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Diffraction intensities from a crystallographic experiment include contributions

from the entire unit cell of the crystal: the macromolecule, the solvent around it

and eventually other compounds. These contributions cannot typically be well

described by an atomic model alone, i.e. using point scatterers. Indeed, entities

such as disordered (bulk) solvent, semi-ordered solvent (e.g. lipid belts in

membrane proteins, ligands, ion channels) and disordered polymer loops require

other types of modeling than a collection of individual atoms. This results in the

model structure factors containing multiple contributions. Most macromolecular

applications assume two-component structure factors: one component arising

from the atomic model and the second one describing the bulk solvent. A more

accurate and detailed modeling of the disordered regions of the crystal will

naturally require more than two components in the structure factors, which

presents algorithmic and computational challenges. Here an efficient solution of

this problem is proposed. All algorithms described in this work have been

implemented in the computational crystallography toolbox (CCTBX) and are

also available within Phenix software. These algorithms are rather general and

do not use any assumptions about molecule type or size nor about those of its

components.

1. Introduction

Experimentally measured intensities of the crystallographic

structure factors reflect the content of the whole crystal.

Therefore, accurate modeling of the crystal content requires

corresponding structure factors to account for all scattering

matter present in the unit cell. This includes bulk solvent and

other semi-ordered or disordered entities, such as disordered

loops or ligands. Currently, crystallographic packages such as

SHELXL (Sheldrick, 2008), CNS (Brünger et al., 1998),

REFMAC (Murshudov et al., 2011), Phenix (Liebschner et al.,

2019) employ the two-component model for the total structure

factor:

FmodelðsÞ ¼ ktotalðsÞ FcalcðsÞ þ FbulkðsÞ
� �

: ð1Þ

Here FcalcðsÞ is the contribution from all ordered atoms

(macromolecule, solvent, ligands) and s represents a reci-

procal-space vector. FbulkðsÞ accounts for the bulk solvent

contribution using one of the available models: exponential

(Moews & Kretsinger, 1975; Tronrud, 1997), radial-shell (Jiang

& Brünger, 1994), flat with exponential (Jiang & Brünger,

1994) or per-resolution scalar scale (Afonine et al., 2013).

ktotalðsÞ is the overall anisotropic resolution-dependent scale

factor. A similar approach, referred to as PLATON

SQUEEZE (Spek, 2015), is used in small-molecule crystal-

lography, where the contribution of the disordered content of
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the unit cell is explicitly calculated and added to the total

model structure factors. BUSTER (Roversi et al., 2000; Blanc

et al., 2004) uses the three-component model

FmodelðsÞ ¼ ktotalðsÞ FcalcðsÞ þ FbulkðsÞ þ FmissðsÞ
� �

; ð2Þ

where FmissðsÞ describes components other than bulk solvent

that cannot be modeled with individual atoms (such as the

disordered part of a macromolecule or ligands).

Below we propose a more general definition of the total

model structure factor:

FmodelðsÞ ¼ ktotalðsÞ FcalcðsÞ þ
PN
n¼1

knðsÞFnðsÞ

� �
: ð3Þ

Here FcalcðsÞ are calculated on the absolute scale from the

principal part of the model, e.g. atomic model. Terms FnðsÞ

stand for structure factors arising from other (for example,

non-atomic) components added to the sum with some scale

factors knðsÞ. In the simplest case where there is no prior

knowledge available about these non-atomic components,

FnðsÞ can be the structure factors calculated from a binary 0–1

mask of the component n, with 1 inside the region and 0

outside, similar to the flat bulk solvent model (Jiang &

Brünger, 1994). However, any other model considering the

contribution from different parts of the crystal as independent

is applicable. When some prior information is available, then

more sophisticated FnðsÞ models can be used (Blanc et al.,

2004). The number N is not specific for the algorithms and is

defined by a particular problem. Practically, we expect it to

vary from a few up to several hundreds.

The values of the resolution-dependent scale factors ktotalðsÞ

and knðsÞ can be obtained by fitting FmodelðsÞ to the observed

structure-factor amplitudes FobsðsÞ. At this stage, we consider

all structure factors as constants and search only for the scale

factors.

When N ¼ 1, i.e. when a single bulk solvent contribution is

considered, a possible solution has been reported in detail and

implemented in CCTBX and Phenix (Afonine et al., 2013).

When N> 1, a fast, robust and memory-efficient algorithm is

needed. Here we propose four possible algorithms, discuss the

strengths and weaknesses of each of them, and argue for one

to be used as a default choice.

2. Methods

2.1. Common considerations

Assuming k0ðsÞ ¼ 1 and denoting F0ðsÞ ¼ FcalcðsÞ, expres-

sion (3) can be rewritten as

FmodelðsÞ ¼ ktotalðsÞ
PN
n¼0

knðsÞFnðsÞ: ð4Þ

Here ktotalðsÞ is the unknown overall anisotropic scale factor

(Sheriff & Hendrickson, 1987; Afonine et al., 2013), k0ðsÞ ¼ 1

and knðsÞ for n> 0 are unknown scale functions. We suppose

that knðsÞ are smooth isotropic functions of the resolution, i.e.

knðsÞ where s ¼ jsj. No particular analytical shape is assumed

for knðsÞ, as argued by Urzhumtsev & Podjarny (1995) and

Afonine et al. (2013).

The functions knðsÞ vary slowly within sufficiently thin

resolution shells. The resolution shells are defined uniformly

in the logarithmic resolution scale (Urzhumtsev et al., 2009;

Table 1 in Afonine et al., 2013) with two additional and

somewhat contradictory requirements: the shells should be

thin enough to consider scale factors knðsÞ as constant inside

each shell and they should contain a sufficient number of

reflections to make determination of knðsÞ values statistically

valid. The latter condition concerns mostly the lowest-reso-

lution shells.

If all the N components have the same scattering function

(form factor), then (4) can be simplified,

FmodelðsÞ ¼ ktotalðsÞ F0ðsÞ þ kðsÞ
PN
n¼1

knFnðsÞ

� �
; ð5Þ

where scale factors kn are independent of resolution and can

be thought of as occupancy factors of respective components,

and kðsÞ is an overall resolution-dependent scale factor for all

the components. An advantage of (5) with respect to (4) is that

it uses a single parameter kn for all structure factors FnðsÞ, and

the total number of independent parameters reduces from

ðN þ 1ÞMshells to N þ 2Mshells, where Mshells is the number of

resolution shells.

2.2. Initialization

The scaling procedure is iterative and initiated with the

observed structure-factor amplitudes or intensities, FobsðsÞ or

IobsðsÞ, and a set of FnðsÞ. The initial values of ktotalðsÞ and of

k1ðsÞ ¼ k2ðsÞ ¼ . . . ¼ kNðsÞ are obtained as described by

Afonine et al. (2013) considering contributions from all non-

atomic components as a single one. Once all components FnðsÞ

are accounted for, the overall scale factor ktotalðsÞ can be

updated.

Observed amplitudes FobsðsÞ or intensities IobsðsÞ and scaled
~FFnðsÞ ¼ FnðsÞ � ktotalðsÞ are the inputs to each of four algo-

rithms, referred to below as algorithms 1–4. Then, calculations

of improved knðsÞ values are performed independently in

resolution shells. The procedure is repeated iteratively, until

convergence, with ktotalðsÞ and knðsÞ being updated at each

iteration.

In what follows, to simplify expressions, we omit the index

of the resolution shell when this does not lead to confusion.

2.3. Algorithms to search for the scale coefficients

2.3.1. Algorithm 1: sequential search. In algorithm 1 each

component FnðsÞ is added to FmodelðsÞ sequentially one at a

time followed by the update of ktotalðsÞ. For each new FnðsÞ that

is being added the scale factors knðsÞ are computed as

described by Afonine et al. (2013). This means that at each

iteration the procedure of Afonine et al. (2013) is applied N

times, equal to the number of components, which makes the

procedure very expensive computationally. Also, errors in

initially roughly estimated parameters such as ktotalðsÞ can
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propagate into knðsÞ of components being added and that can

result in the failure of the whole procedure.

2.3.2. Algorithm 2: iterative one-step search. Considering

all coefficients kn in each resolution shell as constants, this

algorithm searches simultaneously for their values, minimizing

the residual

LSI ¼
1

4

X
s

ImodelðsÞ � IobsðsÞ
� �2

¼
1

4

X
s

XN

n¼0

kn
~FFnðsÞ

" # XN

m¼0

km
~FF
�

mðsÞ

" #
� IobsðsÞ

( )2

ð6Þ

with respect to kn. Here the outer sums are calculated over

reflections of the given shell. Developing the expression in

curly brackets and swapping the sums over components and

over reflections, this expression can be rewritten as

LSI ¼
1

4

X
s

XN

n¼0

XN

m¼0

kn
~FFnðsÞkm

~FF
�

mðsÞ

" #
� IobsðsÞ

( )2

¼
1

4

X
s

XN

n¼0

XN

m¼0

knkmGnmðsÞ

" #
� IobsðsÞ

( )2

¼
1

4

X
s

( XN

n¼0

XN

m¼0

knkmGnmðsÞ

" #2

� 2IobsðsÞ
XN

n¼0

XN

m¼0

knkmGnmðsÞ

" #
þ I2

obsðsÞ

)

¼
1

4

XN

n¼0

XN

m¼0

XN

j¼0

XN

l¼0

knkmkjkl

X
s

GjlðsÞGnmðsÞ

" #

�
1

2

XN

n¼0

XN

m¼0

knkm

X
s

GnmðsÞIobsðsÞ

" #
þ

1

4

X
s

I2
obs;

ð7Þ

where

GnmðsÞ ¼ GmnðsÞ ¼
1

2
~FFnðsÞ ~FF

�

mðsÞ þ ~FFmðsÞ ~FF
�

nðsÞ
h i

¼ ~FFnðsÞ ~FFmðsÞ cos ’nðsÞ � ’mðsÞ
� �

: ð8Þ

The model values to be compared with the observed

intensities (6) include not only the intensities from the indi-

vidual components, n ¼ m, but also the cross-terms mixing

unscaled structure factors from two components, n 6¼ m.

Being a half-sum of two complex conjugates (8), coefficients

GnmðsÞ describing these cross-terms are real numbers.

The polynomial of the fourth degree (7) with respect to

individual scale factors kn can be minimized using a standard

approach, e.g. L-BFGS (Liu & Nocedal, 1989). Similar to

other gradient-based algorithms for a local minimization, it is

an iterative procedure which requires the initial values for

refinable variables to be reasonably close to the expected

solution, as well as all partial derivatives with respect to these

variables. Depending on the number of refinable variables and

the proximity of their initial values to the expected solution,

several (typically between ten and 100) iterations of mini-

mization are typically required. The derivatives of LSI with

respect to kj, j ¼ 0; . . . N, required by the minimizer, are

@LSI

@kj

¼
XN

m¼0

XN

n¼0

XN

l¼0

klknkm

X
s

GjlðsÞGnmðsÞ

" #

�
XN

n¼0

kn

X
s

GjnðsÞIobsðsÞ

" #
: ð9Þ

2.3.3. Algorithm 3: non-iterative two-step search. In this

algorithm, instead of using iterative minimization methods, we

search for the minimum of (6) analytically, which does not

require an estimate of initial values for kn. First, we introduce

(N + 1)2 intermediate parameters,

�mn ¼ kmkn ¼ �nm where m; n ¼ 0; . . . ;N: ð10Þ

We start from the search for their values that we decompose

later into individual coefficients kn.

Rewriting the function (6) using new variables (10) makes it

a quadratic function of these new variables,

LSI ¼
1

4

X
s

XN

m;n¼0

�nmGnmðsÞ

" #
� IobsðsÞ

( )2

; ð11Þ

which we minimize with respect to �nm. The minimum of LSI

can be found as a solution of a system of linear equations with

respect to these unknowns. After excluding the redundant

variables due to the commutativity property, �mn ¼ �nm, we

stay with 1
2 ðN þ 1ÞðN þ 2Þ equations ½@=ð@�jlÞ�LSI ¼ 0 for the

independent variables �jl, 0 � j � l � N:

PN
0�m�n

�nm"nm

P
s

GjlðsÞGnmðsÞ ¼
P

s

GjlðsÞIobsðsÞ: ð12Þ

Here "nm ¼ 1 if m ¼ n and "nm ¼ 2 otherwise, as this comes

after swapping the order of summation in derivatives of (11)

and putting together the terms with the indices mn and nm.

This is a system of linear equations that can be solved using a

standard approach (for example, Meckes & Meckes, 2018).

Solution of (12) yields �nm values (10), 0 � m � n � N,

which now allows one to search for N þ 1 scale coefficients kn

by minimizing the following residual:

LS� ¼
1

2

XN

m;n¼0

ln knkmð Þ � ln �nm

� �2

¼
1

2

XN

m;n¼0

ln kn þ ln km � ln �nm

� �2
: ð13Þ

Using logarithms rather than the values themselves in (13)

allows us to find the minimum of (13) with respect to kn

analytically as a solution of the system of linear equations

ðN þ 1Þ ln kj þ
PN
n¼0

ln kn ¼
PN
n¼0

ln �jn: ð14Þ

This gives
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ln kj ¼
1

ðN þ 1Þ

XN

n¼0

ln �jn �
1

2ðN þ 1Þ

XN

m¼0

XN

n¼0

ln �mn

" #
;

j ¼ 0; . . . ;N; ð15Þ

where recovering kn from ln kn is trivial.

While this algorithm requires neither iterations nor initial

values of the scale factors, its serious disadvantage is the large

dimension of the system of equations (12), the need to use a

square matrix of the dimension 1
2 ðN þ 1ÞðN þ 2Þ, and sensi-

tivity to rounding errors. This makes it impractical when

applied to real structures and we describe it here for the sake

of completeness.

2.3.4. Algorithm 4: iterative phased search. With this

algorithm, we try to avoid both an iterative minimization of a

function of many variables (algorithm 2) and the use of a large

system of equations (algorithm 3). To do so, instead of

comparison of intensities, we compare structure factors as

complex values. The generally unknown phase values ’obsðsÞ

can be approximated as those of the model structure factors

(4),

’obsðsÞ ’ ’modelðsÞ; ð16Þ

which is a reasonable assumption for a nearly finalized model,

the scenario when the multi-component model is expected to

be used. We express the best fit of the complex structure

factors as a function to be minimized with respect to kn,

LFF ¼
1

2

X
s

XN

n¼0

kn
~FFnðsÞ � FobsðsÞ

" #� XN

n¼0

kn
~FFnðsÞ � FobsðsÞ

" #

¼
1

2

XN

n;m¼0

knkm

X
s

GnmðsÞ

" #
�
XN

n¼0

kn

X
s

HnðsÞ

" #

þ
1

2

X
s

FobsðsÞ
� �2

; ð17Þ

where GnmðsÞ are defined previously by (8) and HnðsÞ are

defined similarly as

HnðsÞ ¼
1

2
~FF
�

nðsÞFobsðsÞ þ ~FFnðsÞF
�
obsðsÞ

h i
¼ < ~FF

�

nðsÞFobsðsÞ
h i

¼ ~FFnðsÞFobsðsÞ cos ’nðsÞ � ’obsðsÞ
� �

: ð18Þ

Minimization of (17) results in a system of N + 1 linear

equations with respect to kn:

PN
n¼0

kn

P
s

GjnðsÞ

� �
¼
P

s

HjðsÞ; j ¼ 0; . . . ; N; ð19Þ

which, similarly to (12), can be solved using a standard

approach. Several iterations, typically up to a few dozens, may

be required to solve (17), with each iteration improving model

structure factors (4) and respective phase values (16) and

updating HnðsÞ (18).

3. Testing algorithms 2 and 4

3.1. Generalities

As discussed in the Introduction, the multi-component

model may be applied to the solution of various problems and,

generally, it consists of two stages: (i) defining these compo-

nents and calculation of structure factors from them, and (ii)

combining these structure factors together into the total

model structure factor (4). The first stage (defining compo-

nents) is very problem specific. The components may arise as a

result of annotation of macromolecular cavities (Matthews &

Liu, 2009), or map analysis to find and model regions of

semi-ordered lipid layers (Sonntag et al., 2011), or from

calculating blurred binary masks to account for the bulk

solvent (Jiang & Brünger, 1994), or use a large-Gaussian

model to approximate yet unmodelled parts of the macro-

molecule (Lunin et al., 1995), and so on. The second stage

(combining structure factors from multiple components)

is not problem specific: it is independent of how the compo-

nents and their structure factors were obtained. Since

in this work we describe the algorithms that address the

second stage, the test calculations described below have been

done using a simple self-contained model to prove that the

algorithms can find accurate values of the multi-component

optimal scale functions knðsÞ in (4). In what follows, we focus

on algorithms 2 (iterative one-step search) and 4 (iterative

phased search) as algorithms 1 (sequential search) and 3 (non-

iterative two-step search) are much less likely to find practical

application. Also, as stated in Section 2.2, during the search for

the scale factors kn all structure factors, FcalcðsÞ and FnðsÞ,

remain unchanged.

3.2. Error-free test with a few components representing
isolated regions inside a protein

To test the performance of these algorithms, the following

numeric experiment was set up. The Ypd1p model [PDB

(Protein Data Bank) code 1c03, Song et al., 1999] was obtained

from the PDB (Burley et al., 2021) and the bulk solvent mask

was calculated using the standard approach (Jiang & Brünger,

1994). This mask has one large isolated region that constitutes

about 57% of the unit-cell volume (174 794 Å3) and six much

smaller regions with the volume varying between 50 and

190 Å3. Each of these regions was considered as an individual

solvent region with its own binary mask, 1 inside the region

and 0 outside. The total model structure factor for this system

was defined according to (3) as

FmodelðsÞ ¼ Fcalc atomsðsÞ þ exp �
Bs2

4

� �XN

n¼1

knFmask nðsÞ: ð20Þ

Here, N ¼ 7 is the number of regions, and the exponential

resolution-dependent scale factor was introduced similarly to

the flat bulk solvent model to smooth the sharp boundaries of

masks with the smearing B factor of 50 Å2 (Fokine &

Urzhumtsev, 2002). Each region was assumed to have its own

individual scale factor kn, and their values were assigned

randomly in the range between 0 and 1. For each trial choice
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of kn the corresponding set of structure factors (20) was

calculated and their absolute values were then referred to as

error-free ‘observable data’ FobsðsÞ. These FobsðsÞ, Fcalc atomsðsÞ

and the set of smeared Fmask nðsÞ were subjected to algorithms

2 and 4 and the obtained values of kn were compared with the

known values using relative error as a measure. Additionally,

the crystallographic R factor was calculated using the known

exact FobsðsÞ and model structure factors (2) calculated with kn

values recovered by one of the two algorithms. Since the

outcome of the procedure can potentially depend on the

choice of kn used to calculate FobsðsÞ and the initial kn values

used by algorithms, the procedure was repeated 1000 times,

each time using the different set of kn and varying the initial

values for kn within about an order of magnitude from the

known values. In all cases, both algorithms recovered the kn

values almost exactly, within 0.0001% error, regardless of the

choice of kn and the initial values.

3.3. Robustness with respect to errors in the atomic model

Additionally, the performance of the algorithms was

assessed in the presence of random errors in atomic model

coordinates using the same test setup as in Section 3.2.

Generally, the errors can be of several types (e.g. systematic,

random) and have many sources, such as errors in atomic

model parameters (coordinates, B factors, occupancies) or

model incompleteness, as well as errors in experimental data

(measurement errors, completeness). Here we only focus on

removable model errors (Lunin et al., 2002), which do not

prevent the model eventually reproducing the experimental

data accurately if all model parameters have their exact values.

This is fundamentally different to the case of irremovable

errors. An example of irremovable errors is crystal structure

model incompleteness, when the model describes only a part

of the entire unit-cell content. In this case no choice of model

parameters can fully compensate for the missing scattering

and the best fit of model parameters to the data does not

necessarily lead to accurate model parameters, in fact, the

opposite (Lunin et al., 2002). This problem is typically

addressed by the appropriate choice of refinement target

function and not by the optimization procedure itself (Lunin

et al., 2002).

Provided the model completely describes the unit-cell

content, errors in atomic coordinates are an example of

removable errors that we consider in what follows. Also,

simulation of random errors in atomic coordinates can be

thought of as somewhat similar to the simulation of correlated

random errors in the experimental data (Lunin et al., 2002;

Holton et al., 2014). Thus, in the following test random errors

of different magnitude were introduced to atomic coordinates

leading to the root-mean-squared deviation (RMSD) between

initial unperturbed and perturbed models in the range

between 0 and 1 Å with a step of 0.1 Å. The unperturbed

atomic model, the set of mask structure factors calculated for

each of seven regions and the known values of kn were used to

generate IobsðsÞ using formula (20). The perturbed model was

used to calculate FcalcðsÞ during the search. For each pertur-

bation dose, 1000 trials of running algorithms 2 and 4 were

performed as described above for the error-free case, and the

mean of the relative error in kn and the standard deviation

were calculated across all 1000 trials [Figs. 1(a), 1(b)]. Addi-

tionally, the crystallographic R factor was calculated [Fig.

1(c)]. Both algorithms perform similarly up to the coordinate

error of 0.4 Å, leading to the relative error under 20%; this
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Figure 1
Relative mean error in kn (a), its standard deviation (b) and (c) R factor
between error-free simulated FobsðsÞ and jFmodelðsÞj (20) computed from
an atomic model with indicated mean coordinate errors using kn values
recovered by algorithm 4 (gray), algorithm 2 without second derivatives
(orange) and algorithm 2 using second derivatives (blue). The black line
in (c) shows the initial R factor calculated assuming all kn values are zero.



coordinate error is within various estimates reported in the

literature [see, for example, pp. 658–662 in Rupp (2009), and

references therein]. After that limit, algorithm 2 performs

systematically better. For large coordinate errors, using second

derivatives of (6) explicitly calculated and supplied to L-BFGS

@2LSI

@kl@kj

¼
XN

m¼0

XN

n¼0

knkm

X
s

GjlðsÞGnmðsÞ

" #

þ 2
XN

n¼0

knkm

X
s

GjmðsÞGlmðsÞ

" #
�
X

s

GjlðsÞIobsðsÞ

ð21Þ

improved the performance of algorithm 2 further. Overall,

algorithm 2 with second derivatives seems to perform best

across all trials in terms of yielding the lowest relative error

[Fig. 1(a)] and more consistently [Fig. 1(b)] compared with

other algorithms. However, given that errors of magnitude

0.5 Å or larger are rather rare and unrealistic, and algorithm 2

is much slower than algorithm 4, the latter may be the default

option of choice for practical applications.

3.4. Robustness with respect to the number N of components

In the tests above, the rather small number of components

contributing to the total model structure factor (3–4) were

defined by the atomic model of choice and remained the same

in all calculations. However, the number and size (especially

relative to the macromolecule and to each other) of these

components can potentially affect the performance of the

algorithms. To explore this, the following numeric experiment

was set up. The lysozyme model (PDB code 1jkb, Muraki et al.,

1997) was obtained from the PDB (Burley et al., 2021) and

placed in the middle of a virtual P1 unit-cell box. The atomic

model occupied 25% of the unit cell, which corresponds to a

somewhat above average solvent content. Individual regions

that contribute to the total model structure factor were

mimicked by spheres placed in the solvent region of the unit

cell such that they occupied the entire solvent region and did

not overlap with the protein and themselves. The size (radius

Rn) and occupancy kn of each sphere were chosen randomly

between 3 and 10 Å and 0.1 and 100, correspondingly. This

typically generated between 30 and 50 spheres. Using spheres

as individual mask components allowed a fast calculation of

their structure factors analytically using the same B factor

equal to 50 Å2 as in the previous tests:

FmodelðsÞ ¼ Fcalc atomsðsÞ þ exp �
Bs2

4

� �

�
XN

n¼1

kn

sinð2�sRnÞ � ð2�sRnÞ cosð2�sRnÞ

2�2s3

� �

� exp i2�srnð Þ; ð22Þ

where Rn is the sphere radius and rn is its center (Appendix

A). The rest of the test was performed exactly as in the

previous example and yielded essentially similar results (not

shown).

The Python code of the numeric test described above is part

of the CCTBX distribution and is used as a regression test for

algorithms 2 and 4; it is located in the mmtbx.bulk_solvent

module of CCTBX.
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Figure 2
Relative mean error in kn (a), its standard deviation (b) and (c) R factor
between error-free simulated FobsðsÞ and jFmodelðsÞj (20) computed using
kn values recovered by algorithm 4 (gray), algorithm 2 without second
derivatives (orange) and algorithm 2 using second derivatives (blue),
plotted as a function of a random Gaussian error introduced to observed
Iobs which is expressed through the respective R factor. The black
line in (c) shows the initial R factor calculated assuming all kn values are
zero.



3.5. Errors in experimental data

So far, all tests described above have been done using the

model-simulated error-free experimental data. While

modeling the experimental data which include many various

sources of errors, e.g. those discussed by Borek et al. (2003)

and Pozharski (2012), is a challenging task, here we focused on

the simplest and most straightforward case of independent

random errors distributed using the Gaussian law. These

errors were introduced into model-calculated values of Iobs

such that the resulting values of Iobs with errors match the

exact error-free values up to specified R factors of 0 (no

errors), 5, 10, 15, 20 and 25%. This mimics the typical R-factor

values in macromolecular crystallography performed at a

broad range of resolutions of the experimental data: from

ultra-high to mid-low (e.g. Urzhumtsev et al., 2009). Similarly

to Section 3.3, 1000 runs were done for each of six error doses

introduced to Iobs. In terms of robustness and consistency of

recovering kn, algorithm 4 performed notably better than

either of the two versions of algorithm 2 [Figs. 2(a), 2(b)]. This

is likely because algorithm 4 uses model phases and in this test

model phases were kept error free.

3.6. Test with real (not simulated) experimental data

For this test we have selected a model and experimental

data from the PDB (PDB code: 4gu0, Chen et al., 2013) and

focused on an isolated region inside the protein near residue

131 in chain H [Fig. 3(a)]. The residual density map still shows

a rather strong peak in this region [Fig. 3(b)] after solvent and

all scales have been accounted for using the standard

approach as implemented in CCTBX (Afonine et al., 2013),

which suggests that the region is occupied by either a disor-

dered ligand or by a solvent other than the bulk solvent

everywhere else. This region is considered as an independent

component in (4) and its scale factor kn was obtained using

both algorithms 2 and 4. The inclusion of this region in the

total model structure factor (4) with refined kn (both algo-

rithms yielded virtually the same value) flattened out the

residual density map [Fig. 3(c)].

4. Discussion

The multi-component approach to modeling the crystal

content provides an opportunity for a more complete and

accurate description. The model described here allows for

explicit inclusion of semi-ordered solvent, disordered ligands

and parts of the macromolecule as well as the features in the

bulk solvent that deviate from the flat solvent model. In this

approach each feature being modeled, which is not a part of

the atomic model nor bulk solvent, is treated individually and

its contribution to the total model structure factor is added as

a correction term with a refinable resolution-dependent scale

factor. Calculating these scale factors in a numerically efficient

and stable manner is an algorithmic challenge to which we

provide a solution. Algorithm 1 is the most straightforward in

terms of implementation but at the same time it is the most

runtime expensive and offers no guarantee of convergence to

the correct result. Algorithm 3 does not require iterations and

leads to the solution analytically; however, it is sensitive to

rounding errors and is very computer memory expensive.

While we found that both algorithm 2 (using second deriva-

tives) and algorithm 4 perform almost identically in terms of

recovering parameters in our tests with reasonable-size errors,

algorithm 2 requires substantially more calculations and thus

it is more runtime expensive. Therefore, algorithm 4 is

suggested as the default choice. All the algorithms described

here are implemented in CCTBX (mmtbx.bulk_solvent

module) and are available in the Phenix suite starting from

version 1.20rc4-4425. Putting these algorithms in production

to automatically model non-uniform features of the bulk

solvent and disordered parts of the atomic model, both

macromolecule and ligands, is an ongoing effort within the

Phenix team and collaborators.

APPENDIX A
Let us define a binary mask 1/0 of a sphere at the origin and

with radius R. Its Fourier transform (scattering function, or

structure factors if we consider s as points of the reciprocal-

space grid)
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Figure 3
Bulk solvent mask (a) outlining a pocket inside the protein (PDB: 4gu0, near residue 131 in chain H) and the weighted difference map (Read, 1986)
calculated assuming this pocket is empty (b) or filled with a solvent that was modeled using algorithm 4 (c). Map contouring levels are indicated on the
figure.



FðsÞ ¼
R
jrj�R

exp 2�irsð Þ dV ð23Þ

is spherically symmetric. Being expressed in spherical coor-

dinates with r ¼ jrj, s ¼ jsj and � the angle between the

vectors r and s, its radial component

�FFðsÞ ¼
RR
0

R�
0

R2�
0

r2 sin � exp 2�irs cos �ð Þ d’ d� dr ð24Þ

becomes equal to the 3D interference function times the

volume of the integration sphere:

�FFðsÞ ¼ 2s�1

ZR

0

r sin 2�rsð Þ dr

¼
sin 2�sRð Þ � 2�sRð Þ cos 2�sRð Þ

2�2s3

¼
4�R3

3
3

sin 2�sRð Þ � 2�sRð Þ cos 2�sRð Þ

2�sRð Þ
3

� �
: ð25Þ
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