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Abstract 

Recently, many new approaches, study designs, and statistical and analytical methods 

have emerged for studying gene-environment interactions (GxE) in large-scale human population 

studies. There are currently opportunities in this field, particularly with respect to the 

incorporation of -omics and next-generation sequencing data and continual improvement in 

measures of environmental exposures implicated in complex disease outcomes.  A workshop 

held on October 17-18, 2014 by the National Institute of Environmental Health Sciences and the 

National Cancer Institute in conjunction with the annual American Society of Human Genetics 

meeting explored new approaches and tools developed in recent years for GxE interaction 

discovery. This paper will highlight current and critical issues and themes in GxE research 

discussed that need additional consideration including the topics of improved data analytical 

methods, environmental exposure assessment, and incorporation of functional data and 

annotations.  

Keywords: gene-environment  , genome-wide association study  , environmental exposure   
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Introduction  

Genetic and environmental factors are thought to contribute to the etiology of most 

complex diseases. Through genome-wide association studies (GWAS), thousands of common 

loci associated with complex diseases have been identified (1-3). Researchers have been 

motivated to discover and describe how the interplay of these factors influence disease risk and 

outcomes. Several reasons for studying gene-environment (GxE) interaction include: providing 

insights into the biology of disease (e.g. developing new models for disease etiology based on 

observed GxE findings); building better prognostic models (e.g. using genotype to inform 

treatment and prognosis); identifying possible high-penetrance subgroups (e.g. increased 

genotype-specific risk in pre-menopausal women); or conversely, identifying genetic subgroups 

with higher exposure-specific disease risk for prevention efforts (e.g increase environmental-

specific risk for individuals with a particular genotype) (4-7). Furthermore, in the search for 

novel genes via GWAS, the modifying effects of environmental risk factors are not often taken 

into account; therefore, leveraging GxE may result in discovery of additional disease 

susceptibility loci (5, 8, 9).  Despite interest in GxE, there are few agreed upon successes where 

the effect of exposure differs across genotypes (and vice versa).  Numerous reasons have been 

suggested to contribute to the small number of successes including:  the inherent low power of 

tests for GxE, complexity of measurement of environmental exposures and difficulty of 

incorporating temporality of environmental exposures, measurement error, limited range of 

genetic and/or environmental variation, scale dependence in the definition of statistical 

interaction, and lack of data on the biological consequences of most genetic variants (10-13). 

The past few years have seen an emergence of new approaches, study designs, and 

statistical and analytical methods for exploring gene-environment interactions (GxE) in large-
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scale human population studies. Further, new opportunities in this field, with respect to the 

incorporation of -omics and next-generation sequencing data and improvements in measures of 

environmental exposures implicated in complex disease outcomes, continue to be developed.  

Therefore, on October 17-18, 2014, National Institute of Environmental Health Sciences and 

National Cancer Institute held a workshop at the 64
th

 Annual Meeting of the American Society of 

Human Genetics to explore these new approaches and tools for GxE interaction discovery. Based 

on the discussions, we prepared four papers that provide an update on: 1) the state of the science 

in analytical methods (14); 2) opportunities for incorporation of biological knowledge into GxE 

analyses (15); 3) advances in environmental exposure assessment in human populations (Chirag 

J. Patel, Department of Biomedical Informatics, Harvard Medical School, unpublished 

manuscript); and 4) lessons learned from GxE successes (Beate R. Ritz, Department of 

Epidemiology, Fielding School of Public Health, University of California Los Angeles, 

unpublished manuscript). In addition, this current paper develops some overarching themes and 

sets the stage for this series. As environmental factors may be modifiable, defining 

subpopulations of individuals most susceptible to environmental factors through GxE analysis 

may provide targets to improve public health. This idea is consistent with the goal for President 

Obama’s recently launched Precision Medicine initiatives at the National Institutes of Health 

(NIH) --to better understand how individual variability contributes to differences in response to 

treatment or prevention (16, 17).   

 

Analytical Methods 

Studies of GxE interaction require much larger sample sizes than studies targeting either 

genetic or environmental main effects alone (18). Further, when performing GxE on a genome-
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wide scale, sometimes referred to as genome-wide interaction studies, sample size requirements 

are substantially further inflated to account for the multiple comparisons performed (5, 19). 

Therefore, a goal of GxE methods development has been to improve power to detect 

associations. As detailed in the accompanying manuscript (14), many different methods have 

been explored in the context of a case-control studies as alternatives to traditional GxE tests, 

including case-only (20), empirical Bayes (21), Bayes Model Averaging (22),  joint tests (9, 23, 

24), case parent approaches (25-27), and 2-step approaches (19, 23, 28-33).  Other approaches 

include set-based methods, which combine multiple variants or GxEs and which may be 

particularly appropriate for studies of rare variants (34-38). In addition, several methods have 

been developed to analyze GxE for quantitative outcomes (39-46).   

The large number of available methods, as well as novel software tools to support the 

application of these methods (29, 47, 48), create opportunities to better study GxE interactions in 

genome-wide settings. Researchers may therefore wonder which method to use for their studies.  

Several previous simulation studies suggest that none of these GxE methods is universally the 

most powerful approach (29, 30, 49-52). Therefore, decisions about the most appropriate 

approach depend on several considerations including the hypotheses to be tested, likely genetic 

architecture, study design attributes, and characteristics of the population being studied. 

Investigators should be cautious about applying multiple methods to their data without an a 

priori basis for choosing among the results, as simply picking those with the most "significant" 

findings to report would clearly be a biased strategy that could contribute to spurious 

associations and to what has been referred to as a “vibration of effects” (53, 54).  Some of the 

new methods, however, provide flexible frameworks for combining multiple tests with an 

appropriate permutation procedure to evaluate the significance of the overall results (29, 30).  
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The collection of methods allows investigators to address specific scientific questions and offers 

new opportunities for studies of GxE in large populations. 

 

Functional Validation and Discovery 

Despite the recent success of GWAS at identifying risk loci, by design variants identified 

are not usually the causal variants, defined as the functional genetic variant that influences risk of 

disease and explains the association.  Currently, the underlying biological mechanism 

contributing to disease risk is only known for a small proportion of these loci. Therefore, more 

research to functionally characterize risk loci is now being performed, providing opportunities by 

which GxE analyses may shed new insights into disease development (55). An understanding of 

the biological consequences of particular genetic differences could lead to specific mechanistic 

hypotheses, identifying relevant exposures to test and specifying relevant statistical models. As 

described in the accompanying manuscript (15), these approaches include utilizing functional 

annotations for discovery and validation, studying molecular phenotypes (e.g. epigenetics or 

gene expression) to improve GxE discovery, and leveraging in vitro and in vivo models for these 

studies.  

Several large public databases [such as Encyclopedia of DNA Elements (ENCODE), 

Epigenomics Roadmap, Genotype-Tissue Expression (GTEx), and the Cancer Genome Atlas 

(TCGA)] have facilitated the functional annotation and interpretation of many genomic regions, 

which can be used to prioritize candidate GxE markers (30). Many disease-associated GWAS 

SNPs appear to be located in non-coding or regulatory regions which are often affected by 

environmental exposures (56-58). The ENCODE and Roadmap Epigenomics programs have 

helped to define many of the regulatory regions, and new tools developed by these programs and 
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others now allow functional annotation information, such as the genomic location of histone 

modification states, methylation patterns, transcription factor binding sites and DNAse 

hypersensitivity sites or other higher order chromosomal structural information, to be overlaid 

with GWAS results and could be integrated into GxE analyses (59-63).  Projects like GTEx have 

greatly increased the compendium of putative biological functions of genetic variants.  However, 

neither GTEx nor large-scale epigenomics projects provide information on effects of genetic and 

genomic functions across a range of environmental conditions. To explore genetic effects in 

response to environment, in vitro studies have now perturbed cells and recorded responses to 

various drugs, infections, and other exposures. Through use of intermediate molecular 

phenotypes such as gene expression, these efforts have demonstrated success in illustrating how 

an exposure may impact gene function, suggesting potential candidate genes or variants for GxE 

studies (64-68).  

In addition to data resources, the use of population-based mouse resources (such as the 

Collaborative Cross, Diversity Outbred, and Hybrid Mouse Diversity Panel) and other 

appropriate mouse models have also been leveraged to assist in the discovery or replication of 

GxE interactions. These population-based variant enriched mouse resources have been designed 

to mimic the genetic diversity of human populations and can be used to replicate or inform GxE 

hypotheses by utilizing carefully controlled exposures in the mouse studies.  Several recent 

examples have exemplified the power of these resources to map genetic variants related to 

susceptibility to environmental exposures (69, 70).  Although both in vitro and model systems 

have led to potential mechanistic insights, linking of these to human populations remains 

challenging. ORIG
IN
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There are many approaches for incorporating biological knowledge to improve analytical 

methods (71) for GxE interaction in both the discovery and the validation phase. Incorporating 

functional annotation data and a priori biological information (such as metabolomics or gene 

expression data collected on individuals or knowledge on biological pathways) to inform data 

analytical GxE methods have aided in the discovery of new GxE findings in recent years (72). 

For example, Bayesian Variable Selection  (73, 74), the Algorithm for Learning Pathways  (75) 

and PEAK (72) are all methods that incorporate external biological information and properties of 

the dataset itself  to increase power over agnostic approaches to detect interactions. Another 

approach is to use 2-stage modeling where functional annotations are used to prioritize variants 

(76, 77) for GxE studies. As one example, Biofilter was designed to build biologically plausible 

models of gene-gene and GxE interactions to test for associations based on biological features 

using biological knowledge from the public domain (76, 78). These types of filtering approaches 

are also being explored to prioritize environmental exposures by using databases such as the 

Comparative Toxicogenomics Database, which links exposures to genes (79). However, 

challenges still exist in linking environmental exposures into currently available ontological 

knowledge resources, though some investigators are beginning to navigate these challenges (80).  

Furthermore, all these databases and functional annotations depend on the quality and extent of 

existing biological knowledge (71).    

 

Environmental Exposures 

The complex realities of environmental exposures have long made measurement of 

exposures substantially more complicated than inherited genetic measurements (e.g. genotypes) 

and single nucleotide variants in particular; the technologies and approaches to incorporate 
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exposures into human population studies have therefore lagged behind genomics capabilities (11, 

81). Assessing exposure impact must take into context not just the variety of exposures 

themselves (physical, often complex chemical mixtures, biological, and psychosocial) but also 

the source and place of exposure, the timing during a person’s life trajectory, the route of contact 

(skin, lung, diet), metabolism/excretion, and distribution in target tissues. All of these factors 

may impact the ultimate disease risk associated with environmental exposures. In addition, in the 

classic environmental exposure paradigm, studies may focus on measurements to capture internal 

versus external exposure, early markers of disease, or an ultimate biological response, which 

further adds to the complexity of exploring the impact of environmental exposures.  

  In recent years, however, exciting new opportunities have become available for 

environmental exposure assessment.  The potential importance of examining the totality of 

internal and external exposures, referred to as the ‘exposome’, has been recognized (81, 82). 

Several recent commentaries described considerations for measurements of the exposome (83-

86).  Innovative technologies including activity monitors, improved sensors, global positioning 

systems, and Geographic Information Systems, which enable new and more detailed exposure 

measurements.  Although issues of the timing of exposure measures persist and should be 

considered.  Moreover, development of biological response markers for assessment of exposure, 

such as changes in gene expression, transcriptomic signatures, and DNA methylation profiles, 

has been useful for GxE discovery (87-90).  Another opportunity is the exploration of 

environmental exposures in a more agnostic discovery-based fashion, similar to GWAS.  These 

studies, termed environment wide association studies (EWAS) led to new discoveries of 

environmental factors associated with disease (91-94).   ORIG
IN
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Key challenges and considerations remain associated with assessing environmental 

exposures in GxE studies, as detailed in the accompanying manuscript (Chirag J. Patel, 

Department of Biomedical Informatics, Harvard Medical School, unpublished manuscript) 

including how to: select most appropriate study designs, incorporate high throughput -omic 

measures (e.g. metagenome, metabolome) and sensor technologies into human population-based 

studies, assess long term exposure, integrate a variety of divergent external exposure and internal 

response data, and further advance statistical approaches to handle the dynamic nature of 

exposure data. We are now at the early stages of exploring what novel exposure assessment 

technologies can be appropriately applied to larger population studies most effectively. To this 

end, some two-stage study designs have been investigated (24, 95-98). Given the extreme cost of 

incorporating some sophisticated environmental measures in a large scale human population 

study, the question of what can be accomplished with dense (i.e. repeated measures of a marker 

or measurement of multiple analytes using an -omic platform) environmental measures on a 

subsample and extrapolating to a larger sample size (and whether simulations can demonstrate 

that this approach increases power to detect GxE) is currently being explored (49, 95, 99).  

Several analytical methods have been developed for the unique considerations of 

exposure assessment.  New statistical methods can adjust for exposure misclassification (which 

has been shown to lead to inflated type I errors and substantially reduced power) much better; 

these approaches should allow for obtaining greater power with smaller sample sizes. In 

addition, novel statistical methods have been developed to detect gene by longitudinal exposure 

interactions by taking into account long term time-varying exposures (100).  Importantly, as 

researchers begin to combine exposure data to obtain larger sample sizes required for GxE 

research across studies, they have to address that exposures may have been measured using 
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different approaches or have very different distributions in and between populations such that 

exposure misclassification could produce spurious associations (14). There is also the challenge 

of exposure-related population stratification for studies relating to GxE interactions (101). 

Meanwhile, multiple measures can sometimes increase power for detecting associations.  For 

example, in a recent study, continuous monitoring was shown to reduce the sample size required 

in a clinical trial context (102). 

 

GxE Examples from Human Population Studies 

By examining GxE successes, it may be possible to improve the design of GxE studies 

for the future.  Examples of GxE successes span from Mendelian-like traits (e.g. 

phenylketonuria) to complex diseases (NAT2 variants, smoking and bladder cancer) and response 

to therapies (HLA-B*1502 variant and carbamazepine induced Stevens Johnsons Syndrome) 

(Beate R. Ritz, Department of Epidemiology, Fielding School of Public Health, University of 

California Los Angeles, unpublished manuscript).  In addition, several recent studies examined 

the use of polygenic risk scores, generated from common genetic variation, to assess the impact 

of environmental factors on individuals with low compared with higher genetic risk (103-106). 

In the accompanying manuscript highlighting some of the most successful GxE interactions 

identified to date (Beate R. Ritz, Department of Epidemiology, Fielding School of Public Health, 

University of California Los Angeles, unpublished manuscript), several common themes have 

emerged including: the strength of focusing on metabolic pathways for a specific exposure, the 

utility of studying unique, highly or diversely exposed populations, the necessity of using high-

quality exposure assessment methods, the need for large sample sizes, and the utility of model 
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systems to demonstrate genetic function when replication is challenging in population-based 

studies. These suggest important avenues for undertaking successful future research in GxE. 

 

Themes and Future Directions 

Inclusion of diverse populations may facilitate GxE research by improving power for 

discovery of casual genetic variants and environmental factors associated with disease.  Trans-

ethnic differences in the distribution of linkage disequilibrium can be leveraged to improve fine 

mapping to identify potential causal alleles (107-110). Combining admixture mapping with 

conventional GWAS may also facilitate discovery of novel loci (111). Using this later approach, 

novel loci were identified associated with total IgE levels (112) and asthma (113). Lastly, using 

geographically diverse populations might expand the distribution of the environmental exposure 

and thus increase power to detect interactions (13).  Performing genetic studies on populations of 

diverse ancestry may improve our understanding of disease mechanisms and such studies are 

required to ensure all populations benefit equally from this research (114).  

 Replication is an essential component to genetic association studies, and the requirement 

for independent replication contributed to the success of GWAS (115, 116). However, 

replication and meta-analysis becomes challenging as GxE studies become sophisticated in 

analytical methods, exposure assessment, and incorporation of functional information. 

Differences in the underlying distribution of environmental exposures, genetic linkage 

disequilibrium (LD) structure, and genetic modifiers can reduce the power to detect the same 

level of interaction in independent studies. Moreover, an appropriate human replication study 

may not (yet) exist: in studies of a rare disease, genetic variant, or environmental exposure; 
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where exposures are unique to particular populations; or where the initial finding was obtained 

within a large consortium comprising all known studies of a specific outcome (12). As illustrated 

in the manuscripts describing GxE successes and incorporation of biological knowledge, in some 

situations functional studies could serve to provide support for initial GxE observations in 

absence of a suitable replication population.  Moreover, as the field considers gene and pathway 

based approaches to study GxE, replication may become further complicated as different 

combinations of genes in different datasets may be observed in the interaction.  Some have 

argued that replication requirements might be met if the underlying biological pathway is the 

same even if  replication was not observed with the individual SNP or gene (15). More 

consideration of standards for replication, definitions of replication and alternative approaches 

for replication and verification of GxE results is needed. 

Many exciting opportunities exist for studies of GxE. There is the emerging recognition 

that developmental exposures may lead to disease throughout life and efforts have focused on 

beginning to address how much of environmental exposure risk for many disease outcomes may 

be attributable to in utero exposures or other particularly vulnerable windows of susceptibility 

(childhood, adolescence, etc.). Successful integration of large volumes of diverse data types 

(including Geographic Information Systems, sensor, metabolomics and other omics data) will 

create the opportunity for generating unique insights. Epigenetics tools open up new 

opportunities to directly link environmental exposure to the genome and generate new exposure 

biomarkers (e.g. methylation of cancer specific genes associated with dietary folate and alcohol 

in colorectal cancer (117) or smoking exposure in lung cancer (118)) [for review (119, 120)]. 

Moreover, epigenomics, as well as other -omic technologies, may elucidate mechanisms by 

which exposures contribute to disease.  The role of the microbiome as a key environmental risk 
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factor for many complex disease phenotypes is starting to be appreciated and extensively studied. 

In addition, molecular phenotype data creates opportunities to examine disease subtypes or more 

precisely classify disease. This may eventually reduce heterogeneity in studies and improve 

power to study GxE associations, assuming molecular characterizations are performed with the 

correct cell type, tissue, or appropriate surrogate tissue for the hypothesis being tested.  

Additional areas of research may allow further advances in GxE discovery and 

replication. The field needs to determine how to best leverage experimental studies in animals or 

human cell lines to aid in discovering and functionally validating GxE interactions. Moreover, it 

is unclear how to best leverage existing family and twin based studies for examining GxE. In 

incorporating functional information into GxE studies, questions remain about the appropriate 

balance between using prior or external information versus the characteristics of the dataset 

being studied in building analytical models and appropriate methods for linking environmental 

exposures information into available biological knowledge databases that are usually focused on 

genes and pathways. In addition, since many GxE findings to date have modest effect sizes or 

have not been extensively replicated (11, 121), exploring the general question of when the effort 

of attempting to identify these complex types of interactions is worth it.  Though even with 

modest effect sizes, if a GxE finding is sufficiently replicated in human populations and 

supported by other experimental data, this information could provide insights into possible 

disease mechanisms.  Finally, given the reduced power to detect GxE combinations with present 

methods, approaches that examine higher order interactions should be taken on cautiously. 

Despite many recent advances in analytical methods for GxE discovery and some 

validation in recent years, additional statistical methods are needed for studies of copy number 

and rare genetic variation, survival traits, analysis of trios, and meta-analysis and pooling in large 
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consortia. In addition, many of the assumptions about expected GxE findings are based on results 

from genetic simulation studies, but these expectations have not always directly correlated to 

GxE observations in real population studies. Therefore, the question remains whether simulation 

studies have been designed with realistic assumptions about the underlying genetic architecture 

of the traits and whether better simulation approaches are needed (122). 

Extended collaboration and data sharing will also advance GxE research.  Large 

epidemiological consortia, such as the Cohorts for Heart and Aging Research in Genomic 

Epidemiology (CHARGE) consortium, that have longitudinal measures of environmental 

exposures have been heavily leveraged in recent years as a way to examine repeated 

environmental exposures over time and attempt to incorporate cumulative and time-varying 

exposures into assessments of complex disease risk (123).  There is also a need for further 

collaboration to allow validation of biomarkers in larger cohorts. Meta-analysis and pooling 

methodology and efforts will likely need to be advanced to have the power to detect GxE in rarer 

diseases. Standards are needed to describe the adequate criteria for identifying, reproducing, and 

reporting a GxE finding; a place to publish negative findings would allow researchers to avoid 

repeating failed experiments (11). There is also a need for greater integration and education with 

other fields to better design studies of GxE. Specifically, toxicology expertise will be needed to 

allow validation in experimental models of GxE discoveries.  Lastly, compared to genomic data 

sharing, the sharing of environmental and epidemiological data has lagged behind. Some have 

suggested that an environmental data sharing policy mirroring the National Institutes of Health 

genomic data sharing policy could advance data sharing in the environmental health science 

fields. However, there are unique sensitivities and ethical issues related to the sharing of 

environmental data that must be considered., including participant confidentiality and privacy 
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issues (i.e. environmental exposure data with global positioning systems information can allow 

specific identification of the sources of exposure) and legal/ regulatory matters (i.e. regulatory 

reporting, remediation, and reform).   

 Researchers are exploring how to apply GxE findings to risk prediction studies as a 

possibility for targeted screening or intervention.  Questions remain about the optimal 

approaches for risk prediction models, including how to integrate biomarkers and external 

exposures and how best to model the joint effects of genetic markers, biomarkers, and lifestyle 

and environmental exposures (124). Although most statistical methods for detecting GxE focus 

on identifying departures from a multiplicative relative risk model, the absence of multiplicative 

interactions will typically imply the presence of additive interaction (i.e., when there are 

marginal genetic and environmental effects). Additive interactions may have public health 

implications, as they suggest the difference in absolute risks between exposed and unexposed 

groups differs across genetically defined subgroups (103-106, 124). If an exposure causes 

disease, then an intervention to remove the exposure will prevent more cases in a genetically 

sensitive population than an in an equivalently sized genetically insensitive population. 

Important challenges that remain include: determining whether the exposure in fact causes 

disease, developing effective interventions to change exposures, and evaluating whether targeted 

or population-level interventions optimize the risk: benefit trade-off. As with main effects, where 

it is well understood that observational findings of associations across individuals do not 

necessarily imply that an intervention to change exposure will change any individual’s outcomes, 

so an additive interaction does not necessarily imply that a genetically-targeted intervention 

would be a more effective prevention strategy.  Modern methods of causal inference (125, 126) 

may be useful for estimating the causal difference in disease rates between genetically-targeted 
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and population-wide exposure interventions.  Finally, the lessons and approaches for research 

into how the combination of genes and environment contribute to disease relates broadly to the 

studies of precision medicine and precision prevention.  These types of studies may lead to 

insights for targeting prevention, intervention, or treatment in the future.   

Acknowledgements 

Author Affiliations: 

Genes, Environment, and Health Branch, National Institute of Environmental Health Sciences 

(NIEHS), National Institutes of Health (NIH), Research Triangle Park, North Carolina (Kimberly 

McAllister); Epidemiology and Genomics Research Program, Division of Cancer Control and 

Population Sciences, National Cancer Institute (NCI), NIH, Bethesda, Maryland (Leah E. 

Mechanic); Department of Biomedical Data Science, Dartmouth College, Lebanon, New 

Hampshire (Christopher Amos); Department of Epidemiology, Harvard T.H. Chan  School of 

Public Health, Boston, Massachusetts; Centre de Bioinformatique, Biostatistique et Biologie 

Intégrative (C3BI), Institut Pasteur, Paris, France (Hugues Aschard); Center of Excellence in 

Environmental Toxicology and Penn SRP Center, Perelman School of Medicine, University of 

Pennsylvania Philadelphia, Pennsylvania; Department of Systems Pharmacology and 

Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania 

Philadelphia, Pennsylvania (Ian A. Blair); Department of Biostatistics, Bloomberg School of 

Public Health, Department of Oncology, School of Medicine, Johns Hopkins University, 

Baltimore, Maryland (Nilanjan Chatterjee); Department of Preventive Medicine, University of 

Southern California, Los Angeles, California (David Conti); Department of Preventive Medicine, 

University of Southern California, Los Angeles, California (W. James Gauderman); Biostatistics 

and Biomathematics Program, Division of Public Health Sciences, Fred Hutchinson Cancer 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T 



18 

 

Research Center, Seattle, Washington (Li Hsu); Division of Genome Sciences, National Human 

Genome Research Institute, NIH, Bethesda, Maryland (Carolyn M. Hutter); California Institute 

for Telecommunications and Information Technology, Qualcomm Institute, University of 

California San Diego, La Jolla California (Marta M. Jankowska); Department of Family 

Medicine and Public Health, University of California San Diego, La Jolla, California (Jacqueline 

Kerr); Department of Epidemiology, Harvard T.H. School of Public Health, Boston, 

Massachusetts (Peter Kraft); Departments of Genetics and Pathology, Stanford University 

School of Medicine, Stanford, California (Stephen B. Montgomery); Department of Biostatistics, 

University of Michigan School of Public Health, Ann Arbor, Michigan (Bhramar Mukherjee); 

Division of Cardiovascular Sciences, Prevention and Population Sciences Program, National 

Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland (George J. 

Papanicolaou); Department of Biomedical Informatics, Harvard Medical School, Boston, 

Massachusetts (Chirag J. Patel); Department of Biochemistry and Molecular Biology, Center for 

Systems Genomics, The Pennsylvania State University, University Park, Pennsylvania; 

Biomedical and Translational Informatics, Geisinger Health System, Danville, Pennsylvania 

(Marylyn D. Ritchie); Department of Epidemiology, Fielding School of Public Health, 

University of California Los Angeles, Los Angeles, California (Beate R. Ritz); Department of 

Preventive Medicine, University of Southern California, Los Angeles, California (Duncan C. 

Thomas); Department of Biostatistics, The University of Texas MD Anderson Cancer Center, 

Houston, Texas (Peng Wei); Department of Epidemiology and Biostatistics, University of 

California, San Francisco, California (John S. Witte) 

 ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T 



19 

 

We acknowledge NIEHS for providing funds to support this meeting.  Research reported in this 

publication was supported by the National Cancer Institute, National Heart Lung and Blood 

Institute, National Human Genome Research Institute, and National Institute of Environmental 

Health Sciences of the National Institutes of Health, and the National Science Foundation under 

award numbers R21HG007687 to H.A.; R01CA140561, R01CA201407, and P01CA196569 to 

D.C.; R01CA189532, R01CA195789, and P01CA53996 to L.H.; R21CA169535 and 

R01CA179977 to J.K.; R21ES020811 and NSF DMS 1406712 to B.M.; R00ES023504 and 

R21ES025052 to C.J.P.; R01CA169122, R01HL116720 and R21HL126032 to P.W; and 

R01CA201358 to J.S.W.  S.B.M. is supported by the National Institutes of Health through 

R01HG008150, R01MH101814, U01HG007436, and U01HG00908001. This work is funded, in 

part, under a grant with the Pennsylvania Department of Health (SAP 4100070267) to M.D.R. 

The authors thank the participants in the workshop “Current Challenges and New Opportunities 

for Gene-Environment Interaction Studies of Complex Diseases”.  The Pennsylvania Department 

of Health specifically disclaims responsibility for any analyses, interpretations or conclusions. 

The content is solely the responsibility of the authors and does not necessarily represent the 

official views of the National Institutes of Health. 

 

The authors have no conflicts of interest to report.

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T 



20 

 

References 

1. Hindorff LA, Gillanders EM, Manolio TA. Genetic architecture of cancer and other complex 
diseases: lessons learned and future directions. Carcinogenesis 2011;32(7):945-954. 

2. Hindorff LA, Sethupathy P, Junkins HA, et al. Potential etiologic and functional implications of 
genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A 
2009;106(23):9362-9367. 

3. Stadler ZK, Thom P, Robson ME, et al. Genome-wide association studies of cancer. J Clin Oncol 
2010;28(27):4255-4267. 

4. Hunter DJ. Gene-environment interactions in human diseases. Nature reviews Genetics 
2005;6(4):287-298. 

5. Thomas D. Gene-environment-wide association studies: emerging approaches. Nature reviews 
Genetics 2010;11(4):259-272. 

6. Thompson WD. Effect modification and the limits of biological inference from epidemiologic 
data. J Clin Epidemiol 1991;44(3):221-232. 

7. Le Marchand L, Wilkens LR. Design considerations for genomic association studies: importance 
of gene-environment interactions. Cancer Epidemiol Biomarkers Prev 2008;17(2):263-267. 

8. Boffetta P, Winn DM, Ioannidis JP, et al. Recommendations and proposed guidelines for 
assessing the cumulative evidence on joint effects of genes and environments on cancer 
occurrence in humans. Int J Epidemiol 2012;41(3):686-704. 

9. Kraft P, Yen YC, Stram DO, et al. Exploiting gene-environment interaction to detect genetic 
associations. Hum Hered 2007;63(2):111-119. 

10. Bookman EB, McAllister K, Gillanders E, et al. Gene-environment interplay in common complex 
diseases: forging an integrative model-recommendations from an NIH workshop. Genet 
Epidemiol 2011;35(4):217-225. 

11. Hutter CM, Mechanic LE, Chatterjee N, et al. Gene-environment interactions in cancer 
epidemiology: a National Cancer Institute Think Tank report. Genet Epidemiol 2013;37(7):643-
657. 

12. Mechanic LE, Chen HS, Amos CI, et al. Next generation analytic tools for large scale genetic 
epidemiology studies of complex diseases. Genet Epidemiol 2012;36(1):22-35. 

13. Kraft P, Aschard H. Finding the missing gene-environment interactions. Eur J Epidemiol 
2015;30(5):353-355. 

14. Gauderman WJ, Mukheerjee B, Aschard H, et al. Update on the State of the Science for 
Analytical Methods. Am J Epidemiol 2017;in press. 

15. Ritchie MD, Davis JR, Aschard H, et al. Incorporation of Biological Knowledge into the Study of 
GxE. Am J Epidemiol 2017;in press. 

16. Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med 2015;372(9):793-795. 
17. Khoury MJ, Gwinn ML, Glasgow RE, et al. A population approach to precision medicine. Am J 

Prev Med 2012;42(6):639-645. 
18. Aschard H. A perspective on interaction effects in genetic association studies. Genet Epidemiol 

2016;40(8):678-688. 
19. Murcray CE, Lewinger JP, Conti DV, et al. Sample size requirements to detect gene-environment 

interactions in genome-wide association studies. Genet Epidemiol 2011;35(3):201-210. 
20. Piegorsch WW, Weinberg CR, Taylor JA. Non-hierarchical logistic models and case-only designs 

for assessing susceptibility in population-based case-control studies. Stat Med 1994;13(2):153-
162. 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T 



21 

 

21. Mukherjee B, Chatterjee N. Exploiting gene-environment independence for analysis of case-
control studies: an empirical Bayes-type shrinkage estimator to trade-off between bias and 
efficiency. Biometrics 2008;64(3):685-694. 

22. Li D, Conti DV. Detecting gene-environment interactions using a combined case-only and case-
control approach. Am J Epidemiol 2009;169(4):497-504. 

23. Dai JY, Logsdon BA, Huang Y, et al. Simultaneously testing for marginal genetic association and 
gene-environment interaction. Am J Epidemiol 2012;176(2):164-173. 

24. Han SS, Rosenberg PS, Ghosh A, et al. An exposure-weighted score test for genetic associations 
integrating environmental risk factors. Biometrics 2015;71(3):596-605. 

25. Kistner EO, Shi M, Weinberg CR. Using cases and parents to study multiplicative gene-by-
environment interaction. Am J Epidemiol 2009;170(3):393-400. 

26. Umbach DM, Weinberg CR. Designing and analysing case-control studies to exploit 
independence of genotype and exposure. Stat Med 1997;16(15):1731-1743. 

27. Weinberg CR, Umbach DM. A hybrid design for studying genetic influences on risk of diseases 
with onset early in life. Am J Hum Genet 2005;77(4):627-636. 

28. Dai JY, Kooperberg C, Leblanc M, et al. Two-stage testing procedures with independent filtering 
for genome-wide gene-environment interaction. Biometrika 2012;99(4):929-944. 

29. Gauderman WJ, Zhang P, Morrison JL, et al. Finding novel genes by testing G x E interactions in a 
genome-wide association study. Genet Epidemiol 2013;37(6):603-613. 

30. Hsu L, Shuo J, Dai Y, et al. Powerful cocktail methods for detecting genome-wide gene-
environment interaction. Genet Epidemiol 2012;36(3):183-194. 

31. Kooperberg C, Leblanc M. Increasing the power of identifying gene x gene interactions in 
genome-wide association studies. Genet Epidemiol 2008;32(3):255-263. 

32. Murcray CE, Lewinger JP, Gauderman WJ. Gene-environment interaction in genome-wide 
association studies. Am J Epidemiol 2009;169(2):219-226. 

33. Gauderman WJ, Thomas DC, Murcray CE, et al. Efficient genome-wide association testing of 
gene-environment interaction in case-parent trios. Am J Epidemiol 2010;172(1):116-122. 

34. Chen H, Meigs JB, Dupuis J. Incorporating gene-environment interaction in testing for 
association with rare genetic variants. Hum Hered 2014;78(2):81-90. 

35. Jiao S, Hsu L, Bezieau S, et al. SBERIA: set-based gene-environment interaction test for rare and 
common variants in complex diseases. Genet Epidemiol 2013;37(5):452-464. 

36. Lin X, Lee S, Christiani DC, et al. Test for interactions between a genetic marker set and 
environment in generalized linear models. Biostatistics 2013;14(4):667-681. 

37. Lin X, Lee S, Wu MC, et al. Test for rare variants by environment interactions in sequencing 
association studies. Biometrics 2016;72(1):156-164. 

38. Tzeng JY, Zhang D, Pongpanich M, et al. Studying gene and gene-environment effects of 
uncommon and common variants on continuous traits: a marker-set approach using gene-trait 
similarity regression. Am J Hum Genet 2011;89(2):277-288. 

39. Aschard H, Zaitlen N, Tamimi RM, et al. A nonparametric test to detect quantitative trait loci 
where the phenotypic distribution differs by genotypes. Genet Epidemiol 2013;37(4):323-333. 

40. Brown AA, Buil A, Vinuela A, et al. Genetic interactions affecting human gene expression 
identified by variance association mapping. Elife 2014;3:e01381. 

41. Levene H. Robust tests for equality of variances. In: Olkin I, ed. Contributions to Probability and 
Statistics:  Essays in Honor of Harold Hotelling. Stanford: Stanford University Press, 1960:278-
292. 

42. O'Brien PC. Procedures for comparing samples with multiple endpoints. Biometrics 
1984;40(4):1079-1087. 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T 



22 

 

43. Pare G, Cook NR, Ridker PM, et al. On the use of variance per genotype as a tool to identify 
quantitative trait interaction effects: a report from the Women's Genome Health Study. PLoS 
genetics 2010;6(6):e1000981. 

44. Wang G, Yang E, Brinkmeyer-Langford CL, et al. Additive, epistatic, and environmental effects 
through the lens of expression variability QTL in a twin cohort. Genetics 2014;196(2):413-425. 

45. Yang J, Loos RJ, Powell JE, et al. FTO genotype is associated with phenotypic variability of body 
mass index. Nature 2012;490(7419):267-272. 

46. Zhang P, Lewinger JP, Conti D, et al. Detecting gene-environment interactions for a quantitative 
trait in a genome-wide association study. Genet Epidemiol 2016;40(5):394-403. 

47. Bhattacharjee S, Chatterjee N, Han S, et al. An R package for analysis of case-control studies in 
genetic epidemiology. R package version 3.10.0. Bethesda, MD; 2012. 
(http://bioconductor.org/packages/release/bioc/html/CGEN.html). 

48. Su Y-R, Di C, Hsu L, et al. A Unified Powerful Set-based Test for Sequencing Data Analysis of GxE 
Interactions. Biostatistics 2016;in press. 

49. Boonstra PS, Mukherjee B, Gruber SB, et al. Tests for gene-environment interactions and joint 
effects with exposure misclassification. Am J Epidemiol 2016;183(3):237-247. 

50. Cornelis MC, Tchetgen Tchetgen EJ, Liang L, et al. Gene-environment interactions in genome-
wide association studies: a comparative study of tests applied to empirical studies of type 2 
diabetes. Am J Epidemiol 2012;175(3):191-202. 

51. Mukherjee B, Ahn J, Gruber SB, et al. Testing gene-environment interaction in large-scale case-
control association studies: possible choices and comparisons. Am J Epidemiol 2012;175(3):177-
190. 

52. Thomas DC, Lewinger JP, Murcray CE, et al. Invited commentary: GE-whiz! Ratcheting gene-
environment studies up to the whole genome and the whole exposome. Am J Epidemiol 
2012;175(3):203-207. 

53. Ioannidis JP. Why most discovered true associations are inflated. Epidemiology 2008;19(5):640-
648. 

54. Patel CJ, Burford B, Ioannidis JP. Assessment of vibration of effects due to model specification 
can demonstrate the instability of observational associations. J Clin Epidemiol 2015;68(9):1046-
1058. 

55. Freedman ML, Monteiro AN, Gayther SA, et al. Principles for the post-GWAS functional 
characterization of cancer risk loci. Nat Genet 2011;43(6):513-518. 

56. Maurano MT, Humbert R, Rynes E, et al. Systematic localization of common disease-associated 
variation in regulatory DNA. Science 2012;337(6099):1190-1195. 

57. John S, Sabo PJ, Thurman RE, et al. Chromatin accessibility pre-determines glucocorticoid 
receptor binding patterns. Nat Genet 2011;43(3):264-268. 

58. Nicolae DL, Gamazon E, Zhang W, et al. Trait-associated SNPs are more likely to be eQTLs: 
annotation to enhance discovery from GWAS. PLoS genetics 2010;6(4):e1000888. 

59. Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes 
using RegulomeDB. Genome Res 2012;22(9):1790-1797. 

60. Ernst J, Kheradpour P, Mikkelsen TS, et al. Mapping and analysis of chromatin state dynamics in 
nine human cell types. Nature 2011;473(7345):43-49. 

61. Guo Y, Conti DV, Wang K. Enlight: web-based integration of GWAS results with biological 
annotations. Bioinformatics 2015;31(2):275-276. 

62. Ward LD, Kellis M. HaploReg: a resource for exploring chromatin states, conservation, and 
regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res 
2012;40(Database issue):D930-934. 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T 

http://bioconductor.org/packages/release/bioc/html/CGEN.html)


23 

 

63. Yao L, Tak YG, Berman BP, et al. Functional annotation of colon cancer risk SNPs. Nat Commun 
2014;5:5114. 

64. Barreiro LB, Tailleux L, Pai AA, et al. Deciphering the genetic architecture of variation in the 
immune response to Mycobacterium tuberculosis infection. Proc Natl Acad Sci U S A 
2012;109(4):1204-1209. 

65. Fairfax BP, Humburg P, Makino S, et al. Innate immune activity conditions the effect of 
regulatory variants upon monocyte gene expression. Science 2014;343(6175):1246949. 

66. Grundberg E, Adoue V, Kwan T, et al. Global analysis of the impact of environmental 
perturbation on cis-regulation of gene expression. PLoS genetics 2011;7(1):e1001279. 

67. Qiu W, Rogers AJ, Damask A, et al. Pharmacogenomics: novel loci identification via integrating 
gene differential analysis and eQTL analysis. Hum Mol Genet 2014;23(18):5017-5024. 

68. Wei P, Yang Y, Guo X, et al. Identification of an Association of TNFAIP3 Polymorphisms With 
Matrix Metalloproteinase Expression in Fibroblasts in an Integrative Study of Systemic Sclerosis-
Associated Genetic and Environmental Factors. Arthritis & rheumatology (Hoboken, NJ) 
2016;68(3):749-760. 

69. French JE, Gatti DM, Morgan DL, et al. Diversity Outbred Mice Identify Population-Based 
Exposure Thresholds and Genetic Factors that Influence Benzene-Induced Genotoxicity. Environ 
Health Perspect 2015;123(3):237-245. 

70. Rasmussen AL, Okumura A, Ferris MT, et al. Host genetic diversity enables Ebola hemorrhagic 
fever pathogenesis and resistance. Science 2014;346(6212):987-991. 

71. Ritchie MD, Holzinger ER, Li R, et al. Methods of integrating data to uncover genotype-
phenotype interactions. Nature reviews Genetics 2015;16(2):85-97. 

72. Baurley JW, Conti DV. A scalable, knowledge-based analysis framework for genetic association 
studies. BMC Bioinformatics 2013;14:312. 

73. Quintana MA, Conti DV. Integrative variable selection via Bayesian model uncertainty. Stat Med 
2013;32(28):4938-4953. 

74. Quintana MA, Schumacher FR, Casey G, et al. Incorporating prior biologic information for high-
dimensional rare variant association studies. Hum Hered 2012;74(3-4):184-195. 

75. Baurley JW, Conti DV, Gauderman WJ, et al. Discovery of complex pathways from observational 
data. Stat Med 2010;29(19):1998-2011. 

76. Pendergrass SA, Frase A, Wallace J, et al. Genomic analyses with biofilter 2.0: knowledge driven 
filtering, annotation, and model development. BioData Min 2013;6(1):25. 

77. Sun X, Lu Q, Mukherjee S, et al. Analysis pipeline for the epistasis search - statistical versus 
biological filtering. Front Genet 2014;5:106. 

78. Biofilter. 2016. (https://ritchielab.psu.edu/research/research-areas/expert-knowledge-
bioinformatics/methods/biofilter). (Accessed 9/1/2016 2016). 

79. Davis AP, Grondin CJ, Lennon-Hopkins K, et al. The Comparative Toxicogenomics Database's 
10th year anniversary: update 2015. Nucleic Acids Res 2015;43(Database issue):D914-920. 

80. Audouze K, Brunak S, Grandjean P. A computational approach to chemical etiologies of diabetes. 
Sci Rep 2013;3:2712. 

81. Wild CP. Complementing the genome with an "exposome": the outstanding challenge of 
environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomarkers 
Prev 2005;14(8):1847-1850. 

82. Wild CP. The exposome: from concept to utility. Int J Epidemiol 2012;41(1):24-32. 
83. Cui Y, DM B, Kwok R, et al. The exposome - embracing the complexity for discovery in 

environmental health. Environ Health Perspect 2016;127(8):A137-A140. 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T 

https://ritchielab.psu.edu/research/research-areas/expert-knowledge-bioinformatics/methods/biofilter)
https://ritchielab.psu.edu/research/research-areas/expert-knowledge-bioinformatics/methods/biofilter)


24 

 

84. Dennis KK, Auerbach SS, Balshaw DM, et al. The importance of the biological impact of exposure 
to the concept of the exposome. Environ Health Perspect 2016;124(10):1504-1510. 

85. Dennis KK, Marder ME, Balshaw DM, et al. Biomonitoring in the era of the exposome [available 
online ahead of print July 6, 2016]. Environ Health Perspect 2016;DOI: 10.1289/EHP474. 

86. Turner MC, Nieuwenhuijsen M, Anderson K, et al. Assessing the exposome with external 
measures: commentary on the state of the science and research recommendations. Annu Rev 
Public Health 2017;38, in press, DOI: 10.1146/annurev-publhealth-082516-012802. 

87. Gibson G. The environmental contribution to gene expression profiles. Nature reviews Genetics 
2008;9(8):575-581. 

88. van Breda SG, Wilms LC, Gaj S, et al. The exposome concept in a human nutrigenomics study: 
evaluating the impact of exposure to a complex mixture of phytochemicals using transcriptomics 
signatures. Mutagenesis 2015;30(6):723-731. 

89. Shaw JG, Vaughan A, Dent AG, et al. Biomarkers of progression of chronic obstructive pulmonary 
disease (COPD). J Thorac Dis 2014;6(11):1532-1547. 

90. Alexander N, Wankerl M, Hennig J, et al. DNA methylation profiles within the serotonin 
transporter gene moderate the association of 5-HTTLPR and cortisol stress reactivity. 
Translational psychiatry 2014;4:e443. 

91. Patel CJ, Chen R, Kodama K, et al. Systematic identification of interaction effects between 
genome- and environment-wide associations in type 2 diabetes mellitus. Hum Genet 
2013;132(5):495-508. 

92. Patel CJ, Bhattacharya J, Butte AJ. An Environment-Wide Association Study (EWAS) on type 2 
diabetes mellitus. PLoS One 2010;5(5):e10746. 

93. Hall MA, Dudek SM, Goodloe R, et al. Environment-wide association study (EWAS) for type 2 
diabetes in the Marshfield Personalized Medicine Research Project Biobank. Pac Symp 
Biocomput 2014:200-211. 

94. McGinnis DP, Brownstein JS, Patel CJ. Environment-Wide Association Study of Blood Pressure in 
the National Health and Nutrition Examination Survey (1999–2012). Sci Rep 2016;6:30373. 

95. Ahn J, Mukherjee B, Gruber SB, et al. Bayesian semiparametric analysis for two-phase studies of 
gene-environment interaction. Ann Appl Stat 2013;7(1):543-569. 

96. Breslow NE, Chatterjee N. Design and analysis of two-phase studies with binary outcome applied 
to Wilms tumour prognosis. Journal of the Royal Statistical Society: Series C (Applied Statistics) 
1999;48(4):457-468. 

97. Chatterjee N, Chen Y-H. Maximum likelihood inference on a mixed conditionally and marginally 
specified regression model for genetic epidemiologic studies with two-phase sampling. Journal 
of the Royal Statistical Society: Series B (Statistical Methodology) 2007;69(2):123-142. 

98. Wacholder S, Weinberg CR. Flexible maximum likelihood methods for assessing joint effects in 
case-control studies with complex sampling. Biometrics 1994;50(2):350-357. 

99. Stenzel SL, Ahn J, Boonstra PS, et al. The impact of exposure-biased sampling designs on 
detection of gene-environment interactions in case-control studies with potential exposure 
misclassification. Eur J Epidemiol 2015;30(5):413-423. 

100. Wei P, Tang H, Li D. Functional Logistic Regression Approach to Detecting Gene by Longitudinal 
Environmental Exposure Interaction in a Case-Control Study. Genet Epidemiol 2014;38(7):638-
651. 

101. Shi M, Umbach DM, Weinberg CR. Family-based gene-by-environment interaction studies: 
revelations and remedies. Epidemiology 2011;22(3):400-407. 

102. Dodge HH, Zhu J, Mattek NC, et al. Use of High-Frequency In-Home Monitoring Data May 
Reduce Sample Sizes Needed in Clinical Trials. PLoS One 2015;10(9):e0138095. 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T 



25 

 

103. Garcia-Closas M, Gunsoy NB, Chatterjee N. Combined associations of genetic and environmental 
risk factors: implications for prevention of breast cancer. J Natl Cancer Inst 2014;106(11):dju305. 

104. Garcia-Closas M, Rothman N, Figueroa JD, et al. Common genetic polymorphisms modify the 
effect of smoking on absolute risk of bladder cancer. Cancer Res 2013;73(7):2211-2220. 

105. Joshi AD, Lindstrom S, Husing A, et al. Additive interactions between susceptibility single-
nucleotide polymorphisms identified in genome-wide association studies and breast cancer risk 
factors in the Breast and Prostate Cancer Cohort Consortium. Am J Epidemiol 
2014;180(10):1018-1027. 

106. Maas P, Barrdahl M, Joshi AD, et al. Breast cancer risk from modifiable and nonmodifiable risk 
factors among white women in the United States. JAMA Oncol 2016. 

107. Franceschini N, van Rooij FJ, Prins BP, et al. Discovery and fine mapping of serum protein loci 
through transethnic meta-analysis. Am J Hum Genet 2012;91(4):744-753. 

108. Auton A, Brooks LD, Durbin RM, et al. A global reference for human genetic variation. Nature 
2015;526(7571):68-74. 

109. Liu CT, Buchkovich ML, Winkler TW, et al. Multi-ethnic fine-mapping of 14 central adiposity loci. 
Hum Mol Genet 2014;23(17):4738-4744. 

110. Wu Y, Waite LL, Jackson AU, et al. Trans-ethnic fine-mapping of lipid loci identifies population-
specific signals and allelic heterogeneity that increases the trait variance explained. PLoS 
genetics 2013;9(3):e1003379. 

111. Seldin MF, Pasaniuc B, Price AL. New approaches to disease mapping in admixed populations. 
Nature reviews Genetics 2011;12(8):523-528. 

112. Pino-Yanes M, Gignoux CR, Galanter JM, et al. Genome-wide association study and admixture 
mapping reveal new loci associated with total IgE levels in Latinos. J Allergy Clin Immunol 
2015;135(6):1502-1510. 

113. Galanter JM, Gignoux CR, Torgerson DG, et al. Genome-wide association study and admixture 
mapping identify different asthma-associated loci in Latinos: the Genes-environments & 
Admixture in Latino Americans study. J Allergy Clin Immunol 2014;134(2):295-305. 

114. Bustamante CD, Burchard EG, De la Vega FM. Genomics for the world. Nature 
2011;475(7355):163-165. 

115. Chanock SJ, Manolio T, Boehnke M, et al. Replicating genotype-phenotype associations. Nature 
2007;447(7145):655-660. 

116. Kraft P, Zeggini E, Ioannidis JP. Replication in genome-wide association studies. Stat Sci 
2009;24(4):561-573. 

117. van Engeland M, Weijenberg MP, Roemen GM, et al. Effects of dietary folate and alcohol intake 
on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet 
and cancer. Cancer Res 2003;63(12):3133-3137. 

118. Zochbauer-Muller S, Lam S, Toyooka S, et al. Aberrant methylation of multiple genes in the 
upper aerodigestive tract epithelium of heavy smokers. Int J Cancer 2003;107(4):612-616. 

119. Cortessis VK, Thomas DC, Levine AJ, et al. Environmental epigenetics: prospects for studying 
epigenetic mediation of exposure–response relationships. Hum Genet 2012;131(10):1565-1589. 

120. Bakulski KM, Fallin MD. Epigenetic epidemiology: promises for public health research. Environ 
Mol Mutagen 2014;55(3):171-183. 

121. Simonds NI, Ghazarian AA, Pimentel CB, et al. Review of the Gene-Environment Interaction 
Literature in Cancer: What Do We Know? Genet Epidemiol 2016;40(5):356-365. 

122. Chen HS, Hutter CM, Mechanic LE, et al. Genetic simulation tools for post-genome wide 
association studies of complex diseases. Genet Epidemiol 2015;39(1):11-19. 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T 



26 

 

123. Psaty BM, O'Donnell CJ, Gudnason V, et al. Cohorts for Heart and Aging Research in Genomic 
Epidemiology (CHARGE) Consortium: Design of Prospective Meta-Analyses of Genome-Wide 
Association Studies From 5 Cohorts. Circ Cardiovasc Genet 2009;2(1):73-80. 

124. Chatterjee N, Shi J, Garcia-Closas M. Developing and evaluating polygenic risk prediction models 
for stratified disease prevention. Nature reviews Genetics 2016;17(7):392-406. 

125. VanderWeele TJ, Robins JM. The identification of synergism in the sufficient-component-cause 
framework. Epidemiology 2007;18(3):329-339. 

126. VanderWeele TJ. Sufficient cause interactions and statistical interactions. Epidemiology 
2009;20(1):6-13. 

 

ORIG
IN

AL U
NEDIT

ED M
ANUSC

RIP
T 




