UC Davis
UC Davis Previously Published Works

Title
Harmonic CUDA: Asynchronous Programming on GPUs

Permalink
bttgs:ééescholarshiQ.orgéucéitemg95397631
Authors

Wapman, Jonathan
Treichler, Sean
Porumbescu, Serban

Publication Date
2023-02-25

DOI
10.1145/3582514.3582517

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at bttgs://creativecommons.org/licenses/bv/4.0/{

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/9539763j
https://escholarship.org/uc/item/9539763j#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Check for
Updates

Harmonic CUDA: Asynchronous Programming on
GPUs

Jonathan Wapman
University of California, Davis
Davis, California, USA
jdwapman@ucdavis.edu

Serban D. Porumbescu
University of California, Davis
Davis, California, USA
sdporumbescu@ucdavis.edu

Abstract

We introduce Harmonic CUDA, a dataflow programming
model for GPUs that allows programmers to describe algo-
rithms as a dependency graph of producers and consumers
where data flows continuously through the graph for the
duration of the kernel. This makes it easier for programmers
to exploit asynchrony, warp specialization, and hardware
acceleration. Using Harmonic CUDA, we implement two
example applications: Matrix Multiplication and GraphSage.
The matrix multiplication kernel demonstrates how a key
kernel can break down into more granular building blocks,
with results that show a geomean average of 80% of cuBLAS
performance, and up to 92% when omitting small matrices,
as well as an analysis of how to improve performance in the
future. GraphSage shows how asynchrony and warp special-
ization can provide significant performance improvements
by reusing the same building blocks as the matrix multi-
plication kernel. We show performance improvements of
34% by changing to a warp-specialized version compared to
a bulk-synchronous implementation. This paper evaluates
the strengths and weaknesses of Harmonic CUDA based on
these test cases and suggests future work to improve the
programming model.

CCS Concepts: - Computing methodologies — Parallel
programming languages.

Keywords: GPU, CUDA, programming model, asynchro-
nous, GEMM, GraphSage

This work is licensed under a Creative Commons Attribution International 4.0 License.

PMAM °23, February 25-March 1, 2023, Montreal, QC, Canada
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0115-3/23/02.
https://doi.org/10.1145/3582514.3582517

39

Sean Treichler
NVIDIA
Santa Clara, California, USA
sean@nvidia.com

John D. Owens
University of California, Davis
Davis, California, USA
jowens@ucdavis.edu

ACM Reference Format:

Jonathan Wapman, Sean Treichler, Serban D. Porumbescu, and John
D. Owens. 2023. Harmonic CUDA: Asynchronous Programming
on GPUs. In International Workshop on Programming Models and
Applications for Multicores and Manycores (PMAM °23), February
25-March 1, 2023, Montreal, QC, Canada. ACM, New York, NY, USA,
11 pages. https://doi.org/10.1145/3582514.3582517

1 Introduction

Modern GPUs are more than just a group of thread pro-
cessors. Over time, GPUs have added specialized hardware
units such as Tensor Cores of many varieties for machine
learning and dense linear algebra, Ray Tracing cores for re-
alistic rendering, Direct Memory Access (DMA), and Tensor
Memory Accelerator (TMA) units for asynchronous mem-
ory movements between off-chip and on-chip memory, and
Transformer Engines for machine learning, with potentially
more to come [4, 6, 15, 19]. However, taking advantage of
these specialized units typically requires major code rewrites,
and orchestrating data movement in a performant way often
requires skilled CUDA programming ability. The need to
rewrite software for each new GPU architecture is a major
barrier to the adoption of new hardware features. NVIDIA
may be able to allocate these resources to commonly used
and performance-critical libraries that automatically bring
new hardware features to end-users, but this does not ap-
ply to custom code written by the users themselves. At the
same time, GPU programming models have become increas-
ingly asynchronous (Section 2) and it is desirable to overlap
computation with memory transfers or differing types of
computation depending on available accelerator features.
At a higher level of abstraction, NVIDIA and third par-
ties provide many libraries that implement critical GPU ker-
nels such as matrix multiplication [14, 20], block-wide or
device-wide collective operations such as prefix sums or re-
ductions [11, 17], or more complex algorithms such as graph
algorithms [8]. These libraries provide highly optimized im-
plementations of these kernels, but they lack flexibility. For
example, a library such as CUTLASS [14] provides a ma-
trix multiplication kernel that utilizes the entire device and


https://doi.org/10.1145/3582514.3582517
https://doi.org/10.1145/3582514.3582517
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3582514.3582517&domain=pdf&date_stamp=2023-02-25

PMAM °23, February 25-March 1, 2023, Montreal, QC, Canada

building blocks for implementing custom device-wide ker-
nels but does not support the warp-centric configuration
necessary for an application like GraphSage (Section 5). This
inflexibility makes it difficult to take advantage of the highly
optimized kernels provided by these libraries, and instead,
forces programmers to write their own kernels from scratch.

Additionally, CUDA libraries typically do not have the flex-
ibility to perform an operation at any level of the GPU’s com-
pute hierarchy. A GPU programmer may want to perform
an operation with a single thread, warp, or block, a subset of
a block, an entire grid, or a subset of a grid. However, CUDA
is not well-suited to elegantly expressing operations where
the core algorithm is the same even though the location of
the data and the assigned compute group may change.

To solve these challenges, we present Harmonic CUDA: a
programming model for asynchronous producer/consumer
computation on modern GPUs that enables programmers to
describe the dataflow of their code, while relying on highly
optimized backends to handle scheduling, synchronization,
hardware acceleration, and storage management. The pri-
mary goals of Harmonic CUDA are:

o Computation/Location Abstraction: Programmers
should be able to express the what of their computa-
tions without worrying about the where or when.

e Performance: Programmers should be able to rely
on Harmonic CUDA to use best-available implemen-
tations for its backend, which may include highly op-
timized software libraries, architecture-specific accel-
erators such as Tensor Cores, or future hardware and
software features as they become available.

e Composability: The programmer should be able to
construct a Dataflow and treat that Dataflow as an
individual Node within other Dataflows.

e Programmability: Harmonic CUDA should be an
intuitive programming model that makes it easier for
a programmer to think about their code in terms of
data flow, and to write code that is easy to understand
and maintain. This includes a simple, easy-to-learn
programming model and API.

e Harmony: The programmer should be able to use
Harmonic CUDA alongside traditional CUDA code.

We evaluate Harmonic CUDA on an implementation of a
memory copy kernel in Harmonic CUDA that shows the Har-
monic CUDA API and backend implementation (Section 3),
and implementations of matrix multiplication (Section 4) and
GraphSage (Section 5) that demonstrate Harmonic CUDA’s
performance, the benefits of warp specialization, and the
benefits of the reuse of building blocks.

2 Related Works

Hardware Asynchrony. In recent years, GPUs have added
more asynchronous functionality. NVIDIA’s Ampere archi-
tecture includes asynchronous Direct Memory Access (DMA)

40

Wapman et al.

units that use dedicated hardware units to copy sequential
regions of memory directly from global memory to shared
memory without the need for intermediate copies to thread
registers [15]. NVIDIA’s Hopper architecture extends this
concept to a Tensor Memory Access unit, which performs the
same function but for 2-dimensional tiles of a matrix [9, 19].
Additionally, there is a large body of research into domain-
specific accelerators [12], which feature asynchronously run-
ning hardware units connected with intermediate buffers [23].
Harmonic CUDA addresses the programming challenge of
efficiently targeting an increasing number of asynchronous
by creating abstractions around the actual implementation
of logical operations and the data movements between them.

GPU Software Asynchrony. CudaDMA divides a block
on the GPU into DMA warps for performing memory trans-
fers, and computation warps for performing any necessary
computation [2]. Building on the concepts of CudaDMA,
Warp Specialization [3] allows programmers to define mul-
tiple execution paths through kernels. Based on a runtime
condition a warp can, for example, transfer data from global
to shared memory or alternatively, perform computation on
data in shared memory. All warps within the same block
may continue to communicate with each other over shared
memory and may take advantage of efficient synchroniza-
tion mechanisms. Harmonic CUDA provides a more general
approach to warp specialization that abstracts away the low-
level details of warp specialization and allows programmers
to use more flexible specialization configurations.

Libcu++ [22] provides abstractions such as pipelines and
barriers to manage asynchronous GPU hardware. Harmonic
CUDA leverages these primitives as building blocks to create
a higher-level programming abstraction.

Several works [1, 13] aim to hide complexities of asyn-
chronous GPU programming (such as synchronization, Di-
rect Memory Accesses, and memory management) using a
producer-consumer model, but these focus on kernel-level
dataflows between the CPU and one or more GPUs. In con-
trast, Harmonic CUDA provides a programming model us-
able within a GPU kernel at runtime. Additionally, while
Harmonic CUDA may target heterogeneous systems for fu-
ture work, the programming model itself is fundamentally
different, since it treats the CPU or multiple GPUs as just
another user-specified compute location.

CPU Software Asynchrony. LabView and Simulink are
node-based graphical dataflow programming models com-
monly used on the CPU [16, 18]. LabView and Simulink both
provide libraries of Nodes that a programmer connects to-
gether in a dataflow to perform some computation, with
typical examples being signal processing or control loops.
Harmonic CUDA differs in that it is a text-based program-
ming model that additionally provides for the concept of
“where” to store and/or perform computation.



Harmonic CUDA: Asynchronous Programming on GPUs

Scheduler

Node Node

Memory
Mover

Memory
Mover

Buffer Memory
Connector
Warps 0 - 3 Warps 4 - 7

Dataflow

Figure 1. A Harmonic CUDA Memory Copy Dataflow. The
producer and consumer map to an arbitrary compute loca-
tion, and the buffers map to an arbitrary storage location. The
scheduler takes advantage of hardware asynchrony while
respecting resource limitations.

Streamlt [25] is a text-based DSL for programming stream-
ing applications, but this model focuses primarily on signal
processing, rather than on general-purpose parallel comput-
ing. It also does not include any concept of “where” to store
and/or perform computation beyond offering support for
CPU multi-threading.

In the Senders programming model [7], a “sender” ob-
ject contains a computation that runs asynchronously. The
sender returns a single item (such as an int, pointer, struct,
etc.) before a dependent sender begins. Although it is an
asynchronous programming model, the Senders model is
not a true producer/consumer dataflow pipeline where data
flows continuously. Harmonic CUDA is compatible with the
Senders model. For example, programmers can use Harmonic
CUDA to more easily write a CUDA kernel that they can
then launch as the computation of a Sender.

There are many examples of parallel programming and
dataflow programming languages on both the GPU and the
CPU [5]. In particular, Halide [24] similarly separates the
logical computation from a schedule, but is not a dataflow
programming model.

3 Programming Model

Figure 1 shows an example of a basic memory copy operation
implemented as a Harmonic CUDA Dataflow using two in-
stances of data transformation (a producer and a consumer)
and an intermediate buffer. The basic unit of Harmonic
CUDA is a Node, which is an abstraction of a program (Sec-
tion 3.1). A Node embodies tasks such as “perform a prefix
sum on the elements given an input,” “perform elementwise
additions on the two inputs,” or “do a matrix multiplication
given two input matrices” A Node may run on a thread, a
block, a subset of a block, an entire grid, or a subset of a grid.
It may have a software backend or a hardware-accelerated
backend, and may coexist on the same hardware with many
other Nodes. Using this abstraction, the Node defines what
the user wants to do while giving the flexibility to easily

41

PMAM °23, February 25-March 1, 2023, Montreal, QC, Canada

change where the computation runs, and also gives the sys-
tem the power to decide when it happens.

Connectors join Nodes and capture synchronization and
storage management (Section 3.2). The user provides Con-
nectors with input and output Nodes as well as the interme-
diate data storage location, while the Nodes and Connectors
choose highly optimized backends based on the functionality
of the Nodes, the size of the data chunks transferred between
Nodes, the locations of the Nodes, and the locations of the
intermediate data storage.

A Dataflow collects Nodes and Connectors into a sin-
gle unit of computation and assists in scheduling of Nodes
onto hardware (Section 3.3). Furthermore, Dataflows are
composable—that is, they themselves can be used as a Node
within a larger Dataflow.

Finally, Harmonic CUDA provides an automatic Node
scheduler that is able to efficiently schedule Nodes onto
hardware for many common cases, and APIs that the pro-
grammer can use to manually schedule Nodes onto hardware
for more complex cases (Section 3.5).

To enable Harmonic CUDA to coexist alongside traditional
CUDA, threads can interact with aforementioned compo-
nents. For example, Harmonic CUDA could provide Nodes
whose function is to read data from a thread-provided loca-
tion, or to fill data into a location where other GPU threads
can consume the data directly.

Workflow. Programmers should use Harmonic CUDA in
a three-step process. First, they should conceptualize their al-
gorithm as a dependency graph of producers and consumers
without considering the physical mapping of computations
or storage locations to the GPU. Next, they must instantiate
the dataflow in code and decide where to map the Nodes and
Connectors to the GPU. Here, simply supplying the correct
flags is enough for the system to take care of the backend.
Finally, they should profile their kernel and adjust the map-
ping based on results, such as separating two Nodes to make
them warp-specialized or using shared memory instead of
registers.

3.1 Nodes

A Node is an abstraction of data transformation and move-
ment that specifies what computation is being done. Where
and when are instead specified by a programmer-provided
compute location parameter and by Harmonic CUDA’s sched-
uler. Nodes utilize NVIDIA’s “Cooperative Groups” API [11]
to specify which hardware unit(s) to use. The actual imple-
mentation of a Node, or its Backend, may be highly opti-
mized third-party CUDA backends, hardware accelerators,
or custom code written by the end user that builds on top of
the Node framework. The compiler can often determine the
specific backend of a Node at compile time based on the loca-
tions of the input and output data of the Node, the compute
location the Node runs on, and the hardware capabilities of



PMAM °23, February 25-March 1, 2023, Montreal, QC, Canada

__global__ memcpy_kernel(int *global_data, int size) {
__shared__ int shared_datal...];
auto Global2Shared = make_MemMover (/*compute_group=+*/GridGroup,
/*input_location=+/LocationGlobal,
/*output_location=+/LocationShared,
/*input_data=*/global_data,
/*output_data=*/shared_data,
/*size=*/size * sizeof(int));
auto Shared2Global = make_MemMover(/#...%*/);
/7 ...
}

SO0V U A WN =

_

Listing 1. Memory Copy Node Instantiation.

the GPU architecture. Other factors, such as runtime flags,
may also determine the backend of a Node.

To support the programmability goal, Harmonic CUDA
provides Node templates that programmers can customize
to their needs, either by building on top of a template or by
providing a concise lambda function that implements the
Node’s behavior. This allows programmers to easily create
Nodes that are highly optimized for their specific use case,
while still utilizing the high-level programming model.

The following sections describe several “perspectives” of
Nodes: what the programmer cares about, what the backend
implementer needs to know, and what the scheduler needs.

Node User. A Node user must understand at a high level
what a Node does and what parameters to change to control
its behavior. Given a Node, the programmer is responsible for
assigning the Node to a Compute Location based on an algo-
rithmic design decision. The programmer is also responsible
for providing a Node with the correct inputs and outputs at
all relevant ports. To run the Node, the programmer should
provide the desired batch size or total amount of data. This
can either be at runtime or compile time. Each Node includes
a progress() method, which instructs the Node to make
forward progress given its available input data and output
space. The programmer must understand what action a given
Node’s progress () method takes, and must also understand
what a Node requires to be “ready” or “finished.”

Listing 1 shows an example of how to instantiate two
“MemMover” Nodes for a basic Memory Copy example. Both
Nodes map to a GridGroup and internally calculate indices
relative to other blocks. Alternatively, the user could as-
sign each Node to a BlockGroup and use Harmonic CUDA
helpers to calculate global memory pointers and copy sizes
per-block. The LocationGlobal and LocationShared pa-
rameters allow Harmonic CUDA to make compile-time opti-
mizations. Variations of make_MemMover (provided by Har-
monic CUDA) could provide greater runtime flexibility but
higher runtime cost by omitting the need to specify input
and output data locations at compile time.

Node Implementer. 1t is the Node implementer’s respon-
sibility to provide the functionality of the Node given the
input and output locations of the data, the target GPU ar-
chitecture, the runtime flags of the Node, or the compute

42

Wapman et al.

__device__ progress(int buffer_size, PipelineT &pipe) {
#1f __CUDA_ARCH__ >= 800

1
2
3 // Special asynchronous copy for Ampere GPUs using DMA units.

4 cuda: :memcpy_async(

5 this->get_compute_group(), this->output_base + this->output_offsett,

6 this->input_base + this->input_offset, buffer_size * sizeof(int), pipe);
7 #else

8 // For non-Ampere GPUs. ..

9 #endif

internal_state_update(buffer_size);

1 3}

__device__ bool is_finished() { return elements_copied >= max_copies; }
__device__ bool is_ready(/x...*/) {
15 VARV

return !(input_elems_avail == 0 || output_space_avail == 0 ||
elements_copied >= max_copies);

Listing 2. Architecture-Specialized Node Backend.

location the Node is mapped to. As part of the implemen-
tation, the Node must be able to query input and output
Connectors to determine how much data is available and
where to read from or write to. Internally, a Node must imple-
ment is_finished() and is_ready() methods that are for
dynamic scheduling, along with any necessary internal state
tracking based on the total amount of data or the batch size.
Finally, Nodes must perform all data movement and transfor-
mation when calling the progress() method, including any
internal state updates. It is possible to implement several vari-
ants of the progress() method, such as supplying pipelines
or other synchronization variables as needed depending on
the configuration of the overall Dataflow.

Listing 2 shows an example of the MemMover backend
from Listing 1, where we demonstrate how for supported
hardware such as Ampere GPUs, the Node can use the DMA
engine for asynchronous memory copies. This reduces regis-
ter usage and allows threads to do other work while copies
complete.

Node Scheduler. From the scheduler’s perspective, the
functionality of a Node is irrelevant. The scheduler only
needs to know if a Node is ready to run, if it is finished, and
how much data it can process in a single call to progress().
If the scheduler knows the Node’s batch size at compile time,
it can generate a static schedule for the Node, which has
much less overhead than a runtime scheduler. For the dy-
namic scheduler, is_finished() and is_ready() methods
allow the scheduler to make runtime decisions about which
Node to run next.

3.2 Connectors

Connectors are responsible for managing the intermediate
buffer storage between Nodes. A Connector’s backing stor-
age may be global memory, a shared memory buffer, thread-
local registers, or other specialized locations such as Tensor
Core registers. Connectors must manage synchronization be-
tween Nodes, handle optimizations such as double buffering,
and assist the scheduler by negotiating the amount of data



Harmonic CUDA: Asynchronous Programming on GPUs

1 __shared__ ConnectorSharedState memcpy_connector_shared_state;
2 auto memcpy_connector = make_connector(Global2Shared, Shared2Global,
3 &memcpy_connector_shared_state);

Listing 3. Connector Instantiation.

that a single call to a Node’s progress() method processes.
In many ways, a Connector is similar to a Buffet [23], in
that it has a fixed capacity, both queue-like and array-like
operations, and forms the basis of connections in a dataflow

graph.

Connector User. The programmer must provide the Con-
nector information about how much storage it has to manage,
how many buffers it has, its batch size, and provide a shared
state for the Connector. Some parameters may be specified
at compile time for better optimization, and others at run
time.

Connector Implementation. The Connector assists its
input and output Nodes with synchronization, pipelining
or barrier operations as instructed by the scheduler. It must
internally encapsulate any necessary pipelines or synchro-
nization helpers and provide Nodes with a way to query
available space/data as well as the read/write offsets.

Scheduler. Given two Nodes with user-specified compute
locations, the Connector is responsible for choosing the ap-
propriate synchronization between the Nodes. This may be a
pipeline, a __syncthreads() barrier, or potentially a no-op
depending on Node behavior and configuration. The sched-
uler must query the Connectors to determine the batch size
for Node scheduling at either compile time or runtime.

3.3 Dataflows

Dataflows represent an encapsulation of a diagram of Nodes
and Connectors. To build a Dataflow, programmers first in-
stantiate a Node or Connector, and then add it to the Dataflow
in a functional programming style, where they incremen-
tally build up a Dataflow by chaining together Nodes and
Connectors (Listings 1, 3, and 4). Depending on the configu-
ration of Nodes and Connectors, the Dataflow may be able
to do higher-level reasoning to optimize the application’s
performance, such as fusing Nodes together.

To support Harmonic CUDA’s goal of composability, a pro-
grammer can pass a Dataflow as a Node to another Dataflow.
Note that while our prototype implementation of Harmonic
CUDA currently does not support this, the abstraction does,
and it is a clear next step for future work, with possible chal-
lenges being how to support the dynamic scheduling of a
Dataflow that is passed as a Node and how to handle cases
where the programmer wants to map a complete Dataflow
to a variety of compute locations.

43

PMAM °23, February 25-March 1, 2023, Montreal, QC, Canada

auto BaseDF = make_dataflow();
auto [DF_Global2Shared, ID_Global2Shared] = BaseDF.add_node(Global2Shared);
auto [DF_Shared2Global, ID_Shared2Global] =
DF_Global2Shared.add_node(Shared2Global);
auto [DF_Connected, ID_Connected] =
DF_Shared2Global . add_connection(memcpy_connector);

U W

Listing 4. Dataflow Instantiation.

3.4 Interaction with CUDA

Harmonic CUDA aims to coexist with traditional CUDA
code. To achieve this, threads can fill data into an input
buffer of a Dataflow, consume data from an output buffer of
a Dataflow, or interact with Node scheduling directly. The
Node framework should also enable programmers to pass in
CUDA lambda functions as parameters to a Node. For exam-
ple, an “Elementwise” Node can consume elements one at a
time from each input buffer. The programmer can then define
the functionality of the Node, such as elementwise addition,
summation over the stream, or some other operation.

3.5 Scheduling

3.5.1 Asynchronous Scheduling. Figure 1 shows an ex-
ample of two memory movement Nodes mapped to different
halves of the same block (e.g., warps 0-3 of the reader and
4-7 of the writer) following the warp specialization approach
in Section 2. The Nodes pass data between one another using
a shared memory buffer abstracted by the Connector. To op-
timize, the Connector can use double buffering, allowing the
reader and writer to work asynchronously and in parallel.
The Connector handles synchronization between the two
Nodes using the “pipeline” abstractions from libcu++.

3.5.2 Interleaved Scheduling. The interleaved schedule
presented in Figure 2 is logically the same Dataflow as be-
fore. However, in the interleaved schedule, the location to
where the Nodes and Connector map are different. Now,
both Nodes map to the same Cooperative Group, and the
intermediate storage location becomes registers rather than
shared or global memory since threads do not need to share
data between one another. The functional end result of the
algorithm is the same, but not the implementation. Now,
the two Nodes share the same compute resources through
time slicing in a pattern of read, write, read, write, read, etc.
Additionally, while the previous example would have been
able to take advantage of Ampere’s asynchronous global-to-
shared memory transfers, the interleaved schedule does not.
This is because the intermediate storage location is a register,
rather than shared memory.

3.5.3 Bulk-Synchronous Scheduling. Algorithms often
require barriers between stages, and although Harmonic
CUDA is a continuous dataflow producer/consumer pro-
gramming model, it also supports sequenced operations. For
example, a kernel where the programmer wants to perform
an in-place sort followed by an in-place scan, they can set



PMAM °23, February 25-March 1, 2023, Montreal, QC, Canada

Device
Memory

Device
Memory

Node 1 Node 2

‘ Warps 0 -7

Figure 2. Interleaved Node Scheduling.

the chunk size equal to the data array size, blocking the scan
Node until it has all available input data. Harmonic CUDA
can also automatically determine if the sort is in-place or
not by analyzing input and output storage addresses, in both
asynchronous and interleaved schedules.

3.5.4 Manual Scheduling. The Manual Scheduling API
enables advanced users to schedule Nodes to run on GPU
hardware. Programmers can query a Node’s readiness, in-
voke its progress() method, and set termination condi-
tions.

3.5.5 Automatic Scheduling. From the user’s perspec-
tive, the only automatic scheduling API is to call the run()
method on a Dataflow. In many cases the automatic sched-
uler is able to generate a static schedule at compile time for
some portions of the Dataflow. For example, in a GEMM
example, the scheduler knows some tile sizes (such as the
sizes for the Tensor Cores) at compile time based on the
GPU architecture and the data type. In such cases, the au-
tomatic scheduler does not need to make each Node query
its Connector for available space and can perform other op-
timizations such as unrolling. For schedules that cannot be
determined at compile time, the automatic scheduler queries
Nodes to determine if they are ready to run, have enough
input data, and have enough output buffer space. The auto-
matic scheduler is currently functional but not performant,
making this a promising area of future work.

3.6 Summary

When programming with Harmonic CUDA, the program-
mer has several key design decisions and implementation
tasks. First, how can the programmer break down their al-
gorithm into Harmonic CUDA Nodes? In many cases, Har-
monic CUDA has off-the-shelf Nodes a programmer can
use. In other cases, the programmer may need to implement
the desired functionality on top of Node templates in the
Harmonic CUDA framework. Second, the programmer must
connect all Nodes together into a Dataflow, specify and allo-
cate the intermediate storage locations (future iterations of
Harmonic CUDA should make this more automatic if possi-
ble), connect all Nodes together into a Dataflow, and specify
desired optimizations such as double buffering. Finally, the
programmer must determine which hardware units each

44

Wapman et al.

Node maps to. This will likely call for some trial-and-error
experimentation. In many cases the programmer may want
to run all Nodes on the same cooperative group in the style
of a traditional CUDA program, and in other cases the kernel
may benefit from Cooperative Group Specialization.

An important abstraction of Harmonic CUDA is the dis-
tinction between a frontend user, whose job is to instantiate
a graph of nodes that logically expresses their desired algo-
rithm, and the backend implementer, who is responsible for
creating performant implementations of individual nodes.
The goal of Harmonic CUDA is that, if the frontend user
fully understands Harmonic CUDA’s programming model
and the high-level functionality of a Node, then the backend
developer can implement the Node without needing to un-
derstand the frontend user’s code. Harmonic CUDA acts as
an intermediate abstraction layer that hides the details of
the hardware and the low-level programming model while
still delivering high performance. Ideally, Harmonic CUDA
should nearly match or even exceed the performance of a
hand-written implementation. Harmonic CUDA intelligently
chooses the appropriate backends or configuration param-
eters of each individual node based on the hardware and
dataflow graph. Although future work is needed to evaluate
this approach across a wide variety of algorithms, Harmonic
CUDA is a promising approach to programming GPUs that is
both expressive and performant in the general case without
requiring significant programmer effort to generate highly
optimized code. For more challenging Dataflows, Harmonic
CUDA Nodes can expose configuration options that allow
the programmer to manually tune some aspects of the im-
plementation without needing to completely hand-write the
program.

4 Matrix Multiplication

Generalized Matrix Multiplication (GEMM) is typically im-
plemented as a device-wide operation. For example, cuBLAS,
NVIDIA’s closed-source matrix multiplication library, sup-
ports GEMM operations launched from the GPU or CPU that
utilize the entire device. CUTLASS, NVIDIA’s open-source
matrix multiplication library, attempts to support more com-
posability in how the GPU handles tile sizes for a variety of
matrix shapes, but this is still primarily at the device level,
where all threads, warps, or blocks in a GPU work together to
solve a single GEMM problem. This limits the ability of pro-
grammers to experiment with GEMM use cases that do not
require a full GPU or that combine GEMM building blocks
with other operations (e.g., Section 5). GEMM also commonly
utilizes hardware acceleration units such as DMA, TMA, or
Tensor Core units.

As GPUs add more of these units over time, it is important
for programmers to have abstractions around these logical
operations so they do not need to do major code rewrites. To
address this, our Harmonic CUDA GEMM implementation



Harmonic CUDA: Asynchronous Programming on GPUs

:_i MMA
Global (C Matrix) Global (A Matrix) | |Global (B Matrix)
<
2D Tile Mover 2D Tile Mover 2D Tile Mover m
Block | [ 1/2Block | [ 1/2Block
2D Tile Mover
< < <
e G (&l
3
2D Tile Mover 2D Tile Mover 2D Tile Mover: w
[ Block | Block | | Block |
2D Tile Mover
) - o)
—
Global (D Matrix;

Figure 3. Matrix Multiplication using Harmonic CUDA 2D
Tile Mover and MMA Nodes.

provides generic building blocks for memory movement and
compute in a way that abstracts away the location, size, or
composition of the building blocks. This allows us to utilize
the same core building block no matter where our input and
output data sources are. For example, moving a 2D tile of a
matrix is logically the same operation whether it is a global-
to-shared or a shared-to-register transfer, even though the
implementation may change.

4.1 Implementation

In contrast to Harmonic CUDA, CUTLASS only supports a
fixed set of operations at each level of the hierarchy. At the
device level, this is the full GEMM operation; at the block
level, a fixed-size tile of the matrix; and at the warp level, a
smaller fixed-size tile that corresponds to the size of a tensor
core, with separate implementations for data movement be-
tween each level. Harmonic CUDA allows the programmer
to reason about the matrix multiplication building blocks
at a higher level of abstraction, while allowing the backend
to take care of the performance-critical optimizations that
could be provided by CUTLASS as a lower-level backend.
GEMM is a hierarchical algorithm. We first tile the output
matrix in global memory and iteratively read in tiles of the
A and B matrices from global to shared memory. We then
repeat this pattern, tiling a block-level output matrix for
warps, and for threads, and so on. Logically, these are all
simply 2D tile movement patterns between different levels
of the memory hierarchy. In Harmonic CUDA we can express
this as a single “2D Tile Mover” Node regardless of the size
of the tile, where it runs on the GPU, or the location of
its inputs or outputs. Finally, we include an “MMA” Node
that performs the matrix multiplication and accumulation
for a single tile of the output matrix. By abstracting away
any optimization details common in Matrix Multiplication
kernels, we enable programmers to think about GEMM as a
small set of building blocks that move memory in 2D tiles

45

PMAM °23, February 25-March 1, 2023, Montreal, QC, Canada

between different levels of the memory hierarchy. We show
the Harmonic CUDA Dataflow in Figure 3.

Although at a high level the only Node the programmer
needs to think about is the “2D Tile Mover” Node, internally,
the Node specializes its backend based on the input and out-
put locations, which compute group it is assigned to, whether
the data is row- or column-major format, the data type of
the matrix, and other runtime and compile-time parameters.
This specialization should be invisible to the user. Similarly,
for the MMA Node we logically map the MMA Node to the
entire block, where the inputs are registers. Although inter-
nally the MMA Node takes advantage of the GPU’s Tensor
Cores and complex logic for index mappings, this is again
invisible to the user. The MMA Node could be alternatively
mapped to a thread, a single warp, or a subset of a block and
still logically perform the correct implementation.

For simplicity, we adapt NVIDIA’s dnmaTensorCoreGemm
example [21] as the backend for all Nodes, modifying opera-
tions to support arbitrary cooperative groups, but note that
any valid GPU GEMM library (such as cuBLAS or CUTLASS)
could form the backend of Harmonic CUDA’s GEMM nodes.
To match the implementation in the sample code reposi-
tory, we map the 2D Tile Mover Node to separate halves
of each block for the global-to-shared memory copies of A
and B matrices, as this is more efficient than mapping each
to the entire block due to the required shared memory tile
sizes. However, the strength of Harmonic CUDA is that it is
easy for the programmer to experiment with configurations
of Nodes onto compute hardware; for example, mapping
all Nodes to the same block would be equally valid (albeit
slower).

We manually schedule Nodes to allow optimal kernel per-
formance. We assume a more sophisticated automatic sched-
uler with minimal overhead could statically determine an
appropriate schedule, as the compiler already knows the Ten-
sor Core tile size at compile time. Note that the programmer
does not need to specify the tile size, as Nodes and Connec-
tors automatically select the implementation and size based
on architecture capabilities, allocated resources, and the data
types of the operation.

4.2 Results

We compare our results in Figure 4 against cuBLAS, NVIDIA’s
highly optimized, closed-source GEMM library. We con-
duct all experiments on an NVIDIA A100 GPU using CUDA
Toolkit version 11.6. Matrices evaluated include square ma-
trices (up to 32768 rows/columns), tiles that are an integer
multiple of SMs to avoid workload imbalance, mixed as-
pect ratios, and (M, N, K) = (6912, 64, 4608), approximating
the amount of work done in the GraphSage kernel (Chap-
ter 5). Our tests show a geomean average speedup of 0.8X
vs. cuBLAS, but excluding the 3 smallest matrices, where
cuBLAS has specialized routines for small matrices, our ge-
omean speedup improves to 0.92X.



PMAM °23, February 25-March 1, 2023, Montreal, QC, Canada

v oge

Figure 4. GEMM Performance Results.

We believe that the performance discrepancy between Har-
monic CUDA and cuBLAS is because although Harmonic
CUDA currently takes advantage of the A100’s Tensor Cores
and DMA units, it lacks many of the low-level optimizations
that cuBLAS performs such as pipelined memory movement,
assembly-level optimizations, heuristics for tile sizes, and
many others. As such, this performance discrepancy is ex-
pected. The goal of this experiment is not to beat cuBLAS,
but rather to show that we are able to express matrix multi-
plication as a dataflow graph of producers and consumers
with a moderately fast backend that allows straightforward
implementation and experimentation. We fully expect that in
the future, given more development time, an open-source li-
brary such as CUTLASS (which achieves performance parity
with cuBLAS) could instead become the backend of Har-
monic CUDA’s GEMM Nodes and could incorporate many
additional optimizations such as pipelining or dimension-
specific variants. Note that the primary barrier to implement-
ing these optimizations in Harmonic CUDA is engineering
time, rather than limitations of the programming model itself.
Pipelined memory movement fits perfectly into the “Connec-
tor” abstraction, assembly-level optimizations may form the
backends of Nodes, and heuristics for tile sizes are a funda-
mental part of the “Node” abstraction, where the Node picks
the appropriate backend implementation depending on the
architecture, data type, matrix size, and other parameters.
We believe that the Harmonic CUDA programming model is
well-suited to these optimizations.

5 GraphSage

GraphSage is an algorithm for machine learning on graphs
that samples the first-hop and second-hop neighbors of the
vertices of the graph and then uses features of these neigh-
bors as inputs to train a dense neural network [10]. Compu-
tationally, GraphSage is interesting because it includes both
a sparse stage (multiple layers of indirection from sampling
the first and second hop neighbors of a batch of vertices)
and a dense stage (performing many matrix multiplications
for training the dense neural network). In this evaluation,
we focus on only a portion of the forward pass that isolates

46

Wapman et al.

Stage 1

Stage 0

L2 neighbors

batch L1 neighbors. -

18 12k8 N 144 K8

predictions

Y |
[ | @ <|
Reduce

51 M ops
64KB 1K8

2k8

Figure 5. GraphSage forward pass with the subset imple-
mented in Harmonic CUDA highlighted in red. Stage 0 repre-
sents sparse gathers and Stage 1 represents repeated GEMM
operations. Reproduced with permission from Angshuman
Parashar.

the sparse sampling stage and a subset of the dense stage in
part as a way to demonstrate the flexibility of the Harmonic
CUDA programming model without adding too much com-
plexity to the evaluation and in part due to time constraints.
We show the full forward pass and highlight our specific
implementation in Figure 5.

A naive approach to GraphSage on the GPU is to simply
separate the algorithm into two kernels. First, one kernel
samples the first-hop and second-hop neighbors and stores
their features in global memory. Next, a second kernel per-
forms the dense linear algebra operations. This approach
is suboptimal because it requires the first stage to perform
an expensive global memory write of all features, followed
by an expensive global memory read from the second stage
to re-read all features. However, with Harmonic CUDA, it
is possible to implement a more optimized approach with
minimal additional complexity that combines the two ker-
nels into a single Dataflow and stores the sampled neighbor
features in intermediate on-chip buffers, only writing the fi-
nal output to off-chip memory. Additionally, with Harmonic
CUDA, we can reuse many of the building blocks of the
previously described GEMM example in new ways to im-
plement shared-memory linear algebra operations and can
take advantage of warp specialization to run the sparse and
dense stages in parallel.

5.1 Implementation

We construct a Harmonic CUDA implementation of the
GraphSage algorithm using building blocks adapted from
prior examples in a new context, as shown in Figure 6. The
strength of Harmonic CUDA is that nowhere in this imple-
mentation do we need to explicitly specify the mapping of
Nodes to compute resources or the actual implementations of
any of the backends of the Nodes. By thinking of GraphSage
as a dataflow graph rather than as a sequence of instruc-
tions to execute, we can easily experiment with different



Harmonic CUDA: Asynchronous Programming on GPUs

~—
o5
E:T:g; Gather — Gather U,
G @ (Neighbors) w (Features: 32)
Gather — enerator
b
(Bound) *L_Fea >
Neighbor Sampler
Sparse
—_— Neighbor Neighbor
Mem [ — r— r—
Global (Batch] m Sampler w Sampler
ey - (First Hop) - (Second Hop) w
T Dense
S — ¥
—_—
Global 2D Tile f——1,/ 12D Tile Mover: 2D Tile Global
Mover W HTER @ (With Scaling) W Mover (Result)

Figure 6. Top: GraphSage Neighbor Sampler Dataflow. Bot-
tom: GraphSage Dataflow with Sparse and Dense Stages.

configurations of the Nodes and can even do more abstract
reasoning about how to map the algorithm to the GPU. For
example, by pipelining the sparse gather stage directly into
the dense GEMM stage on-chip, rather than separating these
into separate kernels, we can eliminate a significant amount
of memory traffic. In our experiments in the following sec-
tions, we evaluate GraphSage in two configurations: one
configuration where the sparse gather stage and the dense
GEMM stage share the same compute resources and time
slice between them, and another configuration where we
assign additional threads dedicated to sparse gathers that
send data to the GEMM stage over a shared memory buffer.
This is easy to perform since the only changes required are
to change the compute locations of the Nodes and to change
the locations of the intermediate storage.

Sparse Gather Stage. In the sparse gather stage, the algo-
rithm reads in the batch of vertices and samples 12 first-hop
neighbors per batch vertex and 12 second-hop neighbors per
first-hop vertex, randomly selected. A vertex with a degree
less than 12 will sample duplicate neighbors. Our Harmonic
CUDA implementation reuses the “MemMover” Node from
Section 3 and adds several new Nodes for performing mem-
ory indirections (the “Gather” Node) and random sampling
(the “RandomNumberGenerator” Node). We also create a
modular “Neighbor Sampler” dataflow that we reuse multi-
ple times for the first-hop and second-hop neighbor samples.
As shown in Figure 6, we can express this algorithm as a
dataflow without thinking about how to parallelize it, map
it to hardware, or perform low-level optimizations. Instead,
the programmer thinks about the algorithm as an abstract se-
quence of logical transformations done to each vertex in the
batch, where data flows sequentially through the dataflow
graph over time. The fact that Nodes have parallel inter-
nal implementations and produce and consume data in a
pipelined manner is abstracted away from the programmer.
The end result of this Dataflow is that for each vertex input to
a NeighborSampler Dataflow, the Dataflow outputs a 64x32
matrix of feature values as well as a stream of the vertex

47

PMAM °23, February 25-March 1, 2023, Montreal, QC, Canada

indices corresponding to each matrix for each second-hop
neighbor of the batch vertices.

Dense GEMM Stage. Rather than using a device-wide
GEMM where all blocks work on tiles of the same matrix as
seen in Section 4, our implementation of GraphSage uses a
per-block GEMM where each block repeatedly multiplies and
accumulates samples of the second-hop vertex features with
a small weight matrix. Additionally, where in our GEMM im-
plementation in Section 4 we previously mapped the MMA
Node to the entire block, in GraphSage, we can instead map
the MMA Node to only a portion of the block, leaving the
rest of the block free to perform the neighbor indirections
to collect the features. We also have different 2D tile move-
ment patterns to consider. Where we previously iterated over
tiles of B in global and shared memory, GraphSage instead
repeatedly uses the weight matrix as B, with the A matrix
changing each iteration. Harmonic CUDA’s abstractions al-
low us to easily reuse the existing building blocks, where the
only necessary change is a small modification to the flags
that describe where the MMA Node runs, the location of the
inputs, and the size of the inputs.

5.2 Results

We compare a warp-specialized, asynchronously-scheduled
GraphSage implementation in Harmonic CUDA to a bulk-
synchronous, interleaved configuration in Harmonic CUDA,
showing significant performance improvements and easier
experimentation. To prove these speedups are from more
efficient hardware utilization, rather than additional hard-
ware resources allocated during warp specialization, we also
compare against cuBLAS using a variant of GraphSage that
eliminates sparse lookups to isolate the performance of the
dense GEMM stage.

GraphSage Performance. Our first Harmonic CUDA im-
plementation is bulk-synchronous and interleaved. In it, we
assign all Nodes in the Dataflow to a full block (256 threads)
and interleave sparse lookups with dense GEMM operations,
yielding a throughput of 8.78 TFLOPS. Harmonic CUDA’s
flexibility allows us to easily pivot our implementation to a
different configuration. In this implementation, we assign
sparse lookups to an additional 64 threads, while keeping
the GEMM on 256 separate threads. This allows asynchro-
nous scheduling with data passing over a double-buffered
shared memory Connector and improves throughput by 34%
to 11.75 TFLOPS. The only thing we have to do to make this
change is to modify the single parameter that specifies which
Cooperative Group each Node runs on.

Now, does this performance improvement stem from the
warp specialization approach or from the additional 64 threads
per block? Harmonic CUDA’s flexibility aids us in perform-
ing this design exploration. To begin, we modify GraphSage
to eliminate indirection from first- and second-hop neighbor
lookups, instead repeatedly using only batch vertex features.



PMAM °23, February 25-March 1, 2023, Montreal, QC, Canada

This yields a throughput of 13.73 TFLOPS. Each block now
only performs a series of small GEMM operations to repeat-
edly multiply the batch feature matrices with the weight
matrix. If this GEMM-like kernel can perform on par with
cuBLAS, we can conclude that because cuBLAS is able to
efficiently saturate the hardware, adding additional threads
to this modified GraphSage experiment would not improve
performance.

GEMM Performance. We approximate the repeated small
GEMM operations of the modified GraphSage kernel as if
they were tiles of a larger GEMM. Testing the equivalent
matrix! in cuBLAS, we achieve 14.6 TFLOPS. Since this is
only a 6% improvement over the modified GraphSage kernel,
we can conclude that the GraphSage GEMM stage would
not benefit from allocating an additional 64 threads (a 25%
increase) to the stage.

Analysis. This GraphSage example highlights the advan-
tages of considering the algorithm’s dataflow and compu-
tation mapping separately. With Harmonic CUDA, the pro-
grammer can easily experiment with different mappings
of Nodes to compute resources. By relocating each Node
and the intermediate buffer storage with a simple parame-
ter change, the formerly bulk-synchronous kernel becomes
warp-specialized, resulting in improved performance com-
pared to the bulk-synchronous version. Additionally, by
viewing GraphSage as a Dataflow of building blocks, we
can easily express changes in computation and storage lo-
cations, keep intermediate results on-chip, and reuse the
building blocks from Section 4 in a new context.

6 Conclusion

Harmonic CUDA demonstrates that rather than thinking
about GPU code as a sequence of operations to be executed
by a thread, the programmer can reason about how an al-
gorithm transforms data without needing to worry about
how specifically to map the algorithm to the GPU. One of
Harmonic CUDA’s most important ideas is that any building
block has use cases in many contexts that are not tradi-
tionally supported by GPU libraries and that a programmer
should be able to reuse the same building block in many
applications and at many different granularities. We bring
this programming model to bear on two real-world examples:
Matrix Multiplication and GraphSage.

We identify several areas for future research. First, ex-
panding Harmonic CUDA to new algorithms that focus on
irregular parallelism, specializations of subsets of a grid, and
algorithms that require more complex Dataflow graphs. We
also believe that Harmonic CUDA should expand beyond a

IThe equivalent matrix has M as the total batch vertices (108 blocks x
batch size of 64), N as the weights per feature (64), and K as the total
number of features (12 first-hop neighbors X 12 second-hop neighbors per
first-hop neighbor X 32 features per second-hop neighbor) for (M, N, K) =
(6192, 64, 4608).

48

Wapman et al.

single GPU to groups of multiple GPUs on one Node or other
architectures such as CPUs and accelerators. This would al-
low the where abstraction to extend not just to layers of the
GPU’s memory hierarchy, but to CPU cores, domain-specific
hardware, and heterogeneous systems. It should also expand
to clusters of multiple GPUs or multiple Nodes, where it has
the potential to make managing data orchestration in a dis-
tributed system easier. In addition, we would like to further
improve the model to make it as performant and easy-to-use
as possible.

Acknowledgments

This work was largely done at NVIDIA under the guidance
of Steve Keckler. Thank you also to Angshuman Parashar
for Figure 5 and to Cris Cecka for help with profiling the
GEMM kernels. This research was, in part, funded by the U.S.
Government under the DARPA SDH program. The views
and conclusions contained in this document are those of
the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the U.S.
Government.

References

[1] Farhoosh Alghabi, Ulrich Schipper, and Andreas Kolb. 2014. A Scalable
Software Framework for Stateful Stream Data Processing on Multiple
GPUs and Applications. In GPU Computing and Applications. Springer
Singapore, 99-118. https://doi.org/10.1007/978-981-287-134-3_7
Michael Bauer, Henry Cook, and Brucek Khailany. 2011. CudaDMA:
Optimizing GPU Memory Bandwidth via Warp Specialization. In Pro-
ceedings of the 2011 International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’11). 1-11. https:
//doi.org/10.1145/2063384.2063400

Michael Bauer, Sean Treichler, and Alex Aiken. 2014. Singe: Leveraging
Warp Specialization for High Performance on GPUs. In Proceedings
of the 19th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP ’14). 119-130. https://doi.org/10.1145/
2555243.2555258

[4] Jack Choquette, Oliver Giroux, and Denis Foley. 2018. Volta: Perfor-
mance and Programmability. IEEE Micro 38, 2 (April 2018), 42-52.
https://doi.org/10.1109/MM.2018.022071134

Federico Ciccozzi, Lorenzo Addazi, Sara Abbaspour Asadollah, Bjorn
Lisper, Abu Naser Masud, and Saad Mubeen. 2022. A Comprehensive
Exploration of Languages for Parallel Computing. ACM Comput. Surv.
55, 2, Article 24 (Jan. 2022), 39 pages. https://doi.org/10.1145/3485008
William J. Dally, Stephen W. Keckler, and David B. Kirk. 2021. Evolution
of the Graphics Processing Unit (GPU). IEEE Micro 41, 6 (2021), 42-51.
https://doi.org/10.1109/MM.2021.3113475

Michat Dominiak, Georgy Evtushenko, Lewis Baker, Lucian Radu
Teodorescu, Lee Howes, Kirk Shoop, Michael Garland, Eric Niebler,
and Bryce Adelstein Lelbach. 2022. std::execution. C++ Standards
Committee Papers. https://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2022/p2300r5.html

Alex Fender, Brad Rees, and Joe Eaton. 2022. RAPIDS cuGraph. In
Massive Graph Analytics. Chapman and Hall/CRC, 483-493. https:
//doi.org/10.1201/9781003033707-22

Tae Jun Ham, Lisa Wu, Narayanan Sundaram, Nadathur Satish, and
Margaret Martonosi. 2016. Graphicionado: A High-Performance and
Energy-Efficient Accelerator for Graph Analytics. 2016 49th Annual
IEEE/ACM International Symposium on Microarchitecture. https://doi.

[2

—

E

—

(5

—_

G

—

[7

—

8

—

[9

—


https://doi.org/10.1007/978-981-287-134-3_7
https://doi.org/10.1145/2063384.2063400
https://doi.org/10.1145/2063384.2063400
https://doi.org/10.1145/2555243.2555258
https://doi.org/10.1145/2555243.2555258
https://doi.org/10.1109/MM.2018.022071134
https://doi.org/10.1145/3485008
https://doi.org/10.1109/MM.2021.3113475
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2300r5.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2300r5.html
https://doi.org/10.1201/9781003033707-22
https://doi.org/10.1201/9781003033707-22
https://doi.org/10.1109/micro.2016.7783759
https://doi.org/10.1109/micro.2016.7783759
https://doi.org/10.1109/micro.2016.7783759

Harmonic CUDA: Asynchronous Programming on GPUs

[10

[t

[11]

[12

—

[13]

[14

flan

[15]

[16]
[17]

[18]

[19]
[20]
[21]
[22]

[23]

[24]

[25]

org/10.1109/micro.2016.7783759

William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive
Representation Learning on Large Graphs. In Proceedings of the 31st
International Conference on Neural Information Processing Systems
(NIPS’17). 1025-1035. https://proceedings.neurips.cc/paper/2017/file/
5dd9db5e033da9c6fb5ba83c7a7ebead-Paper.pdf

Mark Harris and Kyrylo Perelygin. 2017. Cooperative Groups: Flexible
CUDA Thread Programming.  https://developer.nvidia.com/blog/
cooperative-groups/

Kartik Hegde, Hadi Asghari Moghaddam, Michael Pellauer, Neal Clay-
ton Crago, Aamer Jaleel, Edgar Solomonik, Joel S. Emer, and Christo-
pher W. Fletcher. 2019. ExTensor: An Accelerator for Sparse Ten-
sor Algebra. In Proceedings of the 52nd Annual IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO-52). 319-333. https:
//doi.org/10.1145/3352460.3358275

Dominique Houzet, Sylvain Huet, and Anis Rahman. 2010. SysCellC:
a data-flow programming model on multi-GPU. Procedia Computer
Science 1, 1 (May 2010), 1035-1044. https://doi.org/10.1016/j.procs.
2010.04.115 ICCS 2010.

Andrew Kerr, Duane Merrill, Julien Demouth, and John Tran. 2017.
CUTLASS: Fast Linear Algebra in CUDA C++. https://devblogs.nvidia.
com/cutlass-linear-algebra-cuda/

Ronny Krashinsky, Olivier Giroux, Stephen Jones, Nick Stam, and Srid-
har Ramaswamy. 2020. NVIDIA Ampere Architecture In-Depth. https:
//developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/.
MathWorks Corporation. 2022. Simulink. https://www.mathworks.
com/help/simulink/index.html

Duane Merrill. 2013-2022. CUB: Flexible Library of Cooperative
Threadblock Primitives and Other Utilities for CUDA Kernel Program-
ming. (2013-2022). https://github.com/NVIDIA/cub.

National Instruments Corporation. 2022. LabVIEW Documenta-
tion. https://www.ni.com/docs/en-US/bundle/labview/page/Ivhelp/
labview_help.html

NVIDIA Corporation. 2020. NVIDIA H100 Tensor Core GPU Architec-
ture. https://resources.nvidia.com/en-us-tensor-core.

NVIDIA Corporation. 2022. CUDA cuBLAS Library (v11.6). http:
//developer.nvidia.com/cublas.

NVIDIA Corporation. 2022. CUDA Samples. https://github.com/
NVIDIA/cuda-samples.

NVIDIA Corporation. 2022. libcu++: The C++ Standard Library for
Your Entire System. https://nvidia.github.io/libcudacxx/ Version 1.8.1.
Michael Pellauer, Yakun Sophia Shao, Jason Clemons, Neal Crago,
Kartik Hegde, Rangharajan Venkatesan, Stephen W. Keckler, Christo-
pher W. Fletcher, and Joel Emer. 2019. Buffets: An Efficient and Com-
posable Storage Idiom for Explicit Decoupled Data Orchestration. In
Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS °19). 137-151. https://doi.org/10.1145/3297858.3304025
Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain
Paris, Frédo Durand, and Saman Amarasinghe. 2013. Halide: A Lan-
guage and Compiler for Optimizing Parallelism, Locality, and Recom-
putation in Image Processing Pipelines. In Proceedings of the 34th ACM
SIGPLAN Conference on Programming Language Design and Imple-
mentation (PLDI °13). ACM Press, 519-530. https://doi.org/10.1145/
2491956.2462176

William Thies, Michal Karczmarek, and Saman P. Amarasinghe. 2002.
Streamlt: A Language for Streaming Applications. In Proceedings of
the 11th International Conference on Compiler Construction, R. Nigel
Horspool (Ed.). Springer-Verlag, 179-196. https://doi.org/10.1007/3-
540-45937-5_14

49

PMAM °23, February 25-March 1, 2023, Montreal, QC, Canada


https://doi.org/10.1109/micro.2016.7783759
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/5dd9db5e033da9c6fb5ba83c7a7ebea9-Paper.pdf
https://developer.nvidia.com/blog/cooperative-groups/
https://developer.nvidia.com/blog/cooperative-groups/
https://doi.org/10.1145/3352460.3358275
https://doi.org/10.1145/3352460.3358275
https://doi.org/10.1016/j.procs.2010.04.115
https://doi.org/10.1016/j.procs.2010.04.115
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/
https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
https://www.mathworks.com/help/simulink/index.html
https://www.mathworks.com/help/simulink/index.html
https://github.com/NVIDIA/cub
https://www.ni.com/docs/en-US/bundle/labview/page/lvhelp/labview_help.html
https://www.ni.com/docs/en-US/bundle/labview/page/lvhelp/labview_help.html
https://resources.nvidia.com/en-us-tensor-core
http://developer.nvidia.com/cublas
http://developer.nvidia.com/cublas
https://github.com/NVIDIA/cuda-samples
https://github.com/NVIDIA/cuda-samples
https://nvidia.github.io/libcudacxx/
https://doi.org/10.1145/3297858.3304025
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1145/2491956.2462176
https://doi.org/10.1007/3-540-45937-5_14
https://doi.org/10.1007/3-540-45937-5_14

	Abstract
	1 Introduction
	2 Related Works
	3 Programming Model
	3.1 Nodes
	3.2 Connectors
	3.3 Dataflows
	3.4 Interaction with CUDA
	3.5 Scheduling
	3.6 Summary

	4 Matrix Multiplication
	4.1 Implementation
	4.2 Results

	5 GraphSage
	5.1 Implementation
	5.2 Results

	6 Conclusion
	Acknowledgments
	References



