
UC Merced
UC Merced Electronic Theses and Dissertations

Title
Modeling Collaborative Virtual Human Agents

Permalink
https://escholarship.org/uc/item/92z7q2gv

Author
Shang, Xiumin

Publication Date
2023

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/92z7q2gv
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, MERCED

Modeling Collaborative Virtual
Human Agents

A dissertation submitted in partial satisfaction of the requirements for the degree
Doctor of Philosophy

in

Electrical Engineering and Computer Science

by

Xiumin Shang

Committee in charge:

Professor Angelo Kyrilov, Chair
Professor David C. Noelle
Professor Ahmed Sabbir Arif
Professor Marcelo Kallmann, Research Advisor

2023

Copyright Notice

©2023 Xiumin Shang
All Rights Reserved.

The Dissertation of Xiumin Shang is approved, and it is acceptable in quality and
form for publication on microfilm and electronically:

Marcelo Kallmann

David C. Noelle

Ahmed Sabbir Arif

Angelo Kyrilov, Chair

University of California, Merced

2023

iii

Dedication

To my family.

iv

Contents

List of Figures ix

List of Tables xiii

List of Algorithms xiv

Acknowledgment xv

Publications xvi

Abstract xvii

1 Introduction 1
1.1 Effects of Agent Design Variables . 2
1.2 Training Agents for Collaborative Tasks 3
1.3 Outline . 5

2 Literature Review 6
2.1 Virtual Agents . 6

2.1.1 Agent Motion and Character Animation 6
2.2 Learning Approaches . 8

2.2.1 Reinforcement Learning . 8
2.2.2 Multi-agent Reinforcement Learning 8
2.2.3 Multi-objective Learning . 9

2.3 Human Agent Interactions . 10

3 Effects of Virtual Agent Gender 12
3.1 Introduction . 12

3.1.1 Virtual Trainer . 12
3.1.2 Virtual Agent . 13

3.2 Motivation . 13
3.3 An Experiment . 14

3.3.1 Agent Selection . 14
3.3.2 Apparatus . 14
3.3.3 Participants . 16

v

3.3.4 Design . 16
3.3.5 Procedure . 17
3.3.6 Performance Metrics and Results 19

3.4 Qualitative Results . 20
3.4.1 Simulator Sickness . 20
3.4.2 Helpfulness . 20
3.4.3 Professionalism . 20
3.4.4 Attractiveness . 21
3.4.5 Preference . 22

3.5 Discussion . 22
3.5.1 Limitations . 23

3.6 Conclusion . 25

4 Effects of Virtual Agent Feedback Strategies 26
4.1 Related Work . 27

4.1.1 Virtual Agents and Training Systems 27
4.1.2 Feedback Strategies . 28

4.2 Pilot Study . 29
4.2.1 Apparatus . 29
4.2.2 Design . 29
4.2.3 Participants . 31
4.2.4 Procedure . 31
4.2.5 Results . 32

4.3 System Implementation . 32
4.4 User Study . 33

4.4.1 Design . 33
4.4.2 Participants . 34
4.4.3 Procedure . 35

4.5 Results . 36
4.5.1 Qualitative Results . 36
4.5.2 Quantitative Results . 36
4.5.3 Questionnaire Analysis . 38
4.5.4 Discussion . 39

4.6 Conclusion . 41

5 Learning Collaborative Multi-Agent Manipulation Tasks 42
5.1 Introduction . 42
5.2 Related Work . 45

5.2.1 Multi-Agent Environment . 45
5.2.2 Multi-Agent Reinforcement Learning 45
5.2.3 Multi-Objective Learning . 46
5.2.4 Reinforcement Learning with Constraints 46

5.3 Overview . 46
5.3.1 Environment and Tasks . 47

vi

5.3.2 Framework . 47
5.4 Approach . 47

5.4.1 Problem Formulation . 47
5.4.2 Multi-Agent Soft Actor Critic Learning (MSAC) 48
5.4.3 MSAC with Constraints . 49
5.4.4 Algorithm . 50

5.5 Training . 50
5.5.1 State and Action Representation 50
5.5.2 Reward Design . 51
5.5.3 Early Termination . 52
5.5.4 Training Details . 53

5.6 Experiments and Results . 53
5.6.1 Target Trajectories . 53
5.6.2 Evaluation Metrics . 54
5.6.3 Results . 55

5.7 Conclusions . 61

6 Addressing Realism and Robustness 63
6.1 Introduction . 63

6.1.1 Physics-based Character Animation 63
6.1.2 Robustness . 64

6.2 Related Work . 64
6.2.1 Character Animation . 64
6.2.2 Robust Reinforcement Learning 65

6.3 Approach . 65
6.4 Learning Agent under Physics . 66

6.4.1 System Overview . 67
6.4.2 State Representation . 67
6.4.3 Action Representation . 68
6.4.4 Reward Design . 69

6.5 Learning Robust Agent . 73
6.5.1 System Overview . 73
6.5.2 Algorithm . 74

6.6 Results . 74
6.6.1 Compute Platform . 74
6.6.2 Parameters . 75
6.6.3 Learning Agent under Physics 75
6.6.4 Learning Robust Agent . 79

6.7 Conclusions . 83

7 Conclusion 84
7.1 Future Directions . 85

Bibliography 86

vii

A Collaborative Virtual Humans Including Locomotion 99
A.1 Summary . 99

B Composite Motion Learning with Task Control 101
B.1 Abstract . 101

viii

List of Figures

3.1 Results of the informal study, together with the pictures used in the
questionnaire. Error bars represent interquartile range (IQR). 15

3.2 The Oculus Constellation Sensor (left) and the VR system setup (right)
in the study. 16

3.3 Perception Neuron full-body motion capture suit setup. 17
3.4 The virtual training environment used in the study. 18
3.5 Two volunteers participated in the user study. The computer monitor

in the background is displaying the participants’ point of view (POV). 19
3.6 User ratings of the two agents with regard to ” helpfulness” on 7-point

Likert scale, where 1 represents the least and 7 represents the most
helpful. 22

3.7 User ratings of the two agents with regard to ” professionalism” on 7-
point Likert scale, where 1 represents the least and 7 represents the
most professional. 23

3.8 User ratings of the two agents with regard to ”attractiveness” on 7-
point Likert scale, where 1 represents the least and 7 represents the
most attractive. 24

3.9 User ratings of the two agents with regard to ” preference” on 7-point
Likert scale, where 1 represents the least and 7 represents the most
preferred. 24

4.1 Example pictures used in the pilot study. 30
4.2 Left: the behavior repertoire available to the virtual trainer. Each

behavior (except the first one) implements an action synchronizing
arm motion and gaze movement as illustrated in the horizontal bars
next to each behavior. Right: the main interaction phases between the
virtual trainer and the user. 31

4.3 Country material sets used during main study 33

ix

4.4 The Correctness Feedback (CF) strategy is illustrated in images a-
c. After the user arranges the cubes (a) and completes an incorrect
sorting in the current task stage, the virtual trainer will manipulate
the cubes and re-arrange them in the correct order (b). The user
can then observe the correct solution as long as needed (c) until saying
“continue” in order to move to the next stage. The Suggestive Feedback
(SF) strategy is illustrated in images d-f. After the user manipulates
the cubes (d) and completes an incorrect sorting of the cubes in the
current task stage the virtual correcter will then point to the cubes
which are in the wrong position (e). The virtual trainer will point to
all of the cubes that are wrong and say that their positions are wrong.
The user will then rearrange the cubes (f) to propose a new sorting.
The process repeats until all cubes are placed in the correct locations.
When this is detected the virtual trainer notifies that the solution is
correct and the user can then observe the correct solution as long as
needed until saying “continue” in order to move to the next stage. . 35

4.5 We present an autonomous virtual trainer that can assist users to learn
a given task by using different feedback strategies involving manipu-
lation (left) and pointing (center). Immersed users interact with the
virtual trainer with voice commands while manipulating virtual cubes
using Rift controllers in order to learn the task (right). 36

4.6 Average stage execution times with CF and SF. 38

5.1 Agents collaboratively balancing a tray for a ball to follow a moving
target. 43

5.2 The overview of our environment and framework. 48
5.3 Ellipse examples, left with equal a and b, right with non-equal a and b 54
5.4 S-curve example. 54
5.5 Generalization to unseen triangle trajectories. 55
5.6 Generalization to unseen square trajectories. 55
5.7 Normalized reward on test episodes for the target objective phase

(phase 2) with ellipse trajectory. 56
5.8 Normalized reward on test episodes for the target objective phase

(phase 2) with S-curve trajectory. 56
5.9 Normalized reward on test episodes for the constraint phase (phase 1)

with ellipse trajectory. 57
5.10 Normalized reward on test episodes for the constraint phase (phase 1)

with S-curve trajectory. 57
5.11 Histogram of on-target steps ratio with ellipse trajectory. 58
5.12 Histogram of on-target steps ratio with S-curve trajectory. 58
5.13 Histogram of on-target steps ratio with triangle trajectory. 59
5.14 Histogram of on-target steps ratio with square trajectory. 59
5.15 Normalized target reward on test episodes with triangle trajectory. . 60
5.16 Normalized target reward on test episodes with square trajectory. . . 60

x

5.17 Normalized target reward for different disturbance force magnitudes
with ellipse trajectory. 61

5.18 Normalized target reward for different disturbance force magnitudes
with S-curve trajectory. 62

6.1 The framework overview for training collaborative agents under physics. 67
6.2 The task environment. 68
6.3 The agent arm joint-level orientations. 69
6.4 The representation for computing the hand reward. The red arrows

indicate the orientation difference between the hand palm and tray an-
chor point, the yellow arrow indicates the hand distance to the anchor
point. The left figure shows a random state of the agent. The right
figure shows a target state for the agent’s hand to achieve the maxi-
mum step reward of 1.0 for phase 1 (where the red arrows overlap and
the yellow arrow reduces to a point). 70

6.5 The representation for computing the tray lifting reward. The green
arrow indicates the tray’s moving direction. The left figure shows a
random state of the agents. The right figure shows the target state to
achieve the maximum step reward of 1.0 for phase 2. 71

6.6 The representation for computing the ball reach the moving target
reward. The blue arrow indicates the ball’s moving direction. The left
figure shows a random state of the task. The right figure shows the
target state for the ball to reach a position that achieves the maximum
step reward of 1.0 for phase 3. 72

6.7 The tray hits the lower arms of the agent. 72
6.8 The blue ball hits the edge of the tray. 73
6.9 The tray hits the ground or the blue ball hits the ground. 73
6.10 The framework overview for learning a robust agent. 74
6.11 The comparison of two agents collaboratively completing the trajec-

tory following tray balance task under IK(left figure) and physics(right
figure). 76

6.12 The different grasping behaviors of agents under IK and physics. . . 77
6.13 The mean episode reward performance against the ball mass ratio for

agents under IK (blue) and under Physics (orange). 78
6.14 The mean episode reward performance of different learning rates. . . 80
6.15 The mean episode reward performance of averaging and separating

agents rewards. 80
6.16 The mean episode reward performance of designing hand reward with

different reward ratio parameters. 80
6.17 The robust agent performance. 81
6.18 Comparison of mean episode reward for C-MSAC agent and C-RSAC

agent for different values of noise scale ω 81
6.19 Histogram of on-target steps for noise scale ω = 0.3. 82
6.20 Histogram of on-target steps for noise scale ω = 0.4. 82

xi

6.21 The environment for robust agent reacts to user-controlled noisy agent. 83

A.1 Two virtual trainers collaboratively carry an object with a tray in a
dynamic environment. 100

B.1 Example of a physically simulated character performing composite mo-
tion with locomotion and aiming a weapon. The colors show the au-
tomatic mixing of the combined inputs that change dynamically over
time based on the state. As indicated in the inset, red denotes body
parts that are vital for locomotion while blue for aiming respectively.
Our multi-objective approach learns this mixture along with imitation
from two disparate reference motions and two goal-directed task re-
wards for each action. 102

xii

List of Tables

3.1 Results of the user study. All times are in seconds. SD signifies stan-
dard deviation. 20

3.2 Simulator Sickness Questionnaire (SSQ) scale means for the experi-
ment system. 21

4.1 Mean and standard deviation for obtained scores. 37
4.2 Post-study questionnaire results. 39

6.1 Training parameters. 76

xiii

List of Algorithms

1 Constrained Multi-agent Soft Actor Critic Algorithm (C-MSAC) . . . 51
2 Constrained Robust Soft Actor Critic Algorithm (C-RSAC) 75

xiv

Acknowledgment

This thesis is a culmination of a long journey which would not have been possible
without the tremendous amount of support I have received from a number of people.
I would like to take this opportunity to extend my gratitude.

I am deeply thankful to my advisors, Prof. Marcelo Kallmann for providing me
with the opportunity to work on this thesis and for always providing his guidance,
direction and support since the beginning of my thesis work all the way to its com-
pletion and Prof. Angelo Kyrilov for accepting the role of being my advisor during
a difficult and uncertain period in my doctoral journey. I would like to thank Prof.
David Noelle and Prof. Ahmed Arif for serving on my defense committee and pro-
viding valuable feedback on my work. I am extremely thankful to Prof. Ioannis
Karamouzas for providing insightful guidance and valuable inputs which helped me
achieve meaningful improvements in my work. I would also like to thank my for-
mer advisor from the Department of Mechanical Engineering, Prof. Yanbao Ma, for
supporting me through a difficult transition to a new country and a new academic
environment.

I would also like to thank all the faculty members with whom I’ve had the op-
portunity to take courses and advance my knowledge, as well as my colleagues and
labmates who have provided valuable discussions and support to my work. I’ve been
extremely fortunate to have a lot of wonderful friends who have helped me make
this journey memorable through difficult as well as happy times, and I’m sincerely
thankful to all of them. I would like to thank Google for providing research credits
on the Google Cloud Platform that helped me conduct experiments for the final part
of my thesis.

To my husband Ruchir Travadi, who was not only patient and supported all
aspects of my life, but also constantly provided valuable discussions and feedback on
my work, I’d like to say during all these highs and lows throughout this journey, your
calmness and encouragement always made me feel at ease and brought me courage to
continue this journey. You continued to find ways to cheer me up with your humorous
and positive attitude, and of course your cooking was so good that my stomach also
felt equally at ease.

Finally, I would like to thank my family. Throughout my life they have been an
eternal source of support, understanding, encouragement and above all love. They
have worked hard to provide me with every opportunity including this journey and I
am truly indebted to them for that.

xv

Publications

9. Xiumin Shang, and Marcelo Kallmann. Learning Robust Agent under Multi-
Agent Framework. (To be submitted.)

8. Xiumin Shang, Tengyu Xu, Ioannis Karamouza and Marcelo Kallmann. Constraint-
Based Multi-Agent Reinforcement Learning for Collaborative Tasks. Computer
Animation and Virtual Worlds, 2023

7. Pei Xu, Xiumin Shang, Victor Zordan and Ioannis Karamouzas. Composite
Motion Learning with Task Control. ACM Transactions on Graphics, 2023

6. Xiumin Shang, Marcelo Kallmann. Chapter 9: Collaborative Virtual Trainers
in VR Applications. Springer, Cham, 2021, https: // doi. org/ 10. 1007/
978-3-030-79062-2.

5. Xiumin Shang, Ruisheng Diao. Multi-stage Transmission Line Flow Control
Using Centralized and Decentralized Reinforcement Learning Agents. NeurIPS
2020 workshop on ML4Eng

4. Xiumin Shang, Ruisheng Diao. Reinforcement Learning Based Solution to
Power Grid Planning and Operation Under Uncertainties. SC 2020 workshop
on AI4S

3. Xiumin Shang, Marcelo Kallmann, Ahmed Sabbir Arif. Designing Behaviors
for Autonomous Virtual Trainers: The Effects of Correctness and Suggestive
Feedback. Preprint at https: // arxiv. org/ abs/ 1811. 02693 .

2. Xiumin Shang, Marcelo Kallmann, Ahmed Sabbir Arif. Effects of Correctness
and Suggestive Feedback on Learning with an Autonomous Virtual Trainer. In
Proceedings of the 24th International Conference on Intelligent User Interfaces
Companion (IUI 2019 Companion). ACM, New York, NY, USA.

1. Xiumin Shang, Marcelo Kallmann, Ahmed Sabbir Arif. Effects of Virtual
Agent Gender on User Performance and Preference in a VR Training Program.
In Proceedings of the 2019 Future of Information and Communication Confer-
ence (FICC 2019). Springer-Verlag New York, Inc., New York, NY, USA.

xvi

https://doi.org/10.1007/978-3-030-79062-2.
https://doi.org/10.1007/978-3-030-79062-2.
https://arxiv.org/abs/1811.02693

Abstract
Autonomous virtual agents have been employed in different areas, spanning applica-
tions from education and training to gaming and e-commerce. In particular, agents
of human-like appearance, or virtual human agents, have been greatly improved over
the years with the advancement of technologies in machine learning, natural language
processing and computer graphics. This dissertation addresses topics related to the
design and training of virtual human agents for collaborative tasks.

On the design front, this thesis presents user studies investigating the effect of
agent gender and feedback strategies on instructional object manipulation tasks. The
obtained findings show that, although agent gender has no significant effect on user
preference or performance, users find female agents to be more attractive. Comparing
suggestive feedback and correctness feedback strategies, it is found that correctness
feedback is preferred by the users and leads to a 65% shorter task completion time.

On the training front, the focus is on collaborative tasks controlled by Deep Re-
inforcement Learning (DRL). Three important challenges are addressed: sequential
multi-phase tasks, collaborative learning of motor tasks in a physics-based environ-
ment, and addressing realism and robustness. First, to train agents for collaborative
multi-phase tasks the Constrained Multi-agent Soft Actor Critic (C-MSAC) approach
is proposed. It is shown that this approach achieves better mean episode reward,
generalizability and robustness to disturbance when compared with an unconstrained
multi-agent learning baseline. Second, the original inverse kinematics approach is
replaced with physics-based control which leads to more natural movements and im-
proves robustness against variations to physical parameters of the environment.

Finally, the Constrained Robust Soft Actor Critic (C-RSAC) approach is proposed
to train a single robust agent using the policies obtained from C-MSAC for initial-
ization. C-RSAC uses noise augmentation in the action space of one of the agents
to improve robustness of the collaborating agent. It is shown that C-RSAC leads to
an improved mean episode reward compared to C-MSAC when collaborating with a
noisy agent.

In summary, this thesis investigates several important aspects related to au-
tonomous collaborative virtual human agents such as gender, appearance, feedback
strategies, collaborative training, physics-based animation and robustness. The pro-
posed C-MSAC approach for multi-phase multi-agent training and C-RSAC approach
for multi-phase single agent robust training represent new contributions to the emerg-
ing area of autonomous virtual trainers. Overall the contributions from this thesis
inform the design and modeling of collaborative virtual human agents, furthering
the goal of enabling these agents to assist humans on various applications of virtual
trainers.

xvii

Chapter 1

Introduction

A virtual agent is a computer program that provides assistance or guidance for humans
to complete tasks. Virtual agents have been widely used in many fields such as
gaming, robotics, training, e-commerce, etc. Examples include a virtual voice agent
or chatbot (1) that can understand human voice commands and give appropriate
human-like responses as well as a virtual human-like agent or a virtual character
that can interact with humans to give visible instructions for tasks that need body
movement or provide an immersive experience while interacting with them (112; 46).
More recently, there has been a heightened interest in the areas of virtual as well
as augmented reality. Virtual agents can play a crucial role in many important
applications that leverage the capabilities of these platforms.

In this thesis, the focus is on modeling virtual agents with human-like non-verbal
behaviors that can visually interact with humans to facilitate the completion of var-
ious manipulation tasks. Agents with a human-like appearance and behavior are
crucial in many applications. For instance, in many games such as sports, automated
human-like agents could be used to simulate players that are not human controlled.
Having a human-like appearance could also help make the interaction seem more nat-
ural and familiar in applications involving an educational setting. While the ability
to deploy automated human-like agents is very powerful, it is also very challenging
to design and train such agents. The likeness to a human form leads to a very open
design space with endless possibilities for appearance and behavior. In addition, in
order to make the interaction with a human-like agent immersive, the agent needs
precise control to achieve human-like motion while also making intelligent decisions
to collaborate. Being able to do this accurately is a very challenging problem.

Building an immersive virtual environment requires making appropriate choices
for a number of design variables including the agent’s appearance as well as behavior
of interaction. Appearance includes facial expression, body gestures, gender, and age
among many other factors and it has been shown that appearance has an effect on
a number of variables such as motivation, learning outcomes, persuasive effects, and
the agent’s overall evaluation (19; 55; 113).

User experience and outcomes are shaped not only by the agent’s appearance, but
also by the flow of interaction. So it is important to design the agent’s behavior such

1

Chapter 1. Introduction 2

that it can provide effective communication using appropriate interaction strategies.
Once the appropriate design choices have been made for the environment and the

agent, the next step is to program the agent for execution of the required actions
in the environment. One possibility is to use a hard-coded solution involving a step
by step procedure for the virtual agent to follow. However, in such cases the virtual
agent will not be able to adapt and execute a similar task in the same or different
environment (137; 66). This is therefore an expensive and a task specific solution. The
goal is to enable the agent to generalize in different environments and tasks. Different
machine learning methods have been applied in order to increase the adaptability of
virtual agents. A common approach is to apply reinforcement learning in order to
improve the virtual agent’s sequential decision making policy by interacting with
the environment periodically (69). Previous work has demonstrated the effectiveness
of using Deep Reinforcement Learning (DRL) for virtual and robotic agents (138;
101). For example, in the StarCraft II game environment, reinforcement learning
agents have been rated at a grandmaster level and above 99.8 % of official human
players(135).

The goals of this thesis are twofold:

• To analyze the effects of agent design variables: in order to determine the effect
of agent design variable choices on user preference as well as performance on
problem solving tasks.

• To develop training methods enabling agents to collaborate in solving complex
tasks: in order to train agents that are robust to environmental noise and
disturbances, and that avoid the need to collect expensive human interaction
data.

1.1 Effects of Agent Design Variables
The space of design variables related to virtual human-like agents is very large. In this
thesis, the focus is on two main directions: gender and feedback delivery. For both of
these, object manipulation tasks are developed where humans can interact with the
agent and user studies are performed while varying the relevant agent characteristics.

For studying the impact of agent gender, a Box and Blocks Test (BBT) is used
where the agent instructs the user to quickly move specific color cubes from one side of
the table to the other. User performance is then evaluated in terms of task completion
time as well as error rate and users are also queried for their preferences.

For studying agent feedback delivery mechanisms, a training task is formulated
where the role of the agent is to help the user sort a set of cards or cubes representing
some information according to a specified sorting criterion. The agent provided one
of two types of feedback: correctness feedback or suggestive feedback. For correctness
feedback, when a wrong sorting was presented the agent would present the correct
answer and let the user study it before continuing. For suggestive feedback, the
agent would point out each pair of incorrectly ordered cards. Sorting scores and

Chapter 1. Introduction 3

average execution times are then evaluated to compare performance. In the post
study questionnaire, users were also asked for their preferences in terms of agent
feedback strategy.

1.2 Training Agents for Collaborative Tasks
The focus of this thesis is on reinforcement learning techniques to train agents to
collaborate on complex tasks. There are three main challenges associated with this
task:

• Reward design: In a typical scenario, the completion of the task would be asso-
ciated with a reward function in a reinforcement learning framework. However,
complex tasks requiring collaboration often have distinct phases that have differ-
ent goals or requirements for the agent. For such tasks it becomes important to
address the multi-phase nature of the reward appropriately during the training
process.

• Natural animation: Although optimizing the reward function leads to a higher
task completion rate for the agent, it does not always necessarily lead to natural
looking movements. It is important to develop the environment and the training
process in such a way that the agent does not exhibit unnatural or physically
impossible movements.

• Data requirements: In theory it is possible to train a single agent to directly
collaborate with a human in a virtual environment. However, directly training
such an agent would require a huge amount of human interaction data at a
high frame rate. Furthermore, generic human data may not be applicable when
targeting interactions with motion-impaired users. Instead, the focus is on de-
veloping training methods that avoid such difficulties related to data collection.

In order to address the problem of multi-phase tasks, the Constrained Multi-
Agent Soft Actor Critic (C-MSAC) approach (123) is proposed motivated by the
safe reinforcement learning approach (145). The original idea behind the safe RL
concept was to define task constraints for the purpose of safety and stability. The
reinforcement learning problem is formulated as a constrained optimization problem
of maximizing the reward subject to a specified set of safety constraints. However,
constraints can also be used to model different sub-objectives in a sequential task.
All sub-objectives except the final objective are treated as safe constraints during
learning, and the final objective is optimized only if none of the constraints have
been violated. The proposed framework can be used to train multiple agents to
collaboratively finish complex tasks with sequential objectives.

When the C-MSAC approach is used in an environment where the agent move-
ments are controlled by inverse kinematics, the results show that the agent is able
to achieve a high mean average reward on the provided task. However, simulation

Chapter 1. Introduction 4

videos show that the agent sometimes exhibits unnatural oscillatory movements. Us-
ing C-MSAC with physics-based full arm joint-level control for the agents is proposed
to mitigate this issue. Since the environment enforces the laws of physics, it prevents
movements that are physically impossible. It is demonstrated that learning under
physics also improves the ability of the agents to react to changes in the physical
properties of the environment such as the mass of the ball.

To avoid the collection of expensive human interaction data, a new robust learning
approach, Constrained Robust Soft Actor Critic(C-RSAC) is proposed, based on C-
MSAC, that can be used to train a robust agent from a multi-agent framework for
collaborative tasks. One shortcoming of C-MSAC training is that the agents might
learn to optimize against each others’ specific behaviors and therefore might not
generalize well enough to directly collaborate with other agents or humans. This
problem is addressed by improving agent robustness. In the C-RSAC framework the
pre-trained policies obtained from C-MSAC are used to a noisy agent and initialization
of a robust agent. The parameters of the noisy agent policy are frozen and noise
augmentation is performed in the action space. These noisy actions can be used
to simulate potential errors by a human subject. The policy for the robust agent is
initialized from the pre-trained C-MSAC policy parameters and updated to maximize
the expected reward. The results show that the proposed C-RSAC approach improves
the agent robustness.

A tray balancing task is used to study the proposed approaches. The task involves
two agents holding a tray with a ball moving freely on top of it. The goal of the agents
is to lift the tray and control it precisely such that the ball can follow a specified
trajectory. A physically simulated virtual environment is developed to simulate this
task. The overall development process is divided into three main pieces of work:

• Validating Constrained Multi-Agent Reinforcement Learning with Inverse Kine-
matics: In this thesis the C-MSAC approach is proposed with a focus on train-
ing agents with constrained multi-agent reinforcement learning. There are two
phases: appropriately lifting the tray and following the trajectory. The task
of appropriately lifting the tray is specified as a constraint and following the
trajectory is specified as the reward objective. To simplify the complexities of
the task, Inverse Kinematics is used to control the motion of the arms. Agent’s
hands are assumed to always be attached to fixed anchor points on the tray. It
is shown that compared to a baseline multi-agent learning algorithm, C-MSAC
leads to a better mean average reward performance, better generalizability to
unseen trajectories and higher robustness to environmental disturbance.

• Physics-based Multi-Agent Reinforcement Learning: Learning full arm control
under physics using C-MSAC is proposed in this work. An initial additional
phase is introduced for the arms to reach the anchor points on the tray and
the reward function is designed to incentivize appropriate grabbing behavior.
It is shown that compared to inverse kinematics, learning under physics leads
to more natural movements and also improves robustness to variations in the

Chapter 1. Introduction 5

physical properties of the environment such as changes to the ball mass.

• Robust Agent Learning: The ability to control full arms under physics enables
their manipulation by adding noise for simulating errors. In this work, the C-
RSAC approach is proposed. Pre-trained policies from C-MSAC are used for
the noisy agent and noise augmentation is performed in the action space which
results in disturbance to the handling of the tray. The other agent’s policy from
C-MSAC is used to initialize a robust agent which is then trained to maximize
the reward while trying to mitigate the impact of disturbance from such noise.
It is shown that the proposed approach leads to more robust control of the tray.
This is important for applications of virtual trainers interacting with avatars
controlled by real users.

1.3 Outline
This thesis is organized as follows:

• Chapter 2 provides a literature review of topics related to this thesis;

• Chapter 3 describes the user study conducted to investigate the effect of virtual
agent’s gender on user’s task performance and preference;

• Chapter 4 explains the user study conducted to evaluate suggestive feedback
and correctness feedback strategies with a virtual agent;

• Chapter 5 describes the construction of a multi-agent collaboration learning
framework, and explains the proposed C-MSAC approach;

• Chapter 6 describes the extension of the C-MSAC approach to physics-based
control and the proposed C-RSAC approach for robust learning;

• Chapter 7 summarizes the main findings from this thesis and provides potential
future work directions.

Chapter 2

Literature Review

This chapter reviews prior work in the literature relating to the problem of developing
human-like virtual agents. We start with a review of studies related to agent motion
and character animation. That is followed by a review of learning strategies such as
reinforcement learning, including multi-agent and multi-objective learning. Finally,
we review studies related to human agent interactions.

2.1 Virtual Agents
In this thesis a virtual agent refers to a simulated human-like character that can
collaborate with humans in order to complete a given task with the use of interactive
verbal and/or non-verbal movements and behaviors. Virtual agents within a virtual
training environment can simulate human behavior with recent libraries providing
diverse sets of behavior characteristics (48; 56).

2.1.1 Agent Motion and Character Animation
One approach for obtaining realistic human-like motion is programming agents by
direct demonstration using data recorded from actors or experts (35). For example,
a powerful approach has been presented for learning from the recorded motion data,
which includes a phase variable added to complete the virtual character behavior
transition between different neuron networks trained by expert motion data for human
characters (60) and as well animal characters (154).

Physics-based character animation refers to animating human dynamics under
physics. It involves characters that are modeled as connected rigid bodies, and con-
trolled by the joint torques or muscle models. While it is easy for humans to perform
many different skills, articulating such control strategies as a virtual character remains
a challenging problem. Although we can constrain the character model to behave real-
istically in terms of the properties of physics, that alone does not guarantee a realistic
behavior in terms of the overall obtained motion.

6

Chapter 2. Literature Review 7

Different approaches have been proposed to integrate physics with additional con-
trol, learning or optimization to produce natural motions. Some early works use
hand-crafted feedback strategies, and build the control model with or without mo-
tion captured data in order to model the character dynamics. These include using
random sampling approaches and forward dynamics to reconstruct or optimize a full
body character controller from a group of captured motion data (84; 52; 5), optimizing
trajectory planning with segmented motion data (102), using a finite state machine
controller to calculate the force distance at individual joint (149), and optimizing
the Proportional-Derivative (PD) controller in linear time to track the reference mo-
tions (151). These control approaches can be effective in performing different skills,
but the control model relies heavily on the choice of constraints and usually needs a
large motion data set covering broad animations in order to adapt to new skills.

Recently, more researchers have taken advantage of the development of deep learn-
ing, and are using reinforcement learning to model nonlinear controllers for animation
tasks, as it needs minimal task-specific control signals to produce the expected behav-
ior. These include learning locomotion behaviors (105), learning full-body behaviors
from examples (104; 143), learning to play basketball (83), learning athletic jumping
strategies (150), learning locomotion stepping stone skills (142) and learning climbing
wall skills (94).

Animation-related control objectives are usually integrated as the reward function
in a reinforcement learning framework, and designing a proper reward function is crit-
ical for achieving complex animation tasks. For example, in a biped walking on stones
task (142), the reward function was decomposed into three different objectives: hit-
ting the target, moving forward, and maintaining a balanced motion. Each objective
needs a carefully designed reward function in order to train a good walking model.
But for full-body character control, an objective-focused reward design may not be
enough to guarantee realistic motions. Different strategies have been proposed, like
integrating expert motions as reference motions in the reward design in order to train
for learning complex skills (104; 83), using generative adversarial networks and expert
data to iteratively improve the generative controller (143), utilizing phase functions
to transition between motions (60; 154), constraining actions into a subspace of nat-
ural poses (150), curriculum learning to modify the task difficulty level (142; 150),
and hierarchical learning to use multilevel control (105).

Currently, most character animation tasks focus on single character control, and
they mostly need to use or learn from motion data in order to get a natural looking
motion. Learning directly from motion data for a single character animation is pos-
sible, but for a multi-character environment it is difficult as multiple human players
have to be involved in the procedure. So for multi-character simulations, character
behavior could either be learned separately, and then transferred to a multi-character
framework for advanced learning (139), or could be directly used in a multi-character
environment as in crowd simulation (57). Our work approaches multi-character col-
laborative tasks by learning a control policy for each character’s upper body move-
ment at the joint level.

Chapter 2. Literature Review 8

2.2 Learning Approaches

2.2.1 Reinforcement Learning
The basic idea behind many reinforcement learning algorithms is to estimate the ac-
tion value function using the Bellman equation as an iterative update. Such value
iteration algorithms converge to the optimal action-value function. In practice, this
basic approach is impractical because the action-value function is estimated sepa-
rately for each sequence without any generalization. Instead, it is common to use a
function approximator to estimate the action value function. In the RL community
this is typically a linear function approximator, but sometimes a non-linear function
approximator such as a neural network is used.

2.2.2 Multi-agent Reinforcement Learning
There are many situations in real-world problems where a single RL agent would
not be able to cope. In such situations, the application of a multi-agent System
(MAS) approach is indispensable. The multi-agent learning problem is about multiple
agents interacting with each other in order to solve cooperative or competitive tasks
together. It has a long history in machine learning, and is much more challenging
than single agent problems because of issues like agent scalability, non-stationarity of
the environment and non-unique learning objectives. A few survey papers offer good
resources for further information (157; 59; 97). Following the success of applying
RL for single-agent learning, more and more researchers have become interested in
studying RL in multi-agent environments.

Building a single agent RL environment could be easy, and there are also rich
existing environments for researchers to experiment with different algorithms such as
OpenAI Gym (26) with 2D and 3D environments, ML-Agents (67) with 3D environ-
ments, from both simple object control to complex human character control, Atari
games (21) with real game environment and learning from pixels. For multi-agent
problems, building the experiment environment could be more time consuming and
challenging, as interaction strategies among agents and their environment are often
more complex, and the reward design has to not only consider task objectives but
also interaction strategies between agents. Some environments have been developed
like the multi-particle environment (85) which is simplified to a 2D environment, a
football player environment (76), and a hide-and-seek environment (15), with a focus
more on the control and communication strategy between agents. The latter two
works use simplified objects or animated characters as agents, and focus on exploring
some emergent strategies during learning. There is a lack of environments available
to experiment and perform human-like behaviors at the joint-level control. Recently,
there is a proposed work (139) which created such an environment to train human-
like characters to compete against each other in sports games like fencing and boxing.
All these environments are more task focused, and the environment developed in this

Chapter 2. Literature Review 9

thesis expands the task types to include object manipulation tasks with human upper
body movements. Full body movement could easily be included as future work.

When solving multi-agent control problems, it is natural to think of using single
agent RL directly in a multi-agent environment, where all agents learn a shared policy
and execute in a joint action space together, or make a direct extension of single agent
RL solution where each agent learns independently by considering other agents as part
of the environment, such as independent Q-learning (129). The above approaches
are straightforward to implement, however will cause non-scalibility or non-stationary
difficulties. Lowe et al. (85) proposed a parameter sharing approach to tackle this
problem known as the Centralized Training and Decentralized Execution approach
(CTDE). This is extended from the actor-critic framework, and each agent uses a
centralized critic to access all agents observations and actions parameter, so that
it can learn an approximate model of the online policies of other agents within a
stationary environment. The learned policy only uses local information, so it can be
used by each agent without the need for further communication with other agents.
Thereafter, many other algorithms have been developed based on this framework by
addressing different difficulties of multiagent systems, like credit assignment (39),
scalability (148), value decomposition (128) and an attention mechanism (64) for
faster and stable learning (110).

In the proposed environment, the focus is on two human-like agents cooperatively
completing object manipulation tasks, and we choose the State of The Art (SOTA)
CTDE framework combined with the single agent RL approach SAC (54), because
of its ease of implementation and also guaranteed state of the art performance in
continuous action spaces.

2.2.3 Multi-objective Learning
Multi-objective learning involves tasks that have two or more objectives to be op-
timized. It has the lifelong learning property (29), which means an agent can be
trained on a sequence of relatively easy tasks to gain experience and develop a more
informative measure of reward, which can then be leveraged when performing harder
tasks.

It is common to break down complex tasks into subtasks based on their sub-
objectives. When designing the objectives of a given task, the sub-objectives can be
defined separately without a connection but can share the same action spaces. Ex-
amples include a robot arm picking and placing objects in different boxes (62), agents
working together to push different objects into different locations (147), humanoid
characters learning different skills from motion data and performing them based on
user control signals (104). The sub-objectives can also be defined as sequential ob-
jectives, such that in order to finish the final objective, the previous objectives have
to be completed first, this is also aligned with our task design. Examples of some
tasks solved in this manner are: an agent moving to a target location while moving
objects or obstacles along the moving path (93); a biped walking character walking

Chapter 2. Literature Review 10

on the ground while maintaining a natural gait motion with a walking target (105),
playing basketball which has similar objectives where the full body character needs
to play basketball while maintaining the walking motion (77); upper body animated
characters wearing cloth (32) where it needs to reach, grasp and put the cloth on each
arm, and an upper-level controller is necessary to instruct the motion sequence; a four
legged robot walking to a target location where the trajectory to the target provides
the reward signal for the robot to learn its movement during each time step (92).

Here the focus is on RL-related approaches where the objectives are generally
interpreted as reward signals for training. In the reward design, each objective has
a separate reward term which could be linearly added with a different weight to
adjust the importance of each subobjective in the optimization function (32). The
reward terms could also be optimized with separate RL models, and then a high-
level controller could be used to choose which lower-level controller to use at each
time step (18). The above mentioned work also constructs an upper-level controller
combined with all low-level controllers to perform different tasks. Another work on
wearing clothes also constructs a sequential model controller to choose the low-level
RL controller to decide what action to perform to wear a cloth (32). For sequential
objectives, hierarchical RL can be considered (18).

The reward term can still be optimized as separate RL models with different
action spaces. Since the upper-level RL model is responsible for the final objective
or planning, and its output actions will be used as the training target for a lower-
level controller, while the lowest level RL controller outputs the actions to perform
the task, it is usually trained in an end-to-end manner. However this can be time
consuming, so a pretrained lower-level controller can be adopted. For example, in a
biped or four-legged walking task, one can train the character to perform a simple
stand up posture. Most existing works focus on optimizing multiobjective learning
for a single robot or virtual character. In our work, we extend it to a multiagent
multi-task setup, where two virtual characters need to control the force applied on
each side of a tray to solve a balancing task.

2.3 Human Agent Interactions
The interaction behavior between agent and human collaborations has been studied,
like using Colored Trails, an environment designed for evaluating decision making
behaviors between players (134). It has been found that humans prefer to collaborate
with more cooperative agents instead of egoistic agents. Different experiments have
been conducted to study the human-agent interaction behaviors to increase collabora-
tion performance, like to improve human awareness of agents during collaboration (28)
and to improve the human trust in agents (132).

A number of other types of agents have also been designed for collaboration with
humans, for instance in simplified 2D environments; however, not much immersive
interactive collaboration can be experienced in such cases (111; 6). Development
frameworks are currently available that can be used for building applications em-

Chapter 2. Literature Review 11

ploying virtual trainers, for example: the Virtual Agent Interaction Framework (48),
the Virtual Human Toolkit (56), and as well the Unity engine. These systems facili-
tate the implementation of virtual trainers and they also provide a rich collection of
features to be used for developing research in the area.

In recent years, techniques for implementing direct collaboration with virtual
trainers have been significantly implemented in the robotics field, including robotic
trainers to help humans during object manipulation and assembling tasks in a physi-
cal environment (31; 116). Wang(137) has proposed a human-robot assembly system
that targets production industry to save human labor and augment production by
creating safe and reliable robot agents to collaborate with humans in the same en-
vironment. In these cases a robot can assist humans to move objects from a source
place to a target place, or to assemble structures efficiently.

In this thesis the focus is on agents interacting on a collaborative task requiring
fine movements in order to be completed. The presented scenarios have not been
addressed before in the literature.

Chapter 3

Effects of Virtual Agent Gender

3.1 Introduction
Because virtual reality (VR) can give people a sense of presence in virtual worlds, it is
becoming popular in various fields, including entertainment, education, engineering
training, and rehabilitation. Virtual human-like characters are common in virtual
worlds, which enable social interaction with other users or a computer system. Two
different types of characters are commonly used, virtual avatars and virtual agents.
An avatar is a virtual character that is controlled by an actual user (81). Avatars
are very popular in video games, including social platforms such as High Fidelity
(Fidelity), AltspaceVR (63), and Sansar (118). Agents, on the other hand, are virtual
characters that are controlled by computer programs (81). 2D and 3D virtual agents
have already been a powerful strategy in online enterprises, such as in advertising
(23), shopping (7), education (79), and persuasion (153). However, not many
studies have investigated virtual agents in the context of Virtual Reality Environments
(VRE). This work explores social interactions among users and virtual agents in a
virtual reality training scenario, where users enter the virtual world through a Head-
Mounted Display (HMD). Particularly, it investigates whether virtual agent gender
affects user performance and preference in a training program, where they have to
take instructions from a virtual agent.

3.1.1 Virtual Trainer
Numerous social video games enable users to customize their own avatar appearance
and interact with other users’ avatars. Hence, many have studied the impact of avatar
appearance on users’ social behavior and social success in virtual worlds (16; 71; 88).
In such an investigation, Banakou and Chorianopoulos found out that users with
more elaborate avatars have a better chance at social encounters than users with the
default avatars (16). Some found out that male users tend to speak more frequently
with female avatars, while female prefers male avatars (16; 71; 88). Also, female users
with attractive avatars interact with male avatars more frequently, which suggests “a

12

Chapter 3. Effects of Virtual Agent Gender 13

self-confidence effect induced by the appearance of the personal avatar” (16).
Another work (65) reported that avatars that mimic the outfits of the users give

them the highest sense of body ownership and presence, even when the avatars are
cartoon-like characters. A study exploring the effects of gender on the perception
of different hands reported that women dislike and feel lower levels of presence with
male avatar hands, while men accept and feel presence with avatar hands of both
genders (120). A different work explored the interpersonal distance in virtual worlds
with both avatars and agents (14). Although in the real world men tend to give more
interpersonal space to each other, while women usually stay closer together (25), such
patterns are not prevalent in virtual worlds.

3.1.2 Virtual Agent
Several studies reported that agent appearance, particularly facial expression (117),
gaze (8), voice (89), and body language (115) affect user performance in training
scenarios. Guadagno et al. (50) studied the impacts of agent gender on persuasion,
where they asked users to listen to persuasive communications from both female
and male agents. They found out that users were more persuaded by same gender
agents than opposite gender agents. Similar results were found with virtual agents
in 3D screen environments (153). A different study reviewed visual stereotypes in
agents and cautioned about the risks of applying visual stereotypes to pedagogical
agents (53)[9]. Some studies reported that the effect of social agent gender varies in
different age groups. For instance, female undergraduate students tend to find young,
attractive, and cool female agent most effective since it can enhance their self-efficacy
towards being successful as engineers (73; 114; 124). Middle school students also find
female agents more effective than male agents (107).

3.2 Motivation
While many have explored the effects of avatar gender and appearance on performance
and preference in different systems, not much work has investigated agents. Besides,
most existing works exploring agents are conducted either in 2D or 3D environments,
where only a part of the agent is visible. Therefore, the findings of these works may
not be generalizable to systems that enable a full visual perception of the agents. In
addition, to our knowledge, no prior work has investigated the agent gender effect in
a VR interactive training scenario. An understanding of how users react to agents
of different genders can facilitate the design and development of more effective and
useful pedagogical agents, as well as give us an insight into the human psyche.

Chapter 3. Effects of Virtual Agent Gender 14

3.3 An Experiment
The goal of this study was to explore whether agent gender impacts user performance
and preference in a VR training program.

3.3.1 Agent Selection
We conducted an informal study to decide on female and male agent appearance for
the study. For this, we created six female and six male characters using the Autodesk
Character Generator (Generator). Since race and clothing are outside the scope
of this work, we used similar hair color, skin tone, and clothes for all characters.
However, different facial features and body types were used for different characters
(Fig 3.1).

Participants. Thirteen volunteers, aged from 20 to 22 years, average of 21.2 (SD
= 0.8), participated in the informal study. Twelve of them were male and one was
female. Nine of them had used an HMD prior to participating in the study, while the
remaining four had no prior experiences.

Procedure. During the informal study, participants completed a questionnaire
that asked them to rank the six female and six male characters (Fig 3.1) based on
their femininity and muscularity, respectively. The questionnaire included headshots
and full-body pictures of all characters. A scale of six was used, where 1 represented
the least feminine or masculine and 6 represented the most feminine or masculine
characters.

Results. Fig 3.1 presents results of the informal study, where one can see that
Female 4 and Male 6 yielded the highest median compared to the other characters.
Hence, these two were selected for the final study.

3.3.2 Apparatus
The VR system used in the final study consisted of one desktop computer, 4.20 GHz,
32.0 GB RAM, Windows 10, one Oculus Rift Headset, two Oculus Touch Controllers,
and three Oculus Constellation Sensors (3). The three sensors were positioned at the
same height (248 cm), two facing the user and another behind the user. The distance
between the front sensors was 217 cm, and the distance between the front and back
sensors was 455 cm (Fig 3.2). All sensors were tilted at a 30° angle. This setup was
used as it yielded a relatively better performance than several other settings tested
in a pilot.

We used a Perception Neuron full-body motion capture suit (96), 60 fps, 32
Neurons, for capturing real human motion and gestures in a pseudo training scenario
(Fig 3.3). This was to make the virtual agents more human-like. We tested all
recorded postures, movements, and gestures in multiple trials before using them in
the final study.

Chapter 3. Effects of Virtual Agent Gender 15

Figure 3.1: Results of the informal study, together with the pictures used in the
questionnaire. Error bars represent interquartile range (IQR).

Chapter 3. Effects of Virtual Agent Gender 16

Figure 3.2: The Oculus Constellation Sensor (left) and the VR system setup (right)
in the study.

We also tried to make the study environment as welcoming as possible by adding
a rug, a water dispenser, and some house plants and wall paintings to the room
(Fig 3.4). The study software was written in Unity.

3.3.3 Participants
Twelve volunteers, aged from 21 to 31 years, average 23.55 (SD = 2.62) participated in
the study. None of them participated in the informal study. Two of them were female
and ten were male. Only two participants had prior experience with HMDs, while
the remaining ten had never used an HMD before. All of them were right-handed.
They all received a small compensation for participating in the study.

3.3.4 Design
The study used a within-subjects design, where the independent variable was the
agent gender and the dependent variables were the performance metrics. There were
two levels in the independent variable (conditions): female agent and male agent.
Each condition included six tasks. The conditions were counterbalanced to eliminate
the effect of order. In each task, participants moved four different color cubes. Each
agent used two audio-instructions per gender (in total, four instructions), which were
also counterbalanced to reduce the effect of instruction. In summary, the within-
subjects design was:

Chapter 3. Effects of Virtual Agent Gender 17

Figure 3.3: Perception Neuron full-body motion capture suit setup.

12 participants ×
2 conditions (counterbalanced) ×
6 tasks (with 2 audio instructions, randomized) ×
3-4 cubes = 432-576 cubes, in total.

3.3.5 Procedure
In the study, all participants took part in a customized Box and Blocks Test (BBT),
where female and male agents instructed them to quickly move specific color cubes
from one side of the table to the other side of the table (Fig 3.4). BBT is a functional
test, commonly used in upper limb rehabilitation to measure the gross manual dexter-
ity of a patient or a person using an upper limb prosthetic device (58). Participants
picked up the cubes by gripping the Oculus Touch Controller (which triggered the
” Grip” button) when it is in close proximity to the target item, then drop it by releas-
ing the button. For proximity detection, we added a sphere collider to the controller
(1.0 cm) and a box collider to the cubes (7.0 cm). The system enabled grasping a
cube only when the cube and controller colliders collided. Inside the virtual training
system, an agent first greeted the participant, then described the study, e.g., ” Hello!
Welcome to the test. In this test, you have to complete three tasks. In each task, you
will be asked to pick up four cubes of specific colors, as instructed, and place them on
the other side of the table”. The agent then started giving instructions on moving the
cubes, e.g., ” Please pick up all red cubes one by one and put them on the other side
of the table”. The agent alerted the participant on all mistakes, e.g., ” This is not

Chapter 3. Effects of Virtual Agent Gender 18

Figure 3.4: The virtual training environment used in the study.

a red cube. Please put it back, and pick the right one” and concluded each session
by thanking the participant, e.g., ” Well done! You have completed all tasks. Thanks
for supporting our work. Have a nice day!”. Both virtual agents used appropriate
posture and hand gestures, recorded through the full-body motion capture suit with
actual human subjects. All agent interactions including the instruction audio were
identical for male and female agents.

The study took place in an academic research lab. Participants arrived indi-
vidually to take part in the study. First, we explained the study procedure to all
participants and collected their consents. They all filled out a short demography
questionnaire. Then, we demonstrated the system, starting with the Oculus Rift. We
showed them how to adjust it for a perfect fit and use the controllers. Since all our
participants were right-handed, we only used the right-hand controller in the study.
We then allowed the participants to practice and get comfortable with the system
in a practice block, where they played the Oculus Sample Framework (Framework)
for about five minutes. We used this game since, like the study, it involves picking
up objects using the controllers. Finally, we started the study. The study software
recorded all user actions with timestamps. In addition, we video-recorded all sessions
for post-hoc analysis. Fig 3.5 illustrates the study setup.

Upon completion of the study, all participants completed the Simulator Sickness
Questionnaire (SSQ) (70). They were also asked to fill out a custom questionnaire
that asked them about their preference, and perceived helpfulness, professionalism,
and attractiveness of the agents on 7-point Likert scale. Each session lasted for about
30 minutes, including demonstration, practice, breaks, and post-study questionnaires.

Chapter 3. Effects of Virtual Agent Gender 19

Figure 3.5: Two volunteers participated in the user study. The computer monitor
in the background is displaying the participants’ point of view (POV).

3.3.6 Performance Metrics and Results
The system automatically calculated and recorded the following metrics.

• Task Completion Time (Seconds) signifies the average time the user took
to complete a task.

• Error Rate (%) represents the average percentage of errors committed by the
user per task.

• Error Correction Time (Seconds) represents the average time the user took
to correct mistakes in each task.

Results. We used a repeated-measures ANOVA on the quantitative data. The
results are presented in Table 3.1. For task completion time, the data revealed that
participants were 11% faster with the male agent than the female agent. However,
an ANOVA failed to identify a significant effect of agent gender on task completion
time (F 1,11 = 3.33, p = .09). On average task completion time with female and male
agents were 15.59 (SD = 4.08) seconds and 17.61 (SD = 11.30) seconds, respectively.
For Error rate, participants were 4% more accurate with the male agent than the
female agent. Yet, an ANOVA failed to identify a significant effect of agent gender
on error rate (F 1,11= 0.01, p = .95). On average operations per task with female and
male agents were 3.01% (SD = 2.1) and 2.89% (SD = 2.1), respectively. For error
correction time, participants were 45% faster with error correction with the male

Chapter 3. Effects of Virtual Agent Gender 20

agent than the female agent. However, an ANOVA failed to identify a significant
effect of agent gender on error correction time (F 1,11 = 0.46, p = .50). On average
operations per task with female and male agents were 1.32 seconds (SD = 6.46) and
1.73 seconds (SD = 1.73), respectively.

Metrics
Female Agent Male Agent

p-value
Mean SD. Mean SD

Task Completion Time 15.59 4.08 17.61 11.30 .09
Error Rate 3.01 2.10 2.89 2.10 .95
Error Correction Time 1.32 6.46 0.73 1.73 .50

Table 3.1: Results of the user study. All times are in seconds. SD signifies standard
deviation.

3.4 Qualitative Results
We collected simulator sickness data using the SSQ inventory (70). Individual and
total severity scores were calculated using the convention established by Kennedy et
al. (70). We used a Wilcoxon Signed-Rank Test on the custom questionnaire data.

3.4.1 Simulator Sickness
The average total simulated sickness score for the system was 10.52 (SD = 7.50). The
average nausea score was 23.85 (SD = 15.46), while the average oculomotor score was
2.37 (SD = 4.42). None of the participants reported any disorientating symptoms.
Table 3.2 presents the complete SSQ scale means for the system.

3.4.2 Helpfulness
About 83% participants (N = 10) rated the two agents equally in terms of helpfulness.
The remaining 17% (N = 2, 1 female, 1 male) found the male agent more helpful.
Fig 3.6 displays all user responses. However, a Wilcoxon Signed-Rank Test failed to
find a significant effect of agent gender on helpfulness (z = 1.41, df = 11, p = .18).
The median helpfulness ratings for both agents were 4.0.

3.4.3 Professionalism
About 67% participants (N = 8) rated the two agents equally in terms of profession-
alism, while 25% found the male (N = 3, 1 female, 2 male) and 8% (N = 1, 1 male)

Chapter 3. Effects of Virtual Agent Gender 21

SSQ Symptoms Nausea Oculomotor Disorientation Total Score

General discomfort 28.62 0 0 11.22
Fatigue 28.62 0 0 11.22
Headache 38.16 7.58 0 18.7
Eye strain 57.24 15.16 0 29.92
Difficulty focusing 19.08 7.58 0 11.22
Salivation increasing 9.54 0 0 3.74
Sweating 28.62 7.58 0 14.96
Nausea 9.54 0 0 3.74
Difficulty concentrating 19.08 0 0 7.48
Fullness of the Head 47.7 0 0 18.7
Blurred vision 28.62 0 0 11.22
Dizziness with eyes open 28.62 0 0 11.22
Dizziness with eyes closed 9.54 0 0 3.74
Vertigo 0 0 0 0
Stomach awareness 28.62 0 0 11.22
Burping 0 0 0 0

Mean 23.85 2.37 0 10.52
SD 15.46 4.42 0 7.50

Table 3.2: Simulator Sickness Questionnaire (SSQ) scale means for the experiment
system.

found the female agent more professional. Fig 3.7 shows all user responses. However,
a Wilcoxon Signed-Rank Test failed to find a significant effect of agent gender on
professionalism (z = 0.06, df = 11, p = .95). The median professionalism ratings for
both agents were 4.0.

3.4.4 Attractiveness
About 50% participants rated the two agents equally with regard to attractiveness.
The remaining 50% (N = 6, 1 female , 5 male) found the female agent more attractive.
Fig 3.8 shows all user responses. A Wilcoxon Signed-Rank Test found this to be
statistically significant (z = 2.42, df = 11, p = .01). The median attractiveness

Chapter 3. Effects of Virtual Agent Gender 22

Figure 3.6: User ratings of the two agents with regard to ” helpfulness” on 7-point
Likert scale, where 1 represents the least and 7 represents the most helpful.

ratings for the female and the male agents were 4.0 and 3.5, respectively

3.4.5 Preference
About 67% participants (N = 8) preferred both agents, while 17% (N = 2, 2 male)
preferred the female and 17% (N = 2, 1 female, 1 male) preferred the male agent.
Fig 3.9 illustrates all user responses. A Wilcoxon Signed-Rank Test failed to identify
a significant effect of agent gender on preference (z = 0.06, df = 11, p = .95). The
median professionalism ratings for both agents were 4.0.

3.5 Discussion
Some participants reported slight discomfort with the experiment system, but none of
the symptoms exceeded the nausea and oculomotor severity levels (Table 3.2). The
total SSQ score for the system was 10.52, which is negligible (the maximum score
possible on the SSQ is 300). Hence, it can be said that the experiment system was
appropriate for the study since its side effects were not severe enough to impact user
performance or preference. However, some participants criticized the reliability of the
system. For example, one female participant remarked, ” The agents did not respond
well [...] when I was [being] impatient”. One male participant (22 years) commented,
” [the system must] display the actual distance between the hand and the cubes because
sometimes I thought I [could] grab a cube but it turned out that my hand was too far”.
Further, we made some interesting observations during the study. We noticed that
some users were rubbing their feet across the carpet to find out whether it felt real.
We also noticed that users were making eye contact when the instruction started and

Chapter 3. Effects of Virtual Agent Gender 23

Figure 3.7: User ratings of the two agents with regard to ” professionalism” on 7-point
Likert scale, where 1 represents the least and 7 represents the most professional.

then focused on the task. They made eye contact again, when the agent warned them
about a mistake.

Participants yielded a relatively better performance with the male agent than the
female agent. On average, they were 11% faster and 4% more accurate with the
male agent (Table 3.1). They were also 45% faster in correcting errors. Nevertheless,
statistical tests failed to identify a significant effect of agent gender on performance.
Interestingly, the effect of agent gender on task completion time almost reached sig-
nificance (p = .09). Hence, it is possible that this effect will reach significance with an
increased number of participants, which would conform to results from older studies
(50; 153) that showed that users are more persuaded by same gender agents than
opposite gender agents, as most of our participants were male.

Statistical tests also failed to identify significant effects of agent gender on user
preference (Fig 3.9), perceived helpfulness (Fig 3.6), and perceived professionalism
(Fig 3.7). Both agents yielded comparable ratings from the users, which suggests
that participants were comfortable with taking instructions and working with both
agents. One female participant commented, ” female agent [was] as helpful as male
and [vice versa]. Both seemed very professional”. Interestingly, significantly more
users found the female agent more attractive than the male agent. This is most
likely due to our male dominated sample, as a similar trend was reported with virtual
avatars, where male users preferred speaking with female avatars than male avatars
(16; 71; 88). Further investigation is needed to fully explore this behavior.

3.5.1 Limitations
We acknowledge several limitations of the study. First, it failed to recruit adequate
female participants to investigate any potential effects of user gender on performance

Chapter 3. Effects of Virtual Agent Gender 24

Figure 3.8: User ratings of the two agents with regard to ”attractiveness” on 7-point
Likert scale, where 1 represents the least and 7 represents the most attractive.

Figure 3.9: User ratings of the two agents with regard to ” preference” on 7-point
Likert scale, where 1 represents the least and 7 represents the most preferred.

and preference for different gender agents. Ten of our twelve participants (83%) were
young male adults. Hence, we recommend caution in interpreting the results since
they may not be generalizable to a larger population. Second, the study used a binary
gender classification, mainly for simplicity, while both users and agents could have a
range of gender identities and expressions, not just male and female.

Chapter 3. Effects of Virtual Agent Gender 25

3.6 Conclusion
This chapter presented the results of a small-scale exploratory study that studied the
effects of virtual agent gender on user performance and preference in a VR training
program. In the study, twelve participants (10 male, average age 24 years) partici-
pated in a custom Box and Blocks Test (BBT) under the guidance of a female and a
male agent. On average, participants performed better with the male agent than the
female agent, with respect to task completion time, error rate, and error correction
time. However, no significant difference was identified. The study also failed to find a
significant effect of agent gender on preference, perceived helpfulness, and perceived
professionalism. Interestingly, significantly more participants found the female agent
more attractive than the male agent, presumably due to the study’s male-dominated
sample.

This work merely scratches the surface of the topic. We hope the findings of
this work will inspire others to fully explore any potential effects of agent gender on
performance and preference of a diverse group of users, including users of different age,
gender, education, culture, technological experience, and socio-economic background.
Among other applications, advances in this area will inform the automatic selection
of virtual trainers in order to improve interactions in VR systems.

Chapter 4

Effects of Virtual Agent Feedback
Strategies

In this chapter we identify, model, and evaluate feedback behaviors for virtual trainers
assisting users to accomplish a given task involving manipulation of objects in a virtual
world. With the goal of minimizing task-specific characteristics, a simple sorting task
was chosen based on sorting areas of countries represented on cubes. This task is
composed of basic elements that are often present in a variety of scenarios: object
manipulation for task execution, observation of results, and repetition in progressively
difficult cases.

Given a task to be solved, we focus on the specification and evaluation of feedback
behaviors for the virtual trainer, such that it can effectively demonstrate the task to
be executed and provide feedback to assist the user to perform the task. A pilot study
was first conducted with a human trainer in order to identify and specify feedback
strategies. As a result of this study two feedback strategies were specified. In the
first feedback strategy the virtual trainer provides Correctness Feedback (CF) by fully
presenting the correct responses to the users at each stage of the sorting task. In the
second feedback strategy the virtual trainer instead provides Suggestive Feedback
(SF) by incrementally notifying the users if and how a current response is wrong in
order to enable users to correct their responses by themselves.

An immersive VR system was then implemented to evaluate the two feedback
behaviors. The system immerses the user with an Oculus Rift Head-Mounted Dis-
play (HMD), incorporates speech recognition and synthesis for communication, and
implements a number of behaviors for replicating intuitive human-like interactions.
See Figures B.1 and 4.2.

Both CF and SF strategies represent valid approaches for a virtual trainer to
follow. While CF explicitly presents corrected results at each stage of the task, the
SF strategy requires the user to be engaged in correcting results by themselves. To our
knowledge this work is the first to investigate such strategies in the context of direct
interaction with a human-like virtual trainer in an immersive 3D VR environment.

We have collected performance data from 14 participants using our system em-

26

Chapter 4. Effects of Virtual Agent Feedback Strategies 27

ploying both feedback strategies. The CF strategy was preferred by participants, was
more effective time-wise, and was more effective in improving task performance skills.
The overall system was rated comparable to hypothetically performing the same task
with real interactions. Additional findings include interaction with speech commands
was rated unfavorably, and HMD visual resolution and quality were rated as not in-
terfering or distracting from the task execution. A poster abstract was previously
published about this project(121) and this chapter presents our full work.

4.1 Related Work
Virtual environments have been employed in a number of applications in education,
training and beyond (33; 41; 24; 2; 122); and the inclusion of autonomous virtual
humans in such types of applications is a natural way to achieve effective human-like
interactions in virtual environments.

In order to be effective a number of specific behaviors have to be implemented in
an autonomous virtual trainer. In this chapter we address the specification, imple-
mentation and evaluation of feedback behaviors, and we also present the complete
integration of the evaluated behaviors in our virtual human training system.

4.1.1 Virtual Agents and Training Systems
Virtual agents can help users to learn by utilizing a variety of behaviors based on
gestures, natural language, gaze, and facial expressions (78; 72; 27; 20; 122; 127).
Well-designed non-verbal behaviors for virtual agents are in particular important as
they can increase the user’s attentiveness, positivity, and also rapport (131), which
defines the ability to maintain harmonious relationships based on affinity (47).

A number of training systems relying on virtual characters acting as interactive
demonstrators, virtual teammates, virtual teachers and other roles have been devel-
oped. Steve (112) represents one of the first systems implementing an autonomous
virtual trainer specifically designed to train people to operate ship engines. Another
example, among many others, is AutoTutor (46) which is a virtual tutor designed
to teach concepts in science and mathematics with multiple design strategies like us-
ing dialogue, feedback, corrective statements, hints, fill-in-the-blank questions, and
requests for more information from the user. Significant past research has been ded-
icated to developing the necessary movement synthesis and behavioral modeling al-
gorithms for accomplishing autonomous virtual humans and a number of software
solutions have been developed for facilitating their integration in applications, such
as the Virtual Agent Interaction Framework (VAIF) (48) and the Virtual Human
Toolkit (56).

Chapter 4. Effects of Virtual Agent Feedback Strategies 28

4.1.2 Feedback Strategies
Several works have evaluated different types of feedback strategies in the context
of classroom learning (51; 95; 125). Shute (125) provides an elaborate review of
feedback types, organizing them as: no feedback, verification, correction, try again,
error flagging, elaborate, attribute isolation, topic contingent, response contingent,
hints/cues/prompts, bugs/misconceptions, and informative tutoring. Informative tu-
toring is the most complex type of feedback which was defined as “information com-
municated to the learner that is intended to modify his or her thinking or behavior to
improve learning”. It represents and includes verification feedback, error flagging, and
strategic hints. Some studies (17; 108) have reported that giving learners informative
feedback was more effective than only giving them correct answers directly.

Previous works have also investigated feedback strategies in computer-based learn-
ing systems. Attali (11) has tested four feedback types: no feedback, immediate
knowledge of the correct response, multiple-try feedback with knowledge of the cor-
rect response, and multiple-try feedback with hints after an initial incorrect response,
which was found to be the most effective type of feedback. Another study (133) re-
ported that elaborated feedback during learning was superior to only providing answer
correctness. Falcao (36) combined interactive tangible tabletops and physical actions
to study the discovery-based hands-on learning among children with intellectual dis-
abilities. These works however have mostly studied feedback strategies in scenarios
involving complex rules, complex knowledge retention, or physically involved tasks.
For simple memory-based tasks direct display of correct solutions has been identified
as an effective feedback (125).

While these previous studies provide several guidelines that can be used for im-
plementing feedback behaviors, no previous work has directly investigated this topic
in the context of a virtual trainer interacting with users in an immersive VR-based
system.

One particular type of gesture that is useful for delivering feedback behaviors
is pointing. Several works have investigated pointing gestures for virtual humans
to become able to identify spatial positions, a capability which is very important
and which has been explored in several previous works (61; 112). However, the use
of pointing in feedback behaviors has not been investigated. In our work we focus
on interactive tasks where the user is required to manipulate virtual objects and the
virtual trainer employs pointing as one way to deliver feedback during task execution.

In this chapter we identify, specify and evaluate two feedback strategies of broad
applicability: Correctness Feedback (CF), which focuses on only confirming correct
answers, and Suggestive Feedback (SF), which provides informative feedback during
the learning activity in our virtual training system. We also present results that favor
the use of the CF strategy.

Chapter 4. Effects of Virtual Agent Feedback Strategies 29

4.2 Pilot Study
In order to specify effective feedback strategies we have conducted a pilot study with
initial versions of our training scenario between two persons without the use of any
computer assistance.

4.2.1 Apparatus
No computer devices were used during the pilot study. A real human played the
role of the virtual trainer. Printed paper cards were used to represent information to
be sorted. The material sets were printed on a square paper of 7 cm wide, and the
material sets used in this study were not repeated in the final study. The sorting task
was based on sorting the information illustrated in the material sets.

4.2.2 Design
In the considered sorting task the users needed to memorize a limited amount of infor-
mation. The entire task was executed in about 10 to 20 minutes. As a tutoring system,
the goal was to design a simple scenario that also offered some challenges (126).

Memorial Materials and Questionnaires

Two different material sets were used during the study, each material set included a
group of 9 pictures. The first set integrated the display of country maps, flags, and
names, as shown in Figure 4.1-top. The second set displayed ancient buildings and
their names, as shown in Figure 4.1-bottom. The first material set had to be sorted
from largest country land area to smallest country land area. The second material
set had to be sorted from oldest building to newest building. In both cases, the
ordering was from the user’s left side to the right side. To quantitatively evaluate
the user’s performance we have applied pre- and post-test questionnaires. The pre-
test questionnaire had one material set randomly printed, and the user needed to
sort it based on his/her own previous knowledge. The post-test questionnaire had a
new random material set, and was sorted by the user after the interactive activity
described below.

Task Design

Each sorting task consisted of sorting the cards gradually through interaction with
the human trainer. Each sorting activity was organized in 4 stages. In stage 1, three
cards were presented to the user on the table in random order. The user would pick
the cards and sort them according to the sorting criterion. The human trainer then
provided some sort of feedback until the three cards were sorted correctly. At this
point, the task would proceed to the next stage where the same cards of the previous
stage would appear again, but with two additional cards. In this way the user was

Chapter 4. Effects of Virtual Agent Feedback Strategies 30

Figure 4.1: Example pictures used in the pilot study.

supposed to incorporate the information on the two new cards when sorting the entire
set of cards. Additional pairs of cards were added at each new stage until reaching
stage 4 when nine cards were sorted by the user.

Study Design

First, the members of our research team have executed our pilot study scenario and
two overall feedback strategies were identified: Correctness Feedback (CF) was based
on correcting responses at each sorting stage, and Suggestive Feedback (SF) was based
on just notifying, at each stage, the cards that were sorted incorrectly.

The pilot study then evaluated these strategies using two independent variables:

• Feedback. The two conditions of the independent variable “feedback” were:
correctness feedback and suggestive feedback.

• Stage. The four conditions of the independent variable “stage” were: stage 1,
stage 2, stage 3, and stage 4.

The two dependent variables used in this study were:

• Performance Improvement. The pre-test and post-test questionnaires were used
to record the users’ sorting scores of the material sets, and the task performance
improvement of a participant was represented by his or her sorting scores.

Chapter 4. Effects of Virtual Agent Feedback Strategies 31

• Stage execution time. The time duration is taken for producing a sorting for
each stage of the task. This time excludes any interaction time between the
user and trainer.

A within-subjects design method was used. Each participant experienced the two
feedback conditions and each with the two material sets. The order of feedback con-
ditions and material sets was counterbalanced to reduce their effect on the dependent
variables. In summary, the within-subjects design was: 4 participants × 2 conditions
(with two material sets) × 4 task stages × 3, 5, 7, 9 country cards = 192 cards in
total.

4.2.3 Participants
Four volunteers were involved in our pilot study: two males and two females, with
ages ranging from 27 to 32 years old, and all were English speakers. One of our
researchers played the role of the human trainer. Each participant performed the
activity twice, each time experiencing a different feedback strategy and a different
material set. The order of delivering the two strategies was counterbalanced among
the participants.

4.2.4 Procedure
The study was conducted in an empty room. The human trainer first collected the
oral consent from the participant and explained the study. Then, for each material set
and feedback strategy, the participant performed the pre-test questionnaire, the main
sorting activity while receiving feedback from the human trainer, and the post-test
questionnaire.

Behavior Repertoire

Right hand moves to object Points at object, wait 1sPoint:

Gaze follow:

Move cube:

Instruct: Delivers a speech

Moves back to idle

Looks at the object and follows Looks back to user

Right hand moves to object Grabs object Moves to target location Moves back to idle

Looks at the object and follows Looks back to user

Looks at the target object Follows where the target object is moving to Looks back to user

Waits for user’s command or operation Delivers next speech

Idle: Repeat 1 captured idle motion to show rapport while waiting for user’s response

Looks at user

Looks at user/target object

Looks at user(command)/ target object(operation)and idle Looks at user

Releases object

Introduce task and
demonstrate example Observes task rules

Present new task to
solved Gives initial solution

Virtual trainer
provides feedback
Using some strategy

Improve solution

Next task proceeds Confirm the task done

Behavior Repertoire Trainer User

Talk: Delivers a speech with body and gesture animations specific to each message in the system

Looks at user while speech is being delivered, if too long look at table from time to time

Figure 4.2: Left: the behavior repertoire available to the virtual trainer. Each
behavior (except the first one) implements an action synchronizing arm motion and
gaze movement as illustrated in the horizontal bars next to each behavior. Right: the
main interaction phases between the virtual trainer and the user.

With CF, when a wrong sorting was presented, the human trainer would correct
the sorting and say “Here is the correct order, please study it and let me know when to

Chapter 4. Effects of Virtual Agent Feedback Strategies 32

continue”. With SF, the human trainer would point to each pair of cards incorrectly
ordered and say “These two cards are in the wrong order, please correct them”. The
whole study took around 30 minutes to finish.

4.2.5 Results
In order to evaluate the results from the pre-test and post-test questionnaires, we
defined a “sorting score” to quantify a participant’s performance improvement. For a
set of 9 cards, the total possible combination of pairs is C(9,2)=36. The sorting score
is defined as the number of pairs in the correct order divided by the total number of
pairs (36) and multiplied by 100 in order to express values as percentages.

With this definition, the mean scores of CF in the pre-tests and post-tests were
56.94% and 95.83% respectively. The mean scores of SF were 69.44% and 99.31%
respectively. The mean time to complete the entire task with the CF strategy was
229.8s, and with the SF strategy was 223.9s. These results show that both CF
and SF were effective as they led to 68.30% and 43.02% performance improvement.
However, participants needed increasingly more time to complete each stage under
SF than under CF, given that a growing number of suggestions were needed before
completing each stage.

All participants reported that the elements on the cards helped them memorize
the needed information. For example, when the country material set was used, one
participant said “I can’t remember the country’s name, but I do remember the colors
and shape of the country I was sorting”. Figure 4.1-top illustrates the used shapes
and colors. The land area of Russia is larger than Australia. In the building material
set, one participant said “It is hard to tell how old the building is, but those devas-
tated buildings must be older than those completely built”. Indeed, as is the case in
Figure 4.1-bottom, the Minoan Palace is older than Hagia Sophia.

In our main study we have changed the material sets and redesigned the question-
naires in order to better constrain the participant to assimilate the intended informa-
tion. We have also updated the delivery of the SF strategy to reduce duration times
and participant stress due to a possible large number of suggestions. These changes
are presented in Section 4.4.

4.3 System Implementation
A training system was implemented providing the needed capabilities for executing
the required interactions observed in our pilot studies. The system was built with the
Unity game engine connected to an Oculus Rift. We use the Oculus Unity Integration
plugin to connect to the Rift controllers. The general system is designed as follows:
the system monitors the user input, runs a task-dependent action decision model,
and then decides which behavior the virtual trainer has to execute. This process
is repeated until the simulated task ends. This interactive process is illustrated in
Figure 4.2-right.

Chapter 4. Effects of Virtual Agent Feedback Strategies 33

In order to be able to execute all needed actions, the virtual trainer was equipped
with six basic behaviors, as detailed in Figure 4.2-left. The movement of the “gaze
follow” behavior is controlled by Inverse Kinematics (IK); for “point” and “move cube”
the right arm is also controlled by IK while the hand shape is interpolated between
a neutral hand shape and the target hand shape (pointing or grasping shape). The
“talk behavior” includes lip syncing implemented with the Unity plugin SALSA. User
voice commands are analyzed by the Windows Speech Recognition module. The “idle”
behavior is animated with motion-captured animations captured with a Perception
Neuron full-body motion capture suit. In order to be realistic most of the behaviors
synchronize arm movements with a gaze attention model specifically designed for
each behavior as depicted in the “timeline boxes” in Figure 4.2-left. This behavior
repertoire was sufficient to implement the target scenarios and feedback strategies.

4.4 User Study

Our main user study took place at our research laboratory equipped with a high-
end computer station connected to the Oculus Rift and running our simulation system.

4.4.1 Design
Our simulation system replicated the same overall scenario of the pilot study, but
with several improvements.

Figure 4.3: Country material sets used during main study

Memorial Materials and Questionnaires

Only country materials were used. We used one material set in order to evaluate users
on the same topic and discarded the building material set because it allowed different

Chapter 4. Effects of Virtual Agent Feedback Strategies 34

types of information to influence the participants. The country material set was also
updated to reduce non-applicable information influence, and country border outlines
were removed. Two non-intersecting sets of countries were used (see Figure 4.3-left
and Figure 4.3-right). The sets were chosen such that the countries have similar land
areas. The pre-test and post-test questionnaires have been correspondingly updated
to only list countries by names.

Task Design

The overall task procedure is the same as performed in the pilot study; however, the
task now is based on sorting virtual cubes representing countries instead of sorting
cards.

Feedback Strategies

Based on feedback obtained during the pilot study, the SF strategy was updated in
the following way: instead of showing the wrong pairs of items one at a time, the
virtual trainer now points to all the wrong items at the same time. In this way,
when there are more than 2 wrong cubes, the feedback is delivered in a shorter time
and participants have to be more engaged since correcting the answer is not anymore
obvious and mechanical. When the user provided a wrong sorting the virtual trainer
would say “Attention, those [two/three.../nine] countries are in the wrong order” while
pointing at those wrong countries one by one. In order to facilitate the perception of
the users white squares marking the location of the cubes turned red each time the
virtual trainer pointed at them. Figure 4.4 illustrates the execution of both strategies
by the virtual trainer in our system.

Study Design

The same within-subjects design was used in the main study but with 14 participants:
14 participants × 2 conditions (with different learning material sets) × 4 task stages
× 3, 5, 7, 9 country cubes=672 cubes in total.

4.4.2 Participants
14 volunteers from the university community participated in the user study. None
of them were involved in the pilot study. Their age ranged from 17 to 25 years
old, with an average of 20.14 years (SD=1.99). They were all fluent in English, 5
of them were female and 9 male, 5 were left-handed and 9 right-handed. Only 3
participants had experienced VR before, among them only 1 had used Oculus Rift
before participating in our study. Participants received $5 cash as compensation for
their time in our study.

Chapter 4. Effects of Virtual Agent Feedback Strategies 35

(a) (b) (c)

(d) (e) (f)

Figure 4.4: The Correctness Feedback (CF) strategy is illustrated in images a-
c. After the user arranges the cubes (a) and completes an incorrect sorting in the
current task stage, the virtual trainer will manipulate the cubes and re-arrange them
in the correct order (b). The user can then observe the correct solution as long as
needed (c) until saying “continue” in order to move to the next stage. The Suggestive
Feedback (SF) strategy is illustrated in images d-f. After the user manipulates the
cubes (d) and completes an incorrect sorting of the cubes in the current task stage
the virtual correcter will then point to the cubes which are in the wrong position
(e). The virtual trainer will point to all of the cubes that are wrong and say that
their positions are wrong. The user will then rearrange the cubes (f) to propose a
new sorting. The process repeats until all cubes are placed in the correct locations.
When this is detected the virtual trainer notifies that the solution is correct and the
user can then observe the correct solution as long as needed until saying “continue”
in order to move to the next stage.

4.4.3 Procedure
Before the test day participants received an email explaining the purpose and main
procedures of the study. Participants came in one by one at their scheduled times.
They were introduced again to our study, signed the consent form, and filled out a
demography questionnaire. The user then completed two learning activities (one with
SF and the other with CF) including the pre-test and post-test questionnaires. Two
additional post-study questionnaires were included: a simulator sickness questionnaire
(SSQ) and a questionnaire asking users to rate the feedback strategies, the virtual
trainer character, and the overall VR experience with 7-point Likert scales. The
system recorded all completion times for later analysis. Overall, each participant

Chapter 4. Effects of Virtual Agent Feedback Strategies 36

Figure 4.5: We present an autonomous virtual trainer that can assist users to learn
a given task by using different feedback strategies involving manipulation (left) and
pointing (center). Immersed users interact with the virtual trainer with voice com-
mands while manipulating virtual cubes using Rift controllers in order to learn the
task (right).

spent around 50 minutes going through all the activities. Figure 4.5-right illustrates
one participant in the study.

4.5 Results
We summarize in this section our results.

4.5.1 Qualitative Results
The Simulator Sickness Questionnaire (SSQ) obtained the average total simulated
sickness score of 9.82 (SD=9.8); the average nausea score of 19.08 (SD=18.78), with 11
participants reporting this symptom; the average oculomotor score of 3.79 (SD=5.99),
with 6 participants reporting this symptom; and the average disorientation score of
1.75 (SD=4.62), with only 2 participants reporting this symptom.
The Simulator Sickness Questionnaire (SSQ) analyzed scale means is shown in Ta-
ble 3.2 (in Appendix). The average total simulated sickness score for the system is
9.82 (SD=9.8). The average nausea score is 19.08 (SD=18.78), 11 participants re-
ported this symptom; the average oculomotor score is 3.79 (SD=5.99), 6 participants
reported this symptom; and the average disorientation score is 1.75 (SD=4.62), only
2 participants reported this symptom.

4.5.2 Quantitative Results
We used a repeated-measures ANOVA with alpha of 0.05 for all analyses. ANOVA
failed to identify a significant effect of feedback on performance improvement (F1,13=1.66,
p=.22). ANOVA failed to identify the significant impact of feedback and pre-test
and post-test questionnaires test order on the user’s performance improvement, the
result is:F1,13=0.12, p=.73. ANOVA identified a significant impact of pre-test and
post-test questionnaires test order on user’s performance improvement, the result is:

Chapter 4. Effects of Virtual Agent Feedback Strategies 37

F1,13=49.44, p=0.000009. The sorting scores representing the performance improve-
ment of all 14 participants are displayed in Table 4.1.

Participant # CF Sorting Score (%) SF Sorting Score (%)

pre-test post-test pre-test post-test

1 36.11 97.22 41.67 69.44
2 41.67 100.00 50.00 100.00
3 33.33 80.56 66.67 100.00
4 30.56 63.89 66.67 38.89
5 36.11 100.00 36.11 91.67
6 38.89 72.22 55.56 100.00
7 55.56 97.22 55.56 86.11
8 52.78 44.44 38.89 61.11
9 50.00 86.11 69.44 100.00
10 80.56 80.56 44.44 80.56
11 63.89 100.00 63.89 80.56
12 47.22 36.11 27.78 75.00
13 27.78 66.67 50.00 52.78
14 33.33 63.89 50.00 100.00

Mean 44.84 77.78 51.19 81.15
SD 14.16 20.20 12.19 19.05

Table 4.1: Mean and standard deviation for obtained scores.

The average execution time for each stage of the task has been computed and the
result is shown in Figure 4.6. The average total time needed to complete the tasks
with CF was 339s, while with SF was 559s, which is 65% higher than the CF time.

Two linear regressions were calculated to predict the average stage execution time
based on stage under both feedback strategies. For CF, no significant regression
equation exists (F(1,2)=13.71, p>.05). But for SF, a significant regression equation
was found (F(1,2)=365.36, p<.05) with R2 of .995.

Chapter 4. Effects of Virtual Agent Feedback Strategies 38

Figure 4.6: Average stage execution times with CF and SF.

4.5.3 Questionnaire Analysis
In addition, our post-study questionnaire provided 14 questions to evaluate several
aspects of the system. The Wilcoxon Signed-Rank test was conducted for questions
1-5 but failed to identify a significant impact of feedback on participants’ choices.
However, for questions 1,2 and 4, the median values of CF are higher than SF. Ques-
tions 6-14 are single questions about participants’ opinions on the system, virtual
trainer, and the overall VR experience. The results are listed in Table 4.2. The 14
questions are listed below:

1, I think feedback CF/SF was effective for learning the given task;
2, I would imagine that most people would like to use feedback CF/SF for learning

the task;
3, Feedback CF/SF made me feel bored/tired sometimes;
4, I prefer to use feedback CF/SF for learning instead of learning from a real

human;
5, I think having the animated character in feedback CF/SF did not help to

complete the task;
6, I like to use speech commands with both feedback;
7, I prefer using button commands to speech commands in the system;
8, I liked the way the character looked at me when it talked with me;
9, It would be important to see more human-like behaviors from the virtual char-

acter;
10, I would like to interact more with the virtual trainer in order to complete the

tasks in the virtual environment;
11, I felt comfortable/relaxed while doing the tasks in the virtual environment;
12, The visual display quality interfered with or distracted me from performing

the activities;

Chapter 4. Effects of Virtual Agent Feedback Strategies 39

13, I was more proficient in interacting with the virtual environment at the end
of the experience than start;

14, I felt completely immersed/involved in the virtual environment during the
execution of the tasks.

Question Number z p MedianCF MedianSF Median Mean

1 -0.63 .53 6 5 - -
2 -0.47 .64 5.5 5 - -
3 -0.51 .61 3 3 - -
4 -0.45 .65 4.5 3.5 - -
5 -0.05 .96 3.5 3.5 - -
6 - - - - 4 4
7 - - - - 5.5 5.21
8 - - - - 4 4.21
9 - - - - 5 4.57
10 - - - - 4 4.14
11 - - - - 6 5.5
12 - - - - 2.5 2.86
13 - - - - 5.5 5.64
14 - - - - 6 5.64

Table 4.2: Post-study questionnaire results.

4.5.4 Discussion
Some participants reported slight discomfort for experimenting with our system, but
none of the symptoms exceeded nausea, oculomotor, or disorientation severity levels.
The total SSQ score of the system was 9.82, which is negligible (the maximum score
possible on the SSQ is 300). Hence the system was appropriate for the study since
its side effects were not severe enough to impact user performance or preference.

For both CF and SF strategies, the mean post-test sorting scores were significantly
higher compared to their respective mean pre-test sorting scores after experiencing
the learning activity in our system. Statistical tests failed to identify a significant
difference between CF and SF strategies on user’s performance outcome; however,
the increments were 72.79% for CF and 58.53% for SF, showing that CF was more

Chapter 4. Effects of Virtual Agent Feedback Strategies 40

effective than SF for increasing the performance outcome. A significant linear regres-
sion equation for stage execution time was found for SF, but not for CF, and the total
average time needed to complete a task with SF was 65% longer than with CF. The
reason is that numerous suggestions were given by the virtual trainer, in particular
as the stage number increased.

Overall, although no significant difference has been identified for both strategies,
CF is more effective in the mean score increment aspect. From the analysis of task
execution time, CF was more efficient time-wise for our task scenario. These findings
agree with the notion that “complexity of feedback may be inversely related to both
ability to correct errors and learning efficiency” (75; 125).

For the post-study questionnaire analysis (Table 4.2), no significant impact of
feedback strategies on user choice has been identified. However, comparing the me-
dian values of CF and SF, more participants thought CF was more effective for
performing the sorting task and more participants mentioned a preference to use CF
for performing the sorting task. Besides, our annotations show that 5 participants
were uncomfortable when the virtual trainer repeatedly pointed out they did wrong
sortings in a given task stage, which made them not proceed with the task session.
One of the participants demonstrated significant anxiety at the last stage of a SF
session even though the participant insisted on finishing the task. No one reported
negative comments about the CF strategy during the user study. One participant
said “The first test (the CF test) was much faster and easier for me to use”. These
points show that the CF strategy was preferable to the SF strategy in our system.

Interestingly we found out that the speech recognition model in the system was not
as welcomed as we expected. In question 6 participants rated the speech command
in the median and average values both at 4, which means slightly approving it. How-
ever in question 7, when asked about the option of button commands, participants
answered they would prefer using button commands to speech commands. This could
be explained by some participants having different language backgrounds, but even
if not, they all had to pronounce a standard English accent in order for the system
to correctly understand commands, otherwise they had to repeat voice commands
several times until recognition in order to proceed with the session. We noticed that
after three times repeating the command “continue” without being recognized the
participant’s voice volume would become lower and lower, demonstrating frustration,
and in this case the experimenter manually instructed the system to proceed with a
keyboard key without the participant noticing it. Participants rated the gaze tracking
behavior as 4, probably because most of their attention was focused on the task state
on the virtual table. In any case most of them expected to see a more human-like
virtual trainer than the one we presented in our system.

Another interesting finding is that participants rated very low the possibility that
the visual display quality interfered with or distracted them from performing the
required activities. The median value was only 2.5. Perhaps, given that only 3 of
the 14 participants had previous experience with a VR system, participants felt more
excited to experience the VR display than frustrated by the drawbacks of using it.

Chapter 4. Effects of Virtual Agent Feedback Strategies 41

Participants rated highly (rating 6) that they felt comfortable, relaxed and immersed
while performing the tasks in the virtual environment.

Question 8 evaluated the gaze behavior incorporated in our system and partic-
ipants rated it as an effective behavior of the virtual trainer. The evaluations of
questions 10, 11 and 14 indicate that the design of the virtual trainer in our system
was well received and effective for conducting the learning tasks. The evaluation of
question 13 also indicates user improvement after being immersed in our VR system.
In these questions the mean and median ratings show positive ratings from users.

Overall our results indicate that in a short-memory training task such as the
one we have used, the virtual trainer would be better designed with the correctness
feedback strategy. This result matches well with Shute’s conclusion in traditional
teaching feedback strategies (125): that when the task is simple, memory-based, and
non-physical, the best performance is obtained with simple feedback features: correct
solution, computer-delivered, and goal setting.

A number of interesting directions are possible for future work. It will be inter-
esting to investigate further variations of feedback strategies and as well to apply the
strategies to other types of tasks involving more complex object manipulation where
task completion involves more complex physical movements instead of only memoriza-
tion of concepts or properties. Furthermore, adaptation of the feedback strategies to
the progress achieved during long-term tasks is an important area to be investigated.

4.6 Conclusion
This chapter presents a VR training system featuring an autonomous virtual trainer
able to interact with users and provide feedback during task execution. The effective-
ness of two feedback strategies (CF and SF) was evaluated. Although no statistically
significant difference has been identified between CF and SF with respect to perfor-
mance outcome, CF was quantitatively found to lead to higher overall scores used to
measure task outcome. CF also showed to be the superior design in terms of being
more efficient time-wise and being the preferred strategy of the users.

Our findings also support that in general interactions with virtual trainers were
rated by users as comparable in preference to hypothetically performing the same
task with real interactions. These results match with previous work suggesting the
effectiveness of interactions with virtual humans. Overall our evaluations indicate that
our system was well designed and incorporates effective strategies for interaction with
users. We believe our results can find several applications in a number of interactive
scenarios and applications.

Chapter 5

Learning Collaborative
Multi-Agent Manipulation Tasks

In the previous chapters we focused on the effects of agent gender, appearance and
feedback strategies on user performance and preference. From this chapter, we shift
our focus to the problem of agent training. Our end goal is to train agents that can
assist other agents or humans on different problems. With that goal in mind, we focus
on reinforcement learning approaches for collaborative tasks. In particular, we focus
on multi-agent problems, i.e. those involving more than one agent and on multi-phase
tasks, i.e. those involving more than one phase where different phases have different
objectives.

5.1 Introduction
In recent years deep Reinforcement Learning (RL) approaches have shown great po-
tential in training control policies used in gaming and robotics. In particular, a
family of actor critic algorithms has been developed for tackling tasks with complex
continuous action spaces which have become widely used in the field of deep RL.
Extensive research and development have been dedicated to such methods, which
include Deep Deterministic Policy Gradient (DDPG) (85), Proximal Policy Opti-
mization (PPO) (119), and Soft Actor Critic (SAC) (54). In this chapter we address
the use of SAC for multi-phase collaborative tasks.

Many applications such as gaming and robotics often depend on multiple agents
cooperating together to solve a complex task. Some of these tasks are sequential in
nature and have distinct phases that are governed by different objectives as the task
progresses. While it is generally easy for humans to discover cooperative interaction
strategies, training agents to handle such tasks is a fairly complex problem, mostly
because of two fundamental challenges. The first is related to building a framework
where the agents can interact in a collaborative manner, and the second pertains to
the training of the agents allowing them to take appropriate actions while intelligently
cooperating with each other in order to achieve a common task objective.

42

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 43

Figure 5.1: Agents collaboratively balancing a tray for a ball to follow a moving
target.

With respect to the first challenge, there is a rich collection of available frame-
works for experimenting with single-agent reinforcement learning algorithms, such as
OpenAI Gym (26), RoboGym(99), ML-Agents (67), and Atari games (21). These
frameworks have been used for controlling both simple objects and complex human-
like characters or robots, as well as for learning policies in an end-to-end manner.
There are also frameworks developed for specific purposes. Examples include con-
trolling an agent to play Go at a world-class level (90), controlling a robotic arm to
grasp or manipulate objects (9), and simulating physical characters to perform realis-
tic human-level skills (104). However, building a framework for multi-agent problems
is significantly more challenging because the behavior of one agent is affected by
the other agent, requiring synchronizing movements in the same dynamic environ-
ment and designing a reward function that incentivizes coordination or competition
according to possibly different objectives.

With respect to the second challenge, single-agent RL approaches have already

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 44

been extended to the multi-agent domain for solving tasks that need multi-agent
interactions, such as for two-player competitive sports (139) and cooperative agent
communication (85; 64; 152). In such domains, the centralized training and decen-
tralized execution (CTDE) paradigm, and its integration with DDPG (80), called
MADDPG (85), has been widely used. In this paradigm, agents are trained using
centralized information but execute separate policies in a decentralized manner. We
adopt a similar architecture in our work but rely on the SAC learning method (54)
because of its superior ability to solve tasks in continuous action spaces over other
actor critic learning methods.

While CTDE can learn both cooperative and competitive strategies, directly us-
ing it to solve a complex task that can be decomposed into multiple phases is not
straightforward due to the complexity of designing a proper multi-objective reward
function. A common solution is to use hierarchical RL controllers to solve each
sub-objective separately with lower-level controllers, and then train an upper-level
controller to provide intermediate goals for the lower-level ones (92; 38). However,
implementing multi-level controllers introduces complexity to the architecture and
requires additional hyperparameter tuning.

To address these issues, we adopt the safe RL concept from Xu et al. (145). The
original idea behind safe RL is to define task constraints for the purpose of safety
and stability. However, constraints can also be leveraged to model the different sub-
objectives of a task which can be decomposed into sequential sub-tasks or phases. In
this chapter we propose to treat all sub-objectives except the final one as constraints
inside a multi-agent learning framework, and optimize the final objective only if none
of the constraints’ objectives are violated for each agent.

We define a tray balancing task (Figure 1) in order to train and evaluate the
proposed training approach. To solve it, two agents need to cooperate to control
the position and orientation of a tray. They need to control it precisely so that a
ball rolling on the surface of the tray can follow a pre-defined target trajectory. We
define two phases: the objective of the first phase is for the agents to lift the tray
appropriately, and the objective of the second phase is to control the tray in order to
make the ball follow its target trajectory. We study the performance of our model by
analyzing the objective rewards for different trajectories. We also evaluate the model
on trajectories that are unseen during training in order to study the generalization
capability of our method, and we analyze our model’s robustness by evaluating its
performance in the presence of disturbance forces.

Overall, our contributions to this work can be summarized as follows:

• we develop a multi-agent framework able to physically simulate collaborative
tasks in a shared environment,

• we propose a constraint-based algorithm to learn policies for multi-agent coop-
erative tasks with sequential objectives, and

• we evaluate the trained policies with tray balance tasks in order to study their
performance, generalization, and robustness.

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 45

5.2 Related Work

5.2.1 Multi-Agent Environment
Building multi-agent environments is very challenging since the reward design has
to not only consider task objectives but also interaction strategies between agents.
Works on multi-agent learning have addressed control and communication strate-
gies between 2D agents (85), and also emergent strategies during learning (76; 15).
There is however a lack of frameworks for experimentation with human-like behaviors
achieved from joint-level control. Recently, one work has created such an environ-
ment for training human-like characters to compete with each other in sports games
like fencing and boxing (139). While these environments are task-focused, our en-
vironment expands the possibilities for accomplishing cooperative tasks that include
human upper-body and arm movement.

5.2.2 Multi-Agent Reinforcement Learning
The multi-agent learning problem is challenging because of difficulties with agent
scalability, non-stationarity of the environment, and non-unique learning objectives.
A straightforward approach to solving multi-agent control problems is to train a joint
action policy for all agents using a single-agent RL algorithm, or directly extend
single-agent RL algorithms where each agent learns independently by considering
other agents as part of the environment, such as by independent Q-learning (129).
However, the above solutions suffer from scalability and stability issues. Lowe et
al. (85) proposed a parameter sharing approach to tackle this problem, called cen-
tralized training and decentralized execution approach (CTDE). This is extended
from the actor-critic framework, where each agent uses a centralized critic to access
all agents’ observations and action parameters so that it can learn an approximate
model of the other agents’ online policies within a stationary environment. The
learned policy only uses local information so it can be used by each agent without
further communication between agents. Thereafter, additional algorithms have been
developed based on the CTDE framework in order to address different aspects of
typical multi-agent systems, for example, credit assignment with integration of the
independent actor-critic method (39), scalability by adding mean field Q learning
and actor-critic learning (148), stability with SAC learning (86), and incorporation
of attention with SAC learning (64) in order to enable faster and more stable learn-
ing (110).

Our work also adopts the concept of improving the stability in multi-agent learn-
ing (86) by integrating SAC (54) into the CTDE framework. However, in comparison
to other recent approaches (86; 30; 140), we study the applicability of CTDE with
SAC in a complex human coordination task that is decomposed into multiple phases.
As evaluation (see Section 5.6) we use CTDE with SAC as a baseline to evaluate our
proposed constraint-based learning model.

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 46

5.2.3 Multi-Objective Learning
Multi-objective learning involves learning tasks that have two or more objectives to
optimize. It has the lifelong learning properties (29), which means an agent can
be trained on a sequence of relatively easy tasks to gain experience and develop a
more informative measure of reward, which can then be leveraged when performing
harder tasks. Complex tasks that need to be broken down into sub-tasks based on
their sub-objectives are quite common. When designing the objectives of a given
task, the sub-objectives can be defined as separate objectives without connection
but sharing the same action space, like a robot arm picking and placing objects in
different boxes (62), agents working together to push different objects into different
locations (147). Sub-objectives can also be defined as sequential objectives, such that
in order to finish the final objective, the previous objectives have to be completed first,
which is aligned with our task design. Example tasks solved in this manner are: an
agent moving to a target location while moving objects or obstacles along the moving
path (93), a biped character walking and needing to maintain natural gait motion
with a walking target (105), and a four-legged robot walking to a target location (92).
While most of existing works focus on optimizing multi-objective learning for a single
agent, in this chapter, we extend the approach to a multi-agent multi-task setup,
where two virtual agents need to control the force applied on each side of a tray in
order to solve a cooperative tray balancing problem.

5.2.4 Reinforcement Learning with Constraints
Learning while considering constraints is a popular approach used in safe reinforce-
ment learning (42), where the focus is on preventing the agent from taking actions
or entering states that are too risky, since ensuring safety is always critical when
the learned strategies need to be deployed to real world systems. Different ways of
specifying constraints have been proposed by previous researchers, including using
constraints on the expected return or cumulative costs (4; 145), and defining regions
of the state space that will result in agent failure. In our work, we focus on addressing
a new formulation for a cooperative task that involves two sequential objectives, and
we propose to define our constraint as a threshold on the expected return from the
first objective. The learning process will advance to optimize the final objective only
when the constraint has been satisfied.

5.3 Overview
We are interested in solving multi-agent collaborative tasks in a physically-simulated
environment, with focus on a tray balancing task. In this section we provide details
of our task design. The overall framework used to train and evaluate our method is
illustrated in Figure 5.2.

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 47

5.3.1 Environment and Tasks
The environment is simulated inside the physics simulator of the Unity game engine,
and it includes two virtual agents, a ball, a moving target, and a tray with four anchor
points at each corner. We consider two trajectories for the tray balancing task: an
ellipse trajectory and an S-curve trajectory as shown in figures 5.3 and 5.4. The
details of these trajectories are described in Section 5.6.1. In order to complete the
task, the two agents start with a standing initial pose along the two sides of the
tray, and then outstretch their arms to reach the two anchor points on their side of
the tray. The arms of the humanoids are controlled by inverse kinematics (IK) (74),
the end effectors are their hands’ position and rotation, and the two anchor points’
position and rotation are their desired targets. After reaching the anchor points, we
require the agents to perform the tray balancing task in a sequential manner in 2
phases: in phase 1, they need to lift up the tray to a fixed height while maintaining
the balance of the tray, and in phase 2, they need to manipulate the tray to guide the
ball to follow the target on a moving trajectory. The task process inside the physics
simulator in Figure 5.2 illustrates this process.

5.3.2 Framework
Our framework has three main components, the physics simulator, the MARL (Multi-
Agent Reinforcement Learning) controller, and the IK (Inverse Kinematic) controller.
The physics simulator is used to simulate different task environments, the MARL con-
troller is the Python API that runs our multi-agent learning approaches during both
the training and execution processes, and the IK controller is used to control the
humanoid arms during both processes. At each learning step, the MARL controller
receives the states and rewards information and sends out the actions to the physics
simulator via the communication channels provided by the Unity ML-Agents plu-
gin (68). In the meantime, the MARL controller collects the anchor points’ position
and rotation information and sends them to the IK controller as its desired control
target for the agents’ arm movement.

5.4 Approach

5.4.1 Problem Formulation
We formulate our problem as a two-agent cooperative game, modeled as a par-
tially observable Markov Decision Process (MDP); our approach can be easily ex-
tended to more agents. At each time step t ∈ [0, T], the MDP tuple is defined as
{O, St

i , At
i, St+1

i , Rt
i, T }, where T is the max steps of each episode, i ∈ {0, 1} is the

index of the agent. Agent i observes partial state st
i ∈ St

i from environment O, takes
action at

i ∈ At
i that leads to a new state according to the dynamics model T , and

receives a scalar reward signal from its reward function rt
i = R(st

i, at
i), and rt

i ∈ [0, 1].

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 48

Figure 5.2: The overview of our environment and framework.

For each agent i, the goal is to find an optimal policy πθi
(a|s) that maximizes its

expected accumulated reward Ji, where θi denotes the parameters of the policy.

5.4.2 Multi-Agent Soft Actor Critic Learning (MSAC)
In our multi-agent setup, we adopt the CTDE framework incorporated with SAC
algorithm (54) because its extra entropy term increases the policy’s exploration ability
and robustness, and we name it Multi-agent Soft Actor Critic algorithm (MSAC).
During training, we jointly conduct policy evaluation and policy iteration, where for
each agent i we concurrently learn a stochastic policy πθi

and two Q-functions with
parameters ϕi,j, j is identifier of Q function, in the range of [1, 2].

During policy iteration, we use Eq 5.1 to optimize, in the direction of maximizing
the accumulated reward, the policy function J(θi):

∇θi
J(θi) = ∇θi

1
|Bi|

∑
Bi

{min
j=1,2

Qϕi,j
(st, at) − α log πθi

(at
i|st

i)}. (5.1)

The policy function for each agent is parameterized as θi, Bi denotes a batch
of experiences sampled from the replay buffer, log πθi

(at
i|st

i) is the entropy term to
increase the variation of action space, and α is a learned variable indicating the
contribution of an entropy regularization term. Qϕi,j

(st, at) is calculated from the
states s and actions a of all agents, as a centralized evaluation operation.

During policy evaluation, we optimize the loss function L(ϕi,j) using Eq 5.2 to eval-
uate the learned policies by minimizing the difference of the value function Qϕi,j

(st, at)
and its target value yi for each agent:

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 49

∇ϕi,j
L(ϕi,j) = ∇ϕi,j

1
|Bi|

∑
Bi

(Qϕi,j
(st, at) − yi)2. (5.2)

The target value yi is calculated with a separate target value network Qtarget(st+1, at+1)
in order to maintain stability when updating policy network, as shown in Eq 5.3:

yi = ri + γ{min
j=1,2

Qϕi,j,target
(st+1, at+1) − α log πθi

(at+1
i |st+1

i)}. (5.3)

Both value functions Qϕi,j
and their target value functions Qϕi,j,target

share the
same network structure, and they are parameterized as ϕi and ϕi,target separately.

5.4.3 MSAC with Constraints
Constraints used in safe RL problems can be categorized into primal and primal-dual
approaches. Primal approaches focus on the design of objective functions and do
not need Lagrange multipliers as dual variables during the optimization process, thus
simplifying the implementation process and reducing training time (42). Due to its
proven global convergence, we adopt the primal approach (145) in our framework and
call it Constrained Multi-agent Soft Actor Critic (C-MSAC).

We assume the task can be divided into n sequential phases; we consider objectives
in the first n − 1 phases as constraints while the nth phase objective determines the
final objective. The idea is to optimize the final objective function with reward
accumulated from the nth phase while guaranteeing that all constrained objectives
from previous phases can be satisfied. Our multi-agent problem with constraints can
thus be formalized as the following optimization problem:

max
θi

Ji,n(θi), s.t.Ji,k(θi) >= di,k, k < n, (5.4)

where Ji,k denotes the total expected return of the k-th constraint phase, and di,k is
a threshold that is calculated from a Monte Carlo estimate return with step reward
r0 = 0.9, and discount parameter γ = 0.99 for the k-th constraint:

di,k =
T −1∑
t=0

γtr0. (5.5)

Hence, when all constraint phases reach their respective thresholds di,k, we find the
optimal policy πθ,i for each agent. For each phase k, we learn a separate value function
Qi,k, that is, we learn n Q functions for each agent, and during each optimization
step, one Q function will be optimized based on Eq 5.7. In this section, we use Qi,k

as the shortened version of Qϕi,j,k
for simplicity.

At phase k, the expected return Ji,k is calculated as:

Ji,k(θi) = 1
|m|

m∑
s0

i ,a0
i ∼ξ,πθi

ρi,kQi,k(s0
i , a0

i). (5.6)

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 50

The term Qi,k(s0
i , a0

i) computes the accumulated return of a rollout starting from
(s0

i , a0
i) while following policy πθi

. State s0
i denotes an initial state that is sampled

uniformly from an initial distribution ξ and a0
i is the corresponding action based on

the latest policy πθi
. ρi,k is a weight ratio for each rollout, where a value of 1 is used

in our experiments. We average m = 40 rollouts to calculate Ji,k.
To combine the constraints with policy iteration and policy evaluation, we inte-

grate the constraint phases into the MARL process. At each optimization step, we
first choose a phase k to optimize by selecting a Q function using Eq 5.7:

select(Q) =

 Qi,k if ∃k < n : Ji,k(θi) < di,k,

Qi,n else k = n.
(5.7)

To perform policy iteration, we then replace Qϕi,j
in Eq 5.1 with the chosen value

function Qi,k. For policy evaluation, we replace Qϕi,j
in Eq 5.2 with the value function

Qi,k of the chosen constrained phase, leading to the following critic update:

∇ϕL(ϕi,k) = ∇ϕ
1

|Bi|
∑
Bi

(select(Q) − yi,k)2, (5.8)

where yi,k is the target value calculated in the same way as in Eq 5.3, but specifi-
cally for the ith agent at phase k. If multiple constrained phases are not satisfied, we
can choose any phase to maximize its expected return.

5.4.4 Algorithm
Algorithm 1 summarizes the procedure of our proposed approach C-MSAC during
the training process. Lines 4-9 show the process of collecting samples from multiple
environments for both agents in order to enrich the training dataset and speed up
the training. Lines 10-17 perform the learning process in that we iteratively select a
phase k to optimize until all phases have been saturated with their own thresholds
based on Eq 5.4.

5.5 Training

5.5.1 State and Action Representation
In our environment, the state information includes the tray, the ball, the moving
target, and the two anchor points for each agent. Let p, q, v, qv denote position,
rotation, velocity, and angular velocity respectively. The state is represented as si =
[sB, sT , st, sBt, sT f], where sB = [pB, qB, vB, qvB] represents the state of the ball,
sT = [pT , qT , vT , qvT] represents the state of the tray, st is the position of the moving
target, sBt contains the Euclidean and quaternion distance between the ball and

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 51

Algorithm 1 Constrained Multi-agent Soft Actor Critic Algorithm (C-MSAC)
1: Initialize policy network θi, value estimation networks ϕ1,i, ϕ2,i with random

weights for each agent;
2: Initialize replay buffer D as empty dictionary ;
3: for each step do
4: for each environment m do
5: Sample action at from policy π(at

m,i

∣∣∣st
m,i);

6: Proceed one step in the environment;
7: Observe reward rt

m,i,k and next state st+1
m,i from environment;

8: Concatenate all data into tuple (st
m, at

m, rt
m,k, st+1

m) and send to the replay
buffer D;

9: end for
10: if step > batch size then
11: Sample a group s0

i from ξi;
12: Calculate total return Ji,k with Eq 5.6 for all phases k ;
13: Sample a batch data from D ;
14: Select a phase k to optimize with Eq 5.7 ;
15: Evaluate policy with Eq 5.8 ;
16: Optimize policy with Eq 5.1
17: end if
18: end for
19: Output optimal policy θi for agent i.

the moving target that the ball needs to follow for, and sT f includes the Euclidean
distance between the tray and a fixed target position that is slightly higher than the
tray’s initial position.

The action ak
i in our task is defined as the force applied at each holding point

on the tray in x, y, z direction. It is calculated by multiplying a fixed scalar by the
normalized [-1,1] control signals learned from the RL policy. We use 100 as the scaling
constant.

5.5.2 Reward Design
The tray balance task includes two phases: lifting up the tray and reaching the target,
we need to design reward functions for each phase based on its own objective, the
details are described below.

Lifting the Tray

In this phase, the agent’s objective is to lift up the tray to the fixed target position
p0 while maintaining its balance relative to the identity quaternion q0. To satisfy this
objective, the reward function is designed as:

rlift = 0.8 ∗ rdist + 0.2 ∗ rang.

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 52

Here rdist is the Euclidean distance between the tray and the fixed target position, to
encourage the tray to move closer to the fixed target position, and it is calculated:

rdist = exp[−5||pT − p0||2].

rang is the quaternion orientation difference between the tray and the identity quater-
nion, to encourage the tray to balance itself, it is calculated:

rang = exp[−20(1 − ||qT ⊖ q0||2)].

Reaching the Target

In this phase, the agent’s objective is to adjust the tray position and orientation to
control the ball to follow a moving target on the tray. To encourage the ball to stay
on the moving target, we use the Euclidean distance between the ball and the moving
target, as represented in the reward function:

rtarget = exp[−25||pB − st||2].

The target’s moving path is controlled by curve equations. We use two different
curves: an ellipse (where the major and minor axes are randomized at the beginning
of each training episode) and an S-curve which is defined by a cubic equation.

The agents have to collaborate to finish both phases’ objectives, leading to a Nash
equilibrium (100), meaning that each agent is taking their best policy to respond
to the other agent, and its gains will be undermined if a different policy is taken.
Considering the equilibrium, the reward we use for each agent in each phase is the
shared team average reward, and calculated as the average of both agents in that
phase (136): r = 1

N

∑
i∈N(ri).

5.5.3 Early Termination
Early termination (104; 12) is a common technique used in reinforcement learning,
to help RL agents stop learning bad behaviors and favor the collected samples more
efficiently, thus achieving significantly faster learning. In our task, we introduced
three early termination conditions to terminate the current episode during training:

• first, when the ball touches the edge of the tray, because it can easily get stuck
in the corner of the tray;

• second, when the ball or tray drops on the ground, as it will never get recovered
from this state;

• third, when the height of any anchor point goes below a threshold (0.85m in
our experiments), the agent’s hands will not be able to reach them with IK
solution).

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 53

5.5.4 Training Details

Network Architecture

For each agent, we use the same network structure as SAC (54), but add (n − 1)
value networks and target value networks to represent the constraint objectives of
each phase. All networks consist of three fully connected layers with 256 hidden units
in the first two layers, and Relu is used as the activation function. The last layer
outputs the mean and log value of the policy. The learning rate is 0.0003, while the
gamma is 0.99.

Multi-Environment Training

One of the learning thresholds for an RL approach is sample efficiency. To speed up
the training we implement our environment as a multi-environment setup allowing us
to collect 4 times training data per frame rate.

5.6 Experiments and Results

5.6.1 Target Trajectories
In our environment, the xoz and y − up coordinate system is being used. We train
both models on two types of parametric trajectories, as shown in Figure 5.3 and
Figure 5.4:

1) Randomized ellipse: described with the ellipsoid equation:

f(ti) = (a cos(θ1(ti)) cos(θ2(ti)), b sin(θ1(ti)), b cos(θ1(ti)) sin(θ2(ti)),

where θ1 is the longitude angle change of meridian plane xoy in radian, θ2 is the
latitude angle change of the equatorial plane xoz in radian. a, b are the major axis
and minor axis in the range of [0.1, 0.3] for the ellipse shape randomization. The time
step term ti is the ratio of the current training step and total steps for each episode.

2) S-curve: described as a cubic Bèzier curve with control points P0, P1, P2, and
P3.

f(ti) = (1 − ti)3P0 + 3(1 − ti)2tP1 + 3(1 − ti)t2P2 + t3
i P3.

In our task, we fixed points P0 and P3, and adjusted P1, P2 to get the desired S-shaped
curve.

For the evaluation of unseen trajectories, we use two additional types of curves:
square and triangle, as shown in Figure 5.5 and Figure 5.6, they are generated by
connecting three(triangle) and four (square) fixed positions relative to the position of
the tray.

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 54

Figure 5.3: Ellipse examples, left with equal a and b, right with non-equal a and b

Figure 5.4: S-curve example.

5.6.2 Evaluation Metrics
We compare our proposed approach of multi-agent soft actor critic with constraints
(C-MSAC) to MSAC approach. For MSAC we used a linear combination of rewards
from each phase to calculate the total reward for each agent:

ri = 0.85rlift + 0.16rtarget + (−0.1)rtime

where the optimization process is calculated according to Section 5.4.1. For C-MSAC
each phase is optimized separately based on the reward accumulated from this phase
as discussed in Section 5.4.3.

We compare both models on three criteria:

• Mean target reward and on-target performance: where we evaluate the
models on the same family of trajectories that were used to train the models.

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 55

Figure 5.5: Generalization to unseen triangle trajectories.

Figure 5.6: Generalization to unseen square trajectories.

• Generalization ability: where we evaluate the models on unseen trajectories.

• Robustness: where we introduce extra disturbances to the environment and
analyze the ability of the model to restore balance.

5.6.3 Results

Mean Target Reward

We train both MSAC and C-MSAC for 45,000 episodes each on the randomized ellipse
trajectory and the S-curve trajectory tasks. After every 2,000 episodes of training, we
run validation on 100 episodes to measure the target reward (rtarget) on the objective
phase. Figure 5.7 and Figure 5.8 show the mean and standard deviation of the
normalized reward for MSAC and C-MSAC on the ellipse and S-curve trajectories.

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 56

For the ellipse trajectory, the C-MSAC model starts off slightly lower than the
MSAC model in terms of target reward. This makes sense since the C-MSAC model
initially focuses on the tray lifting constraint objective. Eventually, the C-MSAC
model surpasses MSAC yielding a significantly higher target reward. Furthermore, C-
MSAC is much more stable, exhibiting similar performance across different evaluation
trials as compared to MSAC’s performance which is characterized by large variance.

For the S-curve trajectory, both models have a similar target reward in the ini-
tial stages of training. However, in the later stages, the C-MSAC model surpasses
the MSAC model yielding a policy very close to generating the maximum possible
normalized reward (1.0).

Figure 5.7: Normalized reward on test episodes for the target objective phase (phase
2) with ellipse trajectory.

Figure 5.8: Normalized reward on test episodes for the target objective phase (phase
2) with S-curve trajectory.

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 57

Phase Analysis

We also measured the target reward for the tray lifting constraint phase (phase 1) for
both models on the 100 test episodes. Figure 5.9 and Figure 5.10 show the mean
and standard deviation of the normalized constraint reward rlift for both models
on the ellipse and S-curve trajectories. The trend here is fairly similar to that for
the objective phase reward. In the initial stages of training, the constraint phase
reward is almost the same for the MSAC and the C-MSAC models. As the training
progresses, the constraint phase reward for the C-MSAC model increases more rapidly
and exhibits a smaller variance compared to the MSAC model. Towards the middle
of the training process, as the C-MSAC model starts exceeding the threshold value
for the constraint phase, the corresponding reward starts to saturate.

Figure 5.9: Normalized reward on test episodes for the constraint phase (phase 1)
with ellipse trajectory.

Figure 5.10: Normalized reward on test episodes for the constraint phase (phase 1)
with S-curve trajectory.

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 58

On-target Performance

Figure 5.11: Histogram of on-target steps ratio with ellipse trajectory.

Figure 5.12: Histogram of on-target steps ratio with S-curve trajectory.

In addition to the target reward, we also measured the on-target performance for
both the MSAC and C-MSAC models for the ellipse and the S-curve trajectories. We
define the ball to be on-target for a given step if the target reward (rtarget) is higher
than 0.95, and then measure the percentage of steps for which the ball stays on target
for a given episode. To quantify the distribution of the on-target percentage, we draw
a histogram of the number of episodes against the percentage of on-target steps for
a given episode. Figure 5.11 and Figure 5.12 show the histograms for the ellipse and
the S-curve trajectories, respectively.

It is clear from the figure that the average on-target time for the C-MSAC model
is much higher than that for the MSAC model for both the ellipse and S-curve
trajectories. This shows that the C-MSAC model is able to learn the fine-grained

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 59

Figure 5.13: Histogram of on-target steps ratio with triangle trajectory.

Figure 5.14: Histogram of on-target steps ratio with square trajectory.

controls necessary to keep the ball on target most of the time and follow the curve
smoothly. Our supplemental video also demonstrates this capability visually.

Generalization Ability

After every 2,000 steps of training, we also evaluated the MSAC and C-MSAC models
(trained on randomized ellipse trajectories) on two types of unseen trajectories: square
and triangle. We observe that both MSAC and C-MSAC models are able to generalize
to the unseen trajectories; however, the C-MSAC model yields a better average reward
(Figures 5.15 and Figures 5.16) and on-target performance (Figure 5.13 and Figure
5.14) in comparison to the MSAC model. This shows that the C-MSAC model also
exhibits better ability to generalize in comparison to the MSAC model.

One interesting finding here is that the performance on the square trajectory is
slightly worse than that on the triangular trajectory for both models. Upon obser-
vation, we noted that this is likely due to the presence of an extra corner on the

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 60

square compared to the triangle. Both models handle smooth curves and straight
lines relatively well, but sometimes have difficulty handling sharp corners. The extra
vertex on the square increases the chance of the ball moving far away from the target.
We suspect that the difficulty in handling sharp corners might be because of the fact
that our training data only includes smooth curves. It might be interesting to include
trajectories with corners in the training data in future experiments.

Figure 5.15: Normalized target reward on test episodes with triangle trajectory.

Figure 5.16: Normalized target reward on test episodes with square trajectory.

Robustness

We have studied the robustness of the two models against unexpected disturbances.
For some early exploration in this direction, we hit the tray with additional balls
at different angles and positions on the tray in order to disrupt the task. From our
observations, the C-MSAC model exhibited a superior capability to recover from such
unexpected disturbances.

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 61

To formalize our observations, we set up an experiment to statistically analyze
and compare the robustness of the C-MSAC and MSAC models. In this experiment,
we introduce a disturbance force to the agent actions every 10 steps during the test
episodes. We sample this force from a Gaussian distribution, scale it up with a
magnitude factor, and add it to the agent actions. We evaluate both models on 100
test episodes and obtain the mean and standard deviation of the target reward for
different values of the disturbance force magnitude.

Figure 5.17 and Figure 5.18 show the results for the MSAC and C-MSAC models
on the ellipse and S-curve trajectories. As the force magnitude increases, the tar-
get reward for both models reduces and eventually approaches zero. However, the
mean reward for the C-MSAC model is consistently higher than that for the MSAC
model. The C-MSAC model reward also has a smaller standard deviation compared
to the MSAC model, indicating higher stability and consistency across different test
episodes.

We note here that we did not apply any disturbance to the environment during
training time. We hypothesize that the robustness of these models arises from the
entropy term used in the SAC algorithm which encourages exploration.

Figure 5.17: Normalized target reward for different disturbance force magnitudes with
ellipse trajectory.

5.7 Conclusions
In this chapter, we propose a constraint-based multi-agent reinforcement learning ap-
proach to solve multi-phase collaborative tasks. We present a framework to simulate
tray balancing and target following tasks with different trajectories. We evaluate the
proposed constraint-based (C-MSAC) model on this task and compare it against a
baseline that does not employ constraints (MSAC). Our results show that the pro-
posed model is able to exhibit better on-target performance, better generalization
ability, and improved robustness in comparison to the baseline.

Chapter 5. Learning Collaborative Multi-Agent Manipulation Tasks 62

Figure 5.18: Normalized target reward for different disturbance force magnitudes with
S-curve trajectory.

Two main limitations can be observed in our present work. While the proposed
constraint-based framework is very general and applicable to complex multi-phase
tasks, in this work we have only explored a task of two phases: a tray lifting constraint
phase and a tray balancing target phase. Additionally, the arm movements in our
environment are not controlled by an RL policy but rather calculated by Inverse
Kinematics (IK) based on the anchor points transformation. This sometimes results
in some glitchy movements, for example when the agents suddenly move the tray to
avoid the ball from going out of bounds, resulting in a sudden pose change due to the
arm having to follow the anchor points.

In the next chapter, we extend this work by using physically simulated humanoids
with joint-level RL-based control for the arms instead of using IK. This provides us
the opportunity to fully leverage the power of the constraint-based framework by
introducing additional phases to the task such as an initial constraint for the arms to
reach the tray anchor points. While we focus on collaborative tasks, our framework
can also be generalized to competitive tasks, opening interesting avenues for future
work.

Chapter 6

Addressing Realism and
Robustness

6.1 Introduction
In the previous chapter, we saw that C-MSAC can be used to train multiple agents to
collaborate with each other on complex multi-phase tasks. The results also show that
the proposed technique leads to strong statistical results in terms of the mean episode
reward, generalizes well to unseen trajectories, and naturally introduces robustness
to environmental noise. However, there are two important shortcomings that need
to be addressed. First, while the statistical results from this method are strong,
simulation videos show that the agent movements could sometimes appear unnatural
and oscillatory. This is because the approach relied on inverse kinematics rather
than purely physics. Second, since each agent is trained to collaborate with only
one other agent, there is a possibility that this agent might fail to generalize against
other unseen agents or humans with different behaviors. In this chapter we focus on
overcoming these shortcomings.

6.1.1 Physics-based Character Animation
A number of techniques have been proposed for creating realistic character animations
using kinematics (49; 10; 146). However, many of these methods are often prone to
unnatural movements. In physics-based character animation, characters are modeled
as rigid bodies with mass (104; 83). Because the environment enforces the laws
of physics, it prevents movements that are physically impossible. While it does not
prevent all unrealistic motions, appropriate learning constraints can be used to achieve
natural looking motion. In this work, we use C-MSAC with physics-based full arm
control for the agents. We introduce an extra phase for the arms to reach the tray
contact points, and design our reward function appropriately to incentivize natural
arm movements for controlling the tray. We demonstrate that learning under physics
also improves the ability of the agents to react to changes in the physical properties

63

Chapter 6. Addressing Realism and Robustness 64

of the environment such as the mass of the ball.

6.1.2 Robustness
Robustness has been studied extensively in optimization and optimal control (156;
22). In a game theoretic setting such as a two-player zero-sum game, controlling
the uncertainty/disturbances through an adversarial opponent can produce a robust
strategy for a player (106). In a reinforcement learning setup, a general solution for the
robustness problem is to formulate an adversarial agent for introducing uncertainty in
transition probabilities (13; 98), or disturbance to the environment dynamics (106;
91), states (87; 45) or actions (130). Especially, introducing action perturbations to
the environment can be a natural approach to simulate the environmental changes to
a certain extent.

In our work, the goal is to learn a robust human-like agent under physics that
can generalize to collaborate with other agents or humans. To achieve this goal,
we propose the Constrained Robust Soft Actor Critic (C-RSAC) learning algorithm
based on our previous constrained multi-agent learning approach C-MSAC (123). In
this work, we first train two cooperative agents using the C-MSAC framework under
physics with joint-level arm control, to adopt two pre-trained policies for each agent.
We then modify the C-MSAC multi-agent learning framework to the C-RSAC single-
agent learning framework such that one of the agents executes a pre-trained policy
with additional noise augmented to its action space, while the other agent takes
another pre-trained policy and continuously updates this policy to respond to the
first agent’s actions. Henceforth in this chapter, we refer to the former as the noisy
agent and the latter as the robust agent in this new single-agent learning framework.
We also integrate a user interface within our framework to allow manually controlled
noise addition. We investigate the performance of C-RSAC on the tray balance task
introduced in 5.3.1 with an ellipse trajectory. To evaluate the performance we measure
the mean episode reward on test episodes at regular intervals during the training
procedure. We show that as the training progresses, the mean episode reward for
the robust agent increases which indicates higher robustness compared to the agent
trained using just C-MSAC.

6.2 Related Work

6.2.1 Character Animation
Different works have been done for single character animation, such as learning loco-
motion behaviors (104), learning full-body behaviors from example (104; 144), learn-
ing to play basketball (83), learning athletic jumping strategies (150), learning
locomotion stepping stone skills (142), learning climbing wall skills (94). Most
single character animation work needs to use or learn from motion data for natural

Chapter 6. Addressing Realism and Robustness 65

behavior simulation. To learn directly from motion data for single character anima-
tion is possible, but for a multi-character environment is difficult, as multiple human
players have to be involved in this procedure. So for multi-characters simulation, the
character’s behavior could either be learned separately and then transferred to the
multi-character framework for advanced learning (139), or could be directly used in
the multi-character environment as in crowd simulation (57). Our work tries to solve
a multi-character collaborative task by learning the control policy for both characters’
upper body movements at the joint level.

6.2.2 Robust Reinforcement Learning
Robust reinforcement learning problems usually target solving uncertainties/distur-
bances introduced from different aspects of the Markov Decision Process(MDP) (109),
they can be categorized into three directions. First, from the transition model or en-
vironment dynamics, the uncertainties of the environment dynamics can be modeled
by uncertainty set or direct disturbance to the environment and solved by construct-
ing an adversary agent from the uncertainty sets (13; 98; 155), i.e. Zhang et al. (155)
bring a ”nature player” into multi-framework to serve as adversary agent to each agent
to tackle the uncertainty transition probability. Second, from the environment state,
adding noise to the state can trick the agent into wrong beliefs about the environ-
ment’s current state (141; 103; 44). Third, from the agent action, adding noise to the
action can bring the agent in the wrong direction to affect the transition dynamics, i.e.
Tessler et al (130) has studied adding an adversary agent into the protagonist agent
learning framework by adding disturbances to the protagonist action space directly
to simulate the constantly small disturbance from the environment and by adding the
adversary agent policy linearly to the protagonist agent’s policy to simulate sudden
disturbance in the environment. In our work, we choose to add noise to the action,
but instead of adding to the robust agent itself, we add to the noisy agent.

6.3 Approach
We formulate our problem as single-agent robust learning for multi-phase collabo-
rative tasks in a multi-agent cooperative Markov game set (82), and we propose a
Constrained Robust Soft Actor Critic(C-RSAC) approach to solve it. In this problem
set, the definition of MDP tuple is the same as in Chapter 5.4.1, but the agent index
i needs to be specified for the robust agent and the noisy agent. Here i = 0 refers to
the noisy agent, and i = 1 refers to the robust agent. We first train the two joint level
controlled agents under C-MSAC framework to get two pre-trained policies π0, π1,
and then train the robust agent under C-RSAC framework, that takes policy π0 as
the noisy agent’s cooperative policy, and takes policy π1 as the initial policy for the
robust agent.

The noisy agent observes state st
0 ∈ St

0 from environment O, and uses policy π0
to get action at

0 ∈ At
0, receives a reward rt

0 = R(st
0, at

µ, at
1). For the robust agent, it

Chapter 6. Addressing Realism and Robustness 66

starts with policy π1, and takes state st
1 ∈ St

1 to get action at
1 ∈ At

1, receives a reward
rt

1 = R(st
1, at

µ, at
1). We define the optimal action-value Q∗

1(s1, a1) as the expected
return for the robust agent, the goal is to find the optimal robust policy π∗

1 that can
maximize Q∗

1. At each time step t, it can be described according to the equation
below:

Q∗
1(s1, a1) = max

π∗
1

(E [|r∗
1||π0(s0, aµ), π∗

1(s1, a1)])

aµ
0 is the noisy action from the noisy agent, and it can be calculated as follows, ω is

the noise ratio factor, U is the uniform distribution,

aµ = (1 − ω) · a0 + ω · µ, µ ∼ U(0, 1).

During training for the robust agent, we jointly conduct policy evaluation and policy
iteration and concurrently update the stochastic policy π1 and learn the two Q-
functions Q1,j from both policies, j in the range of [1, 2].

For policy iteration, we use Eq 6.1 to optimize the loss of policy function Jπ1 , in
the direction of maximizing the accumulated reward:

∇Jπ1 = ∇ 1
|B1|

∑
B1

{min
j=1,2

Q1,j(st, at
µ, at

1) − α log π1(at
1|st

1)}. (6.1)

B1 denotes a batch of experiences sampled from the replay buffer of the robust agent,
log π1(at

1|st
1) is the entropy term to increase the variation of action space, and α

is a learned variable indicating the contribution of an entropy regularization term.
Q1,j(st, at

µ, at
1) is calculated from the joint states s and new joint actions (at

µ, at
1) of

robust and noisy agent after adding noise disturbance.
For policy evaluation, we optimize the loss function L1,j using Eq 6.2 to eval-

uate the learned robust policy by minimizing the difference of the value function
Q1,j(st, at

µ, at
1) and its target value y1 for robust agent:

∇L1,j = ∇ 1
|B1|

∑
B1

(Q1,j(st, at
µ, at

1) − y1)2. (6.2)

The target value yi is calculated with a separate target value network
Qtarget(st+1, at+1

µ , at+1
1) in order to maintain stability when updating policy network.

6.4 Learning Agent under Physics
In this section, we describe the framework pipeline we use for training the agent under
physics, details of task-related representation of states and actions, and the reward
design for learning the tray balance task.

Chapter 6. Addressing Realism and Robustness 67

Figure 6.1: The framework overview for training collaborative agents under physics.

6.4.1 System Overview
When modeling the agent under physics, we adopt the previous C-MSAC framework
where the two agents learn the control policy from the multi-agent controller (MARL
Controller) during training. The physics engine in Unity provides the task environ-
ment and two joint-level controlled agents under physics to simulate the experiment.
For completing the tray balancing task, three phases need to be finished. Both agents
start from an initial standing pose. In the first phase, both agents need to stretch
out their arms and try to reach the anchor points set on the tray anchor point. Once
both hands grasp the tray, in phase 2 both agents start controlling the arm movement
to lift up the tray to a target height level. After getting close enough to the target
tray height, in phase 3 both agents try to balance the tray to allow the blue ball to
follow the red target’s moving trajectory. The arm movement is controlled by a PD
controller from Unity. The overview is depicted in Figure 6.1.

6.4.2 State Representation
In our environment, we employ two 3D humanoid characters as agents, each featuring
20 joints encompassing the head, pelvis, arms, and legs. Specifically, our focus centers
on the six arm joints, including the upper arms, lower arms, and hands, as illustrated
in Figure 6.2. The states describe the configuration of the agent arms joint feature
and the tray balance task properties. For each joint, the states include the distance
between the joint and the tray, the rotation of the joint, and the angular velocity

Chapter 6. Addressing Realism and Robustness 68

difference between the joint and the tray; for the hand joint, it also includes the
distance and angle difference between the joint and the tray’s anchor points. The
tray balance task, as shown in the same figure, includes a green tray, a blue ball,
and a red target on the surface of the tray. So for the task, the states include the
distance between the ball and the target, ball and tray, tray and tray height target;
the rotation of the ball and tray; the velocity of ball, and the velocity difference
between the ball and tray. The rotations are expressed in quaternions.

Figure 6.2: The task environment.

6.4.3 Action Representation
The physical movement of the agent is controlled by the PD controller at each joint.
The actions provide the joint target orientation and the maximum joint driving force
for the PD controller. In our environment, we use the Unity integrated PD controller
to compute the torque at each joint. The target orientation is represented by a linear
interpolation between the minimum and maximum axis angle for each joint, with the
action signal as the interpolation factor. Thus, the torque applied at each joint is
calculated by a quaternion spherical linear interpolation with the target orientation
in the maximum drive force range. The action is queried at 10 Hz, and the simulator
runs at 50 Hz, so at each query time t each action at

i is executed 5 times in the
simulator. For each arm, there are three joints: upper arm, lower arm, and hand, and
we use x, y, z orientation from the upper arm, y, z orientation from the lower arm, z
orientation for hand to represent the arm movement, as shown in Figure 6.3.

Chapter 6. Addressing Realism and Robustness 69

Figure 6.3: The agent arm joint-level orientations.

6.4.4 Reward Design
The tray balance task includes three phases. In phase 1, the hands need to reach
the tray’s anchor point. In phase 2, the arms need to lift up the tray. In phase 3,
the arms need to move the tray to allow the ball to reach the target. Based on each
phase’s task objective, different reward functions have been designed. Besides the
three phases, we also designed rewards to include some techniques for speeding up
training, such as early termination and behavior regulation.

So for the tray balance task, we calculated the reward rt at each time step t as
follows:

rt = select{ rhand, rlift, rtarget} + rbehavior + rterminate.

rhand, rlift, rtarget represent the reward for phases 1, 2, and 3.
The select{ rhand, rlift, rtarget} term shows the phase selection process, based

on the constraint approach proposed in (123), during each training update iteration,
only one phase’s reward will be selected for updating the agent’s policy. rbehavior is
the behavior regulation reward, and rterminate is the early termination reward.

The details of the reward design are described below.

Phase 1: Hands Reach the Tray

In this phase, the agent’s objective is to stretch both arms to allow each hand to
reach the tray close to the anchor point, while maintaining the hand palm facing up
to the tray bottom, to simulate human hand behavior while grasping the tray.

To satisfy this objective, the reward function is designed as:

rhand = a ∗ rdist + b ∗ rang.

Chapter 6. Addressing Realism and Robustness 70

Here, a, b are the reward ratio parameters, we used 0.5 for both in our experiments.
rdist is the Euclidean distance between each hand plhand and its corresponding anchor
point planchor, as the sketched yellow arrow in Figure 6.4, to encourage the hand to
move closer to the anchor point, and it is calculated:

rdist = exp[−10 ∗ (||plhand − planchor||2 + prhand − pranchor||2)].

rang is the quaternion orientation difference between the hand palm qlanchor and its
corresponding anchor point qrhand, it is sketched as the red arrow in the figure, to
encourage each to be able to grasp the tray properly, it is calculated:

rang = exp[−1 ∗ [(1 − ||qlhand ⊖ qlanchor||2) + (1 − ||qrhand ⊖ qranchor||2)]].

Figure 6.4: The representation for computing the hand reward. The red arrows
indicate the orientation difference between the hand palm and tray anchor point, the
yellow arrow indicates the hand distance to the anchor point. The left figure shows a
random state of the agent. The right figure shows a target state for the agent’s hand
to achieve the maximum step reward of 1.0 for phase 1 (where the red arrows overlap
and the yellow arrow reduces to a point).

Phase 2: Hands Lift the Tray

In this phase, the agent’s objective is to lift up the tray to the fixed target position
p0 while maintaining its balance relative to the identity quaternion q0. To satisfy this
objective, the reward function is designed as:

rlift = exp[−5||pT − p0||2].

It describes the Euclidean distance between the tray and the fixed target position,
to encourage the tray to move closer to the fixed target position. In Figure 6.5 the
sketched green arrow shows the moving direction.

Chapter 6. Addressing Realism and Robustness 71

Figure 6.5: The representation for computing the tray lifting reward. The green arrow
indicates the tray’s moving direction. The left figure shows a random state of the
agents. The right figure shows the target state to achieve the maximum step reward
of 1.0 for phase 2.

Phase 3: Ball Reaches the Target

In this phase, the agent’s objective is to adjust the tray position and orientation
to control the ball to follow a moving target on the tray, as shown in Figure 6.6.
To encourage the ball to stay on the moving target, we use the Euclidean distance
between the ball and the moving target, as represented in the reward function:

rtarget = exp[−25||pB − st||2].
The target’s moving path is controlled by an ellipse equation (where the major

and minor axes are randomized at the beginning of each training episode).

Rewards for Speeding up Training

To speed up the training process, we use behavior regulation and early termination
techniques.

For Behavior Regulation, we add a small penalty when the tray touches any
lower arm of the agent, as shown in Figure 6.7, to avoid the tray being supported by
lower arms and instead encourage the hands to be the only support for tray movement.
The reward function rbehavior is described as below:

rbehavior =

 −0.1 if tray hits lower arm,

0 else.

This relates to the training process of C-MSAC algorithm (123) because the train-
ing is focused on a single selected phase, and can advance to the objective phase when
it satisfies a threshold from Monte Carlo

d =
T −1∑
t=0

γtr0.

Chapter 6. Addressing Realism and Robustness 72

Figure 6.6: The representation for computing the ball reach the moving target reward.
The blue arrow indicates the ball’s moving direction. The left figure shows a random
state of the task. The right figure shows the target state for the ball to reach a
position that achieves the maximum step reward of 1.0 for phase 3.

where γ is the discount factor and r0 is the step reward. We use γ = 0.9 in our
experiment. For phase 1 (hand reaches tray), the step reward of rhand can still be
close to 0.9 when the arms support tray around this location as shown in Figure 6.7.
This can cause the shown misbehavior from the agent for grasping the tray, thus
leading the agent to update policy in the wrong direction and eventually making it
hard to complete objectives for phases 2 and 3.

Figure 6.7: The tray hits the lower arms of the agent.

For Early Termination, reinforcement learning is an episodic training process,
and terminating the training episode earlier is a common technique (104; 12) to
help RL agents stop learning bad behaviors and favor the collected samples more
efficiently, thus achieving significantly faster learning. In our task, we introduced two
early termination conditions: first, when the ball touches the edge of the tray, because
it can easily get stuck at the anchor point of the tray, as shown in Figure 6.8; second,
when the ball or tray hits the ground, as the agents can not recover from this state,

Chapter 6. Addressing Realism and Robustness 73

as shown in Figure 6.9. The reward rterminate can be described as follow:

rterminate =

 −1 if meet early termination conditions,
0 else.

(6.3)

Figure 6.8: The blue ball hits the edge of the tray.

Figure 6.9: The tray hits the ground or the blue ball hits the ground.

6.5 Learning Robust Agent

6.5.1 System Overview
For learning the robust agent, we refer to agent 0 as the noisy agent and agent 1 as
the robust agent as described in 6.1.2. We describe our framework in three parts: the
physics simulator, the MARL controller, and the robust RL controller. Figure 6.10
shows an overview of the framework. The physics simulator is still used to simulate
the two joint-level controlled agents finishing the tray balance task in the Unity game
engine. The MARL controller is used to generate the pre-trained policies π0 and π1.

Chapter 6. Addressing Realism and Robustness 74

The robust RL controller includes two agents: the robust agent and the noisy agent.
The noisy agent acquires π0 as its control policy, and produces noisy action aµ, while
the robust agent acquires π1 as its initial policy to start the learning. The learning
process is described in the C-RSAC algorithm.

Figure 6.10: The framework overview for learning a robust agent.

6.5.2 Algorithm
Algorithm 2 summarizes the procedure used in our proposed approach C-RSAC dur-
ing the training process. On lines 1-3 is the policy initialization process for both
robust agent and noisy agent, the policy network θ0 and θ1 are the pre-trained poli-
cies from C-MSAC framework. Lines 5-11 show the process of collecting samples of
the noisy agent and robust agent in different ways, and lines 7-8 add a randomized
noise to the noisy agent. Lines 12-14 are the same policy updating procedure as in
the C-MSAC algorithm (123).

6.6 Results
In this section, we show the results of all the experiments. We refer to the learned
multi-agent policies with joint-level controlled agents as agents under physics, and
the learned multi-agent policies with IK controlled agents as agents under inverse
kinematics (IK).

6.6.1 Compute Platform
We train all our experiments using the Google Cloud Platform (GCP). Overall 8
machines with Ubuntu 20 were used for training. Each machine is a c2-standard-4

Chapter 6. Addressing Realism and Robustness 75

Algorithm 2 Constrained Robust Soft Actor Critic Algorithm (C-RSAC)
1: Import policy network θ0 for noisy agent;
2: Initialize policy network θ1 for robust agent, and value estimation networks ϕ1,

ϕ2 for each phase;
3: Initialize replay buffer D as empty dictionary ;
4: for each step do
5: Sample action at

1 from policy πθ1(at
1

∣∣∣st
1) for robust agent;

6: Output mean action at
0 from policy πθ0(at

0

∣∣∣st
0) for noisy agent;

7: Generate noise µ from a uniform distribution ∼ U [0, ω];
8: Compute noisy action at

µ for the noisy agent;
9: Execute the joint actions(at

1, at
µ) in task environment;

10: Collect reward rt and next state st+1 from environment;
11: Send tuple (st

i, at
µ, at

1, rt
i , st+1

i)i=0,1 to replay buffer D;
12: if step > batch size then
13: Select phase k as constraint phase;
14: Update policy θ1;
15: end if
16: end for
17: Output optimal policy θ1 for the robust agent.

instance, with 4 CPU cores and 16 GB memory. The episodic length for the tray
balance task is 260 control steps, and 1300 simulation steps, to allow the moving
target to form a complete ellipse shape trajectory. For each experiment, we train
500,0000 episodes, that is 130 million control steps. For training multi-agent models
under physics, each experiment takes approximately 10 days. For training the robust
agent, it takes about 3 days since a pre-trained initial policy is employed for both the
robust agent.

6.6.2 Parameters
Table 6.1 shows all the parameters used for the robust learning and multiagent mul-
tiphase learning for the tray balance task. The network we use is a three-layer fully
connected network, and the activate function is ReLU.

6.6.3 Learning Agent under Physics
In this section, we present the performance and learning outcomes of agents under
physics and compare those with the corresponding outcomes for the agents under IK.

Comparing Agent under IK and Agent under Physics

Comparing the arm movements of the agent trained under IK with the agent trained
under physics, we observe that the arm movements of the agent under physics are a

Chapter 6. Addressing Realism and Robustness 76

Physics engine simulation rate(Hz) 50
Learning policy control rate(Hz) 10
Policy learning rate(η) 0.0009
Discount factor(γ) 0.99
Soft update parameter τ 0.005
Explore steps 1000
Batch size 256
Neural network hidden state dim 256
Iterations for policy update 100
Number to update 4
Reward scale 1.0
Threshold step reward 0.9

Table 6.1: Training parameters.

lot more natural, with reduced oscillations and glitches. As shown in Figure 6.11, we
also observe that the ball trajectory for the agent under physics is smoother compared
to that for the agent under IK.

Figure 6.11: The comparison of two agents collaboratively completing the trajectory
following tray balance task under IK(left figure) and physics(right figure).

Chapter 6. Addressing Realism and Robustness 77

Grasping Behavior

When designing the reward function for phase 1 (hand reaches the tray), we introduce
two additional terms to encourage the hand to reach the tray anchor point. One of
the terms focuses on grasping position and the other term focuses on the grasping
angle. We also introduce two parameters a, b that correspond to the weight of the
grasping position term and the grasping angle term respectively. a and b are ratios
with values within [0, 1] such that a + b = 1. The reward function is expressed
as rhand = a ∗ rdist + b ∗ rang. If a is greater than b, the reward term encourages
hands to reach the exact grasping position on the tray. Otherwise, the palms are
more encouraged to face up to the tray to have a more realistic grasping behavior.
Figure 6.12 shows the grasping behavior we observed from the learned agent while
adjusting these reward ratio parameters. The first figure shows the result from IK-
based agents, and the remaining three figures show the result from physics-based
agents. For the IK-based setup, the anchor point is used as the IK target and so the
hands of both agents are incapable of moving away from the anchor point. As a result
oscillation of the arms and penetration of arms to the tray can occur when the tray
moves away from the reach range of the agent. For the physics-based agent, the arm is
controlled by joint-level movement. Although the reward terms incentivize grasping
the tray at the anchor point, the agents have more flexibility to grasp around the
anchor point. The three figures under physics show examples of this flexibility with
agents grasping far away from the anchor point. The third figure (a = 0.5, b = 0.5)
is actually a snapshot of an interesting instance where the agent exhibits a sliding
grasping behavior on the tray (which can be seen in the simulation video).

Figure 6.12: The different grasping behaviors of agents under IK and physics.

Chapter 6. Addressing Realism and Robustness 78

Robustness Evaluation

We analyzed the robustness of the learned policies to changes in the physical proper-
ties of the environment by varying the ball mass. We run evaluations where the mass
of the ball is multiplied by a fixed ratio k. k = 1 corresponds to the case where the
mass of the ball during evaluation matches the mass of the ball used during the train-
ing process. k > 1 corresponds to cases where the ball mass used in the evaluation is
higher than the mass used during the training process. We vary the ball mass ratio
k from 1 to 25 and measure the mean episode reward as well as the corresponding
standard deviation for the agent under IK and the agent under physics.

Figure 6.13 shows the results of this experiment. We can see that the agent under
IK achieves a higher reward in the matched condition for k = 1. However, the agent
under IK shows unnatural arm movements as we have noted earlier, and this effect is
not captured in the reward statistics. As we increase the ball mass ratio k beyond 1,
the agent under physics outperforms the agent under IK even in terms of the mean
episode reward. As the mass ratio approaches 25, both agent under IK and agent
under physics are unable to cope with the increased ball mass and the mean reward
approaches zero.

Figure 6.13: The mean episode reward performance against the ball mass ratio for
agents under IK (blue) and under Physics (orange).

Parameter Selection and Reward Averaging

Parameter selection plays a critical role in reinforcement learning as different types
of tasks can have different optimum values of learning parameters such as learning
rate. Besides that, additional parameters can be introduced used when designing the
task specific reward functions and those need to be adjusted to optimize the task
performance. Improving task performance is even more critical in our case since the
results of C-MSAC training are later used as initial policies for C-RSAC. We stud-
ied three parameters that are important for our tray balance task: the learning rate
and the ratio parameters a, b described in 6.6.3 (Grasping behavior). In addition, we
also studied optimizing the individual agent rewards by optimizing a single averaged
reward during the training process. We periodically run evaluations during the train-
ing process and compare the results in terms of the mean episode reward on testing

Chapter 6. Addressing Realism and Robustness 79

episodes for the three task phases. For all the figures, we use Gaussian smoothing
to average out the noisy fluctuations while highlighting the overall trend. We also
show the standard deviation for the episode rewards by shading the region around
the mean, where a scaling factor of 0.5 is applied to the standard deviation in order
to avoid overcrowding the figures.

• Learning Rate, Figure 6.14 shows the results from varying the learning rate
used during our training. We chose the value of 0.0009 to train our final policy
as it has the best mean episode reward performance on all three phases.

• Hand Reach Reward Ratio, Figure 6.16 shows the result of varying the
reward ratios a, b related to the grasping behavior in our tray balance task.
Both the hand and the tray are separately covered with a rectangular collision
bounding box. So the more the palm touches the tray, the better support and
more realistic grasp the hand can give to the tray, which relates to the reward
ratio b. The result shows that (a, b) = (0.2, 0.8) as the pair of reward ratios
achieves the best task performance. However, (a, b) = (0.5, 0.5) also achieves
comparable performance, and videos of the simulations show that it results in
a better grasping behavior as there is an equal encouragement from the reward
function to grasp both at the proper position and the proper angle.

• Reward Averaging, Figure 6.15 compares the task performance between two
cases: one where each agent’s reward is calculated separately for optimization
and one where we average their rewards. In our collaborative task environment,
when training the agents under IK we choose to average the sum reward of both
agents and assign it back to each agent during the training process to achieve a
Nash equilibrium (100). However, while training the agents under physics this
can potentially cause issues due to the flexibility in the way agents choose to
grab the tray. In particular, agents are penalized when their lower arm touches
the tray. If we average the reward, even if just one agent’s lower arm touches
the tray both agents are penalized. To avoid this scenario from happening, we
chose not to average the rewards while training in physics. The comparison in
Figure 6.15 confirms our intuition showing that not averaging the rewards leads
to a better performance, especially in the final phase of reaching the target.

6.6.4 Learning Robust Agent

Performance Based on Mean Episode Reward

While training the robust agent with C-RSAC we use the pre-trained policies from
C-MSAC under physics as the execution policy for the noisy agent, and the initial
policy for the robust agent. During training, we periodically run evaluations and
calculate the mean episode reward for the robust agent while collaborating with the
noisy agent. Figure 6.17 shows the mean episode reward on the evaluation episodes for

Chapter 6. Addressing Realism and Robustness 80

Figure 6.14: The mean episode reward performance of different learning rates.

Figure 6.15: The mean episode reward performance of averaging and separating
agents rewards.

Figure 6.16: The mean episode reward performance of designing hand reward with
different reward ratio parameters.

all three phases as training progresses. We run evaluation on 100 test episodes after
every 2000 steps of training. The leftmost value for 0 steps of training corresponds
to the initial policy obtained from C-MSAC. The graph shows that the mean episode
reward increases for all three phases as the training progresses, indicating that the
C-RSAC leads to improved robustness compared to C-MSAC.

Chapter 6. Addressing Realism and Robustness 81

Figure 6.17: The robust agent performance.

Comparing Mean Episode Reward Across Different Noise Scales

We measure the mean episode reward by varying the noise scale ω which determines
the intensity of the noise applied to the noisy agent’s actions. ω = 0 corresponds to
the case where there is no noise applied to the actions, and as ω increases more and
more noise is added to the actions. The results are shown in Figure 6.18.

Figure 6.18: Comparison of mean episode reward for C-MSAC agent and C-RSAC
agent for different values of noise scale ω

We can see that in the absence of noise (ω = 0), C-MSAC performs slightly
better than C-RSAC but the difference of mean episode reward is smaller than the
corresponding standard deviations. For ω = 0.1 and ω = 0.2, the mean reward is
roughly equal. However, as ω increases above 0.2, we see that C-RSAC achieves a
significantly better mean episode reward compared to C-MSAC. This shows that the
agent trained with C-RSAC exhibits a higher robustness to noise.

Comparing On-target Performance Across Different Noise Scales

Similar to Section 5.6.3, we obtain histograms for the number of on-target steps to
evaluate the on-target performance for C-MSAC and C-RSAC. We run evaluation for
2000 episodes, and define the ball to be on-target at a given step if the target reward

Chapter 6. Addressing Realism and Robustness 82

at any step is above 0.7. The histogram for ω = 0.3 is shown in Figure 6.19 and for
ω = 0.4 is shown in Figure 6.20.

Figure 6.19: Histogram of on-target steps for noise scale ω = 0.3.

Figure 6.20: Histogram of on-target steps for noise scale ω = 0.4.

The figures show that the histogram for C-RSAC is shifted more towards the
right compared to C-MSAC. This demonstrates that under noisy conditions the agent
trained with C-RSAC is able to maintain the ball on target more frequently compared
to the agent trained with C-MSAC.

User Control

For interactive visualization, we also add a user interface for users to interact with
the robust agent by adding a user-controlled noise signal to the noisy agent, as shown
in Figure 6.21. The blue agent is the robust agent, and the yellow agent is the noisy
agent. The agent action space includes orientation in x, y, z direction for upper arms,
y, z direction for lower arms, and z direction for hands. We chose to add noise in the z
direction for upper arms, the y and z direction for lower arms, and the z direction for
hands for ease of user control and also based on our observation of the arm movement
while performing the task. For each arm, the users can adjust the scroll bar to control
the noise signal that is added to the yellow noisy agent.

Chapter 6. Addressing Realism and Robustness 83

Figure 6.21: The environment for robust agent reacts to user-controlled noisy agent.

6.7 Conclusions
In this chapter, we address the challenges of mitigating unnatural oscillatory move-
ments arising from IK-based control and the robustness of the agents against noise.
We propose physics-based joint-level full-arm control for C-MSAC which leads to more
natural movements and also improves robustness to changes in the physical properties
of the environment such as the mass of the ball. We propose the C-RSAC approach
which uses the pre-trained policy from C-MSAC for the noisy agent and add noise in
the action space in order to simulate the effect of errors from another agent or human.
We show that training the robust agent to collaborate with such a noisy agent leads
to an improved robustness to noise, as demonstrated by the superior performance of
C-RSAC resulting in higher mean test episode reward for all three phases, improved
performance for higher noise scales and better on-target performance under noise.

Chapter 7

Conclusion

This thesis addressed challenges related to the design and training of virtual human
agents on complex collaborative tasks. Numerous aspects were addressed such as the
impact of agent gender and feedback strategies on user performance and preference.
Various approaches for training agents to collaborate on multi-phase tasks were also
proposed, achieving natural movements and robustness to noise while avoiding the
need for relying on expensive human interaction data.

In chapters 3 and 4 user studies were performed to study the effect of design vari-
ables like agent gender and feedback strategies on user performance and preference.
It was presented that while agent gender had no significant impact on user perfor-
mance or preference, female agents were considered more attractive by the users. A
comparison between correctness and suggestive feedback strategies was also presented
and the results were that users preferred suggestive feedback which also led to a 65%
reduction in task completion time.

In chapter 5 the C-MSAC approach was proposed for training agents on multi-
phase tasks using constraints. The proposed approach was evaluated on a tray bal-
ancing task and showed that the proposed approach leads to a better performance
in terms of mean episode reward compared to an unconstrained baseline. C-MSAC
also lead to a better generalization performance on unseen trajectories and exhibited
better robustness to environmental disturbances.

In chapter 6 a joint-based control method was proposed for training the agents
with C-MSAC under physics which led to more natural movements and better ro-
bustness against changes to physical parameters. The C-RSAC approach was also
introduced for improving the robustness of an agent by training it to collaborate with
a noisy agent.

Overall, the findings from this thesis provide valuable insights into the design and
modeling choices required for getting closer to the end goal of developing virtual hu-
man agents that can collaborate effectively with humans in challenging collaborative
tasks in immersive virtual reality settings.

84

Chapter 7. Conclusion 85

7.1 Future Directions
One interesting future direction for this work could be to use human interaction
data to fine-tune the policies learned using C-RSAC. The obtained findings could
also be validated on more complex tasks involving more phases. Recent advances
in Machine Learning (ML) literature could be incorporated to improve the neural
network architectures used for controlling the agents.

Another promising direction is to evaluate the proposed learning methods in an
application interacting directly with real users in an immersive virtual reality envi-
ronment.

Bibliography

[1] Abdul-Kader, S. A. and Woods, J. C. (2015). Survey on chatbot design techniques
in speech conversation systems. International Journal of Advanced Computer Sci-
ence and Applications, 6(7).

[2] Abulrub, A.-H. G., Attridge, A. N., and Williams, M. A. (2011). Virtual reality
in engineering education: The future of creative learning. In 2011 IEEE Global
Engineering Education Conference (EDUCON), pages 751–757. IEEE.

[3] Accessories, O. R. (2018). https://www.oculus.com/rift/accessories.

[4] Achiam, J., Held, D., Tamar, A., and Abbeel, P. (2017). Constrained policy op-
timization. In International conference on machine learning, pages 22–31. PMLR.

[5] Agrawal, S. and van de Panne, M. (2016). Task-based locomotion. ACM Trans-
actions on Graphics (TOG), 35(4):1–11.

[6] Allen, J. and Ferguson, G. (2002). Human-machine collaborative planning. In
Proceedings of the Third International NASA Workshop on Planning and Schedul-
ing for Space, pages 27–29.

[7] Almutairi, B. and Rigas, D. (2014). The role of avatars in e-government interfaces.
In International Conference of Design, User Experience, and Usability, pages 28–
37.

[8] Andrist, S., Pejsa, T., Mutlu, B., and Gleicher, M. (2012). A head-eye coordination
model for animating gaze shifts of virtual characters. In: 4th Workshop on Eye
Gaze in Intelligent Human Machine Interaction.

[9] Andrychowicz, O. M., Baker, B., Chociej, M., Jozefowicz, R., McGrew, B., Pa-
chocki, J., Petron, A., Plappert, M., Powell, G., Ray, A., et al. (2020). Learning
dexterous in-hand manipulation. The International Journal of Robotics Research,
39(1):3–20.

[10] Aristidou, A., Lasenby, J., Chrysanthou, Y., and Shamir, A. (2018). Inverse kine-
matics techniques in computer graphics: A survey. In Computer graphics forum,
volume 37, pages 35–58. Wiley Online Library.

86

Bibliography 87

[11] Attali, Y. (2015). Effects of multiple-try feedback and question type during
mathematics problem solving on performance in similar problems. Computers &
Education, 86:260–267.

[12] Babadi, A., Naderi, K., and Hämäläinen, P. (2019). Self-imitation learning of
locomotion movements through termination curriculum. In Motion, Interaction
and Games, pages 1–7.

[13] Bagnell, J. A., Ng, A. Y., and Schneider, J. G. (2001). Solving uncertain markov
decision processes.

[14] Bailenson, J. N., Blascovich, J., Beall, A. C., and Loomis, J. M. (2003). In-
terpersonal distance in immersive virtual environments. Personality and Social
Psychology Bulletin, 29(7):819–833.

[15] Baker, B., Kanitscheider, I., Markov, T., Wu, Y., Powell, G., McGrew, B., and
Mordatch, I. (2019). Emergent tool use from multi-agent autocurricula. arXiv
preprint arXiv:1909.07528.

[16] Banakou, D. and Chorianopoulos, K. (2010). The effects of avatars’ gender and
appearance on social behavior in online 3D virtual worlds. Journal for Virtual
Worlds Research, 2(5).

[17] Bangert-Drowns, R. L., Kulik, J. A., and Kulik, C.-L. C. (1991). Effects of
frequent classroom testing. The Journal of Educational Research, 85(2):89–99.

[18] Barto, A. G. and Mahadevan, S. (2003). Recent advances in hierarchical rein-
forcement learning. Discrete event dynamic systems, 13(1):41–77.

[19] Baylor, A. L. (2009). Promoting motivation with virtual agents and avatars: role
of visual presence and appearance. Philosophical Transactions of the Royal Society
B: Biological Sciences, 364(1535):3559–3565.

[20] Baylor, A. L. and Kim, Y. (2004). Pedagogical Agent Design: The Impact of
Agent Realism, Gender, Ethnicity, and Instructional Role. In International Confer-
ence on Intelligent Tutoring Systems, pages 592–603. Springer, Berlin, Heidelberg.

[21] Bellemare, M. G., Naddaf, Y., Veness, J., and Bowling, M. (2013). The ar-
cade learning environment: An evaluation platform for general agents. Journal of
Artificial Intelligence Research, 47:253–279.

[22] Ben-Tal, A., El Ghaoui, L., and Nemirovski, A. (2009). Robust optimization,
volume 28. Princeton university press.

[23] Bente, G., Dratsch, T., Rehbach, S., Reyl, M., and Lushaj, B. (2014). Do you
trust my avatar? Effects of photo-realistic seller avatars and reputation scores on
trust in online transactions. In: International Conference on HCI in Business.

Bibliography 88

[24] Biljanovic, P., for Information, C. S., Communication Technology, E., and
Microelectronics-MIPRO. (2010). Intelligent Pedagogical Agents in immersive vir-
tual learning environments: A review. In MIPRO 2010 : 33rd International Con-
vention on Information and Communication Technology, Electronics and Micro-
electronics, Opatija, Croatia. Croatian Society for Information and Communication
Technology, Electronics and Microelectronics.

[25] Brady, A. T. and Walker, M. B. (1978). Interpersonal distance as a function of
situationally induced anxiety. British Journal of Social and Clinical Psychology,
17(2):127–133.

[26] Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang,
J., and Zaremba, W. (2016). Openai gym. arXiv preprint arXiv:1606.01540.

[27] Chaminade, T., Hodgins, J., and Kawato, M. (2007). Anthropomorphism influ-
ences perception of computer-animated characters’s actions. In Social Cognitive
and Affective Neuroscience. Books (MIT Press.

[28] Chen, J. Y. C. and Barnes, M. J. (2014). Human–agent teaming for multirobot
control: A review of human factors issues. IEEE Transactions on Human-Machine
Systems, 44(1):13–29.

[29] Chen, Z. and Liu, B. (2018). Lifelong machine learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning, 12(3):1–207.

[30] Cheng, Z., Liwang, M., Chen, N., Huang, L., Du, X., and Guizani, M. (2022).
Deep reinforcement learning-based joint task and energy offloading in uav-aided 6g
intelligent edge networks. Computer Communications, 192:234–244.

[31] Cherubini, A., Passama, R., Crosnier, A., Lasnier, A., and Fraisse, P. (2016).
Collaborative manufacturing with physical human–robot interaction. Robotics and
Computer-Integrated Manufacturing, 40:1–13.

[32] Clegg, A., Yu, W., Tan, J., Liu, C. K., and Turk, G. (2018). Learning to
dress: Synthesizing human dressing motion via deep reinforcement learning. ACM
Transactions on Graphics (TOG), 37(6):1–10.

[33] Dede, C. (2009). Immersive interfaces for engagement and learning. Science,
323(5910):66–69.

[34] Doerner, R., Tesch, A., Hildebrand, A., Leenders, S., Tropper, T., Wilke, W.,
Winkler, C., Hillig, J., Pestov, A., Walsh, J. A., et al. (2022). Vr/ar case studies.
In Virtual and Augmented Reality (VR/AR) Foundations and Methods of Extended
Realities (XR), pages 331–369. Springer.

[35] Dörner, R., Kallmann, M., and Huang, Y. (2015). Content Creation and Author-
ing Challenges for Virtual Environments: From User Interfaces to Autonomous
Virtual Characters, pages 187–212. Springer International Publishing, Cham.

Bibliography 89

[36] falcão, T. P. and Pontual, T. (2018). Feedback and Guidance to Support Children
with Intellectual Disabilities in Discovery Learning with a Tangible Interactive
Tabletop. ACM Transactions on Accessible Computing, 11(3):1–28.

[Fidelity] Fidelity, H. https://highfidelity.com. last accessed 2018/08/03.

[38] Florensa, C., Duan, Y., and Abbeel, P. (2017). Stochastic neural networks for
hierarchical reinforcement learning. arXiv preprint arXiv:1704.03012.

[39] Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., and Whiteson, S. (2018).
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference
on artificial intelligence, volume 32.

[Framework] Framework, O. S. https://www.oculus.com/experiences/rift/1776111379163747.
last accessed 2018/08/04.

[41] Freina, L. and Ott, M. (2015). A Literature Review on Immersive Virtual Reality
in Education: State Of The Art and Perspectives. Technical report.

[42] Garcıa, J. and Fernández, F. (2015). A comprehensive survey on safe reinforce-
ment learning. Journal of Machine Learning Research, 16(1):1437–1480.

[Generator] Generator, A. C. https://charactergenerator.autodesk.com. last accessed
2018/08/03.

[44] Gleave, A., Dennis, M., Wild, C., Kant, N., Levine, S., and Russell, S.
(2019). Adversarial policies: Attacking deep reinforcement learning. arXiv preprint
arXiv:1905.10615.

[45] Goodfellow, I. J., Shlens, J., and Szegedy, C. (2014). Explaining and harnessing
adversarial examples. arXiv preprint arXiv:1412.6572.

[46] Graesser, A., Lu, S., Jackson, G., Mitchell, H., Ventura, M., Olney, A., and
Louwerse, M. (2004). Autotutor: a tutor with dialogue in natural language. 36:180–
192.

[47] Granitz, N. A., Koernig, S. K., and Harich, K. R. (2009). Now It’s Personal: An-
tecedents and Outcomes of Rapport Between Business Faculty and Their Students.
Journal of Marketing Education, 31(1):52–65.

[48] Gris, I. and Novick, D. (2018). Virtual Agent Interaction Framework (VAIF):
A Tool for Rapid Development of Social Agents. In AAMAS ’18 Proceedings of
the 17th International Conference on Autonomous Agents and MultiAgent Systems,
pages 2230–2232, Stockholm, Sweden.

[49] Grochow, K., Martin, S. L., Hertzmann, A., and Popović, Z. (2004). Style-based
inverse kinematics. In ACM SIGGRAPH 2004 Papers, pages 522–531.

Bibliography 90

[50] Guadagno, R. E., Blascovich, J., Bailenson, J. N., and Mccall, C. (2007). Virtual
humans and persuasion: The effects of agency and behavioral realism. Media
Psychology, 10(1):1–22.

[51] Guénette, D. (2007). Is feedback pedagogically correct?: Research design issues
in studies of feedback on writing. Journal of Second Language Writing, 16(1):40–53.

[52] Ha, S. and Liu, C. K. (2014). Iterative training of dynamic skills inspired by
human coaching techniques. ACM Transactions on Graphics (TOG), 34(1):1–11.

[53] Haake, M. and Gulz, A. (2008). Visual stereotypes and virtual pedagogical
agents. Journal of Educational Technology Society, 11(4).

[54] Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a stochastic actor.
In International conference on machine learning, pages 1861–1870. PMLR.

[55] Hanus, M. D. and Fox, J. (2015). Assessing the effects of gamification in the
classroom: A longitudinal study on intrinsic motivation, social comparison, satis-
faction, effort, and academic performance. Computers & education, 80:152–161.

[56] Hartholt, A., Traum, D., Marsella, S., Shapiro, A., Stratou, G., Leuski, A.,
Morency, L.-P., and Gratch, J. (2013). All Together Now Introducing the Virtual
Human Toolkit. In International Workshop on Intelligent Virtual Agents, pages
368–381. Springer, Berlin, Heidelberg.

[57] Haworth, B., Berseth, G., Moon, S., Faloutsos, P., and Kapadia, M. (2020).
Deep integration of physical humanoid control and crowd navigation. In Motion,
Interaction and Games, pages 1–10.

[58] Hebert, J. S. (2014). : Normative data for modified Box and Blocks test mea-
suring upper-limb function via motion capture. Journal of rehabilitation research
and development, 51(6).

[59] Hernandez-Leal, P., Kartal, B., and Taylor, M. E. (2019). A survey and critique
of multiagent deep reinforcement learning. Autonomous Agents and Multi-Agent
Systems, 33(6):750–797.

[60] Holden, D., Komura, T., and Saito, J. (2017). Phase-functioned neural networks
for character control. ACM Transactions on Graphics (TOG), 36(4):1–13.

[61] Huang, Y. and Kallmann, M. (2016). Planning motions and placements for
virtual demonstrators. IEEE Transactions on Visualization & Computer Graphics,
22(5):1568–1579.

[62] Hundt, A., Killeen, B., Greene, N., Wu, H., Kwon, H., Paxton, C., and Hager,
G. D. (2020). “good robot!”: Efficient reinforcement learning for multi-step visual

Bibliography 91

tasks with sim to real transfer. IEEE Robotics and Automation Letters, 5(4):6724–
6731.

[63] Inc, A. (2018). https://altvr.com. last accessed 2018/08/03.

[64] Iqbal, S. and Sha, F. (2019). Actor-attention-critic for multi-agent reinforce-
ment learning. In International Conference on Machine Learning, pages 2961–2970.
PMLR.

[65] Jo, D., Kim, K., Welch, G. F., Jeon, W., Kim, Y., Kim, K. H., and Kim,
G. J. (2017). The impact of avatar-owner visual similarity on body ownership in
immersive virtual reality. In: 23rd ACM Symposium on Virtual Reality Software
and Technology.

[66] Johannsmeier, L. and Haddadin, S. (2016). A hierarchical human-robot
interaction-planning framework for task allocation in collaborative industrial as-
sembly processes. IEEE Robotics and Automation Letters, 2(1):41–48.

[67] Juliani, A., Berges, V.-P., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C.,
Gao, Y., Henry, H., Mattar, M., et al. (2018). Unity: A general platform for
intelligent agents. arXiv preprint arXiv:1809.02627.

[68] Juliani, A., Berges, V.-P., Teng, E., Cohen, A., Harper, J., Elion, C., Goy, C.,
Gao, Y., Henry, H., Mattar, M., and Lange, D. (2020). Unity: A general platform
for intelligent agents. arXiv preprint arXiv:1809.02627.

[69] Kartoun, U., Stern, H., and Edan, Y. (2010). A human-robot collaborative rein-
forcement learning algorithm. Journal of Intelligent & Robotic Systems, 60(2):217–
239.

[70] Kennedy, R. S., Lane, N. E., Berbaum, K. S., and Lilienthal, M. G. (1993).
Simulator sickness questionnaire: An enhanced method for quantifying simulator
sickness. The International Journal of Aviation Psychology, 3(3):203–220.

[71] Kilteni, K., Bergstrom, I., and Slater, M. (2013). Drumming in immersive virtual
reality: The body shapes the way we play. IEEE Transactions on Visualization
Computer Graphics, pages 597–605.

[72] Kirk, D. and Stanton Fraser, D. (2006). Comparing remote gesture technologies
for supporting collaborative physical tasks. In Proceedings of the SIGCHI confer-
ence on Human Factors in computing systems - CHI ’06, page 1191, New York,
New York, USA. ACM Press.

[73] Krämer, N. C., Karacora, B., Lucas, G., Dehghani, M., Rüther, G., and Gratch,
J. (2016). Closing the gender gap in STEM with friendly male instructors? On
the effects of rapport behavior and gender of a virtual agent in an instructional
interaction. Computers Education, 99:1–13.

Bibliography 92

[74] Kucuk, S. and Bingul, Z. (2006). Robot kinematics: Forward and inverse kine-
matics. INTECH Open Access Publisher London, UK.

[75] Kulhavy, R. W., White, M. T., Topp, B. W., Chan, A. L., and Adams, J.
(1985). Feedback complexity and corrective efficiency. Contemporary Educational
Psychology, 10(3):285–291.

[76] Kurach, K., Raichuk, A., Stańczyk, P., Zajac, M., Bachem, O., Espeholt, L.,
Riquelme, C., Vincent, D., Michalski, M., Bousquet, O., et al. (2019). Google
research football: A novel reinforcement learning environment. arXiv preprint
arXiv:1907.11180.

[77] Lee, K., Lee, S., and Lee, J. (2018). Interactive character animation by learning
multi-objective control. ACM Transactions on Graphics (TOG), 37(6):1–10.

[78] Lester, J. C., Converse, S. A., Kahler, S. E., Barlow, S. T., Stone, B. A., and
Bhogal, R. S. (1997). The persona effect: affective impact of animated pedagogical
agents. In Proceedings of the SIGCHI conference on Human factors in computing
systems - CHI ’97, pages 359–366, New York, New York, USA. ACM Press.

[79] Li, J., Kizilcec, R., Bailenson, J., and Ju, W. (2016). Social robots and virtual
agents as lecturers for video instruction. Computers in Human Behavior, 55:1222–
1230.

[80] Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D., and Wierstra, D. (2015). Continuous control with deep reinforcement learning.
arXiv preprint arXiv:1509.02971.

[81] Lim, S. and Reeves, B. (2010). Computer agents versus avatars: Responses to
interactive game characters controlled by a computer or other player. International
Journal of Human-Computer Studies, pages 57–68.

[82] Littman, M. L. (1994). Markov games as a framework for multi-agent reinforce-
ment learning. In Machine learning proceedings 1994, pages 157–163. Elsevier.

[83] Liu, L. and Hodgins, J. (2018). Learning basketball dribbling skills using trajec-
tory optimization and deep reinforcement learning. ACM Transactions on Graphics
(TOG), 37(4):1–14.

[84] Liu, L., Yin, K., van de Panne, M., Shao, T., and Xu, W. (2010). Sampling-based
contact-rich motion control. In ACM SIGGRAPH 2010 papers, pages 1–10.

[85] Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel, O., and Mordatch, I.
(2017). Multi-agent actor-critic for mixed cooperative-competitive environments.
Advances in neural information processing systems, 30.

Bibliography 93

[86] Lu, H., Gu, C., Luo, F., Ding, W., Zheng, S., and Shen, Y. (2020). Optimization
of task offloading strategy for mobile edge computing based on multi-agent deep
reinforcement learning. IEEE Access, 8:202573–202584.

[87] Mandlekar, A., Zhu, Y., Garg, A., Fei-Fei, L., and Savarese, S. (2017). Adver-
sarially robust policy learning: Active construction of physically-plausible pertur-
bations. In 2017 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pages 3932–3939. IEEE.

[88] Martey, R. M. and Consalvo, M. (2011). Performing the looking-glass self: Avatar
appearance and group identity in Second Life. Popular Communication, 9(3):165–
180.

[89] Mayer, R. E. and DaPra, C. S. (2012). An embodiment effect in computer-based
learning with animated pedagogical agents. Journal of Experimental Psychology:
Applied, 18(3).

[90] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., et al. (2015). Human-
level control through deep reinforcement learning. nature, 518(7540):529–533.

[91] Morimoto, J. and Doya, K. (2005). Robust reinforcement learning. Neural com-
putation, 17(2):335–359.

[92] Nachum, O., Ahn, M., Ponte, H., Gu, S., and Kumar, V. (2019). Multi-
agent manipulation via locomotion using hierarchical sim2real. arXiv preprint
arXiv:1908.05224.

[93] Nachum, O., Gu, S. S., Lee, H., and Levine, S. (2018). Data-efficient hierarchical
reinforcement learning. Advances in neural information processing systems, 31.

[94] Naderi, K., Babadi, A., and Hämäläinen, P. (2018). Learning physically based
humanoid climbing movements. In Computer Graphics Forum, volume 37, pages
69–80. Wiley Online Library.

[95] Nelson, M. M. and Schunn, C. D. (2009). The nature of feedback: how different
types of peer feedback affect writing performance. Instructional Science, 37(4):375–
401.

[96] Neuron, P. (2018). https://neuronmocap.com. last accessed 2018/08/03.

[97] Nguyen, T. T., Nguyen, N. D., and Nahavandi, S. (2020). Deep reinforcement
learning for multiagent systems: A review of challenges, solutions, and applications.
IEEE transactions on cybernetics, 50(9):3826–3839.

[98] Nilim, A. and El Ghaoui, L. (2005). Robust control of markov decision processes
with uncertain transition matrices. Operations Research, 53(5):780–798.

Bibliography 94

[99] OpenAI (2020). Robogym. https://github.com/openai/robogym.

[100] Osborne, M. J. and Rubinstein, A. (1994). A course in game theory. MIT press.

[101] Pan, X., You, Y., Wang, Z., and Lu, C. (2017). Virtual to real reinforcement
learning for autonomous driving. arXiv preprint arXiv:1704.03952.

[102] Park, C. and Manocha, D. (2014). Fast and dynamically stable optimization-
based planning for high-dof human-like robots. In 2014 IEEE-RAS International
Conference on Humanoid Robots, pages 309–315. IEEE.

[103] Pattanaik, A., Tang, Z., Liu, S., Bommannan, G., and Chowdhary, G. (2017).
Robust deep reinforcement learning with adversarial attacks. arXiv preprint
arXiv:1712.03632.

[104] Peng, X. B., Abbeel, P., Levine, S., and van de Panne, M. (2018). Deepmimic:
Example-guided deep reinforcement learning of physics-based character skills. ACM
Transactions on Graphics (TOG), 37(4):1–14.

[105] Peng, X. B., Berseth, G., Yin, K., and Van De Panne, M. (2017). Deeploco:
Dynamic locomotion skills using hierarchical deep reinforcement learning. ACM
Transactions on Graphics (TOG), 36(4):1–13.

[106] Pinto, L., Davidson, J., Sukthankar, R., and Gupta, A. (2017). Robust adver-
sarial reinforcement learning. In International Conference on Machine Learning,
pages 2817–2826. PMLR.

[107] Plant, E. A., Baylor, A. L., Doerr, C. E., and Rosenberg-Kima, R. B. (2009).
Changing middle-school students’ attitudes and performance regarding engineering
with computer-based social models. Computers Education, 53(2):209–215.

[108] Pridemore, D. R. and Klein, J. D. (1995). Control of Practice and Level of
Feedback in Computer-Based Instruction. Contemporary Educational Psychology,
20(4):444–450.

[109] Puterman, M. L. (1990). Markov decision processes. Handbooks in operations
research and management science, 2:331–434.

[110] Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Foerster, J., and
Whiteson, S. (2018). Qmix: Monotonic value function factorisation for deep multi-
agent reinforcement learning. In International Conference on Machine Learning,
pages 4295–4304. PMLR.

[111] Rich, C. and Sidner, C. L. (1996). Adding a collaborative agent to graphical
user interfaces. In Proceedings of the 9th annual ACM symposium on User interface
software and technology, pages 21–30.

https://github.com/openai/robogym

Bibliography 95

[112] Rickel, J. and Johnson, W. L. (1997). Steve: An animated pedagogical agent for
procedural training in virtual environments (extended abstract). SIGART Bulletin,
8:16–21.

[113] Ring, L., Utami, D., and Bickmore, T. W. (2014). The right agent for the job?
- the effects of agent visual appearance on task domain. In IVA.

[114] Rosenberg-Kima, R. B., Baylor, A. L., Plant, E. A., and Doerr, C. E. (2008).
Interface agents as social models for female students: The effects of agent visual
presence and appearance on female students’ attitudes and beliefs. Computers in
Human Behavior, 24(6):2741–2756.

[115] Roth, D., Lugrin, J. L., Galakhov, D., Hofmann, A., Bente, G., Latoschik,
M. E., and Fuhrmann, A. (2016). Avatar realism and social interaction quality in
virtual reality. In: Virtual Reality (VR), pages 277–278.

[116] Rozo, L., Calinon, S., Caldwell, D. G., Jimenez, P., and Torras, C. (2016).
Learning physical collaborative robot behaviors from human demonstrations. IEEE
Transactions on Robotics, 32(3):513–527.

[117] Ruhland, K., Peters, C. E., Andrist, S., Badler, J. B., Badler, N. I., and Gle-
icher, M., . (2015). Mcdonnell. R. A review of eye gaze in virtual agents, social
robotics and HCI: Behaviour generation, user interaction and perception. Computer
Graphics Forum, 34(6):299–326.

[118] Sansar (2017). https://www.sansar.com. last accessed 2018/08/03.

[119] Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

[120] Schwind, V., Knierim, P., Tasci, C., Franczak, P., Haas, N., and Henze, N.
(2017). These are not my hands!: Effect of gender on the perception of avatar
hands in virtual reality. In: 2017 CHI Conference on Human Factors in Computing
Systems.

[121] Shang, X., Kallmann, M., and Arif, A. S. (2019a). Effects of correctness and
suggestive feedback on learning with an autonomous virtual trainer. In Proceedings
of the 24th International Conference on Intelligent User Interfaces: Companion,
pages 93–94.

[122] Shang, X., Kallmann, M., and Arif, A. S. (2019b). Effects of virtual agent gender
on user performance and preference in a vr training program. In Proceedings of the
Future of Information and Communication Conference (FICC).

[123] Shang, X., Xu, T., Karamouzas, I., and Kallmann, M. (2023). Constraint-based
multi-agent reinforcement learning for collaborative tasks. Computer Animation
and Virtual Worlds, page e2182.

Bibliography 96

[124] Shiban, Y., Schelhorn, I., Jobst, V., Hörnlein, A., Puppe, F., Pauli, P., and
Mühlberger, A. (2015). The appearance effect: Influences of virtual agent features
on performance and motivation. Computers in Human Behavior, 49:5–11.

[125] Shute, V. J. (2008). Focus on Formative Feedback. Review of Educational
Research, 78(1):153–189.

[126] Sklar, E. and Elizabeth (2003). Agents for education: when too much intelli-
gence is a bad thing. In Proceedings of the second international joint conference on
Autonomous agents and multiagent systems - AAMAS ’03, page 1118, New York,
New York, USA. ACM Press.

[127] Smith, H. J. and Neff, M. (2018). Communication Behavior in Embodied Vir-
tual Reality. In Proceedings of the 2018 CHI Conference on Human Factors in
Computing Systems - CHI ’18, pages 1–12, New York, New York, USA. ACM
Press.

[128] Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zambaldi, V., Jader-
berg, M., Lanctot, M., Sonnerat, N., Leibo, J. Z., Tuyls, K., et al. (2017).
Value-decomposition networks for cooperative multi-agent learning. arXiv preprint
arXiv:1706.05296.

[129] Tampuu, A., Matiisen, T., Kodelja, D., Kuzovkin, I., Korjus, K., Aru, J., Aru,
J., and Vicente, R. (2017). Multiagent cooperation and competition with deep
reinforcement learning. PloS one, 12(4):e0172395.

[130] Tessler, C., Efroni, Y., and Mannor, S. (2019). Action robust reinforcement
learning and applications in continuous control. In International Conference on
Machine Learning, pages 6215–6224. PMLR.

[131] Tickle-Degnen, L. and Rosenthal, R. (1990). The Nature of Rapport and Its
Nonverbal Correlates. Source: Psychological Inquiry, 1(4):285–293.

[132] Tsai, W.-C., Lee, Y.-H., Chang, T.-H., Ho, C.-J., and Hsu, J. Y.-j. (2008).
Designing human-computer multi-agent collaboration in productive multi-player
games. In Proceedings of the 7th International Joint Conference on Autonomous
Agents and Multiagent Systems - Volume 3, AAMAS ’08, page 1441–1444, Rich-
land, SC. International Foundation for Autonomous Agents and Multiagent Sys-
tems.

[133] Van der Kleij, F. M., Feskens, R. C. W., and Eggen, T. J. H. M. (2015). Effects
of Feedback in a Computer-Based Learning Environment on Students’ Learning
Outcomes. Review of Educational Research, 85(4):475–511.

[134] van Wissen, A., van Diggelen, J., and Dignum, V. (2009). The effects of cooper-
ative agent behavior on human cooperativeness. In AAMAS (2), pages 1179–1180.

Bibliography 97

[135] Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A.,
Chung, J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., et al. (2019).
Grandmaster level in starcraft ii using multi-agent reinforcement learning. Na-
ture, 575(7782):350–354.

[136] Vrancx, P., Verbeeck, K., and Nowé, A. (2008). Decentralized learning in
markov games. IEEE Transactions on Systems, Man, and Cybernetics, Part B
(Cybernetics), 38(4):976–981.

[137] Wang, X. V., Kemény, Z., Váncza, J., and Wang, L. (2017). Human–robot
collaborative assembly in cyber-physical production: Classification framework and
implementation. CIRP annals, 66(1):5–8.

[138] Wang, Y., Liu, H., Zheng, W., Xia, Y., Li, Y., Chen, P., Guo, K., and Xie,
H. (2019). Multi-objective workflow scheduling with deep-q-network-based multi-
agent reinforcement learning. IEEE Access, 7:39974–39982.

[139] Won, J., Gopinath, D., and Hodgins, J. (2021). Control strategies for physically
simulated characters performing two-player competitive sports. ACM Transactions
on Graphics (TOG), 40(4):1–11.

[140] Wu, X., Li, X., Li, J., Ching, P., Leung, V. C., and Poor, H. V. (2021). Caching
transient content for iot sensing: Multi-agent soft actor-critic. IEEE Transactions
on Communications, 69(9):5886–5901.

[141] Xiao, C., Li, B., Zhu, J.-Y., He, W., Liu, M., and Song, D. (2018). Generating
adversarial examples with adversarial networks. arXiv preprint arXiv:1801.02610.

[142] Xie, Z., Ling, H. Y., Kim, N. H., and van de Panne, M. (2020). Allsteps:
Curriculum-driven learning of stepping stone skills. In Computer Graphics Forum,
volume 39, pages 213–224. Wiley Online Library.

[143] Xu, P. and Karamouzas, I. (2021). A gan-like approach for physics-based im-
itation learning and interactive character control. Proceedings of the ACM on
Computer Graphics and Interactive Techniques, 4(3):1–22.

[144] Xu, P., Shang, X., Zordan, V., and Karamouzas, I. (2023). Composite motion
learning with task control. Siggraph TOG.

[145] Xu, T., Liang, Y., and Lan, G. (2021). Crpo: A new approach for safe re-
inforcement learning with convergence guarantee. In International Conference on
Machine Learning, pages 11480–11491. PMLR.

[146] Yamane, K., Kuffner, J. J., and Hodgins, J. K. (2004). Synthesizing animations
of human manipulation tasks. In ACM SIGGRAPH 2004 Papers, pages 532–539.

Bibliography 98

[147] Yang, H.-Y. and Wong, S.-K. (2019). Agent-based cooperative animation for
box-manipulation using reinforcement learning. Proceedings of the ACM on Com-
puter Graphics and Interactive Techniques, 2(1):1–18.

[148] Yang, Y., Luo, R., Li, M., Zhou, M., Zhang, W., and Wang, J. (2018). Mean
field multi-agent reinforcement learning. In International Conference on Machine
Learning, pages 5571–5580. PMLR.

[149] Yin, K., Loken, K., and Van de Panne, M. (2007). Simbicon: Simple biped
locomotion control. ACM Transactions on Graphics (TOG), 26(3):105–es.

[150] Yin, Z., Yang, Z., Van De Panne, M., and Yin, K. (2021). Discovering diverse
athletic jumping strategies. ACM Transactions on Graphics (TOG), 40(4):1–17.

[151] Yin, Z. and Yin, K. (2020). Linear time stable pd controllers for physics-based
character animation. In Computer Graphics Forum, volume 39, pages 191–200.
Wiley Online Library.

[152] Yu, C., Velu, A., Vinitsky, E., Gao, J., Wang, Y., Bayen, A., and Wu, Y. (2022).
The surprising effectiveness of ppo in cooperative multi-agent games. Advances in
Neural Information Processing Systems, 35:24611–24624.

[153] Zanbaka, C., Goolkasian, P., and Hodges, L. (2006). Can a virtual cat per-
suade you?: The role of gender and realism in speaker persuasiveness. In: SIGCHI
conference on Human Factors in computing systems.

[154] Zhang, H., Starke, S., Komura, T., and Saito, J. (2018). Mode-adaptive neural
networks for quadruped motion control. ACM Transactions on Graphics (TOG),
37(4):1–11.

[155] Zhang, K., Sun, T., Tao, Y., Genc, S., Mallya, S., and Basar, T. (2020). Robust
multi-agent reinforcement learning with model uncertainty. Advances in neural
information processing systems, 33:10571–10583.

[156] Zhou, K. and Doyle, J. C. (1998). Essentials of robust control, volume 104.
Prentice hall Upper Saddle River, NJ.

[157] Zuo, Z., Han, Q.-L., Ning, B., Ge, X., and Zhang, X.-M. (2018). An overview
of recent advances in fixed-time cooperative control of multiagent systems. IEEE
Transactions on Industrial Informatics, 14(6):2322–2334.

Appendix A

Collaborative Virtual Humans
Including Locomotion

This appendix presents a summary of an initial work performed (34) to enable two
virtual humans to perform a collaborative manipulation task during locomotion. This
work was not continued given the focus given in this dissertation on upper-arm move-
ments instead of locomotion.

A.1 Summary
Using virtual trainers to assist users during direct manipulation tasks, in either sim-
ulated environments or physical environments, requires using some specific approach
for achieving adaptive motion control. Previous work has demonstrated the effective-
ness of using DRL for virtual trainers or robotic agents. In our work, we focus on
applying the Deep Reinforcement Learning (DRL) methodology to two virtual train-
ers to collaboratively transport objects in a VR environment. We designed a task
involving two virtual trainers collaboratively moving a tray from a random position
to a target position in a dynamic environment with an object on top of the tray. The
goal for the two virtual trainers is to carry the object to reach the target location
while avoiding collisions with obstacles in the dynamic environment and keeping the
object on the tray. Based on this design, we trained an efficient initial policy in this
virtual environment, as illustrated in Figure A.1. This learned policy is expected to
serve as an initial policy for this virtual trainer to collaborate with human users in
an immersed VR environment as a human-agent interaction use case.

99

Appendix A. Collaborative Virtual Humans Including Locomotion 100

Figure A.1: Two virtual trainers collaboratively carry an object with a tray in a
dynamic environment.

Appendix B

Composite Motion Learning with
Task Control

This appendix presents the abstract of an additional work performed, as second au-
thor with external collaborators, on learning virtual human physics-based composite
motions with deep learning methods (144).

B.1 Abstract
We present a deep learning method for composite and task-driven motion control for
physically simulated characters. In contrast to existing data-driven approaches using
reinforcement learning that imitate full-body motions, we learn decoupled motions
for specific body parts from multiple reference motions simultaneously and directly
by leveraging the use of multiple discriminators in a GAN-like setup. In this process,
there is no need of any manual work to produce composite reference motions for learn-
ing. Instead, the control policy explores by itself how the composite motions can be
combined automatically. We further account for multiple task-specific rewards and
train a single, multi-objective control policy. To this end, we propose a novel frame-
work for multi-objective learning that adaptively balances the learning of disparate
motions from multiple sources and multiple goal-directed control objectives. In ad-
dition, as composite motions are typically augmentations of simpler behaviors, we
introduce a sample-efficient method for training composite control policies in an in-
cremental manner, where we reuse a pre-trained policy as the meta policy and train
a cooperative policy that adapts the meta one for new composite tasks. We show
the applicability of our approach on a variety of challenging multi-objective tasks
involving both composite motion imitation and multiple goal-directed control.

101

Appendix B. Composite Motion Learning with Task Control 102

Figure B.1: Example of a physically simulated character performing composite
motion with locomotion and aiming a weapon. The colors show the automatic mixing
of the combined inputs that change dynamically over time based on the state. As
indicated in the inset, red denotes body parts that are vital for locomotion while blue
for aiming respectively. Our multi-objective approach learns this mixture along with
imitation from two disparate reference motions and two goal-directed task rewards
for each action.

	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgment
	Publications
	Abstract
	Introduction
	Effects of Agent Design Variables
	Training Agents for Collaborative Tasks
	Outline

	Literature Review
	Virtual Agents
	Agent Motion and Character Animation

	Learning Approaches
	Reinforcement Learning
	Multi-agent Reinforcement Learning
	Multi-objective Learning

	Human Agent Interactions

	Effects of Virtual Agent Gender
	Introduction
	Virtual Trainer
	Virtual Agent

	Motivation
	 An Experiment
	Agent Selection
	Apparatus
	Participants
	Design
	Procedure
	Performance Metrics and Results

	Qualitative Results
	Simulator Sickness
	Helpfulness
	Professionalism
	Attractiveness
	Preference

	Discussion
	Limitations

	Conclusion

	Effects of Virtual Agent Feedback Strategies
	Related Work
	Virtual Agents and Training Systems
	Feedback Strategies

	Pilot Study
	Apparatus
	Design
	Participants
	Procedure
	Results

	System Implementation
	User Study
	Design
	Participants
	Procedure

	Results
	Qualitative Results
	Quantitative Results
	Questionnaire Analysis
	Discussion

	Conclusion

	Learning Collaborative Multi-Agent Manipulation Tasks
	Introduction
	Related Work
	Multi-Agent Environment
	Multi-Agent Reinforcement Learning
	Multi-Objective Learning
	Reinforcement Learning with Constraints

	Overview
	Environment and Tasks
	Framework

	Approach
	Problem Formulation
	Multi-Agent Soft Actor Critic Learning (MSAC)
	MSAC with Constraints
	Algorithm

	Training
	State and Action Representation
	Reward Design
	Early Termination
	Training Details

	Experiments and Results
	Target Trajectories
	Evaluation Metrics
	Results

	Conclusions

	Addressing Realism and Robustness
	Introduction
	Physics-based Character Animation
	Robustness

	Related Work
	Character Animation
	Robust Reinforcement Learning

	Approach
	Learning Agent under Physics
	System Overview
	State Representation
	Action Representation
	Reward Design

	Learning Robust Agent
	System Overview
	Algorithm

	Results
	Compute Platform
	Parameters
	Learning Agent under Physics
	Learning Robust Agent

	Conclusions

	Conclusion
	Future Directions

	Bibliography
	Collaborative Virtual Humans Including Locomotion
	Summary

	Composite Motion Learning with Task Control
	Abstract

