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ABSTRACT OF THE DISSERTATION

Statistical Learning for High-dimensional Imaging Data Analysis

By

Wei Hu

Doctor of Philosophy in Statistics

University of California, Irvine, 2019

Weining Shen, Chair

The past two decades have witnessed tremendous advancement in medical imaging techniques.

The explosive growth of high-dimensional imaging data brings new challenges to statisticians.

Machine learning has opened new horizons in a variety of tasks including image recognition and

restoration, personalized medicine, medical image analysis and many others. However, machine

learning systems remain mostly black boxes despite widespread adoption. Understanding the sta-

tistical properties and the predictions behind black-box models is crucial as it can help to interpret

the analysis results. This dissertation dedicates to the development of new statistical learning

methods for image data analysis and new insights in understanding block box predictive model

behavior.

We start by proposing a novel linear discriminant analysis approach for the classification of high-

dimensional matrix-valued data that commonly arises from imaging studies. Motivated by the

equivalence of the conventional linear discriminant analysis and the ordinary least squares, we

consider an efficient nuclear norm penalized regression that encourages a low-rank structure. The-

oretical properties including a non-asymptotic risk bound and a rank consistency result are estab-

lished. Simulation studies and an application to electroencephalography data show the superior

performance of the proposed method over the existing approaches.

Next, we propose a novel nonparametric matrix response regression model to characterize the as-

x



sociation between 2D image outcomes and predictors such as time and patient information. Our es-

timation procedure can be formulated as a nuclear norm regularization problem, which can capture

the underlying low-rank structures of the dynamic 2D images. We develop an efficient algorithm

to solve the optimization problem and introduce a Bayesian information criterion for our model to

select the tuning parameters. Asymptotic theories including the risk bound and rank consistency

are derived. We finally evaluate the empirical performance of our method using numerical sim-

ulations and real data applications from a calcium imaging study and an electroencephalography

study.

Finally we propose to trace the predictions of a black-box model back to the training data through

a representation theorem calibrated on a continuous, low-dimensional latent space, making the

model more transparent. We show that for a given test point and a certain class, the pre-activation

prediction value can be decomposed into a sum of representer values, where each representer value

corresponds to the importance of the training point on the model prediction. These representer

values provide users a deeper understanding of how training points lead the machine learning

system to the prediction. We further elaborate our method through theoretical studies, numerical

experiments and applications such as debugging models.

xi



Chapter 1

Introduction

1.1 Overview of imaging data in applications

Since the last decade, modern scientific technologies have been producing data with complex struc-

ture in the form of matrix or tensor. One main instance is neuroimaging data, which includes cal-

cium imaging, diffusion tensor imaging (DTI), local field potentials (LFPs), functional magnetic

resonance imaging (fMRI), electroencephalogram (EEG) and more. fMRI is a class of imaging

techniques for measuring regional and temporal metabolic changes in brain. When a region of the

brain becomes more active, an increase in blood oxygenation and flow acts to meet the increased

energy consumption locally [Glover, 2011]. Imaging the change in blood flow primarily based on

blood-oxygen-level dependent (BOLD) contrast produces a three-dimensional image, where each

voxel corresponds to a brain location and the value represents changes in magnetic susceptibility.

fMRI has promising applications including surgery planning, detecting effects of diseases, mon-

itoring treatment outcomes, as well as some potential ones in translational medicine and clinical

practice such as understanding functional brain disorders [Paul et al., 2006].

Calcium imaging is a powerful avenue for observing the spiking activity of large neuronal popu-
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lations. Calcium influx into cells occurs whenever a neuron fires and changes in concentration of

calcium ions can be detected by the fluorescence of calcium indicator molecules. Therefore the

locations of neurons and the times at which they fire can be recorded by a sequence of 2D images

taken over the time, with each pixel responding to a continuous value of fluorescent intensity as

a result of calcium concentration [Helmchen and Denk, 2005, Petersen et al., 2018]. The primary

goal of interest is to locate the major neurons and model their calcium concentration over the time.

A detailed discussion of calcium imaging is included in Chapter 3.

Another popular neuroimaging technique, EEG, measures voltage values from an array of elec-

trodes placed on scalps to record brain electrical activity on a variety of temporal frequency, in the

sense that between any two electrodes, the difference in voltages can capture current electric flows

generated by neurons. Therefore EEG data plays a vital role in numerous clinical applications by

connecting brain activity with observed behaviors, such as detecting epileptic seizures [Saab and

Gotman, 2005], diagnosing sleep disorders [Platt and Riedel, 2011] and brain computer interface

(BCI) [Lotte et al., 2007]. The project described in Chapter 2 is motivated by an EEG data appli-

cation, where 122 subjects were selected with 77 alcoholic individuals and 45 controls in the aim

to study the EEG correlates of genetic predisposition to alcoholism. Each individual’s scalp was

placed 64 electrodes at 256 Hz (3.9-msec epoch) for 1 second, resulting in a 256 × 64 matrix as

the sampling unit.

Besides imaging data discussed above, a rich source of imaging also includes ultrasound and nu-

clear medicine imaging. Ultrasonic images, also known as sonograms, are processed by flowing

ultrasound pulses using a probe into tissue. The received echos are then transformed into a variety

of digital images such as B-mode image, a two-dimensional image of which the brightness reflects

echo magnitude. Urtrasound imaging is widely used for diagnosing certain medical conditions

especially for pregnancy owing to its safety. Nuclear medicine imaging uses a tiny amount of

radioactive substances that are administered to a patient intravenously or orally. A specially de-

signed camera can track and record radiation emitted from the tracers, in a form of two-dimensional

2



(Scintigraphy) or three-dimensional (SPECT) image.

1.2 Overview: common regularization in high-dimensions

Imaging data bring statistical and computational challenges due to their high and complex struc-

ture. This section provides a review of work on various sparse regression models, where the

number of predictors p is of the same or greater with the sample size n.

Suppose that we have n observed samples zi = (xi, yi), i = 1, 2, · · · , n drawing independently

from some distribution Pθ and taking values in space Z , where the predictor of interest xi =

(xi1, xi2, · · · , xin)T is a vector of length p and yi is the corresponding response. Consider a model

called M that maps xi to yi by and a cost function Ln(Z, θ) : Rp × Zn → R. which is assumed

to be convex and differentiable. The population risk is induced by the expectation of the cost

function: L(θ) = E(Ln(Z, θ)). Let θ∗ be the minimizer of the population risk, i.e.,

θ∗ = arg min
θ∈Rp

L(θ).

It is common to add a user defined regularization term R : Rp → R to the empirical cost function

and solve the following optimization problem:

θ̂ = arg min
θ∈Rp

Ln(Z, θ) + λnR(θ), (1.1)

where λn ∈ R+ is tuning parameter that measures the strength of regularization.

One popular regularization technique is lasso. Lasso was first proposed by Tibshirani [1996]. The

3



optimization program of lasso for a linear regression model is

θ̂ = arg min
θ∈Rp

1

2n

n∑
i=1

(yi − xTi θ)2 + λn‖θ‖1, (1.2)

where ‖ · ‖1 is l1 norm, defined as the sum of absolute values of all entries of a vector. The l1 reg-

ularization tends to shrink redundant model parameters into a smaller subset that contributes most

to the prediction, owing to which lasso is extensively employed in variable selection and model

interpretation. Lasso is then extended to generalized linear model by modifying the objective op-

timization program by a penalized likelihood loss:

θ̂ = arg min
θ∈Rp
− 1

n

n∑
i=1

log p(yi|xi) + λn‖θ‖1.

Lasso has two main drawbacks. First, under small sample case (p < n), lasso selects at most p

variables before it saturates. Second, lasso tends to select one variable in a correlated group and

ignore others. Zou and Hastie [2005] proposed elastic net regularization to address the limitations

by introducing l2 penalty, i.e.,

θ̂ = arg min
θ∈Rp

1

2n

n∑
i=1

(yi − xTi θ)2 + λ1‖θ‖1 + λ2‖θ‖2.

Many other extensions of lasso includes SCAD, fussed lasso, grouped lasso, adaptive lasso and so

on fitting on a variety of structure of model parameters [Fan and Li, 2001, Tibshirani et al., 2005,

Yuan and Lin, 2006, Zou and Hastie, 2005, Zou, 2006]. Besides regression, as to binary clas-

sification purpose, the equivalence between ordinary least squares (OLS) and linear discriminant

analysis (LDA) motivates some work on developing sparse LDA using l1-regularization, which

boils down to the scope of lasso.

The aforementioned methods deal with vector covariates. However, in imaging analysis, the data

can often be represented as a 2d matrix or a 3D tensor. Conventional approaches often stack the

4



image input into a ultra-long vector and apply the Lasso method. This has two main drawbacks.

On the one hand, simple vectorization destroys structural information within image covariates.

On the other hand, the l1 regularization often relies on the sparsity assumption of the underlying

parameters, which may not hold for imaging data.

1.3 Existing statistical approaches for imaging data analysis

In this section, we review some related works on (generalized) linear models for matrix-valued

data. In real data application, it is often the case that low rankness is a more reasonable assumption

than sparseness assumption for the true signal. Analogous to lasso regularization that encourages

sparsity for the parameter space, nuclear (spectral) regularization penalizes on the sum of singular

values of a matrix, therefore forces the estimator to hold a low-rank structure. To start with,

we restate a singular value thresholding algorithm in [Cai et al., 2010] that is useful for solving

optimization program involving nuclear norm regularization.

THEOREM 1.1. Given a matrix X ∈ Rp×q with rank r having singular value decomposition:

X = UΣV∗, Σ = diag({σi}ri=1),

where U ∈ Rp×r and V ∈ Rr×q are matrices with orthonormal columns. Denote ‖ · ‖∗ to be the

nulear norm. The optimal solution to

min
X

1

2
‖X− Y‖2

F + λ‖X‖∗

is UDλ(Σ)V∗, where Dλ(Σ) = diag({(σi − λ)+}).

The singular value thresholding algorithm to some extent indicates that adding nuclear norm reg-

ularization is equivalent to shrinking the singular values of estimator by the regularization with

5



strength related to λ.

Zhou and Li [2014a] introduced a class of regularized regression methods with matrix covariates

hinging upon spectral regularization. Consider a linear regression situation and denote the matrix

of parameters by B ∈ Rp×q and the matrix covariate by X ∈ Rp×q. The objective optimization

problem is formulated as

min
1

2

n∑
i=1

(yi − γT zi− < Xi,B >)2 + λn‖B‖∗, (1.3)

where< ·, · > denotes the inner product of two matrices. zi is a vector of covariates corresponding

to ith observation. Suppose B has singular value decompostion UΣV∗ where Σ is a diagonal ma-

trix with positive diagonal values σ1(B) ≥ σ2(B) ≥ · · · ≥ σr(B) > 0. Then ‖B‖∗ =
∑r

j=1 σj , i.e.,

the problem becomes an l1-norm regularization on singular values pushing estimated B into a low-

rank structure. The spectral regularization formulation is extended to GLM framework straightfor-

wardly by replacing the squared loss with negative log-likelihood function.

Different from lasso, spectral regularization is convex. Therefore any local minima of optimization

program (1.3) is global minimum. Zhou and Li [2014a] proposed a numerical solution of (1.3)

using the Nesterov optimal gradient algorithm, which applies singular value thresholding formula

[Cai et al., 2010] in each iteration and combines two algorithmic iterates to update the estimate.

Still consider a scalar response and a matrix-valued predictor but the matrix of parameters is piece-

wise smooth with unknown edges and jumps rather than a low-rank structure. The assumption of

piecewise smoothness is widely adopted in imaging studies such as associating brain regions with

Alzheimers disease. Wang et al. [2017] proposed a generalized scalar-on-image regression models

with penalization via total variation (GSIRM-TV), which was demonstrated to be potent in pre-

serving the boundaries of images. Under the simplest case of GSIRM-TV, a linear scalar-on-image

6



regression model, the loss function is given by

n∑
i=1

(Yi− < Xi,B >)2 + λn‖B‖TV,

where ‖B‖TV is the total variation of B, i.e.,

‖B‖TV = sup{
∫
ω

B(u, v)divf(u, v)dudv : f ∈ C∞c (Ω;R2), |f |∞ ≤ 1}. (1.4)

The div in (1.4) is the divergence operator defined on a vector field. The total variation regulariza-

tion encourages B to be piesewise smooth and meanwhile is capable of preserving sharp boundaries

and jumps. The minimizer of (1.4) can be solved iteratively where each iterate is updated by the

augmented Lagrangian method.

Besides the situation where the response is a scalar or a vector, the response can also take a matrix

form that characterizes structural connectivity pattern in imaging genetics and the corresponding

covariates are of a vector including age, gender and many others. Kong et al. [2019] investigated

a low-rank linear regression model with high-dimensional matrix response and high dimensional

scalar covariates by considering

Yi =
s∑
l=1

xil ∗ Bl + Ei,

where Yi is p × q matrix of response and xil is a vector of s covariates. To recover the low-rank

structure of coefficient matrices, the loss function is

1

2n

n∑
i=1

‖Yi −
∑
l∈M

xil ∗ Bl‖F + λ
∑
i∈M

‖Bl‖∗, (1.5)

whereM is the set of indices of covariates after pre-screening and ‖ · ‖F is the Frobenius norm.

Solving the minimizer of the objective function (1.5) is based on Nesterov gradient method and

7



singular value thresholding formula [Cai et al., 2010].

1.4 Deep learning on imaging data

Deep learning methods have gained an increasing attention in medical imaging owing to their

capacity in learning underlying complex data distributions. Potential applications include data

augmentation for tumor detection [Han et al., 2019], data completion for improving disease di-

agnosis [Li et al., 2014], personalized treatment suggestions [Nezhad et al., 2016, Krittanawong

et al., 2017], medical image synthesis [Nie et al., 2017] and many others. Among a variety of deep

learning methods, Variational Auto-Encoders (VAEs) [Kingma and Welling, 2013] and Generative

Adversarial Networks (GANs) [Goodfellow et al., 2014] are two breakthroughs in deep generative

models in the sense of approximating data distribution defined on some high-dimensional space

and generating complicated synthetic images.

In VAE, the goal is to maximize p(x) =
∫
pθ(x|z)p(z)dz, the distribution of datapoints x gen-

erated from z in some low-dimensional space Z . However, approximating
∫
pθ(x|z)p(z)dz by

1
n

∑n
i=1 pθ(x|zi) is impractical since pθ(x|zi) is almost 0 for most values of z. Therefore it is of

interest to learn a distribution qφ(z|x) that is more likely to generate x [Doersch, 2016]. To connect

qφ(z|x) with p(x), the following relationship holds:

log p(x)−DKL(qφ(z|x)‖p(z|x)) = Eqφ(log pθ(x|z))−DKL(qφ(z|x)‖pθ(z)). (1.6)

Therefore the objective is to maximize the right side of 1.6 and at the same time to minimize the

KL-divergence between qφ(z) and p(z|x). Since the true posterior p(z|x) is always unknown, when

the model qθ(z|x) has high capacity, DKL(qφ(z|x)‖p(z|x)) is fairly small and then can be ignored.

As a result, the right side of (1.6) is the ultimate object to be optimized, called Evidence Lower

Bound (ELBO). The usual candidate of qφ(z|x) is N(z|µ(x),Σ(x)) where µ(x) and Σ(x) are some
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neural network outputs. Here pθ(x|z) is a function of z denoted by f(θ, z), and qφ(z|x) essentially

acts as an encoder that maps x to its latent representation z and pθ(x|z) is a decoder that decodes

z to reconstruct x. Optimizing process is then possible through stochastic gradient descent via

backpropagation with reparameterization trick of sampling.

Compared to VAE equipped with explicit density function, GANs is a class of “likelihood free”

generative models, i.e., no explicit density function is required, which allows more flexibility. The

GAN framework consists of two neural networks: generator and discriminator. The generator

G : Z → X is a deconvolutional neural network that generates synthetic images from noise z

sampled from some low-dimensional latent space. The discriminator D : X → [0, 1] is trained

to distinguish between synthetic and real images. Two networks compete with each other in the

way that the generator is trained to generate images that are close to real ones to fool the discrim-

inator. Denote the prior of noise z ∈ Z to be pz(z) and the distribution of data x ∈ X to be

px(x). Both generator and discriminator are trained simultaneously via the adversarial objective

minG maxD V (D,G), where

V (D,G) = Ex∼px(x)(log(D(x)) + Ez∼pz(z)(log(1−D(G(z)))), (1.7)

and D(x) is the probability that x is sampled from px(x) rather than generated by G. The minimax

objective is intuitive considering that the generator tries to fool the discriminator but the discrimi-

nator aims to distinguish real and fake images as accurately as possible. Goodfellow et al. [2014]

demonstrated that when G is fixed, the optimal discriminator is

D∗G(x) =
pdata(x)

pdata(x) + pg(x)
.

Given the optimal discriminator D∗G(x), it is trivial to show that the minimax objective is

V (G,D∗G(x)) = 2DJSD[pdata, pG]− log 4,
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where DJSD is Jenson-Shannon Divergence. Since DJSD is always non-negative, the optimal

generator is reached when pdata = pG. GAN has shown superior performance in a variaty of

tasks, however, training GAN remains challenging in practice due to unstable optimization and

mode collapse. There have been numerous works focusing on improving GAN’s training process

including Salimans et al. [2016], Heusel et al. [2017], Salimans et al. [2018] and many others.

1.5 Contribution

Our contribution of this dissertation is multifold.

First, in Chapter 2, we propose a novel matrix linear discriminant analysis (LDA) approach for the

classification of high-dimensional matrix-valued data. The binary classification was formulated as

a penalized least-squares problem with nuclear norm regularization, which efficiently exploits the

low-rank structure of the two-dimensional discriminant direction matrix. We also derive the risk

bound of the estimator, which is explicit in terms of the rank of the image, image size, sample size,

and the eigenvalues of the covariance matrix for the image covariates. We show that to achieve

estimation consistency given p×q image, one sufficient condition is that max(p, q) = o(n/ log3 n).

Under stronger conditions, the estimated rank of the coefficient matrix is proved to be consistent

as well. Finally, we prove that our method enjoys classification error consistency.

Chapter 3 provides a novel regression approach to model the association between 2D image re-

sponse and predictors such as time, patient demographics, and other disease predictors. In contrast

to the dominating use of linear models in the literature, we adopt a flexible nonparametric regres-

sion model to capture the commonly-seen nonlinear relationship in the data. For choosing optimal

tuning parameter, an analytic form of BIC was derived, which is not straightforward in our non-

parametric matrix response model. Finally, we develop the asymptotic theories including the risk

bound and rank consistency for the proposed nonparametric estimator, which directly connects to
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the existing work on nonparametric statistics theory.

Chapter 4 focuses on interpreting predictions of black-box models arising in complex machine

learning systems. We present a representer theorem calibrated on latent space, which decomposes

the pre-activation value into a sum of representer values of training points. By the sign and signif-

icance of represent value, we are able to identify a training point to be an excitory or inhibitory to

a specific prediction, aiding a richer understanding towards the model’s behavior. We also demon-

strate that the representer values measured on latent space characterize the “true” influence of

each training point on the prediction in the sense of approximating the true ranking of influences

of training data. The superior performance of our method is substantiated by adequate heuristic

experiments on large-scale datasets.
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Chapter 2

Matrix Linear Discriminant Analysis

2.1 Introduction

Modern technologies have generated a large number of datasets that possess a matrix structure

for classification purpose. For example, in neuropsychiatric disease studies, it is often of in-

terest to evaluate the prediction accuracy of prognostic biomarkers by relating two-dimensional

imaging predictors, e.g., electroencephalography (EEG) and magnetoencephalography, to clinical

outcomes such as diagnostic status [Mu and Gage, 2011]. In this paper, we focus on extending

one of the most commonly used classification methods, Fisher linear discriminant analysis (LDA)

to matrix-valued predictors. Progress has been made in recent years on developing sparse LDA

using `1-regularization [Tibshirani, 1996], including Shao et al. [2011], Fan et al. [2012], Mai

et al. [2012]. However, all these methods only deal with vector-valued covariates; and it remains

challenging to accommodate the matrix structure. Naively transforming the matrix data into a

high-dimensional vector will result in unsatisfactory results for several reasons. First, vectoriza-

tion destroys the structural information within the matrix such as shapes and spatial correlations.

Second, turning a p× q matrix into a pq × 1 vector generates unmanageably high dimensionality.
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E.g., estimating the population precision matrix for LDA can be troublesome if pq � n. Third,

`1-regularization does not necessarily work well because the underlying two-dimensional signals

are usually approximately low-rank rather than `0-sparse.

Recently, there are some development of regression methods for matrix data. Zhou and Li [2014a]

proposed a class of regularized matrix regression methods based on spectral regularization. Wang

and Zhu [2017] developed a generalized scalar-on-image regression model via total variation. Chen

et al. [2013b] invented an adaptive nuclear norm penalization approach for low-rank matrix approx-

imation.

In this paper, we propose a new matrix LDA approach by building on the equivalence between

the classical LDA and the ordinary least squares. We formulate the binary classification as a

nuclear norm penalized least squares problem, which efficiently exploits the low rank structure

of the two-dimensional discriminant direction matrix. The involved optimization is amenable to

the accelerated proximal gradient method. Although our problem is formulated as a penalized

regression problem, a fundamental difference is that the covariates Xi and the residuals εi are

no longer independent in our case. This requires extra effort for developing the risk bound and

rank consistency result. The risk bound is explicit in terms of the rank of the image, image size,

sample size, and the eigenvalues of the covariance matrix for the image covariates. This result

also implies estimation consistency provided the p × q image satisfies max(p, q) = o(n/ log3 n).

Under stronger conditions, we show that the rank of the coefficient matrix can be consistently

estimated as well. The proof is based on exploiting the spectral norm of random matrices with

mixture-of-Gaussian components and extending the results in Bach [2008a] to allow diverging

matrix dimensions. Finally, we prove that our method enjoys classification error consistency.

It is worth noting that the 2D image classification problem has been studied by Zhong and Sus-

lick [2015], where they proposed a penalized matrix discriminant analysis method (PMDA) that

projects the matrix coefficient into row space and column space separately. Those two projections

are then estimated iteratively and integrated together for classification. Compared with PMDA,
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we make the following contributions. First, the rank of the PMDA is set as one because of the

separability assumption, while we allow the rank of the direction matrix to take general positive

integer values and the rank can then be selected by a data driven procedure. Our rank assumption is

more flexible in practice and hence often leads to a lower mis-classification error in the numerical

studies. Second, our method adopts a direct estimation approach by solving a nuclear norm penal-

ized regression problem, which is computationally much faster compared with PMDA, where the

estimation involves an iterative procedure for calculating the inverse of covariance matrices during

each iteration. Third, our method can handle the high-dimensional data when image dimensions p

and q are much larger than the sample size, which is the case for many applications; while PMDA

cannot handle the case when p + q > n. Finally, we have provided theoretical guarantee for our

estimator when p and q diverge with n. In particular, we have developed an non-asymptotic error

bound for the estimated LDA direction, as well as results on rank consistency and classification

error consistency. These results are stronger compared with the root-n consistency of the LDA

direction in Zhong and Suslick [2015], where both p and q are assumed to be fixed.

2.2 Method

We first define some useful notations. Let vec(·) be a vectorization operator, which stacks the

entries of a matrix into a column vector. The inner product between two matrices of same size is

defined as 〈M,N〉 = tr(MTN) = 〈vec(M), vec(N)〉.

Consider a binary classification problem, where X is a two-dimensional image covariate with

dimension p× q and G = 1, 2 denotes the class labels. The LDA assumes that vec(X) | G = g ∼

N(µg,Σ), pr(G = 1) = π1, and pr(G = 2) = π2. Suppose we have n subjects with n1 subjects

belonging to class 1 and n2 = n − n1 subjects to class 2. It is well known that LDA is connected

to the linear regression with the class labels as responses [Duda et al., 2012, Mika, 2002]. When
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pq < n, the classical LDA is equivalent to solving

(β̂ols
0 , B̂ols) = arg min

β0,B

n∑
i=1

(
yi − β0 − 〈Xi,B〉

)2

, (2.1)

where Xi is the image covariate from subject i, B is the coefficient matrix for the image covariate

and it represents the direction of the linear discriminant classifier, β0 is the intercept, and the

response yi = −n/n1 if subject i is in class 1, and yi = n/n2 if subject i is in class 2. Although

this connection gives the exact LDA direction when pq < n, it has two potential drawbacks. First,

when pq > n, the equivalence between Fisher LDA and (2.1) is lost because of the non-uniqueness

of solution. Second, the formulation (2.1) does not incorporate the 2D image structure when

estimating the direction because 〈Xi,B〉 = 〈vec(Xi), vec(B)〉. These motivate us to consider a

penalized version of (2.1) as follows

(β̂0, B̂) = arg min
β0,B

1

2n

n∑
i=1

(
yi − β0 − 〈Xi,B〉

)2

+ ωn‖B‖∗, (2.2)

where the nuclear norm ‖B‖∗ =
∑

j σj(B) and σj(B)s are the singular values of the matrix B.

The nuclear norm ‖B‖∗ plays an important role because it imposes a low rank structure in the

estimated direction B̂. An alternative choice is to add a Lasso type penalty, i.e. ωn‖B‖1,1 =

ωn
∑p

j=1

∑q
k=1 |bjk|, where bjk is the jk-th element of B. However, the Lasso type penalty can

only identify at most n nonzero components, and for most cases in imaging studies, the signal is

usually not that sparse. More importantly, the Lasso type of penalty ignores the matrix structure

because it is equivalent to vectorizing the array and applying sparse LDA. Once B̂ from (2.2) is

obtained, a naive classification rule will assign the i-th subject to class 2 if 〈Xi, B̂〉 + β̂0 > 0.

However, it can be shown that the intercept β̂0 obtained from (2.2) is not optimal. Instead, we

use the optimal intercept β̃0 that minimizes the training error after obtaining B̂. Mai et al. [2012]

showed that the intercept of LDA actually has a closed form. Their derivations can be easily
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applied to our case. In particular, if (µ̂2 − µ̂1)Tvec(B̂) > 0, then

β̃0 = −(µ̂1 + µ̂2)Tvec(B̂)/2 + vec(B̂)TΣ̂vec(B̂){(µ̂2 − µ̂1)Tvec(B̂)}−1 log(n2/n1), (2.3)

where µ̂g is the sample mean for subjects in class g and Σ̂ is the estimated covariance matrix. If

(µ̂2 − µ̂1)Tvec(B̂) < 0, we can plug −B̂ into (2.3) to obtain the optimal intercept β̃0. The optimal

classification rule is to assign the i-th subject to class 2 if 〈Xi, B̂〉+ β̃0 > 0.

For any fixed ωn, the optimization problem in (2.2) can be solved using the accelerated proximal

gradient method [Nesterov, 1983, Beck and Teboulle, 2009]. Zhou and Li [2014a] studied the

algorithm for the nuclear norm regularized matrix regression. As we know, nuclear norm is not

differentiable. Fortunately, its subderivative ∂‖.‖∗ exists. Therefore (2.2) has local minima (β̂0, B̂)

if and only if 0 ∈ − 1
n

∑n
i=1 Xiεi + ωn∂‖B̂‖∗. Thanks to the convexity of nuclear norm, the local

minima is global as well. Based on these facts, singular value thresholding method for nuclear

norm regularization was deployed for building blocks of the Nesterov’s method. Compared with

classical gradient decent method with convergence of O(t−1), where t denotes the number of itera-

tion, Nesterov’s accelerated gradient decent method achieves convergence rate ofO(t−2). It differs

from traditional algorithms by utilizing the estimators from previous two iterations to generate the

next estimator. For computational algorithm, we use the matrix sparsereg function in the

Matlab TensorReg Toolbox (https://hua-zhou.github.io/TensorReg/) for solving

nuclear norm penalized matrix regression. It implements an optimal Nesterov acceleration of the

proximal gradient algorithm. Actually one contribution of our paper is to link matrix LDA to

regularized matrix regression so that the computational machinery developed for the latter can be

applied to matrix LDA problems. For tuning of the ωn, we adopt the BIC derived by Zhou and Li

[2014a] under the nuclear norm regularized matrix regression framework.
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2.3 Theory

In this section we discuss the theoretical properties of the proposed regularization estimator. De-

note the residuals εi = yi−β0−〈Xi,B〉 and the true coefficient matrix by B0. By the equivalence

between LDA direction and least squares, we know vec(B0) can be written as cΣ−1(µ2 − µ1) for

some positive constant c. Consider the singular value decomposition B0 = U0Diag(S0)VT
0 with

U0 ∈ Rp×r and V0 ∈ Rq×r. Let U0⊥ ∈ Rp×(p−r) and V0⊥ ∈ Rq×(q−r) be (arbitrary) orthogonal

complements of U0 and V0, respectively. We make the following assumptions.

(A1) We assume that the second-order moment of the covariate X, E(vec(X)vec(X)T), denoted

by Σxx, satisfies λl ≤ λmin(Σxx) ≤ λmax(Σxx) ≤ λu, where λmin(Σxx) and λmax(Σxx)

are the smallest and largest eigenvalues of Σxx, respectively, and λl, λu are some positive

constants.

(A2) Let r = rank(B0) be the unknown rank of the true coefficient matrix B0. Define Λ ∈

R(p−r)×(q−r) as

vec(Λ) = {(V0⊥ ⊗U0⊥)TΣ−1(V0⊥ ⊗U0⊥)}−1{(V0⊥ ⊗U0⊥)TΣ−1(V0 ⊗U0)vec(I)}.

We assume its spectral norm ‖Λ‖2 < 1.

(A3) Assume the quantities ωn, {min(p, q)}1/2n−1/2ω−1
n , min(p, q)n−1/2, ωnp1/2q1/2 min(p, q)

tend to 0 as n→∞.

(A4) There exists a positive constant Cµ such that ‖µ2 − µ1‖2 ≤ Cµ(
√
p+
√
q).

Condition (A1) requires bounded eigenvalues for the covariance matrix of the vectored covariate,

which is standard in the literature. Condition (A2) is similar with the strict consistency condition

in Bach [2008a]. It is needed to establish rank consistency. This condition extends the classical

strong irrepresentable condition in Zhao and Yu [2006], which is commonly used for proving
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model selection consistency of Lasso. The major difference between our Assumption (A2) and the

similar assumption in Bach [2008a] is that the number of parameters is fixed in Bach [2008a] while

in our case the number is diverging with n. Therefore we will need to assume that the regularization

parameter ωn decays slower than the one in Bach [2008a]. Condition (A3) puts more requirement

on the order of p, q, and wn in order to obtain consistent rank estimation in addition to consistent

coefficient estimation. This is expected since rank estimation consistency is usually not implied

by parameter estimation consistency. Condition (A4) can be viewed as a sparsity assumption on

B0. Recall the solution (the slope) to classical LDA problem with vector covariates depends on the

term µ2 − µ1. This assumption essentially implies that there are at most O(max(p, q)) number of

O(1) elements in the true coefficient matrix B0 given the rank of B0 is fixed.

Next, we briefly review two important concepts, namely decomposable regularizer and strong

convex loss function, proposed by Negahban et al. [2012] and highlight their connection to the risk

bound property for our estimator.

DEFINITION 2.1. A regularizer R(·) is decomposable with respect to a given pair of subspaces

(M,N) where M ⊆ N⊥ if

R(u+ v) = R(u) +R(v) for all u ∈M, v ∈ N.

In our setting, R(·) is the nuclear norm. Considering a matrix B ∈ Rp×q to be estimated, we

observe that nuclear norm is decomposable given a pair of subspaces:

M(U,V) := {B ∈ Rp×q | row(B) ⊆ V, col(B) ⊆ U},

N(U,V) := {B ∈ Rp×q | row(B) ⊆ V⊥, col(B) ⊆ U⊥},

where U,V represent B’s left and right singular vectors. For any pair of matrices B1 ∈ M and

B2 ∈ N , the inner product of B1,B2 is 0 due to their mutually orthogonal rows and columns.
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Hence we conclude R(B1 + B2) = R(B1) + R(B2). Since we assume the true parameter has

a low rank structure, we expect the regularized estimator to have a large value of projection on

M(U,V) and a relatively small valued projection on N(U,V).

When the loss functionL(β̂0, B̂ωn) defined as 1
2n

∑n
i=1

(
yi−β̂0−〈Xi, B̂ωn〉

)2

is close toL(β0,B0),

it is insufficient to claim B̂ωn −B0 is small if the loss function L is relatively flat. This is why the

strong convexity condition is required.

DEFINITION 2.2. For a given loss function L and norm ‖.‖, we say L is strong convex with

curvature kL and tolerance function τL if

δL(∆,B0) ≥ kL‖∆‖2 − τ 2
L(B0), for any δ ∈ C(M,N ; B0),

where C(M,N ; B0) := {∆ ∈ Rp×q | R(∆N) ≤ 3R(∆N⊥) + 4R(B0N)}.

Now we are ready to state the main result on the risk bound for our estimate. The proof is provided

in the Appendix B.

THEOREM 2.1. Suppose that (A1) and (A4) hold. Let B̂ be the solution to (2.2). If

ωn ≥
12(log n)3/2(Cµ + λ

1/2
u )(
√
p+
√
q +
√

log n)
√
n

,

then with probability of at least 1− Cn−1 for some constant C > 0,

‖B̂−B0‖2
F + |β̂ − β∗0 |2 ≤ 9

ω2
n

λl
r,

where β∗0 = β0 − π−1
2 {c− 1 + (π2 − π2

2)(DTΣ−1D)} and c is some positive constant.

Theorem 2.1 gives a non-asymptotic risk bound for the proposed estimators. In other words, the

results hold for any positive ωn satisfying the conditions there. However, in order to ensure the

consistency of the proposed estimators, we will need the risk bound to go to 0, which requires
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ωn → 0 and max(p, q) = o
(
n/(r log3 n)

)
. If the rank of B0 is fixed, then both p and q can

diverge with n at the order of o(n/ log3 n) and their product pq > n. This result is compatible

with Theorem 1 in Raskutti and Yuan [2015]. Note that the estimated intercept β̂ converges to β∗0 ,

which deviates from the truth β0. This is expected because the solution to OLS is only equivalent

with LDA’s solution in terms of the slope B, not on β0. More precisely, for OLS, by taking

the derivative of squared loss function with respect to β0 and set it to 0, we essentially require

E(ε) = 0. However, this does not hold in our case. Instead we need to shift the residual ε

by d to balance off the bias in the cross-product term E(εX). The proof of the theorem uses

Gaussian comparison inequality which allows us to deal with vec(X) following a general Gaussian

distribution instead of standard Gaussian distribution given that the largest singular value of Σxx

is bounded. Based on this connection, we further utilize concentration property of spectral norm

of Gaussian random matrices.

Next we show that B̂ is rank-consistent under stronger conditions.

THEOREM 2.2. Suppose that (A1)–(A4) hold. Then the estimate B̂ is rank-consistent, that is,

P (rank(B̂) = rank(B0))→ 1 as n→∞.

Similar to Lasso, estimation consistency does not guarantee correct rank estimation for matrix

regularization. In fact, the assumptions here are stronger than those in Theorem 2.1. For ex-

ample, Theorem 2.1 allows p + q = o(n/ log3 n) while Theorem 2.2 requires max(p, q) =

o
(
n1/3 log−3/2 n

)
if min(p, q) = O(1). The proof is based on the arguments in Bach [2008a]

with modifications to allow diverging p and q.

Remark 1. Although nuclear norm penalized least squares is used to estimate the classification di-

rection, there is a fundamental difference between our theorems and the theoretical results derived

for nuclear norm penalized least squares regression [Bach, 2008a, Negahban et al., 2012]. The

previous work assumes that the data obey a linear regression model with covariates-independent

additive noise, which is not true in our case. In particular, the covariates Xi and the residuals
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εi are no longer independent in our problem, which brings additional challenges in developing

theoretical results.

Next we state a classification error consistency result. To be consistent with the notation in the

classification literature, for subject i, we use Yi ∈ {−1, 1} to denote its true label, f̂n(Xi) as the

classified label for which f̂n is the classification rule obtained by solving (2.2), and l(Yi, f(Xi)) =

I{Yi 6= sign(f(Xi))} as the 0-1 loss function. Define the risk of f̂n as R(f̂n) = EXl(Y, f̂n(X))

and the Bayes risk as R∗ = inff R(f). In addition, we assume that the true label Yi given Xi is

determined by the linear classification rule with coefficients β∗0 and B0. Then the following the-

orem shows that the proposed classifier achieves the Bayes optimal risk under certain conditions.

The proof, given in the Appendix B, is based on the general results in Zhang [2004], where the au-

thor studied the optimal Bayes error rate using a classifier obtained by minimizing a convex upper

bound of the classification error function.

THEOREM 2.3. Assume the same conditions for Theorem 2.1 hold and ωn → 0. ThenR(f̂n)→ R∗

as n→∞.

2.4 Numerical results

2.4.1 Simulation

We conduct simulation studies to evaluate the numerical performance of our proposed method.

We compare its performance with that of a few alternatives: “Lasso LDA”, which adopts a naive

Lasso penalty in LDA without taking into account matrix structure, the regularized matrix logistic

regression [Zhou and Li, 2014a] using nuclear norm and Lasso penalties, denoted by “Logistic

Nuclear” and “Logistic Lasso”, and the penalized matrix discriminant analysis (PMDA) approach

proposed by Zhong and Suslick [2015]. We generate n ∈ {100, 200, 500} samples from two
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Table 2.1: Simulation results: misclassification rates (%) and associated standard errors obtained
from our method, Lasso LDA, Logistic Nuclear (L-Nuclear), Logistic Lasso (L-Lasso) and penal-
ized matrix discriminant analysis (PMDA) based on 1000 Monte Carlo replications.

Shape n (π1, π2) Ours Lasso LDA L-Nuclear L-Lasso PMDA

Cross 100 (0.5,0.5) 3.65(0.02) 17.81(0.07) 3.70(0.02) 19.51(0.07) *
100 (0.75,0.25) 3.32(0.02) 14.89(0.05) 6.62(0.04) 18.84(0.04) *
200 (0.5,0.5) 3.22(0.02) 11.69(0.05) 3.26(0.02) 13.39(0.05) 26.93(0.05)
200 (0.75,0.25) 2.87(0.02) 9.89(0.04) 4.14(0.03) 16.27(0.04) 19.58(0.08)
500 (0.5,0.5) 3.09(0.02) 6.97(0.03) 3.11(0.02) 8.19(0.04) 25.17(0.04)
500 (0.75,0.25) 2.62(0.02) 5.81(0.03) 3.59(0.02) 14.91(0.03) 12.05(0.04)

Triangle 100 (0.5,0.5) 3.12(0.02) 15.73(0.06) 3.11(0.02) 17.70(0.07) *
100 (0.75,0.25) 2.66(0.02) 13.72(0.05) 6.10(0.04) 17.19(0.04) *
200 (0.5,0.5) 2.85(0.02) 9.90(0.04) 2.81(0.02) 11.81(0.04) 30.17(0.08)
200 (0.75,0.25) 2.43(0.02) 8.72(0.03) 3.62(0.02) 13.40(0.04) 24.63(0.10)
500 (0.5,0.5) 2.67(0.02) 5.67(0.03) 2.73(0.02) 6.96(0.03) 25.92(0.04)
500 (0.75,0.25) 2.29(0.01) 4.89(0.02) 2.74(0.02) 9.97(0.03) 14.69(0.05)

Butterfly 100 (0.5,0.5) 3.86(0.02) 17.10(0.06) 4.16(0.02) 18.82(0.07) *
100 (0.75,0.25) 3.47(0.02) 14.79(0.05) 7.14(0.04) 17.78(0.04) *
200 (0.5,0.5) 3.67(0.02) 11.00(0.04) 3.78(0.02) 12.66(0.05) 29.79(0.07)
200 (0.75,0.25) 3.26(0.02) 9.80(0.04) 4.50(0.02) 13.93(0.04) 23.83(0.09)
500 (0.5,0.5) 3.56(0.02) 6.50(0.03) 3.52(0.02) 7.70(0.03) 25.77(0.04)
500 (0.75,0.25) 3.02(0.02) 5.74(0.03) 3.51(0.02) 10.49(0.03) 14.66(0.05)

classes with weights (π1, π2) ∈ {(0.5, 0.5), (0.75, 0.25)}. For each class, we generate predictors

from a bivariate normal distribution with means µg, g = 1, 2, and covariance Σ. We set µ1 = 0 and

µ2 = Σvec(B0). The covariance matrix Σ has a 2D autoregressive structure: cov(xi1,j1 ,xi2,j2) =

0.5|i1−i2|+|j1−j2| for 1 ≤ i1 ≤ p and 1 ≤ j1 ≤ q. The true signal B0 is generated based on a

64-by-64 image. We consider three settings: a cross, a triangle and a butterfly. These pictures are

shown in Figure 2.1(a) respectively. In particular, the white color denotes value 0 and black denotes

0.05. We apply each fitted model to an independent test data set of size 1000 and summarize the

misclassification rates based on 1000 Monte Carlo replications. The results are contained in Table

2.1.

The results show that our method performs much better than “Lasso LDA” and “Logistic Lasso”

under all scenarios. This is expected because these two methods ignore the matrix structure. For
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“Logistic Nuclear”, it has similar misclassification rates with our method for balanced data, but

does not perform as good as ours for unbalanced data. We have also plotted the estimates using

nuclear norm and `1-norm from one randomly selected Monte Carlo replicate in Figure 2.1(b)(c).

It can be seen that the proposed nuclear norm regularization is much better than `1-regularization

in recovering the matrix signal in different shapes. By comparing the recovery of different shapes

in Column (b) in Figure 2.1, we find that our method works better for cross than for triangle and

butterfly. This is expected since triangle and butterfly do not have the low rank structure.

We also compare the performance of our method with that of PMDA proposed by Zhong and Sus-

lick [2015]. In Table 2.1, it can be seen that our proposed method has a lower mis-classification

rate under all scenarios. This is because we allow flexible values of the rank for the linear discrim-

inant direction B, while in Zhong and Suslick [2015], their assumption is equivalent to assuming

B is of rank 1. In particular, using their notation, for binary case, their direction B = β1ξ
T, where

β1 ∈ Rp and ξ ∈ Rq. Since the true ranks of B in our simulation studies are all of rank greater than

1, it is not surprising that our method outperforms PMDA. Moreover, PMDA does not apply to the

case where n < p+ q, i.e., the sample size is far smaller than the summation of image dimensions.

Therefore, their method does not apply to one of our simulation settings (n, p, q) = (100, 64, 64)

and we mark their results using ∗ in Table 2.1. We also compare the computation time between

PMDA and our method. In simulation, when n = 200 and true signal is a cross, given a fixed regu-

larization parameter, the system running time of PMDA is around 1.5 minutes whereas the system

running time of our method is no more than 13 seconds. Here system running time is measured on

a Macbook Pro laptop with a 2.9 GHz Intel Core i5. This is because PMDA essentially solves least

square problems with L1 penalty in each iteration when setting ω1 = 0 in Algorithm 2 in Zhong

and Suslick [2015]. Our method is based on the Nesterov optimal gradient method which avoids

computing inverse of covariance matrix and hence has a faster convergence rate.
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(a) (b) (c)

Figure 2.1: The figures for cross image: (a) original signal; (b) our nuclear regularization estimate;
(c) `1-regularized estimate.

2.4.2 Real data application

We apply our method to an EEG dataset, which is available at https://archive.ics.uci.

edu/ml/datasets/EEG+Database. The data was collected by the Neurodynamics Labo-

ratory to study the EEG correlates of genetic predisposition to alcoholism. It contained measure-

ments from 64 electrodes placed on each subject’s scalps sampled at 256 Hz (3.9-msec epoch)

for 1 second. Each subject was exposed to three stimuli: a single stimulus, two matched stimuli,

two unmatched stimuli. Among the 122 subjects in the study, 77 were alcoholic individuals and

45 were controls. More details about the study can be found in Zhang et al. [1995b]. In statistics

literature, EEG data has been analyzed using different models, for example, Gao et al. [2019a] con-
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Table 2.2: EEG data analysis: misclassification rates (%) and associated standard errors.

Our method Lasso LDA Logistic Nuclear Logistic Lasso PMDA
22.20(0.53) 24.12(0.70) 24.44(0.80) 26.24(0.91) *

sidered an unsupervised approach for clustering EEG data, Gao et al. [2019b] and Gao et al. [2018]

considered an evolutionary state-space model and graphical model for better understanding brain

connectivity, respectively. However, these methods are not directly applicable for classification

purpose here.

In the data analysis, for each subject, we use the average of all 120 runs for each subject un-

der single-stimulus condition and use that as the covariate xi, which is a 256 × 64 matrix. The

classification label is alcoholic or not. We randomly divide the data set into training set of 81

subjects and test set of 41 subjects for 100 times, and each time fit the model on the training set

and apply it on the test set to obtain the average mis-classification rate and its standard error. The

results for different methods are summarized in Table 2.2. It can be seen that the proposed method

has a significant lower mis-classification rate compared with other methods, which agrees with

the simulation findings for the unbalanced data. PMDA does not work here since p + q > n

((n, p, q) = (122, 256, 64)). We also check the fitted signal matrix and it agrees well with the one

obtained by Zhou and Li [2014a].

In terms of computational efficiency, we measured the computation time among Lasso LDA, Logis-

tic Nuclear, Logistic Lasso and our method based on one evaluation of the data, that is, partitioning

the data into training and test sets, fitting the model on the training set and applying it on the test

set. The running time for Lasso LDA, Logistic Nuclear, Logistic Lasso and our method is 0.67s,

1.79s, 1.27s and 1.87s, respectively. The system running time is measured in Matlab R2015b on a

Macbook Pro laptop with a 2.9 GHz Intel Core i5.
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2.5 Discussion

In the literature, total variation (TV) regularization has also been commonly used for modeling

image data in addition to the proposed nuclear norm regularization. Their focuses are slightly

different – the former is on structured sparse pattern and the later is on low-rank pattern. The main

reason that we choose to focus on the nuclear norm regularization in this paper is because we have

found that low rankness is a more reasonable assumption than sparseness assumption in our real

data application. In particular, the mis-classification errors of our method is lower than the sparse

method (LASSO) in our real data analysis. The TV regularization is an interesting direction to

explore as it requires new computational algorithms and theories; and thus we leave this for the

future research.

In this paper, we only consider the situation where all the image measurements are taking at the

same scale, that is, the dimension of the image covariates p and q are equal for every study subject.

We believe this is the case for most applications. For the special cases when image dimensions

vary across subjects, our method may still be applicable by first resizing the image to the same

scale. It will be of future interest to develop flexible statistical methods to handle image data that

can be of different sizes in general.
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Chapter 3

Nonparametric Matrix Response

Regression

3.1 Introduction

Large-scale neuroimaging studies have received increased attention in statistics literature, with ap-

plications including calcium imaging, electroencephalography (EEG), magnetic resonance imag-

ing and functional magnetic resonance imaging. The obtained neuroimaging data often takes com-

plex structure, in the form of two-dimensional matrices. For example, the EEG data can be repre-

sented as a two-dimensional matrix, where voltage values were measured from multiple electrodes

placed on the subject’s scalp for consecutive time points.

With recent explosive development of neuroimaging technologies, in many applications, instead

of observing one 2D image, one can observe a sequence of 2D imaging data objects. It is usually

of interest to model the dynamic change process of these 2D images (over the study period) and

study their associations with other predictors (e.g., health information). Moreover, these image

observations often possess additional structural information such as spatial/temporal correlation,
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low rankness, and sparsity, which may provide useful scientific insight but also imposes additional

challenges to statistical analysis. Here we discuss two relevant motivating examples. The first

example is related to the fluorescent calcium imaging, which is a popular technique for observing

the spiking activity of large neuronal populations. The locations of neurons and the times at which

they fire can be observed via a sequence of 2D images taken over the time, typically using two-

photon microscopy [Helmchen and Denk, 2005, Petersen et al., 2018]. The scientific question is

to identify the major neurons and model their spiking activity over the time. As shown in Figure

3.2(a), the images are quite noisy and structured-sparse (in the sense that the signal level is low at

the boundary for most images), yet contains rich information (the video clip we study in this paper

composes 3,000 picture frames). Thus it is important and non-trivial to develop an automatic-yet-

flexible pipeline for analyzing such type of data sets.

Our second example is the brain functional connectivity analysis. Functional connectivity refers to

the coherence of the activities among distinct brain regions [Horwitz, 2003], and it provides novel

insights on how distributed brain regions are functional integrated [Biswal et al., 1995, 2010, Fox

et al., 2005]. Generally, studies on the functional connectivity are based on the temporal correlation

between spatial remote neurophysiological events [Friston, 1994] with an implicit assumption that

the functional connectivity is constant during the observation period. Recently, functional connec-

tivity has been shown to fluctuate over time [Chang, Liu, Chen, Liu, and Duyn, 2013], implying

that measures assuming stationarity over a full scan may be too simplistic to capture the full brain

activity. Since the initial findings, researchers have investigated the so-called dynamic functional

connectivity, see Calhoun et al. [2014], Calhoun and Adali [2016], Preti et al. [2017] for reviews to

date. It then makes sense to represent the connectivity as a covariance matrix and model its change

over the time. In our second motivating example, we analyze an EEG data set where the goal is

to study the dynamic functional connectivity between alcoholic and non-alcoholic individuals. As

shown in Figure 3.5, our developed methodology is capable of revealing a significant difference in

terms of image pattern and temporal correlation between two groups of participants.
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In this paper, we aim at developing a novel regression approach to quantify the association between

2D image outcomes and the predictors such as time, patient demographics, and other disease pre-

dictors. In particular, by including time as a predictor allows us to study the dynamic change of

the images. The proposed regression model can also help detect the difference in image outcomes

between study groups by including group indicator as a predictor. In contrast to the dominating use

of linear models in the literature, we adopt a flexible nonparametric regression model to capture

the commonly-seen nonlinear relationship in the data. For example, we performed a preliminary

analysis on the calcium imaging data collected by Ilana Witten’s lab at the Princeton Neuroscience

Institute [Petersen et al., 2018]. Figure 3.2(b) shows a scatter plot of the changes of fluorescent

intensities across time from a randomly selected pixel of the 2D-image. The scatter plot shows

a clear nonlinear pattern, which will be neglected by linear models. Note that classical nonlin-

ear regression approaches such as Nadaraya-Watson method can not be directly used in our case

to model the matrix-valued image responses, since doing so is equivalent to vectorizing the 2D-

image data, which destroys the underlying spatial information of the image. Instead, we maintain

the matrix structure of the image data, and propose a novel low rank nonparametric estimator by

solving a nuclear norm regularization problem. By the singular value thresholding algorithm [Cai

et al., 2010], we show that our estimator has a closed-form solution for each fixed bandwidth and

regularization parameter. To select these tuning parameters, we derive a Bayesian information cri-

terion (BIC) based on our model and estimation procedure. For theoretical justification, we derive

the risk bound for our nonparametric estimator. We show that the rank of the true function can be

consistently estimated as well.

Compared with the proposed methods in the literature, here we highlight our contributions. First,

we propose a novel nonparametric matrix response regression model. There are some related works

on (generalized) linear models for matrix-valued data. For example, Zhou and Li [2014b] proposed

a class of regularized matrix linear regression model by treating matrix data as covariates; Wang

and Zhu [2017] developed a generalized scalar-on-image regression model via total variation; Ding

and Cook [2018] studied the matrix response linear regression model using envelope methods;
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Kong et al. [2019] proposed a low-rank linear regression model with high-dimensional matrix

response and high dimensional scalar covariates. To the best of our knowledge, no work has been

done on using nonparametric models for matrix data analysis. Second, our nonparametric estimator

is easy to derive and has a closed-form solution, which makes it computationally more efficient than

the state-of-art multivariate varying coefficient model [Zhu et al., 2011, 2012]. Third, we derive an

analytic form of BIC, which is not straightforward in our nonparametric matrix response model.

Finally, we develop the asymptotic theories including the risk bound and rank consistency for the

proposed nonparametric estimator, which directly connects to the existing work on nonparametric

statistics theory.

The rest of the article proceeds as follows. In Section 2, we introduce a novel nonparametric matrix

response regression model and propose a fast algorithm for our low-rank regularized estimation

procedure. We further derive a BIC for our model to choose the tuning parameters. Section 3

investigates the theoretical properties of our method. We evaluate finite performance of our method

in Section 4. Section 5 illustrates applications of our method to two real datasets from a calcium

imaging study and an electroencephalography study.

3.2 Method

3.2.1 Model

Suppose we observe a set of 2D-images and some scalar predictors from n independent study

subjects. Let Yi be a p × q matrix representing the 2D-image from the ith subject, and Xi =

(xi1, . . . , xis)
T be an s × 1 vector denoting the scalar covariates of interest (e.g., time and disease

predictors). We propose the following nonparametric matrix response model,

E(Yi|Xi) = g(Xi), (3.1)

30



where g(·) : Rs → Rp×q is a nonparametric matrix-valued function that quantifies the nonlinear

relationship between (each pixel of) Yi and Xi. Since g(x) is a p × q matrix for all values of

x, we will also impose a structure constraint on g for scientific interpretability and regularization

purpose.

Our goal is to estimate the nonparametric function g. A commonly used estimator is the Nadaraya-

Watson estimator for the matrix data, which can be written as

ĝnw(x) =

∑n
i=1KH(x−Xi)Yi∑n
i=1 KH(x−Xi)

, (3.2)

where KH(·) = 1
|H|K(H−1·), K(·) is a kernel function, and H = diag(h1, h2, · · · , hs) is a band-

width matrix. It is often assumed that h1 = · · · = hs = h for computational convenience.

However, the Nadaraya-Watson estimator is a “naive” estimator in our case because it does not

utilize the underlying structure of the matrix response Yi. In particular, the estimator in (3.2) can

also be obtained by vectorizing Yi, applying the Nadaraya-Watson estimator for the vectorized

data, and transforming the estimator back to a matrix. To account for the matrix structure, we take

another look at the estimator in (3.2), which can be obtained by solving the following optimization

problem

ĝnw(x) = argminY

n∑
i=1

KH(x−Xi)‖Yi − Y ‖2
F , (3.3)

where ‖ · ‖F is the Frobenius norm of a matrix.

To further exploit the underlying structure of the 2D response, we introduce a penalty on Y and

propose to solve

ĝ(x) = argminY

{
1

2n

n∑
i=1

KH(x−Xi)‖Yi − Y ‖2
F + λn‖Y ‖

}
, (3.4)

where λn is the tuning parameter and ‖ · ‖ is some norm of a matrix. Possible choices are nuclear
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norms, total variation norms, and their combination; and each of those norms will have different

regularization effects on the image outcomes. For this paper, we mainly focus on the nuclear

norm regularization for illustration, i.e., writing ‖Y ‖ as ‖Y ‖∗, which is defined as the sum of all

singular values of the matrix Y . The nuclear norm is very popular in 2D-image denoising [Gu

et al., 2014]. The underlying true 2D-image is often of low rank or approximately low rank, and

the nuclear norm regularization can help recover the low rank structure given a noisy image [Chen

et al., 2013a]. In our case, ĝ(x) can be regarded as an image estimate at the point x, and therefore

the penalty ‖Y ‖∗ can push for a low rank representation of the image estimate.

It can be shown that solving (3.4) is equivalent to solving

ĝ(x) = argminY

{
1

2
‖ĝnw(x)− Y ‖2

F +
nλn∑n

i=1 KH(x−Xi)
‖Y ‖∗

}
. (3.5)

The optimization problem (3.5) can be solved using the following proposition restated from Cai

et al. [2010].

Proposition 1. Consider the singular value decomposition of a matrix Y ∈ Rp×q with rank r,

Y = UΣV ∗, Σ = diag({σj}1≤j≤r),

where U and V are p× r and q× r matrices respectively with orthonormal columns, and singular

values σj are positive. The soft-thresholding operator Dτ is defined as

Dτ (Y ) = UDτ (Σ)V ∗, Dτ (Σ) = diag({(σj − τ)+}1≤j≤r), (3.6)

where (·)+ is the positive part of (·). Then Dτ (Y ) satisfies

Dτ (Y ) = arg min
X

{
1

2
‖Y −X‖2

F + τ‖X‖∗
}
,
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where ‖X‖∗ is defined as the nuclear norm of the matrix X .

By Proposition 1, our estimator in (3.4) can be obtained using the following algorithm.

Algorithm 1 Algorithm to solve the optimization problem (3.4).

Input: {(Xi, Yi), 1 ≤ i ≤ n}, x,H, λn.

Step 1: Perform singular value decomposition of ĝnw(x) =
∑n
i=1KH(x−Xi)Yi∑n
i=1KH(x−Xi) , and denote it by

UΣV ∗. The diagonal matrix Σ = diag({σj}1≤j≤r), where σ1 ≥ σ2 ≥ . . . ≥ σr > 0 with r being

the rank of Σ.

Step 2: Set τ = nλn∑n
i=1KH(x−Xi) , and calculate the soft-thresholding operator Dτ (Σ) =

diag({(σj − τ)+}1≤j≤r).

Step 3: Calculate ĝ(x) = UDτ (Σ)V ∗.

Output: ĝ(x).

3.2.2 Bayesian information criterion

The optimization problem (3.4) involves two tuning parameters, the bandwidth h and the regular-

ization parameter λ. The choices of these two parameters are critical as they control the temporal

smoothing level and the spatial low-rank level, respectively. In this paper, we derive a Bayesian

information criterion (BIC) to select them. Define λ̃ = nλn∑n
i=1KH(x−Xi) and Ŷi(λ̃) = ĝ(Xi). Without

loss of generality, we assume p ≥ q and denote the singular values of Ŷi(λ̃) by bi1(λ̃) ≥ · · · ≥

biq(λ̃) ≥ 0. From Algorithm 1, it can be seen that the singular values of Ŷi(λ̃) are corresponding

truncated singular values of ĝnw(Xi).

Since we are considering a least squared error loss in (3.4), the BIC can be defined as

BIC(λ̃) = npq log(
1

npq

n∑
i=1

‖Yi − Ŷi(λ̃)‖2
F ) + log(npq)df(λ̃), (3.7)

where df(λ̃) is given in the following proposition.
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Proposition 2. Denote ĝnw(Xi)’s singular values by σi1 ≥ σi2 ≥ · · · ≥ σiri > 0 and σik = 0 for

k > ri. An unbiased estimator of the degree of freedom df(λ̃) is

d̂f(λ̃) = KH(0)
n∑
i=1

d̂f i(λ̃)∑n
j=1 KH(Xi −Xj)

, where

d̂f i(λ̃) =

q∑
k=1

1{bik(λ̃)>0}

{
1 +

∑
1≤j≤p,j 6=k,k≤ri

σik(σik − λ̃)

σ2
ik − σ2

ij

+
∑

1≤j≤q,j 6=k,k≤ri

σik(σik − λ̃)

σ2
ik − σ2

ij

}
. (3.8)

Proof of Proposition 2: Efron [2004] has shown a general formula for the degree of freedom as

df =
n∑
i=1

p∑
j=1

q∑
k=1

cov(Ŷijk, Yijk)/σ
2,

where Yijk and Ŷijk are the (j, k)-th element of the Yi and Ŷi, respectively. By Stein’s theory of

unbiased risk estimation [Stein, 1981], cov(Ŷijk, Yijk) = σ2E(
∂Ŷijk
∂Yijk

). Then an unbiased estimator

of the degree of freedom is

d̂f =
n∑
i=1

p∑
j=1

q∑
k=1

∂Ŷijk
∂Yijk

=
n∑
i=1

tr

(
∂vec(Ŷi)

∂vec(Yi)T

)
.

Note that Ŷi(λ̃) is a function of ŶLSi, where ŶLSi is the usual least squared estimator of Yi. Then

we have

∂vec(Ŷi(λ̃))

∂vec(Yi)T
= D(Ŷi(λ̃))(ŶLSi)×D(ŶLSi)(Yi)

= D(Ŷi(λ̃))(ŶLSi)×
KH(Xi −Xi)∑n
j=1KH(Xi −Xj)

I,

where D(A)(B) = ∂vec(A)
∂vec(B)T

for two matrices A and B, and I is the identity matrix.
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By taking the trace, we have:

tr

(
∂vec(Ŷi(λ̃))

∂vec(Yi)T

)
= tr

(
D(Ŷi(λ̃))(ŶLSi)

)
× KH(0)∑n

j=1 KH(Xi −Xj)

= d̂f i(λ̃)× KH(0)∑n
j=1 KH(Xi −Xj)

,

where we define d̂f i(λ̃) = tr
(
D(Ŷi(λ̃))(ŶLSi)

)
. Further we assume that ŶLSi has distinct positive

singular values σi1 > σi2 > · · · > σir > 0 and σik = 0 for k > r.

By Theorem 3 in Zhou and Li [2014b], we have

d̂f i(λ̃) =

q∑
k=1

1{bik(λ̃)>0}

{
1 +

∑
1≤j≤p,j 6=k,k≤ri

σik(σik − λ̃)

σ2
ik − σ2

ij

+
∑

1≤j≤q,j 6=k,k≤ri

σik(σik − λ̃)

σ2
ik − σ2

ij

}
. (3.9)

Therefore,

d̂f(λ̃) = KH(0)
n∑
i=1

d̂f i(λ̃)∑n
j=1 KH(Xi −Xj)

.

3.3 Theory

In this section, we present theoretical results of the estimation procedure in Eq. (3.4), including

a risk bound of the regularized estimator and a rank consistency result. Denote the strength of

regularization as λn and the true response as g(X) given covariatesX . Assume g(X) has unknown

rank r and denote the global minimizer of (3.4) by ĝ(X). For any two sequences of real numbers

an and bn, we write an � bn if there exists universal positive constants C1 and C2 such that

C1bn ≤ an ≤ C2bn. We define a ∨ b = max(a, b) and a ∧ b = min(a, b) for any a, b ∈ R. With

a little abuse of the notation, we use C to denote a universal constant whose value may change in

different context but does not affect the results. For a matrix A and a sequence of real numbers an,
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we write A = Op(an) or A = op(an) if every element of A is Op(an) or op(an).

Let gjk(x) be the (j, k)-th component of g(x). We make the following assumptions:

Assumption 1. We assume that |gjk(x)−gjk(y)| < C‖x− y‖α2 with α2 > 0, 1 ≤ j ≤ p, 1 ≤ k ≤

q for any ‖x− y‖ < δ and some C > 0, when δ > 0 is sufficiently small.

Assumption 2. Assume that npqh2α2+s →∞, nh2s →∞, and pqh2α2 → 0 as n→∞.

Assumption 3. We assume that the kernel function K(·) is bounded on Rs. In other words, there

exists a constant kmax > 0 such that K(x) ≤ kmax and KH(x) ≤ h−skmax for any x ∈ Rs.

Moreover, we assume that there exist constants Cf , cf > 0 such that the density function of the

covariate x satisifes cf ≤ f(x) ≤ Cf .

Assumption 4. Assume that n−1/2(p ∧ q) → 0, (pq)1/2hα2(p ∧ q)1/2λ−1
n → 0, λn(p ∧ q)2 → 0,

and pq(p∧q)
nλ2n

→ 0 as n→∞.

Assumption 1 assumes the α2-smoothness for each element of the nonparametric function g(x).

This assumption is commonly used in multivariate function estimation literature such as Scott

[2015]. It is possible to extend the results for anisotropic case in the future work based on the

techniques developed in this paper. Assumptions 2 and 4 are required for estimation consistency

and rank consistency. Assumption 3 is satisfied for most kernel density functions. The bounded-

ness condition for the density funciton of x will hold if x is defined on a compact support. With

these assumptions, we can state the two main theorems of this paper. Their proofs are given in the

Appendix.

THEOREM 3.1. Suppose that Assumptions 1–3 hold. We consider two cases for p and q (e.g.,

whether they diverge or not).

(1) If both p and q are fixed, let h � ( logn
n

)
1

2α2+s
∧ 1

2s and λn � hα2 , then

‖ĝ(x)− g(x)‖2
F ≤ Cr

(
log n

n

) 2α2
2α2+s

∧α2
s

.
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(2) If p ∨ q →∞ and p ∨ q = o
(
n

α2
2α2+s ∧ ( n

logn
)
α2
2s

)
, then by letting h � n

− 1
2α2+s ∨ ( logn

n
)

1
2s and

λn = hα2(pq)1/2, we have

‖ĝ(x)− g(x)‖2
F ≤ Cpqr

(
n
− 2α2

2α2+s ∨ (
log n

n
)
α2
s

)
.

Note that the risk bound involves two quantities n−
2α2

2α2+s and (log n/n)−
α2
s . As the number of

predictors s increases, it becomes more difficult to estimate g(x). Meanwhile, hs is involved

when proving strongly restricted convexity of the loss function. A larger value of s indicates

smaller probability of the loss function being strong restricted convex. In contrast, α2 describes

the smoothness of g(x). A larger α2 leads to a smaller risk bound and a faster convergence rate.

Remark 2. If p and q are fixed and s ≤ 2α2, the optimal bandwidth h can be chosen arbitrarily

close to n−
1

2α2+s , which leads to the same convergence rate (with additional logarithmic factor)

for estimating an α2-smooth, s-dimensional function without regularization.

Remark 3. When max(p, q) → ∞, if we further assume s ≤ α2 and choose nh2α2+s � (
√
p+
√
q)2

pq

and λn � (pq)1/2
(

(
√
p+
√
q)2

npq

) α2
2α2+s , as we let λn → 0 and nh2s → 0, we obtain max(p, q) =

o(n
α2
α2+s ). This is the necessary condition for ĝ(x) being consistent. The assumption s ≤ α2 rules

out the case where there are too many covariates in the model.

Next we present the rank consistency result. We consider three general cases for different values

of p and q (e.g., whether they diverge or not) and discuss the corresponding choices of λn and h as

folllows,

(C1) If both p, q are fixed, we can choose h � ( logn
n

)
1

2α2+s
∧ 1

2s and λn � hα2 log n.

(C2) If p∧ q is finite, and p∨ q →∞ satisfying (log n)2(p∨ q) = o(( n
logn

)
α2
s ∧ n

2α2
2α2+s ) , then we

choose h = ( logn
n

)
1
2s ∨ n−

1
2α2+s and λn � (p ∨ q)1/2hα2 log n.
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(C3) If p � q, and p → ∞, then we let h � ( logn
n

)
1
2s ∨ n−

1
2α2+s and λn � p

3
2hα2(log n). In

addition, we assume (log n)
2
7p = o(h−2α2/7).

THEOREM 3.2. Suppose that Assumptions 1–4 hold, and one of the cases in (C1)–(C3) holds, then

ĝ(x) is consistent and rank consistent, i.e.,

P {rank(ĝ(x)) = rank(g(x))} → 1, as n→∞.

It can be seen that rank consistency requires stronger assumptions on p, q compared with those in

Theorem 3.1. For instance, the desired λn is much larger than the one from the previous theorem.

Meanwhile, pq is not allowed to be greater than n for rank consistency.

3.4 Simulation

In this section, we evaluate the performance of our method and other competing methods. We

consider both univariate and multivariate X , different nonparametric functions and different cor-

relation structures of the random error Ei, where Ei = Yi − g(xi).

3.4.1 Univariate predictor

Setting I: We set the dimensions of the image p = q = 64, and set the (j, k)-th element of the

nonparametric function g(x)jk = {sin(10πx)+cos(10πx)+0.1(j+k)}∗Bjk, 1 ≤ j, k ≤ 64, where

0 ≤ x ≤ 1 and Bjk is the (j, k)-th element of the true signal B. The true signal B is generated

from a 64-by-64 image, where we consider three shapes: a cross, a square and a T-shape. We have

plotted the true shapes in Figure 1(a)(b)(c), where we assign B a value of 5 for black regions and 0

for white regions. The sample size is set at n = 200, 500. The covariates {xi}, i = 1, 2, . . . , n are

equally spaced on [0,1]. The response Yi is generated from Yi = g(xi) + Ei, where vec(Ei)’s are
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i.i.d N(0, Ipq). The optimal bandwidth h and λ are selected by BIC. For the kernel function, we

use the standard gaussian kernel defined as K(x) = exp(−x2/2)/
√

2π. We compare our method

with the naive Nadaraya-Watson estimator and the Lasso estimator, where the Lasso estimator is

obtained by solving the following optimization problem

ĝlasso(x) = argminY

{
1

2n

n∑
i=1

KH(x−Xi)‖Yi − Y ‖2
F + λn‖Y ‖1

}
, (3.10)

where ‖Y ‖1 is defined as the sum of the absolute values of all the elements of the matrix Y . We

also use the BIC as defined in (3.7) to choose the tuning parameter for Lasso. Here the degree of

freedom can be obtained by the chain rule as

d̂f =
n∑
i=1

tr

(
∂vec(Ŷi)

∂vec(Yi)

)
=

n∑
i=1

p∑
j=1

q∑
k=1

∂Ŷijk
∂ĝijk(nw)

∂ĝijk(nw)

∂Yijk

=
n∑
i=1

KH(0)∑n
j=1KH(Xi −Xj)

‖sign(vec(Ŷi))‖1,

where we have used the fact that ∂Ŷijk
∂ĝijk(nw)

= |sign(Ŷijk)|.

In each Monte Carlo simulation, we generate n samples as the training set and another 500 samples

as the test set. We report the integrated error
∫
x
‖Ŷ (x)−Y (x)‖2

Fdx, which can be approximated by

1
500

∑500
i=1 ‖Ŷ (xtesti )−Y (xtesti )‖2

F . Table 3.1 shows the average integrated test error by our method,

naive Nadaraya-Watson estimator and Lasso estimator based on 100 Monte Carlo replicates. We

also report the average selected rank by our method using BIC, defined as 1
n

∑n
i=1 rank(Ŷ (xi)).

From the results, we can see that our method performs better than Nadaraya-Watson estimator

and Lasso estimator in all cases. In addition, our method can estimate the true rank of the image

accurately. We have plotted the recovered signals from one randomly selected Monte Carlo study

in Figure 3.1(d)(e)(f), and our method manages to recover the true signals very well.

Setting II: In this setting, we consider the case where the errors vec(Ei) are correlated across
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(a) (b) (c)

(d) (e) (f)

Figure 3.1: (a)-(c): true signals, (d)-(f): recovered signals

Table 3.1: Simulation results for Setting I: mean of integrated test error and associated standard
errors obtained from our method, NW estimator, and Lasso, the average selected rank and true rank
are reported for three different shapes B. The results are based on 100 Monte Carlo replications.

Shape Our method NW Lasso Selected rank True rank

Cross 4458 (0.70) 6024 (0.96) 5148 (0.81) 3.53 (0.004) 4
n = 200 Square 4288 (0.82) 6107 (0.99) 4875 (0.83) 2.00 (0.000) 2

Tshape 4472 (0.76) 6094 (0.98) 5193 (0.92) 3.22 (0.006) 4

Cross 4306 (0.41) 5009 (0.52) 4560 (0.48) 3.99 (0.000) 4
n = 500 Square 4186 (0.41) 4803 (0.48) 4440 (0.45) 2.01 (0.000) 2

Tshape 4255 (0.60) 5042 (0.51) 4579 (0.49) 3.52 (0.007) 4
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Table 3.2: Simulation results for Setting II: mean of integrated test error and associated standard
errors obtained from our method, NW estimator, and Lasso, the average selected rank and true rank
are reported for three different shapes B. The results are based on 100 Monte Carlo replications.

Shape Our method NW Lasso Selected rank True rank

Cross 4656 (2.23) 6120 (3.47) 5528 (3.49) 6.64 (0.009) 4
n = 200 Square 4463 (2.31) 5785 (3.27) 5169 (4.72) 4.42 (0.009) 2

Tshape 4667 (2.49) 6017 (3.65) 5591 (3.74) 6.52 (0.008) 4

Cross 4403 (1.23) 5240 (1.96) 4769 (1.71) 6.90 (0.008) 4
n = 500 Square 4296 (1.10) 5036 (1.64) 4692 (1.68) 4.76 (0.000) 2

Tshape 4404 (1.21) 5057 (1.60) 4797 (1.69) 6.75 (0.008) 4

different subjects i’s and the pixels within the same random error matrix Ei are also correlated.

Define e = (vec(Ei)
T, . . . , vec(En)T)T ∈ Rpqn. We assume e ∼ N(0,Σ), where Σ = Σ1 ⊗ Σ2 ∈

Rpqn×pqn. Here Σ1 is a n×nmatrix representing the correlation within different subjects 1 ≤ i ≤ n,

Σ2 is a pq × pq matrix representing the correlation among different pixels of the 2D image, and ⊗

is the Kronecker product. This decomposition of Σ is often referred to as the separability of the

covariance matrix, which was studied in various literatures such as De Munck et al. [2002], Dawid

[1981]. For Σ1, we assume it has a subject-wise 1D autoregressive structure. In particular, we set

the (i1, i2)-th element of Σ1 as 0.5|i1−i2| for 1 ≤ i1, i2 ≤ n. For Σ2, we assume it is incorporated

with a pixel-wise 2D autoregressive structure. Specifically, we set the (j1+(k1−1)q, j2+(k2−1)q)-

th element of Σ2 as 0.5|j1−j2|+|k1−k2| for 1 ≤ j1, j2 ≤ p and 1 ≤ k1, k2 ≤ q. The average

integrated test errors by three methods and the average selected rank of our method are summarized

in Table 3.2. From the results, we can see that our methods still outperforms than Nadaraya-Watson

estimator and Lasso estimator in all cases. Compared with independent error case, one notice that

we may over select the rank a bit, possibly due to the error correlations, however, the average

integrated errors are still similar for both cases.

3.4.2 Multivariate predictors

Setting III: We consider shapes of the image with the same pixel value as setting I. We set the
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(j, k)-th element of the nonparametric function g(x)jk = {sin(2π‖x‖) + cos(2π‖x‖) + 0.5(j +

k)} ∗ Bjk, x ∈ [0, 1] × [0, 1], 1 ≤ j, k ≤ 64, where we consider the same three shapes of the

true image B and ‖x‖ is the l2-norm of x. The random error vec(Ei)’s are i.i.d. N(0, Ipq). The

covariates xi consist of a set of {xjk}, 1 ≤ j ≤ 20, 1 ≤ k ≤ 25, that are equally spaced on

[0, 1]× [0, 1]. The sample sizes n = 200, 500 are considered, and the multivariate Gaussian kernel

defined as K(x) = exp(−‖x‖2/2)/2π is used. In each Monte Carlo simulation, we generate n

samples as the training set and another 500 samples as the test set. We report the average integrated

test error obtained by our method, the naive Nadaraya-Watson estimator and Lasso estimator and

the average selected rank of our method based on 100 Monte Carlo replicates in Table 3.3.

Table 3.3: Simulation results for Setting III: mean of integrated test error and associated standard
errors obtained from our method, NW estimator, and Lasso, the average selected rank and true rank
are reported for three different shapes B. The results are based on 100 Monte Carlo replications.

Shape Our method NW Lasso Selected rank True rank

Cross 4711 (0.86) 7021(1.17) 5759(1.01) 4.03 (0.002) 4
n = 200 Square 4518 (0.80) 6723(1.09) 5326(1.05) 2.04 (0.002) 2

Tshape 4719 (0.83) 7137 (1.11) 5829(1.15) 4.34 (0.005) 4

Cross 4647 (0.49) 5562 (0.62) 4843 (0.48) 4.84 (0.006) 4
n = 500 Square 4281 (0.42) 5506 (0.58) 4649(0.45) 2.01 (0.001) 2

Tshape 4376 (0.45) 5620 (0.59) 4875 (0.49) 4.12 (0.002) 4

Setting IV: We consider the same setting as Setting III except that the random error vec(Ei)’s

are correlated across different i’s and the pixels within the same random error matrix Ei are also

correlated. The random error vec(Ei)s are generated the same as Setting II. The average integrated

test errors by three methods and the average selected rank of our method are summarized in Table

3.4.

The findings in the multivariate case (Settings III and IV) are consistent with the ones in the univari-

ate case. The simulation results in this section confirm the excellent performance of the proposed

nonparametric estimation procedure.
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Table 3.4: Simulation results for Setting IV: mean of integrated test error and associated standard
errors obtained from our method, NW estimator, and Lasso, the average selected rank and true rank
are reported for three different shapes B. The results are based on 100 Monte Carlo replications.

Shape Our method NW Lasso Selected rank True rank

Cross 4894 (2.58) 7164 (3.89) 5804 (4.13) 5.40 (0.008) 4
n = 200 Square 4642 (2.43) 6858 (3.57) 5360 (4.0) 3.14 (0.009) 2

Tshape 4910 (2.66) 7283 (3.91) 5880 (4.36) 5.36 (0.008) 4

Cross 4779 (1.73) 5687 (2.38) 5067 (1.86) 6.38 (0.008) 4
n = 500 Square 4574 (1.51) 5614 (2.22) 4815 (1.62) 4.12 (0.001) 2

Tshape 4797 (1.55) 5745 (2.09) 5080 (4.72) 6.34 (0.008) 4

3.5 Real data application

3.5.1 Application to calcium imaging data study

In this section, we apply the proposed method to one-photon calcium imaging dataset collected

by Ilana Witten’s lab at the Princeton Neuroscience Institute [Petersen et al., 2018], which can

be downloaded from https://ajpete.com/software. Calcium imaging is an important

fluorescent microscopy technique regulating a great variety of neuronal processes simultaneously

[Berridge, 1998, Andilla and Hamprecht, 2014]. Whenever a neuron fires, voltage-gated calcium

channels in the axon terminal open and then calcium floods the cell. Such changes in concentra-

tion of calcium ions are detected by observing the fluorescence of calcium indicator molecules.

Therefore, not surprisingly, intracellular calcium concentration becomes an important surrogate

marker for the spiking activity of neurons in the absence of effective voltage imaging approach

and is commonly used when analyzing local neuronal circuits in vivo and in vitro [Petersen et al.,

2018, Grienberger and Konnerth, 2012].

The calcium imaging data can be viewed as a video clip (i.e., a collection of 2D-images recorded at

the same frame over a period of time) that presents the location and time of neuron firing [Apthorpe

et al., 2016, Petersen et al., 2018]. Each pixel in a frame is continuous-valued and larger values in-
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dicate higher fluorescent intensities caused by greater calcium concentrations. The calcium imag-

ing video we used consists of 3000 frames of size 205× 226 pixels sampled at 10 Hz. An example

frame randomly selected from the video is shown in Figure 3.4(a).

(a) (b)

Figure 3.2: (a) A sequence of frames (b) scatterplot for a fixed voxel of coordinate (200,60) over
frames

(a) (b)

Figure 3.3: (a) Fitted value for a fixed voxel of coordinate (200,60) over frames (b) Fitted value
for a fixed voxel of coordinate (60,180) over frames

Figure 3.3 gives estimated fluorescent intensities versus true values of two randomly selected pix-

els across 3000 frames. The optimal bandwidth and regularization parameter are selected by the

proposed BIC criteria. The average rank selected by our method is 22.34(SE = 1.34) across all

frames. We also plot estimated images from a randomly selected frame by our method in Figure
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(a) (b)

Figure 3.4: (a) Original 1500th frame (b) Estimated 1500th frame by our method

3.4(b). From that figure, we can see that our method amplifies potential neuron signals, but also

weakens those unclear and smaller neurons.

We further evaluate the prediction performance of our method by cross-validation. We compare

our method with two nonparametric regression methods: Nadaraya-Watson regression and Lasso

defined in (3.3) and (3.10), respectively. We also compare our method with the low-rank matrix

response linear regression (L2RM) method [Kong et al., 2019]. As shown in Table 3.5, our method

reaches the smallest leave-one-out cross-validation error among four methods. For Lasso estimator,

the selected tuning parameter is always zero, hence making the Lasso estimator equivalent to the

Nadaraya-Watson estimator. This confirms that the sparsity assumption does not seem plausible

for the calcium imaging application, while low rankness is a more reasonable assumption. The

linear model L2RM has the highest prediction error, which validates the use of a nonparametric

model for the data set.

Table 3.5: Leave-one-out cross-validation errors (Err)(106) and associated standard deviation by
three methods for calcium imaging data

Err - Our method Err - NW Err - Lasso Err - L2RM
2.66(0.63) 2.91(1.04) 2.91(1.04) 5.45(3.63)
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3.5.2 Application to EEG data study

We also apply our method to an EEG dataset, which is available at https://archive.ics.

uci.edu/ml/datasets/EEG+Database. The data was collected from 122 subjects by the

Neurodynamics Laboratory to examine the EEG correlates of genetic predisposition to alcoholism.

More details about the study can be found in Zhang et al. [1995a]. Among the 122 subjects, 77

were alcoholic individuals and 45 were controls. The dataset included voltage values from 64

electrodes placed on each subject’s scalps sampled at 256 Hz (3.9- msec epoch) for 1 second.

Each subject was exposed to three stimuli: a single stimulus, two matched stimuli, two unmatched

stimuli. For each subject, we use the average of all trials for each subject under single-stimulus

condition, which results in a 256 × 64 matrix. Among those 122 subjects, we randomly select

one alcoholic individual and one control, and analyze the dynamic functional connectivity among

different electrodes across time. The simplest analytical strategy to investigate dynamic functional

connectivity consists in segmenting the time courses from spatial locations into a set of temporal

windows, inside which their pairwise connectivity is probed. By gathering functional connectivity

descriptive measures over subsequent windows, fluctuations in connectivity can be captured. The

basic sliding window framework has been applied by the neuroimaging community to understand

how brain dynamics related to our cognitive abilities [Kucyi and Davis, 2014, Elton and Gao,

2015, Madhyastha and Grabowski, 2014], is affected by brain disorders [Sakoğlu et al., 2010,

Jones et al., 2012], or compares to other functional or structural brain measures [Leonardi et al.,

2013, Tagliazucchi et al., 2012, Liégeois et al., 2016]. More specifically, we use a moving window

of size 100 to calculate a series of covariance matrices along dimension of 256, resulting 157

covariance matrices of size 64× 64 for each individual.

We apply the proposed method to analyze the dynamic change of covariance structures over the

time in both alcoholic individual and control. The optimal bandwidth and regularization parameter

are selected by BIC. Figure 3.5 shows estimated images of 10th frame by our method for alcoholic

individual and control respectively. We observe a significant structural difference in their covari-
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ance matrices. Specifically, the alcoholic individual has a more complex covariance structure than

that from the control. Moreover, the average selected rank of alcoholic individual is 22.44 (SE =

0.93) compared to 6.82 (SE = 0.87) of control. This can be explained by drastic fluctuation across

time in EEG signals of alcoholic individuals compared to stable variation in control. We further

evaluate our method by leave-one-out cross-validation error and compare it with Nadaraya-Watson

regression, Lasso and L2RM. As shown in Table 3.6, our method achieves the smallest leave-one-

out cross-validation error among three methods. For Lasso estimator, the selected tuning parameter

is always zero. In other words, the Lasso estimator is the same as the Nadaraya-Watson estimator

for this data application, which implies that the low rankness assumption is a more reasonable

assumption than sparsity. We also notice that linear L2RM has a much higher estimation error

than the nonparametric methods. This indicates a strong nonlinear pattern in EEG signals for both

alcoholic and control subjects.

Table 3.6: Leave-one-out cross-validation errors (SE) by three methods for EEG data

Err - Our method Err - NW Err - Lasso Err - L2RM
Alcoholic 1.05(1.20) 2.20(2.84) 2.20(2.84) 908.29(623.54)
Control 9.57(61.44) 21.87(118.06) 21.87(0.75) 22513.17(16763.92)

(a) (b)

Figure 3.5: (a) Estimated 10th frame for alcoholic (b) Estimated 10th frame for control
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Chapter 4

Latent Representer Values in Image

Classification

4.1 Introduction

The last several years have witnessed the rise of sophisticated machine learning systems on a va-

riety of challenging tasks such as image classification or localization [Krizhevsky et al., 2012, He

et al., 2016] natural language processing or speech recognition [Chorowski et al., 2015] and medi-

cal diagnosis [Choi et al., 2016]. For these settings, neural networks are the core toolkits of human

decision making pipelines. Currently, machine learning models are evaluated by a variety of accu-

racy metrics on an available validation. Although there have been considerable improvements in

the state of the art of system accuracy, even on par with human performance, unfortunately, predic-

tions from these large neural models seem hard to interpret and be poorly calibrated. Techniques

for understanding and interpreting why the neural network make this prediction therefore become

an essential component of a robust validation procedure. Interpretability is gaining increasing at-

tention in applications, e.g., data-driven precision medicine, where understanding the contribution
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of specific features to a model is substantial. It is very important to understand the decision making

systems before the decision from machine is accepted in clinical procedure since it closely affects

the life and mortality of a patient [Katuwal and Chen, 2016]. Another application is self-driving

car, where people are interested in highlighting most salient image sections by which the model

makes the prediction of steering angles [Bojarski et al., 2017].

There are numerous avenues of work on interpreting black-box models but focusing on understand-

ing how an individual prediction is made from a model, e.g., approximating the prediction locally

with a probably simpler, and interpretable model [Ribeiro et al., 2016], or perturbing the point by

an infinitesimal mass to study the influence on the prediction [Koh and Liang, 2017]. However,

to our best of knowledge, none of them inspects the importance of each training point has on the

prediction of the model, with one exception. Yeh et al. employ a representer theorem that can be

generalized for deep neural networks. They show that the pre-activation prediction values can be

decomposed into a sum of weights, called representer values, of training points, to measure the im-

portance of each training point on the pre-activation value of a given test point. For training points

with significant representer values, we could say these are influential points to model prediction,

aiding users in which instance to inspect, and further in understanding of model’s prediction. Yeh

et al. measure the importance of training points by computing representer values from complex,

high-dimensional data, however, we believe this would amplify or dilute the importance in terms

of the ranking of representer values due to complicated data distribution in real life.

Our work proposes to tackle with this question by formalizing the impact of training points in a

continuous, low-dimensional latent space considering that the latent representations can capture

semantic variation of the data. We show that there still holds a representer theorem which decom-

poses the pre-activation value into a sum of representer values of training points. In contrast to Yeh

et al.’s work, we believe that the representer values computed from latent space, characterize the

”true” influence of each training point on the prediction in the sense of approximating the true rank-

ing of influences of training data. Then we can dive into training points with significant positive
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or negative representer values and understand why model tends to make the prediction of a certain

class rather than other classes. For training point with positive representer value for a certain class,

it indicates that a similarity to the training point encourages the prediction of the test point towards

this class. For the one with negative representer value, similarity to this training point is inhibitory.

We demonstrate that our method can select truly influential points through a range of theoretical

properties including ranking consistency and empirical experiments: debugging dataset; detecting

dataset errors; manifold visualization.

4.2 Related Work

There are several main approaches to interpreting model predictions. The first class of approach

is feature based. One approach proposed by Baehrens et al. is to explain the local decision by

local explanation vectors in the classification setting. The local explanation vector is in spirit to

sensitivity analysis, a local gradient that describes the influence of moving a single data point lo-

cally on its predicted label. The local explanation can be used to extract important features since

it can answer which local direction is influential to the prediction. Ribeiro et al. introduce model-

agnostic interpretation based on if-then rules, called Anchors, which sufficiently nail down the

prediction locally such that it is invariant under changes to the rest of the features. In other words,

Anchors highlight important features that are sufficient for the classifier to make a certain predic-

tion. Other gradient based methods include Pixel-space gradient visualizations such as Guided

Backpropagation [Springenberg et al., 2014] and Deconvolution [Zeiler and Fergus, 2014], how-

ever, neither of them is class-discriminative. Selvaraju et al. propose Gradient-weighted Class

Activation Mapping (Grad-CAM), a generalization of CAM [Zhou et al., 2016]. Grad-CAM is

a class-discriminative localization technique that computes the gradient information flowing into

the feature maps of the CNN to understand the importance of each neuron with particular classes.

Lundberg and Lee present a unified framework, SHAP (SHapley Additive exPlanations), to explain
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model prediction by assigning each feature an importance value for a certain prediction. SHAP

values provide a unified measure of feature importance approximated from current additive feature

attribution methods including LIME, DeepLIFT, Layer-Wise Relevance Propagation and Classic

Shapley Value Estimation [Ribeiro et al., 2016, Shrikumar et al., 2017, Bach et al., 2015, Datta

et al., 2016, Lipovetsky and Conklin, 2001]

The second class of approach is perturbation-based forward propagation. Inspired by influence

function [Hampel, 1986], a versatile technique from robust statistics measuring the effect of an in-

finitesimal contamination at a single point on the estimate, Koh and Liang apply it to understanding

black-box model behaviors in terms of how model parameter changes by upweighting or perturb-

ing at a training input from the sample space. Using influence functions to inspect the training

points allows people to perform data debugging such as fixing mislabeled instances. Moreover, in-

fluence function can be used to generate adversarial training images fool the model, by perturbing

a training points to increase the loss on a given test point. Sharchilev et al. apply influence func-

tion to tree ensemble-based models such as Random Forest(RF) and Gradient Boosted Decision

Trees(GBDT) to find influential training samples. Cadamuro et al. consider the task of identify-

ing the small subset of training items, which are root cause of biasing the model towards creating

prediction error. In addition, prediction error can be at least mitigated if this small subset is fixed.

However, they only provide closed form solution for OLS and Gaussian processes.

Yeh et al. propose a representer theorem for deep neural network predictions. Representer the-

orem origins from Kimeldorf and Wahba and is generalized by Schölkopf et al., where the min-

imizer of an empirical risk with monotonical regularization term in a reproducing kernel Hilbert

space(RKHS) can be expressed as expansions in terms of the training examples under certain con-

ditions. In Yeh et al.’s work, they consider a framework of neural network explanation, under

which they decompose preactivation neural network prediction into representer values of training

points. Then training points with positive representer values are interpreted as excitatory examples

and those with negative values as inhibitory instances. There is not too much other literature of
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representer theorem with application to deep neural network, with some exceptions [Unser, 2018,

Bohn et al., 2019]. However, neither of these works can interpret model prediction. Our approach

extends Yeh et al.’s work towards latent space, considering that the low-dimensional latent repre-

sentation of high-dimensional data can capture semantic variation in the data distribution. There

are two main frameworks of learning feature representations in terms of modeling how the data

are generated from the joint distribution of observed and target variables: Variational Autoencoder

(VAE) [Kingma and Welling, 2013] and Generative Adversarial Network (GAN) [Goodfellow

et al., 2014]. Donahue et al. present Bidirectional Generative Adversarial Networks (BiGANs)

to add an inverse mapping in addition to discriminator and generator, projecting data back into

low-dimensional latent space. We use BiGANs to encode data into the latent space and learn

representer values of the latent representations.

4.3 Framework

In this section, we describe the problem setup and theoretical details of our framework for rep-

resenter point selection on latent space. Consider a classification problem, given training dataset

x1, x2, · · · , xn from a corpus of data X and outputs of labels y1, y2, · · · , yn from a corpus of labels

Y , it is of interest to learn a mapping from X to Y . To learn the mapping, we deploy a neural

network having the form ŷi = σ(φ(xi, θ) ∈ RK , where K is the number of classes. Furthermore,

φ(xi, θ) = θ1fi ∈ RK and fi = φ2(xi, θ2).

Our goal is to quantify to what extent does each training point xi contribute to the prediction yt

of a test point xt. However, in general, an instance xt may not be in X, instead, comes from the

same underlying distribution PX . Unlike the existing approach [Yeh et al., 2018] that focuses on

the complicated input space, we want to learn the contributions from the manifold that captures

the semantic variation in data distribution PX , rather than from the raw data representation. This

motivates us to learn the mapping from corresponding dense representation of Z space to Y di-
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rectly. More concretely, we first represent instance x into dense vector z underlying latent space Z

which defines the distribution PX . Therefore powerful deep generative models are needed to learn

a mapping from dense latent representation Z to PX , from which samples {xi}ni=1 are generated.

To achieve this, we consider Generative Adversarial Networks(GANs), a powerful class of gener-

ative models which can be trained to learn arbitrarily complex data distributions via an adversarial

process between two competing networks: generator and discriminator [Goodfellow et al., 2014].

The generator G learns to map samples from an arbitrary low dimensional noise distribution to

data and the adversarial discriminator D is trained to distinguish synthetic data from real samples.

However, GANs can not be directly used to learn latent representations for an arbitrary data dis-

tribution, i.e., an inverse mapping from data to latent representation is lacking in this framework.

BiGAN [Dumoulin et al., 2016] propose an encoder E besides the generator G and discriminator

D, mapping data x to latent representations z. Moreover, the BiGAN discriminator D is also mod-

ified to discriminate jointly in pairs (x,E(x)) versus (G(z), z) as shown in Figure 4.1. Donahue

et al. refine the minimax objective as minG,E maxD V (D,E,G) where

V (D,E,G) =Ex∼PX
[
Ez∼E(·|x)[logD(x, z)]

]
+ Ez∼PZ

[
Ex∼G(·|z)[1− logD(x, z)]

]
.

Donahue et al. proves that BiGANs keep many of the theoretical properties of GANs while the

encoder E and generator G are able to learn to invert each other to fool the BiGAN discriminator

D. Therefore we consider a trained BiGAN encoder as a powerful and robust tool to extract latent

representation for semantic tasks.

Then let L(z, y, θ) be the loss and our objective is to minimize empirical loss with a regularization

term 1
n

∑n
i=1 L(zi, yi, θ) + ‖θ1‖2 where ‖ · ‖2 is l2 norm. Suppose the optimal solution is θ∗, it

would be ideal if φ(zt, θ
∗) =

∑n
i=1 αik(zt, zi), i.e., φ(zt, θ

∗) has a decomposition as a sum of n

weights where αik(zt, zi) is the contribution of training data xi on test instance xt. The theorem

below we call latent representer theorem shows that such decomposition holds for any stationary
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Figure 4.1: Bidirectional GAN visualization.

point solution and any deep neural network. We also address some nice theoretical properties of

latent representer theorem in next few theorems.

THEOREM 4.1. Denote the neural network prediction function by ŷ = σ(φ(z, θ)). φ(z, θ) is a

linear function of f , i.e., there exists θ1 such that φ(z, θ) = θ1f . The optimization problem is to

minimize the loss function with l2 regularization on θ1:

1

n

n∑
i=1

L(zi, yi, θ) + λ‖θ1‖2. (4.1)

Denote θ∗ to be a stationary solution to (4.1), then we have the decomposition:

φ(zt, θ
∗) =

n∑
i=1

k(zi, zt, αi), (4.2)

where αi = 1
−2λn

∂L(zi,yi,θ)
∂φ(zi,θ)

and k(zt, zi, αi) = αif
T
i ft.
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Proof. Since θ∗ is a stationary point, then the gradient of (4.1) with repect to θ1 is 0 when θ1 = θ∗.

Therefore we have

1

n

n∑
i=1

∂L(zi, yi, θ)

∂θ1

+ 2λθ∗1 = 0.

By chain rule, we have

∂L(zi, yi, θ)

∂θ1

=
L(zi, yi, θ)

∂φ(zi, θ)

∂φ(zi, θ)

∂θ1

= −2λnαif
T
i .

Hence we obtain

θ∗1 = − 1

2λn

n∑
i=1

∂L(zi, yi, θ)

∂θ1

=
n∑
i=1

αif
T
i ,

which finishes the proof considering φ(zt, θ
∗) = θ∗1ft.

Note that θ∗ is a summation of αifTi , hence αi can be viewed as the importance of the latent

representation zi on θ∗. For k(zi, zt, αi), a K dimensional value corresponding to K classes, either

case can result in a considerable value of k(zi, zt, αi) on class j: αij has a significant value; fTi f
t

is relatively large. Therefore k(αi, zi, zt) is a combination of similarity between fi and ft and the

gradient of individual loss L(zi, yi, θ
∗) on φ(zi, θ

∗). More comprehensively, when fi is close to ft,

indicating zi is close to zt, and αij is large and positive, then φ(zt, θ
∗)j gains support for class j

from training point xi . On the other hand, if αij is large and negative, then xi tends to resist the

model from making prediction of class j. By representer values, we could classify training data

into two types of points: those with negative representer values as inhibitory points and those with

positive representer values as excitatory instances.

Assumption 5. x is generated by its latent representation z by some functionG, i.e., x = G(z)+ε,

where epsilon is a white noise with distribution N(0, σ2).

55



Assumption 6. Given a set of representer values {k(zi, zt, αi)}ni=1 of a neural network, there exists

an ε0 > 0 such that min1≤i,j≤n |k(zi, zt, αi)− k(zj, zt, αj)| > ε0.

THEOREM 4.2. Under the setting of Theorem 4.1 and Assumption 5-6, given a latent representa-

tion zt of a test point xt, the ranking of representer values {k(zi, zt, αi)}ni=1 obtained from Theorem

4.1 approximates to the true ranking of representer values.

Proof. The true representer values denoted by k1, k2, · · · , kn are decided by a neural network with

G(zi), i = 1, 2, · · · , n as inputs. Under the setting of Theorem 4.1, the neural network prediction

function can be denoted by ŷ = σ(φ0(G(z), θ0)) and φ0(G(z), θ0) = θ10f0. Since f0 is a function

of G(z), we have φ0(G(z), θ0) = θ10f̃0(z) where f̃0 = f0 ◦ G. Therefore we transform the

original neural network with G(z) as input to the one with latent representation z and we denote

φ0(G(z), θ0) by φ̃(z, θ0). On the other hand, we can always add an additional neural network G(z)

before f and refit the model.

For any ε > 0, by universal approximation theorem [Hornik et al., 1989], when neural network

is complicated enough, we know that there exists a neural network with function φ(·, θ) and θ1 as

defined in Theorem 4.1 such that

|φ̃(z, θ0)− φ(z, θ)| < ε, for any z ∈ Rd.

Furthermore, we also have

|θ10 − C1θ1| = O(ε), |f̃0(z)− C2f(z)| = O(ε), (4.3)

where C1, C2 are constant satisfying C1C2 = 1.

By (4.3) and θ1 =
∑n

i=1 αif
T
i , we have |αi0 − C1

C2
αi| = O(ε). Therefore for 1 ≤ i ≤ n, it suffices
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to show that

|k(zt, zi, αi)−
1

C2
2

ki| = O(ε).

By Assumption 6, we can always choose ε small enough such that max1≤i,j≤n |k(zt, zi, αi) −

k(zt, zj, αj)| < ε0, then the ranking of {k(zt, zi, αi)}ni=1 is consistent with that of {ki}ni=1.

Theorem 4.2 demonstrates the benefit of calibrating representer theorem on latent space, that is, the

set of representer values by our method approximates the ranking of true representer values. Since

representer values are a decompositin of preactivation value of a test point, the scale is not really

important before pushing them through a softmax function. By contrast, the ranking of representer

values fairly matters when comparing the impact of training points. The next theorem shows that

as long as the encoder E can approximate the true latent representation z very well, the ranking of

representer values by our method is still consistent.

Assumption 7. Suppose the training dataset DX contains n data points and the optimal encoder

is denoted by En. Then En(x) converges to z with probability 1.

THEOREM 4.3. Under Assumption 5-7 and the setting of Theorem 4.1, given any encoded latent

representation En(xt), the ranking of representer values {k(En(xi), En(xt), αi)}n1 obtained from

Theorem 4.1 converges to the true ranking of representer values in probability.

Proof. By Assumption 7 and continous mapping theorem, we have

f̃0(En(x))
p→ f̃0(z), f(En(x))

p→ f(z). (4.4)

Similary, φ0(En(x), θ)
p→ φ0(z, θ). Let θ∗n be the stationary solution when inputs are En(x). We

have φ0(z, θ∗n)→ φ0(z, θ∗), which implies θ∗n → θ∗.
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Therefore we have

αi0(En(x), θ∗n)f̃0i(En(x))T
p→ αi0(z, θ∗)f̃0i(z)T ,

which finishes the proof considering (4.4) and Theorem 4.2.

4.4 Experiments

To demonstrate that our method is able to select insightful representer points, we evaluate on

permutation-invariant MNIST LeCun et al.. Scans of human-written digits provide simple but rich

features that are easy to understand and analysis, for which reason we think MNIST dataset is

an ideal image set to understand and compare recovered representer points. Under permutation

invariant setting, each 28 × 28 digit image is an unstructured 784D vector. We set the latent

distribution p(z) = N(0, 1), i.e., a 100D continuous standard normal distribution. We train a

bidirectional GAN [Dumoulin et al., 2016] where encoder E and generatorG consist of two hidden

layers with 512 units and discriminator D consists of three hidden layers with 1024 units. In Figure

4.2, we show sample generations G(z), as well as real data samples x and corresponding BiGAN

reconstructions G(E(x)). The reconstructions, while certainly imperfect, demonstrate empirically

that the BiGAN encoder E and generator G learn approximate inverse mappings. Therefore we

have sufficient rationality to take the latent representation E(x) encoded by BiGAN as input in all

experiments.
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G(z)

X

G(E(X))

Figure 4.2: BiGAN training results for permutation-invariant MNIST dataset,including generated
samples G(z), real data x from digit 0 to 9, and corresponding reconstructions G(E(x)).

4.4.1 Dataset Debugging

We repeat the dataset debugging experiment from Yeh et al.. This experiment considers a scenario

where humans need to inspect the dataset quality to ensure an improvement of the models perfor-

mance on the test data. We compare our approach with Yeh et al. on MNIST simulated datasets.

In this experiment, we consider handwritten digit “4” and “8” for a binary classification task. We

randomly flip 50% of the labels to corrupt the training dataset. Both methods reach a low test

accuracy around 0.51. Assume there is a simulated user who checks some fraction of the training

data considering some metrics of priority and reflip the wrong labels back. With the partially fixed

training data, we retrain the model and compare the test accuracies of each metric.

The L2 weight decay is set to 10−2 for both methods, which is consistent with Yeh et al.. Since

test accuracies also slightly depend on randomness of flipping labels, we repeat experiments for 5

random splits for fair comparison. Fraction of flips fixed and corresponding updated test accuracies

are summarized in Figure 4.3. We can find that when fraction of training data checked is 5%, 10%

and 15%, the simulated user is able to fix slightly more flipped labels by our method. When fraction

of flips checked is increasing, both method tend to result in the same amount of flips. Moreover,

when fraction of training data checked is small, i.e., 5%, 10%,· · · ,40%, our method can achieve

much more improvement on the test accuracy than Yeh’s method even though it is not evident to

tell only from fraction of flips fixed. This implies that our method can select similar amount of

wrongly flipped data points but with more “influence” than Yeh’s selected ones.
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Figure 4.3: Dataset debugging performance of our method and Yeh’s method. Our method is able
to recover similar amount of flipped training points as Yeh’s by inspecting representer value (left)
but achieves a far better accuracy (right) after refitting the model with fraction of training data
checked as 0.05, 0.10, · · · , 0.35.

4.4.2 Image exploring

We are interested in visualizing influential training points with high absolute representer values

for correctly classified points and compare the selected top training points with the ones selected

from Yeh’s method. We still use 10-class MNIST dataset [LeCun et al., 1998] considering that

handwritten digit images are simple and easy to recognize and analyze the pattern while other

datasets such as CIFAR-10 [Krizhevsky and Hinton, 2009] and Animals with Attributes (AwA)

[Lampert et al., 2009] might cause unnecessary challenges. In this experiment, we use a multi-layer

perceptrons, where one hidden layer with 512 units and ReLU activation function are adopted. The

L2 weight decay is set to 0.003 for both methods for fair comparison. Both methods achieve test

accuracy around 98%.

We pick a few test points both our method and Yeh’s models got correct and report top three

influential points as shown in Figure 4.4 and 4.5. In Figure 4.4, an image of handwritten digit 3,

our method selects three positive images in the same class, and all three images capture the pattern

of the test image. Moreover, we notice that the top three images selected by our method ranks by

similarity. By Yeh’s method, three images in the same class are returned. However, on the one

hand, the one ranked 3rd by our method turns to be rank 1st by Yeh’s method and the other two
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images stay far away from the test image. On the other hand, it is not evident to tell the rationality

of the ranking considering similarity. We believe that the one within the same class and is most

similar to the test image has most influence on the classification. For the negative examples, in

Figure 4.4, the first images picked by both methods are not very similar to the test image but Yeh’s

method recovers a worse one. The second images by two methods are consistent, implying that

both methods can recover some common inhibitory examples.

In Figure 4.5, for positive examples, top 1st images selected by both method are close to the

test image and somehow capture the crookedness of digit 2. However, top 2nd and top 3rd im-

ages recovered by Yeh’s method are not too related to the test image while our method keeps the

crookedness. For negative examples, both methods recover similar-looking images with different

labels in first two images but different order. However, the 2rd image from Yeh looks fairly unre-

lated to the test image while ours does. These excitatory and inhibitory examples provide valuable

insights for understanding model behavior since they explicitly indicate training points that con-

tribute to the network decision on a particular label for a given test point. Our method can recover

training points with more accurate importance compared to Yeh’s method in terms of the ranking

of similarity. More heuristic examples can be found in the supplementary material.

Figure 4.4: Comparison of top three excitatory and inhibitory influential training images for a
test point(ID 734) (left-most column) using our method (left columns) and Yeh’s method (right
columns).

61



Figure 4.5: Comparison of top three excitatory and inhibitory influential training images for a
test point(ID 363) (left-most column) using our method (left columns) and Yeh’s method (right
columns).

4.4.3 Understanding misclassified image

In this experiment, we select a few test points that are misclassified by our method and Yeh’s

method and want to understand which training points contribute to fooling the classifier. In the

first row of Figure 4.6, consider a handwritten digit 3 predicted as 5, we are interested in two types

of training points, one of which encourages the model to make prediction as 5, the other one of

which confuses model to inhibit digit 3. These two types of training points are both trying to fool

the model but have different emphasis on contribution to the test point. The 2nd and 4th column in

4.6 are training images that most encourage the model to make prediction of 5 by our method and

Yeh’s method respectively. It is not hard to see that the image recovered by our method looks more

similar to the test point, however, it is labeled as 5, which explains why the test point is classified

as 5. The 3rd and 5th column give the second type of training images, i.e., the ones resisting

classification as 3. Yeh’s method returns the same image as ours.

In the second row of 4.6, we have a test image of digit 4 but predicted as 9 by both methods. From

2rd of 4.6, the image selected by our methods fairly similar to the test image but in a different

class, which forces the model to make prediction to this different class. However, Yeh’s method

recovers an image that exactly look like 9. Moreover, the training image resisting prediction of 4
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recovered by our method is still close to the test image whereas the one from Yeh’s method looks

more like digit 1.

Figure 4.6: A misclassified test image (left most) and the most influential training point by our
method(2nd column) and Yeh’s method (4th column) supporting the wrongly predicted label and
the most influential training point resisting the true label by our method(3rd column) and Yeh’s
method (5th column).).

4.4.4 Manifold visualization

In this experiment, we are interested in visualizing influential top 3 training images of correctly

classified test point on a 2-D scatterplot to further evaluate two methods. The MNIST images have

28 × 28 pixels, which is hard to be visualized by a 2-D scatterplot. Maaten and Hinton provides

t-distributed Stochastic Neighbor Embedding (t-SNE) which has the capacity to characterize much

of the local structure revealed in high-dimensional data. Meanwhile, it also allows global structure

such as the presence of clusters at several scales. The main idea of t-SNE is to employ a Student-t

distribution rather than a Gaussian for computing the similarity between pairwise points, allevi-

ating the optimization and crowding problem existing in Stochastic Neighbor Embedding(SNE)

[Hinton and Roweis, 2003].

To speed up the heavy computation caused by calculating pairwise distances between data points,

we firstly apply PCA to reduce the dimensionality of the data to 50. Then we use t-SNE on 50-
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dimensional representation and show the resulting map as a 2-D scatterplot. Figure 4.7 shows

two scatterplot corresponding to two test points as shown in Figure 4.4 and 4.5 respectively. Each

training point recovered is annotated with a number indicating its corresponding rank. In the

left plot of Figure 4.7, even though our method recovers a training point that is slightly distant

from the test point, top 1 point by our method is closest to the test point. In the right plot, the

recovered training points by our method locate closer to the test point than the ones selected by

Yeh’s method. Moreover, the ranking of three recovered points by our method is consistent with

the spacial distance whereas Yeh’s method fails in keeping the ranking. This is as expected since

our method can recover the training images that have much of potential positive contribution to the

test image on the latent space.

Figure 4.7: Comparison of t-SNE visualization of recovered training points by our method and
Yeh’s method for two test point with ID 734(top) and ID 363(bottom).

4.5 Discussion

In this paper we introduced a novel approach of selecting representer training points, those which

are influential to a certain model prediction on semantic latent space. We incorporate a modi-

fied representer theorem in spirit to representer theorem for empirical risk minimization in RKHS
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while calibrating in low-dimensional latent space. This gives rise to a decomposition of a certain

prediction value into a sum of representer values contributed from each training point. By the sign

and significance of represent value, we can identify a training point to be an excitory or inhibitory

point. The optimization has an explicit solution and is sufficiently scalable compared with influ-

ence functions as discussed in Yeh et al.. Besides, we also discuss several theoretical properties

of our method such as ranking consistency, which supports the rational of the calibration in latent

space. Our method has a wide application in diagnosing machine learning such as data debug-

ging. It provides a rich understanding of black-box model behaviors through the view of training

data, which is believed to become a standard part of diagnosing machine learning [Koh and Liang,

2017].

In our work, we encode the data into the latent representations as input of the neural network. One

potential extension of the work is to find a mapping from representer values in latent space to the

ones in arbitrary data space. This would allow more space in model selection, either the target

model or encoding model, while keeping the consistency of the ranking of representer values.
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Appendix A

Appendix for Chapter 2

A.1 Primary lemmas and propositions

We start with some useful lemmas in this section. The proof of main theorems are given in the

Appendix B.

We first re-state a singular value thresholding formula in Cai et al. [2010]. This result is extremely

useful when computing optimal solution of (A.2), by which the important block of Nestorov’s

algorithm was formed. The proof is based on showing that 0 is one of subgradients of (A.1) at B̂.

Proposition 3. For any ω ≥ 0 and a given matrix B0 ∈ Rp×q with singular value decomposition

Udiag(s)V T, the minimizer B̂ of

1

2
‖B−B0‖2

F + ω‖B‖∗ (A.1)

has the same singular vectors as B0 with singular values (si − ω)+.
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Next we state a lemma on the risk bound. This result can be viewed as an analog of Theorem 1 in

Negahban et al. [2012] under our situation.

Lemma 1. Suppose that (A1) and (A2) hold, and ωn ≥ 2‖ 1
n

∑n
i=1 εiXi‖2. Then any optimal

solution B̂ to

(β̂0, B̂) = arg min
β0,B

1

2n

n∑
i=1

(
yi − β0 − 〈Xi,B〉

)2

+ ωn‖B‖∗ (A.2)

satisfies the bound

‖B̂−B0‖2
F ≤ 9

ω2
n

λl
r.

Proof. We apply Theorem 1 in Negahban et al. [2012] to our situation. Observe that the nuclear

norm is decomposable, and the squared error loss satisfies τL(B0) = 0 in that paper. Moreover, the

dual norm R∗ to the nuclear norm is simply the spectral norm. The curvature constant κL in the

restricted strong convexity (RSC) condition can be chosen as λ1/2
l because the squared error loss

is used and the Hessian matrix E{vec(X)vec(X)T} = Σxx ≥ λlI . For a subspace M that contains

matrices of the rank at most r, its subspace compatibility constant satisfies

ψ(M) = sup
U∈M\{0}

‖U‖∗
‖U‖F

= sup
U∈M\{0}

∑r
i=1 σi(U)

(
∑r

i=1 σi(U)2)1/2
≤
√
r,

where the last inequality follows by Cauchy-Schwarz inequality. Hence subspace compatibility

constant under the low-rank assumption (A2) is bounded by
√
r.

Next we state a few commonly used lemmas regarding the concentration property and tail proba-

bility inequalities of Gaussian and sub-Gaussian random variable (matrices). Their proofs can be

found in standard textbooks, e.g., Wainwright [2019].

Lemma 2. (Hoeffding bound) Suppose that the variables Xi, i = 1, 2, . . . , n are independent and
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Xi has mean µi and sub-Gaussian parameter Σi. Then for all t ≥ 0, we have

P

(
n∑
i=1

(Xi − µi) ≥ t

)
≤ exp(− t2

2
∑n

i=1 Σ2
i

)

Lemma 3. Assume X1, . . . ,Xn ∈ Rp×q are i.i.d. random matrices. Suppose that ‖X1‖2 ≤ M

almost surely, then with probability greater than 1− δ,

∥∥∥∥∥ 1

n

n∑
i=1

Xi − EX1

∥∥∥∥∥
2

≤ 6M√
n

(√
log min(p, q) +

√
log(1/δ)

)

Lemma 4. Let A be an p × q matrix whose entries are independent standard normal random

variables. Denote smin(A) and smax(A) as smallest singular value and largest singular value of

A respectively. Assume p ≥ q without loss of generality. Then

√
p−√q ≤ Esmin(A) ≤ Esmax(A) ≤ √p+

√
q.

Lemma 5. Let Y ∼ N(0, Id×d) be a d-dimensional Gaussian random variable. Then for any

function F:Rd → R with Lipschitz constant L, i.e. |F (x)−F (y)| ≤ L‖x−y‖ for all x,y ∈ Rd,

we have

P {|F (Y)− E(F (Y))| ≥ t} ≤ 2 exp(− t2

2L2
),

for any t > 0.

Lemma 6. (Anderson’s comparison inequality [Anderson, 1955]) Let X and Y be zero-mean

Gaussian random vectors with covariance ΣX and ΣY respectively. If ΣX−ΣY is positive semi-

definite then for any convex symmetric set C,

P (X ∈ C) ≤ P (Y ∈ C).
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The following lemma is very useful in establishing rank estimation consistency.

Lemma 7. Assume (A1) and (A2) hold. Let B̂ be a global minimizer of (A.2). If n1/2ωn tends

to +∞ and ωn tends to zero, then ω−1
n (B̂ − B0) converges in probability to the unique global

minimizer ∆ of

min
∆∈Rp×q

1

2
vec(∆)TΣvec(∆) + tr{UT

0∆V0}+ ‖UT

0⊥∆V0⊥‖∗.

Moreover, B̂ = B0 + ωn∆ +Op

(
ωn min(p, q)n−1/2 + min(p, q)n−1/2 + ω2

n min(p, q)1/2n−1/2
)
.

Proof. We can write B̂ = B0 + ωn∆̂, where ∆̂ is the global minimum of

Vn(∆) =
1

2
vec(∆)TΣ̂xxvec(∆)− ω−1

n tr∆TΣ̂Xε + ω−1
n (‖B0 + ωn∆‖∗ − ‖B0‖∗),

where Σ̂xx = n−1
∑n

i=1 vec(Xi)vec(Xi)
T and Σ̂Xε = n−1

∑n
i=1 εivec(Xi). Then vec(∆)TΣ̂xxvec(∆)/2−

vec(∆)TΣxxvec(∆)/2 converges to vec(∆)TE(Σ̂xx −Σxx)vec(∆)/2 with probability of 1. Note

that E‖Σ̂xx −Σ‖2
F = O(n−1). Denote vec(∆)i as ai and (Σ̂xx −Σ)ij as bij . Then we have

1

2
|vec(∆)TE(Σ̂xx −Σ)vec(∆)| ≤

pq∑
i,j=1

|aiajE(bji)|

≤
( pq∑
i,j=1

a2
i a

2
j

pq∑
i,j=1

E(b2
ij)
) 1

2

=

pq∑
i=1

a2
iE(

pq∑
i,j=1

b2
ij)

1
2

=

pq∑
i=1

a2
iE‖Σ̂xx −Σxx‖F

= ‖∆‖2
FO(n−1/2)

= O
(

min(p, q)‖∆‖2
2n
−1/2

)
.
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Meanwhile,

|tr∆TΣ̂Xε| ≤ (tr∆T∆)
1
2 (trΣ̂T

XεΣ̂Xε)
1
2

= ‖∆‖FOp(n
−1/2)

≤ min(p, q)
1
2‖∆‖2Op(n

− 1
2 ).

Therefore

Vn(∆) =
1

2
vec(∆)TΣvec(∆) +Op

(
min(p, q)n−1/2‖∆‖2

2

)
+Op

(
min(p, q)

1
2ω−1

n n−1/2‖∆‖2

)
+ tr(UT

0∆V0) + ‖UT

0⊥∆V0⊥‖∗ +Op

(
ωnp

1/2q1/2 min(p, q)‖∆‖2
2

)
.

=V (∆) +Op

(
min(p, q)n−1/2‖∆‖2

2

)
+Op

(
min(p, q)

1
2ω−1

n n−1/2‖∆‖2

)
+Op

(
ωnp

1/2q1/2 min(p, q)‖∆‖2
2

)
,

where p1/2q1/2 in the last term comes from the Frobenius norm of any matrix inRp×q with bounded

entries. Let sr be the r-th largest singular value of B0, for any M < sr/(2ωn),

E sup‖∆‖2≤M |Vn(∆)− V (∆)|

= O
(

min(p, q)M2E‖Σ̂xx −Σ‖F +M min(p, q)
1
2ω−1

n E(‖Σ̂Mε‖2)1/2 + ωnp
1/2q1/2 min(p, q)M2

)
= fO

(
min(p, q)M2n−1/2 +M min(p, q)

1
2ω−1

n n−1/2 + ωnp
1/2q1/2 min(p, q)M2

)
.

Obviously V (∆) achieves its minimum in the bounded ball at ∆0 6= 0. Hence by Markov inequal-

ity the probability of the minimum of Vn(∆) lying strictly inside the ball ‖∆‖2 < 2‖∆0‖2 tends

to one and is also the unconstrained minimum.

The following two lemmas can be viewed as analogs of Proposition 3 and Lemma 11 in Bach

[2008a]. W present them without the proof.

Lemma 8. Let B0 = U0Diag(S0)VT
0 be the singular value decomposition of B0. Then the unique
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global minimizer of

1

2
vec(∆)TΣvec(∆) + trUT

0∆V0 + ‖UT

0⊥∆V0⊥‖∗

satisfies UT
0⊥∆V0⊥ = 0 if and only if

∥∥∥∥∥{(V0⊥ ⊗U0⊥)TΣ−1(V0⊥ ⊗U0⊥)}−1{(V0⊥ ⊗U0⊥)TΣ−1(V0 ⊗U0)vec(I)}

∥∥∥∥∥
2

≤ 1.

Furthermore, when UT
0⊥∆V0⊥ = 0, the solutions has these forms:

vec(Λ) = {(V0⊥ ⊗U0⊥)TΣ(V0⊥ ⊗U0⊥)}−1{(V0⊥ ⊗U0⊥)TΣ(V0 ⊗U0)vec(I)},

vec(∆) = −Σ−1vec(U0V
T

0 −U0⊥ΛVT

0⊥). (A.3)

Lemma 9. The matrix B with singular value decomposition B = UDiag(S)VT( with strictly

positive singular value s) is optimal for the problem in (A.2) if and only if

Σ̂xxB− Σ̂Xy + ωnUVT +N = 0,

with UTN = 0, NV = 0 and ‖N‖2 ≤ ωn.

A.2 Proof of Theorems

Proof of Theorem 2.1. Throughout the proof, we use C to denote a universal positive constant

where its value is not important for the theoretical purpose. In order to apply Lemma 1, we just

need to evaluate the term ‖n−1
∑n

i=1 εiXi‖2 and then set the tuning parameter wn to be greater than
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that quantity. Note that εi = Yi − 〈Xi,B〉 − β∗0 . Let Xi = π1X
(1)
i + π2X

(2)
i , where vec(X

(g)
i )

i.i.d.∼

N(µg,Σ) and µg ∈ Rpq×1 for g = 1, 2. Define Xi
i.i.d∼ X and εi

i.i.d∼ ε. Observe that

vec{E(εiXi)}

= π1E{(− n

n1

− β∗0 − 〈X(1),B0〉)vec(X(1))}+ π2E{( n
n2

− β∗0 − 〈X(2),B0〉)vec(X(2))}

= (µ2 − µ1)− (π1µ1 + π2µ2)β∗0 − π1E{vec(X(1))vec(X(1))T}vec(B0)

− π2E{vec(X(2))vec(X(2))T}vec(B0)

= (µ2 − µ1)− (π1µ1 + π2µ2)β∗0 − π1{µ1µ
T

1 + Σ}vec(B0)− π2{µ2µ
T

2 + Σ}vec(B0).

(A.4)

Now, to further simplify this result, we reparameterize the mean of two normal populations such

that µ1 = 0, and µ2 = D. Then recall by the equivalence between LDA and least squares solution,

we have

vec(B) = cΣ−1D, β0 = −(π1µ1 + π2µ2)Tvec(B) = −π2cD
TΣ−1D, β∗0 = β0 − d

for some positive constants c and d. Then (A.4) can be simplified into

D− π2Dβ
∗
0 − π2{DDT}vec(B)− cD

= D− π2Dβ0 + π2DD− π2{DDT}vec(B)− cD

= D{1 + π2
2cD

TΣ−1D + π2d− π2cD
TΣ−1D− c}

= 0,

given d is chosen as π−1
2 {c− 1 + (π2 − π2

2)(DTΣ−1D)}.

Next we show that with high probability, ‖εX‖2 ≤ 2 log n(Cµ + λ
1/2
u )(
√
p+
√
q+
√

log n). Since

ε follows a mixture of two normal distributions, ε is sub-gaussian with sub-gaussian parameter

denoted by σ, which is a positive constant due to the bounded eigenvalue condition in (A1). By
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Lemma 2, for sufficiently large n,

P (|ε| > 2 log n) ≤ P (|ε− E(ε)| > log n) ≤ 2 exp(− log2 n

2σ2
) ≤ C exp(−2 log n) =

C

n2
.

Then we know |ε| ≤ 2 log n with probability of at least 1− Cn−2. For ‖X‖2, we first consider its

centralized version, that is, X ∼ N(0,Σ). Note that we can write the spectral norm of a matrix in

the form of a canonical Gaussian process,

‖N(0,Σ)‖2 = sup
A:‖A‖∗≤1

〈N(0,Σ),A〉.

This allows us to apply Gaussian comparison inequality [Slepian, 1962]. Define Z ∈ Rp×q that

satisfies vec(Z) ∼ N(0, I). Then by Lemma 6, we have

P (‖N(0,Σ)‖2 > t1) = P
(

sup
A:‖A‖∗≤1

〈N(0,Σ),A〉 > t1

)
≤ P

(
sup

A:‖A‖∗≤1

〈Z,A〉 > t1λ
−1/2
u

)
= P (‖Z‖2 > t1λ

−1/2
u ) (A.5)

for any t1 > 0 because Σ ≤ λuI due to (A1). Apply Lemma 5 (or more generally the Tracy-Widow

law), we have

P (‖Z‖2 − E‖Z‖2 >
√

log n) ≤ C exp(−2 log n) = Cn−2

for some constant C > 0. Since E‖Z‖2 ≤
√
p +
√
q, by Lemma 4, with probability of at least

1 − Cn−2, ‖Z‖2 ≤
√
p +
√
q +
√

log n, which leads to ‖N(0,Σ)‖2 ≤ λ
1/2
u (
√
p +
√
q +
√

log n)
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by (A.5). Therefore with probability of at least 1− Cn−2,

‖εX‖2 ≤ (2 log n)‖X‖2

≤ 2 log n(‖µ1‖2 + ‖N(0,Σ)‖2)

≤ 2 log n
{
Cµ(
√
p+
√
q) + λ1/2

u (
√
p+
√
q +

√
log n)

}
≤ 2 log n(Cµ + λ1/2

u )(
√
p+
√
q +

√
log n)

using Condition (A4) and since we assume µ2 = 0 without loss of generality.

Now we apply the standard matrix concentration inequality, (e.g., Lemma 3) withM = 2 log n(Cµ+

λ
1/2
u )(
√
p +
√
q +
√

log n) and δ = n−1. Note that P (‖Xiεi‖2 ≤ M, i = 1, . . . , n) =

(1 − Cn−2)n ≥ 1 − Cn−1 by Bernoulli’s inequality. Hence we obtain that with probability of

at least 1− Cn−1,

∥∥∥∥∥ 1

n

n∑
i=1

Xiεi − E(εX)

∥∥∥∥∥
2

≤ 6M√
n

(√
log min(p, q) +

√
log 1/δ

)
≤

12(log n)3/2(Cµ + λ
1/2
u )(
√
p+
√
q +
√

log n)
√
n

This completes the proof.

Proof of Theorem 2.2. By Lemma 7, we obtain B̂ = B0 +ωn∆+op(ωn). Since the rank is a lower

semi-continuous function, the rank of B̂ is larger than r with probability tending to one by the

consistency result, where r is the rank of B0. Suppose B̂ has singular value decomposition USV T

and Uc, Vc are singular vectors corresponding to U and V except the r largest singular values. By

Lemma 9, Σ̂xx(B̂−B0)− Σ̂Xε and B̂ have simultaneous singular value decomposition. Therefore

it suffices to show‖UT
c {Σ̂xx(B̂ − B0) − Σ̂Xε}Vc‖2 < ωn with probability tending to one. Note
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that

UT

c {Σ̂xx(B̂−B0)− Σ̂Xε}Vc = UT

c {ωnΣ̂xx∆ + op(ωn)−Op(n
−1/2)}Vc

= ωnU
T

c (Σ∆)Vc + op(ωn),

where Σ∆ is the matrix in Rp×q satisfying vec(Σ∆) = Σvec(∆). Because of the regular con-

sistency and a positive eigengap for B0, the projection onto the first singular vectors of B̂ con-

verges those of B0. Hence the projection on the orthogonal space is also consistent, which means

UcU
T
c converges to U0⊥UT

0⊥ and VcV
T
c converges to V0⊥VT

0⊥. Then by Lemma 8, we have

‖UT

c {Σ̂xx(B̂−B0)− Σ̂Xε}Vc‖2 = ‖UcU
T

c {Σ̂xx(B̂−B0)− Σ̂Xε}VcV
T

c ‖2

= ωn‖U0⊥UT

0⊥(Σ∆)V0⊥VT

0⊥‖2 + op(ωn)

= ωn‖U0⊥UT

0⊥Σ{−Σ−1(U0V0
T −U0⊥ΛVT

0⊥)}V0⊥VT

0⊥‖2 + op(ωn)

= ωn‖U0⊥ΛVT

0⊥‖2 + op(ωn)

= ωn‖Λ‖2 + op(ωn),

where the third equality is due to (A.3). Since ‖Λ‖2 < 1, the last expression is less than ωn with

probability tending to one, which completes the proof.

Proof of Theorem 2.3. Based on Corollary 3.1 of Zhang [2004], we have

R(f̂n) ≤ R∗ + 2c(ε1 + ε2)1/s,

whereQ is the squared error loss function defined byQ(f) = EX{y−f(X)2}, ε1 = inff EX(2P (Y =

1 | X) − 1 − f(X))2, ε2 satisfies Q(f̂n) ≤ inff Q(f) + ε2, and c and s can be chosen as c = 0.5

and s = 2 as explained by the Example 3.1 (for least squares loss function) in that paper. Now

note that since f̂n is determined by the classification coefficient B̂ and β̂0 that are both consistent

based on Theorem 2.1. Therefore ε2 can be chosen arbitrarily close to 0. Also, as we assume the

true class label Y given X is determined by the linear classification rule with β∗0 and B0, then
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inff EX{2P (Y = 1 | X)− 1− f(X)}2 = 0. Therefore ε1 = 0. This concludes the proof.
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Appendix B

Appendix for Chapter 3

B.1 Useful lemmas

We first re-state some lemmas that will be useful in the proof of the risk bound and rank

consistency results. For simplicity of notation, we define

L(Y ;x) =
1

2n

n∑
i=1

KH(x−Xi)‖Yi − Y ‖2
F .

Note that sometimes we may write L(Y ;x) as L(Y ) for simplicity. Let∇L(Y ) be the gradient of

L(Y ). Then the solution to (3.4) can be written as

ĝ(x) = arg min
Y ∈Rp×q

{L(Y ;x) + λnR(Y )},

where R(·) is a norm on Rp×q, and we denote R∗(·) as the dual norm of R(·). In our setting, R(·)

is the nuclear norm and R∗(·) is the spectral norm.

The first lemma is taken from Negahban et al. [2012]. It provides useful general risk bound for

86



high-dimensional regularized M-estimators.

Lemma 10. When λn ≥ 2R∗(∇L(Y )), any optimal solution Ŷλn satisfies the bound

‖Ŷλn − Y ‖2 ≤ 9
λ2
n

k2
L

Φ2(M) +
λn
kL
{2τ 2

L(Y ) + 4R(YM⊥)} (B.1)

Under our setting, Φ(M) = sup
u∈M\{0}

R(u)
‖u‖ = r, τL(Y ) = 0, R(YM⊥) = 0, and kL is a constant

related to the strong convexity of the loss function that we will specify in Proposition 3.

The next few lemmas are standard concentration bounds results for sub-Gaussian random variables

and Gaussian matrices.

Lemma 11. Let X be zero-mean, and supported on some interval [a, b] almost surely. Then X is

sub-Gaussian with parameter at most σ = b− a.

Lemma 12. (Hoeffding bound) Suppose thatX1, . . . , Xn are independent andXi has mean µi and

sub-Gaussian parameter σi for i = 1, . . . , n. Then for every t ≥ 0, we have

P

(
n∑
i=1

(Xi − µi) ≥ t

)
≤ exp(− t2

2
∑n

i=1 σ
2
i

).

Lemma 13. (Gordon’s theorem for Gaussian matrices) Let A be an p× q matrix whose entries are

independent standard normal random variables. Denote smin(A) and smax(A) as the smallest and

the largest singular value of A respectively. Assume p ≥ q without loss of generality. Then

√
p−√q ≤ E{smin(A)} ≤ E{smax(A)} ≤ √p+

√
q.

Lemma 14. Let Y ∼ N(0, Id×d) be a d-dimensional Gaussian random variable. Then for any

function F: Rd → R with Lipschitz constant L, i.e. |F (x) − F (y)| ≤ L‖x − y‖ for all x, y ∈ Rd,
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we have for any t > 0,

P {|F (Y )− E(F (Y ))| ≥ t} ≤ 2 exp(− t2

2L2
).

The next few results are taken from Bach [2008b]. They will be used for proving rank consistency.

Lemma 15. (Subdifferential) Suppose Y = UDiag(σ)V T is the singular value decomposition of

Y , where U ∈ Rp×r and V ∈ Rq×r have orthogonal columns and σ ∈ Rr with each element

positive, then the subdifferential of ‖ · ‖∗ is equal to

‖ · ‖∗(Y ) = {UV T +M, such that ‖M‖2 ≤ 1, UTM = 0 and MV = 0}.

Lemma 16. (Directional derivative) The directional derivative at Y = UDiag(σ)V T is equal to:

lim
t→0+

‖Y + t∆‖∗ − ‖Y ‖∗
t

= tr(UT∆V ) + ‖UT
⊥∆V⊥‖∗.

Lemma 17. Assume Y has rank r < min{p, q} with ordered singular value decomposition Y =

UDiag(σ)V T . If 4
sr
‖∆‖2

2 < ‖(I − UUT )∆(I − V V T )‖2, then rank (Y + ∆) > r.

Lemma 18. Assume Σ is any invertible matrix and Y has singular value decomposition Y =

UDiag(σ)V T . Then the unique global minimizer of

vec(∆)TΣvec(∆) + trUT∆V + ‖UT
⊥∆V⊥‖∗

satisfies UT
⊥∆V⊥ = 0 if and only if

vec(Λ) = ‖((V⊥ ⊗ U⊥)TΣ−1(V⊥ ⊗ U⊥))−1((V⊥ ⊗ U⊥)TΣ−1(V ⊗ Uvec(I))‖2 ≤ 1.
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Moreover, the optimal solution ∆ satisfies

vec(∆) = −Σ−1vec(UV T − U⊥ΛV T
⊥ ).

B.2 Curvature and strong convexity

One of the major ingredients in the proof for the risk bound result is the strong convexity of the

loss function. This is described using δL(Y ) = L(Y +∆)−L(Y )− < ∇L,∆ >, the remainder of

the first-order Taylor expansion along some direction ∆. Then we have the following proposition

stating that with high probability, the loss function L is strongly convex.

Proposition 4. With probability of at least 1 − exp(−nf(x)2h2s

32k2max
), δL(Y ) ≥ kL‖∆‖2

F , where kL =

f(x)
4
− Ck

2
hα1 .

Proof. To satisfy restricted strong convexity condition, we must have δL(Y ) ≥ kL‖∆‖2
F for ∆ ∈

ζ(∆), where kL > 0 is some constant, and ζ(∆) = {∆|‖πM⊥(∆)‖∗ ≤ 3‖πM(∆)‖∗}, where M⊥

and M are defined in Section 2.2 of Negahban et al. [2012]. Then we have

δL(Y ) = L(Y + ∆)− L(Y )− < ∇L,∆ >

=
1

2n

n∑
i=1

KH(x−Xi)‖Yi − Y −∆‖2
F −

1

2n

n∑
i=1

KH(x−Xi)‖Yi − Y ‖2
F

+
1

n

n∑
i=1

KH(x−Xi) < Yi − Y −∆,∆ >

=
1

2n

n∑
i=1

KH(x−Xi) < ∆,∆ >,

where the inner product < ·, · > is defined by < A,B >=
∑p,q

i,j=1AijBij . Therefore we just need

to show 1
2n

∑n
i=1 KH(x−Xi) ≥ kL with high probability.

By Assumption 3, KH(x−Xi) ∈ [0, h−skmax] for any x and Xi. Then KH(x−Xi)−E(KH(x−
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Xi)) ∈ [−h−skmax, h
−skmax].

By Lemma 11, we have

EXi(e
λ(KH(x−Xi)−E(KH(x−Xi)))) ≤ e

λ2(kmax−(−kmax))
2

2h2s = e
4λ2k2max

2h2s .

Hence KH(x − Xi) − E(KH(x − Xi)) is sub-gaussian by definition. By Lemma 12, we further

have, for any t > 0,

P

{
1

n

n∑
i=1

KH(x−Xi)− E(KH(x−Xi)) ≤ −t

}
≤ exp

(
−nt

2h2s

8k2
max

)
.

Meanwhile,

P

{
1

n

n∑
i=1

KH(x−Xi)− (E(KH(x−Xi))− f(x))− f(x) ≤ −t

}
≤ exp(−nt

2h2s

8k2
max

). (B.2)

By classical kernel density estimation theory, e.g., [Van der Vaart, 2000], there exists Ck ≥ 0 such

that |E(KH(x−Xi))− f(x)| ≤ Ckh
α1 . For simplicity, set t = f(x)

2
and kL = f(x)

4
− Ck

2
hα1 , which

is positive given h is small enough and f(x) is lower bounded due to Assumption 3. Therefore,

with probability of at least 1 − exp(−nf(x)2h2s

32k2max
), 1

2n

∑n
i=1KH(x −Xi) ≥ kL. This completes the

proof.
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B.3 Proof of Theorem 3.1

Denote R∗(·) as the dual norm of R(·). In our case, R∗(·) is the spectral norm, which is defined as

the largest singular value of a matrix. We have

R∗(∇L(Y, x)) =R∗

(
1

n

n∑
i=1

KH(x−Xi)(Yi − Y )

)

=R∗

(
1

n

n∑
i=1

KH(x−Xi)(g(Xi) + εi − g(x)

)

≤R∗
(

1

n

n∑
i=1

KH(x−Xi)(g(Xi)− g(x))

)
+R∗

(
1

n

n∑
i=1

KH(x−Xi)εi

)
.

Therefore, for any t > 0,

P

{∥∥∥∥∥ 1

n

n∑
i=1

KH(x−Xi)(Yi − Y )

∥∥∥∥∥
2

> t

}

≤P

{∥∥∥∥∥ 1

n

n∑
i=1

KH(x−Xi)εi

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

KH(x−Xi)(g(Xi)− g(x))

∥∥∥∥∥
2

> t

}

≤P

{∥∥∥∥∥ 1

n

n∑
i=1

KH(x−Xi)εi

∥∥∥∥∥
2

> t/2

}
+ P

{∥∥∥∥∥ 1

n

n∑
i=1

KH(x−Xi)(g(Xi)− g(x))

∥∥∥∥∥
2

> t/2

}
.

(B.3)

First we look at P
{
‖ 1
n

∑n
i=1KH(x−Xi)εi‖2 > t1

}
, where t1 > 0. Note that

E

(∥∥∥∥∥ 1

n

n∑
i=1

KH(x−Xi)εi

∥∥∥∥∥
2

)
= E

(
E

(∥∥∥∥∥ 1

n

n∑
i=1

KH(x−Xi)εi

∥∥∥∥∥
2

| {Xi}ni=1

))
.
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Denote KH(x−Xi) as ci. Then

E(‖ 1

n

∑
ciεi‖2) = E(

‖
∑
ciεi‖2/n√

σ2
∑n

i=1 c
2
i /n

2
)×

√
σ2
∑n

i=1 c
2
i

n2

≤ σ

√
p+
√
q

n
× (

n∑
i=1

c2
i )

1/2, (B.4)

where the last inequality is due to Lemma 13 since entries of ‖
∑n
i=1 ciεi‖2/n√

σ2
∑n
i=1 c

2
i /n

2
are i.i.d. standard

normal random variables. Then

E

(
‖ 1

n

n∑
i=1

KH(x−Xi)εi‖2

)
≤ σ

√
p+
√
q

n
E
(

(
n∑
i=1

KH(x−Xi)
2)1/2

)
≤ σ

√
p+
√
q

n

(
E(

n∑
i=1

KH(x−Xi)
2)
)1/2

= σ

√
p+
√
q

√
n

(
EKH(x−X1)2

)1/2

≤ 2σ

√
p+
√
q

√
n

(
EKH(x−X1)2I(‖x−Xi‖∞ = O(h))

)1/2

≤ 2σ

√
p+
√
q

√
n

(k2
max

h2s
P (‖x−Xi‖∞ = O(h))

)1/2

≤ 2σ

√
p+
√
q

√
n

(k2
max

h2s
Cfh

s
)1/2

= 2σkmaxC
1/2
f

√
p+
√
q

√
nhs/2

,

where we have used the fact that KH(x − Xi) is negligible once ‖x − Xi‖∞ � h and P
(
‖x −
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Xi‖∞ = O(h)
)

= Cfh
s since the density function of x is bounded from above. Then we have

P

{
‖ 1

n

n∑
i=1

KH(x−Xi)εi‖2 − E(‖ 1

n

n∑
i=1

KH(x−Xi)εi‖2) > t1

}

=E

(
P

{
‖ 1

n

n∑
i=1

KH(x−Xi)εi‖2 − E(‖ 1

n

n∑
i=1

KH(x−Xi)εi‖2) > t1 | {Xi}ni=1

})

=E
(
P
{‖ 1

n

∑n
i=1KH(x−Xi)εi‖2

(σ2
∑n

i=1 c
2
i )

1/2/n
− E

(‖ 1
n

∑n
i=1KH(x−Xi)εi‖2

(σ2
∑n

i=1 c
2
i )

1/2/n

)
>

t1
(σ2
∑n

i=1 c
2
i )

1/2/n
| {Xi}ni=1

})
≤E

(
exp

(
− t21

2σ2
∑n

i=1KH(x−Xi)2/n2

))
(B.5)

≤ exp

− t21

4σ2E
(
KH(x−Xi)2

)
/n

 (B.6)

= exp

− nt21

4σ2E
(
KH(x−Xi)2I(‖x−Xi‖∞ = O(h))

)


≤ exp

(
− nt21h

s

4Cfk2
maxσ

2

)
. (B.7)

In the above derivation, (B.5) is due to Lemma 14 and the fact that spectral norm is 1-Lipschitz.

Moreover, (B.6) holds since
∑n
i=1KH(x−Xi)2

n
converges to E(KH(x−Xi)

2) by strong law of large

numbers and hence is bounded by 2E(KH(x−Xi)
2) with probability tending to 1 as the variance

of KH(x−X1)2 is finite.

Then we take a look at the second term in (B.3). By strong law of large numbers, continuity of ‖ ·‖
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and continuous mapping theorem, we have

‖ 1

n

n∑
i=1

KH(x−Xi)(g(Xi)− g(x))‖2

≤ 2‖E
(
KH(x−Xi)(g(Xi)− g(x))

)
‖2

≤ ‖2E
(
KH(x−Xi)(g(Xi)− g(x))

)
‖F

= ‖2E
(
KH(x−Xi)(g(Xi)− g(x))I(‖Xi − x‖∞ = O(h))

)
‖F

≤ 2
kmax

hs
‖E
(
|g(Xi)− g(x)|I(‖Xi − x‖∞ = O(h))

)
‖F

≤ 2
kmax

hs
P{‖Xi − x‖∞ = O(h)}√pqCMhα2

≤ 2CfCMkmax
√
pqhα2 ,

whereM comes from the fact that ‖Xi−x‖∞ ≤Mhwith probability tending to 1 as ‖Xi−x‖∞ =

Op(h).

By matching 2CCfMkmax
√
pqhα2 with 2σkmaxC

1/2
f

√
p+
√
q√

nhs/2
, we set t1 = 2CfCMkmax

√
pqhα2 .

Then

P

{
‖ 1

n

n∑
i=1

KH(x−Xi)εi‖2 > 2CCfMkmax
√
pqhα2 + σkmaxC

1/2
f

√
p+
√
q

√
nhs/2

}

≤P

{
‖ 1

n

n∑
i=1

KH(x−Xi)εi‖2 − E(‖ 1

n

n∑
i=1

KH(x−Xi)εi‖2) > 2CCfMkmax
√
pqhα2

}

≤ exp(− nt21h
s

4Cfk2
maxσ

2
)

= exp(−CfC
2M2pqnh2α2+s

σ2
).
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Denote 2σkmaxC
1/2
f

√
p+
√
q√

nhs/2
by t2. We obtain

P

{
‖ 1

n

n∑
i=1

KH(x−Xi)(Yi − Y )‖2 > 2(t1 + t2)

}
≤ exp(−CfC

2M2pqnh2α2+s

σ2
).

By Lemma 10, when λn = 4(t1 + t2), we have

‖Ŷλn − Y ‖2
F ≤ 9

16(t1 + t2)2

(f(x)
4
− Ck

2
hα1)2

r ≤ Cλ2
nr,

with probability of at least 1−exp(−CfC
2M2pqnh2α2+s

σ2 )−exp(−nf(x)2h2s

32k2max
), where t1 = 2CfCMkmax

√
pqhα2

and t2 = 2σkmaxC
1/2
f

√
p+
√
q√

nhs/2
.

B.4 Rank consistency: proof of Theorem 3.2

We first state and prove two useful propositions.

Proposition 5. − 1
n

∑n
i=1KH(x − Xi)(Yi − Y ) and Y have simultaneous singular value decom-

positions.

Proof. By Lemma 15, the minimizer of of L(Y ;x) + λR(Y ) satisfies

− 1

n

n∑
i=1

KH(x−Xi)(Yi − Y ) + λ(UV T +M) = 0.

where Y has singular value decomposition Y = UDiag(σ)V T (with strictly positive singular value

vector σ) and UTN = 0, MV = 0, ‖M‖2 ≤ 1, which completes the proof.

Proposition 6. Let ĝ(x) be a global minimizer of Eq. (3.4) and assume ĝ(x) = g(x) + λn∆̂. Then
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∆̂ converges in probability to the unique global minimizer ∆ of

min
∆∈Rp×q

f(x)

2
‖∆‖2

F + tr(UT∆V ) + ‖UT
⊥∆V⊥‖∗.

Moreover, we have

ĝ(x) =g(x) + λn∆ +Op

(
n−1/2h−s/2λn min(p, q)

)
+Op

(
λ2
n min(p, q)2

)
I

+Op(
√
pqmin(p, q))(n−1/2h−s/2 + hα2).

Proof. Under the assumption ĝ(x) = g(x) + λn∆̂, we have that

arg min
Y ∈Rp×q

{
1

2n

n∑
i=1

KH(x−Xi)‖Yi − Y ‖2
F + λn‖Y ‖∗

}

is equivalent with

arg min
∆∈Rp×q

{
1

2n

n∑
i=1

KH(x−Xi)‖Yi − g(x)− λn∆‖2
F + λn‖g(x) + λn∆‖∗ − λn‖(g(x)‖∗

}

= arg min
∆∈Rp×q

{λ2
n

2n

n∑
i=1

KH(x−Xi)‖∆‖2
F −

λn
n

n∑
i=1

KH(x−Xi) < Yi − g(x),∆ >

+ λn‖g(x) + λn(∆‖∗ − ‖g(x)‖∗)
}

= arg min
∆∈Rp×q

{ 1

2n

n∑
i=1

KH(x−Xi)‖∆‖2
F −

1

nλn

n∑
i=1

KH(x−Xi) < Yi − g(x),∆ >

+
‖g(x) + λn∆‖∗ − ‖g(x)‖∗

λn

}
.

Denote

Vn(∆) =
1

2n

n∑
i=1

KH(x−Xi)‖∆‖2
F −

1

nλn

n∑
i=1

KH(x−Xi) < Yi − g(x),∆ >

+
‖g(x) + λn∆‖∗ − ‖g(x)‖∗

λn
.
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First we treat the term 1
nλn

∑n
i=1 KH(x−Xi) < Yi − g(x),∆ >. Note that

| 1

nλn

n∑
i=1

KH(x−Xi) < Yi − g(x),∆ > |

≤ 1

λn

∥∥∥∥∥ 1

n

n∑
i=1

KH(x−Xi)(Yi − g(x))

∥∥∥∥∥
F

‖∆‖F

≤ 1

λn

∥∥∥∥∥ 1

n

n∑
i=1

KH(x−Xi)(g(xi)− g(x))

∥∥∥∥∥
F

‖∆‖F +
1

λn
‖ 1

n

n∑
i=1

KH(x−Xi)εi‖F‖∆‖F

≤ 2

λn
‖E
(
KH(x−Xi)(g(x1)− g(x)

)
‖F‖∆‖F +

1

λn
Op(

√
pq

√
nhs

)‖∆‖F

≤
2CfCMkmax

√
pqhα2

λn
‖∆‖F +

1

λn
Op(

√
pq

√
nhs

)‖∆‖F .

Assume g(x) has singular value decomposition g(x) = UDiag(σ)V T with positive singular value

vector σ, then by Lemma 16,

‖g(x) + λn∆‖∗ − ‖g(x)‖∗
λn

= tr(UT∆V ) + ‖UT
⊥∆V⊥‖∗ +Op(λn‖∆‖2

F ).

Therefore

Vn(∆) =
f(x)

2
‖∆‖2

F +Op(n
−1/2h−s/2)‖∆‖2

F + tr(UT∆V ) + ‖UT
⊥∆V⊥‖∗ +Op(λn‖∆‖2

F )

+ 2CfCMkmax
√
pqhα2λ−1

n |∆‖F +
1

λn
Op(

√
pq

√
nhs

)‖∆‖F

=V (∆) +Op(n
−1/2h−s/2)‖∆‖2

F +Op(λn‖∆‖2
F ) + 2CfCMkmax

√
pqhα2λ−1

n ‖∆‖F

+
1

λn
Op(

√
pq

√
nhs

)‖∆‖F

≤V (∆) +Op

(
n−1/2h−s/2 min(p, q)

)
‖∆‖2

2 +Op(λn min(p, q)2‖∆‖2
2)

+ 2CfCMkmax
√
pqhα2 min(p, q)1/2λ−1

n ‖∆‖2 +
1

λn
Op

(√
pqmin(p, q)√

nhs

)
‖∆‖2,
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where V (∆) = f(x)
2
‖∆‖2

F + tr(UT∆V ) + ‖UT
⊥∆V⊥‖∗. Then we have for any M0 > 0,

E sup
‖∆‖2≤M0

|Vn(∆)− V (∆)| = Op

(
n−1/2h−s/2 min(p, q)

)
M2

0 +Op(λn min(p, q)2)M2
0

+
2CfCMkmax

√
pqhα2 min(p, q)1/2

λn
M0 +

1

λn
Op

(√
pqmin(p, q)√

nhs

)
M0.

Suppose that V (∆) reaches the minimum at a bounded point ∆0 6= 0. Then by Markov inequality,

in the ball ‖∆‖2 ≤ 2‖∆0‖2, Vn(∆) reaches its local minimum with probability tending to 1. Since

Vn is convex, the local minimum is also a global one. This completes the proof.

Proof of Theorem 3.2 Let ĝ(x) be a global minimizer of Eq.(3.4). In Lemma 18, we can choose

Σ as f(x)/2, then

‖((V⊥ ⊗ U⊥)Tf(x)−1(V⊥ ⊗ U⊥))−1((V⊥ ⊗ U⊥)Tf(x)−1(V ⊗ Uvec(I))‖2 = 0.

Therefore the solution of minV (∆) satisfies UT
⊥∆V⊥ = 0. Moreover, ∆ = −2f(x)−1(UV T ).

From previous discussion, we have ĝ(x) = g(x) + λn∆ + op(λn), where ĝ(x) has singular value

decomposition ŨDiag(s̃)Ṽ T . We denote Ũ0 and Ṽ0 as the singular vectors corresponding to all but

the r largest singular values.
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Then we have

− ŨT
0

1

n

n∑
i=1

KH(x−Xi)(Yi − ĝ(x))Ṽ0

=− ŨT
0

( 1

n

n∑
i=1

KH(x−Xi)(g(Xi)− g(x)) +
1

n

n∑
i=1

KH(x−Xi)εi

− λn
n

n∑
i=1

KH(x−Xi)∆−
op(λn)

n

n∑
i=1

KH(x−Xi)
)
Ṽ0

=− ŨT
0

(
Chα2 +Op(n

−1/2h−s/2)− λnf(x)∆− λnOp(n
−1/2h−s/2)∆

− op(λn)Op(n
−1/2h−s/2)

)
Ṽ0

= ŨT
0 (λnf(x)∆)Ṽ0 + op(λn/

√
pq),

where the last equation is due to assumption that
√
pqhα2 min(p, q)1/2λ−1

n → 0 and λ−1
n Op

(√
pqmin(p,q)
√
nhs

)
→

0, further indicating hα2 = o(λn/
√
pq) and Op(n

−1/2h−s/2) = op(1/
√
pq) if p ∧ q is finite, and

hα2 = o(λn/
√
pq(p ∧ q)) and Op(n

−1/2h−s/2) = op(1/
√
pq(p ∧ q)) if p ∧ q →∞.

Since Ũ0Ũ
T
0 and Ṽ0Ṽ

T
0 converge to U0U

T
0 and V0V

T
0 respectively in probability, we have

∥∥∥∥∥ŨT
0

1

n

n∑
i=1

KH(x−Xi)(Yi − ĝ(x))Ṽ0

∥∥∥∥∥
2

=

∥∥∥∥∥Ũ0Ũ
T
0

1

n

n∑
i=1

KH(x−Xi)(Yi − ĝ(x))Ṽ0Ṽ
T

0

∥∥∥∥∥
2

= λnf(x)‖U⊥UT
⊥∆V⊥V

T
⊥ ‖2 + op(λn)

= op(λn).

Therefore
∥∥∥ŨT

0
1
n

∑n
i=1KH(x−Xi)(Yi − ĝ(x))Ṽ0

∥∥∥
2

is strictly less than λn with probability tend-

ing to one, which means rank(ĝ(x)) ≤ r. Therefore we obtain rank consistency.
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Appendix C

Appendix for Chapter 4

C.1 Supplementary examples of MNIST

In this section, we provide more examples for the experiments of image exploring and understand-

ing misclassified images.

Figure C.1: Comparison of top three excitatory and inhibitory influential training images for a
test point(ID 5777) (left-most column) using our method (left columns) and Yeh’s method (right
columns).
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Figure C.2: Comparison of top three excitatory and inhibitory influential training images for a
test point(ID 360) (left-most column) using our method (left columns) and Yeh’s method (right
columns).

Figure C.3: Comparison of top three excitatory and inhibitory influential training images for a
test point(ID 400) (left-most column) using our method (left columns) and Yeh’s method (right
columns).

C.2 Experiments on Fashion-MNIST dataset

In this section, we apply our method on Fashion-MNIST dataset [Xiao et al., 2017] and repeat a

few heuristic experiments as we did on MNIST dataset. Fashion-MNIST consists of 60000 training

samples and 10000 test examples. Each sample is processed as a 28 × 28 grey-scale image from

10 categories of fashion products: (0) T-shirt/top, (1) Trouser, (2) Pullover, (3) Dress, (4) Coat, (5)

Sandal (6) Shirt, (7) Sneaker, (8) Bag, (9) Ankle boot. Fashion-MNIST is considered to be more

challenging as a drop-in alternative of MINIST for the purpose of classification.
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Figure C.4: A misclassified test image (left most) and the most influential training point by our
method(2nd column) and Yeh’s method (4th column) supporting the wrongly predicted label and
the most influential training point resisting the true label by our method(3rd column) and Yeh’s
method (5th column).

To start with, we train a bidirectional GAN to obtain the latent representation of data. The latent

distribution pz is set to be [U[−1,1]]
100, a 100-D uniform distribution. Both encoder E and discrimi-

nator D consist of 3 convolutional layers with ReLU activations and 3 deconvolutional layers with

ReLU activations are used for generator G. In Figure C.5, we present synthetic examples G(z),

real images x as well as the corresponding reconstructions G(E(x)). The qualitative results show

that the generator and encoder are reliable in approximates data distribution and encoding data into

latent representation.

C.2.1 Image exploring

In this experiment, we use a multi-layer perceptrons for classification, where one hidden layer with

512 units and ReLU activation function are adopted. Our method uses the latent representation
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Figure C.5: BiGAN training results for Fashion-MNIST dataset,including generated samples
G(z)(upper row), real data x(middle row), and corresponding reconstructions G(E(x)) (bottom
row).

learned from BiGAN as model input. The L2 weight decay is set to 0.003 for Yeh’s and our

methods for fair comparison. Both methods achieve test accuracy around 88%. We randomly

select a few test points that are correctly classified by both methods and visualize three top training

points with either positive or negative representer values.

In Figure C.6, a test sample of sandal, our method recovers top three positive images with label

of sandal, which successfully capture the core patterns of the test image including curved top line,

toe tip, as well as outsole. As for returned top three negative images, the first one has low heels,

however, the outline of sandal still looks similar to the test image. For Yeh’s method, it recovers

the same rank 1st positive image as our method. However, the 2nd and 3rd positive images and all

negative images are distant from the test image.

Figure C.6: Comparison of top three excitatory and inhibitory influential training images for a
test point(ID 21) (left-most column) using our method (left columns) and Yeh’s method (right
columns).
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Figure C.14 represents a set of recovered influential training points of a test image of coat. We

notice that all recovered positive training images on the left columns have a fairly similar shape

with the coat in test image. And surprisingly, the top 1st and 2nd images even try to capture

the feature of white. neckline. We also find that negative images selected by our method look

close to the test image and we can clearly observe a similar armhole. By contrast, training images

recovered by Yeh’s method are too obscure to tell the details of coats. More interestingly, sleeves

and body are apart in positive images on right columns, which contradicts the test image. It is not

surprising that our method outperforms Yeh’s since our method measures influences of training

samples on latent space, which focuses on similarity of features rather than Euclidean distance.

More examples are included in the last section.

Figure C.7: Comparison of top three excitatory and inhibitory influential training images for a
test point(ID 313) (left-most column) using our method (left columns) and Yeh’s method (right
columns).

C.2.2 Understanding misclassified images

Not only do we explore images both methods make correct prediction, we also want to investigate

to what extent training points contribute to fooling the classifier. Indeed, two types of training

points are of our interest, one of which try to fool model to stay away from true label and the

other of which encourages model to make the wrong prediction. We randomly select a set of test

points that both models fail in. In the first row of Figure C.8, the first column represents images
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misclassified by both models. The 2nd and 3rd column represent training points selected by our

method, which most endorses the wrong prediction and most fools the model away from ground

truth respectively. Similarly, the 3rd and 4th columns represents two types of points recovered by

Yeh’s method. It is not hard to tell that our method outperforms Yeh’s method in all examples

since the influential samples selected by our method look much more close to test images. In

particular, in the 4th row of Figure C.8, a shirt is predicted as T-shirt. Training images recovered

by our method have short sleeves, which have similar shape as the shirt. However, training images

recovered by Yeh are with long sleeves, which does not incorporate important features of the shirt

at all. More examples can be found in the last section.

Figure C.8: A misclassified test image (left most) and the most influential training point by our
method(2nd column) and Yeh’s method (4th column) supporting the wrongly predicted label and
the most influential training point resisting the true label by our method(3rd column) and Yeh’s
method (5th column).
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C.2.3 More examples

Figure C.9: Comparison of top three excitatory and inhibitory influential training images for a
test point(ID 82) (left-most column) using our method (left columns) and Yeh’s method (right
columns).

Figure C.10: Comparison of top three excitatory and inhibitory influential training images for a
test point(ID 55) (left-most column) using our method (left columns) and Yeh’s method (right
columns).
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Figure C.11: Comparison of top three excitatory and inhibitory influential training images for a
test point(ID 9341) (left-most column) using our method (left columns) and Yeh’s method (right
columns).

Figure C.12: Comparison of top three excitatory and inhibitory influential training images for a
test point(ID 27) (left-most column) using our method (left columns) and Yeh’s method (right
columns).

Figure C.13: Comparison of top three excitatory and inhibitory influential training images for a
test point(ID 1817) (left-most column) using our method (left columns) and Yeh’s method (right
columns).
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Figure C.14: Comparison of top three excitatory and inhibitory influential training images for a
test point(ID 313) (left-most column) using our method (left columns) and Yeh’s method (right
columns).

Figure C.15: Comparison of top three excitatory and inhibitory influential training images for a
test point(ID 98) (left-most column) using our method (left columns) and Yeh’s method (right
columns).
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Figure C.16: A misclassified test image (left most) and the most influential training point by our
method(2nd column) and Yeh’s method (4th column) towards the wrongly predicted label and the
most influential training point resisting the true label by our method(3rd column) and Yeh’s method
(5th column).
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Figure C.17: A misclassified test image (left most) and the most influential training point by our
method(2nd column) and Yeh’s method (4th column) towards the wrongly predicted label and the
most influential training point resisting the true label by our method(3rd column) and Yeh’s method
(5th column).
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