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ABSTRACT OF THE DISSERTATION

Advancing Real-Time GPU Scheduling: Energy Efficiency and Preemption Strategies

by

Yidi Wang

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, September 2023

Dr. Hyoseung Kim, Chairperson

Real-time GPU scheduling plays a critical role in meeting the performance and

timing requirements of modern cyber-physical and autonomous systems, where timely exe-

cution of critical tasks is essential. However, the ever-increasing complexity and heterogene-

ity of modern computing hardware have introduced new challenges in achieving resource

and energy efficiency while delivering the required real-time performance. With the pro-

liferation of GPU-accelerated applications and the rise of power-constrained environments,

there is an urgent need to optimize resource allocation, minimize energy consumption, and

successfully execute time-sensitive tasks.

In this dissertation, we address the challenges in real-time GPU scheduling by

proposing novel algorithms system-level solutions. Firstly, we investigate the trade-off be-

tween energy efficiency and real-time performance, developing novel approaches that dy-

namically allocate resources based on task characteristics. This optimization allows us to

balance power consumption while meeting strict timing constraints. Secondly, we focus

on energy-efficient real-time scheduling in heterogeneous multi-GPU systems. By consid-

ix



ering the heterogeneity of GPU architectures and workload characteristics, we introduce

strategies to improve both energy efficiency and real-time performance. Lastly, we develop

systematic techniques to enable preemptive priority-based scheduling for real-time GPU

tasks. Through the utilization of the proposed preemption techniques, we enhance resource

utilization, improve responsiveness, and achieve enhanced schedulability in multi-core sys-

tems. Through this work, we make significant contributions to the field of real-time GPU

scheduling, addressing energy efficiency, performance balancing, and preemptive scheduling

challenges.
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Chapter 1

Introduction

1.1 Scheduling of Real-Time GPU-Utilizing Tasks

In this dissertation, we tackle the challenges of GPU power management and

analyzable guarantees for real-time GPU-using tasks. With the increasing performance

capabilities of GPUs, there is a corresponding rise in power consumption, which poses chal-

lenges in terms of reliability, feasibility, and scalability. We explore innovative approaches

to GPU power management that aim to optimize power consumption while ensuring reliable

and efficient operation. Additionally, we address the challenges associated with analyzable

guarantees in real-time systems where the interaction between CPUs and GPUs can be

complex. The monopolization of resources by GPU tasks can result in delays for time-

sensitive operations, impacting the overall system performance. Through comprehensive

analysis and innovative techniques, we strive to provide analyzable guarantees and improve

the predictability and responsiveness of real-time systems utilizing GPUs.

1



1.2 Dissertation Outlines and Contributions

Thesis Statement: This dissertation presents novel approaches to real-time GPU

scheduling that address challenges in energy efficiency and preemptive scheduling,

enabling optimized resource allocation, improved responsiveness, and enhanced

schedulability in heterogeneous multi-GPU systems.

This statement is supported by the remaining chapters of this dissertation. We

give a brief overview and contributions of each chapter in the following.

1.2.1 Chapter 2: sBEET: Balancing Energy Efficiency and Real-Time

Performance in GPU Scheduling

Chapter 2 presents sBEET, a scheduling framework that Balances Energy Effi-

ciency and Timeliness of GPU kernels that makes scheduling decisions at runtime to op-

timize the energy consumption while utilizing spatial multitasking to improve real-time

performance. We evaluate the performance of the proposed sBEET framework using well-

known GPU benchmarks and randomly-generated timing parameters on real hardware. The

results indicate that sBEET reduces deadline misses up to 13% when the system is over-

loaded, and also achieves 15% to 21% lower energy consumption when the tasksets are

schedulable compared to the existing works.

Contributions1. This work makes the following contributions:

‚ We derive a power and energy consumption analysis for GPU kernels scheduled with

and without spatial multitasking on the GPU, and find that the use of spatial multi-

tasking could result in higher energy consumption.

1This work was published at RTSS 2021 [68]

2



‚ We develop a runtime scheduling algorithm that reduces deadline misses of non-

preemptive GPU kernels by dynamically adjusting the degree of resource partitioning

and improves energy efficiency over the existing spatial multitasking approach.

‚ Finally, we demonstrate the practical effectiveness of sBEET in real-time performance

and energy consumption through a diverse set of experimental scenarios on the latest

commercially available embedded GPU platform.

1.2.2 Chapter 3: sBEET-mg: Towards Energy-Efficient Real-Time Schedul-

ing of Heterogeneous Multi-GPU Systems

In Chapter 3, we propose a multi-GPU real-time scheduling framework, sBEET-

mg, that builds upon prior work on single-GPU systems to optimize scheduling strategies

for heterogeneous multi-GPU systems. sBEET-mg makes offline and runtime scheduling

decisions to execute a given job on the energy-optimal GPU while exploiting spatial multi-

tasking on each GPU for better concurrency and real-time performance. We implemented

the proposed framework on a real multi-GPU system and evaluated it with randomly-

generated task sets of benchmark programs. We also experimentally simulated our method

in a system containing more GPUs. Experimental results show that sBEET-mg reduces

deadline misses by up to 23% and 18% compared to the conventional load distribution

and load concentration methods, respectively, while simultaneously achieving lower energy

consumption than them.

3



Contributions2. This work makes the following contributions:

‚ We analyze the power usage characteristics of various benchmarks on two recent

NVIDIA architectures using precise measurements from our own power monitoring

setup. This leads to observations that neither conventional load concentration nor

load distribution scheduling strategies are preferable for energy efficiency in a multi-

GPU system.

‚ To the best of our knowledge, the proposed sBEET-mg framework is the first attempt

to simultaneously address the timeliness and energy efficiency in a heterogeneous

multi-GPU environment. It builds upon the latest work but includes several unique

approaches, including offline allocation of tasks to energy-preferred GPUs and runtime

job migration with spatial multitasking and energy consumption estimation across all

GPUs in the system.

‚ We conduct experiments using a real heterogeneous multi-GPU platform as well as

simulation of larger scale systems. Experimental results indicate that sBEET-mg

can achieve up to 23% and 18% of reduction in deadline misses compared to the

conventional load concentration and distribution approaches while consuming less

energy than them at the same time.

2This work was published at RTSS 2022 [67]
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1.2.3 Chapter 4: Unleashing the Power of Preemptive Priority-Based

Scheduling for Real-Time GPU Tasks

In Chapter 4, we propose two novel techniques, namely the kernel thread and

IOCTL-based approaches, to enable preemptive priority-based scheduling for real-time GPU

tasks. Our approaches exert control over GPU context scheduling at the device driver level

and enable preemptive GPU scheduling based on task priorities. The kernel thread-based

approach achieves this without requiring modifications to user-level programs, while the

IOCTL-based approach needs only a single macro at the boundaries of GPU access seg-

ments. In addition, we provide a comprehensive response time analysis that takes into

account overlaps between different task segments, mitigating pessimism in worst-case esti-

mates. Through empirical evaluations and case studies, we demonstrate the effectiveness

of the proposed approaches in improving taskset schedulability and timeliness of real-time

tasks. The results highlight significant improvements over prior work, with up to 40%

higher schedulability, while also achieving predictable worst-case behavior on an Nvidia

Jetson embedded platform.

Contributions3. This work makes the following contributions:

‚ We propose the kernel-thread and IOCTL-based approaches for preemptive priority-

driven GPU scheduling in multi-core systems with an Nvidia GPU, providing imple-

mentation details and discussing their runtime characteristics.

‚ While it is important to run GPU segments according to their original task priority

(esp. when task priority is assigned based on criticality), we find that assigning differ-

3As of the completion of this dissertation, this work is in the submission of RTSS 2023.
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ent priorities to GPU segments can yield a significant benefit in taskset schedulability.

Our work allows this.

‚ We present a comprehensive analysis on the worst-case task response time under our

two proposed approaches. In particular, our analysis for the IOCTL-based approach

considers self-suspension and busy-waiting modes during GPU kernel execution and

reduces pessimism by taking into account the overlaps between different task execution

segments.

‚ Our work is implemented on the latest Nvidia Tegra driver and will be open sourced.

Experimental results show that our proposed approaches bring substantial benefits

in taskset schedulability compared to previous synchronization-based approaches. A

case study on Jetson Xavier NX demonstrates the effectiveness of our work over the

default GPU driver.
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Chapter 2

sBEET: Balancing Energy

Efficiency and Real-Time

Performance in GPU Scheduling

2.1 Introduction

Nowadays, graphics processing units (GPUs) are already popular due to their out-

standing performance. Offloading tasks that require a massive amount of computation and

parallelism to the GPUs brings a significant performance improvement to cyber-physical

and autonomous applications. Real-time multitasking is an essential prerequisite for devel-

oping such GPU-accelerated applications. For example, users can create multiple streams

and assign independent kernels to those streams for concurrent kernel execution, in order

to achieve speed-up and improve GPU resource efficiency. Power management is one of the
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major factors for the efficient use of GPUs in an embedded environment. According to [50],

GPU power management can bring multiple benefits, such as reducing the energy waste

caused by kernel synchronization and resource utilization, improving scalability and relia-

bility through reduced component temperature, and preventing the need for extra cooling.

It is well known that each kernel may not be fully utilizing all the internal comput-

ing units of a GPU [8]. In order to better utilize the GPU resources and reduce the waiting

time when multiple GPU kernels are sharing a GPU, recent real-time GPU scheduling

schemes [38, 40, 58, 59] employ the spatial multitasking approach that partitions the GPU

into computing units and enables two or more kernels to execute simultaneously on the

GPU. While this approach is shown to improve real-time performance and resource effi-

ciency, there has been little consideration of the resulting energy consumption. In fact,

as we will discuss in the next sections, the energy consumption of GPU kernels scheduled

by the previous schemes using spatial multitasking can be much worse compared to the

naive approach that executes one kernel at a time. This is due to the lack of power gating

at a granularity of computing units in most commercially available GPUs.1 Hence, when

spatial multitasking is used, idle computing units can continue to consume dynamic power

as long as at least one computing unit remains actively used by kernels. Meanwhile, kernels

with fewer computing units have longer execution time, thereby further increasing energy

consumption.

This work presents sBEET, a scheduling framework that Balances Energy Efficiency

and Timeliness of GPU kernels to address the aforementioned challenges on embedded

1Power-gating overhead is one of the major obstacles since each execution unit of a GPU tends to idle
for shorter periods than break-even time [7].
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GPUs. This work presents a generic power model to capture the characteristics of dynamic

and idle power consumption of GPU kernels, and provides an analysis of GPU energy

consumption with spatial multitasking. At runtime, sBEET makes scheduling decisions

about the partitioning of computing resources, e.g., streaming multiprocessors in Nvidia

GPUs, based on the prediction of energy consumption calculated by the power model. This

approach allows simultaneous kernel execution to improve real-time performance while re-

ducing the energy consumption of the GPU.

To evaluate the performance of sBEET, we implemented the framework on an

Nvidia Jetson Xavier AGX platform. Experiments are conducted using randomly-generated

tasksets of well-known benchmarks to compare the schedulability and energy consumption of

our framework against several representative existing approaches: the default First-Come-

First-Serve (FCFS) scheduling of Nvidia GPUs [10], the fixed-priority Rate Monotonic (RM)

scheduling without spatial multitasking, and the scheduling algorithm proposed in [58] that

uses spatial multitasking. Experimental results show that sBEET addresses the problem of

spatial multitasking by maintaining a similar energy consumption as the non-spatial mul-

titasking approaches while reducing the occurrence of deadline misses significantly. The

results also demonstrate that sBEET brings substantial benefits in both real-time perfor-

mance and energy saving when compared to the spatial multitasking approach.
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Figure 2.1: Architecture and module power rails of Nvidia Jetson AGX Xavier

2.2 Background and System Model

2.2.1 Background

Nvidia Jetson AGX Xavier. This work considers the latest embedded GPU platform,

Nvidia Jetson AGX Xavier. The architecture of the System-on-Chip (SoC) used in this

platform is illustrated in Fig. 2.1a. The Xavier SoC features eight 64-bit ARMv8 Carmel

CPU cores running at 2265MHz with 128KB instruction and 64KB data L1 caches, 2MB
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of L2 cache per cluster of two cores, and a 4MB of L3 cache shared by all CPU clusters.

The SoC has an integrated 512-core Volta GPU sharing 16GB of 2133MHz memory with

the CPU while consuming less than 30 Watts. The GPU includes eight execution engines,

also known as streaming multiprocessors (SMs), each containing 64 CUDA cores and 8

Tensor cores. Each SM includes a 128KB L1 cache, and all the SMs share a 512KB L2

cache. It also comprises several other computing elements and accelerators such as DLAs,

vision accelerator, and video encoder/decoder [1], but we primarily focus on the energy

consumption of the GPU component.

SM Organization and Kernel Execution. The CUDA programming model provides an

abstraction of the GPU architecture that the user can directly interact with. The general

steps to execute any CUDA program includes: (i) memory allocation in both CPU and

GPU side, (ii) copy the input data from CPU memory to GPU memory, (iii) execute the

GPU program, (iv) copy the results from GPU memory to CPU memory, and (v) free the

GPU memory [10, 34, 45]. The parts that run on the GPU are known as CUDA kernels,

and each kernel is executed by different CUDA threads in parallel. A group of threads is

called a thread block, and thread blocks are grouped into a grid. The number of blocks

and grids is defined by the user before launching the kernel. The user can also use CUDA

streams to achieve parallel execution of multiple CUDA kernels, and each stream manages

a FIFO queue for kernel execution. Once a kernel starts on the GPU, its execution cannot

be preempted (except by another kernel from a stream with a higher priority). The blocks

are distributed onto SMs in a nearly round-robin manner [10, 52] and cannot be migrated

between SMs. One SM can run multiple blocks concurrently depending on their resource
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demands, such as shared memory, the number of threads, and the number of register files,

etc. By default, kernels are executed using all the SMs of the GPU on a First-Come-First-

Serve (FCFS) basis.

Power Management in Xavier AGX. Jetson AGX Xavier has two input voltage rails:

SYS VIN HV and SYS VIN MV, each having a different range of input voltages, i.e., 9V

to 19V for SYS VIN HV and 5V for SYS VIN MV, which the device can switch between

for power efficiency. The power consumption of the rails in Fig. 2.1b can be measured by a

built-in power monitor which has a range up to 26V [2]. There are some power management

mechanisms related to the circuit design that are used to optimize power efficiency when

(part of) the device is detected to be idling:

‚ Clock-gating: remove the clock signal.

‚ Power-gating: shut off the power supply to the circuits within the rails.

‚ Rail-gating: shut off the power supply to the entire rail.

The GPU is both rail-gated and clock-gated, but the details on how the circuits work are

not publicly available. Nonetheless, as experimentally confirmed in Section 2.5.2, SM-level

power/clock gating does not appear to exist even on the latest Xavier AGX GPU.

2.2.2 System Model and Assumptions

We consider a taskset Γ consisting of n real-time non-preemptive periodic tasks

with constrained deadlines. We focus on the kernel execution and memory copy operations,

and a task τi is characterized as follows:

τi :“ pGi, Ti, Diq
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‚ Gi: The cumulative worst-case execution time (WCET) of GPU segments (including

memory copies and kernels) of a single job of τi. The duration depends on how many

SMs are assigned to a particular job.

‚ Ti: the period or the minimum inter-arrival time.

‚ Di: the relative deadline of each job of τi, and is smaller than or equal to the period,

i.e., Di ď Ti.

A task τi consists of a sequence of jobs Ji,j , where Ji,j indicates the j-th job of

task τi. Following the idea of spatial GPU multitasking [38, 40, 58, 59], each job Ji,j of the

task τi can execute with a different number of SMs exclusively assigned to it. Hence, we

use Gi,jpmq to represent the WCET of Ji,j , where m denotes the number of SMs used by

Ji,j . Gi,jpmq is given by the sum of the following three parameters:

Gi,jpmq “ Ghd
i ` Ge

i,jpmq ` Gdh
i

‚ Ghd
i : the worse-case data copy time from the host to the device memory

‚ Ge
i,jpmq: the worst-case kernel execution time of Ji,j when m SMs are assigned to it

‚ Gdh
i : the worse-case data copy time from the device to the host memory

The utilization of a task τi is defined as the average utilization when different

number of SMs are assigned, and it is computed as Ui “

řM
m“1 Uipmq

M , where M is the

total number of SMs on the device and Uipmq “
Gipmq

Ti
. It is worth noting that UipMq ď 1;

otherwise, τi is never schedulable regardless of how many SMs are given. The total utilization

of a taskset is denoted as U “
ř

τiPΓ
Ui. Each job is characterized by an arrival time ri,j and
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an absolute deadline di,j “ ri,j ` Di. Without loss of generality, we assume a discrete-time

system where timing parameters can be represented in positive integers.

Based on the kernel execution time Ge
i,jpmq, each job Ji,j can be categorized into

either linear-speedup or nonlinear-speedup job [59]:

‚ Ji,j is a linear-speedup job if Ge
i,jpmq is inversely proportional to m, i.e., @mpm ď

Mq, Ge
i,jpmq “ Ge

i,jp1q{m. This applies to most kernels that typically have many

thread blocks (" M) with reasonable memory demands because when more SMs are

assigned, the thread blocks of such kernels can be evenly distributed across the SMs

and be executed in parallel.

‚ Ji,j is a nonlinear-speedup job if there exists a case where the speedup is nonlinear to

the number of SMs assigned, i.e., Dmpm ď Mq, Ge
i,jpmq ą Ge

i,jp1q{m. This happens

to kernels that have only a small number of thread blocks or saturate the memory

resources of the GPU (e.g., bandwidth, shared memory, registers, etc.) [8].

This categorization will be used for proofs of energy consumption properties in spatial

multitasking (Sec. 2.4.1), but our proposed runtime scheduling algorithm (Sec. 2.4.2) works

regardless of the kernel type.

2.3 Related Work

Temporal Multitasking on GPU. Some prior works have been done to improve GPU

utilization in a time domain. TimeGraph [43] is a real-time GPU task scheduler that assigns

temporal budgets to tasks with different priorities, and replenishes the budgets periodically.
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Elliott et al. [28] modeled the GPU as a mutually-exclusive shared resource and used real-

time synchronization protocols to integrate the GPU into real-time multiprocessor systems.

Kim et al. [?] proposed a server-based approach to address the busy waiting and long priority

inversion problems of the synchronization-based approach.

Temporal multitasking can be divided into two types: preemptive scheduling and

non-preemptive scheduling. The aforementioned methods [?, 28, 43] treat GPU tasks as non-

preemptive tasks, which allows a task to exclusively use the computing units of the GPU

only after the currently-running tasks release the GPU. On the other hand, some other

works [14, 42, 75] introduce software-based mechanisms to enable preemptive scheduling of

real-time GPU tasks. The key idea is to decompose a long-running kernel into smaller

segments so that preemption can happen at the boundaries of these segments. However,

regardless of the preemptiveness of GPU tasks, temporal multitasking can suffer from the

resource underutilization problem given that each GPU task may not fully utilize all the

computing units of the GPU [8]. In addition, GPU tasks can experience a long waiting time

if they are scheduled non-preemptively. The use of preemptive scheduling can reduce this

waiting time, but the implementation of the software-based mechanisms is not trivial since

they require modifications to device drivers and the hardware-level preemptions provided

in recent GPUs have only a limited number of priority levels (e.g., only two in the Nvidia

Pascal and Volta architectures [6, 73]).

Spatial Multitasking on GPU. Spatial multitasking, also called spatial resource sharing

or GPU partitioning, focuses on the fact that multiple tasks can execute simultaneously

on different subsets of computing units of the GPU. There are some works done on spatial
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multitasking [8, 9, 38, 49, 61, 69]. Specifically, Jain et al. [38] proposed to spatially partition

computing units as well as on-board DRAM to enable parallel kernel execution, better

resource utilization, and performance isolation. However, these works did not pay much

attention to the real-time constraints of individual GPU tasks.

Sun et al. [59] proposed algorithms to minimize the makespan of a static sched-

ule of GPU kernels by taking into account the long data transfer duration prior to GPU

kernel execution and modeling kernels as moldable parallel jobs. However, the static sched-

ule generated by their algorithms assumes all jobs arrive at the same time with the same

period, thereby unsuitable to periodic or sporadic real-time tasks with arbitrary release

offsets which are prevalent in cyber-physical systems. Kang et al. [40] focused on mobile

latency-sensitive workloads and proposed the spatial resource reservation technique that

reserves computing units for high-priority tasks to help reduce the blocking time of fore-

ground applications from background ones. Wang et al. [71] developed a QoS mechanism

that allocates resources dynamically to meet the QoS goals of individual GPU kernels.

For periodic real-time tasks, Saha et al. [58] proposed spatial-temporal GPU management

(STGM) that combines temporal and spatial multitasking to improve taskset schedulability

under the Rate Monotonic (RM) policy. The resource allocation algorithm of STGM first

assigns the minimum number of SMs to each task, and if any task is unschedulable due

to the long execution time caused by a small number of SMs assigned to it, the algorithm

gives more SMs to that task. In this way, STGM can reduce potential interference caused

by SMs shared with other tasks. However, in Section 2.4.1, we will analyze the energy

consumption of GPU tasks when spatial multitasking techniques are applied, recognizing
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that such approaches may not necessarily result in the optimal energy-efficient schedule on

the GPU.

Resource Allocation for GPU Energy Saving. Wang and Ranganathan [66] developed

an instruction-level prediction mechanism to save energy by estimating the number of SMs

for a given application. Wang et al. [65] proposed power gating strategies to turn off extra

resources that are not being used. Since the switching overhead often yields negative energy

saving, they ensure that the unused circuits remain off long enough to compensate for the

overhead. Hong and Kim [32] put forward an integrated power and performance prediction

to improve the GPU energy efficiency by building a resource-based power model and finding

the optimal number of SMs for each workload that leads to the highest performance-per-

Watt. They also proposed a theoretical method that the unused SMs can be shut off by a

power-gating mechanism if it is supported at the circuit level. Aguilera et al. [9] presented

QoS-aware dynamic resource allocation and experimentally demonstrated the effectiveness

of this method in GPGPU-Sim. Sun et al. [60] proposed a runtime QoS management mech-

anism that dynamically adjusts SM allocation so that the idle SM can be power gated to

reduce energy consumption. Zahaf et al. [74] presented a general model of energy consump-

tion and performance on heterogeneous multi-core processors such as ARM big.LITTLE,

and proposed a heuristic approach to reduce energy consumption for soft real-time mold-

able parallel tasks. Tasoulas et al. [62] categorized GPU workloads according to their re-

source demands and achieved energy savings in GPGPU-Sim by pairing the workloads and

power-gating unused SMs. However, the results cannot be directly applied to real hardware

platforms since per-SM power-gating is not yet available in today’s GPUs.
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2.4 sBEET Framework

This section presents the sBEET framework and analysis. We first introduce

power and energy analysis, and then propose a scheduling algorithm that makes runtime

scheduling decisions and SM allocation.

2.4.1 Power and Energy Analysis

Power Model. Isci and Martonosi [36] introduced a general framework originally designed

for CPU power modeling, which is also widely used as a basis for many GPU simulation

works, such as Hong and Kim’s model [32] and GPUWattch by Leng et al. [48]. It defines

the total power consumption P as the sum of idle power P idle from idling cores (SMs in our

case), leakage power (static power) P s, and dynamic power P d from active SMs. Following

this approach, the instant power consumption of the GPU at time t can be written as:

P “ P s ` P d ` P idle (2.1)

P d is the power consumption required to execute kernels on SMs and depends on the kernel

characteristics including memory access and the number of SMs used [32].2 Hence, P d can

be decomposed into a linear sum of per-SM power consumed by each job. For a set of

jobs J “ tJ1, J2, ..., Jnu3 executing simultaneously on the GPU at time t, Eq. (3.1) can be

rewritten as:

P “ P s `

n
ÿ

i“1

P d
i pmiq ` P idlepM ´

n
ÿ

i“1

miq (2.2)

2The dynamic power characteristics of each kernel can be estimated by either measurement-based profiling
or analytical methods [32]. We use the profiling approach in our evaluation.

3For simplicity, we omit the index j of Ji,j since we do not need to refer to individual jobs of the same
task.
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where m1, ...,mn are the number of SMs being exclusively used by J1, ..., Jn, respectively,
4

P d
i pmq is the dynamic power consumption of Ji on m active SMs, P idlepmq is the idle power

of m inactive SMs, M is the total number of SMs on the GPU. Note that when all the

SMs of the GPU are idling (
řn

i“1mi “ 0), the GPU is power-gated and there is no power

consumption from P d and P idle, i.e.,
ř

P d
i p0q “ 0 and P idlepMq “ 0. In addition, since

the dynamic (and idle) power consumption is linear to the number of active (and inactive)

SMs [32], the following conditions hold:

P d
i pmq9m, and P idlepmq9m (2.3)

Using P , the energy consumption of the GPU for the time period rt1, t2s can be computed

as follows:

E “

ż t2

t1

Pdt (2.4)

Now let us consider a set of jobs J “ tJ1, J2, ..., Jnu that are scheduled on the

GPU during rt1, t2s. Depending on scheduling decisions, some jobs of J may be active at

t P rt1, t2s while the others may be inactive. We define a binary indicator xki ptq that returns

1 if the k-th SM is actively used by a job Ji at time t, and 0 otherwise. Using this, Eq. (2.4)

can be re-written as follows:

Ept1, t2q “

ż t2

t1

˜

P s `

n
ÿ

i“1

´

P d
i p

M
ÿ

k“1

xki ptqq

¯

`P idle
´

M ´

n
ÿ

i“1

M
ÿ

k“1

xki ptq
¯

¸

(2.5)

The detailed methods to obtain the above power parameters and to realize SM

allocation on commodity GPU hardware will be explained in Section 2.5.1. Based on the

4This means no shared SM between jobs, i.e., at any time instant t,
řn

i“1 mi ď M , which is required for
simultaneous execution on the GPU with spatial multitasking.
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above power and energy model, we analyze the energy consumption of a schedule with

spatial multitasking in the following theorem.

Theorem 1 The schedule of a job set J with spatial multitasking cannot be more energy-

efficient than the schedule without spatial multitasking if the jobs in J are linear-speedup

jobs.

Proof. Consider a job set with two jobs, J “ tJ1, J2u, which arrive together at time t1. For

this job set, there are two possible schedules that can be obtained with and without spatial

multitasking: (a) sequentially executing the first job J1 on M SMs and then the second job

J2 on M SMs (w/o spatial multitasking), and (b) simultaneously executing J1 on m1 SMs

and J2 on m2 SMs, where m1 ` m2 “ M (w/ spatial multitasking). For convenience, we

assume Ge
1pm1q ď Ge

2pm2q, i.e., J2 finishes later than J1. To assess the energy efficiency of

these two schedules, we consider a time interval δ “ rt1, t2s that is long enough to complete

job-set execution under both schedules. The energy consumption of the two schedules, Ea

and Eb, during δ can be respectively written as below:

Ea “ P s ¨ δ ` P d
1 pMq ¨ Ge

1pMq ` P d
2 pMq ¨ Ge

2pMq (2.6)

Eb “ P s ¨ δ

` pP d
1 pm1q ` P d

2 pm2qq ¨ Ge
1pm1q

` pP d
2 pm2q ` P idlepM ´ m2qq ¨ pGe

2pm2q ´ Ge
1pm1qq

(2.7)

Recall that when the execution completes and all SMs are idling,
ř

P d
i p0q “ 0 and P idlepMq “

0 due to power gating.

Using Ea and Eb, we now prove the theorem by contradiction. Assume that there

exists a case where the schedule with spatial multitasking is more energy-efficient than that

20



without spatial multitasking, i.e., Dm1Dm2, Ea ą Eb. Since we consider linear-speedup jobs

here, Ge
i pmiq “ Ge

i p1q{mi where Ge
i p1q is assumed to be a known constant. Then,

Ea ´ Eb ą 0

ô Ge
1p1q ¨ p

P d
1 pMq

M
´

P d
1 pm1q

m1
q

` Ge
2p1q ¨ p

P d
2 pMq

M
´

P d
2 pm2q

m2
q

` P idlepM ´ m2q ¨ pGe
1pm1q ´ Ge

2pm2qq

ą 0

(2.8)

From Eq. 2.3, for any m,
P d
i pMq

M “
P d
i pmq

m , so the first two terms are 0 and we can rewrite

the Eq. 2.8 to:

Ea ´ Eb ą 0

ô P idlepM ´ m2q ¨ pGe
1pm1q ´ Ge

2pm2qq ą 0

(2.9)

That leads to Ge
1pm1q ą Ge

2pm2q. It contradicts to our assumption of Ge
1pm1q ď Ge

2pm2q.

Thus, the assumption that Ea ą Eb is false and the lemma is proved. The same approach

can used to prove the case where there are more than two linear-speedup jobs.

Lemma 2 Theorem 1 does not necessarily hold for nonlinear-speedup jobs.

Proof. By the definition of nonlinear-speedup jobs, Dmpm ď Mq, Ge
i,jpmq ą Ge

i,jp1q{m.

Hence,
P d
i pMq

M ‰
P d
i pmq

m , and we cannot deterministically compare Ea and Eb in Eq. 2.8.

Theorem 1 gives an insight that for linear-speedup jobs, the spatial multitasking

strategy unavoidably causes some SMs to be idling while the GPU is active since GPU power

is not SM-gated; therefore, the power consumption of idle SMs affects the overall energy

consumption of the schedule which is less energy-efficient than the schedule without spatial

21



multitasking. However, Lemma 2 opens a possibility that for each nonlinear-speedup job,

there may exist an optimal number of SMs that leads to the most energy-efficient schedule.

Definition 3 The energy-optimal number of SMs mopt
i for a task τi is defined as the number

of SMs that leads to the lowest energy consumption when it executes in isolation on the GPU

during an arbitrary time interval δ ě maxmďM Ge
i,jpmq.

The time interval δ considered for mopt
i is to take into account the impact of idling

SM time when τi does not use all SMs. The length of the time interval does not affect the

value of mopt
i as long as the interval is greater than or equal to the maximum GPU execution

time of any job in τi, because once τi completes execution, the GPU is power-gated and

only the static power P s contributes to the total energy consumption.

Example 4 Consider a taskset Γ with the following two linear-speedup tasks on a GPU

with M identical computing units. The memory copy operation and GPU execution time

of these tasks are listed in Table 2.1. The tasks are running with different CUDA streams,

so synchronized memory copy and concurrent kernel execution are possible. An interval of

interest [0, 12) is considered for the following two cases: a schedule of the two tasks with

and without spatial multitasking.

Table 2.1: Taskset in Example 4

Task Di Ge
i pMq Ghd

i Gdh
i Offset

τ1 12 6 1 1 0
τ2 7 1 1 1 1

Fig. 2.2a shows the schedule without spatial multitasking. Since there are only two

tasks and τ1 arrives earlier than τ2, any work-conserving scheduling policies would yield the
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Figure 2.2: Scheduling results in Example 4

same schedule. At t “ 0, J1,1 is scheduled on the GPU since no other job is ready. After

memory copy, it occupies all the GPU cores in [1, 7). The following job J2,1 arrives at

t “ 1, but because of the blocking by J1,1, J2,1’s GPU execution cannot start until t “ 7 and

finally it misses the deadline.

Fig. 2.2b shows the schedule with spatial multitasking. By running J1,1 with 3¨M
4

SMs, both jobs J1,1 and J2,1 can be scheduled without any deadline miss. However, the

energy consumption of the schedule in Fig. 2.2b is greater than that in Fig. 2.2a, and this

can be easily derived from Theorem 1.
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In summary, the above example suggests that scheduling of GPU jobs with no

spatial multitasking can cause a deadline miss due to the blocking time from an earlier

job. While the use of spatial multitasking addresses this problem, it could increase energy

consumption since the time for all GPU units being idle is reduced, as given by the above

analysis. Motivated by this example, our goals are: (i) to minimize deadline misses by

exploiting the spatial multitasking technique, and (ii) to maximize the opportunity to reduce

energy consumption by running each job with the optimal number of SMs (mopt
i ) whenever

possible.

2.4.2 Scheduling Framework

sBEET consists of one server and multiple worker threads. Similar to MPS [4],

the server receives the jobs of GPU tasks so that they share a single CUDA context, and

dispatches the jobs to the worker threads for execution with separate CUDA streams on

the GPU. In this way, sBEET enables spatial multitasking for parallel kernel execution

when it is needed, and the decision on when to use spatial multitasking is made by our

scheduling algorithm presented later. One of the important design issues is the number of

worker threads that determines how many kernels can run concurrently on the GPU. In

this work, we limit the number of workers to two due to the following reasons: (i) the use

of more workers can lead to more SM going idle at different times, which increases energy

consumption as discussed in Section 2.4.1 (also see results in Fig. 2.10); (ii) more workers

mean more combinations of SM allocation available for each kernel launched by each worker,

and the overhead from increased computational complexity may become unacceptable for

the runtime framework running on embedded platforms; (iii) more workers may increase
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contention on shared resources as reported in [8]; and (iv) based on our observation, creating

more workers does not necessarily contribute to reducing deadline misses on embedded

GPUs.

During the initialization phase, the server creates two worker threads as well as two

CUDA streams, and each worker is bonded to one of the streams. When a job is offloaded

to the worker, it runs on the corresponding CUDA stream. The workers communicate with

each other via a global shared data structure which is also created during the initialization

phase. The WCET profile, power consumption profile and mopt for each task are also stored

in the server.

During the runtime phase, the server keeps track of the status of SMs, which

are updated at the release and completion of every job. The server also maintains two

containers: a ready queue to keep track of ready jobs and a run queue for currently executing

jobs. We sort jobs in the ready queue based on their deadlines, but other policies can also

be used, e.g., FCFS or criticality if exists. A set Savail keeps the SMs that are not being

used by any job. Whenever a new job arrives, the server invokes the scheduler (explained

below) to let it decide whether the server should offload the job to one of the workers right

away or leave it in the ready queue. The scheduler is also invoked when a currently running

job completes. The worker on which the job was executing notifies the server via the global

data structure and the server marks the worker thread as “vacant”. Then the SMs that

were used by the job are returned back to Savail and the scheduler is invoked to make a

scheduling decision for ready jobs.
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Algorithm 1 Runtime Scheduler
Input: Ji,j : the first job in the ready queue

Input: Savail: the set of currently available SMs

1: procedure Scheduler(Ji,j , Savail)

2: if |Savail| “ M then Ź GPU is idling

3: Scfg
i,j Ð Allocation(Ji,j , nullptr) Ź Alg. 2

4: if Scfg
i,j ‰ H then

5: Execute Ji,j with Scfg
i,j ; remove Ji,j from ready queue

6: else if 0 ă |Savail| ă M then

7: Jq,r Ð currently running job

8: Scfg
i,j Ð Allocation(Ji,j , Jq,r) Ź Alg. 2

9: if Scfg
i,j ‰ H then

10: Execute Ji,j with Scfg
i,j ; remove Ji,j from ready queue

11: if Savail “ H or Scfg “ H then Ź Ji,j not executed

12: Repeat the procedure for the next jobs in the ready queue until Savail “ H or every job

has been visited

(1) Runtime Scheduler

The scheduler of sBEET is given in Alg. 1. It is invoked by the server when

a new job arrives or a current job finishes. The scheduler determines up to two jobs to

execute simultaneously on different sets of SMs to avoid the unpredictable delay that can

be caused when the two CUDA kernels compete for the same set of SMs. When a new

job arrives, it is pushed into the ready queue, and the first job Ji,j in the queue is passed

to the scheduler. The scheduler first checks the currently available SM set Savail. If the

GPU is idling (|Savail| “ M , where M is the total number of SMs on the GPU), it calls the
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SM allocation algorithm (Alg. 2) to obtain the SM allocation Scfg
i,j for Ji,j . If the GPU is

partially utilized (0 ă |Savail| ă M), the scheduler passes the new job Ji,j along with the

currently-running job Jq,r to the SM allocation algorithm so that it can give Scfg
i,j to Ji,j

based on the information of Jq,r. If no valid SM allocation is found (Scfg
i,j “ H) or all SMs

are busy (Savail “ H), the scheduler puts Ji,j in the ready queue and iteratively checks the

next job in the ready queue with the same procedure.

As discussed in Section. 2.4.1, the energy consumption may increase when spatial

multitasking is used. To make a trade-off between schedulability and energy efficiency, our

SM allocation algorithm adopts the following heuristic strategy:

SM Allocation. The proposed SM allocation algorithm uses a job set Qw
i,j for a given

job Ji,j P τi to check all the jobs of other tasks that are expected to arrive during Ji,j ’s

execution. Formally, Qw
i,j :“ tJk,p | @p, pJk,p P τkq ^ pτk ‰ τiq ^ prk,p ă fi,jpm

1qqu, where

fi,jpm
1q is the expected finish time of Ji,j if it begins execution at the current time tnow

with m1 dedicated SMs. The algorithm considers a possible schedule of Ji,j Y Qw
i,j for each

m1, and chooses the one that leads to the minimum predicted energy consumption in an

interval of [tnow, fi,jpm
1q]. Note that the decision made by the algorithm for Ji,j does not

affect the currently running job Jq,r since it does not assign SMs that are not in Savail.

Alg. 2 depicts the pseudocode of our SM allocation. It takes the jobs passed by

Alg. 1 (Ji,j : the job that needs to be executed, Jq,r: the currently running job), and returns

an SM allocation Scfg
i,j for Ji,j . The detailed steps depend on whether the GPU is idling or

not:
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Algorithm 2 SM Allocation

1: function Allocation(Ji,j , Jq,r)

2: tnow Ð current time

3: if Jq,r is nullptr then Ź ùñ GPU is idling

4: for m Ð M to 1 do

5: m1 Ð minpm,mopt
i q

6: Qw
i,j Ð tJk,p | @p, pτk ‰ τqq ^ prk,p ă fi,jpm1qqu

7: SchedGen(Ji,j , Jq,r, m
1, rtnow, fi,jpm1qs, Qw

i,j)

8: Compute Epred “ Eptnow, fi,jpm1qq by Eq. (2.5)

9: if no generated schedule is feasible then

10: Choose the schedule with the minimum Epred

11: else

12: Choose the feasible schedule with the min. Epred

13: return Scfg
i,j Ź the corresponding SM allocation for Ji,j

14: else Ź the GPU is partially occupied

15: m1 Ð minp|Savail|,m
opt
i q

16: if fi,jpm1q ą fq,r ` Ge
i,jpMq then

17: return H Ź Do not run Ji,j in parallel with Jq,r

18: else

19: Qw
i,j Ð tJk,p | @p, pτk ‰ τqq ^ prk,p ă fi,jpm1qqu

20: SchedGen(Ji,j , Jq,r, m
1, rtnow, fi,jpm1qs, Qw

i,j)

21: if the generated schedule is not feasible then

22: return H

23: else

24: return Scfg
i,j Ź the corresp. SM allocation

28



Algorithm 3 Schedule Generation

1: function SchedGen(Ji,j , Jq,r, m
1, rtnow, tfins, Qw

i,j)

2: /* Generate a schedule for rtnow, tfins */

3: Place Ji,j with m1 SMs at tnow

4: if Jq,r “ nullptr then

5: tnext Ð tnow Ź Start time for the next job Jk,p P Qw
i,j

6: else

7: Place Jq,r from tnow to fq,r

8: tnext Ð minpfi,jpm1q, fq,rq Ź Ji,j or Jq,r’s finish time

9: /* Consider other jobs in Qw
i,j */

10: Srem Ð # of remaining (unused) SMs at tk,p

11: for Jk,p P Qw
i,j in ascending order of arrival time do

12: m2 Ð minpSrem,mopt
k q

13: if m2 “ 0 then

14: continue Ź Ignore this job from parallel exec.

15: Place Jk,p with m2 SMs at tnext

16: tnext Ð fk,ppm2q

17: if tnext ě tfin then

18: break Ź Stop schedule generation
Ź Schedule generation done

‚ (Alg. 2 line 3 to 13) If the GPU is idling, the algorithm iterates through m from M

to 1. For each m, it assigns m1 “ minpm,mopt
i q SMs to Ji,j , and checks if there is

any job that is expected to arrive before fi,jpm
1q, and adds such jobs into Qw

i,j in an

ascending order of arriving time. Then the algorithm calls the SchedGen function

in Alg. 3 (explained below) to generate a schedule of Ji,j Y Qw
i,j for a time interval
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[tnow, fi,jpm
1q]. The algorithm predicts the energy consumption Epred of the generated

schedule by Eq. 2.5 (line 5 to 8). After this iteration, if none of the generated schedule

is feasible, the algorithm chooses the one with the minimum energy consumption.

Otherwise, the algorithm chooses the most energy-efficient feasible schedule (line 9 to

12). Finally, the algorithm returns the corresponding SM configuration Scfg
i,j for Ji,j

(line 13).

‚ (Alg. 2 line 14 to 24) If the GPU is partially occupied (Jq,r ‰ nullptr), the scheduler

decides whether Ji,j should be dispatched to the worker thread right away. This can

be done by comparing the expected finish time of Ji,j in two cases: (1) executing

Ji,j with m1 “ minp|Savail|,m
opt
i q SMs at tnow (i.e., fi,jpm

1q), and (2) waiting until

Jq,r completes and then executing Ji,j with all M SMs (i.e., fq,r ` Ge
i,jpMq). If case

2 finishes earlier, the algorithm returns H (line 17) so that Ji,j is put back to the

ready queue. This is because in this case, executing Ji,j with m1 SMs not only takes

longer but also likely causes more SMs left idle later. Otherwise, following the same

approach as when the GPU is idling, the algorithm calls SchedGen and returns Scfg
i,j

when the generated schedule is feasible (line 18 to 24).

Schedule Generation. Alg. 3 generates a schedule for Ji,j YQw
i,j for a given time interval

rtnow, tfins. The way it generates a schedule is straightforward given that: the server can

execute only up to 2 kernels at a time, Ji,j starts at tnow, and the time interval finishes when

Ji,j completes execution (tfin “ fi,jpm
1q). Hence, at first, the function places Ji,j (and Jq,r

if exists) in the schedule (line 3 to 8). Then, at the time tnext when one of the jobs finishes

execution, it places Jk,p P Qw
i,j in their arrival order by using remaining SMs (Srem), until
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the schedule reaches tfin (line 10 to 18). Note that if there is no remaining SM left, Jk,p

will be ignored from the schedule generation, assuming it can be executed later (line 13 to

14).

In the following example, we illustrate how the scheduler works at runtime.

Example 5 Consider a taskset Γ of three linear-speedup tasks and a GPU with M SMs.

The memory copy operation and GPU execution time of the tasks are listed in Table 2.2.

Fig. 2.3a shows the schedule without spatial multitasking. Under any work-conserving

scheduling policies such as FCFS and RM, at t “ 0, J1,1 is scheduled since none of jobs of

other tasks are ready. After memory copy, it occupies all the SMs in [1, 7). The following

job J2,1 is released at t “ 1, but because of the blocking by J1,1, J2,1 cannot execute until

t “ 7 and misses the deadline.

Table 2.2: Taskset in Example 5

Task Di Ge
i pMq Ghd

i Gdh
i Offset

τ1 14 6 1 1 0
τ2 7 1 1 1 1
τ3 10 1 1 1 2

The proposed scheduler considers possible future schedules resulted by the SM allo-

cation to the job of interest until this job finishes execution. When J1,1 arrives, the scheduler

first considers the schedule in Fig. 2.3a during an interval of Ge
1,1pMq. The scheduler can

find that J2,1 and J3,1 will arrive during this interval based on the information of their pe-

riods and offsets, and J2,1 will miss the deadline due to the blocking from J1,1. Next, the

scheduler considers the schedule shown in Fig. 2.3b where 3¨M
4 SMs is assigned to J1,1. In
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Figure 2.3: Scheduling results in Example 3

32



this case, since fewer SMs are given to J1,1, an interval of Ge
1,1p3¨M

4 q is considered, and

all of the three jobs are expected to meet their deadlines. The same procedure is conducted

with other SM allocations to J1,1, e.g., Fig. 2.3c and Fig. 2.3d. The schedule in Fig. 2.3d

executes J1,1 on just a single SM and results in a deadline miss. After those schedules

are generated, the scheduler predicts the energy consumption of each schedule that does not

miss any deadline during the interval of interest. In this scenario, all the jobs can meet the

deadline in both Fig. 2.3b and 2.3c. Hence, the scheduler selects the schedule in Fig. 2.3b

since it has a lower energy consumption computed by the approach in Theorem. 1.

(2) Time Complexity Analysis

Here we discuss the time complexity of sBEET. Suppose we have n tasks in the

taskset, and at mostK jobs can be released by each task during an interval considered by the

SM allocation algorithm. The number of jobs considered for each schedule generation (line

11 of Alg. 3) is upper-bounded by nK. The procedure to check deadline miss and compute

the energy consumption for each schedule is also upper-bounded by nK. The number of

generated schedules is a constant (“ M , line 4 of Alg. 2) because it depends on the total

number of SMs on the target GPU. So it takes a constant time to select the schedule with

the best energy consumption. In order to maintain the ready queue in the server, it takes

OpnK ¨ logpnKqq to sort the ready jobs in an order of their deadlines. Therefore, the whole

procedure of Alg. 1, 2 and 3 takes OpnKq ` OpnK ¨ logpnKqq “ OpnK ¨ logpnKqq. If K

can be bound to a constant, which is reasonable since the size of K is constrained by task

utilization and job’s WCET, the time complexity can be expressed as Opn ¨ logpnqq.
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(3) Offline Schedule Generation

With the algorithms given in Alg. 1 and Alg. 2, we can also generate an offline

schedule to statically analyze the schedulability of a given taskset. The offline schedule can

be generated for one hyperperiod of the given taskset by simulating job arrivals and their SM

allocations using the proposed runtime scheduler. Then, the occurrence of deadline misses

can be easily detected from the generated schedule. In order to preserve the execution order

of jobs found in the offline schedule at runtime, the jobs should be executed in a non-work-

conserving manner; hence, even if the previous job finishes earlier than its expected finish

time based on the WCET, the next job should begin execution according to its start time

recorded in the offline schedule. For sporadic tasks, we consider the minimum inter-arrival

time as periods. However, unlike the runtime scheduler, the offline schedule is generated

based on the WCETs of tasks, and can be less energy-efficient due to possible idle times

that are only observable at runtime.

2.5 Evaluation

In this section, we first present the profiling results of WCET and power consump-

tion, and evaluate the accuracy of our power model. We then check the runtime overhead

of sBEET implemented on Xavier AGX. Finally, we conduct experiments to evaluate the

effectiveness of sBEET on schedulability and energy consumption compared against existing

approaches.
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2.5.1 Experiment Setup

The experiments are done on a Jetson AGX Xavier Developer Kit using CUDA

10.0 SDK, running on Ubuntu 18.04. GPU power consumption is measured using the built-

in power sensor at the GPU power supply rail every 1 ms, and the energy consumption is

estimated by integrating the power consumption records over the duration of GPU taskset

execution. To minimize measurement inaccuracy, we fixed the GPU clock frequency to

670 MHz and enabled all CPU cores.

Since the Xavier platform features shared memory between the CPU and the GPU,

we ignored the energy consumption during data transfer between the host and the device

and limited our focus to processing elements. According to the temperature reported by

the built-in sensor during profiling, the observed change in temperature is insignificant

during kernel execution on this low-power platform; hence, the potential impact of chip

temperature on power consumption is not considered in this work.

Obtaining Power Parameters. The power parameters P s, P d and P idle are obtained

using the average of 10-minute measurements from the built-in power sensor under different

conditions. P s was directly measured from the sensor when the GPU is completely idle,

i.e., no active SM at all. For P dpmq, P dpm “ Mq was first obtained by P dpMq “ P ´ P s

when all SMs are utilized. For P dpm ă Mq, Eq. 2.3 holds [32]; therefore it was estimated

by P dpmq “
pP´P sq˚m

M . Lastly, with P s and P dpmq for each application, we could get P idle

for different numbers of SMs by Eq. 2.2.

Benchmarks Selection. In the evaluation, We consider eight different GPU benchmarks

whose execution time is not too short (ą 100µs) so that the overlapped kernel execution
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and its power consumption can be observed: mmul, stereodisparity, dxtc are selected

from Nvidia CUDA 10.0 sample programs [3], hotspot, pathfinder, bfs (two benchmarks

with different input size) are from the Rodinia GPU benchmark suite [25], and one synthetic

computing-intensive kernel which performs vector norm in double precision. CUDA streams

are used for asynchronous data transfer and concurrent kernel execution.

SM Allocation. The SM allocation is implemented by using persistent threads, as done

in other previous works [26, 39, 58] on spatial multitasking GPUs. Specifically, when a job is

released, the scheduler decides the target SMs that should be assigned to the job. If a thread

block is launched on a non-target SM, the thread block stops execution immediately so that

non-target (unassigned) SMs can idle without spinning and be ready for other kernels. On

the other hand, the thread blocks on the target SMs become persistent; they keep running

on the target SMs for the whole lifetime of the kernel in order to finish the work that should

have been done by the stopped thread blocks. We use the default number of threads per

thread block given by the CUDA code of the benchmarks.

2.5.2 WCET and Power Consumption Profiling

To explore how the number of active SMs affects the GPU power consumption, we

conduct experiments using the aforementioned benchmarks. We first profile the cumulative

WCET of GPU segments of each benchmark with a different number of SMs since the

execution time is directly related to the energy consumption. We then profile the power

consumption of benchmarks by taking the average of the measured power by executing each

benchmark continuously for 10 minutes. We consider the maximum observed execution time
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Figure 2.4: Profiling results of WCET and power consumption

as the WCET. Fig. 2.4 shows an increase in power consumption and a decrease in WCET

as the number of active SMs increases. Three observations can be made here: (i) the

WCET of mmul, stereodisparity, hotspot, dxtc, pathfinder and bfs large is inversely

proportional to the number of SMs assigned to it, thereby following the linear-speedup

model, (ii) for bfs small and the synthetic kernel, there exists m that assigning more than

m SMs does not benefit execution time, following the nonlinear-speedup model, and (iii)

the power consumption increases sublinearly with the number of SMs.
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2.5.3 Energy Consumption in an Observation Window

To find out mopt
i in Def. 10, we have observed the energy consumption of each

benchmark with a different number of SMs, as shown in Fig. 2.5. For each benchmark, we

choose an observation window which is slightly larger than the WCET of the benchmark

when only 1 SM is assigned. As we previously mentioned, the sampling rate of the built-

in power sensor is relatively low, possibly causing inaccurate readings when the measuring

interval is short. Thus we compute the energy consumption of each schedule during this time

interval with different number of SMs by Eq. 2.5 using the profiling results in Section 2.5.2.

For mmul, stereodisparity, hotspot, dxtc, pathfinder and bfs large, which are linear-

speedup tasks, the minimum energy consumption is observed when all 8 SMs are assigned,

i.e., mopt
k “ M . Whereas for bfs small and the synthetic kernel, mopt

k ă M leads to the

best energy consumption.
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2.5.4 Prediction of Power Consumption

We evaluate the accuracy of the power model in this section. Since sBEET allows

at most two jobs to run on the GPU simultaneously, we create pairs of benchmarks and

consider all possible combinations of SM allocations for each pair on the target platform,

i.e., m1 idle SMs, m2 SMs for the first benchmark of the pair, and m3 for the second one

such that m1 ` m2 ` m3 “ 8. We then measure the power consumption from the built-in

sensor and compare it against the predicted value by our power model. Fig. 2.6 depicts the

variance of the error between the measured (observed) and predicted power consumption

for each pair of benchmarks. The arithmetic mean of error in power prediction is 5.93%

and the average R-squared value (coefficient of determination) of correlation between the

measured and predicted power is shown to be 0.87. Since the internal power sensor is used

to collect the power consumption, and it has a relatively low sampling rate, which may

cause inaccurate readings [21] for the GPU kernels with short duration such as hotspot,

pathfinder and bfs, thus resulting in relatively larger modeling error. However, this is

not related to the soundness of our power model, as evidenced by the results of the other

kernels.

2.5.5 System Evaluation

In this section, we compare the performance of sBEET against the following three

approaches: (i) FCFS - the default FCFS scheduling policy of Nvidia GPU without spatial

multitasking, (ii) RM - Rate-Monotonic scheduling of GPU tasks without spatial multi-

tasking (RM), and (iii) STGM - the latest GPU scheduling algorithm proposed in [58] that
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Figure 2.6: Error of predicted GPU power consumption

uses both spatial and temporal multitasking. Under both FCFS and RM, each task uses

all eight SMs of the GPU. Under STGM, the SM allocation for each task is statically de-

termined by its offline algorithm. In order to compare the runtime performance of STGM

in diverse scenarios, we replaced the pessimistic response-time-based schedulability test of

STGM’s SM allocation algorithm with a simple version that only checks whether the to-

tal utilization of the given taskset exceeds 1.0 so that more tasksets are admitted to run.

When U ą 1.0, STGM falls back to RM because STGM cannot find SM allocation for such

a taskset. We consider a unified experimental setup to evaluate the runtime performance

of various scheduling approaches, with the deadline miss ratio and the energy consumption

as evaluation metrics.
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Figure 2.7: Runtime overhead w.r.t number of tasks

Overhead Measurement

We measured the runtime overhead of sBEET and the results are shown in Fig. 2.7.

Note that the measured overhead of the scheduler (Alg. 1) excludes the overhead of SM

allocation (Alg. 2) and SchedGen (Alg. 3). The same experiment setups are used here

as stated in Section 2.5.1. To obtain the overheads of the proposed runtime algorithms

in Section 2.4.2 , we randomly generated tasksets consisting of various number of tasks

from the benchmark pool. The total utilization of each taskset is set to be 1.0, and the

running duration is set to 10 minutes. Since the proposed scheduler makes an SM allocation

decision at each job arrival, the increase of the number of tasks does not necessarily leads

to the increase of overheads. Since the maximum total overhead of the algorithms is much

less than 100 µs, we conclude that the sBEET framework is suitable to use on embedded

platforms at runtime.
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Figure 2.8: Runtime results w.r.t. the utilization of taskset

Effect of Taskset Utilization

We generate 1,000 random tasksets for each experiment and execute them on real

hardware. The following parameters are considered for each task generation: workload type

(one of the six benchmarks mentioned before), task utilization (defined in Sec. 2.2.2 and

determined by the UUniFast algorithm [16]), and the initial release offset (r0, Ti
2 s). Once

the workload type is chosen randomly among the benchmarks, the WCET of the task is

determined automatically from the profiles, and the period (equal to deadline, i.e., Ti “ Di)

is obtained by dividing its WCET by utilization. For each generated taskset, we run FCFS,
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RM, STGM, and sBEET each for 10 seconds (we did not observe a meaningful difference in

deadline miss ratios even if the scheduler runs for a longer time). For FCFS and RM, the

tasks run on a single stream with only one worker since they do not use spatial multitasking,

and it represents the synchronization-based real-time GPU access approach [28, 45, 56]. For

STGM, eight workers are created since STGM does not limit the number of jobs that can

run simultaneously on the GPU.

In Fig. 2.8, we show the performance of the four scheduling approaches for various

utilization settings. Fig. 2.8a presents the deadline miss ratio under the four approaches,

and sBEET has the lowest deadline miss ratio among them. Note that, when U ď 0.7, the

performance of STGM is the worst among the four approaches. This happens because the

blocking time by a GPU kernel under STGM is likely to be longer than that under RM

when the SMs are not fully utilized. When U ě 0.8, FCFS becomes the worst among the

four approaches. The curves of STGM and RM overlap due to the fallback mentioned in

Section 2.5.5.

Fig. 2.8b shows the runtime energy consumption of the four approaches, normal-

ized to the case of FCFS. We observe that, when U ď 0.7, STGM has the biggest overall

energy consumption because it first assigns the minimum possible number of SMs to each

task and incrementally increases the number only for those showing a large reduction in

task utilization.

As U gets larger, the energy consumption of FCFS, RM, and STGM becomes

slightly lower than our proposed scheduler because ours use spatial multitasking to achieve

better schedulability, the use of which inevitably increases energy consumption as stated
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in Section 2.4.1. Another reason is that FCFS, RM and STGM have higher deadline miss

ratios, as can be seen in Fig. 2.8a. In other words, during the same observation interval,

they have fewer completed jobs compared to sBEET.

Effect of Heavy/Light Task Ratios

In order to better understand the schedulability characteristics of sBEET for light

tasks that can suffer from long blocking time caused by heavy tasks released earlier [46],

we conduct experiments using randomly-generated bi-modal tasksets. Based on the WCET

profiles of each benchmark, we consider hotspot, pathfinder, bfs and the synthetic kernel

as light tasks, and mmul, stereodisparity, and dxtc as heavy tasks. We keep the same

total utilization of U “ 0.9 for each taskset. The light and heavy tasks are generated

according to the ratio of the heavy tasks until the total utilization exceeds the target

utilization. The utilization of each light task is randomly selected between [0.2, 0.4] and

heavy tasks between [0.05, 0.2]. Fig. 2.9 demonstrates the runtime deadline miss ratio of

light tasks as the percentage of heavy tasks increases in a taskset. Since sBEET takes into

account tasks’ possible future arrivals to find the right number of SMs and decide when to

launch the jobs in a non-work-conserving manner, long blocking time from other jobs can

be minimized, as shown in Fig. 2.2. Therefore, sBEET has a better performance in meeting

the deadlines of light tasks than the other approaches.
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Figure 2.9: Runtime deadline miss ratio of light tasks w.r.t. ratio of heavy tasks

Effect of Spatial Multitasking

Finally, we conduct additional experiments to compare the energy consumption of

STGM and sBEET since they both use spatial multitasking. We use the tasksets that are

said schedulable by the STGM’s offline schedulability test (Eq. 9 in [58]), which guarantees

no deadline miss at runtime. We randomly select tasks from our benchmark pool and choose

periods within a range of [100, 500] ms to generate each taskset with a fixed number of tasks.

The measurement results of runtime energy consumption are shown in Fig. 2.10. Compared

to STGM that does not limit the number of workers to two, sBEET can save 15% to 21% of

energy in actual measurement while also having a 0% deadline miss ratio. These results are

consistent with the analysis in Section 2.4.1, and also supports the reasoning that having

more workers may not help improve energy consumption and schedulability.

2.5.6 Discussion

While experimental results have demonstrated the benefit and effectiveness of our

scheduler, there are some limitations that we would like to discuss. At first, co-scheduled
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Figure 2.10: Comparison of runtime energy consumption of STGM and the proposed work

kernels may experience additional timing interference due to contention on shared memory

resources of the GPU, which our work does not take into account. Although we did not

observe any discernible slowdown of co-scheduled kernels in our experimental setup, prob-

ably due to a relatively small number of SMs and the high memory bandwidth of Xavier

AGX (58.4 GB/s), the negative impact of memory interference can be a serious problem

on GPUs with a large number of SMs or low memory bandwidth. However, our work can

be co-used with GPU cache and DRAM partitioning methods [38], which can significantly

reduce memory interference and achieve better performance isolation.

Another limitation is that our work considers only the energy consumption of

the GPU, although GPU kernel execution draws power from CPUs and other hardware

components for data copy and miscellaneous operations. It will be more challenging to

optimize the energy consumption of the whole hardware platform including GPU, CPU,

memory, etc. We leave this as part of future work.
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2.6 Conclusion

In this work, we first presented the analysis of GPU energy consumption in the

presence of spatial multitasking which allows simultaneous execution of multiple GPU ker-

nels. Our analysis suggests that, although spatial multitasking benefits schedulability, its

use can lead to energy inefficiency due to the power consumption of idling SMs. Based on

this analysis, we then proposed sBEET, a runtime scheduler that balances energy efficiency

and real-time performance by utilizing spatial multitasking and predicting the resulting

energy consumption. Experimental results using our implementation on real hardware in-

dicate that sBEET reduces deadline misses significantly compared to the other approaches

while consuming energy similar to the non-spatial multitasking methods, and achieves bet-

ter energy efficiency than the others for tasks that satisfy their deadlines.

As GPUs are increasingly required in cyber-physical systems, the high energy

consumption of GPUs is becoming an important issue. Our results can serve as a basis to

extend the energy-efficient scheduling approach to more powerful, high-end GPUs on which

the performance trend of the workloads might be different, and we also plan to consider

heterogeneous multi-GPU systems in the future.
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Chapter 3

sBEET-mg: Towards

Energy-Efficient Real-Time

Scheduling of Heterogeneous

Multi-GPU Systems

3.1 Introduction

Graphics processing units (GPUs) are attracting much attention due to their out-

standing performance over CPUs by allowing huge data parallelism. With the increasing

demand driven by data-driven and machine-intelligent applications, research on real-time

GPU multitasking becomes more and more popular while leaving their high power con-

sumption as an open problem. According to [50], the high power consumption of GPUs
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has a significant impact on scalability, reliability and feasibility. An increase in power con-

sumption also raises the risk of thermal violations [33, 35, 47]. Without proper management,

these issues can be worse in a heterogeneous multi-GPU system which is not rare to see in

today’s computing environment.

In a multi-GPU system, the workload allocation methods can be generally classified

into load distribution and load concentration. For load distribution, due to the fact that

CUDA kernels rarely fully utilize all the internal computing units of a GPU [8], the idle

energy consumption of the computing units of an active GPU causes energy inefficiency [37,

68] and this issue is likely to be magnified in a multi-GPU system. For load concentration,

as we will discuss more details later, different tasks may have different energy-preferred

GPUs; hence, packing and offloading to the same GPU while keeping other GPUs idle does

not necessarily lead to better energy efficiency than load distribution. The problem gets

more complicated in real-time systems, since tasks have their own arriving patterns with

different timing requirements.

This work paves a new way to address the energy efficiency and scheduling prob-

lem in heterogeneous multi-GPU real-time systems. To gain a precise understanding of

power usage characteristics, we analyze a multi-GPU system consisting of two heteroge-

neous GPUs with a custom hardware tool. With the obtained power characteristics of

benchmark programs on different GPUs, we give observations on the energy consumption

of a multi-GPU system when different scheduling strategies are applied. Based on these,

we present a multi-GPU scheduling framework, sBEET-mg, by extending the latest energy-

aware real-time scheduling approach [68] to a multi-GPU system. sBEET-mg allocates
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tasks to their energy-optimal GPUs offline and performs runtime migration based on the

estimation of the resulting energy consumption of all GPUs in the system. It also takes

advantage of spatial multitasking to improve real-time performance without losing energy

efficiency.

To evaluate the performance of sBEET-mg, the framework is implemented in the

multi-GPU system we built. We conduct experiments using randomly-generated tasksets

of well-known benchmarks to compare the schedulability and energy consumption of our

framework against three existing approaches based on load concentration and load distri-

bution. By judiciously executing jobs on the right GPUs with a proper number of GPU’s

internal computing units, sBEET-mg achieves lower energy consumption as well as deadline

misses.

3.2 Related Work

Real-Time GPU Scheduling. Real-time scheduling methods for GPU tasks can be cat-

egorized into two types: temporal and spatial multitasking. Temporal multitasking views

each GPU as an indivisible, minimum unit of resource and focuses on time-sharing of the

GPU. Given that many GPUs provide no support or only a limited level of preemption,

many earlier studies have modeled a GPU as a non-preemptive resource [28–30, 45, 56]. In

particular, Elliott et al. [30] considered a multi-GPU system where a k-exclusion locking

protocol was used to assign tasks to k GPUs. This allows the system to utilize multiple

GPUs in a work-conserving manner, but can result in poor energy consumption as we will

show later. In addition, their focus was limited to homogeneous GPUs and no performance
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variation across GPUs was considered. Spatial multitasking, on the other hand, explicitly

takes into account internal processing units of a GPU, such as Nvidia’s Streaming Multipro-

cessors (SMs) and AMD’s Compute Units (CUs),1 and allows one GPU to execute two or

more GPU tasks at the same time by using persistent threads [9, 49, 61]. Recent studies have

shown that spatial multitasking offers better performance isolation and concurrency [38] and

better schedulability and resource utilization [58, 76] than spatial multitasking for real-time

workloads. However, their focus was primarily on a single GPU and none of them considered

energy efficiency along with the timeliness of GPU tasks.

GPU Energy Efficiency. Prior work on GPU energy management has mainly focused

on regulating the number of active SMs [9, 60, 62, 65], based on an assumption that the

unused SMs can be turned off and energy consumption can be reduced in the presence of

SM-level power-gating. For example, Hong and Kim [65] focused on finding the optimal

number of SMs for the highest performance-per-Watt. Aguilera et al. [9] and Sun et al. [60]

proposed QoS-aware SM allocation techniques based on spatial multitasking to provide both

performance and energy efficiency. However, these approaches have been tested using only

analytical power models or simulation, and the claimed benefits are difficult to obtain in

today’s commercial GPUs because even the latest GPU architectures do not support SM-

level power gating. The unused SMs by those methods consumes active-idle power as long

as the GPU is not fully idle. The incapability to power-gate individual SMs also makes the

energy management problem of GPUs different from that of multi-core CPUs.

Recently, Wang et al. [68] proposed an energy-efficient real-time GPU scheduler,

called sBEET. They first showed that although spatial multitasking benefits schedulability,

1We will use SMs to refer to those internal processing units in the rest of the chapter.
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it may lead to an energy-inefficient schedule due to the active-idle power consumption of

unused SMs. Then they proposed a runtime scheduler that balances the energy inefficiency

caused by spatial multitasking with improved real-time performance in a single GPU system.

Our work is motivated by this and aims to generalize to a system equipped with multiple

heterogeneous GPUs.

3.3 Background and System Model

3.3.1 Background

Our description here is based on Nvidia GPUs and the CUDA programming ab-

stractions but it generally applies to other types of GPUs, e.g., AMD’s ROCm platform

and HIP runtime APIs. For more information, interested readers can refer to [10, 38, 44, 53,

55, 68].

GPU Execution Model. GPU programs written in CUDA can make processing requests

to a GPU at runtime. The general sequence for running a GPU program is as follows:

(i) allocate GPU memory, (ii) copy input data from main memory to GPU memory, (iii)

request to launch the GPU program code (called kernel), (iv) copy the results back from

GPU to main memory, and (v) deallocate GPU memory. While the CUDA memory model

by default separates GPU and main memory spaces, it offers a unified memory model that

eliminates the need for explicit data copies between GPU memory and main memory.

CUDA provides streams as means to control concurrency. All memory copy and

kernel execution requests on the same CUDA stream are executed sequentially. However,

different CUDA streams can run in an overlapped manner as long as resources are available,
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thereby allowing better concurrency. Once launched, a kernel is executed by using all

available SMs on the GPU. CUDA APIs do not provide an option to determine the number

of SMs used by each kernel, but the spatial multitasking technique [38, 40, 58, 59] implements

this in software and provides a controlled way to execute multiple kernels in parallel.

GPU Power Management. As a GPU consists of multiple SMs, the power management

of the GPU happens at both the SM level and the device level. An SM goes to the active-idle

state as soon as it is not used. When all of the SMs are unused, the GPU is power-gated2

and each SM no longer consumes active-idle power. In other words, if only one SM is

active, the GPU is not power-gated and the other SMs consume active-idle power. While

SM-level power gating has been studied extensively in the literature to achieve better energy

efficiency [21, 65], our experiments have confirmed that it is still not available on Nvidia’s

latest Ampere architecture. This matches with the observations of the recent paper [68].

When the GPU is left fully idle for a relatively long time, it enters a deeper

low-power mode. This time interval is observed to be approximately 2 seconds in our

experiments. While exploiting this power state would be beneficial in interactive systems,

we do not consider it in this work since such a long idle time is hard to expect in real-time

systems serving periodic or sporadic workloads.

3.3.2 System Model

We describe our models for the hardware platform, tasks, and power and energy

consumption. The summary of the notation is listed in Table 3.1.

2Since the details of Nvidia GPU’s power management mechanisms are not publicly available, we are
unsure if it is actually power-gated or just clock-gated. Nonetheless, we use the term “power gating” since
it is generally used in the literature of GPU power management.

53



Platform Model. We consider a single-ISA system Π consisting of ω heterogeneous

GPUs. The k-th GPU in the system is denoted by πk, and each GPU is characterized by its

power model, computational capacity and clock speed. The GPU πk consists of Mk SMs,

each of which is an independent computing unit from the view of spatial multitasking. We

use typepπkq to denote the type of the GPU device πk, e.g., typepπkq “ typepπ1
kq means two

GPUs are identical.

Task Model. We consider a taskset Γ consisting of n sporadic GPU tasks with fixed

priority and constrained deadlines. We focus on the kernel execution and memory copy

operations, and a task τi is characterized as follows:

τi :“ pGi, Ti, Diq

‚ Gi: The cumulative worst-case execution time (WCET) of GPU segments (including

memory copies and kernels) of a single job of τi. The duration depends on how many

SMs are assigned to a particular job.

‚ Ti: the period or the minimum inter-arrival time.

‚ Di: the relative deadline of each job of τi, and is smaller than or equal to the period,

i.e., Di ď Ti.

A task τi consists of a sequence of jobs Ji,j , where Ji,j indicates the j-th job of

task τi,
3 and we assume that the input size of each job of a task is constant along the time.

Following the idea of spatial GPU multitasking [38, 40, 58, 59], each job Ji,j of the task τi

can execute with a different number of SMs on a different GPU. Hence, we use Gi,jpm,πkq

3For simplicity, we may omit the subscript j and use Ji when we do not need to distinguish individual
jobs.
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to represent the WCET of Ji,j , where m denotes the number of SMs used by Ji,j on the

GPU πk. Gi,jpm,πkq is given by the sum of the following three parameters:

Gi,jpm,πkq “ Ghd
i pπkq ` Ge

i,jpm,πkq ` Gdh
i pπkq

‚ Ghd
i pπkq: the worse-case data copy time from the host to the device memory on the

GPU πk

‚ Ge
i,jpm,πkq: the worst-case kernel execution time of Ji,j when m SMs are assigned to

it on the GPU πk

‚ Gdh
i pπkq: the worse-case data copy time from the device to the host memory on the

GPU πk

With the above parameters, a job’s finish time can be estimated from the start of

the job and we use fi,j to denote it. The utilization of a task τi on a GPU πk is defined

as the average utilization when different number of SMs are assigned, and it is computed

as Uipπkq “

řMk
m“1 Uipm,πkq

Mk
, where Mk is the total number of SMs on the GPU πk. The

utilization of τi with m SMs on πk is Uipm,πkq “
Gipm,πkq

Ti
. The GPU utilization Upπkq is

the summation of all the tasks that are assigned to the GPU πk, i.e., Upπkq “
ř

Uipπkq.

Without loss of generality, we assume a discrete-time system where timing parameters can

be represented in positive integers.

Power Model. Following the power modeling approach in [32, 36, 68], the power con-

sumption of a GPU at time t can be represented as follows:

P “ P s ` P d ` P idle (3.1)
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Table 3.1: Symbols and their definitions in this work

Notation Definition

πk The k-th GPU in the system
Mk The total number of SMs on the GPU πk
M limit

k The number of SMs that allowed (by the user) on the πk
Gi The cumulative WCET of GPU segments of task τi
Ti The period of task τi
Di The relative deadline of task τi, and Di ď Ti

Ji,j The j-th job of task τi
ri,j The arrival time of Ji,j
di,j The absolute deadline of Ji,j
fi,j The estimated finish time of Ji,j
m Number of SMs
Gi,j The WCET of Ji,j
Ghd

i pπkq The WCET of device to host memory copy of τi on πk
Gdh

i pπkq The WCET of device to host memory copy of τi on πk
Ge

i pm,πkq The WCET of kernel execution of τi on πk with m SMs
Uipπkq The utilization of task τi on πk
Upπkq The utilization of πk

where P s is the static power consumption, P d is the dynamic power consumption from

active SMs, and P idle is the power consumption from idle SMs. Specifically, P d is the power

consumption required to execute kernels on SMs, and depends on the kernel characteristics

including memory access patterns and the number of SMs used [32]. It can be decomposed

into a linear sum of per-SM power consumed by each job. For a subset of jobs J “ tJ1, J2, ...u

that are executing simultaneously on the GPU πk at time t, the power consumption of the

GPU πk, Pk, can be computed as follows:

Pk “

$

’

’

’

’

&

’

’

’

’

%

P s
k `

ř

JiPJ

P d
k,ipmiq ` P idle

k pMk ´
ř

JiPJ

miq if J “ H

P s
k if J ‰ H

(3.2)

where m1,m2, ... are the number of SMs that are being used by J1, J2, ... at time t (
ř

mi ď

Mk). P
d
k,ipmiq is the dynamic power consumption of Ji on πk with mi active SMs. P idle

k pmq
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is the idle power consumption of m inactive SMs, and Mk, as defined previously, is the total

number of SMs on the GPU πk. Since dynamic and idle power is known to be linear to the

number of SMs [32], P d
k,ipmiq “ mi ¨P d

k,ip1q and P idle
k pmq “ mi ¨P idle

k p1q holds, respectively.

Note that when all SMs on the GPU are idle (i.e.
ř

mi “ 0), the GPU is power-gated and

there is no power consumption from P d
k and P idle

k , i.e.
ř

P d
k p0q “ 0 and P idle

k pMkq “ 0.

In this work, we directly measured these power parameters of using our test-bed

setup (Sec. 3.4.1), but they can also be estimated using analytical methods [32].

Energy Consumption. We adopt the energy computation method in Eq. 5 in [68].

Let us consider a set of jobs J “ tJ1, J2, ...u that are scheduled on the GPU πk during a

time interval rt1, t2s. Depending on scheduling decisions, some jobs of J may be active at

t P rt1, t2s while the others may be inactive. We define a binary indicator xmi ptq that returns

1 if the m-th SM is actively used by a job Ji at time t, and 0 otherwise.

Using this, the energy consumption on a single GPU πk can be computed by:

Ekprt1, t2sq “

ż t2

t1

˜

P s
k `

ÿ

JiPJ

´

P d
k,ip

Mk
ÿ

m“1

xmi ptqq

¯

` P idle
k

´

Mk ´
ÿ

JiPJ

Mk
ÿ

m“1

xmi ptq
¯

¸

dt

(3.3)

And further, the total energy consumption of all GPUs in the the system Π can be obtained

by:

Eprt1, t2sq “
ÿ

@πkPΠ

Ekprt1, t2sq (3.4)

In the above modeling, we did not explicitly consider other on-device components

such as copy engines, caches, and buses. However, their power consumption is relatively

small compared to that of SMs and can be captured as part of Ps and Pd. We will later
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show with our experiments that our power and energy models are faithful enough to use

for making energy-efficient scheduling decisions.

3.4 Energy Usage Characteristics of Multi-GPU Systems

The energy consumption of heterogeneous multi-GPU systems is hard to predict

since there is no correlation of dynamic power parameters (P d and P idle) and kernel execu-

tion time (Gi) across different types of GPUs. In this section, we focus on a system equipped

with two GPUs and explore the impact of scheduling policies on energy consumption.

3.4.1 Hardware Setup

The system used in this work consists of one Nvidia RTX 3070 and one Nvidia

T400. RTX 3070 is based on the latest Ampere architecture. It has 8 GB of global memory

and 46 SMs with 5888 CUDA cores. All the SMs share a L2 cache of 4096 KB. Another

GPU in our system, T400, is based on the Turing architecture, a predecessor of Ampere.

It has 2 GB global memory and 6 SMs with 384 CUDA cores, while 512 KB of L2 cache is

shared among all the SMs. For both GPUs, data connection is established directly from the

GPU to the PCI Express (PCIe) of the motherboard. During experiments, we fixed the SM

clock speed of both GPUs to the maximum, i.e., 1725 MHz for RTX 3070 and 1425 MHz

for T400, and both GPUs were able to maintain their frequencies without throttling.

It is worth noting that, although some Nvidia devices provide power readings via

Nvidia-smi using a built-in power sensor, its accuracy is not high (“+/- 5 watts” according

to the official document [5]) and the power reading is not available on the T400 device. The
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Figure 3.1: Multi-GPU system with a power monitoring tool
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power measurements by the built-in sensor may show anomalies and need to be corrected

as the prior work suggested [23].

Due to these reasons, we developed a custom hardware tool to obtain a precise

measurement of power consumption by each GPU. Fig. 3.1 shows our system with two

GPUs connected to the power monitoring tool. We used an INA260 sensor [63] for each of

the power supply lines of the GPUs. We used PCIe risers and cut the 12V power lines to

install INA260 sensor sensors in series. Due to the high power consumption of Nvidia RTX

3070 and the limitation of PCIe standard power provision, i.e., 75 Watt, the GPU receives

power from both PCIe and the power supply. However, the power provided by PCIe is

sufficient for Nvidia T400 and it does not require any external power supply. We used an

nRF52832 SoC [51] to configure the sensors to sample voltage and current. The maximum

sampling rate we could obtain from the I2C protocol of the INA260 sensor is 500 Hz, which

leads to one sample for every two milliseconds. The data of the sensors are combined and

sent to the same computer via USB cable to ensure the best timing synchronization between

GPU states and power measurements. Each power sample is recorded in milliWatt, and

a high-resolution timestamp is added to each sample as soon as the sample arrives. The

power consumption of RTX 3070 is the summation of its power drawn from both PCIe and

the power supply. It should be noted that the power consumption from the 3.3V line of

PCIe was not considered because it was negligibly small (the current was less than 30 mA)

and it was not substantially affected by the current state of the GPU. More details can be

found in our tool demonstration paper [41] presented in 2022 RTSS@Work.
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3.4.2 Benchmarks and Power Profiles

Six benchmark programs are considered in our experiments: MatrixMul, Stere-

odisparity, DXTC, Histogram from Nvidia CUDA 11.6 Samples [3], and Hotspot,

BFS from the Rodinia GPU benchmark suite [25]. This choice is made based on whether

the execution time of the program is long enough on both GPUs for the sampling rate of

our power monitoring tool or whether the input size is configurable to increase the execu-

tion time. Each program is then modified to use spatial multitasking on a separate CUDA

stream, but within the same CUDA context to enable concurrent execution of these streams.

The software environment we used is Ubuntu 18.04 and CUDA 11.6 SDK.

To explore the impact of different scheduling policies on these workloads, we mea-

sured their execution time and power parameters using our setup shown in the previous

subsection. Fig. 3.2 depicts the WCET of each benchmark as the number of SMs changes

on the two GPUs considered. Note that we took the maximum observed execution time

as the WCET. On RTX 3070, Although the execution time of some programs appears to

plateau on RTX 3070 after a certain number of SMs, it in fact decreases in proportion to

the SM count. When the same number of SMs is used, RTX 3070 gives shorter execution

time as it uses a newer architecture running at a higher frequency, but the ratio of the

difference varies by benchmarks.

Table 3.2 shows the dynamic power parameters of the benchmarks and the idle

and static power of the two GPUs. π0 is RTX 3070 and π1 is T400. For dynamic power,

we report only the case of SM count mi “ 1, i.e., P d
k,ip1q, because P d

k,ipmiq “ mi ¨ P d
k,ip1q

holds as discussed in Sec. 3.3.2. Interestingly, RTX 3070 does not always consume more
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Figure 3.2: WCET of benchmarks on RTX 3070 and T400

dynamic power than T400 despite its higher frequency. Idle power is lower in RTX 3070,

probably due to its newer architecture. Static power is significantly higher on RTX 3070

but this does not affect the energy consumption of the entire system unless the GPU device

is unplugged or put in a deep sleep mode.
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Table 3.2: Power parameters of benchmarks and GPUs

(a) Dynamic power of benchmarks

Benchmarki P d
0,ip1q P d

1,ip1q

MatrixMul 3.77 W 2.06 W
Stereodisparity 1.63 W 0.98 W
Hotspot 1.14 W 0.81 W
DXTC 1.67 W 1.15 W
BFS 0.98 W 1.07 W
Histogram 0.91 W 1.19 W

(b) Idle and static power of each GPU

GPUk P s
k P idle

k

π0 (RTX 3070) 46 W 0.445 W
π1 (T400) 8 W 0.652 W

3.4.3 Observations

Using real execution time and power parameters, we provide examples to gain

insights and make observations for energy-efficient scheduling on a multi-GPU system.

Baseline Scheduling Approaches. Let us consider two workload allocation approaches

that are well understood in the context of multiprocessor systems.

‚ Load Concentration: Assigns given workloads to the same resource until it gets fully

utilized. For GPUs with spatial multitasking, this means a GPU task is assigned

to the most packed GPU, with the remaining SMs of that GPU. This is the default

allocation approach of the Nvidia driver when the system has multiple GPUs.

‚ Load Distribution: Uniformly distributes given workloads across available resources.

Hence, it chooses an idling GPU first (or a GPU with the highest number of unused
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SMs when spatial multitasking is considered). Note that this is the expected behavior

when k-exclusion locking protocols are used [30].

In the following examples, we show how the choice of workload allocation con-

tributes to the energy consumption of the resulting schedule. The task parameters used in

the examples are extracted from the results shown in Fig. 3.2 and summarized in Tables 3.3

and 3.4. For ease of presentation, we focus on kernel execution time, Ge
i , and omit data

copy time.

Homogeneous GPUs. Consider a homogeneous multi-GPU system Π “ tπ0, π1u contain-

ing two identical Nvidia T400 GPUs, i.e., typepπ0q “ typepπ1q.

Example 6 Consider two tasks with the execution time parameters given in Table. 3.3.

The tasks are running on different CUDA streams, so asynchronized memory copy and

current kernel execution can happen. For each GPU, a single execution instance is created

for each task so that different GPUs can be used simultaneously.

To emulate a lightly loaded system, we only enable 3 SMs on T400. We select an

observation window of 100ms for the following two possible schedules shown in Fig. 3.3:

schedules by load distribution and by load concentration. In Fig.3.3a, the job of τ1, J1,1,

and the job of τ2, J2,1, are distributed to two GPUs, and the estimated energy consumption

of this schedule is 2.3J computed by Eq. (3.4). Fig.3.3b shows the schedule under load

concentration strategy. In this schedule, J1,1 and J2,1 share the GPU π0 while leaving π1

idle so that it can be power gated. The estimated energy consumption of the system is 2.05J.
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Table 3.3: Taskset in Examples 6 and 7

Task Application Ge
i pπ0, 6q Ge

i pπ0, 4q Ge
i pπ0, 3q Ge

i pπ0, 2q

τ1 “ τ2 Histogram 32.67 ms 47.95 ms 63.724 ms 95.53 ms

GPU 1
T400

6
0

0 20 60
f = 1425MHz 40

GPU 0
T400

6
0

0 20 60
f = 1425MHz 40

(a) Schedule w/ distributed load:

E=2.3J

6
0

0 20 6040

6
0

0 20 6040

(b) Schedule w/ concentrated load:

E=2.05J

Figure 3.3: Scheduling results in Example 6

Although the above example shows that load concentration (i.e., packing tasks to

as few GPUs as possible while keeping the other GPUs idle so that they can be power gated)

may be more energy efficient, it is not always true. As mentioned in [68], the use of spatial

multitasking can lead to energy inefficiency since the GPU is not SM-level power-gated

and unused SMs incur idle power consumption when the GPU remains active. In the next

example, we will show that packing tasks to one GPU while leaving the other idle can be

less energy efficient than distributing tasks to all GPUs, especially when it is inevitable to

leave idle SMs for a long time.

Example 7 Consider the same tasks as in Examples 6. Now, the job of τ1, J1,1, executes

on π0 with 4 SMs, and the execution time parameters are given in Table 3.3. In the schedule

shown in Fig. 3.4a, J1,1 and J2,1 are distributed to π0 and π1, and J2,1 executes on π1 with 6

SMs. In the schedule in Fig. 3.4b, J2,1 is assigned to π0 with the remaining SMs and executes
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(b) Schedule w/ concentrated load: E=2.18J

Figure 3.4: Scheduling results in Example 7

in with J1,1 concurrently, while π1 stays idle. However, after J1,1 finishes execution, J2,1 is

still running, during which the idle SMs on π0 keep consuming energy, and this makes it less

energy efficient than the schedule with load distribution. With Eq. (3.4), we can calculate

the estimated energy consumption of two schedules in an observation window of 100ms, and

they are 2.12J and 2.18J respectively.

Heterogeneous GPUs. In the next two examples, we will explore the energy consumption

under two allocation approaches in a heterogeneous multi-GPU system Π “ tπ0, π1u (i.e.m

typepπ0q ‰ typepπ1q). This is the same hardware configuration as in Sec. 3.4.1.

Example 8 Consider a taskset with parameters listed in Table 3.4. Suppose at time t “ 0,

the job J1,1 of τi, has just started its kernel execution on the GPU π0 with 16 SMs, and at

the same time, the job of τ2, J2,1, is ready for execution. By employing the load distribution

approach, J2,1 will execute on the GPU π1 and the resulting schedule of the two tasks is

shown in Fig. 3.5a. Similar to the previous examples, when an observation window of

100ms is considered, the estimated energy consumption of this schedule is calculated to be

7.35J.
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Table 3.4: Taskset in Example 8 and 9

Task Application Ge
i p30, π0q Ge

i p16, π0q Ge
i p6, π1q

τ1 MatrixMul 11.98 ms 21.55 ms -
τ2 Hotspot 12.00 ms 22.31 ms 73.188 ms

Fig. 3.5b shows the schedule under the load concentration approach. Since J1,1 is

not using all the SMs of the GPU π0, J2,1 is able to use the remainder. In this way, π1 is idle

so that it can perform power gating to save energy and the estimated energy consumption

of this schedule is 7.24J.

Example 9 Consider the same multi-GPU system and task parameters as in Example 8.

But at this time, J1,1 starts kernel execution with 30 SMs on πk. Following the load con-

centration approach, J2,1 uses the remaining 16 SMs on πk as shown in Fig. 3.6b and the

estimated energy consumption of this schedule is 7.3J. Since π1 is idle when J2,1 is ready

for its execution, the load distribution approach executes J2,1 on π2 with all the available

SMs. Fig. 3.6a shows this schedule and the estimated energy consumption here is 7.19J,

which is smaller than that with the load concentration approach.

To summarize, the above examples suggest that neither load concentration nor

distribution should be preferred over the other when making scheduling decisions in a multi-

GPU system, regardless of whether GPUs are homogeneous or not. One thing we can clearly

observe is that, if all tasks assigned to the same GPU have similar finish time, this could be

helpful to reduce active-idle power consumption of unused SMs. However, this is hard to

realize with real-time tasks since they have different periods and arrival patterns and their
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Figure 3.5: Scheduling results in Example 8
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Figure 3.6: Scheduling results in Example 9

absolute completion time is determined only at runtime. The difficulty of this problem

multiplies when timing constraints are considered.

3.5 Energy-Efficient Multi-GPU Scheduling

Based on the observations from the previous section, we propose our scheduling

framework that makes runtime scheduling decisions for both timeliness and energy efficiency
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in multi-GPU systems. This approach extends sBEET [68], which is the latest work on

energy-efficient real-time GPU scheduling for a single GPU system. Hence, we name our

framework as “sBEET-mg”.

3.5.1 Energy Optimality

To better explain the proposed scheduling framework, here we revisit the definition

of the energy-optimal number of SMs given in [68] and give the definition of energy-preferred

GPU for each task in a multi-GPU system.

Definition 10 (Energy optimal SMs [68]) The energy-optimal number of SMs mopt
k,i for

a task τi on a GPU πk is defined as the number of SMs that leads to the lowest energy

consumption computed by Eq. (3.3) when it executes in isolation on the GPU πk during an

arbitrary time interval δ ě maxmďMk
Ge

i,jpm,πkq.

In the above definition, it is worth noting that the energy-optimal number of SMs

is unaffected by the duration of δ. This is derived from Eq. (3.3). Assume the minimum

possible δmin “ maxmďMk G
e
i , jpm,πkq, which is long enough for τi to complete execution

no matter how many SMs are allocated. After δmin, the GPU is power-gated and only P s

contributes to energy consumption under any SM allocation. Using this and the energy

consumption model in Eq. (3.3), we can define the energy-preferred GPU as below.

Definition 11 (Energy preferred GPU) The energy-preferred GPU for a task τi in a multi-

GPU system Π is given by:

argmin
πkPΠ

ż δ

0
P s
k ` P d

k,ipm
opt
k,i q ` P idle

k pMk ´ mopt
k,i qdt (3.5)
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where δ is an arbitrary time interval (δ ě maxGe
i,jpπk,mq) and mopt

k,i is the energy-optimal

number of SMs for τi on the GPU πk. This gives the GPU that consumes the least amount

of energy when τi executes with mopt
k,i SMs on it.

3.5.2 Overview of sBEET-mg

The main idea of sBEET-mg is to adaptively select the GPU and the SM config-

uration for individual jobs of real-time tasks. When a job is arrived or completed, among

all possible assignments, the scheduler chooses the one that the job can bring the minimum

expected energy consumption to all GPUs in the system.

The software framework structure of sBEET-mg closely resembles that of sBEET,

except that sBEET-mg is specifically designed to handle multiple GPUs. The sBEET-

mg framework maintains one centralized server in the system and multiple worker threads

for each GPU. The role of the central server is to receive jobs from GPU tasks and let

them share the same CUDA context for concurrent stream execution. Once the server’s

scheduling algorithm determines the target GPU for dispatching a job, it forwards the job

to the corresponding worker thread responsible for executing it on the designated GPU. The

worker thread, in turn, leverages the cudaSetDevice() function to specify the GPU device

and initiates the kernel in a separate CUDA stream. This design enables the availability

of independent execution instances for each running job, thereby allowing for simultaneous

utilization of multiple GPUs. Notably, GPU partitioning is achieved through the use of

persistent threads, enabling parallel kernel execution across all GPUs within the system.

The decision regarding which GPU to utilize and when to employ spatial multitasking is

made by our subsequent scheduling algorithm, which will be discussed later in this work.
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When the sBEET-mg framework starts, the procedure in Alg. 4 is executed to

allocate tasks to GPUs. More details on this procedure will be explained below. Following

the observation in [68], we limit the number of worker threads on each GPU to two since

more parallelism does not necessarily improve performance [68]. Hence, the server creates

two worker threads as well as two CUDA streams for each GPU, and each worker is bounded

to one CUDA stream. When the worker thread receives a job, it runs that job on the

corresponding CUDA stream. Each worker shares the status of its SM, i.e., active or idle,

with the server through a global shared data structure whenever a job assigned to it begins

and completes execution. This allows the server to have a global view of the system and

make scheduling decisions properly.

Whenever a new job Ji,j arrives, the server invokes the runtime scheduling al-

gorithm given in Alg. 5 (explained later) to decide whether to execute this job on the

preassigned GPU by Alg. 4 or migrate it to another GPU. When a job completes, the

server is notified by the corresponding worker and freed SM resources are reclaimed for the

execution of next or pending jobs.

3.5.3 Offline Task Distribution

For a given taskset Γ, the proposed task distribution algorithm allocates tasks

to GPUs offline. Basically, for each task τi P Γ, the algorithm tries to assign it to the

energy-preferred GPU πx with mopt
x,i as long as the capacity of πx permits. Alg. 4 depicts the

pseudocode of the task distribution procedure. It first sorts all tasks in Γ in decreasing order

of priority so that higher-priority tasks have a better chance to get their energy-preferred

GPUs (line 2). Then for each task τi, it obtains a list Πi of GPUs in non-increasing order
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Algorithm 4 Offline Task Distribution
1: procedure Task Distribution

2: Sort tasks in Γ in decreasing order of priority

3: for τi P Γ do

4: Get a list Πi of GPUs in non-increasing order of expected energy consumption for τi

5: for πk P Πi do

6: if Upπkq ` Uipπk,m
opt
k,i q ď 1 then

7: Assign τi to πk

8: break

9: if τi is not assigned then

10: Assign τi to the GPU that has a minimum utilization after τi is assigned

of expected energy consumption. Hence, the energy-optimal GPU of τi goes first in this

list. For each GPU πk in the ordered list Πi, it runs a simple utilization check to decide

whether τi can be accepted (line 3 to line 8). After iterating through all the GPUs, if τi

is still not assigned to any GPU, the algorithm assigns it to the GPU that will have the

minimum utilization after τi is assigned (line 10). The result of this allocation serves as a

guideline for the runtime scheduler.

3.5.4 Runtime Job Migration

Alg. 4 gives an offline task distribution strategy, and this can lead to an energy-

efficient schedule if all tasks can execute on its energy-preferred GPU with the optimal

number of SMs. However, according to the given examples and the previous work [37], it

might not be energy efficient to turn on multiple GPUs when the system is underutilized,
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since the GPUs are not SM-level power gated and the energy consumed by active-idle SMs

can negatively affect the total energy consumption of the system. Therefore, we seek op-

portunities to further reduce the energy consumption of a multi-GPU system by judiciously

migrating and packing jobs at runtime.

Before introducing the proposed algorithm, we write a function to adopt and

encapsulate some methods of sBEET (Alg. 2 and 3 in Chapter 2):

function: sBEET(πk, Ji,j); returns (Scfg
i,j pπkq, E)

The function sBEET takes two inputs, πk and Ji,j , where

‚ πk is the GPU that the caller (the runtime scheduler of sBEET-mg, namely Alg. 4)

wants to check.

‚ Ji,j is the job that the caller is going to make a scheduling decision for.

It returns a tuple of Scfg
i,j and E. Scfg

i,j is the SM allocation result on πk for Ji,j . If S
cfg
i,j “ H,

Ji,j cannot execute on πk for now. E is the expected energy consumption of Π during a

time window from the current time to the estimated finish time of Ji,j , fi,j , with the SM

allocation Scfg
i,j . Hence, by Eq. (3.4), E is equal to Eprtnow, fi,jsq. If S

cfg
i,j “ H, E “ 8.

Alg. 5 gives the proposed runtime job migration scheduler. It takes as input a job

Ji,j which is either a newly-released job (if there is no other pending job) or the highest-

priority pending job. The algorithm decides whether the job should be launched at the

current time or be delayed, which GPU to use, and how many SMs should be assigned,

by considering the current status of the task’s energy-preferred GPU πx. As a result of
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scheduling decision making, the algorithm returns a SM configuration Scfg
i,j pπkq for Ji,j . If

Scfg
i,j pπkq “ H, Ji,j is pushed to the pending queue for later consideration.

‚ (Alg. 5 line 2 to 20) If πx is idle, the scheduler tentatively puts Ji,j on πx with

mopt
x,i SMs, checks if Ji,j Yπx can meet their deadlines,4 and then estimates the energy

consumption that Ji,j will contribute to the whole system. If Ji,j Yπx are not expected

to meet deadlines, the computed energy E1 is set to 8, meaning the assignment is

invalid (line 2 to 8). Then the scheduler will check whether there is any chance to

follow the packing strategy to launch Ji,j on other active GPUs so that πx can be

power gated to save energy. It iterates through Πi which is obtained in Alg. 4, and

follows the method in sBEET to find whether there is any assignment that can be

more energy efficient and reduce deadline violations by exploiting spatial multitasking

techniques. The predicted energy will be saved as E2, and the scheduler will return

the Scfg
i,j with the smaller predicted energy consumption (line 9 to 20).

‚ (Alg. 5 line 21 to 23) In the second case, πx is partially occupied. The scheduler calls

sBEET(πk, Ji,j) to decide and return the SM configuration Scfg
i,j .

‚ (Alg. 5 line 24 to 38) If πx is fully occupied, we consider the following two cases:

(i) Ji,j can be postponed and wait for mopt
x,i SMs on GPU πx (line 25 to 31), or (ii)

execute on a GPU other than πx (line 32 to 36). In case (i), the scheduler estimates

the time when πx would become available with mopt
x,i SMs. If Ji,j can meet the deadline

with this assignment, then the scheduler predicts the energy consumption from the

current time to the estimated finish time of Ji,j . Otherwise, the computed energy E4

4This is done by following the original sBEET’s approach (Alg. 3) that generates a schedule from the
current time to fi,j for a given SM allocation on πx and checks if all jobs can meet their deadlines until fi,j .
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is set to 8. In case (ii), the scheduler iterates through Πi and predicts the energy

consumption if Ji,j is placed on a GPU other than πx. For each πk‰x P Πi, if πk is

not fully occupied, the scheduler calls sBEET(πk, Ji,j) to get SM configuration S1
5

and the predicted energy consumption E1
5. After all the available GPUs are traversed,

the scheduler saves the configuration with minimum energy consumption. After these

procedures are done, the scheduler returns the corresponding SM allocation Scfg
i,j of

(i) or (ii) that leads to smaller energy consumption of Ji,j ’s execution.

3.5.5 Time Complexity

According to the time complexity analysis in Chapter 2, the time complexity of

the original sBEET is Opn ¨ logpnqq where n is the number of tasks. Suppose the number of

GPUs in the system is ω. In Alg. 5, the procedure to check whether a job can be scheduled

on each GPU (lines 10 to 15 and 33 to 36) is upper-bounded by ω ¨Opn ¨ logpnqq; hence, the

time complexity of the runtime job migration is given by Opω ¨ n ¨ logpnqq.

3.5.6 Offline Schedule Generation

This work targets soft real-time systems with no hard guarantees. Tasks are always

accepted, and our algorithms try to minimize deadline misses and energy consumption. If

one needs hard guarantees, our algorithms can be used to generate a schedule for one

hyperperiod offline, check if this meets all deadlines, and run it as a time-triggered schedule

at runtime.
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Algorithm 5 Runtime Job Migration

1: function Job Migration(Ji,j)

2: if πx is idle then

3: Tentatively place Ji,j on πx with mopt
x,i SMs

4: if Ji,j Y πx will meet deadlines then

5: E1 Ð Eprtnow, fi,jsq

6: S1 Ð the corresponding SM allocation

7: else

8: E1 Ð 8

9: E2 Ð 8

10: for each πk‰x in Πi sorted by Alg. 4 do

11: if πk is idle or πk is fully occupied then

12: continue

13: else

14: pS1
2, E

1
2q Ð sBEET(πk, Ji,j)

15: E2 Ð minpE2, E
1
2q

16: if E1 ““ 8 and E2 ““ 8 then

17: Assign Ji,j with maximum SMs on πx

18: else

19: Select the schedule with minpE1, E2q

20: return Scfg
i,j Ź the corresponding SM allocation for Ji,j

21: else if πx is partially occupied then

22: pScfg
i,j , Eq Ð sBEET(πx, Ji,j)

23: return Scfg
i,j
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24: else Ź If the GPU is full

25: t1 Ð current time

26: Tentatively place Ji,j on πx and wait until mopt
x,i SMs become available

27: t2 Ð fi,j

28: if Ji,j Y πx will meet deadlines then

29: E4 Ð Eprt1, t2sq

30: else

31: E4 Ð 8

32: E5 Ð 8

33: for each πk‰x in Πi sorted by Alg. 4 do

34: if πk is not full then

35: pS1
5, E

1
5q Ð sBEET(πx, Ji,j)

36: E5 Ð minpE5, E
1
5q

37: Select the schedule with minpE4, E5q

38: return Scfg
i,j Ź the corresponding SM allocation for Ji,j

3.6 Evaluation

This section carries out experiments using our implementation for real hardware

setup as well as simulation.5. The majority of experiments are conducted on the hard-

ware setup given in Sec. 3.4.1. To evaluate performance in systems with more GPUs, we

also present experimental results from a Python simulator we developed (Sec. 3.6.2). In

both experimental setups, we compare the performance of sBEET-mg against the follow-

ing approaches: (i) “LCF” (Little-Core-First) with LTF (Largest-Task-First), (ii) “BCF”

5Source code is available at https://github.com/rtenlab/sBEET-mg/.
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(Biggest-Core-First) with LTF, both of which represent the load concentration approach,

and (iii) “Load-Dist” (load distribution).6 We also consider “sBEET-mg Offline Only” to

assess the effect of the runtime algorithm (Alg. 5).

3.6.1 Hardware Experiments

In all the experiments on real hardware, we use the system shown in Fig. 3.1

consisting of two GPUs, RTX3070 and T400. Since the difference in computational power

between these two GPUs is too large, we decided to use only a portion of SMs on RTX3070.

This is reasonable since in practice, there is a possible scenario where a portion of the

GPU can be reserved for the dedicated use of high-critical tasks, and the remaining is

shared among other tasks. In this system, Π “ tπ0, π1u, where typepπ0q “ RTX3070

and typepπ1q “ T400. We set π0 as the reference GPU, and the utilization of each task

(Uipπkq “ Uipπ0q) can be determined in this way.

Table 3.5: Parameters for taskset generation

Parameters Range

Workload of the task One of the eight mentioned benchmarks
Number of tasks 6
Uipπ0q [0.01, 0.5]
Di 0.5 * Ti

6We define a “big-core” as a GPU with higher computational capacity and a “little-core” as a GPU with
lower capacity, i.e. more and fewer SMs.
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Figure 3.7: Deadline miss ratio w.r.t. the utilization of taskset

Results of Schedulability

In this experiment, we compare the schedulability of the proposed method with

the other approaches. For each value of utilization, 100 tasksets are randomly generated

with the parameters given in Table 3.5 using the UUnifast algorithm [16], and we use RM to
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decide task priorities. For each taskset, we run each approach for 15 seconds, and measure

the deadline miss ratio of the tasks. Due to the reason mentioned in Sec. 3.6.1, we limit

the number of SMs to be used on RTX3070 to 6, 12 and 24, and run the same tasksets on

the respective SM configurations.

Fig. 3.7 presents the absolute runtime deadline miss ratio under each method, and

sBEET-mg always has the lowest deadline miss ratio among them. In particular, sBEET-

mg achieves up to 23% and 18% reduction in deadline misses compared to Load-Dist and

BCF, respectively. Since we use the same tasksets in all the cases, the system gets most

heavily loaded when SMs on RTX3070 is limited to 6 as Fig. 3.7a shows, and least loaded

when SMs on RTX3070 is limited to 24 as Fig. 3.7c shows. We can see that the deadline

miss ratio under all methods is getting lower from the top figure to the bottom. In Fig. 3.7a,

all the curves are closer to each other since both of the GPUs only have 6 SMs that are

allowed to be used. Due to this reason, there is not much space for sBEET-mg to play

around. However, as more SMs are allowed on RTX3070 as shown in Fig. 3.7b and 3.7c,

especially as the system gets overloaded, since our proposed method takes into account the

future arrival of the tasks to find the right GPU and the number of SMs, the tasks will have

less chance get starved, our method can significantly reduce deadline miss ratio.

Results of Energy Consumption

While running the experiments in Sec. 3.6.1, we also measured the runtime energy

consumption of the five approaches, and the results are shown in Fig. 3.8. At first, we can

observe that, with 24 SMs on RTX3070 and U ď 1.0, BCF yields marginally better energy

consumption than sBEET-mg. This is because BCF assigns all workloads to the bigger
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Table 3.6: Power prediction for tasksets with different utilizations

* Note: Maximum power is « 180 W

Taskset Util. Emeas (kJ) Epred (kJ) MAEpower (W) Released job Missed job

0.8 21.53 21.70 10.79 8882 1
1.0 22.12 22.71 9.56 13174 1
1.2 21.91 23.14 8.33 11858 0
1.4 22.30 24.05 10.55 16909 4
1.6 23.14 22.92 10.53 18033 438
1.8 24.16 24.84 11.54 23173 456
2.0 26.36 27.84 14.27 25841 865

GPU (RTX3070) and leaves the smaller GPU (T400) idle all the time; however, it causes

an excessively high number of deadline misses, as shown in Fig. 3.7c. In the other cases,

the energy consumption of sBEET-mg and sBEET-mg Offline Only is always lower than

the other three approaches that are energy-agnostic. Under all the three SM configurations

with U ď 1.0, the energy consumption of sBEET-mg is lower than sBEET-mg Offline Only.

The reason is, when the system is not overloaded, the job migration algorithm has more

chances to take effect to save energy. Also, sBEET-mg is always more energy-efficient

than sBEET-mg Offline Only when 24 SMs are used on RTX3070. With 6 and 12 SMs

enabled on RTX3070 and U ě 1.2, the energy consumption of sBEET-mg Offline Only is

the lowest because (1) it guarantees that the tasks always run with mopt, and (2) in sBEET-

mg, the use of the runtime algorithm with spatial multitasking and job migration improves

schedulability, which inevitably causes more energy consumption [68].
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Figure 3.8: Energy consumption w.r.t. taskset utilization

Power Prediction Accuracy

To evaluate the effectiveness of the power prediction method used in our proposed

scheduler, we compare the predicted power consumption with the actual power consumption

measured by the power monitoring tool in Sec. 3.4.1. For each utilization considered,
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Figure 3.9: Trace of actual and predicted power consumption

we randomly select one taskset consisting of 6 tasks from the benchmark pool using the

parameters given in Table 3.5, and run each taskset using our proposed scheduler for 5

minutes. Fig. 3.9 illustrates the measured and estimated power traces of a taskset with

utilization of 1.0. Table. 3.6 summarizes the results from all tasksets tested: Emeas and Epred

stand for measured and predicted energy, respectively, and MAE is the mean-absolute-error

(MAE) in power prediction. The numbers of jobs released and missed deadlines during

measurement are also reported. The average MAE of all the tasksets of different utilization

is 10.80 W (« 6% of 180 W), and we can say the power prediction accuracy is good enough

for this work.

Comparison With sBEET

One may wonder how the original sBEET would perform if it is used in a multi-

GPU system with conventional offline task allocation methods such as BFD, WFD, and

FFD. In this experiment, we answer this question by comparing the schedulability of the

proposed work against the original sBEET combined with three allocation methods. The

tasksets generated with the parameters in Table 3.5 are used, and the number of SMs is
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set to 24 on RTX3070. For each taskset, we run sBEET-mg, sBEET Offline Only, WFD +

sBEET, FFD + sBEET and BFD + sBEET for 15 seconds each, and measure the deadline

miss ratio. Fig. 3.10 presents the absolute deadline miss ratio under the five approaches,

and sBEET-mg has the lowest among all of them. Note that the curves of FFD + sBEET

and BFD + sBEET are overlapped because they had the exact same performance in our

experiments.
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Figure 3.10: Deadline miss ratio of sBEET-mg and sBEET

Effect of Job Migration

To better understand the effect of runtime job migration, let us consider the fol-

lowing two case studies.

Case Study 1. Fig. 3.11 depicts the execution traces of the taskset listed in Table 3.7

under sBEET-mg with and without job migration. The trace was collected using Nvidia

Nsight Compute. The task-related GPU activities are highlighted in different colors. For

this taskset, all tasks are assigned to RTX3070 by Alg. 4 due to the energy efficiency

consideration. However, they are not schedulable when job migration is not used; as noted
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in Fig. 3.11a, J3,1 is skipped. Fig. 3.11b shows the case where job migration is enabled.

Unlike the previous case, when J1,1 arrives, the line 4 of Alg. 5 finds that the schedule would

not be feasible if J1,1 is executed with mopt. Hence, it jumps to line 17 and runs J1,1 as

fast as possible on RTX3070. Later when J2,1 arrives, as RTX3070 is fully occupied by J1,1,

line 28 takes effect and finds J2,1 would miss the deadline if it waits until RTX3070 becomes

idle. The algorithm further looks for opportunities to run J2,1 on other GPUs and decides

to move J2,1 to T400. In this way, all three jobs are schedulable.

Table 3.7: Taskset used in case study 1

Task Di “ 0.5 ˚ Ti (ms) Offset (ms) GPU assigned by Alg. 4

τ1 60 0 RTX3070
τ2 45 1 RTX3070
τ3 40 2 RTX3070

Case Study 2. The taskset used in this case study is listed in Table 3.8 and the execution

traces are shown in Fig. 3.12. For this taskset, τ1 and τ2 are assigned to RTX3070 and T400,

respectively, by Alg. 4. In Fig. 3.12a where migration is not used, J1,1 and J2,1 run on their

assigned GPUs exclusively. In Fig. 3.12b, when J2,1 arrives, Alg. 5 decides to move it to

another GPU to run concurrently with J1,1 for energy efficiency (line 9 to 20. We measured

the energy consumption of these two schedules: the one without migration is 6.51J and

the one with migration is 6.49J. Despite the small difference, this result shows the energy

benefit of runtime migration.
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Figure 3.11: Job migration case study 1

3.6.2 Simulation With Multiple GPUs

Although there are only two GPUs in our hardware setup, our proposed method

can handle a system containing more GPUs, including homogeneous GPUs. We developed

a simulator using Python to compare our proposed method and the baselines.
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Table 3.8: Taskset used in case study 2

Task Di “ 0.5 ˚ Ti (ms) Offset (ms) GPU assigned by Alg. 4

τ1 100 0 RTX3070
τ2 100 1 T400

GPU 0 
worker 0

GPU 0 
worker 1

GPU 1 
worker 0

GPU 1 
worker 1

Job release/deadline&! &#

(a) sBEET-mg w/o migration
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GPU 1 
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GPU 1 
worker 1
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Migrated for 
energy efficiency

(b) sBEET-mg

Figure 3.12: Job migration case study 2

With the collected workload and power profile on the real GPUs, we add the third

GPU, another RTX3070 to the simulation. In this experiment, we limit the number of SMs

on both RTX3070s to 12, and the configuration is given in Table 3.9. With parameters

given in Table 3.5, for each taskset utilization, 200 tasksets are generated and each runs for

15 seconds. The results of the deadline miss ratio and the predicted energy consumption are

demonstrated in Fig. 3.13. The proposed method has the best schedulability among the five

methods, and in most cases, sBEET-mg and sBEET-mg Offline Only have better energy

consumption compared to the other baselines. The reason why sBEET has higher energy
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Figure 3.13: Simulation results of GPU configuration in Table 3.9

consumption than sBEET-mg Offline Only when U ě 1.6 is due to its better schedulability,

as discussed in Sec. 3.6.1.

Table 3.9: GPU configurations in simulation

GPU Id GPU Mk M limit
k

π0 RTX3070 46 12
π1 RTX3070 46 12
π2 T400 6 6
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3.7 Conclusion

In this work, we first provided observations about scheduling strategies in a multi-

GPU system and found that existing simple task allocation approaches are not a preferred

option for energy efficiency regardless of whether GPUs are homogeneous or heterogeneous.

This is mainly due to the fact that today’s GPU architectures are not SM-level power-

gated but device-level power-gated; thus, some unused SMs can continue to draw power

although leaving as many processing units idle as possible has been considered conventional

wisdom for CPU energy management. Based on these observations, we extended prior work

and proposed sBEET-mg, the multi-GPU scheduling framework that improves both real-

time performance and energy efficiency by assigning energy-preferred GPUs to tasks and

performing job-level migration with SM-level resource allocation. The effects of sBEET-mg

in reducing energy consumption and deadline miss rates are demonstrated through various

experiments on real hardware and simulation.

The precise measurement and analysis of power consumption on the latest GPU

architectures will give insights to future research endeavors. We hope that our findings can

serve as an important stepping stone for the development of energy-efficient multi-GPU

real-time systems.
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Chapter 4

Unleashing the Power of

Preemptive Priority-Based

Scheduling for Real-Time GPU

Tasks

4.1 Introduction

Real-time cyber-physical systems with GPU workloads have become increasingly

prevalent in various domains including self-driving cars, autonomous robots, and edge com-

puting nodes. This trend has been accelerated in recent years by the demand for learning-

enabled components as most of their implementations heavily rely on the GPU stack. The

scheduling problem of GPU-using tasks in these systems is therefore crucial to ensure timely
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execution and to meet stringent timing requirements. One of the key challenges here is effec-

tively supporting prioritization and preemption, allowing higher-priority tasks to interrupt

and temporarily suspend lower-priority GPU tasks whenever needed. This is particularly

important in scenarios where critical high-priority tasks with stringent deadlines need to

access GPU resources, while low-priority and best-effort tasks can tolerate such preemption

to accommodate their execution.

As of yet, the default scheduling policy of commercial GPU devices provides little

control over the prioritization and preemption of GPU tasks, causing unpredictable task

response time and instability in real-time systems. The real-time research community has

recognized this issue since the early era of GPU computing and has proposed several solu-

tions. In particular, the use of real-time synchronization protocols, such as MPCP [56, 57]

and FMLP+ [20], has been recognized as a promising way to manage GPU tasks in real-time

systems with strong analyzable guarantees on the worst-case task response time. However,

these approaches can suffer from long blocking time and priority inversion by lower-priority

tasks since GPU access segments are handled non-preemptively. There have been attempts

to support priority-based GPU scheduling with preemption capabilities [14, 42, 75], but they

require significant modifications to GPU access code, lack analytical support, and more im-

portantly, may not work properly if the system has processes with unmodified GPU code or

graphics applications due to the time-shared GPU context switching behavior of the device

driver [13, 24].

In this work, we address the aforementioned challenges and limitations by propos-

ing novel preemptive priority-based GPU scheduling approaches for real-time GPU task
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execution in multi-core systems with analyzable guarantees. Our work focuses on Nvidia

GPUs, especially those on Tegra System-on-Chips (SoCs) used in embedded platforms like

Jetson Xavier and Orin. We propose two distinct approaches: kernel thread and IOCTL-

based approaches, each offering unique advantages with different performance implications.

These approaches work at the device driver level, and unlike existing techniques, they can

protect the execution of real-time GPU processes from interference from best-effort non-real-

time CUDA processes and graphics processes in the system. Specifically, the kernel-thread

approach requires no modifications to user-level GPU code (both host and kernel code) at

all, making it amenable to use with any type of workloads. This is particularly appealing

to recent machine learning and computer vision applications as they are built on top of

massive libraries that involve hundreds of different kernels. The IOCTL-based approach,

on the other hand, requires a small modification to GPU access code, i.e., adding just one

macro at the boundaries of GPU segments, but provides more fine-grained and efficient

control of the GPU. Thanks to the strictly preemptive and priority-driven GPU scheduling

behavior, both approaches are analyzable and allow us to derive response-time tests for

schedulabiltiy analysis.

4.2 Background on Tegra GPU Scheduling

Computational GPU workloads for Nvidia GPUs are often programmed using the

CUDA library. These workloads are represented in kernels and user-level processes can

launch kernels to the GPU at runtime. CUDA provides processes with streams to enable

concurrent execution of kernels with a limited number of stream priority levels, e.g., only 2
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in the Pascal architecture [73]. Since streams are bound to a user-level process that created

them, the effect of stream scheduling and stream priority assignment is exerted only within

each process boundary. The CUDA library is not a must for processes to access the GPU

hardware. There are other low-level libraries for general-purpose GPU computing and

graphics applications such as OpenCL and Vulkan. Programs built using different libraries

co-exist in the system and they send GPU commands to the device driver.

At the device driver level, each process is assigned a unique GPU context, which

encompasses a virtual address space and other runtime states on the GPU side. Regardless

of whether a process utilizes the CUDA library in the user space, it will have its own

dedicated GPU context. The GPU contexts from different processes are time-sliced to

share the GPU hardware. To ensure fairness and prevent resource contention, the Tegra

GPU driver uses a scheduling policy that assigns entries in the “runlist”.1 The entries of

the runlist represent the allocation of time slices to TSGs (Time-Sliced GPUs) that are

directly associated with processes. Fig. 4.1 illustrates the runlist filled with TSG entries.

The TSG data structure maintains various attributes, including the process ID (pid), a list

of channels, and the duration of the time slice. Each channel contains a stream of GPU

commands received from its process. The scheduling of the runlist follows a round-robin

approach, ensuring that during each time slice, the GPU executes commands pertaining to

the corresponding GPU context. The number of entries assigned to a TSG on the runlist

is contingent upon its priority. However, at the time of writing, no user-space interface is

provided to configure the length of the time slice or the priority settings for TSGs.

1In fact, there are multiple runlists but we refer to them as singular for simplicity. When scheduling,
the driver cycles through each runlist to handle a higher volume of workloads, and this does not affect our
proposed design.

93



The construction of the runlist in the Tegra GPU driver follows multiple steps.

First, processes submit their commands to specific channels associated with their TSGs.

Once the commands are submitted, the corresponding TSGs are added to the runlist which

is protected by a mutex lock. During the construction of the runlist, TSGs with higher

priority are granted a larger time slice and more entries on the runlist. After construction,

the runlist is repeatedly scheduled by the GPU in a round-robin manner. Each entry on

the runlist runs for its time slice, and once timeout, the TSG of the next entry is executed.

This repeats until all the commands of all active TSGs on the runlist are consumed.

In summary, the Tegra GPU driver employs a time-sliced round-robin scheduling

approach. This approach, however, does not respect the OS-level scheduling priority of

processes, which is the main control knob to tune real-time performance in practice. This

causes high-priority real-time tasks to experience unpredictable waiting time when the sys-

tem accepts new best-effort tasks. In addition, it is not easy for the user to observe such

driver-level behavior because GPU profiling tools, such as Nvidia Nsight Systems, do not

report GPU context switching events and each kernel execution time appears to be inflated

with no time slice information. These issues contribute to difficulties in understanding and

predicting the runtime behavior of GPU-enabled real-time systems.

4.3 Related Work

Table 4.1 gives a summary of comparison between representative GPU scheduling

approaches. Below we discuss prior work in various categories.
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Figure 4.1: Runlist and time-sliced GPU scheduling

No blocking
Task priority
respected

No source code
modification

Analyzable

Prior
work

Unmanaged GPU
(default driver)

✕ ✕ ✓ ?

Sync.-based
approaches

✕ ✓ ✕ ✓

Ours
Kernel thread
approach

✓ ✓ ✓ ✓

IOCTL-based
approach

✓ ✓ ✕ ✓

Table 4.1: Comparison of different GPU scheduling approaches

Synchronization-Based GPU Access Control. Real-time synchronization protocols

have played an important role in managing access to GPUs [28–30, 56]. With this approach,

GPUs are modeled as mutually-exclusive shared resources and tasks are made to acquire

locks to enter code segments accessing the GPUs, i.e., critical sections. MPCP [57] and

FMLP+ [19] are prime examples for multi-core systems with GPUs and the use of such

protocols enables analytically provable worst-case task response time bounds. However, the

synchronization-based approach may suffer from blocking time from lower-priority tasks

holding a lock and priority inversion caused by the priority boosting mechanism employed
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in these protocols [44]. This becomes particularly problematic when tasks busy-wait on

long kernel execution, as discussed in [56].

Preemptive GPU Scheduling. Several previous studies [14, 42, 75] have proposed software-

based mechanisms to enable preemptive scheduling of real-time GPU tasks. These ap-

proaches introduce the concept of decomposing long-running GPU kernels into smaller

blocks, allowing preemption to occur at the boundaries of these blocks. By enabling pre-

emptive scheduling, the waiting time of high-priority tasks can be significantly reduced,

improving responsiveness and offering a better chance to meet timing requirements. How-

ever, the cost of utilizing these mechanisms is not trivial as they necessitate a significant

rewriting of user programs [14] or an implementation of a custom CUDA library with device

driver modifications [14, 75]. Capodieci et al. [24] proposed a hypervisor-based technique

to support preemptive Earliest Deadline First (EDF) GPU scheduling of virtual machines

(VMs) in a virtualized environment. This approach achieves GPU performance isolation

among VMs and shares some similarities with our work, in terms of controlling GPU con-

text switching at the device driver level. However, it lacks consideration of the end-to-end

response time of tasks involving CPU and GPU interactions, which is a specific focus of our

work. Recently, Han et al. [31] proposed REEF, which enables microsecond-scale, reset-

based preemption for concurrent DNN inferences on GPUs. This approach proactively kills

and restarts best-effort kernels leveraging the idempotent nature of most DNN inference,

but it is not applicable to a wide range of applications.

GPU Partitioning. As a GPU is composed of multiple compute units, e.g., Streaming

Multiprocessors (SMs) on Nvidia GPUs, there has been attempts to spatially partitioning
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the GPU and making them accessible by multiple real-time tasks in parallel [38, 58, 67, 68,

76]. They use SM-centric kernels transformation [72] to run kernels on their designated

SMs/partitions. As this involves extensive program modifications and may suffer from

misbehaving tasks, Bakita and Anderson [13] recently proposed a user-space library that

minimizes program changes and offers much better usability and portability. However, all

these approaches work within a single GPU context, i.e., one process. Hence, multiple

processes with separate contexts will still time-share the GPU, as discussed in Sec. 4.2. Our

work overcomes this issue and can be co-used with these partitioning techniques.

4.4 System Model

We consider a multi-core system with a GPU, which is common in today’s embed-

ded hardware platforms like Nvidia Jetson. The CPU has ω identical cores and the GPU

is yet another processing resource used by compute-intensive tasks. The GPU consists of

internal resources including Execution Engines (EEs) and Copy Engines (CEs). The EE

and CE operations of a single process can be done asynchronously at runtime, and during

pure GPU execution, the process can either busy-wait or self-suspend on the CPU. How-

ever, different processes cannot use the GPU at the same time because of the time-sharing

scheduling of GPU contexts at the GPU device driver, as discussed before.

Task Model. We consider a taskset Γ consisting of n periodic tasks (processes) with fixed

priority and constrained deadlines.2 Each task is assumed to be preallocated to one CPU

core with no runtime migration, i.e., partitioned multiprocessor scheduling. The execution

2We assume tasks are processes and use them interchangeably in this paper.
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of a task is an alternating sequence of CPU segments and GPU segments. CPU segments

run entirely on the CPU and GPU segments involve GPU operations such as memory copy

and kernel execution. A task τi can be characterized as follow:

τi :“ pCi, Gi, Ti, Di, η
g
i q

‚ Ci: the cumulative sum of the worst-case execution time (WCET) of all CPU segments

of task τi.

‚ Gi: the cumulative WCET of GPU segments (including memory copies and kernels)

of τi.

‚ Ti: the minimum inter-arrival time of each job of τi.

‚ Di: the relative deadline of each job of τi, and is smaller than or equal to the period,

i.e., Di ď Ti.

‚ ηci : the number of CPU segments in each job of task τi.

‚ ηgi : the number of GPU segments in each job of task τi; if τi does not use the GPU,

ηgi “ 0.

Fig. 4.2 depicts these parameters. We use Gi,j to denote the WCET of the j-th

GPU segment of task τi, i.e., Gi “
řηgi

j“1Gi,j . Each GPU segment Gi,j includes memory

copy and kernel execution, and can be characterized as follow:

Gi,j :“ pGm
i,j , G

e
i,jq

‚ Gm
i,j : the WCET of miscellaneous operations in the j-th GPU segment of task τi that

require CPU intervention.
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Figure 4.2: Task model example

‚ Ge
i,j : the WCET of GPU operations in the j-th GPU segment that requires no CPU

intervention, and we call it a pure GPU segment.

Gm
i,j is the time for launching a CUDA kernel, overhead for communicating with

the GPU driver, and miscellaneous CPU operations for issuing other GPU commands. Ge
i,j

is the time for GPU data copy and kernel execution, during which task τi can either busy-

wait or self-suspend on the CPU. Note that Gi,j ď Gm
i,j `Ge

i,j because the worst-case of G
m

and Ge are not necessarily happening on the same control path and they may execute in

parallel in asynchronous mode [56].

We also consider best-case execution time, denoted by a check mark (e.g., |Ci),

to improve our analysis in Sec. 4.6.2. For readability, we will explain the parameters that

follow this notation where they are used.

4.5 Priority-Based Preemptive GPU Scheduling

We present two runtime approaches, kernel thread and IOCTL-based, for preemp-

tive priority-based execution of GPU segments from real-time tasks. The first approach

involves a kernel thread that polls for any changes in the status of tasks and updates the
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Algorithm 6 Kernel Thread Approach
1: procedure kernelThreadRunlistUpdate

2: while true do

3: if τi’s state is changed from the previous cycle then

4: τh Ð the highest-priority GPU-using ready task

5: if τh exists then

6: Add τh’s associated TSGs to runlists

7: Remove other TSGs from runlists

8: else Ź no RUNNING real-time tasks

9: Add all active TSGs to runlists

10: Wait for the next polling cycle

runlist accordingly. The second approach involves a set of user-level runtime macros that

notify the GPU driver to update the runlist.

The kernel thread approach is easier to use as it does not require any modifica-

tion to program code, but it makes scheduling decisions and updates the runlist only at

job execution level, and this may lead to resource underutilization. The IOCTL-based ap-

proach provides finer-grained control over GPU segments, but this requires user-level code

modification although small. The details of these two approaches are presented in this

section.

4.5.1 Kernel Thread Approach

The kernel thread approach creates a kernel thread that is initiated along with

the driver software. It continuously polls for changes in task status (task struct::state),
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with a predefined time interval of 1 millisecond on a designated CPU core, to avoid excessive

CPU usage and minimize interference to other tasks. When a task status change is detected,

e.g., from TASK RUNNING to TASK STOPPED, it updates the runlist.

The procedure is shown in Alg. 6. At every polling cycle, the kernel thread

checks if any task τi with an active TSG has changed its state from the previous cycle

(line 3). If yes, it obtains a ready task (TASK RUNNING) with the highest real-time priority

(task struct::rt priority) as τh (line 4). Next, the scheduler decides whether the runlist

should be updated. If τh exists, the scheduler removes all other TSGs from the runlist but

only keeps τh’s associated TSGs in it. Otherwise, it means that no GPU-using real-time

task is ready to run, and in this case, the scheduler puts all other active TSGs back into

the runlist, allowing non-real-time best-effort tasks to make their progress (lines 5 to 9).

However, since the scheduling decision is made only when a task state changes,

this approach may underutilize GPU resources. For instance, when a high-priority task τh

starts to run, the currently-running task τi’s TSGs are removed from the runlist to reserve

the GPU for τh. However, while τh is executing its CPU segments, the GPU may remain

idle, leading to underutilization of GPU resources. The kernel thread approach has another

limitation. Self-suspension during GPU execution is not allowed and a task must spin on

the CPU side to maintain its task state. This is because task state changes due to self-

suspension can be misinterpreted by the kernel thread, and may make incorrect scheduling

decisions and cause unnecessary runlist updates.

Figs. 4.3a and 4.3b compare task schedules under the conventional synchronization-

based approach and our kernel thread approach. τ1 is running on Core 1, while τ2 and τ3
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Figure 4.3: Example schedule of three tasks under different approaches (priority τ1 ą τ2 ą τ3)
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are running on Core 2. The synchronization-based approach shown in Fig. 4.3a treats the

entire execution of a GPU segment as a critical section. Tasks are serviced in order based on

their task priorities. This approach ensures that each task completes its GPU segments in

a deterministic and predictable manner. However, as can be seen in the figure, τ1 is delayed

by the GPU segments of all of its lower-priority tasks and gets a response time of 8.75. On

the other hand, our kernel thread approach avoids this delay by allowing preemption during

GPU segment execution. In Fig. 4.3b, the kernel thread is on Core 1 along with τ1 and the

runlist update time is denoted as ϵ.3 At t “ 1, the kernel thread updates the runlist and

causes preemption of τ3’s GPU segment by removing its associated TSGs from the runlist.

Task τ1 is delayed by ϵ due to running on the same core as the kernel thread. The GPU is

then allocated to the highest-priority task, τ1, until it completes. The response time of τ1

is 5.5+ϵ, much smaller than that of the synchronization-based approach.

Although it is not depicted in the above figure, there could be a delay for GPU

preemption to take effect because Nvidia GPUs support preemption at the pixel level for

graphics tasks and the thread-block level for compute tasks [11]. Such delay is thus very

small compared to the length of GPU kernels, and for compute tasks, it can be separately

measured or estimated by the maximum length of a single thread block among all kernels.

We assume that ϵ includes this delay in it.

3Prior work [24] reports that the runlist update overhead including GPU context switching can take from
50 to 750 µs. Our analysis in Sec. 4.6 takes into account ϵ and our measurements in Sec. 4.7.2 show similar
results.
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4.5.2 IOCTL-Based Approach

The IOCTL-based approach is a user-level runtime method for efficient control of

GPU segments in the runlist. To implement this method, we add two macros that allow

user programs to indicate the beginning and completion of a GPU segment. When the

macro is called, it generates an IOCTL command and sends it to the GPU driver through

a file descriptor, and requests the driver to update the runlist accordingly.

1 int main() {

2 ...

3 cudaStream_t stream;

4 ...

5 cudaStreamBegin(getpid ());

6 cudaMemcpyAsync(d_in , h_in , mem_sz_in , cudaMemcpyHostToDevice , stream);

7 MyKernel <<<grid , threads , 0, stream >>>(d_in , d_out , dims_in , dims_out);

8 cudaStreamEnd(getpid (), stream);

9 ...

10 }

Listing 4.1: Example Usage of IOCTL-based approach

The macros introduced are cudaStreamBegin() and cudaStreamEnd(), which are

wrappers to our IOCTL syscalls. A sample user program is listed in Listing 4.1. The code

between them is a GPU segment. Unlike the kernel thread approach in which the runlist

update is triggered at the boundaries of each task’s execution, with the help of these two

macros, we can define the boundaries of GPU segments and allows GPU segments and CPU

segments from different tasks to be co-scheduled. In the Tegra driver, the default runlist

update is protected by a mutex lock. As the IOCTL-based approach allows multiple tasks
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to make these calls concurrently, We replace the default one with a priority-based lock to

reduce the blocking time.

The procedure to update the runlists under this approach is shown in Alg. 7.

To track which tasks are in the runlist and which tasks are pending, two bitmaps are

maintained in the GPU driver. The procedure is started by an IOCTL command which is

wrapped by our macro. When a caller task τi requests to be added to the runlist (through

cudaStreamBegin()), the scheduler implemented inside the IOCTL function first checks

whether τi is a real-time task. If it is not, the scheduler checks for any currently running

real-time tasks and decides whether to add τi to the runlists or to the pending list (line 5

to 9). If τi is a real-time task, the scheduler compares the priority of τi with the currently

running task τh. If τi has a higher priority, the scheduler preempts the GPU execution

of τh, moving it to the pending list, and adds τi to the runlist. Otherwise, τi is added to

the pending list (line 10 to 16). Upon completion of τi signaled by cudaStreamEnd(), the

scheduler examines the pending list for the highest-priority task τk. If τk exists, it is added

to the runlist. Otherwise, if only best-effort tasks remain, they are added to the runlist to

resume their progress (line 17 to 24).

Fig. 4.3c shows an example schedule under the IOCTL-based approach using the

same taskset as in the previous section. Unlike the kernel thread approach, τ3’s GPU

segments are not preempted until τ1 starts its GPU kernel execution. This strategy is

followed in the remaining schedule. In this case, the response time of task τ1 is 5.5 ` 2ϵ.

The IOCTL-based approach allows fine-grained GPU resource control and ensures

prompt execution of high-priority tasks. However, implementing this approach necessitates
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Algorithm 7 IOCTL-based Approach
1: task pending “ H

2: task running “ H Ź Note that a task exclusively exists in these two lists

3: procedure IOCTLRunlistUpdate(τi, add)

4: if add then Ź τi requests to be added

5: if τi is not a real-time task then

6: if no real-time task is in task running then

7: Add τi to task running

8: else

9: Add τi to task pending

10: else Ź τi is a real-time task

11: τh Ð the highest-priority task in task running

12: if τi Ñ prior ą τh Ñ prio then

13: Add τi to task running

14: Add τh to task pending

15: else

16: Add τi to task pending

17: else Ź τi requests to be removed

18: τk Ð the highest-priority task in task pending

19: if τk exists then

20: Add τk to task running

21: Remove τi from task running

22: else Ź no pending real-time task

23: task running Ð task pending

24: task pending Ð H

25: Add all TSGs associated with tasks in task running to runlists
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modifying user-level code, which could pose a challenge in terms of adoption and practical

implementation.

4.5.3 GPU Segment Priority Assignment

In both kernel thread and IOCTL-based approaches, GPU segments are executed

following their OS-level task priorities. In the kernel thread approach, the kernel thread

has the highest priority, and the preemption occurs at job execution boundaries. In the

IOCTL-based approach, preemption can occur at segment boundaries.

To improve taskset schedulability, we can assign separate priority to the GPU

segments of a task, different from its CPU priority. We adopt Audsley’s approach for this

purpose [12]. Hence, if the schedulability test given in the next section determines a taskset

is unschedulable, we iterate through all tasks from the lowest to the highest CPU priority

and check whether each priority level can be assigned to the GPU segments of a task without

causing the taskset to fail the schedulability test.

4.6 Schedulability Analysis

In this section, we present a comprehensive analysis of schedulability for preemp-

tive GPU scheduling. We first give analysis under two approaches mentioned in the previous

section. We then introduce a technique to reduce the pessimism of our schedulability anal-

ysis and provide a tighter bound on the worst-case response time.
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Figure 4.4: Example schedule of three tasks with runlist update delay (task priority: τ1 ą τ2 ą τ3)

4.6.1 Baseline Analysis

Our baseline analysis provides a conservative upper bound on the worst-case re-

sponse time under the two proposed approaches. In our model, preemptions can occur in

two scenarios: (i) CPU preemption: a CPU segment of a task τi is preempted by a CPU

segment of a higher-priority task τh running on the same CPU core, and (ii) GPU preemp-

tion: a GPU segment of a task τi is preempted by a GPU segment of a higher-priority task

τh, regardless of which CPU core is assigned to τh. Based on these scenarios, we develop a

schedulability analysis for the two proposed approaches in the next subsection.
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Preemptive GPU Under Kernel Thread Approach

The kernel thread runs on one designated CPU core and updates the runlist on

behalf of other GPU-using tasks. Task self-suspension is not applicable here, and only the

busy-waiting mode is available to monitor task states and prevent incorrect runlist updates

in the middle of job execution.

We first identify the delay for a task τi caused by the runlist updates of the kernel

thread. The following lemma holds for this delay:

Lemma 12 The runlist update delay from the kernel thread for a job of task τi is upper-

bounded by:

Ki “ xi ¨ p2ϵ `
ÿ

τhPhppτiq

r
Ri ` Jh

Th
s ¨ 2ϵq (4.1)

where

xi “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

1 , τi is a GPU-using task (ηgi ą 0) and runs on the

same core as the kernel thread

0 , otherwise

, ϵ is the runlist update time (Sec. 4.5.1), Ri is the worst-case response time of τi, hppτiq

is a set of all the higher-priority tasks than τi in the system, and Jh “ Rh ´ pCh ` Ghq is

the release jitter to capture the carry-in effect.

Proof. Whenever the kernel thread updates the runlist, it delays the CPU execu-

tion of other tasks on the same core due to its highest priority and also the GPU execution

due to TSG evictions and GPU context switching [24]. Hence, GPU-using tasks on any

CPU core and CPU-only tasks running on the same core as the kernel thread are subject
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to this delay. The only exception is CPU-only tasks running on a different core as they are

neither delayed by the CPU and GPU operations of the kernel thread (the xi term).

Once the job of τi starts execution, its status change triggers the kernel thread once

to update the runlist. The kernel thread might be already updating the runlist for a lower-

priority task, so one additional ϵ needs to be considered (the first term in the parenthesis).

During τi’s job execution (Ri), additional invocation of the kernel thread is determined by

only higher-priority jobs since those with lower priority than τi cannot trigger the runlist

update until the completion of the τi’s job. The number of arrivals of high-priority tasks

during Ri is upper-bounded by r
Ri`Jh
Th

s, where adding Jh is a known method to capture a

carry-in job in an arbitrary interval [15]. Each high-priority job involves two times of runlist

updates (2ϵ), one at the beginning of the high-priority job and another at its completion to

resume τi’s job.

Fig. 4.4a gives an example of all types of delay caused by the kernel thread. Tasks

τ1, τ3, and the kernel thread are running on Core 1, and τ2 is running on Core 2. The taskset

is with the priority of τ1 ą τ2 ą τ3. ➀ is the delay that occurs when any task running on

the same core as the kernel thread has a state change, i.e., starting job execution. During

the preemption of τ1 on τ3, ➁ illustrates the delay caused by runlist updates before and

after τ1 completes. Lastly, ➂ demostrates the delay by a remote preemption from τ2 on τ3.

Lemma 13 Under the kernel thread approach, the worst-case response time of a task τi is

upper-bounded by:
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Ri “ Ci ` Gi ` Ki

`
ÿ

τhPhpppτiq

r
Ri

Th
spCh ` Ghq

`
ÿ

ηgi ą0^ηghą0
^τhPhppτiq^τhRhpppτiq

r
Ri ` Jh

Th
spCh ` Ghq

(4.2)

where hpppτiq is the set of higher-priority tasks running on the same CPU core as τi.

Proof. This is an extension of the conventional iterative response-time test. Ci

and Gi denote the execution time of the CPU segments and the GPU segments of τi,

respectively. Ki bounds the delay from the kernel thread. By the design of the kernel

thread approach, higher-priority tasks τh on the same CPU core as τh can preempt τi for

their entire job execution (Ch ` Gh) because τi busy-waits on the CPU (the second line

of the equation). Higher-priority GPU-using tasks (ηgh ą 0) running on different cores can

also effectively preempt τi but only if τi has a GPU segment (ηgi ą 0). Carry-in jobs of

higher-priority tasks on different cores are captured by Jh in the last term, as in Lemma 12.

Preemptive GPU Under IOCTL-Based Approach

Unlike the kernel thread approach, runlist update is done by each task by holding

a lock in the GPU driver. The duration of each lock-holding time is the same as a single

runlist update time, ϵ, but the use of the lock introduces a slightly different delay from Ki.

Lemma 14 The runlist update delay under the IOCTL-based approach for a job of task τi

is upper-bounded by:
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Bi “ 2ϵ ¨ ηgi `
ÿ

ηgi ą0^ηghą0
^τhPhppτiq

r
Ri ` Jh

Th
s ¨ 2ϵ

(4.3)

Proof. Recall that our lock implements a priority-based waiting list, but real-time multi-

processor synchronization such as MPCP [56] and FMLP+ [20], there is no priority boosting.

Hence, as in Lemma 12, CPU-only tasks are unaffected by the runlist update. For GPU-

using tasks, each GPU segment needs 2ϵ, one for the runlist update of itself and another

for at most one blocking from lower-priority tasks. During Ri, the total number of runlist

updates due to higher-priority tasks can be bounded in the same manner as Lemma 12.

Fig. 4.4b illustrates an example of the runlist update delay under the IOCTL-based

approach. Tasks τ2 and τ3 are running on Core 1 and τ1 is running on Core 2. The three

tasks have priorities of τ1 ą τ2 ą τ3. We examine the blocking time that τ2 experiences.

The runlist update by τ3 at t “ 1 causes a blocking at ➀ for τ2. Then τ2 is preempted by

the GPU execution of τ1, and this adds an extra cost at ➁. After the GPU segments of τi

are ready to run, they get fully preempted by τ1, as depicted by ➁.

The IOCTL-based approach provides tasks with both self-suspension and busy-

waiting options during pure GPU execution. We analyze the resposne time of each case

below.

Lemma 15 Under the IOCTL-based approach, the worst-case response time of a self-

suspending task τi is bounded by:
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Ri “ Ci ` Gi ` Bi

`
ÿ

τhPhpppτiq

r
Ri ` Jc

h

Th
spCh ` Gm

h q

`
ÿ

ηgi ą0^ηghą0
^τhPhppτiq

r
Ri ` Jg

h

Th
sGe

h

(4.4)

where Jc
h “ Rh ´ pCh ` Gm

h q and Jg
h “ Rh ´ Ge

h.

Proof. This is a variant of the kernel-thread analysis given by Lemma 13. The

biggest difference is that, with self-suspension, higher-priority tasks on the same CPU core

do not impose CPU interference during their pure GPU execution; hence, each job of τh

gives up to Ch ` Gm
h . The self-suspending behavior of an interfering job is known to be

bounded by a release jitter given by its response time deducted by the worst-case execution

time [18]. In our case, Jc
h computes that. On the GPU, the pure GPU segments (Ge

h) of all

higher-priority tasks in the system need to be considered, along with the effect of carry-in

jobs using Jg
h .

Lemma 16 Under the IOCTL-based approach, the worst-case response time of a busy-

waiting task τi is bounded by:

Ri “ Ci ` Gi ` Bi

`
ÿ

τhPhpppτiq

r
Ri

Th
spCh ` Ghq

`
ÿ

ηgi ą0^ηghą0
^τhPhppτiq^τhRhpppτiq

r
Ri ` Jg

h

Th
sGe

h

(4.5)

Proof. The proof directly follows Lemmas 13 and 15.
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4.6.2 Analysis With Reduced Pessimism

In the above analysis, the total preemption time on task τi caused by higher-

priority tasks running on the same core is simply computed by adding up the worst-case pre-

emption time on both CPU and GPU, assuming both types of preemptions occur throughout

execution. However, there are two key factors that make this analysis more conservative

than necessary:

‚ Both CPU and GPU preemptions are assumed to happen at their full extent.

‚ Under self-suspension mode, a task τi cannot experience full preemption of all CPU

and GPU segments of a higher-priority task τh running on the same core.

The first factor can be easily observed in Eqs. 4.2, 4.4 and 4.5 as the interval

of interest of Ri is always considered when computing the number of local and remote

preemptions. Such pessimism is illustrated in Fig. 4.5a. For ➀ and ➁, the GPU execution

of τ2 should have a chance to execute together with CPU segments of τ1, but in the baseline

analysis, τ1’s CPU segments are assumed to preempt τ2’s GPU execution. Fig. 4.5b shows

the case of an actual schedule where both preemptions of ➀ and ➁ do not exist.

For the second factor, for convenience, let us consider two tasks τh and τl released

at the same time on the same CPU core. τh finishes its CPU segment first and starts GPU

execution. At this time, τl can begin its CPU segment and there is an inevitable overlap

between τh’s GPU segment and τl’s CPU segment, making full preemption impossible.

The baseline analysis given in Sec. 4.6.1 overestimates the worst-case response

time, especially for the IOCTL-based approach that allows concurrent execution of GPU
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Figure 4.5: Pessimism of baseline analysis and two types of execution overlap (IOCTL-based ap-

proach; priority: τ1 ą τ2)

kernels and CPU segments from different tasks. We focus on reducing the pessimism by

identifying minimum possible overlaps between segments, during which certain preemptions

should not occur, to shrink the worst-case response time in the recursive analysis form. We

establish key definitions used throughout the discussion.

Definition 17 (Completion time) The completion time, X, of a segment is defined as

the time interval between the start of execution of the segment and the completion of the

segment.

Definition 18 (Full overlap) A group of execution segments e1 is said to have a full

overlap with a segment e2 if all segments of e1 are entirely contained within e2. This means
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that the start time s1 of the first segment of e1 is after or equal to the start time s2 of e2

(s1 ě s2), and the completion time c1 of the last segment of e1 is before or equal to the

completion time c2 of e2 (c1 ď c2). The notation e1 Ă e2 denotes that e1 fully overlaps with

e2.

Based on these, we consider two cases for task τi under analysis: (i) all CPU

segments of a higher-priority task τh fully overlap with the j-th pure GPU segment of τi,

i.e., Ch Ă Ge
i,j , and (ii) all pure GPU segments of τh fully overlap with the j-th CPU

segment of τi, i.e., G
e
h Ă Ci,j . If the system uses Rate Monotonic or Deadline Monotonic for

priority assignment, lower-priority tasks would tend to have longer periods/deadlines and

execution time than those of higher-priority tasks, and finding out the minimum overlapped

interval for these cases can yield nontrivial improvements.

Lemma 19 The minimum fully overlapped CPU execution of τh with the j-th pure GPU

segment of τi, i.e., Ch Ă Ge
i,j, is lower-bounded by:

Ocg
pi,jq,h “ maxppt

BXg
i,j

Th
u ´ 1q ¨ |Ch, 0q (4.6)

where BXcg
i,j is the best-case relative completion time of τi’s j-th pure GPU segment and |Ch

is the best-case execution time of all CPU segments of τh. BXcg
i,j is given by:

BXg
i,j “ }Ge

i,j `
ÿ

τhPhppτiq

pr
BXg

i,j

Th
s ´ 1q ¨ |Ge

h (4.7)

where the initial condition for recurrence is BXg
i,j “ Ge

i,j, and
}Ge
i,j is the best-case execution

time of the j-th pure GPU segment of τi.

Proof. The best-case completion time BXg
i,j of the j-th pure GPU segment of τi

given in Eq. (4.7) is directly adopted from [22], the detailed proof of which can be found in
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that paper. Next, we determine the minimum number of higher-priority jobs of τh that can

fully present in BXg
i,j . Let us use sgi,j and cgi,j to denote the absolute start and completion

of τi’s j-th pure GPU segment. Assuming m arrivals of the higher-priority task τh during

BXg
i,j with the start time of the m-th job sm ď cgi,j and that of the first job s1 ě sgi,j , we

can deduce that cm´1 ´ s1 ď BXg
i,j where cm´1 is the completion time of m ´ 1-th job of

τh, i.e., cm´1 ď sm. This indicates that there are at least m ´ 1 jobs fully executed within

BXg
i,j . We can compute m using

t
BXg

i,j

Th
u,

and obtain the minimum number of fully overlapped jobs of τh, m ´ 1, by

t
BXg

i,j

Th
u ´ 1.

Therefore, Eq. 4.6 gives the minimum amount of fully overlapped CPU execution. The

overall minimum fully overlapped CPU execution of a higher-priority task τh for all pure

GPU segments of task τi can be obtained by:

Ocg
i,h “

ÿ

0ăjďηgi

Ocg
pi,jq,h (4.8)

Eq. (4.8) computes the case for
Ť

Ch Ă Ge
i,j . Similarly, for the overlapped execu-

tion case for
Ť

Ge
h Ă Ci,j , we have:

Ogc
i,h “

ÿ

0ăjďηci

Ogc
pi,jq,h (4.9)

where

Ogc
pi,jq,h “ maxppr

BXc
i,j

Th
s ´ 1q ¨ |Ge

h, 0q (4.10)

Based on the above, we now derive improved analyses.
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Lemma 20 Under the IOCTL-based approach, the worst-case response time for a self-

suspending task τi is bounded by:

Ri “ Ci ` Gi ` Bi

`
ÿ

τhPhpppτiq

pr
Ri ` Jc

h

Th
spCh ` Gm

h q ´ Ocg
i,hq

`
ÿ

ηgi ą0^ηghą0
^τhPhppτiq

pr
Ri ` Jg

h

Th
sGe

h ´ Ogc
i,hq

(4.11)

Proof. As Ocg
i,h given by Eq. (4.8) guarantees the minimum overlapped CPU

execution of τh with τi’s pure GPU execution, this portion can be safely deducted from the

CPU preemption time of τh. Similarly, Ogc
i,h can be deducted from the GPU preemption

time.

Lemma 21 Under the IOCTL-based approach, the worst-case response time of a busy-

waiting task τi is bounded by:

Ri “ Ci ` Gi ` Bi

`
ÿ

τhPhpppτiq

pr
Ri

Th
spCh ` Ghq ´ pOcg

i,h ` Ogc
i,hqq

`
ÿ

ηgi ą0^ηghą0
τhPhppτiq

^τhRhpppτiq

pr
Ri ` Jg

h

Th
sGe

h ´ Ogc
i,hq

(4.12)

Proof. With self-suspension, τh P hpppτiq preempts τi for its entire CPU and GPU

segment execution. Hence, we can safely deduct both Ocg
i,h and Ogc

i,h from the preemption

time. For τh on different cores, Ogc
i,h can be deducted as in Eq. (4.11).
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4.7 Evaluation

We conduct schedulability experiments to compare the proposed approaches against

prior work. Then we break down our approaches and assess the impact of the GPU priority

assignment and the improved analysis. Lastly, we demonstrate a case study on an Nvidia

embedded platform.

4.7.1 Schedulability Experiments

We generated 1,000 random tasksets for each experimental setting based on the

parameters in Table 4.2. The parameter selection is inspired by the prior work [56], with

slight modifications to increase the system load. Based on the measurement in Sec. 4.7.2,

we aggressively set ϵ to 1 ms for our approaches, while assuming zero overhead for previous

work. For each task in a taskset, the number of tasks on each CPU is first chosen, and the

utilization per CPU is generated based on the UUniFast algorithm [17]. Then for each task,

its period and the number of GPU segments are uniformly randomized within the given

range. Then the parameters for each segment are determined. Task priority is assigned by

the Rate Monotonic (RM) policy.

Comparison With Prior Work

We first compare our proposed approaches with two well-known synchronization-

based methods, MPCP [56] and FMLP+ [20]. Both methods offer suspension-aware and

busy-waiting analyses, and we evaluate the proposed approaches against them. For our

approaches, we use the improved analysis given in Sec. 4.6.2 with the GPU priority assign-
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Parameters Value

Number of CPUs 4
Number of tasks per CPU [3, 6]
Ratio of GPU-using tasks [40, 60] %
Utilization per CPU [0.4, 0.6]
Task Period [30, 500] ms
Number of GPU segments per task [1, 3]
Ratio of GPU exec. to CPU exec. (Gi{Ci) [0.2, 0.5]
Ratio of GPU misc. in GPU exec. (Gm

i {Gi) [0.1, 0.3]
Runlist update cost (ϵ) 1 ms

Table 4.2: Parameters for taskset generation
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Figure 4.6: Schedulability w.r.t. the number of tasks

ment in Sec. 4.5.3. Hence, we first run the response time test for a taskset with the default

RM priorities, and if the test fails, try again with separate priorities for GPU segments.

We investigate the impact of varying the number of tasks in the taskset, the number

of CPUs, the utilization per CPU, and the ratio of GPU-using tasks in Figs. 4.6, 4.7, 4.8

and 4.9, respectively. The resutls show that, in general, the ioctl busy and ioctl suspend

approaches outperform previous methods. However, the kthread busy curve occasionally
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Figure 4.7: Schedulability w.r.t. the number of CPUs
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Figure 4.8: Schedulability w.r.t. the utilization per CPU

falls below those of previous methods due to its inherent drawback, e.g., as the utilization

per CPU increases, the performance of ioctl busy becomes worse than fmlp+. This is due

to that kthread busy cannot efficiently utilize computing resources as the system becomes

increasingly loaded on the CPU side.

Fig. 4.10 examines the effect of changing the ratio of Gi{Ci. When Gi{Ci “ 0.1,

ioctl suspend underperforms fmlp+ but it does not continue as the ratio increases. This

suggests that the benefits of ioctl suspend become more visible as the ratio of GPU

execution time (Gi) to CPU execution time (Ci) increases.
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Figure 4.9: Schedulability w.r.t. the ratio of GPU-using tasks
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Figure 4.10: Schedulability w.r.t. the ratio of Gi to Ci

Lastly, we explore the impact of best-effort tasks running with the lowest priority

in the system. After generating the tasks using the aforementioned method, we randomly

designate a specific percentage of tasks as best-effort tasks in this experiment. Fig. 4.11

depicts the percentage of schedulable tasksets as the ratio of best-effort tasks increases. The

rest of tasks are all real-time tasks in each taskset with constraint deadlines. The best-effort

tasks contribute to blocking time in the analysis of mpcp and fmlp+. Since GPU preemption

is enabled in our proposed approaches, they significantly outperform the prior methods.
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Figure 4.11: Schedulability w.r.t. the percentage of best-effort tasks

Effect of GPU Priority Assignment

In this experiment, we assess the impact of GPU priority assignment on taskset

schedulability. We compare the performance under baseline analyses of kthread busy,

ioctl busy, and ioctl suspend with and without separate GPU priorities. The same

taskset generation parameters in Table 4.2 are used here, and Fig. 4.12 depicts the gain

that GPU priority assignment can bring about.

Effect of Improved Analysis

Next, we examine the impact of the improved analysis on the overall schedulability

of the taskset. To enhance the likelihood of overlapped execution and amplify the effect, we

use the following parameters to generate tasksets: (i) the number of CPUs is set to 2, (ii)

two CPU tasks with high utilization and small periods and one GPU task with long GPU

execution are always added to the taskset, and (iii) the number of tasks per CPU is [2,

4]. However, this limits our ability to experiment with adjusting the number of CPUs and

the utilization per CPU, so we skipped these two configurations here. All other parameters
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Figure 4.12: Improvement by GPU priority assignment

remain the same as in the previous experiments. Since the improvement cannot be applied

to the kernel thread approach, we only compare the gain under the IOCTL-based approach,

i.e., ioctl busy and ioctl suspend. The results are shown in Fig. 4.13.
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Figure 4.13: Improvement of schedulability analysis

4.7.2 System Evaluation

We implemented the proposed preemptive GPU scheduling approaches in L4T

R35.1 with Jetpack 5.0.2 on an Nvidia Jetson Xavier NX Development Kit. This board is

equipped with a 6-core 64-bit Carmel ARMv8.2 processor and we set it to operate at its

maximum frequencies under 4-core 15W mode in the experiments.

Case Study. We conducted a case study on a real system to evaluate the performance and

effectiveness of the proposed preemptive GPU scheduling mechanism. Table 4.4 provides

a summary of the taskset employed in this study. The tasks in the table are arranged in

descending order of priority. Tasks 2, 5, and 7 are CPU-only tasks with Gi “ 0, while the

remaining tasks involve GPU computations. Tasks 6, 7, and 8 are categorized as best-effort
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Max (us) Min (us) Avg (us)

Overhead 1036 333 476

Table 4.3: Runtime overhead of runlist update

tasks, as they are not assigned real-time priority. For ioctl suspend, we used CUDA events

with the cudaEventBlockingSync flag to suspend a task during its GPU execution. We

compared our approaches along with unmanaged, which is the case for the default Nvidia

GPU driver.

We executed the taskset for a duration of 1 minute and measured the worst-case

observed response time for each real-time task. The results are depicted in Fig. 4.14.

Under unmanaged GPU scheduling with interleaved execution, the response times become

unpredictable, particularly for tasks 1 and 4. With the proposed approaches, task 5 exhibits

high worst-case response time under both ioctl busy and kthread busy. This is because

task 5 is a CPU task with the lowest real-time priority and the busy-waiting mode does not

allow it to get CPU time while other higher-priority tasks are in GPU execution.

Overhead. While running the case study, we also measured the overhead ϵ of runlist

update, and it is shown in Table 4.3. The measured overhead includes the cost of IOCTL

system call, the cost of scheduling algorithms in kernel space, and the cost of runlist update.

The maximum observed overhead of about 1 ms in our setup exceeds the range reported in

prior work [24]. We suspect this is due to the relatively lower frequency of our GPU and

it could be optimized in future generations of hardware. Nonetheless, we consider the cost

acceptable based on our schedulability experiments with the same amount of overhead.
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Task Workload Ci Gi Ti “ Di CPU Priority

1 histogram 5 14 100 1 99
2 mmul cpu 1 116 0 200 1 98
3 dxtc 17 37 250 0 97
4 mmul gpu 2 14 90 400 1 96
5 mmul cpu 2 66 0 500 0 95
6 mmul gpu 1 2 49 250 0 0
7 mmul cpu 3 66 0 800 1 0
8 simpleTexture3D 0 inf - 2 0

Table 4.4: Taskset used in case study
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Figure 4.14: WCRT comparison between preemptive and unmanaged GPU scheduling

4.8 Conlusion

In this work, we have proposed two approaches: the IOCTL-based approach and

the kernel thread approach to enable preemptive priority-based scheduling of GPU-using

tasks in real-time systems. We first discussed how the Tegra GPU driver works and pre-

sented the design of our approaches. Then we provided a comprehensive response time anal-

ysis for these approaches, with an improvement for the IOCTL-based approach to reduce

pessimism by considering the overlaps between different task segments using different com-

puting resources. Through empirical evaluations and case studies, we have demonstrated

the effectiveness of the proposed approaches in enhancing schedulability, and analyzed the
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breakdown of the improvements made by the reduced pessimism analysis and GPU pri-

ority assignment. Additionally, our case study shows the benefits of our approaches in

predictability and responsiveness over the default GPU driver policy.

Future work can focus on further optimizing and refining the proposed approaches

and exploring additional scheduling strategies such as dynamic priority. Combing our

device-driver level approaches with GPU partitioning mechanisms will also be an inter-

esting direction.

128



Chapter 5

Conclusions

5.1 Summary of the Contributions

In this dissertation, we have addressed the challenges in real-time GPU scheduling

through the development of novel algorithms and system-level solutions.

One of the key contributions is the introduction of the sBEET framework, which

explores GPU spatial multitasking to achieve a balance between energy efficiency and

schedulability. Our analysis shows that the active idle SMs causes energy inefficiency, and

through extensive analysis and optimization, the sBEET framework offers better system

performance in meeting tasks’ deadlines as well as reducing energy consumption.

Additionally, we have proposed the sBEET-mg framework built upon sBEET

specifically designed for multi-GPU systems, to enhance both energy efficiency and schedu-

lability. This framework incorporates offline task distribution and runtime job migration

strategies, effectively distributing computational workloads across multiple GPUs and op-

timizing resource allocation in real-time applications.
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Furthermore, we have enabled preemptive priority-based scheduling for real-time

GPU tasks, introducing two approaches to manage preemption. Through comprehen-

sive analysis with reduced pessimism, our proposed approaches outperform sync-based ap-

proaches, providing improved responsiveness and enhanced schedulability.

Overall, this dissertation contributes to the field of real-time GPU scheduling

by proposing innovative frameworks, algorithms, and analysis techniques, offering insights

into energy efficiency, schedulability, and preemptive scheduling for real-time GPU tasks.

These contributions pave the way for further advancements in real-time systems and GPU

scheduling techniques.

5.2 Future Research Directions

One promising direction for future research is to further explore energy-aware

preemptive scheduling techniques. This involves integrating energy considerations into the

scheduling framework while leveraging the capabilities of GPU preemption. The objective is

to minimize energy usage without compromising real-time constraints. This can be achieved

through the development of advanced energy models and optimization algorithms that

dynamically adapt the scheduling decisions based on both task characteristics and energy

constraints. The research in this area can contribute to more energy-efficient real-time

systems, making them more sustainable and environmentally friendly.

Another area for future exploration is the combination of GPU preemption and

task partitioning techniques. This research direction aims to provide fine-grained control

over resource allocation and scheduling in real-time GPU systems. By effectively leveraging
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the capabilities of GPU preemption alongside task partitioning strategies, it becomes possi-

ble to achieve optimized resource utilization and improved system performance. The focus

can be on developing novel algorithms and mechanisms that dynamically allocate resources

based on task characteristics, workload conditions, and system constraints. This research

has the potential to enhance the scalability and efficiency of real-time GPU systems in

diverse application domains.

Dynamic priority assignment algorithms offer an avenue for improving task schedul-

ing and resource utilization in real-time GPU systems. Future research can focus on develop-

ing adaptive priority assignment techniques that take into consideration not only real-time

constraints but also the dynamic nature of the system. This involves designing algorithms

that can dynamically assign priorities to tasks based on their urgency, computational re-

quirements, and system conditions. The goal is to achieve optimal task scheduling and

resource utilization while ensuring that critical real-time tasks receive the necessary atten-

tion and resources. This research direction has the potential to enhance the responsiveness

and performance of real-time GPU systems, especially in scenarios with varying workload

conditions and resource availability.
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