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ABSTRACT

In datacenter applications, predictability in service time and

controlled latency, especially tail latency, is essential for build-

ing performant applications. This is especially true for appli-

cations or services build by accessing data across thousands

of servers to generate a user response. Current practice has

been to run such services at low utilization to rein in latency

outliers, which decreases efficiency and limits the number of

service invocations developers can issue while still meeting

tight latency budgets.

In this paper, we analyze the three datacenter applications,

Memcached, OpenFlow, and web search, to measure the ef-

fect on tail latency of 1) kernel socket handling, NIC interac-

tion, and the network stack, 2) application locks contested in

the kernel, and 3) application-layer queuing due to requests

being stalled behind straggler threads. We propose a novel

approach of reducing the above sources of latency by rely-

ing on support from the NIC hardware, and we find that the

resulting improvements indeed dramatically reduce end-to-

end application latency.

1. INTRODUCTION

Modern Web applications often rely on composing the re-

sults of a large number of subservice invocations. For exam-

ple, an end-user response may be built incrementally from

dependent, sequential requests to networked services such

as caches or key-value stores. Or, a set of requests can be is-

sued in parallel to a large number of servers (e.g., web search

indices) to locate and retrieve individual data items spread

across thousands of machines. Hence, the 99th percentile

of latency typically defines service level objectives (SLOs);

when hundreds or thousands of individual remote operations

are involved, the tail of the performance distribution, rather

than the average, determines service performance. Being

driven by the tail increases development complexity and re-

duces application quality [41].

Within the datacenter, end-to-end application latency is

the sum of a number of components, including interconnect

fabric latency, the endhost kernel and network stack, and

the application itself. Datacenter networks today can de-

liver both high bandwidth and low latency to better support

scale-out applications [2, 1]. As a result, these interconnect

fabrics themselves are not likely to be a significant source

of latency unless they are heavily congested, and several ef-

forts aim to minimize congestion, and thus latency [3, 4, 18].

On the other hand, the interwoven trends of increased cores

per server, increased DRAM capacity, and the availability of

low-latency, flash-based SSDs has the potential to reduce the

latency of the application itself.

A key remaining component is kernel latency, which in-

cludes socket handling, NIC interaction, the network stack,

and lock contention. As we will show, despite recent im-

provements in kernel performance [12], kernel overheads

can be an order of magnitude larger than the datacenter net-

work fabric and application latency combined. Thus, for a

growing class of applications, reducing this kernel overhead

is critical to reducing the effective latency of the end-to-end

network path connecting clients to server applications.

We consider latency overheads for a number of applica-

tions, including Memcached [30], web search, and also an

OpenFlow [29] controller. For these applications, the ker-

nel latency overhead can account for over 90% of end-to-

end application latency. This overhead also accounts for a

significant source of latency variation, especially at high re-

quest loads. We apply an old idea to reducing this latency

component–user-level/kernel-bypass networking [14, 49].

User-level networking has been available for decades, but

it is now available with commodity NIC/OS support. While

user-level networking removes kernel socket overhead, two

substantial sources of overhead remain: lock contention and

load balancing hotspots.

First, we partition requests based on fields in the appli-

cation request as early as possible, in the NIC itself. This

reduces lock contention, since multiple application threads

can concurrently process requests that access shared state.

Our goal is to partition requests among application threads

so that each thread maintains exclusive read/write access to

a partition of the state. While several systems implement

this approach within the application itself [25, 32, 48], our

approach is novel in that we leverage the NIC’s capability to

perform deep packet inspection to partition requests based

on packet headers. This separates requests before they even

arrive to the application itself, reducing latency and eliminat-

ing application queuing and contention for locks protecting
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application work queues.

Second, we extend the in-NIC request partition logic with

an extensible module to rebalance load away from overloaded

CPU cores. Hotspots and skew in incoming requests can

lead to application-layer queuing, and thus an increase in

end-to-end latency. Even with an in-network load balancer

forwarding flows across a large number of servers, balancing

requests within a single server remains important since we

wish to avoid the case where server performance degrades

to the performance of the most loaded core.

Reducing the tail-latency of datacenter applications has

the potential to improve the efficiency of distributed applica-

tions since more clients can be served from a limited set of

resources. At the same time, developers will be able to is-

sue more operations within a strict time budget, giving them

freedom to develop complex applications. Based on a com-

plete implementation and evaluation, we find that eliminat-

ing kernel, locking, and load balancing overheads can sub-

stantially improve data center application throughput and re-

sponsiveness. For example, we show how Memcached can

support 200,000 requests per second with a mean operation

latency of 10 µs with a 99th percentile latency of only 30 µs,

a factor of 20 lower than unmodified Memcached. We find

similar benefits for web search and the OpenFlow controller.

Substantial work remains before we are capable of de-

livering this level of performance in production data cen-

ter deployments. For instance, we assume no multi-tenancy,

uniform server deployments (with uniform performance pro-

files), and predictable network fabric performance. Given a

large number of parallel efforts, e.g., low latency network

fabrics and congestion control protocols [3, 4, 18] and vir-

tualization containers [45] for predictable performance, our

work addresses one of the key remaining bottlenecks for de-

livering end-to-end predictable low latency operations across

the data center.

2. RELATED WORK

We now consider several related research efforts aiming

to reducing end-to-end network latency and improve appli-

cation performance.

Optimized Network/OS interfaces: A key bottleneck

that our work addresses is kernel and network stack over-

head. We share this goal with several industrial efforts. Myri-

net [10] is a message-passing network that supports flow

control and error control, low-latency forwarding with cut-

through switches, and an optimized network/OS interface

designed for low latency. It specifically supports direct I/O

from user-space application directly to the network, which

has been subsequently adopted into Ethernet. Infiniband is

a low-latency, high-bandwidth switched interconnect fabric

created by the Infiniband Trade Association [24] that is often

used in high-performance computing clusters, with a par-

ticular focus on efficient and low-latency interfaces, even

supporting remote DMA operations [38]. While these ef-

forts address a key bottleneck, our approach focuses on com-

modity Ethernet switching and the entire end-to-end applica-

tion latency path, including application lock contention and

hotspots.

User-level Networking: User-level networking was de-

veloped to support application which emit packets at a high

rate, and to remove latencies in the kernel [49]. This need

was especially pressing to support the high packet rates needed

by ATM networks, where operating system overhead was a

major performance bottleneck. The feasibility of applying

user-level networking to both ATM and Ethernet was fur-

ther studied in [50], and an analysis of latency in the end-

host network stack was carried out by Larsen et al. [27].

This interface was extended by Virtual Interface Architec-

ture [14], in which processes use a virtual interface to ar-

range for data transfers directly to remote virtual memory us-

ing a form of zero-copy RDMA, reducing the programming

burden. Alpine [20] took a different tact by making user-

level development easier by enables pulling some in-kernel

functions, such as the TCP state machine, into user-space,

and interfacing to that code via the user-level APIs. While

user-level networking APIs are key to the early partitioning

aspect of our design, we also focus on per-CPU core load

balancing and removing application lock contention through

deep-packet inspection using these APIs to reduce applica-

tion tail latency.

Operating System Improvements: In this paper we high-

light several performance bottlenecks within the kernel. Sev-

eral projects are focusing on improving the scalability and

performance of the Linux kernel. Corey [11] identifies nu-

merous instances of in-kernel data structure sharing which

reduces potential parallelism across threads, and proposes

address ranges, kernel cores, and shares to address this. Boyd-

Wickizer et al. [12] study the scalability of seven applica-

tions, including Memcached, across a 48-core computer. They

found that by modifying the kernel and applications them-

selves, it is possible to remove many performance bottle-

necks present in these components. However, their study

focuses on throughput, and not latency. Zhuravlev, Blago-

durov, and Fedorova [52] show that it is possible to mitigate

in-kernel shared contention through intelligent scheduling,

and Ruan and Pai [40] investigated the latency characteris-

tics of Flash and the Apache Web server, finding that locking

and blocking system calls were significant causes of applica-

tion performance degradation. In our work, we find that even

for single-threaded processing the kernel introduces signifi-

cant additional latency, even after accounting for these recent

improvements.

Lock Contention: Lock contention has long been recog-

nized as a key impediment to performance of shared mem-

ory, multi-threaded applications [46]. Rather than relying

on mutual exclusion, some lighter-weight locking strategies

are feasible for some applications, such as read/write locks.

However, replacing mutex locks with read/write locks has

the potential of increasing state requirements [15]. Triplett

et al. [47] propose a dynamic concurrent hash table with re-
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sizing using a Read-Copy Update (RCU) mechanism. This

mechanism works well in situations where the number of

reads are significantly greater than writes. CPHASH [32] is a

concurrent hash table partitioned across CPU L1/L2 caches,

in which clients perform operations on partition by send-

ing the message through shared memory to the right parti-

tion. CPHASH achieves 5% better throughput as compared

to memcached, but latency is not the primary focus of their

approach. Similarly, VoltDB [48] and H-Store [25] partition

application state in memory across the CPU cores to achieve

scalability. Here, incoming requests are partitioned at the

application layer after arriving to the process. Our approach

is different in that we rely on deep-packet capabilities of the

NIC hardware to partition requests before they arrive to the

OS or application.

Datacenter Networks: Unlike wide area networks, the

datacenter network fabric can potentially support very low

latency communication between the servers since these net-

works are confined to a single geographic location, result-

ing in a very small propagation delay. Low-latency, cut-

through switches support sub-microsecond packet forward-

ing [6, 16]. New network topologies [1, 2, 22] can help

reduce the distance packets have to travel from one server

to another by reducing the number of switch hops, as com-

pared to an enterprise or ISP backbone topology. In addition,

new transport and networking protocols like DCTCP [4] and

QCN [3] further reduce in-network queuing and congestion,

and thus reducing the network latency. Ongoing work such

as Detail [18] also focuses on reducing latency by perform-

ing in-network traffic management.

Datacenter Applications: Our approach has the poten-

tial to benefit a variety of datacenter applications. One class,

key-value (KV) stores, serve as a basic building block for

building loosely-coupled distributed systems. A widely de-

ployed KV store is Memcached. Memcached stores small

chunks of unstructured data, and exports a simple API con-

sisting of operations that get, set, delete, and manipulate

KV pairs. KV pairs are stored entirely in-memory, with

no persistence. Memcached deployments split functional-

ity between one or more servers and a number of clients.

KV-pairs are partitioned across the set of servers using a

hash function shared between the clients and the servers.

In Memcached, clients are independent, and issue requests

directly to a single server responsible for a particular key

based on the shared hash. This simplifies the design of the

distributed server tier, since servers do not need to commu-

nicate with one another. Clients are responsible for insert-

ing KV-pairs into the cache, as well as Thus, scaling the

server tier is trivial since Memcached does not need to en-

sure cache consistency or invalidate data. deleting or inval-

idating them according to the semantics of the application.

For high-throughput environments, requests are typically is-

sued using UDP [42] to reduce latency and to require fewer

kernel resources than would be needed to support the same

number of TCP connections.

Two thousand Memcached instances have been deployed

at Facebook [41]. There have been numerous efforts to im-

prove its throughput [8, 42], though none specifically look-

ing at predictable tail-latency. Other KV-stores have been

deployed with different storage semantics. Dynamo [19]

is an eventually-consistent KV-store supporting a high in-

sertion and query rate while surviving failures of individ-

ual components. Other persistent KV-stores include Berke-

leyDB [9], LevelDB [28], and Redis [39]. The applicabil-

ity of our approach is based only on the relative latency of

the application compared to the kernel overhead, and so the

logic of these applications can be treated largely as a black

box.

Another application we consider is web search, which is

a well-studied problem, with numerous scalable implemen-

tations. Fox et al.[21] describe the principles underlying the

HotBot commercial web search engine. In [13], Brin and

Page describe the Google web search engine. We choose

web search given that it is a good example of a horizontally-

scaled datacenter application. Finally, the third application

we consider is an OpenFlow [29] controller. This application

is different from Memcached and the web search application

in that it is typically not horizontally scaled. However, given

that the OpenFlow controller can be on the critical path for

new flows to be introduced into the network, its performance

is critical, even if the entire application is only deployed on a

single server. Several controller designs have been proposed

with low-latency in mind [23, 26, 51]. We feel that this set

of case studies is significantly diverse to represent a range of

realistic and widely-deployed datacenter applications.

3. BACKGROUND AND MOTIVATION

In this section we discuss the effect of latency and high

latency variation on datacenter communication patterns and

how that impacts the end-to-end performance and operation

of data center applications. We then describe the different

sources contributing to latency in the data center context.

3.1 Effect of Latency on Datacenter Commu-
nication Patterns

We begin by describing two general, yet pervasive, com-

munication patterns present in datacenter networks, and the

consequences of variable latency on their performance.

3.1.1 The Partition/Aggregate Pattern

Network communication patterns in which state must be

retrieved from a large number of servers in parallel before a

response is returned to the requesting service falls into the

Partition/Aggregate communication pattern. An example of

this pattern is a horizontally scaled web search query that

must access state from hundreds to thousands of inverted in-

dices to generate the final response. It is well-known that the

achievable service-level objective of an application relying

on this pattern is limited by the slowest response generated,

since all requests must complete before a response can be
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Figure 1: As the scale of the Partition/Aggregate communication pattern increases, latency increases due to stragglers.

sent back to the user. In practice this means that the latency

seen by the end user approaches the tail latency of the un-

derlying services, and in this section we show this straggler

behavior experimentally.

Analysis: Consider a client issuing a single request to

each of S service instances in parallel. For simplicity, we

assume the service time is an independent and identically

(i.i.d.) distributed random variable with a normal distribu-

tion. Consider an S-length vector of the form:

~v =< N(µ, σ), N(µ, σ), ..., N(µ, σ) >

where N() is the normal distribution, and µ = 2µs and

σ = 1µs (these values are based on our observations of

Memcached’s latency, described in Section 3.2). We esti-

mate this system by computing values of the random vari-

ables for each set of i variables where i ranges from 1 and

100. For each set we compute the maximum over the values

of the variables in the set, repeating each measurement five

times to determine the latency and variance. The result is

shown in Figure 1(a).

As the number of servers increases, the maximum ob-

served value in ~v increases as well. We also plot the 50th

and 99th percentiles of the underlying N(2, 1) distribution.

In this simulation, when the number of servers is small, the

maximum expected latency is close to the mean of 2 µs
(the 50th percentile of the random variable). However, as S
grows the maximum observed value is approximately 4.25µs,

which approaches the 99th percentile of latency of the un-

derlying distribution. Thus, the end-to-end latency of the

Partition/Aggregate communication pattern is driven by the

tail-latency of nodes at scale.

Experimental validation: To validate the above proba-

bilistic analysis, we perform the following experiment. We

set up six Memcached clients, each on different machines,

and measured the latency seen by one of these clients. The

results of this experiment are shown in Figure 1(b). Each

client issues a set of S parallel get requests to a set of S
server instances (where S ranges from 1 to 24). Each server

instance runs on its own machine. We used the memslap load

generator included with Memcached to generate requests uni-

formly distributed across the key-space at a low request rate,

so as not to induce significant load on the servers. Also

shown is the observed single-server median latency (approx-

imately 100µs) and the 99th percentile of latency (approxi-

mately 255µs).

As predicted, when issuing a single request to a single

server the observed latency is nearly the 50th percentile of

service time. However, as S increases, the observed latency

of the set of requests quickly approaches the long tail of la-

tency, in this case just below the 99th percentile. This effect

can be seen even when we issue a low request rate, since

when the application latency is as small as one microsecond,

variable latency in other components of the end-to-end path

have a pronounced effect on the flow. As server utilization

increases, the tail-latency becomes even higher.

3.1.2 The Dependent/Sequential Pattern

A second network communication pattern in datacenters

is the dependent/sequential workflow pattern, where appli-

cations issue requests one after another such that a future

request is dependent on the results of previous requests. De-

pendent/sequential patterns force Facebook to limit the num-

ber of requests that can be issued to build a user’s page to

between 100 and 150 [41]. The reason for this limit is to

control latency, since a large number of sequential requests

can add up to a large aggregate latency. Another example

of this pattern are search queries that are iteratively refined

based on previous results.

In both cases, increasing the load on the subservices re-

sults in increased service time, lowering the number of oper-

ations allowed during a particular time budget. This obser-

vation is widely known, and in this section we show how it

can be validated both through a queuing analysis as well as

a simple microbenchmark.

Consider a simple model of a single-threaded server where
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Figure 2: For the Dependent/Sequential communication pattern, the number of subservice invocations permitted by the

developer to meet end-to-end latency SLAs depends on the variance of subservice latency.

clients send requests to the server according to a Poisson pro-

cess at a rate λ. The server processes requests one at a time

with an average service time of µ. Since the service time is

variable, we model the system as an M/G/1 queue. Using the

Pollaczek-Khinchine transformation [5], we compute the ex-

pected wait time as a function of the variance of the service

time using

W =
ρ + λµV ar(S)

2(µ− λ)

where ρ = λ/µ. This estimate differs from the M/M/1 case

(which is used when there is no variation of service time)

in that it has a variance term in the numerator. Based on

this model, we can predict the service latency as a function

of service load, mean latency, and the standard deviation of

variance. To observe the effect of latency variation, we eval-

uated the model against σ = 1 (based on our observations

of Memcached), and σ = 2 (representing a higher variance

service). For each σ value, we use the model to compute

the latency, and from that, we compute the number of of ser-

vice invocations that a developer can issue while fitting into

a specified end-to-end latency budget, and plot the results in

Figure 2(a). As expected, that budget is significantly reduced

in the presence of increased latency variance.

To validate this model, we compare the prediction of the

number of permitted service invocations to the actual num-

ber as measured within a deployment of Memcached within

our testbed, shown in Figure 2(b). The experimental setup

and experiments are described in detail in Section 5.1. Here,

we measure the 99th percentile of latency for both base-

line Memcached, as well as Memcached implemented with

Chronos (CH). Each point represents the number of service

invocations permitted with the specified SLA, as a function

of the server load, in requests per second.

These simple studies confirm the intuition that delivering

predictable, low latency response requires not just a low la-

tency mean, but also a small variation from the mean.

3.2 Sources of End-to-End Application Latency

To better understand the latency bottlenecks in data cen-

ter applications, we profile a representative example of an

in-memory key-value store, Memcached. We describe each

of the components that contribute to the end-to-end latency

within Memcached, as shown in Table 1.

Datacenter Fabric: The datacenter fabric latency is the

amount of time it takes to traverse the network between the

client and server. This can be further decomposed into the

propagation delay and in-switch delay. Within a datacen-

ter, speed of light propagation delay is approximately 1us.

Within each switch, the delay is approximately 1-4 us. Low-

Latency, cut-through switches further reduce this packet for-

warding latency to below one microsecond. A packet from

client to server typically traverse 5-6 switches [2].

A packet can also suffer queuing delay based on prevail-

ing network congestion. We calculate the queuing delay by

measuring additional time packet waits in switch buffers.

Typical commodity silicon might have between 1-10MB buffers

today for 10Gb/s switches. However, this memory is shared

among all ports. So for a 32-port switch with relatively even

load across ports and with 2MB of combined buffering, ap-

proximately 64KB would be allocated to each port. During

periods of congestion, this equates to an incoming packet

having to wait for up to 50 µs (42 1500-byte packets) be-

fore it can leave the switch. If all buffers along the six hops

between the source and destination are fully congested, then

this delay can become significant. Several efforts described

in section 2 aim to minimize congestion and thus latency.

We expect that in common case, the networks paths will be

largely uncongested. While potential end-to-end bottlenecks

such as delay in the datacenter fabric are outside the scope

of this effort, the value of Chronos is that it addresses a key

remaining bottleneck to delivering low-latency services.
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Component Description Mean latency (µs) 99 %ile latency (µs) Overall share

DC Fabric
Propagation delay < 1 - -

Single Switch 1-4 40-60 1%

Network Path† 6 150 7 %

Endhost

Net. serialization 1.3 1.3 1.4 %

DMA 2.6 2.6 3 %

Kernel (incl. lock contention) 76 1200-2500 86-95 %

Application Application∗ 2 3 2 %

Total latency 88 1356-2656 100 %

Table 1: Factors that contribute to latency in datacenter communication. †The network fabric latency assumes six

switch hops per path and at most 2-3 switches congested along the path. Switch latency is calculated assuming 32 port

switch with a 2MB shared buffer (i.e., 64KB may be allocated to each port). Application latency is based on Memcached

latency.

End-host: Endhost latency includes the time required to

receive and send packets to and from the NIC, as well as

delivering them to the application. This time includes the la-

tency incurred due to network serialization, issuing a DMA

for the packet from the NIC buffer to an OS buffer, and

traversing the OS network stack to move the packet to its

destination userspace process.

To understand the constituent sources of endhost latency,

we profile a typical Memcached request, determining the un-

derlying components contributing to the observed latency

under load. We issued 20,000 requests per second to the

server, which is approximately 2% network utilization in

our testbed. We instrumented Memcached 1.6 beta and col-

lected timestamps during request processing. To measure the

elapsed server response time, we installed a packet mirroring

rule into our switch to copy packets to and from our server

to a second measurement server running Myricom’s Snif-

fer10G stack, delivering precise timestamps for a 10 Gbps

packet capture (at approx. 20ns resolution). Section 5 presents

full details on the testbed setup. We then measured the Mem-

cached application latency by wrapping timer calls around

the application. We record The start time of this measure-

ment immediately after the socket recv() call is issued; the

end time is measured just before the application issues the

socket send() call.

A median request took 82 µs to complete at low utiliza-

tion, with that time divided across the categories shown in

Table 1. Network Serialization Latency is based on a 100B

request packet and a 1500B response at 10 Gbps. DMA la-

tency is the transfer time of a 1600B request and response

calculated assuming a DMA engine running at 5 GHz.

Application: This is the time required to process a mes-

sage or request, perform the application logic, and generate a

response. In the case of Memcached, this includes the time

to parse the request, look up a key in the hash table, de-

termine the location of value in memory and generate a re-

sponse for the client. The application latency in Memcached

is 2 µs. In section 3.3 we discuss other factors that contribute

to application latency, including lock contention.

The remainder of the time between the observed request
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Figure 3: The latency of a Memcached server running

at 10% of network capacity. A fixed number of closed-

loop clients were used to generate traffic. Increasing the

concurrency leads to increased lock contention inside the

OS, resulting in higher application latency.

latency and the above components includes the kernel net-

working stack, context switch overhead, lock contention, ker-

nel scheduling overhead, and other in-kernel, non-application

endhost activity. The contribution of kernel alone accounts

for more than 90% of the end-host latency and approximately

85% of end-to-end latency. In the next section, and in rest of

the paper, we focus our efforts on understanding the effect

of kernel latency on the end-host application performance,

aiming to reduce this important and significant component

of latency.

3.3 End-to-End Latency in Memcached

In this section we see how the latency overheads shown in

Table 1 impact the end-to-end latency of Memcached. We

first measure the maximum load that a server can handle and

then observe its performance under different load character-

istics, and with varying level of concurrency. Recall that the

level of concurrency affects the in-kernel overhead.

To measure Memcached performance, we use a config-
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and receive ring buffers, called NIC queues, in the applica-

tion’s address space. The receive-side scaling (RSS) feature

of these NICs permits the administrator to divide a given

physical interface into rings, each providing exclusive ac-

cess to its own send and receive queue. Outgoing packets

are enqueued into a selected ring, which are sent on the wire

based on by a scheduler implemented by the NIC. Incoming

packets are by default forwarded to a queue based on an in-

built hash function, however this can be customized by the

user. The use of a custom hash function provides flexibility

in hashing on arbitrary packet offsets to determine the desti-

nation queue. The execution of this hash function is done in

userspace on any one of the CPU cores, and for simple hash

functions the execution time is in nanoseconds, which is less

than the packet inter-arrival times for 10 Gbps links. When a

packet arrives from the wire, it is copied to the queue chosen

by the classification function. The application is not noti-

fied when packets arrive with an interrupt, but must instead

poll for new packets using a receive() API call. A dedicated

thread monitors the NIC queues and registers packet recep-

tion events with the application.

Request partitioning: Bypassing the kernel results in

significant reduction in latency, now that a request can be de-

livered from the NIC to the application in as low as 1-4 µs.

However, this reduction in packet transfer latency exposes

new application bottlenecks such as lock contention and in-

stantaneous core overload, or processing hot spots, due to

skew in the requests. Reducing application lock contention

relies on separating requests that manipulate disjoint appli-

cation state as early in the endhost as possible. A classic ap-

proach to minimizing lock contention is minimizing shared

state by statically dividing the state into disjoint partitions

that can be processed concurrently. Chronos makes use of a

similar architecture to partition application data into multi-

ple partitions, each assigned to a hardware thread. Its cus-

tom user space classification function performs deep packet

inspection to examine the application header in the packet

and separate out requests as shown in Figure 4.

While it would be possible to add a new field to the ap-

plication header, we choose instead to overload an exist-

ing field. In the case of Memcached, we rely on the vir-

tual bucket, or vBucket field, which denotes a partition of

keyspace. For the search application we use the search term

itself, and for the OpenFlow controller we use the switch ID.

We did not implement H-Store or the message broker in this

work but they could be partitioned on the basis of partitionID

and client queueID.

Discussion: Partitionable data assumption fits well for

class of applications like key-value stores, search, Hstore,

message broker and OpenFlow. Requests for data from mul-

tiple partitions is an active area of research, and one we hope

to study in future work [25].

Concurrent access to the partitioned data is still protected

by a mutex to ensure program correctness, however the in-

NIC partitioning function ensures that there is a serialized

Algorithm 1 The in-NIC packet classification function,

which distributes requests to application threads based on

the partition ID request header field.

1: procedure INITIALIZER:

2: epochMap← randomPartitionToThread
3: lastUpT ime← 0
4: threadLoadMap← 0
5: threadEpochLoad← 0
6: end procedure

7: procedure HANDLENEWPACKET(pkt)

8: partitionID ← packet.getPartitionID()
9: epochMap.updateRate(partitionID)

10: if packet.arrivalT ime − lastUpT ime ≥ epoch
then

11: exec loadbalancer()
12: lastUpT ime← pkt.stamp(); rate← 0
13: end if

14: thread← epochMap.Thread(partitionID)
15: threadLoadMap(thread) + +
16: totalEpochLoad + +
17: return thread
18: end procedure

set of operations to a given partition. The only time that two

application threads might try to access the same partition is

during the small windows where the load balancing algo-

rithm updates its mapping. This remapping can cause some

requests to follow the new mapping, while other requests are

still being processed under the previous mapping. We will

show in the evaluation that this is a relatively rare event, and

for reasonable update rates of the load balancer, would not

affect the 99th percentile of latency.

Extensible in-NIC load balancing: We expect that our

endhost should be able to handle large spikes of load, with

multiple concurrent requests, while running the underlying

the system at high levels of utilization.

Chronos uses a classification function based on the parti-

tion ID field, and uses a soft-state table to map the partition

ID field to an application thread. To reduce lock contention,

the mapping should ensure an exclusive partitioning of the

field. The load balancing module periodically updates the

table based on the offered load and key popularity.

We chose to implement a simple load balancing algorithm

in Chronos. It divides time into epochs, where each epoch

is of maximum configurable duration T . It maintains a map-

ping of each partition to an assigned NIC queue (and thus ap-

plication thread), along with per-partition load information.

The first field in the table, mapPartitionToQueue, indicates

the partition ID to application thread mapping. The second

maintains the number of accesses in the current epoch, a sim-

ple indicator of load and popularity. The load balancer also

maintains a separate counter for each thread, which indicates

the number of requests served by the application thread in

the current epoch.
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Algorithm 2 Chronos Load Balancer updates partition

field-thread mapping based on load offered in last epoch.

1: IdealLoad← totalEpochLoad()/totalThreads
2: for all v ∈ partitionID do

3: prevEpochThread← epochMap.getThread(v)
4: if ThreadLoad[prevEpochThread] ≤ idealLoad

then

5: currentEpochMap.assign(v,lastT)

6: threadLoadMap[prevEpochThread] =
partitionLoad

7: else

8: for all thread /∈ {{totalThreads} −
prevEpochThread} do

9: if threadLoadMap[k] ≤ IdealLoad then

10: currentEpochMap.assign(v,k)

11: threadLoadMap[lastT ] ←
partitionLoad

12: break
13: end if

14: end for

15: end if

16: end for

17: epochMap← currentEpochMap

At application load time, the load balancer initializes the

table with a random mapping of partition field to threads.

Algorithms 1 and 2 show psuedocode for the Chronos clas-

sifier and load-balancer modules, respectively. A new epoch

is triggered when either the duration of the current epoch has

elapsed, or the number of requests to the server to a partic-

ular thread exceeds a configurable threshold. At the start of

a new epoch, the load balancer computes the new mapping

based on previous epoch’s load as described in algorithm 2.

First, it computes the total load in the last epoch and di-

vides that by the number of threads to obtain Ideal Load (IL)

each thread should serve in the next epoch, under the as-

sumption that load distribution will remain the same. Sec-

ond, the algorithm processes each partition, assigning it to

a thread to which it was assigned in the last epoch. This

assignment succeeds if the new thread load is less than the

computed IL.

For the Chronos load balancer to work effectively, the

number of partitions should be at least the number of cores

available across all of the application instances. Chronos

load balancing does not add to cache pollution that might

happen due to sharing of partitions among threads. In fact,

baseline application will have lower cache locality given that

all of its threads access a centralized hash table.

Discussion:How does User space hash function work?

In regards to processing application headers our particular

NIC supports only 5 tuple processing in the hardware. We

expect future generations of NICs to support more flexible

header offset processing (and are already seeing examples

of such). An option, userspace custom hash function en-

ables deep packet inspection and arbitrary processing over

the packet contents. This function works by registering a C

function with the NIC API, and then when a new packet ar-

rives, the NIC will call the function, passing it a pointer to

the packet and the packet length. The execution of that C

function will occur on one of the CPU cores. The function

you provide can do arbitrary processing over any or all of

the packet contents. The deeper the processing that you do

on the packet, the more of the packet contents have to be

copied to DRAM, and so there is an overhead here. In our

case, the performance penalty due to user space processing

was outweighed by the latency incurred in the kernel.

4.3 Application Implementations

Memcached: Rather than building a new key-value store,

we base Chronos on the original Memcached codebase. Chronos

is a drop-in implementation of Memcached that modifies

only 48 lines of the original Memcached code base, and

adds 350 lines. We replace the centralized hash table and

slab class table of Memcached which were protected by mu-

tex locks with N such tables and lists, one per partition.

These modifications include support for user-level network

APIs, for the in-NIC load balancer, and for adding support

for finer-grained application locks.

Web Search: Web search query evaluation is composed

of two components. The first looks up the query term in

an inverted-index server to retrieve the list of documents

matching that term. The second retrieves the documents

from the document server. The inverted index is partitioned

across thousands of servers based on either document iden-

tifier or word/term. For Chronos, we choose to implement

term based partitioning so that we could evaluate the load

balancer. We wrote our own implementation of web search

based on Memcached.

It is important that web search index tables are kept up-

dated, and so modifications to them are periodically neces-

sary. One approach is to create a completely new copy of

the in-memory index and to then atomically flip to the new

version. This would impose a factor of two memory over-

head. Another option is to update portions of the index in

place, which requires sufficient locking to protect the datas-

tructures. We implemented an index server using read/write

locks and UNet API’s. The index server maintains the index-

table as search term and associated documents IDs, as well

as word frequency and other related information. We also

implemented a version of index server with RCU mecha-

nism from an open-source codebase provided by the RCU

authors [47]. We modified the codebase to work with UNet

API’s. Chronos further divides the index server table into

several partition based on terms.

OpenFlow Controller: We also choose to implement Chronos

with an OpenFlow controller application provided by [36].

This application is different from the Memcached and web

search applications, since it is typically not horizontally scaled

in the same way as these other applications. However, given
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that the OpenFlow controller can be on the critical path for

new flows to be admitted into the network, its performance

is critical, even if the entire application is only deployed on

a single server.

5. EVALUATION

In this section we evaluate Chronos using both micro and

macro-benchmarks. We begin by describing Chronos’s im-

plementation, the workloads we use, and performance met-

rics we measure. We first establish the kernel overhead of

Memcached. We make comparisons against an optimized

MOSBENCH pk kernel [33] which removes lock contention

and other scalability bottlenecks from the kernel. Next we

describe latency profile for both baseline Memcached and

Chronos under uniform demand and uniform key access pat-

terns. Then, we evaluate against more realistic workloads

by introducing skew into the inter-request arrival times, as

well as skew in the key access patterns. We then evalu-

ate Chronos’s load balancing functionality to measure how

quickly it can respond to hotspots in client requests. Lastly,

we evaluate web-search application and OpenFlow Controller.

For web-search application we evaluated against a user level

RCU implementation of Memcached open-source by authors

of [47].

Implementation: We deployed Chronos on 50 HP DL-

380G6 servers, each with two Intel E5520 four-core CPUs

(2.26GHz) running Debian Linux with kernel version 2.6.28.

Each machine has 24 GB of DRAM (1066 MHz) divided

into two banks of 12 GB each. All of our servers are plugged

into a single Cisco Nexus 5596UP 96-port 10 Gbps switch

running NX-OS 5.0(3)N1(1a). This switch configuration ap-

proximates the ideal condition of nonblocking bandwidth on

a single switch. We do not focus on network sources of la-

tency variability in this evaluation. Each server is equipped

with a Myricom 10 Gbps 10G-PCIE2-8B2-2S+E dual-port

NIC connected to a PCI-Express Gen 2 bus. Each NIC is

connected to the switch with a 10 Gbps copper direct-attach

cable.

When testing against kernel sockets, we use the myri10ge

network driver version 1.4.3-1.378 with interrupt coalescing

turned off. For user-level, kernel-bypass experiments we use

the Sniffer10G driver and firmware version 2.0 beta. We

run Memcached version 1.6 beta, configured to support the

binary protocol and virtual buckets.

Metrics and Workloads: Like any complex system, the

performance observed from Memcached and Chronos is heav-

ily dependent on the workload, which we define using the

following metrics: 1) request rate, 2) request concurrency,

3) key distribution, and 4) number of clients. The metrics of

performance we study for both systems are 1) number of re-

quests per second served, 2) mean latency distribution, and

3) 99th percentile latency distributions.

To evaluate baseline Memcached and Chronos under real-

istic conditions, we use two load generators. The first, Mem-

slap [31], is a closed loop benchmark tool distributed with
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Figure 5: Legend: NT-MP stands for N thread M pro-

cesses of Memcached(MC). Shown is the tail latency for

one and four threads (1T and 4T) running in either one

process or four processes (1P or 4P). Even with the in-

kernel improvements of Mosbench, latency still grows.

Memcached that uses the standard Linux network stack. It

generates a series of get() and put() operations using ran-

domly generated data. We configure it to issue 90% get and

10% put operations for 64-byte keys and 1024-byte values.

For the results that follow, we found that varying the key

size had a minimal effect on the relative performance be-

tween Chronos and baseline Memcached. The second load

generator is an open-loop load program we built in-house

using low-latency, user-level network APIs to reduce mea-

surement variability. Each instance of this second load gen-

erator issues requests at a configurable rate, up to 10 Gbps

per instance, with either uniform or exponential inter-arrival

times. The KV-pair distribution used by the tool is patterned

on YCSB [17]. Note that the latency numbers reported in

figures generated by closed loop generator are off by 50-70

µs since they must traverse they kernel and network stack.

5.1 Latency

We now examine the latency of a single threaded instance

of Memcached using default kernel installed on system as

well as an optimized MOSBENCH pk kernel. We instan-

tiated 4 instances of single threaded Memcached, each on

its own core. To measure its performance we use a con-

figurable number of Memslap clients, each deployed on its

own core to lower the measurement variability. A client

would open socket connection to one of the 4 Memcached

process. While running in single threaded mode and thus

free of intra-thread resource contention, we expect single

threaded, multiple process Memcached latency and variance

to be lower than multi-threaded instance on MOSBENCH.

Figure 5 shows our results. Even running Memcached with

MOSBENCH kernel 99% tile latency is still high 810 µs
with 140 clients divided across 4 processes , indicating that

kernel contribution is significant even when with optimized
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Figure 6: Latency of baseline Memcached (MC), Mem-

cached with user-level network APIs (UNet locks), and

Chronos (CH).

version of kernel and no application lock contention.

Next, we examine the latency distribution of baseline Mem-

cached and Chronos under ideal conditions of a uniform key

access pattern and uniform inter-request arrival time. To

evaluate the effect that the user-level network APIs played

on observed latency, we created a version of Memcached

with user-level APIs (and no other Chronos features). All

instances were setup with 4 application threads each. We

instantiated 10 client machines running our custom open-

loop load generator utilizing user-level network APIs. Each

client issues requests at a configurable rate, measuring the

response time as perceived by the client as well as any lost

responses. The server is pre-installed with 4GB of random

data, and clients issue requests from this set of keys using

a uniform distribution with uniform inter-request times. We

use 1K bytes values and 64 byte keys in a 9:1 ratio of gets to

sets. Each client terminates when the observed request drop

rate exceeds 1%.

The results are shown in Figure 6. For comparison, base-

line Memcached supports up to approximately 120,000 re-

quests per second before dropping a significant number of

requests. Chronos supports a mean latency of about 25 µs
up through 500,000 requests per second and rises just above

50µs at 1M requests per second. The version of Memcached

with just the socket API replaced with the user-level kernel

API not only has higher mean latency, but the variation of la-

tency is significantly higher, as shown by the 99th percentile,

indicating that reducing variability in the network stack, op-

erating system, and application are all important to reduce

tail latency.

We compare the single-threaded latency of both baseline

Memcached and Chronos, as shown in Figure 8. Here we see

that a single-threaded instance of Chronos can support up to

500,000 request/sec, with tail-latency contained up through

200,000 requests per second.

We next evaluate the performance of Chronos with a larger
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Figure 7: Latency as a function of the number of clients

with the Memslap benchmark (closed loop).
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Figure 8: The effect of skewed request inter-arrival times

on tail latency.

number of clients. Shown in Figure 7, we instantiated eight

client Memslap processes on each physical client machine,

and scaled up to 50 client machines. We see that Chronos

supports over 1 million transactions per second (TPS), lim-

ited only by the NIC’s throughput limit of 10 Gbps. At

this point, the request throughput levels out, causing a small

amount of additional client latency as requests wait to be

transmitted. In contrast, baseline Memcached suffers from

low throughput and high latency at these rates.

5.2 Skew In Request Inter-Arrival Times

In this section, we study how skew in the inter-arrival

time of requests affects both baseline Memcached as well

as Chronos. In the next section, we will study how skew in

the key access pattern affects latency.

The presence of skewed request inter-arrival times means

that although the average request load might be manage-

able, at very fine-grained timescales there are short periods

of overload. Depending on how skewed the request pattern

is, there might be several back-to-back requests followed by

a gap in requests. From the point of view of the server, that
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Figure 9: The latency of two thread (2T) and four thread

(4T) implementations of Chronos under skewed request

arrivals

workload induces a momentary state of overload, which re-

sults in application-layer queuing.

To study this behavior, we use the methodology described

by Banga and Druschel [7], originally presented in the con-

text of web server evaluation. Here, multiple clients generate

traffic at a fixed rate, punctuated with short bursty periods.

These periods are characterized by two parameters: 1) the

ratio of the maximum request rate and the average request

rate, and 2) the duration of bursts. We fix the maximum-to-

average request ratio to be 10, and limit the burst duration

to be 10% of the number of requests sent. Lastly, we ensure

that the number of requests in a burst are fixed across the

experiments.

Figure 8 shows the 99th percentile of latency for both

baseline Memcached as well as Chronos across a range of

burst periods. We see that in the baseline even short burst

duration’s of 1 millisecond impose significant levels of ap-

plication queuing at 10,000 requests per second, driving la-

tency up to over a millisecond. Note that without request

inter-arrival time skew, baseline Memcached supports up to

a factor of 10 larger request rate.

For Chronos under a uniform request inter-arrival rate,

latency stays largely flat up through 325,000 requests per

second. However, just as in the baseline case, inducing re-

quest bursts drives up latency significantly while reducing

the throughput of the system. For 1 millisecond bursts, the

request rate with controlled latency is reduced to 100,000

requests per second, with an observed latency of up to 1 mil-

lisecond at over 250,000 requests per second. For longer

burst duration’s, this effect is more pronounced.

Figure 9 considers request loads up to 1M requests per

second forwarded to Chronos instances with either two or

four application threads, each running on its own CPU core.

As in the single-thread case, bursts in request rates arriving

faster than the effective service time of the application in-

duce application queuing, and thus increases in delay. This

effect is more pronounced at higher loads, given that there is
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Figure 10: An evaluation of the responsiveness of the

Chronos load balancer module across two time epochs

(100 µs on top and 10 µs in the middle) and the static

mapping strategy (on the bottom).

less time between arriving requests. Adding additional cores

mitigates the effect of bursts, but for sufficient burst lengths

queuing will build up with any fixed number of CPU cores.

5.3 Load balancing

The application queuing behavior described in the previ-

ous section occurs in any system that handles requests at a

fixed rate, assuming that enough skew is present to induce

short bursts of overload. To mitigate this queuing effect,

Chronos employs a load balancing module that periodically

reapportions requests across application threads within a sin-

gle server. The time elapsed between the re-mapping of keys

denotes an epoch. This provides an upper bound for how

much skew will be present within a single Chronos node.

As described in Section 4.2, the load balancer works in con-

cert with the NIC-level hash function to ensure that requests

are sent to application threads in such a way to minimize or

eliminate lock contention. Thus, we require that the load bal-

ancer assign keys across application threads such that each

thread sees a strict partition of vBuckets.

To evaluate the responsiveness of the Chronos to key ac-

cess skew, we created an experiment as follows. First, we

setup a Chronos instance with four threads. We then config-

ured the load balancing module with an epoch time of 10 µs
and 100 µs. A single open-loop client sends requests at a

rate of 1 million requests/sec. Keys are chosen at random at

the start of each epoch such that three keys receive 99% of

the requests. This pattern is motivated by the desire to have

three of the four cores handling the hot/popular keys, and

the remaining core to receive all of the cold/unpopular keys.

We know by construction that without an adaptive load bal-

ancing module, each time the epoch changes overload would

occur since two or more popular keys would be handled by

a single application thread, and the rate of requests is suffi-

ciently high to induce overload in that case. We repeat the
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Component Switches Mean latency (µs) 99 %ile

latency

(µs)

Kernel Based 1 65 140

Kernel Based 16 120 250

UNet API Based 1 8 50

UNet API Based 16 10 51

Table 2: Latency of the OpenFlow Controller. Because of

its single-threaded nature, we are not able to evaluate in-

NIC partitioning or load balancing. However, removing

the kernel overhead reduces the tail latency significantly.

same experiment for a Chronos instance with static mapping

of keys to threads.

Figure 10 shows the latency distribution for Chronos at

10µs (top), 100µs (middle), and for the static mapping (bot-

tom). At the start of each epoch, we see occasional long

spikes in the 100 µs case before it is able to adapt to shifts

in workload. The static mapping approach fails when two

or more popular keys are served from the same application

since these types of co-located request hotspots cannot be

migrated to other cores.

Discussion: Due to our reliance on partition to spread

load across cores, there are certain cases that will cause Chronos’s

load balancing element to fail or perform poorly. When

a single key in a partition, or the partition itself becomes

hugely popular, the rate of requests to that partition can over-

whelm a single application thread. This happens when the

request load approaches 500,000 requests/sec (which is greater

than 5 Gbps of traffic). When a single key becomes that

popular, we are limited in our response, and would suggest

that the application itself be re-architected, since such a high

get/set load on a single key would not be practical at scale.

However, it is more likely that several keys in the same par-

tition might together induce such a high load. We can alle-

viate this condition by moving those common keys to sepa-

rate vBuckets, or by modifying the request handling logic in

Chronos to allow the server to split and join buckets based

on load demands. We have not yet evaluated these possible

features.

5.4 Web Search

As described in Section 4.3, the web search application

maintains a hash table to store the term and associated docu-

ment, protected by read/write locks. In Chronos, we further

divide this index into twelve partitions based on the term,

and store them in separate tables protected by a mutex. We

evaluate Chronos in comparison to an RCU lock-based im-

plementation of the hash table that was provided by Triplett

et al [47]. Additionally, we modified this implementation

to work with the same user-level networking API used in

Chronos to provide a direct comparison. For search we used

10 Byte key and 1400 Byte value as inverted index list. The

results of this evaluation are shown in Figure 11. Here, we

see that even with an implementation based on read/write

locks and RCU, we see higher latency.
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Figure 11: Web search latency of single Index server.

5.5 OpenFlow Controller

We now evaluate Chronos as implemented with a TCP-

based OpenFlow controller. Ensuring low latency in Open-

Flow controllers is critical since they can be on the critical

path to admitting new flows into the network.

In our experimental setup, we replaced the stock kernel

TCP socket network implementation with a user-level TCP

implementation provided by our NIC vendor. The controller

software itself is single-threaded. We then compare this user-

level TCP implementation with the baseline controller. To

generate load, we used the cbench benchmark included with

OpenFlow. Cbench emulates switches that send packet-in

messages to the controller, and wait for flow modification

rules in return. The controller implements a learning switch

application, which generates appropriate rule events in re-

sponse to packet-in events. In our experiment, we simu-

lated 16 switches supporting 1M MAC entries. Each em-

ulated switch connects to the controller and generate packet-

in events. To measure just the controller latency, we installed

packet mirroring rule described in section 3.2. The results of

this experiment are shown in Table 2. We see that remov-

ing the kernel has the predictable effect of removing aver-

age latency. However, the effect on the 99th percentile of

latency is that the difference between one emulated switch

and sixteen emulated switches is only a single microsecond,

as compared to 110 microseconds in the baseline case.

The TCP implementation provided by our vendor is not

compatible with multiple NIC queues, and so we cannot

evaluate it in the context of a multi-threaded deployment

of OpenFlow controller, or with the request load balancing

module. However, this micro-benchmark indicates that at

least under these workloads, the performance of a user-level

TCP implementation was similar to that of user-level UDP.
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6. CONCLUSIONS

The scale of modern datacenters enables developers to de-

ploy applications across thousands of servers. However that

same scale imposes high monetary, energy, and management

costs, placing increased importance on efficiency. To meet

strict SLA demands, developers typically run services at low

utilization to rein in latency outliers, which decreases effi-

ciency. In this work, we present Chronos, an architecture to

reduce data center application latency especially at the tail.

Chronos removes significant sources of application latency

by removing the kernel and network stack from the critical

path of communication, by partitioning requests based on

application-level packet header fields in the NIC itself, and

by load balancing requests across application instances via

an in-NIC load balancing module. Through an evaluation of

Chronos as implemented in Memcached, OpenFlow, and a

web search application, we show that we can reduce latency

by up to a factor of twenty, while significantly reining in la-

tency outliers. The result is a system that can enable more

throughput by increasing predictability, a key contribution to

improving datacenter efficiency.
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