average (over the three methods) of the MAC values between the corresponding mode 

shapes identified based on ambient vibration and forced vibration data. The high average MAC values 

obtained for most vibration modes indicate an excellent agreement between the mode shapes identified 

using the two types of test data. The low average MAC values obtained for a few higher torsional modes 

is likely due to the large estimation errors of these modes due to their low relative contributions to the 

measured bridge vibration response.   
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Fig. 8.   Comparison of damping ratios identified using ambient vibration and forced vibration test data 

(see Fig. 6 or Fig. 7 for abbreviation of vibration modes) 
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Fig. 9.   Averaged (over the three methods) MAC values between corresponding mode shapes  
identified based on ambient vibration and forced vibration test data  

 

Comparison between Experimental and Analytical Modal Parameters 

A 3D finite element model of the AZMB developed in the structural analysis software ADINA (ADINA 

R&D Inc. 2002) was provided by Caltrans (Dr. Charles Sikorsky, personal communication, 2005). This 

finite element model is composed mainly of: (1) linear elastic frame elements (with possible initial strain) 

to model the two main suspension cables, suspender cables, steel box girder (in both the longitudinal and 

transversal directions) and tower shafts (at some specific locations, the shafts are modeled using 

multilinear inelastic frame elements), (2) multilinear inelastic frame elements to model the pile 

foundations supporting the tower shafts, and (3) linear elastic shell elements to model the pile caps. The 

inertia properties of the bridge are modeled with element consistent mass matrices based on element 

shape functions and material density. Additional lumped masses, assigned to some translational DOFs, 
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are also included in the model to represent various equivalent masses not accounted for by the element 

mass matrices. This finite element model of the AZMB is composed of 3281 elements and approximately 

14,000 DOFs. It was used in the design process of this bridge.  

 

 

 

 

 

 

 

  

Fig. 10.   Vibration mode shapes of the AZMB computed from the bridge finite element model in ADINA 
(* : horizontal vibration modes; av fv

id idf , f =  natural frequency identified based on ambient vibration and forced 
vibration data, respectively, averaged over the three system identification methods) 

 

In this section, the identified natural frequencies and mode shapes of the bridge vibration modes 

below or slightly above 1Hz are compared with their analytical counterparts obtained from the finite 
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element model of the bridge. The first 200 vibration modes of the finite element model of the AZMB 

were computed. In order to pair each identified vibration mode with the corresponding analytical 

vibration mode, MAC values were calculated between the identified mode shape and all 200 computed 

mode shapes truncated at the accelerometer locations (i.e., measured DOFs) in order to have the same size 

as the identified mode shapes. For each identified vibration mode, the computed eigen-mode with the 

highest MAC value was taken as its analytical counterpart. In the case where several computed eigen-

modes have close high MAC values with the identified mode considered, the one with natural frequency 

closest to the identified natural frequency was selected. The computed natural frequencies and mode 

shapes corresponding to the lowest 16 identified vibration modes are shown in Fig. 10 together with the 

corresponding natural frequencies identified from ambient and forced vibration data, respectively, 

averaged over the three system identification methods used. The computed mode shapes can be directly 

compared to their identified counterparts in Fig. 7. By comparing the corresponding identified and 

analytically predicted natural frequencies (given in Fig. 10), the following observations can be made: (1) 

The identified and analytically predicted natural frequencies of the 1-S-V, 2-S-V, and 2-AS-V vibration 

modes are in excellent agreement. Their differences are less than 1 percent. The agreement between 

identified and analytical natural frequencies for the 1-AS-H, 1-S-T, and 1-AS-T modes is very good, with 

differences less than or slightly above 3 percent. (2) The discrepancies between identified and analytically 

predicted natural frequencies for the 1-S-H and 1-AS-V modes are significant. For the 1-S-H mode, the 

discrepancy is likely due to inaccuracies in the finite element model, since the system identification 

results using different methods based on different test data are found to be in very good agreement. 

However, for the 1-AS-V mode, the discrepancy could be caused by both inaccuracies in the finite 

element model and system identification errors, since the natural frequency of this mode identified using 

different test data are not in good agreement either. (3) The other identified and corresponding 

analytically predicted natural frequencies are found to be in reasonable agreement (less than 10 percent 

difference). Fig. 11 shows in bar plot the MAC values (averaged over the three system identification 

methods used) between identified and analytically predicted mode shapes. For most vibration modes, 
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there is a very good to excellent agreement between identified and analytically predicted mode shapes. 

The low MAC values obtained for a few modes, such as the 1-AS-V and the mode with a natural 

frequency of 0.41Hz, are caused by both system identification errors due to the low relative contributions 

of these modes to the measured bridge vibration and inaccuracies in the finite element model of the 

bridge. 
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Fig. 11. Averaged (over the three methods) MAC values between identified and  
analytically predicted mode shapes 

 

Summary and Conclusions 

A set of dynamic field tests were conducted on the Alfred Zampa Memorial Bridge (AZMB), located 

32km northeast of San Francisco on interstate Highway I-80, just before its opening to traffic in 

November 2003. These tests provided a unique opportunity to obtain the modal parameters of the bridge 

in its as-built condition with no previous traffic loads or seismic excitation.  

Two time domain system identification methods, namely the multiple-reference natural excitation 

technique combined with the eigensystem realization algorithm (MNExT-ERA) and the data-driven 

stochastic subspace identification (SSI-DATA) method, as well as a frequency domain method, namely 

enhanced frequency domain decomposition (EFDD), were applied to identify the modal parameters of the 

bridge based on bridge vibration data from two types of tests: ambient vibration test and forced vibration 

tests based on controlled-traffic loads. From the modal identification results obtained, the following 

conclusions can be made: (1) The natural frequencies identified using the three different methods are in 



Submitted to Journal of Structural Engineering, ASCE 

 -27-

excellent agreement for each type of tests. (2) The natural frequencies identified based on data from the 

two different types of test are also in excellent agreement, except for the 1-AS-V (first anti-symmetric 

vertical) mode. The significant difference in the identified natural frequencies for this mode reflects the 

difficulty in identifying it due to its very low relative contribution to the measured bridge vibration in 

both the ambient and forced vibration tests. In addition, the order (in terms of natural frequency) of 

vibration modes 1-S-V and 1-AS-V identified based on ambient vibration data is swapped over when 

these modes are identified based on forced vibration data. (3) The relative difference in the identified 

damping ratios obtained using different methods is significantly larger than that of the corresponding 

identified natural frequencies. This is a well known fact widely reported in the structural identification 

literature, namely that the estimation uncertainty of damping ratios is inherently higher (by more than an 

order of magnitude for the coefficient of variation) than that of the corresponding natural frequencies. (4) 

For most vibration modes, especially for the lower vibration modes, the averaged modal damping ratios 

identified over three methods using forced vibration data are higher than those identified using ambient 

vibration data. (5) For most vibration modes, the mode shapes identified using different methods and the 

different test data are in excellent agreement.  

The system identification results obtained from this study provide benchmark modal properties of the 

AZMB, which can be used as a baseline in future health monitoring studies of this bridge. From the facts 

that (a) very different methods provide similar results for the modal parameters of the modes contributing 

most to the measured bridge vibration, (b) the natural frequencies and mode shapes identified using two 

different types of test data are in good agreement, and (c) these methods were found in a recent study by 

the authors to provide modal parameter estimates with low bias and variability for the natural frequencies 

and mode shapes, it can be concluded that it is likely that the identified natural frequencies and mode 

shapes are close to the actual modal parameters of this bridge. Although the damping ratio estimates 

provided by this study have a much larger variability across methods (than the natural frequencies and 

mode shapes), the average values over the three methods are likely to be representative of the actual 

effective damping ratios of the bridge at the two levels of response amplitude considered. 
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Overall, all three system identification methods applied in this study performed very well in both 

types of test. However, use of several system identification methods is recommended for cross-validation 

purposes and for avoiding missing modes, as different methods provide modal parameter estimators with 

different intra-method and inter-methods statistical properties (bias, variance, covariance), which depend 

on the frequency content of the input excitation and the level of violation of the assumed amplitude 

stationarity. It should be noted that the performance of the EFDD method is not as robust as that of the 

other two methods, since it requires user intervention for peak picking in the identification process. 

Finally, the identified natural frequencies and mode shapes are compared with their analytically 

predicted counterparts obtained from a 3D finite element model used in the design phase of the AZMB. 

The identified (experimental) and analytical modal properties are found to be in good agreement for a few 

contributing modes to the measured bridge vibration. It should be noted that in the context of this work no 

calibrated finite element model of the bridge was available and that FE model calibration (including 

revision of modeling assumptions), a significant task by itself, was not in the scope of this study. 

However, the authors believe that this was a unique opportunity (of interest to the profession) to compare 

natural frequencies and mode shapes carefully identified experimentally with those computed from a FE 

model developed for designing the bridge and which therefore had not been modified artificially (fudged) 

in order to match some measured modal properties. The authors believe that the best approach to reliably 

identify the actual modal properties of the bridge is through an integrated analytical-experimental 

approach, updating FE model parameter values and modifying modeling assumptions until an acceptable 

and optimum match is obtained between the set of identified modal parameters and their FE computed 

counterparts. This process would have to also account for the estimation uncertainty of the identified 

modal parameters. This is a very interesting topic of future research work that was not in the scope of this 

study.  
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