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Abstract: The prevalence of food allergies continues to rise, and with limited existing therapeutic
options there is a growing need for new and innovative treatments. Food allergies are, in a large part,
related to environmental influences on immune tolerance in early life, and represent a significant
therapeutic challenge. An expanding body of evidence on molecular mechanisms in murine models
and microbiome associations in humans have highlighted the critical role of gut dysbiosis in the
pathogenesis of food allergies. As such, the gut microbiome is a rational target for novel strategies
aimed at preventing and treating food allergies, and new methods of modifying the gastrointestinal
microbiome to combat immune dysregulation represent promising avenues for translation to future
clinical practice. In this review, we discuss the intersection between the gut microbiome and the
development of food allergies, with particular focus on microbiome therapeutic strategies. These
emerging microbiome approaches to food allergies are subject to continued investigation and include
dietary interventions, pre- and probiotics, microbiota metabolism-based interventions, and targeted
live biotherapeutics. This exciting frontier may reveal disease-modifying food allergy treatments,
and deserves careful study through ongoing clinical trials.

Keywords: microbiome; food allergy; live microbial therapeutics; bacteriotherapy; probiotics;
metabolites

1. Introduction
1.1. Food Allergy

Food allergies have been rising in prevalence in recent decades and are also the most
common cause of anaphylaxis in children [1,2]. Anaphylaxis is a serious allergic reaction
that can be life-threatening and involves various organ systems, including the respiratory
tract, gastrointestinal tract, and skin; it is primarily treated with epinephrine administra-
tion [3]. Food allergies impose significant burdens on patients and families due to the need
for specialized diets and constant monitoring for allergens in food, increased healthcare
usage, and anxiety related to developing an anaphylactic reaction [4–6]. The main treat-
ments for food allergies include allergen avoidance, treatment of allergic reactions with
epinephrine and other medications, and oral immunotherapy [7,8]. Oral immunotherapy
involves oral administration of a food allergen, either in fixed doses or in gradual doses
until a maintenance dose is reached [9]. The goal of oral immunotherapy is to desensitize a
patient against a food allergen; that is, to increase the threshold dose needed for a patient
to develop an allergic reaction to food. There is only one FDA-approved treatment for food
allergies, and it is the peanut oral immunotherapy called Palforzia [10]. However, oral
immunotherapy is not a cure for food allergies, and discontinuation of immunotherapy
usually results in a loss of tolerance to the allergen. In addition to oral immunotherapy,
other immunotherapies for food allergies exist, including sublingual and epicutaneous
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immunotherapy. Oral immunotherapy is the most effective of these, but comes with high
rates of adverse events, including allergic reactions and the development of eosinophilic
esophagitis [8]. Adjunct therapies to oral immunotherapy to help decrease adverse re-
actions include the use of monoclonal antibodies, such as omalizumab (anti-IgE) and
dupilumab (anti-IL-4Rα) [11–13]. Given the few treatment options for food allergies, there
is a substantial interest in and need for the new strategies to prevent and treat food allergies.

Food allergies are thought to arise due to a combination of genetic and environmen-
tal factors [14,15]. Genetic association studies have identified some risk alleles for food
allergies, particularly in the genes MALT1, FLG, and HLA; these findings implicate genes
involved in immune and barrier function in the development of food allergies [16]. En-
vironmental exposures have also been associated with allergy development [17–20]. For
example, it has been observed that different dietary exposures can lead to different rates
of food allergy acquisition, as seen in discordant peanut allergy rates among genetically
similar populations in Israel and the UK who, notably, had different peanut consumption
rates [21,22]. Furthermore, exposure to the farm environment and pets is associated with a
decreased risk of allergy development, while exposure to antibiotics and the Western diet
increases future allergy risk [18,23–26].

1.2. Gut Microbiota and Food Allergy

Recent evidence implicates the composition of microbes in the gut (the “microbiome”)
as a critical mediator of the relationship between environmental factors and the de-
velopment of food allergies and other allergic diseases, such as atopic dermatitis and
asthma [27,28]. Some of the first studies to suggest the importance of the gut microbiota
in modulating food allergies were performed using germ-free mice. These mouse studies
demonstrated that oral tolerance to food allergens was not achievable in germ-free mice,
and that intestinal microbiota reconstitution was only successful in inducing oral tolerance
when performed in neonatal mice [29]. Thus, not only are gut microbiota necessary for oral
tolerance to food allergens, but their effects on the immune system were most strongly felt
early in life. A few more recent studies have demonstrated that gut microbiota can also
transmit susceptibility to food allergies when transferred from patients with food allergies
to germ-free mice [30,31]. In observational human cohort studies, differences in gut mi-
crobiota composition have been found between subjects with food allergies compared to
those without, suggesting that different microbiota may exhibit dissimilar effects on food
allergen tolerance [32–34].

The relationship between the gut microbiome and food allergy development is be-
lieved to be mediated through microbial immune modulatory effects on food allergen
tolerance [35]. One of the mechanisms by which the gut microbiome promotes tolerance
is through induction of regulatory T-cells, which can be achieved through microbial pro-
duction of short chain fatty acids, such as butyrate [17]. The intestinal microbiota may
also prevent allergic sensitization to foods via induction of IL-22 production by immune
cells, leading to decreased intestinal epithelial permeability and reduced interaction of the
immune system with the allergen [36]. Given the extensive role for microbes in modulating
food allergies, there is interest in modulating gut microbiome composition and function to
prevent or treat food allergies.

1.3. Early Life Influences on Gut Microbiota and Immune Development

There are a variety of factors that affect the composition of the gut microbiome, which
is highly variable in the first three years of life, after which it more closely resembles
the adult gut microbiome [37–39]. At birth, the mode of delivery (vaginal delivery vs.
caesarean section) shapes the initial microbial acquisition of the infant [40]. At that time, the
child may be exposed to antibiotics administered directly or transferred across the placenta
or through breastmilk after maternal administration of peripartum antibiotics [41,42].
Shortly afterwards, the infant’s diet will affect bacterial colonization, as the infant can
be fed with breastmilk and/or formula [43]. Gestational prematurity is also thought to
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affect the microbiome, whether due to prematurity of the gut epithelium or the unique
microbial exposures, antibiotics, and parenteral nutrition in the neonatal intensive care
environment [44]. Later in life, the modern Western diet is believed to promote gut
microbial dysbiosis, which may be contributing to the growing incidence of food allergies
and autoimmune disease [45,46]. An important timepoint in the development of the gut
microbiome is the weaning period, which is usually around age 4–6 months in human
infants. There are rapid changes in microbial composition as the infant’s diet switches
from exclusively milk-based to a diet incorporating a variety of solid foods [47]. In mice,
there is a significant increase in gut microbial diversity at this time, which is called the
“weaning reaction”. A study in mice showed that the time period of the weaning reaction
is associated with imprinting of the immune system (through induction of regulatory
T-cells); perturbations to the gut microbiota (via antibiotic administration) during that
time were associated with a higher susceptibility to pathological inflammation [48]. This
key timepoint can also been seen as a “window of opportunity”, as early introduction of
peanuts during that time in human infants has been associated with a decreased risk of
peanut allergy [49]. Additionally, the composition of the microbiome at that time has been
associated with food allergy trajectory later in life; specifically, the presence of taxa from
the Firmicutes phylum (which includes Clostridia) at age 3–6 months was associated with
the resolution of milk allergy later in life [50,51]. Furthermore, in a study by Henrick et al.,
failure of infants to be colonized with bifidobacteria during the first months of life is
associated with immune activation, decreased levels of regulatory T-cells, and increased
intestinal inflammation [52].

Given the importance of microbiome composition at this timepoint, various ap-
proaches have been used to optimize gut composition in early life, including dietary
interventions and probiotic administration (Figure 1). There is also significant interest in
developing effective microbiome therapeutics with reproducible results [53]. In this review,
we will discuss microbiome-related approaches to prevent or treat food allergies.
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Figure 1. Outline of microbiome-related therapeutic strategies for food allergies.

2. Dietary Approaches

A large variety of dietary interventions to prevent the development of food allergies have
been studied. These include exclusive breastmilk feeding, use of elemental formulas in lieu of
cow’s-milk based formulas, modifying the maternal diet during pregnancy and breastfeeding,
early introduction of allergens, and consumption of fiber and a higher diversity of foods in
early life [14,15,22,54–56]. Some benefit has been found in almost all of these approaches, but
no approach has been successful in fully preventing food allergy development [57,58]. Some of



Nutrients 2022, 14, 5155 4 of 21

the strongest evidence for benefit in prevention in food allergies is early introduction of peanut
and egg, though it has also been found that avoidance of cow’s milk (via exclusive breastmilk
feeding or supplementation with an elemental formula) in first 3 days of life may help decrease
sensitization to cow’s milk [59–61]. Exclusive breastfeeding, while still strongly encouraged for
various health benefits, does not appear to prevent food allergies [55,57]. Additionally, while
the maternal diet during pregnancy has been associated with the development of various
allergic diseases, it has not been shown to affect food allergy outcomes [62].

Prebiotics and probiotics for the prevention and treatment of various diseases have
been widely studied, but results have been mixed [63]. While there have been reports of
beneficial outcomes with the use of prebiotics and/or probiotics in food allergies, it has
been difficult to make conclusions about the effects of these products given the wide variety
of prebiotic and probiotic strains that have been studied, and the heterogeneity in dosages
and administration [64–69]. Further studies are required to determine which prebiotics and
probiotics, and at which doses, are effective in the prevention or treatment of food allergies.

3. Metabolites

Metabolites of bacterial fermentation and from dietary sources may have profound
effects on host immunity and food hypersensitivity [15,70,71]. Emerging research has
identified critical roles for immunomodulatory microbial metabolites in the development
of food allergies in preclinical models.

3.1. Short Chain Fatty Acids

Dietary fiber undergoes metabolism by Clostridium, Lactobacillus, and Bifidobacterium
species into short chain fatty acids (SCFAs), primarily acetate, butyrate, and propionate [72–74].
These metabolites bind SCFA-specific G-protein-coupled receptors, resulting in cell sig-
naling to regulate eubiosis as well as inflammatory responses. Propionate binds GPR41,
which is abundantly expressed in colonic epithelium, and the consumption of propionate
has been shown to promote antigen-presenting cell precursors in a GPR41-dependent
manner [75,76]. Furthermore, GPR43 is another SCFA-binding G-protein coupled receptor
expressed in immune cells and colonic epithelium [75,77,78]. Existing GPR43 knock-out
models exhibit increased susceptibility to food allergies; moreover, high fiber diets promote
GPR43-dependent mechanisms to enhance tolerogenic CD103+ dendritic cells which, in
turn, promote the differentiation of regulatory T-cells [79].

The SCFAs also modulate gene transcription via epigenetic mechanisms, such as
the inhibition of histone deacetylases [80,81]. Butyrate has been found to protect against
food allergies by promoting immune tolerogenic mechanisms, such as enhanced IL-10
expression and increased regulatory T-cell and IgA production, as well as by supporting
mucosal integrity via increased expression of the goblet-cell mucin gene MUC2 [82–84].
Butyrate also inhibits IL-5 and IL-13 to modulate type 2 innate lymphoid cell-driven allergic
inflammation [85].

In human studies, low levels of SCFAs have been associated with allergic symptoms
in early life, and metagenomic analyses have shown that the microbiota of children who
later develop allergic sensitization have reduced potential for butyrate production [86–90].
Variations in SCFA levels in the setting of gut dysbiosis have been linked to cow’s milk
allergy, and enrichment with butyrate-producing microbiota promotes cow’s milk allergy
resolution [50,91,92]. Oral supplementation with SCFAs did not protect against food
allergies in a murine model (Il4raF709), although this supplementation was a combination
of acetate, propionate, and butyrate in equal concentrations [30]. One clinical trial aims to
investigate the use of adjuvant butyrate supplementation in oral peanut immunotherapy
(ACTRN12617000914369). In this study, children aged 10–16 years with peanut allergy are
randomized to receive peanut immunotherapy with or without a butyrylated high-amylase
maize starch dietary supplement. Investigators will subsequently assess clinical tolerance
to double-blind placebo-controlled food challenge at 13.5 months post-randomization, as
well as sustained tolerance at 25.5 months post-randomization.
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3.2. Secondary Bile Acids

Gut microbiota metabolize primary bile acids into various secondary bile acids, which,
in turn, feedback to regulate the gut microbiome as well as subsequent cellular signaling
cascades [93–96]. Secondary bile acids, such as deoxycholic acid and lithocholic acid,
regulate the immune system by acting as ligands for TGR5, resulting in suppression of
tumor necrosis factor-α production by macrophages [97]. Secondary bile acids have also
been demonstrated to induce the expression of the transcription factor Foxp3, as well
as the production of RORγ+ regulatory T-cells [98–100]. A recent study demonstrated a
mechanism of food sensitization via bile acid-mediated activation of retinoic acid responsive
element in dendritic cells, thereby promoting food-allergen specific IgE and IgG1 [101].
The role of bile acids in regulating immunological and inflammatory responses is complex,
and continued studies will help elucidate their role in the development of therapeutic
approaches to food allergies.

3.3. Sphingolipids

Emerging evidence supports the connection between sphingolipids, a class of lipids
with a long-chain sphingoid base, to food allergy pathogenesis [102–104]. Sphingolipids
may be ingested, produced endogenously, and, notably, synthesized by gut microbiota,
such as Bacteroidetes [105]. In a metabolomic profiling study, Crestani et al. identified
low levels of sphingolipids (such as sphingomyelin and ceramide) as a distinct hallmark
for food allergy phenotypes [106]. Acid sphingomyelinase enzymatically converts sph-
ingomyelin to ceramide, and its metabolic pathway has been linked to Th17 immune
responses [107]. A recent study demonstrated that the administration of dietary glucosylce-
ramide suppressed allergic responses in mice, and that the sphingoid base of this substance
inhibited mast cell degranulation by binding a leukocyte mono-immunoglobulin-like recep-
tor [108]. Although full details of the relationship between sphingolipid metabolism and
gut dysbiosis-mediated food allergies remain unclear, this topic deserves further research
and may aid the discovery of novel therapeutics.

3.4. Amino Acids

Although most amino acids are absorbed in the small intestine, some will remain in
the alimentary tract and be available for metabolism by gut microbiota [109]. Metabolism
of branched-chain amino acids results in the production of corresponding branched SCFAs,
which, as with propionate and butyrate, also inhibit histone deacetylases to regulate gene
expression [110]. Notably, dysregulation in the metabolism of lysine, leucine, and threonine
have been associated with food allergies [106]. Emerging evidence suggests that there
may be clinical benefits to combining symbiotics with amino acid formulas, and continued
studies on amino acid supplementation for promoting beneficial microbial composition
will be crucial [111–113].

The essential amino acid tryptophan is processed by gut lactobacilli into metabolites,
such as indole-3-aldehyde, which activates the transcription factor ‘aryl hydrocarbon re-
ceptor’ in epithelial and immune cells that modulates Th17, as well as regulatory T-cell
differentiation [114,115]. The aryl hydrocarbon receptor pathway has been shown to pro-
mote allergic inflammation in mouse models [116]. Moreover, a metabolomics study found
that mice with ovalbumin-induced food allergies had increased tryptophan metabolism
with higher levels of indole derivatives [117]. It has also been shown that Bifidobacterium
supplementation results in decreased intestinal inflammation, and that it is negatively
associated with levels of indole-3-lactic acid, another tryptophan metabolite [118]. A study
aimed at identifying probiotic metabolites for application in allergic diseases specifically
identified D-tryptophan as a promising therapeutic substance, as D-tryptophan supplemen-
tation in mice induced the production of lung and gut regulatory T-cells while attenuating
TH2 responses [119]. These interactions between allergic responses and microbiota-driven
tryptophan metabolism represent a unique opportunity for new therapies. For example,
one study demonstrated the use of fructooligosaccharides to modulate gut microbiome
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composition and tryptophan metabolism to protect mice against ovalbumin-induced food
allergies through the regulation of Th17/regulatory T-cell balance [120].

An improved understanding of the immunological consequences of these and yet
uncharacterized metabolites will help support evidence-based dietary guidelines and
inform novel metabolite-based therapeutic strategies.

4. Targeted Microbial Therapies
4.1. Fecal Microbiota Transplantation

Fecal microbiota transplantation (FMT) involves the transfer of microbial communities,
for example from select healthy donors to recipients with gut dysbiosis. Indeed, FMT has
been shown to be effective for treating Clostridioides difficile colitis and represents a promis-
ing novel therapeutic strategy for many disorders associated with perturbations of the gut
microbiome [121–123]. Early experiments by Rodriguez et al. demonstrated that FMT from
healthy human infants could protect against cow’s milk allergy in a gnotobiotic mouse
model [124]. On the other hand, Rivas et al. later showed that increased susceptibility
towards food allergies could be imparted onto germ-free mice via microbial transplanta-
tion [125]. These complementary results emphasize the critical role of the microbiome in
food allergies and need for careful selection of FMT donors. Recent preclinical studies
have continued to provide promising evidence that healthy human microbiota can protect
against food allergy development in mouse models [30,31,126,127]. Feehley et al. demon-
strated that transplantation of gut microbiota from healthy infants afforded protection
against cow’s milk allergy to germ-free recipient mice sensitized to cow’s milk allergen [31].
Further studies by Abdel-Gadir et al. similarly showed that healthy donor FMT led to
mitigation of food allergy response in mice with increased genetic susceptibility (Il4raF709),
whereas this protective effect was not observed following FMT using infant donors with
food allergies [30].

Clinical trials of FMT for food allergies are being conducted to build upon these
promising results. One such study is a phase I open-label trial which recently completed
enrollment as of September 2021. It aims to evaluate the safety and efficacy of oral encapsu-
lated FMT for patients with peanut allergy (NCT02960074). Patients in this study will either
undergo FMT alone or FMT with an antibiotic pre-treatment, and they will subsequently
undergo a double-blind placebo-controlled food challenge with peanut protein.

Although FMT presents a rich avenue for investigating novel therapeutics against food
allergies, the potential adverse effects of FMT must be rigorously considered. Severe side
effects of FMT have been documented in the literature, such as drug-resistant microbial
associated sepsis and unanticipated systemic immune responses [128,129]. Continued
studies will, therefore, be imperative to better characterize the risks associated with FMT
for food allergies, as well as to optimize donor and host characteristics for effective therapy.

4.2. Bacteriotherapy

A popular avenue for modulating the gut microbiome is through the introduction of
specific bacterial strains thought to have direct beneficial properties and/or to promote
healthy microbiome composition and function, in lieu of complete microbiome transplan-
tation. Unlike probiotics, which are regulated as foods, these live microbial products are
considered active pharmaceutical ingredients and would be subject to regulation by the
FDA [130].

Determining which bacterial species would be good candidates for bacteriotherapy for
food allergies requires determining the beneficial functionality of the species. Methods in-
clude assessing for differential abundance of bacterial species between affected and control
groups, in combination with transcriptomics or metabolomics, to identify the microbiota
with likely beneficial gene expression or metabolite production seen in healthy controls
but not in affected subjects [131,132]. For example, Feehley et al. paired transcriptomics
with differential microbiome composition in infants with and without cow’s milk allergy to
identify a bacterial species that protected against food allergies [31]. They first determined
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which bacteria were enriched in healthy infants compared to those with cow’s milk allergy,
then determined if the genes upregulated in the microbiota of mice colonized with healthy
infant stool were also upregulated in mice colonized with the bacteria that was identified
(Anaerostipes caccae) as enriched in healthy infants. Additional factors to consider in picking
bacteriotherapy candidates include engraftment of the species in the gut microbiome, which
may require antibiotic use prior to administration of bacteriotherapy, as well as prebiotics
to encourage growth and retention of these species.

In the field of food allergies, various observational studies noted differences in gut
microbiota in subjects who have developed food allergies compared to those who did
not [30,32,34,36,133–135]. Not only were there compositional differences in the microbiota,
but gene content and metabolomic signatures were also different, suggesting differential func-
tionality of the microbiota between subjects with food allergies and without [31,32,106,133].

Various groups have tried to identify specific candidate microbial species with ther-
apeutic potential against food allergies. Atarashi et al. found that a subset of regulatory
T-cell-inducing Clostridium species (belonging to clusters IV, XIVa, and XVIII) conferred re-
sistance to colitis and systemic immunoglobulin E response, and demonstrated a protective
effect against ovalbumin-induced allergic diarrhea in mice following the oral adminis-
tration of these Clostridium species [136,137]. Stefka et al. also showed that colonization
of germ-free mice with Clostridium species from clusters IV and XIVa led to a protective
effect against sensitization to peanut allergens [36]. Abdel-Gadir et al. found that mul-
tiple Clostridial taxa were affected in dysbiosis associated with food allergies, and they
used bacteriotherapy with a consortium of six Clostridial species to successfully suppress
food allergies in sensitized mice [30]. They also found they were able to suppress food
allergies with phylogenetically distinct microbiota, specifically a consortium of five Bac-
teroidales species. Furthermore, they were also able to suppress food allergies using a single
Clostridial bacterium (Subdoligranulum variabile). Similar to Abdel-Gadir’s group, Feehley
et al. were able to identify, using transcriptomics, a single Clostridial species (Anaerostipes
caccae) that afforded protection against cow’s milk allergy to germ-free recipient mice [31].
Bao et al. expanded on these findings, correlating differential bacterial abundance and
metabolites in healthy as compared to allergic twins to identify an additional two Clostridial
species (Ruminococcus bromii and Phascolarctobacterium faecium) that could be candidates for
bacteriotherapy in food allergies [32].

4.3. Industry Developments and Ongoing Clinical Trials

A more limited number of microbiome-focused therapeutics are under investigation
for food allergies than, for example, the treatment of Clostridioides difficile [130]. Current
therapeutics with clinical trial registration (summarized in Tables 1 and 2) include pre-
biotics, probiotics, synbiotics, bacteriotherapy, FMT, dietary interventions, and maternal
microbiome transplant via vaginal seeding after a caesarean section.

One of the few clinical trials investigating bacteriotherapy for food allergies include a
randomized double-blind phase I/II trial investigating VE416 (NCT03936998), an orally
administered bacterial consortium created by Vedanta Bioscience, Inc., Cambridge, MA,
USA, based on the candidate strains identified by Atarashi et al. [136,137]. Subjects with
peanut allergy will be randomized into four groups encompassing combinations of VE416
with vancomycin pre-treatment along with corresponding placebos, and subsequently
undergo double-blind placebo-controlled oral food challenge with peanut protein. Addi-
tionally, Siolta Therapeutics has a phase I/II trial in its ADORED study (NCT05003804)
investigating a live biotherapeutic of intestinal bacteria from healthy donors (STMC-103H)
to prevent the development of allergic disease in at-risk newborns.

There are various interventional trials utilizing prebiotics, probiotics, or synbiotics to
investigate effects on food allergies. These include trials where prebiotics are used as ad-
juncts to oral immunotherapy, such as the Pinpoint Trial (NCT05138757) and the OPIA trial
in Australia (ACTRN12617000914369), which utilizes a butyrylated high-amylase maize
starch as the prebiotic. Various Australian trials include the addition of Lactobacillus rhamno-
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sus probiotics to oral immunotherapy (ACTRN12616000322437, ACTRN12608000594325),
and demonstrated improved sustained unresponsiveness in patients receiving probiotic and
peanut oral immunotherapy compared to a placebo, but not compared to oral immunother-
apy alone [138–140]. Probiotic Lactobacillus rhamnosus represents a rational therapeutic
candidate, as it is historically known to be tolerated in early life and has been successful in
preventing atopic diseases, such as eczema, asthma, and atopic rhinitis [141]. Completed
trials from Canini et al. (ACTRN12610000566033; NCT01634490) evaluated the effect of
extensively hydrolyzed casein formula supplemented with Lactobacillus rhamnosus GG
on the development of tolerance in infants with cow’s milk allergy [68,142]. Combining
prebiotics with probiotics (to make synbiotics) can be seen in the Synbiotic Cohort Study
through Nutricia UK (NCT05046418), where synbiotics are added to hypoallergenic for-
mula in infants with cow’s milk allergy. Bifidobacterium is another logical candidate as
a potential therapeutic, as this genus is underrepresented in allergic infants during the
early life period [143]. A completed trial from the Netherlands (NTR3979) found that a
synbiotic-containing fructooligosaccharides and Bifidobacterium breve M-16V helped alter
the gut microbial composition of non-IgE cow’s milk allergic infants to resemble more
closely that of healthy infants [144,145]. Notably, another trial examining the same inter-
vention (NTR3725) found no significant difference at 12 months or 24 months in cow’s milk
tolerance following the addition of synbiotics [146].
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Table 1. Completed clinical trials of microbiome-related therapeutics for food allergies.

Therapeutic
Strategy

Company or
Organization Clinical Trial Phase Intervention Name Intervention

Description Study Subjects Primary Study
Outcome Findings Trial Identifier Trial Name

Biotherapeutics
Boston

Children’s
Hospital

Phase 1 N/A

Unspecified oral
encapsulated

microbiota
transplantation

Adults 18–40 years
with peanut allergy

Presence of fecal
microbiota

transplantation-
related adverse

events grade 2 or
above

Not yet published NCT02960074

Evaluating the
Safety and Efficacy

of Oral Encapsulated
Fecal Microbiota

Transplant in Peanut
Allergic Patients

Pre/Pro/Synbiotic

Royal
Children’s
Hospital;
Murdoch

Children’s
Research

Institute; Prota
Therapeutics

Phase 2b/3 PRT100

Probiotic
Lactobacillus

rhamnosus ATCC
53103; peanut oral
immunotherapy

Children 1–10 years
with peanut allergy

Sustained
unresponsiveness to

peanut protein by
double-blind

placebo-controlled
food challenge

Sustained
unresponsiveness at
12 months in 36/79

(46%) in the
probiotic and peanut
oral immunotherapy

group vs. 42/85
(51%) in the peanut

oral immunotherapy
group vs. 2/39 (5%)

in placebo group
[138].

ACTRN12616000322437

A multicentre,
randomised,

controlled trial
evaluating the
effectiveness of

probiotic and peanut
oral immunotherapy
(PPOIT) in inducing

desensitisation or
tolerance in children
with peanut allergy
compared with oral

immunotherapy
(OIT) alone and with

placebo

Royal
Children’s
Hospital

Phase 2b NCC4007

Probiotic
Lactobacillus

rhamnosus CGMCC
1.3724; peanut oral

immunotherapy

Children 1–10 years
with peanut allergy

Sustained
unresponsiveness to

peanut protein by
double-blind

placebo-controlled
food challenge

Sustained
unresponsiveness

after 2 to 5 weeks in
23/28 (82%) in the

probiotic and peanut
oral immunotherapy
group vs. 1/28 (4%)

in placebo [139].
Quality-of-life scores

increased in the
probiotic and peanut
oral immunotherapy

group (n = 19) but
not the placebo

group (n = 19), with
a strong correlation

between
quality-of-life scores

and
frequency/amount
of peanuts eaten up
to the final endpoint
at four years [140].

ACTRN12608000594325

Study of
effectiveness of
probiotics and

peanut oral
immunotherapy

(OIT) in inducing
desensitisation or

tolerance in children
with peanut allergy
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Table 1. Cont.

Therapeutic
Strategy

Company or
Organization Clinical Trial Phase Intervention Name Intervention

Description Study Subjects Primary Study
Outcome Findings Trial Identifier Trial Name

National Health
and Medical

Research
Council; Sydney

Children’s
Hospital
Network

N/A
Butyrylated

high-amylase maize
starch (HAMSB)

Prebiotic dietary
fiber; peanut

immunotherapy

Children 10–16 years
with peanut allergy

Sustained
unresponsiveness to

peanut protein by
double-blind

placebo-controlled
food challenge

Not yet published ACTRN12617000914369

Oral peanut
immunotherapy
with a modified

dietary starch
adjuvant for

treatment of peanut
allergy in children
aged 10–16 years

Danone
Nutricia
Research

N/A N/A

Amino acid formula
with prebiotic
oligofructose,

prebiotic inulin, and
probiotic

Bifidobacterium breve
M-16V

Infants <13 months
with cow’s milk

allergy

Cow’s milk tolerance
by double-blind

placebo-controlled
food challenge

No significant
difference in cow’s
milk tolerance at 12

and 24 months [146].

NTR3725

A prospective
double blind
randomised

controlled study to
evaluate the

immunological
benefits and clinical

effects of an
elimination diet

using an amino acid
formula (AAF) with

an added
pre-probiotic blend

in infants with
Cow’s Milk Allergy

(CMA)

Danone
Nutricia
Research

N/A N/A

Amino acid formula
with prebiotic
oligofructose,

prebiotic inulin, and
probiotic

Bifidobacterium breve
M-16V

Infants <13 months
with suspected

cow’s milk allergy

Fecal percentages of
bifidobacteria and

Eubacterium
rectale/Clostridium

coccoides

Experimental vs.
placebo group had

higher median
percentage

bifidobacteria and
lower Eubacterium
rectale/Clostridium

coccoides at 8 weeks:
(35.4% vs. 9.7%; p <

0.001), (9.5% vs.
24.2%; p < 0.001)

respectively [144]
and at 26 weeks:

(47.0% vs. 11.8%; p <
0.001), (13.7% vs.
23.6%; p = 0.003)

respectively [145].

NTR3979

An Amino Acid
based Formula with
synbiotics: Effects on

gut microbiota
diversity and clinical

effectiveness in
suspected

gastrointestinal
non-IgE mediated

Cow’s Milk Allergy
(ASSIGN I)
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Table 1. Cont.

Therapeutic
Strategy

Company or
Organization Clinical Trial Phase Intervention Name Intervention

Description Study Subjects Primary Study
Outcome Findings Trial Identifier Trial Name

University of
Naples Federico

II
N/A Nutramigen LGG

Lactobacillus GG in
extensively

hydrolyzed casein
formula

Children 1–24
months with cow’s

milk allergy

Tolerance to oral
food challenge

Group receiving
Lactobacillus GG vs.
control had more

patients achieving
tolerance to non-IgE
mediated cow’s milk
allergy at 6 months
(16 vs. 6; p = 0.017),
IgE mediated cow’s
allergy at 12 months
(5 vs. 1; p = 0.046),

and non-IgE
mediated cow’s milk
allergy at 12 months
(17 vs. 8; p = 0.006)

[68].

ACTRN12610000566033

A randomised
controlled trial on

the effect of
extensively

hydrolyzed casein
formula containing
Lactobacillus GG

(LGG) vs.
extensively

hydrolyzed casein
formula on time of

tolerance acquisition
in children with

cow’s milk allergy

University of
Naples Federico

II
N/A Nutramigen LGG

Lactobacillus GG in
extensively

hydrolyzed casein
formula

Infants 1–12 months
with cow’s milk

allergy

Time to tolerance
acquisition

Compared to groups
receiving other

formula types, there
more patients who

achieved tolerance to
cow’s milk allergy in
the groups receiving
Lactobacillus GG with

extensively
hydrolyzed casein
formula (78.9%; p <

0.05) and extensively
hydrolyzed casein

formula alone
(43.6%; p < 0.05)

[142].

NCT01634490

Effects of Different
Dietary Regimens on

Tolerance
Acquisition in
Children With

Cow’s Milk Allergy
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Table 2. Ongoing clinical trials of microbiome-related therapeutics for food allergies.

Therapeutic Strategy Company or
Organization Clinical Trial Phase Intervention Name Intervention

Description Study Subjects Primary Study
Outcome Trial Identifier Trial Name

Biotherapeutics

Massachusetts General
Hospital; Vedanta

Biosciences
Phase 1/2 VE416 Consortium of inactive

commensals
Patients 12–55 years
with peanut allergy

Number of patients
with treatment related
adverse events; peanut

protein tolerance by
double-blind

placebo-controlled food
challenge

NCT03936998 VE416 for Treatment of
Food Allergy

Siolta Therapeutics Phase 1b/2 STMC-103H
Live biotherapeutic of
unspecified intestinal

bacteria

Children 1–6 years;
1–12 months; 0–7 days
with immediate family

history of allergic
disorder

Frequency, type, and
severity of adverse
events; incidence of

atopic dermatitis
Secondary outcome:

incidence of
sensitization to food
allergen; incidence of

food allergies

NCT05003804
Allergic Disease Onset

Prevention Study
(adored)

Evelo Biosciences Phase 2 EDP1815 Prevotella histicola Adults 18–75 years
with atopic dermatitis

EDP1815 efficacy
defined as >50%

decrease in Eczema
Area Severity Index

NCT05121480

A Study Investigating
the Effect of EDP1815 in
the Treatment of Mild,
Moderate and Severe

Atopic Dermatitis

Pre/Pro/Synbiotic

University of Chicago Phase 1/2 N/A Unspecified prebiotic Children 4–7 years with
peanut allergy

Peanut protein
tolerance by
double-blind

placebo-controlled food
challenge

NCT05138757
Pinpoint Trial:

Prebiotics IN Peanut
Oral ImmunoTherapy

Chinese University of
Hong Kong N/A N/A

Unspecified probiotic;
peanut oral

immunotherapy

Children 1–17 years
with peanut allergy

Sustained
unresponsiveness to

peanut protein by
double-blind

placebo-controlled food
challenge

NCT05165329

A Randomised,
Controlled Trial
Evaluating the
Effectiveness of

Probiotic and Peanut
Oral Immunotherapy
(PPOIT) in Inducing

Desensitisation or
Remission in Chinese
Children With Peanut

Allergy Compared
With Oral

Immunotherapy (OIT)
Alone and With

Placebo

Massachusetts General
Hospital; Mead

Johnson Nutrition

Phase 2
(Terminated) N/A

Extensively hydrolyzed
casein formula;

Lactobacillus GG; Amino
acid formula

Infants up to 120 days
with suspected cow’s

milk allergy

Tolerance to cow’s milk
protein NCT02719405

Impact of Infant
Formula on Resolution
of Cow’s Milk Allergy
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Table 2. Cont.

Therapeutic Strategy Company or
Organization Clinical Trial Phase Intervention Name Intervention

Description Study Subjects Primary Study
Outcome Trial Identifier Trial Name

Johnson & Johnson;
Evolve BioSystems N/A Evivo

Bifidobacterium longum
subspecies infantis

strain EVC001

Healthy infants up to
14 days

Number of subjects
with atopic dermatitis
Secondary outcome:

Percentage of subjects
with Bifidobacterium

Infantis gut
colonization

NCT04662619

A Study of a Probiotic
Food Supplement

Containing B. Infantis
(EVC001) in Healthy
Breastfed Infants at
Risk of Developing
Atopic Dermatitis

NovoNatum N/A BioAmicus
Lactobacillus drops

Lactobacillus Reuteri
NCIMB 30351

Children 1–5 months
with colic, constipation,

diarrhea, or
regurgitation

Change in number with
infantile colic

Secondary outcome:
presence of skin or food

allergies; stool 16 s
RNA sequencing

NCT04262648

Randomized
Placebo-controlled
Study of L. Reuteri
NCIMB 30351 in GI

Functional Disorders
and Food Allergy in

Newborns

Nutricia UK N/A N/A
Hypoallergenic

formula containing
unspecified synbiotics

Infants <13 months
with confirmed or

suspected cow’s milk
allergy

Healthcare utilization
by electronic health

records
Secondary outcome:
Clinical outcomes

related to cow’s milk
allergy

NCT05046418 Synbiotics Cohort
Study

Vaginal Seeding

National Institute of
Allergy and Infectious

Diseases; Immune
Tolerance Network;

Pharmaceutical
Product Development;
Rho Federal Systems

Division

Phase 1 N/A Maternal vaginal
microbiota

Neonate of adult
female 18–45 with first

degree relative with
atopic disease or food

allergies

Presence of
sensitization to at least

one food allergen
NCT03567707

Vaginal Microbiome
Exposure and Immune
Responses in C-section

Infants

Karolinska Institutet;
Uppsala University

Linkoeping University
Umeå University

Örebro University

N/A N/A Maternal vaginal and
fecal microbiota

Neonate of healthy
adult mother

Incidence of
immunoglobulin

E-associated allergic
disease

NCT03928431
Restoration of

Microbiota in Neonates
(RoMaNs)
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Some microbiome therapeutics which may affect food allergy development via a
more indirect route include therapeutics to prevent or treat atopic dermatitis, which is
a risk factor for the development of food allergies and tends to precede food allergy
onset [14,15,17,147]. Ongoing trials of bacteriotherapy and probiotics include Evelo Bio-
sciences’ EDP1815, a single strain of Prevotella histicola (NCT05121480), and Evolve BioSys-
tems’ Evivo probiotic containing the Bifidobacterium longum subspecies infantis strain
EVC001 (NCT04662619). Prevotella species represent a particularly promising target. as
recent evidence demonstrated that maternal carriage of Prevotella is associated with a strong
protection against the development of food allergies [148].

Additionally, transplanting maternal vaginal microbiota onto neonates delivered via
C-section is thought to affect the trajectory of skin and gut bacterial colonization in infants,
as differential gut microbial composition has been observed in infants delivered vaginally
vs. via C-section [149,150]. A few vaginal seeding trials were identified (NCT03567707,
NCT03928431).

Microbiome-based therapeutics that may soon proceed to clinical trials include Clostra-
Bio’s microbiome-modulating bioactive polymer combined with a butyrate-producing live
biotherapeutic (Anaerostipes caccae) [31,132].

5. Conclusions

Exciting data from human association studies and preclinical models have provided
compelling evidence for a role for gut microbiota and their metabolites in food allergy
pathogenesis. These insights have motivated a wide range of recently completed and
ongoing clinical trials targeting the microbiome including dietary interventions, prebiotics,
probiotics, SCFAs, FMT, and bacteriotherapy. Given pre-clinical findings that showed that
FMT and bacteriotherapy appear to suppress food allergies in mice, it will be exciting to
see the results of these studies in humans. If successful, these microbiome therapeutics may
become the first truly disease-modifying treatments for food allergies. Results from these
clinical studies will provide insight into what challenges lie ahead and a foundation for
further clinical trials to elucidate which methods will be most efficacious for food allergies.
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