
UC Berkeley
UC Berkeley Electronic Theses and Dissertations

Title
Twisted chimera states and multi-core spiral chimera states on a two-dimension torus

Permalink
https://escholarship.org/uc/item/92z7m7fj

Author
Xie, Jianbo

Publication Date
2015
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/92z7m7fj
https://escholarship.org
http://www.cdlib.org/


Chimera States in Nonlocal Phase-coupled Oscillators

by

Jianbo Xie

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Physics

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Edgar Knobloch, Chair
Professor Jonathan S Wurtele

Associate Professor Jon S Wilkening

Spring 2015



Chimera States in Nonlocal Phase-coupled Oscillators

Copyright 2015
by

Jianbo Xie



1

Abstract

Chimera States in Nonlocal Phase-coupled Oscillators

by

Jianbo Xie

Doctor of Philosophy in Physics

University of California, Berkeley

Professor Edgar Knobloch, Chair

This thesis studies systems of nonlocal phase-coupled oscillators. Various types of so-
lutions have been discovered and analyzed with a combination of analytical and numerical
methods. The work is motivated by recent interest in chimera states, in which domains of
coherent and incoherent oscillators coexist. A major part focuses on the model equation

∂θ(x, t)

∂t
= ω −

∫
G(x− y) sin[θ(x, t)− θ(y, t) + α] dy, (1)

and its two-dimensional generalization.
In one-dimensional systems, the cases where ω is either a constant or space-dependent

are investigated. When ω is a constant, we propose a class of coupling functions in which
chimera states develop from random initial conditions. Several classes of chimera states have
been found: (a) stationary multi-cluster states with evenly distributed coherent clusters, (b)
stationary multi-cluster states with unevenly distributed clusters, and (c) a single cluster
state traveling with a constant speed across the system. Traveling chimera states are also
identified. A self-consistent continuum description of these states is provided and their
stability properties analyzed through a combination of linear stability analysis and numerical
simulation. When ω is space-dependent, two types of spatial inhomogeneity, localized and
spatially periodic, are considered and their effects on the existence and properties of multi-
cluster and traveling chimera states are explored. The inhomogeneity is found to break up
splay states, to pin the chimera states to specific locations, and to trap traveling chimeras.
Many of these states can be studied by constructing an evolution equation for a complex order
parameter. Solutions of this equation are in good agreement with the results of numerical
simulations.

The above mentioned solutions have counterparts in two-dimensional systems. However,
some of these lose stability in two dimensions and hence cannot be obtained from numerical
simulation with random initial conditions. In addition, some solutions which are unique in
two dimensions have been found: (a) twisted chimera states with phase that varies uniformly
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across the coherent domain, and (b) multi-core spiral wave chimera states with evenly dis-
tributed phase-randomized cores. Similar stability analysis as for one-dimensional systems
is provided.
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Chapter 1

Background

1.1 Overview of dynamical systems

Introduction

Dynamical systems are systems that change with time. There are endless phenomena in
our daily life and in scientific investigation that have dynamic aspects. Examples include
boiling water, climate change, celestial motion, mechanical oscillators, chemical oscillations,
and even population growth in ecology. In this wide range of problems, one is interested in
problems such as whether the observed phenomena are stable, how the system changes from
one state to another, and whether the system settles down to an equilibrium. Even though
the behavior of these systems varies, viewed from the perspective of dynamics, they can be
placed in the same mathematical framework.

Today, dynamics is an interdisciplinary subject. The basic topics of dynamical systems
theory are broadly covered in many books [1, 2]. In this and following sections, we briefly
review some basic aspects of dynamical systems. In particular, we will cover equilibria and
their stability analysis, and bifurcation theory. Before beginning, we should define what
dynamical systems are mathematically. The two most common types of dynamical systems
are maps and differential equations. They are classified depending on whether the behavior
is viewed as discrete or continuous. In this thesis, we focus on the second type. Differential
equations can be classified into ordinary (ODE) or partial (PDE).

One example of an ODE is the simple harmonic oscillator:

ẋ = v, (1.1)

v̇ = −kx
m
, (1.2)

where x and v represent the displacement and the velocity of the oscillator and the dot
represents the time derivative. Examples of PDEs include the famous heat equation, and the
wave equation. Reaction-diffusion equations are another type relevant to pattern formation:

∂tu = D∇2u + F(u). (1.3)
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This type of equation is typically used to describe chemical reactions represented by the
reaction term F(u) [3, 4]. The Swift-Hohenberg equation:

∂tu = ru− (1 +∇2)2u+N(u) (1.4)

which is used to describe certain aspects of convection [5] is another example.
In this thesis, we will mainly focus on coupled ordinary differential equations. The general

expression for an ODE is:
Ẋ = F(X, µ), X ∈ Rn. (1.5)

Here µ is a parameter we can control and n is the dimension of the system. This is an
autonomous system which does not explicitly depend on t. Non-autonomous systems can
be converted into the autonomous form by introducing an additional dimension: Xn+1 = t,
Ẋn+1 = 1.

The space Rn is called the phase space of the system. In fact the structure of the phase
space could be more general, and examples include cylindrical, spherical, or toroidal phase
spaces. The solution X(t) forms a trajectory in the phase space. Under suitable conditions,
one initial condition determines a unique trajectory [6, 7].

Linear stability of equilibria

In this section, we describe the stability analysis for ordinary differential equations, largely
following the discussion in Wiggins’ book [2]. At this moment, we ignore the control param-
eter µ in Eq. (1.5) and consider the general system

Ẋ = F(X), X ∈ Rn. (1.6)

An equilibrium solution is a point X0 satisfying F(X0) = 0, i.e., a solution which does not
change over time.

To get some intuition, we consider a linear system as an example

Ẋ = AX. (1.7)

X0 = 0 is an equilibrium point for this system. At t = 0, we give the system a perturbation
X(0). This system can be solved exactly:

X(t) = X(0) exp(At). (1.8)

Since the eigenvectors of A span Rn, Rn can be represented as direct sum of three subspaces
based on the real part of the eigenvalues of A:

Es = span{e1, · · · , es}, (1.9)

Eu = span{es+1, · · · , es+u}, (1.10)

Ec = span{es+u+1, · · · , es+u+c}. (1.11)
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Here, s stands for ”stable”, and {e1, · · · , es} are the eigenvectors corresponding to the eigen-
values of A having negative real part; u stands for ”unstable”, and {es+1, · · · , es+u} are the
eigenvectors corresponding to the eigenvalues of A having positive real part. Finally c stands
for ”center”, and {es+u+1, · · · , es+u+c} are the eigenvectors corresponding to the eigenvalues
of A having zero real part (see [8] for more details). In addition, these three subspaces are
invariant under the dynamics. If all the eigenvalues of A have negative real part, the equi-
librium point is considered stable. If at least one of the eigenvalues of A has a positive real
part, the equilibrium point is considered unstable. If A has eigenvalues on the imaginary
axis, the case should receive special treatment.

We now turn to nonlinear systems. Using a change of coordinates, we can make X0 = 0
an equilibrium point for this system. Then the system can be written

Ẋ = DF(0)X + N(X), (1.12)

where N(X) = O(||X||2).

Theorem 1 Suppose Eq. (1.12) is Cr(r > 2), and DF(0) has s eigenvalues with negative
real part, u eigenvalues with positive real part and c eigenvalues with zero real part. Then
the fixed point X = 0 possesses a Cr s-dimensional local, invariant stable manifold, a Cr

u-dimensional local, invariant unstable manifold, and a Cr c-dimensional local, invariant
center manifold, each tangent to the respective eigenspace at X = 0.

In the statement, the term ”local” refers to the fact that the manifold is only defined in a
neighborhood of the equilibrium point. As in the linear case, if all the eigenvalues of DF(0)
have negative real part, the equilibrium point is considered locally stable. If at least one of
the eigenvalues of DF(0) has a positive real part, the equilibrium point is considered locally
unstable.

Bifurcation theory

The reason we include µ in Eq. (1.5) is that in practical applications, many, if not most
differential equations depend on some parameters. It is important to study the behavior of
solutions and to examine their dependence on these parameters. It turns out that near some
critical value, a small change in a parameter can have significant impact on the solution.
Bifurcation theory of dynamical systems is a theory that refers to the study of changes in
the qualitative structure of a system as the parameter changes. We now introduce the basic
codimension-one bifurcations.

The saddle-node bifurcation is the most basic example. As the parameter varies, two
fixed points move to each other, collide and then annihilate. To illustrate this, let’s consider
the normal form (a detailed discussion about normal forms is given in Appendix B) of
saddle-node bifurcation:

ẋ = µ+ x2, (1.13)
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where µ is the control parameter. When µ < 0, the system has two fixed points: x+
0 =
√−µ

(unstable) and x−0 = −√−µ (stable). As µ increases, the distance between two fixed points
decreases. They collide at the value of µ = 0 and annihilate when µ > 0. The bifurcation
diagram is shown in Fig. 1.1(a).

(a)

μ

x
0

(b)

μ

x
0

Figure 1.1: (a) Illustration of the saddle-node bifurcation. (b) Illustration of the transcritical
bifurcation. In both cases, solid lines represent stable fixed points while the dashed lines
represent unstable fixed points.

Another basic bifurcation in the one-dimensional case is the transcritical bifurcation. In
this bifurcation, one fixed point always exists but stability changes as the parameter changes.
The normal form of a transcritical bifurcation is

dx

dt
= µx− x2. (1.14)

The two fixed points for this system are x0 = 0 and x0 = µ. When µ < 0, the fixed point
x0 = 0 is stable while x0 = µ is unstable; When µ > 0, the fixed point x0 = 0 is unstable
while x0 = µ is stable. An exchange of stability has taken place between the two fixed points
when the parameter µ equals 0. The bifurcation diagram for the transcritical bifurcation is
shown in Fig. 1.1(b).

Now we turn to the third bifurcation in one dimension: the pitchfork bifurcation, which
is common in systems that have symmetry. There are normally two types of pitchfork
bifurcation: supercritical and subcritical. The normal form of the supercritical case is

dx

dt
= µx− x3. (1.15)

When µ < 0, x0 = 0 is the only fixed point and it is stable. When µ = 0, x0 = 0 is still
stable but becomes weaker in the sense that the linearization vanishes. When µ > 0, two
new fixed points x0 = ±√µ are born and they are stable, while x0 = 0 becomes unstable.
Fig. 1.2(a) shows the bifurcation diagram for a supercritical pitchfork bifurcation.
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(a)

μ

x
0

(b)

μ

x
0

Figure 1.2: (a) Illustration of the supercritical pitchfork bifurcation. (b) Illustration of the
subcritical pitchfork bifurcation.

The normal form for the subcritical pitchfork bifurcation is

dx

dt
= µx+ x3. (1.16)

The bifurcation diagram is shown in Fig. 1.2(b). In this case, two unstable fixed points are
present when µ < 0. It should be mentioned that in real systems, we need to include higher
order terms to suppress the explosive instability that takes place for µ > 0. One example
that preserves the symmetry under x→ −x is to add a term −x5. Then the system becomes

dx

dt
= µx+ x3 − x5. (1.17)

The new feature due to the higher order term is that the unstable branches turn around and
become stable at the critical value µs = −1

4
. In fact this is the saddle-node bifurcation that

we discussed previously. In the range of µs < µ < 0, x0 = 0 is still stable and it coexists
with the other two stable branches. The coexistence allows hysteresis as µ varies.

In dimension higher than one, the dynamics of the systems can be much richer. An
important bifurcation in two-dimensional systems is the Hopf bifurcation. The normal form
is

ẋ = µx− ωy + (ax− by)(x2 + y2), (1.18)

ẏ = ωx+ µy + (bx+ ay)(x2 + y2). (1.19)

Here, we regard µ as the control parameter while ω, a and b are constants. The bifurcation
occurs at µ = 0, where the eigenvalues of the linearized system cross through the imaginary
axis. If we write it in polar coordinates, the system becomes

ṙ = µr + ar3, (1.20)

θ̇ = ω + br2. (1.21)
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Eq. (1.20) has the same form as the pitchfork bifurcation except for the constraint r > 0.
The sign of a determines whether it is supercritical or subcritical. Let’s assume a is negative,
so that the Hopf bifurcation is supercritical. As µ passes 0, a nonzero stable fixed point for
Eq. (1.20) is born. In the original two-dimensional system, it corresponds to a stable periodic
orbit. We call this a limit cycle, which is defined as an isolated closed trajectory.

Fig. 1.3 shows some trajectories in phase space for µ < 0, µ = 0 and µ > 0. When µ < 0,
the trajectories spiral towards the fixed point. When µ = 0, the fixed point is still stable
but the speed of the trajectories towards the fixed point is much slower. When µ > 0, all
trajectories spiral to the stable limit cycle.

(a)

μ < 0

(b)

μ = 0

(c)

μ > 0

Figure 1.3: Trajectories of Eq. (1.18) and Eq. (1.19) for (a) µ < 0; (b) µ = 0; and (c) µ > 0.

1.2 Limit cycle oscillator and the phase method

In the previous section, we saw that the supercritical Hopf bifurcation arises when a
steady time-independent state loses stability and gives way to periodic motion (limit cycle)
as the parameter of the system passes some critical value. Due to the periodic behavior, we
call such systems limit cycle oscillators. Although the specific feature of the oscillators may
vary from system to system, all systems behave in a similar manner close to the onset of
oscillations. Mathematically, this is a consequence of a remarkable theorem called the center
manifold theorem. And in fact, the application of Hopf bifurcation can be found in systems
like chemical reactions, optics, biology and some other fields.

In the real world, the system could contain many or an infinite number of such limit cycle
oscillators, and even worse, they could be coupled to each other. We know that, in general
a single limit cycle motion cannot be solved analytically. It is even harder to deal with large
numbers of coupled oscillators. Fortunately, there exists a fundamental theoretical technique
called the phase reduction method, which is powerful for describing these oscillator systems.
In this section, we focus on the cases where the perturbation or coupling is weak, largely
following Kuramoto’s book [16].
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Let’s start with a simple one-oscillator model to illustrate the perturbation idea. Consider
a n-dimensional dynamical system

Ẋ = F(X), (1.22)

exhibiting a linearly stable periodic solution X0(t) satisfying X0(t) = X0(t + T ) for any t.
Here T is the least period. If the system is perturbed by a small perturbation εp(X), it
becomes

Ẋ = F(X) + εp(X). (1.23)

Periodic motion will persist but the period will deviate from T . We want to find the
change in the period. Let C denote the limit cycle of Eq. (1.22), and associate a phase φ to
each point on C such that

φ̇ = 1. (1.24)

Figure 1.4: Map between a limit cycle and a circle

Basically, it is a mapping from an arbitrary cycle to a circle (see Fig. 1.4). When the
system is perturbed, the state point will no longer be on C, therefore it is desirable to extend
the definition of φ to the vicinity of C. Assume a point P on C and another point Q near C.
If P and Q become infinitely close as t goes to infinity, then we define φ(P ) = φ(Q). All the
points mapped to the same φ constitute a n−1 dimensional hypersurface called an isochron,
which was first introduced by Winfree [10]. In fact, the existence of isochrons is proved
earlier but unknown to biologists. Mathematically, the isochron related to P is the stable
set of P . If no transverse Floquet multiplier of C has absolute value one, the stable set is a
transverse cross-section of C and is a manifold diffeomorphic to Euclidean space. The proof
of this statement can be found in some ODE books [8, 11], and the relation to isochrons is
summarized in Guckenheimer’s paper [12]. Thus we have Eq. (1.24) for all points on C and
in the vicinity of C.

On the other hand, we have identity

φ̇ = ∇Xφ · Ẋ. (1.25)

Combined with Eq. (1.22), we have

∇Xφ · F(X) = 1. (1.26)
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For the perturbed system,
φ̇ = 1 + ε∇Xφ · p(X). (1.27)

The above deduction is exact. When the perturbation is small, X can be approximated by
X0(φ). Thus we derived a closed form equation for the phase variable φ:

φ̇ = 1 + εΩ(φ), (1.28)

where Ω(φ) = ∇Xφ · p(X0(φ)). Here we call Z(φ) ≡ ∇Xφ the sensitivity. Note that Z(φ)
and p(X0(φ)) are both T -periodic, so Ω(φ) is also T -periodic. Introducing another phase
variable θ = φ− t, we have

θ̇ = εΩ(t+ θ). (1.29)

This shows that θ is a slow variable. This equation can be averaged as

θ̇ = εω, ω =
1

T

∫ T

0

Ω(t)dt. (1.30)

The above process is the phase reduction method for one oscillator. Now let’s consider
two oscillators which are coupled to each other:

Ẋ1 = F1(X1) + εV(X1,X2), (1.31)

Ẋ2 = F2(X2) + εV(X2,X1). (1.32)

Assume that the oscillators are only slightly different from each other, i.e., Fi(Xi) =
F(Xi) + εfi(Xi). Considering pi = V(Xi,Xi′) + fi(Xi) as perturbations, we can derive
coupled equations for φ1 and φ2:

φ̇1 = 1 + ε[Z(φ1) · (V(φ1, φ2) + f1(X0(φ1)))], (1.33)

φ̇2 = 1 + ε[Z(φ2) · (V(φ2, φ1) + f1(X0(φ2)))]. (1.34)

After the averaging process, as we have done in one-oscillator case, we obtain

θ̇1 = ω1 + Γ(θ1 − θ2), (1.35)

θ̇2 = ω2 + Γ(θ2 − θ1), (1.36)

where Γ(θi − θi′) = 1
T

∫ T
0

Z(θi + t) ·V(θi + t, θi′ + t)dt and ωi = 1
T

∫ T
0

Z(θi + t) · fi(X0(θi))dt.
This process can be easily extended to the N -oscillator case. We can derive the phase

equation

θ̇i = ωi +
N∑
j=1

Γij(θi − θj). (1.37)

Eq. (1.37) is a phase-only model equation. By assuming weak coupling between oscil-
lators, the phase reduction method neglects the amplitude. But we should point out that
“weak coupling” is a sufficient but not a necessary condition for the averaging method to be
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valid [13, 14]. The phase reduction provides a very useful tool to approach problems such
as synchronization. However, Eq. (1.37) is still formidable without further simplification of
Γij. Therefore, we assume that the couplings have a magnitude of 1

N
and take a simple

trigonometric function. Thus we write

Γij(θi − θj) = −K
N
Gij sin(θi − θj + α). (1.38)

Here K is a positive constant that represents the strength of couplings, 0 6 |α| 6 π
2

indi-
cates a phase lag and Gij = O(1) and indicate the network structure. This type of coupling
function is known as a Kuramoto-type coupling and plays crucial rule in the study of syn-
chronization phenomena in nature. We will discuss this topic in more detail in the next
section.

1.3 Coupled oscillator systems and synchronization

In Section 1.2, we obtained the phase coupled oscillator model:

θ̇i = ωi −
K

N

N∑
j

Gij sin(θi − θj + α). (1.39)

The original analysis of the synchronization behavior of this model was given by Kuramoto,
assuming all-to-all coupling and zero phase lag [9, 16], i.e., Gij = 1 and α = 0. Parts of the
discussion below follow closely the two review papers [22, 23].

The Kuramoto Model

To get some intuition, we start with a simplified version with only two oscillators in the
system:

θ̇1 = ω1 −
K

2
sin(θ1 − θ2), (1.40)

θ̇2 = ω2 −
K

2
sin(θ2 − θ1). (1.41)

This simple model can describe the situation when two friends are running on the circular
track with angular speed ω1 and ω2. Being friends, they would like to adjust their own speed
to one another’s. To analyze this mode, define ∆θ = θ1− θ2 and ∆ω = ω1−ω2. Subtracting
Eq. (1.41) from Eq. (1.40), we get

∆θ = ∆ω −K sin(∆θ). (1.42)

This is Adler’s equation which can bee seen in many different branches of science and en-
gineering. Without loss of generality, we assume ∆ω > 0. When ∆ω < K, there exists a
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stable fixed point θ∗ satisfying sin θ∗ = ∆ω
K

and cos θ∗ =
√

1− (∆ω
K

)2; when ∆ω > K, there

is no fixed point and the period of oscillation can be found analytically:

T =

∫ 2π

0

dθ

∆ω −K sin θ
=

2π√
(∆ω)2 −K2

. (1.43)

The SNIPER (saddle node infinite period) bifurcation occurs at ∆ω = K.
From this simple example, we conclude that when the coupling between the two oscillators

is strong (K > ∆ω), they will finally move with the same frequency, and be synchronized.
Otherwise, they will move incoherently. This conclusion can be extended to the case with
many oscillators. There is a competition between two mechanisms: the large coupling con-
stant tends to synchronize the oscillators while the difference among the natural frequencies
ω tends to de-synchronize the oscillators.

Now we briefly introduce the method that Kuramoto used to analyze his model. First,
we define a complex order parameter:

R exp(iΘ) =
1

N

N∑
j=1

exp(iθj). (1.44)

Here 0 6 R(t) 6 1 measures the coherence of the oscillators and Θ(t) is the average phase,
as shown in Fig. 1.5(a). Then, the Kuramoto model becomes

θ̇i = ωi +KR sin(Θ− θi). (1.45)

From this equation, we see the advantage of using the order parameter. The oscillators

R
Θ

θ
i

(a)

0

1

K

R

(b)

K
c

Figure 1.5: (a) Illustration of the mean field quantities R and Θ. (b) Supercritical bifurcation
for the Kuramoto model in a diagram showing R versus K.

interact with each other only through the quantities R and Θ. Each phase θi is pulled
towards the mean phase Θ. It appears that the phases uncouple from each other. Another
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important fact is that the effective coupling strength is KR, which is proportional to R.
This indicates that as the oscillators become more coherent, the effective coupling increases,
which tends to attract more oscillators to the group, hence further increasing the coherence.
This process constitutes a positive feedback, which was first discovered by Winfree [10].

Kuramoto assumes a steady solution in which R(t) is constant and Θ(t) rotates uniformly
at a constant frequency. By going into a certain rotating frame, we can set Θ = 0 without
loss of generality. Then the ODE becomes uncoupled:

θ̇i = ωi −KR sin(θi). (1.46)

As discussed in the two-oscillator example, this equation exhibits two types of solutions
depending on |ωi| and KR. When |ωi| < KR, the oscillator will settle down to a fixed point
satisfying ωi = KR sin(θi). This part of the oscillators are phase-locked. When |ωi| > KR,
the oscillators drift in time. Their stationary density obeys ρv = C, hence

ρ(θ, ω) =
C

|ω −KR sin(θ)| . (1.47)

The normalization condition implies C =

√
ω2−(KR)2

2π
.

The constant order parameter must be consistent with Eq. (1.44). So we have

R = 〈exp(iθ)〉lock + 〈exp(iθ)〉drift, (1.48)

where the angular brackets represent average. Given the distribution of natural frequency
ω, we can derive a self-consistent equation from Eq. (1.48). For simplicity, we assume that
g(ω) is unimodal and symmetric about its mean ω0, i.e., g(ω0 +ω) = g(ω0−ω). By rotating
the frame, we can set ω0 = 0. With this symmetry, we have 〈sin(θ)〉lock = 0 and

〈exp(iθ)〉lock = 〈cos(θ)〉lock =

∫ KR

−KR
cos(θ)g(ω)dω. (1.49)

Here θ is a function of ω determined by ω = KR sin(θ). Change of variable gives

〈exp(iθ)〉lock = KR

∫ π
2

−π
2

cos2(θ)g(KR sin(θ))dθ. (1.50)

This is an expression for the frequency-locked part of the oscillators. It turns out that the
drifting part 〈exp(iθ)〉drift vanishes due to symmetry. So the self-consistent equation becomes

R = KR

∫ π
2

−π
2

cos2(θ)g(KR sin(θ))dθ. (1.51)

There is a trivial solution R = 0 for this equation, corresponding to the uniform incoherent
state, ρ = 1

2π
. It also has a second branch of solutions, corresponding to partially synchro-

nized states, and satisfying

1 = K

∫ π
2

−π
2

cos2(θ)g(KR sin(θ))dθ. (1.52)
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This branch bifurcates from R = 0 at the critical value K = Kc. Here, Kc = 2
πg(0)

, which can

be obtained by setting R = 0 in Eq. (1.52). Near Kc, we can treat R as a small parameter
and expand Eq. (1.52) in powers of R. We find that near the onset, if g′′(0) < 0, which is
the usual case, the bifurcation is supercritical and follows the scaling law

R ∼

√
−16(K −Kc)

πg′′(0)K4
c

. (1.53)

There is a special case in which the Eq. (1.52) can be solved exactly. When the natural
frequency follows Cauchy distribution g(ω) = γ

π(γ2+ω2)
, Eq. (1.52) gives

R =

√
1− Kc

K
, (1.54)

where Kc = 2γ.
The above process represents Kuramoto’s original analysis of the phase transition from

the incoherent state to a partially synchronized state as the coupling constant K increases.
The diagram is shown in Fig. 1.5(b). Eq. (1.54) can also be obtained by another method
called the OA-Ansatz [46], which we will discuss later.

There remains the question whether the steady solutions are stable. Let ρ(θ, t, ω) denote
the fraction of oscillators that lie between θ and θ + dθ at time t. The governing equation
for ρ is:

∂ρ

∂t
= − ∂

∂θ

[
ρ

(
ω +K

∫ 2π

0

∫ ∞
−∞

sin(θ′ − θ)ρ(θ′, t, ω′)g(ω′)dω′dθ′
)]

; (1.55)

ρ = 1
2π

corresponds to the uniform incoherent state. The stability of this state can be an-
alyzed via studying the spectrum of the linearized operator. Strogatz and Mirollo showed
that when K < Kc, the linearization about the incoherent state has a purely imaginary con-
tinuous spectrum. As K increases, a real eigenvalue emerges from the continuous spectrum
and moves into the right half plane [86].

J. D. Crawford has also made a great contribution to the stability analysis of the Ku-
ramoto model. He derived and analyzed an equation for r(t)—the deviation of R(t) from the
incoherent state [87]. The coefficients in the amplitude equation is finite if no noise exists.
This result confirms the scaling law in Eq. (1.53). Inspired by the work of Daido [82, 83, 84],
who investigated a generalized Kuramoto model in which more harmonics of the coupling
functions are included, Crawford studied the amplitude equations for those models. He ex-
plained the reason why Daido’s result differs from Kuramoto’s: the scaling behavior near
threshold is altered essentially when higher harmonics are included in the coupling function
[88, 89].

Variations of the Kuramoto Model

In the preceding subsection we have seen that some analytical results can be obtained
with all-to-all coupling and many reasonable assumptions. Yet, one might ask if these results
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can be extended when we modify the model. For example, the Kuramoto model with noise,
time-delayed coupling, phase lag, or non-local coupling. Unfortunately, it is hard to derive
analytical results in such cases.

In this subsection, we summarize some variations of the Kuramoto model discussed in
the previous subsection [23], but without going into details.

The first generalization is known as the Kuramoto model with noise. The governing
equation, after adding noise, is

θ̇i = ωi −
K

N

N∑
j=1

sin(θi − θj) + ξi(t). (1.56)

Here ξ’s are independent white noises satisfying

〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = 2Dδ(t− t′)δij. (1.57)

It turns out that in this case the probability density ρ(θ, ω, t) obeys a Fokker-Planck equation

∂ρ

∂t
= D

∂2ρ

∂θ2
− ∂

∂θ
(vρ), (1.58)

where v(θ, ω, t) = ω+KR sin(Θ− θ). With this equation, many problems such as the linear
stability problem can be studied [85, 86, 87, 88, 89, 90, 91]. For example, the stability of
the incoherent state is determined by the spectrum of the linearized operator about ρ = 1

2π
.

For D > 0, the continuous spectrum is a vertical line segment in the left half plane, so the
stability is determined by the point spectrum only. It turns out that the discrete spectrum
is either a single point or empty, depending on the value of K. As before, there is a critical
value Kc, corresponding to the onset of instability, given by

Kc = 2

[∫ ∞
−∞

D

D2 + ω2
g(ω)dω

]−1

. (1.59)

In the special case when g(ω) = γ
π(γ2+ω2)

, Kc = 2γ + 2D. This result is consistent with the
case when D = 0, which we have discussed in previous section. Apart from the incoherent
state, Crawford also proved that the bifurcating branch of partially synchronized states is
locally stable, near the threshold and in the presence of weak noise [87].

A second natural extension is the inclusion of time-delayed couplings. In many chemical
and biological systems, signals propagate with finite speed and the time delay due to the
transmission cannot be neglected. This time delay could substantially change the dynamical
properties and make the behavior of the system much richer [92, 93, 94, 95, 96, 97, 98]. To
simplify the problem, we assume the delay between each pair of oscillators is a constant.
Then the system equation becomes

θ̇i = ωi −
K

N

∑
j

sin(θi(t)− θj(t− τ)). (1.60)
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This system becomes nontrivial even for few oscillators. We can also add noise to the system
to make it more realistic. As in the standard Kuramoto model, in noisy systems there is a
critical value of the coupling Kc, depending on the frequency distribution and delay, above
which the incoherent solution is linearly unstable.

Another possible extension is to add an external field. Such a model can be written

θ̇i = ωi −
K

N

N∑
j=1

sin(θi − θj) + ξi(t) + Fi, (1.61)

where Fi represents the external force. A commonly used force is Fi = h sin(θi − ωf t),
where ωf is the frequency of the external force. By rotating the frame, we can set ωf = 0
and shift the natural frequency distribution, ωi. Shinomoto and Kuramoto studied the case
when Fi = h sin(θi) and found two different regions in the phase diagram [99]. In one region
observables are time-periodic and in another they are stationary and synchronized.

If we keep the all-to-all coupling and add the phase lag α, the model becomes the so-called
Sakaguchi-Kuramoto model:

θ̇i = ωi −
K

N

N∑
j

sin(θi − θj + α). (1.62)

This model can be obtained by restricting the interaction function to the first Fourier com-
ponent and is therefore quite general. Previously it was thought that when |α| < π

2
and the

frequency distribution g(ω) is unimodal, this model will transit from incoherence to partially
synchronized state as the coupling constant K increases. But recent studies [62, 63] show
that for certain frequency distributions, one can observe non-universal transitions, where
incoherence may regain stability as the coupling constant increases. The authors present
spectral analysis of complete incoherence and partially synchronized states, which extend
the results of Mirollo and Strogatz, who studied the corresponding problem for the Ku-
ramoto model. The phase lag plays an important role in the model when the coupling is
nonlocal. The resulting model is the main focus of this thesis so we discuss it later.

One commonality in the above extensions is that they all keep the all-to-all coupling
scheme, Gij = 1. Gij essentially indicates the structure of the network on which the oscil-
lators are built. Complex networks with non-trivial topologies are themselves an interesting
topic that has been studied for many years. When oscillators are built on networks, these
two ingredients give rise to very rich dynamical behavior and make it a fascinating subject
for inter-disciplinary research.

Here we would like to mention several special network structures that have received much
attention. The first and simplest case is a d-dimensional lattice with the model equation

θ̇i = ωi −K
∑
(i,j)

sin(θi − θj), (1.63)



CHAPTER 1. BACKGROUND 15

where (i, j) stands for nearest neighbor [100]. The network structure is simple, but the
problem is actually quite difficult to analyze except in one dimension. Usually, global syn-
chronization is rarely seen. However, phase locking or partial synchronization is observed
more frequently. Another type is to build the oscillator system on a small world network
[101, 102]. In this work, the statistical properties of the system are investigated. A third
type of network structure is also d-dimensional in space (d = 1, 2, 3) but has nonlocal cou-
pling. Nonlocal coupling is a coupling scheme that is between local and global. If we keep
the phase lag α, the model is particularly interesting and is our main focus in this thesis. In
the one-dimensional case and the continuum limit, we can write the model equation in the
form,

∂θ(x, t)

∂t
= ω(x)−

∫
G(x− y) sin[θ(x, t)− θ(y, t) + α] dy. (1.64)

We will discuss this model in more detail in the following chapters.
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Chapter 2

Chimera states

2.1 A brief history of chimera states

As discussed in the preceding chapter, various cases of Eq. (1.39) have been studied for
decades, but usually for a given natural frequency distribution g(ω). It was thought that the
case of networks with identical oscillators is not very interesting. In 2002, Kuramoto and
his colleagues reported a state of mixed synchronous and asynchronous behavior in a ring
of identical coupled oscillators. The model equation they used is basically Eq. (1.64) with
ω(x) = const. We rewrite the model equation here:

∂θ(x, t)

∂t
= ω −

∫
G(x− y) sin[θ(x, t)− θ(y, t) + α] dy. (2.1)

Fig. (2.1) shows a snapshot of such a state. In the figure, the horizontal direction represents

−2 0 2

−2

0

2

x

θ

Figure 2.1: 1-cluster chimera state.

space and the vertical direction represents the phase, θ. Near x = 0, the oscillators form a
flat region that is phase-locked: the oscillators are nearly in phase and moving with the same
frequency. Those oscillators that are not in phase are scattered over phase space and drift
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in time relative to the phase-locked oscillators. They slow down when they pass near the
coherent cluster, which is the reason why the oscillators appear more dense near the locked
phase. The deeper reason will be clear when we carry out the self-consistent analysis later.

The existence of this structure was quite surprising. Generically, identical oscillator
arrays settle into patterns in which all oscillators are synchronized, form smooth traveling
waves or are completely incoherent. The coexistence of two seemingly incompatible patterns
is so odd that the discovery was named a ”chimera state” by Strogatz and Abrams [27].
The chimera is the mythological creature composed of a lion’s head, a goat’s body, and a
serpent’s tail.

Owing to its novelty, chimera states received a great deal of attention in the nonlinear
dynamics community. How is the chimera state born in the sense of bifurcation theory?
What are its dynamical stability properties? Under what condition do chimera states exist?
Do they exist in higher dimensions and are they robust enough to be observed in experiment
or nature? These questions naturally arise in the study of chimera states.

Chimera states motivate researchers in nonlinear dynamics community to explore systems
with nonlocal coupling. Initially, it was thought that the nonlocal coupling was necessary for
chimera states to exist. The nonlocal coupling regime might be more difficult to investigate
compared with the nearest neighbor or global models, but it has important applications
throughout physics [53], chemistry [54], biology [55], or even social science [56]. After focusing
on the local and global interactions for many years, the intermediate case is the next regime
to be explored.

In recent years, many of the questions mentioned above have been answered. Before
discussing these works, we will review some important methodologies used frequently to
investigate chimera states.

2.2 Methodology

Self-consistent analysis

Kuramoto introduced a self-consistency method to his phase-coupled oscillator model
[9, 16]; it is still one of the most commonly used methods to investigate chimera states.
Before outlining his method, we notice that the constant frequency ω plays no essential role
in the dynamics, and therefore we can set it to be 0. Then the model equation can be written
as

∂θ(x, t)

∂t
= −

∫
G(x− y) sin[θ(x, t)− θ(y, t) + α] dy. (2.2)

First we seek a new reference frame which rotates with angular frequency Ω (to be
determined later). In this frame the governing equation becomes

∂θ(x, t)

∂t
= Ω−R(x, t) sin[θ(x, t)−Θ(x, t) + α], (2.3)
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where we have redefined θ as θ+Ωt. Here, R(x, t) and Θ(x, t) are called local order parameters
and are defined by

R(x, t) exp(iΘ(x, t)) =

∫
G(x− y) exp(iθ(y, t))dy. (2.4)

Note the analysis is very similar to the case of all-to-all coupling, except that the order
parameters are defined as a weighted average of exp(iθ). The oscillators interact with each
other through R(x, t) and Θ(x, t). Now we come to the key assumption that the chimera
state is stationary in the large N limit, which means that R(x, t) and Θ(x, t) do not depend
on time. With this assumption, the equations for the oscillators partially decouple:

∂θ(x, t)

∂t
= Ω−R(x) sin[θ(x, t)−Θ(x) + α]. (2.5)

Oscillators with R(x) > |Ω| asymptotically approach to a stable fixed point θ? defined by

Ω = R(x) sin(θ?(x)−Θ(x) + α). (2.6)

Oscillators with R(x) < |Ω| drift monotonically. According to the stationarity assumption,
such oscillators must have a time-independent density ρ(θ) that can be determined from the
conservation law, ρv = const, where v = Ω−R sin(θ−Θ +α). After normalization, we have

ρ(θ) =

√
Ω2 −R2

2π|Ω−R sin(θ −Θ + α)| . (2.7)

Now, with these conditions, we want to derive a self-consistency equation. For the phase
locked oscillators,∫

G(x− y) exp(iθ?(y)) dy = exp(−iα)

∫
R(y)>Ω

G(x− y) exp(iΘ?(y))

√
R2 − Ω2 + iΩ

R
dy.

(2.8)
For the drifting oscillators, Kuramoto and Battogtokh replace exp(iθ(y)) with its statistical
average

∫ π
−π exp(iθ)ρ(θ)dθ. By contour integration, we obtain∫ π

−π
exp(iθ)ρ(θ)dθ =

i

R
(Ω−

√
Ω2 −R2) exp(iΘ− iα). (2.9)

For this phase-locked part of the oscillators, the integration domain consists of all x satisfying
R(x) < |Ω|. In addition, making use of the identity

√
R2 − Ω2 + iΩ = i(Ω−

√
Ω2 −R2), (2.10)

allows us to combine the integrals for both the coherent part and the incoherent part. Finally
we get the self-consistency equation

R(x) exp(iΘ(x)) = exp(iβ)

∫
G(x− y) exp(iΘ(y))

Ω−
√

Ω2 −R2(y)

R(y)
, (2.11)

where β = π
2
− α.
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The Ott-Antonsen Ansatz

Apart from the self-consistency analysis, the Ott-Antonson Ansatz is another useful tech-
nique in the study of phase-coupled oscillators. Ott and Antonsen showed, in their pioneering
papers [46, 47], that for many systems of an infinite number of non-identical phase oscillators,
a wide class of states can be reduced to a system with a low number of degrees of freedom.
In this section, we will follow Ott and Antonsen’s original paper [46] to introduce what is
now known as the OA Ansatz to study the simplest Kuramoto model. Then we will show
two examples of its application in the study of chimera states.

OA Ansatz in the Kuramoto model

The Kuramoto model with all-to-all coupling is:

dθi
dt

= ωi −
K

N

N∑
j

sin(θi − θj). (2.12)

We define the order parameter Z ≡ 1
N

∑
j

exp(iθj), so that−K
N

N∑
j

sin(θi−θj) = Im[Z exp(−iθi)].
Considering N →∞, the state of the oscillator system at time t can be described by a con-
tinuous distribution function f(ω, θ, t), where∫ 2π

0

f(ω, θ, t)dθ = g(ω). (2.13)

Here, g(ω) is the time-independent oscillator frequency distribution. The number of oscilla-
tors is conserved, so the distribution satisfies the following equations:

∂f

∂t
+

∂

∂θ
(fv) = 0, (2.14)

v = ω +
K

2i
[(Z exp(−iθ)− Z∗ exp(iθ)], (2.15)

Z =

∫ 2π

0

dθ

∫ ∞
−∞

dωf exp(iθ). (2.16)

The following are the key steps of the OA Ansatz. First, expand f(ω, θ, t) in a Fourier
series in θ:

f(ω, θ, t) =
g(ω)

2π

{
1 + [

∞∑
n=1

fn(ω, t) exp(−inθ) + c.c.]
}
, (2.17)

where c.c. represents the complex conjugate. We deviate from Ott and Antonsen’s original
paper by letting fn(ω, t) to be the coefficient of exp(−inθ) for later convenience. Consider
a restricted class of fn(ω, t) such that fn(ω, t) = [a(ω, t)]n, where |a(ω, t)| 6 1 to avoid
divergence of the Fourier series. One way to motivate this Ansatz is to note that both the
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incoherent state and the partially synchronized state conform to fn = an. Thus the Ansatz
can be viewed as a family of distributions that connect these two states. Substituting this
series into Eq. (2.14) we get

∂a

∂t
= iωa− K

2
(Z∗a2 − Z), (2.18)

Z =

∫ ∞
−∞

dωg(ω)a(ω, t). (2.19)

Now let g(ω) be Lorentzian:

g(ω) =
∆

π[(ω − ω0)2 + ∆2]
. (2.20)

Without loss of generality, we set ω0 = 0 and ∆ = 1. With a contour integral in the upper
half ω-plane, we have Z(t) = a(i, t) and

dZ

dt
= −Z − K

2
(|Z|2Z − Z). (2.21)

Using polar coordinates, Z = R exp(iΘ), we have

dR

dt
= −1

2
KR3 − (1− 1

2
K)R, (2.22)

dΘ

dt
= 0. (2.23)

From Eq. (2.22), we conclude that when K < Kc = 2, R = 0 is a stable fixed point,
corresponding to the stable incoherent state. A supercritical bifurcation occurs at K = Kc as

we increase K: R = 0 becomes unstable and R =
√

1− Kc
K

becomes stable, corresponding to

the partially synchronized state. Thus, the process recasts the result obtained by Kuramoto’s
self-consistent analysis introduced in Chapter 1.

The Ott-Antonsen Ansatz greatly simplifies the original infinite-dimensional problem by
converting it to a two-dimensional system of ordinary differential equations. But we need to
be cautious: to make the method work, several conditions should be verified. Notice that in
the derivation, first we require |a(ω, t)| 6 1 to make the Fourier series converge, and second
we require a(ω, t) can be analytically continued from the real line into the complex ω-plane.
Ott and Antonsen showed that when these specified conditions are satisfied for t = 0, they
will continue to be satisfied for 0 < t <∞ [46]. And remarkably, they later showed that the
order parameter dynamics obtained by restriction to the reduced manifold are, in fact, the
only such attractors of the full system [47].

So far we have seen the power of OA Ansatz in Kuramoto model. In fact, this method
can be extended to many other cases. First, the distribution is not restricted to Lorentzian
distributions. For example, this method can be applied to g(ω) =

√
2

π(ω4+1)
, which has four
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poles in total. In this case, the Kuramoto model can be reduced to four ordinary differential
equations. Other generalizations include the Kuramoto model with external driving [105],
communities of phase oscillators [32, 71], or oscillators on a ring [35, 37, 38, 39, 41, 60], etc.
In the next sections, we introduce two examples where the OA Ansatz is used in the study
of chimera states.

OA Ansatz for a two-population phase model

In this section, we apply the Ott-Antonsen Ansatz to a two-population phase oscillator
model, which is used as a simple model which yields a chimera state [32]. The model
equations are

dθσi
dt

= ω −
2∑

σ′=1

Kσσ′

Nσ′

Nσ′∑
j=1

sin(θσi − θσ
′

j + α). (2.24)

Here σ = 1, 2 indicates the group number and Nσ is the number of oscillators in group σ.
To reveal the nonlocal property, let K11 = K22 = µ , K12 = K21 = ν and µ > ν. For
suitable parameter values, this system exhibits a chimera state—one group is synchronized
while the other is not. To explain the result, we consider the large N limit. Similar to the
Kuramoto model, we define fσ(θ, t) as the probability density of oscillators in population σ.
Conservation of probability gives

∂fσ

∂t
+

∂

∂θ
(fσvσ) = 0, (2.25)

where vσ is the velocity expressed as

vσ(θ, t) = ω −
2∑

σ′=1

Kσσ′

∫
sin(θ − θ′ + α)fσ

′
(θ′, t)dθ′. (2.26)

On the other hand, the order parameter in the large-N limit is

Zσ(t) =
2∑

σ′=1

Kσσ′

∫
exp(iθ′)fσ

′
(θ′, t)dθ′. (2.27)

Then vσ(θ, t) can be expressed in terms of Z:

vσ(θ, t) = ω +
1

2i
(Zσ exp(−iα) exp(−iθ)− Z∗σ exp(iα) exp(iθ)). (2.28)

Assuming the OA Ansatz, we take the probability density to be of the form

fσ(θ, t) =
1

2π

{
1 + [

∞∑
n=1

aσ(t)n exp(−inθ) + c.c.]
}
. (2.29)
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Combining the above equations we finally arrive at:

ȧ1 = iωa1 −
1

2
a2

1(K11a
∗
1 +K12a

∗
2) exp(iα) +

1

2
(K11a1 +K12a2) exp(−iα), (2.30)

ȧ2 = iωa2 −
1

2
a2

2(K22a
∗
2 +K21a

∗
1) exp(iα) +

1

2
(K22a2 +K21a1) exp(−iα). (2.31)

Now, let a1 = R1 exp(iΘ1) and a2 = R2 exp(iΘ2). A chimera state occurs when one of the
groups is synchronized. Without loss of generality, let’s assume the synchronized group is
group one. Then we have R1 = 1. Defining R = R2, ψ = Θ1−Θ2, we can reduce the system
to

Ṙ =
1−R2

2
[µR cos(α) + ν cos(ψ − α)], (2.32)

ψ̇ =
1 +R2

2R
[µR sin(α)− ν sin(ψ − α)]− µ sin(α)− νR sin(ψ + α). (2.33)

By analyzing this simple two-dimensional system, bifurcation properties of chimera states
can be found.

OA Ansatz for a ring of nonlocally coupled phase oscillators

In this section, we apply the OA Ansatz to a system of oscillators on a ring. The effective
equation we will arrive at is very useful in the analysis of chimera states. We can recover
the self-consistency equation of the previous section and we can also analyze the stability
of the chimera state by investigating the spectrum of the linearized operator of the effective
equation. The model equation of the system we investigated is:

∂θ(x, t)

∂t
= ω(x)−

∫ π

−π
G(x− y) sin[θ(x, t)− θ(y, t) + α] dy, (2.34)

where θ(x, t) is the phase of the oscillator located at position x. We suppose that an oscillator
at position x has intrinsic frequency ω(x), and assume that ω(x) is continuous; G(x− y) is
the coupling kernel. Introducing the probability density function f(x, ω, θ, t) to characterize
the state of the system, we have the continuity equation

∂f

∂t
+

∂

∂θ
(fv) = 0, (2.35)

where v(x, t) satisfies the relation

v(x, t) = ω(x)−
∫ π

−π
G(x− y)f ′(y, t) dy, (2.36)

and f ′(y, t) =
∫∞
−∞

∫ π
−π sin(θ − θ′ + α)f(y, ω, θ′, t) dθ′dω. We also define the local order

parameter

Z(x, t) =

∫ π

−π
G(x− y)

∫ ∞
−∞

∫ π

−π
exp(iθ′)f(y, ω, θ′, t) dθ′dωdy. (2.37)
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Then

v(x, t) = ω(x)− 1

2i
(Z∗(x, t) exp(i(θ + α))− Z(x, t) exp(−i(θ + α))]. (2.38)

The above equations can be recast in a more convenient form using the OA Ansatz

f(x, ω, θ, t) =
g(x, ω)

2π
[1 +

∞∑
n=1

an(x, ω, t) exp(−inθ) + c.c.]. (2.39)

Here g(x, ω) represents the distribution of natural frequencies at each x. Matching terms
proportional to different powers of exp(iθ), we obtain

∂a(x, ω, t)

∂t
= iωa(x, ω, t) +

1

2
[Z(x, t) exp(−iα)− Z∗(x, t) exp(iα)a2], (2.40)

where the complex order parameter Z(x, t) is given by

Z(x, t) =

∫ π

−π
G(x− y)

∫ ∞
−∞

g(x, ω)a(y, ω, t)dω dy. (2.41)

In the following we take

g(x, ω) =
D

π((ω − ω(x))2 +D2)
. (2.42)

Then, defining z(x, t) ≡ a(x, ω(x) + iD, t) and performing contour integration, we obtain

Z(x, t) =

∫ π

−π
G(x− y)z(y, t) dy. (2.43)

For later convenience, we define a linear operator K such that K[z] ≡
∫ π
−π G(x−y)z(y)dy. In

the limit D → 0 the distribution function g reduces to a delta function. The corresponding
quantity z(x, t) satisfies

∂z(x, t)

∂t
= iω(x)z +

1

2
[Z(x, t) exp(−iα)− Z∗(x, t) exp(iα)z2], (2.44)

where Z(x, t) is given by (2.43). Equations (2.43)–(2.44) constitute the required self-consistency
description of the nonlocally coupled phase oscillator system with frequency distribution
ω(x).

An important class of solutions of Eq. (2.44) consists of stationary rotating solutions,
i.e., states of the form

z(x, t) = z̃(x) exp(−iΩt), (2.45)

whose common frequency Ω satisfies the nonlinear eigenvalue relation

i [Ω + ω(x)] z̃ +
1

2

[
exp(−iα)Z̃(x)− z̃2 exp(iα)Z̃∗(x)

]
= 0. (2.46)
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Here z̃(x) describes the spatial profile of the rotating solution and Z̃ ≡
∫ π
−π G(x− y)z̃(y) dy.

Solving Eq. (2.46) as a quadratic equation in z̃ we obtain

z̃(x) = exp(iβ)
Ω + ω(x)− µ(x)

Z̃∗(x)
=

exp(iβ)Z̃(x)

Ω + ω(x) + µ(x)
. (2.47)

The function µ is chosen to be [(Ω+ω)2−|Z̃|2]1/2 when |Ω+ω| > |Z̃| and i[|Z̃|2−(Ω+ω)2]1/2

when |Ω + ω| < |Z̃|. This choice is dictated by stability considerations, and in particular
the requirement that the essential spectrum of the linearized equation (with respect to the
rotating solution) is either stable or neutrally stable (more detail will be provided in later
chapters). The coherent (incoherent) region corresponds to the subdomain of [−π, π] where
|Ω +ω(x)| falls below (above) |Z̃(x)|. Substitution of expression (2.47) into the definition of
Z̃(x) now leads to the self-consistency relation

Z̃(x) =

〈
G(x− y) exp(iβ)

Ω + ω(y)− µ(y)

Z̃∗(y)

〉
. (2.48)

Here the bracket 〈·〉 is defined as the integral over the interval [−π, π], i.e.,

〈u〉 ≡
∫ π

−π
u(y) dy. (2.49)

If we write Z̃(x) = R(x) exp(iΘ(x)), and refer to R(x) and Θ(x) as the amplitude and phase
of the complex order parameter Z̃(x), we can obtain

R(x) exp(iΘ(x)) = exp(iβ)

∫
G(x− y) exp(iΘ(y))

Ω + ω(y)−
√

(Ω + ω(y))2 −R2(y)

R(y)
.

(2.50)
Setting ω(y) = 0 will recover the equation obtained from Kuramoto’s original self-consistency
argument.

Temporal stability of a stationary rotating solution is investigated via a linearization of
Eq. (2.44). We write

z(x, t) = (z̃(x) + v(x, t)) exp(−iΩt), (2.51)

where |v(x, t)| � 1, implying that v is a small perturbation. By substituting Eq. (2.51) into
Eq. (2.44) and neglecting high order terms, we obtain the linear evolution equation

vt = L[v] ≡ iµ(x)v +
1

2

[
exp(−iα)V (x, t)− exp(iα)z̃2V ∗(x, t)

]
, (2.52)

where V (x, t) = K[v] ≡
∫ π
−π G(x− y)v(y, t)dy, and µ(x) ≡ ω + Ω + i exp(iα)z̃Z̃∗.

The stability of the rotating solution is determined by the spectrum of the linear operator
L. As Eq. (2.52) contains complex conjugate terms, we should expand the eigenfunction as

v(x, t) = exp(λt)v1(x) + exp(λ∗t)v∗2(x), (2.53)
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leading to the eigenvalue problem

λ

(
v1

v2

)
=

1

2

(
2iµ+ exp(−iα)K − exp(iα)z̃2K
− exp(−iα)z̃∗2K −2iµ∗ + exp(iα)K

)(
v1

v2

)
. (2.54)

Since K is compact [41], its spectrum consists of two parts, a continuous spectrum given by
{iµ(x),−iµ∗(x)} with x ∈ [−π, π] and a (possibly empty) point spectrum. The spectrum is
in addition symmetric with respect to the real axis: if λ is an eigenvalue with eigenvector
(v1, v2)T , then λ∗ is an eigenvalue with eigenvector (v∗2, v

∗
1)T . The continuous spectrum is

stable (negative) or neutrally stable (purely imaginary). Thus the stability of the chimera
states is determined by the point spectrum λ = λp. For this purpose we rewrite Eq. (2.54)
in the form (

2− exp(−iα)K
λp−iµ

exp(iα)z̃2K
λp−iµ

exp(−iα)z̃∗2K
λp+iµ∗

2− exp(iα)K
λp+iµ∗

)(
v1

v2

)
= 0. (2.55)

The above approach is closest to that of Omel’chenko [39] who proved a number of general
results about Eq. (2.1) for general coupling functions G(x), while focusing on two simple
choices, G(x) = (2π)−1(1 + A cosx), 0 < A < 1 [27, 31], and G(x) = (2πr)−1 for |x| ≤ πr
and zero otherwise [35, 41]. The detailed numerical computation of the point eigenvalues λp
is described in later chapters.

2.3 Recent progress

Fascinated by the unique property of chimera states, researchers have put much effort in
this wonderful area of study. In this subsection, we summarize some of the relevant results,
partially following Abrams’ review paper [106].

1. Models that exhibit chimera states.
Chimera states were first discovered in a ring of nonlocally coupled phase oscillators,

which is still the most popular system in which to study the properties of the chimera state
[26, 27, 31, 33, 35, 37, 38, 39, 41, 60, 76]. In the model Kuramoto used, he adopts the expo-
nential coupling function G(x− y) ∝ exp(−κ|x− y|). This is a realistic assumption, but the
self-consistency equations contain a large number of degrees of freedom and hence are hard
to solve. Strogatz and Abrams studied a simpler model that made the analysis much easier
without losing any qualitative property of the chimera state [27]. The choice of coupling
function they use is G(x− y) = 1

2π
(1 +A cos(x− y)). One reason to motivate this choice of

coupling is that the right-hand side of Eq. (2.1) is a convolution integral, and trigonomet-
ric functions behave nicely under convolution. This choice of coupling function reduces the
degrees of freedom of the self-consistency equations significantly. The self-consistency equa-
tions turn out to consist of four algebraic equations. With this simplification, the authors
are able to discuss the birth and death of chimera states in the parameter space. Other
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choices of coupling functions include piecewise constant functions [35, 41, 75], piecewise lin-
ear functions [38] and combinations of cosine functions [60]. Using these various coupling
schemes, scientists have been able to find multi-cluster chimera states, or even traveling
chimera states.

It is natural to extend the model from one dimension to higher dimensions. Chimera
states have been reported on an infinite plane [64, 65, 67], a torus [68, 69] and a sphere [70].
An interesting result on two-dimensional systems is the existence of spiral chimeras which
consist of an incoherent core surrounded by coherent rotating spiral arms. Spiral chimeras
have also been found on a plane, a torus and the surface of a sphere.

For the models mentioned above, the network structures on which the systems are built
have a clear spatial interpretation. A two-population phase model was provided in 2008
[32], and is now considered the simplest model exhibiting chimera states. Later this model
was extended to a three-population network [71] and community-structured networks [72].
Apart from these simple network structures, Laing et al. considered a two-population system
with randomly removed links and observed that chimera states are robust to small structure
perturbations [36]. Yao et al. carried out a similar analysis on a ring of oscillators [73]. Zhu
et al. analyzed an oscillator system built on a randomly generated Erdös-Rényi network and
on scale-free networks [74].

Chimera states are mostly studied in phase oscillator systems. However, they can also
be found in systems where the oscillators have an amplitude as well as phase. In fact, both
one-dimensional and two-dimensional chimera states were first discovered in the nonlocally
coupled complex Ginzburg-Landau equation by Kuramoto et al. [26, 64, 65, 66]. The
equations they derived from a generic reaction-diffusion system are

∂W

∂t
= (1 + iω0)W − (1 + ib)|W |2W +K(1 + ia)(W̄ −W ), (2.56)

W̄ (x, t) =

∫
G(x− y)W (y, t)dy. (2.57)

When the coupling is weak, these equations reduce to phase-coupled equations of the type
discussed here. Sethia et al. [50] studied the nonlocal complex Ginzburg-Landau equation
in the strong coupling limit. A new class of chimera states was found, where the incoherent
regions display significant amplitude fluctuations. Other works include a paper by Laing,
who extended the two-population phase oscillator model to a Stuart-Landau oscillator model,
and showed that the expected bifurcations persist [51].

Chimera states have also been observed in systems of coupled iterated maps. Omel’chenko
et al. [58] discussed a transition between coherent and incoherent dynamics in the system

zt+1
i = f

(
zti
)

+
σ

2P

i+P∑
j=i−P

(
f
(
ztj
)
− f

(
zti
))
, (2.58)

where the zi are real dynamical variables and t is discrete time; f(z) is a one-dimensional map
such as the logistic map f(z) = Az(1− z). Depending on the coupling strength σ and cou-
pling range P , they observed a combination of period-adding in space and period-doubling in
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time. Later they showed that similar behavior exists in time-continuous nonlocally coupled
chaotic systems such as Rössler systems [59].

2. Stability of chimera states
Temporal stability of a stationary solution is always of interest in the area of dynamics.

Wolfrum et al. were the first to present a detailed analysis of the spectral properties of
chimera states on a ring of oscillators [41]. They numerically computed the Lyapunov spec-
trum and studied its behavior for an increasing number of oscillators. They showed that as
the system size grows, the hyperchaotic part of the spectrum tends to zero. This is consistent
with their other work which numerically shows that chimera states are long-lived transients
when the size of the system is finite and that the transience time grows exponentially with
the system size [75].

The stability of chimera states can also be analyzed via the effective equation (2.44).
It was shown that the continuous spectrum of the linearized operator has non-positive real
part, so the stability is determined by the point spectrum only [39] (see Section 2.2). In
most studies of chimera states, which explore the parameter region β ≈ 0, there is no point
spectrum to the right of the imaginary axis. In [60], we investigated the dependence of the
real part of the point eigenvalues on the parameter β, and showed that in the system we
investigated, chimera states lose stability at some critical value β = βc. This is consistent
with direct numerical simulation.

3. Experiment
The research we discussed thus far focused on numerical simulations. It is of interest to

ask if chimera states are robust enough to exist in nature, or at least in the laboratory.
In 2012, two groups of researchers reported that chimera states were observed in ex-

periment. The first group used coupled Belousov-Zhabotinsky oscillators to build a two-
population model similar to [32], and observed various dynamical patterns including chimera
states and full synchronization [54]. The second group observed chimeras in a system of cou-
pled map lattices [77] as originally proposed in [58]. The critique of these two experiments
is their reliance on the computer—they still look like a simulation [78]. In 2013, Martens et
al. realized chimera states in a mechanical oscillator system [79] and successfully addressed
this concern.
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Chapter 3

Multi-cluster and traveling chimera
states in identical nonlocal
phase-coupled oscillators

3.1 Introduction

In Chapter 2, we introduced a system of identical phase-coupled oscillators with nolocal
coupling. In the continuum limit, the model equation is written as

∂θ

∂t
= ω −

∫
G(x− y) sin[θ(x, t)− θ(y, t) + α] dy. (3.1)

In this system, a surprising new state called a chimera state was discovered for the coupling
function G(y) = κ

2
exp(−κ|y|) [26]. These states consist of a domain or domains of coherent,

phase-locked oscillators embedded in a background of incoherent oscillators, and resemble
states consisting of laminar flow embedded within a turbulent state familiar from studies of
plane Couette flow [28, 29, 30].

To obtain chimera states within the system (3.1), it is usually believed that two basic con-
ditions are important [31]: the coupling should be nonlocal and the parameter α should be
nonzero. In fact, the chimera states are mostly found when α ≈ π

2
. These numerical observa-

tions inform many of the subsequent studies of the chimera state [32, 33, 34, 35, 36, 37, 38, 39].
In these papers, the coupling function G(x) is chosen to be a nonnegative even function that
decreases monotonically with |x|. In this chapter, we introduce a model with G(x) that is
even but relax, following [39], both the monotonicity requirement and the requirement that
it be nonnegative. Our motivation for this generalization of the coupled oscillator problem
comes from biology, and in particular neural systems [40], in which negative coupling at
large separations is quite typical. With this coupling, we have found a much richer variety
of chimera states, including a remarkable traveling chimera state. Some of these states, such
as multi-cluster chimera states, are similar to those reported recently in [33, 37, 38]. Of
these Ref. [33] reports the presence of multi-cluster chimera states in a particular time-delay
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system while Refs. [37] and [38] report a 2-cluster state and an evenly spaced multi-cluster
state, respectively. However, no analytical description of these states or of their stability
properties has been provided.

We consider phase oscillators distributed uniformly on a one-dimensional ring of length
2π. The value of ω can be set to zero by going into a rotating frame. The model equation
then takes the form

∂θ

∂t
= −

∫ π

−π
G(x− y) sin[θ(x, t)− θ(y, t) + α] dy (3.2)

with α ∈ [0, π/2]. As we did in previous chapters, we define β ≡ π
2
−α for later convenience.

Two families of coupling functions are considered:

G(1)
n (x) ≡ cos(nx), G(2)

n (x) ≡ cos(nx) + cos[(n+ 1)x],

where n is an arbitrary positive integer. In Fig. 3.1, we show some profiles of G
(2)
n (x);

−2 0 2

−2

0

2

x

G
(x

)

(a)

−2 0 2

−2

0

2

x

G
(x

)

(b)

−2 0 2

−2

0

2

x

G
(x

)

(c)

Figure 3.1: Profile of G
(2)
n (x) for (a) n = 1; (b) n = 2; (c) n = 3.

the profiles of G
(1)
n (x) is quite familiar. In each case the overall strength of the coupling

has been set equal to unity by rescaling time. With this coupling, it follows that if θ(x, t)
is a solution so is θ(−x, t). In view of the periodic boundary conditions this implies that
Eq. (3.2) possesses O(2) symmetry [87]. In particular we are guaranteed the presence of
reflection symmetric solutions; such solutions cannot drift in the x-direction and we refer
to them as stationary states or standing waves. On the other hand solutions that break
the symmetry x → −x are expected to drift in the x-direction, i.e., along the ring, and we
refer to such solutions as traveling waves; for each solution that drifts to the right there is a
solution that drifts to the left, obtained by reflection in x.

The approach we follow is summarized in Chapter 2. Our results for G
(1)
n (x) resemble

known results for G(x) = (2π)−1(1 +A cosx), 0 < A < 1, in that we identify both single and
multi-cluster chimeras with evenly distributed clusters, indicating that the nonzero mean of
G(x) in [39] does not play a major role. On the other hand the situation changes dramatically

when the coupling G
(2)
n (x) is used instead. This coupling allows us to identify multi-cluster
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chimeras with unevenly distributed clusters as well as two types of traveling structures: a
traveling coherent state and a single-cluster traveling chimera state. To characterize these
states we solve in each case a nonlinear integral equation for the complex order parameter
describing the state in the continuum limit, and compare the result with extensive simulations
using large numbers of oscillators that are necessary to reduce the effects of fluctuations due
to finite oscillator number. In addition, we study the linear stability of these states, and
examine their bifurcations as the parameter β is varied. Some of these lead to hysteretic
transitions to different states, while others lead to nearby stable states.

This chapter is organized as follows. In Sections 3.2 and 3.3 we study the system (3.2)

with the coupling functions G
(1)
n (x) and G

(2)
n (x), respectively. In both cases we describe a

self-consistency analysis of the chimera states found, focusing on multi-cluster chimera and
on their stability properties. Section 3.3 also reports our results on the two traveling states
identified in our numerical simulations with G

(2)
n (x) and formulates a nonlinear complex-

valued eigenvalue problem for the drift speed and rotation frequency of these states. For
the traveling coherent state the solution of this problem is in excellent agreement with the
results of numerical simulations despite the episodic nature of the drift near the onset of the
drift instability. A brief conclusion is provided in Section 3.4 together with directions for
future work.

3.2 G
(1)
1 (x) coupling

In this section, we consider the case G
(1)
n (x) ≡ cos(nx). Here and elsewhere all numerical

simulations are performed using a fourth-order Runge-Kutta method with time step δt =
0.025 or δt = 0.01. The ring is discretized into N oscillators with N ranging from 512 to
4096.

Splay states

Synchronized states with
θ(x, t) = −Ωt+ qx, (3.3)

are referred to as splay states [23, 25] and form an important class of solutions to both locally
and globally-coupled phase oscillator systems. Here we use −Ω instead of Ω to make the
description of splay states consistent with the description of chimera states. In the present
context the frequency Ω satisfies

Ω =

∫ π

−π
G(y) sin(qy + α) dy (3.4)

and q is an integer in order that periodic boundary conditions be satisfied. States of this
type travel with speed c = Ω/q, i.e., to the right if Ω > 0 and q > 0 (positive slope) and to
the left if Ω > 0 and q < 0 (negative slope) and vice versa if Ω < 0. The fully synchronized
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Figure 3.2: Stable splay states with (a) G
(1)
1 (x) ≡ cos(x) and (b) G

(1)
2 (x) ≡ cos(2x). In both

cases β = 0.1 and N = 512. State (a) travels with speed c = 3.124, while (b) travels with
speed c = 1.563, both towards the right.

state corresponds to the special splay state with q = 0 and does not travel. Similar states
exist in systems of nonidentical phase oscillators as well [42, 60].

To analyze the linear stability properties of these states, we follow [25] and let θ(x, t) =
−Ωt+ qx+ η(x, t), where |η| � 1. The linearized equation takes the form

∂η

∂t
=

∫ π

−π
G(x− y) cos [q(x− y) + α] [η(y, t)− η(x, t)] dy. (3.5)

Expanding Eq. (3.5) gives

∂η

∂t
=

∫ π

−π
G(x− y) cos [q(x− y)] cos(α)η(y, t) dy

−
∫ π

−π
G(x− y) sin [q(x− y)] sin(α)η(y, t) dy

−
∫ π

−π
G(x− y) cos [q(x− y)] cos(α)η(x, t) dy, (3.6)

which admits solutions of the form η ∼ exp(λmt) exp(imx). Here λm is the linear growth
rate that can be expressed as

λm =
1

2

(
exp(−iα)Ĝq+m + exp(iα)Ĝq−m

)
− Ĝq cosα (3.7)

with Ĝq ≡
∫ π
−π G(y) exp(iqy) dy. This convention is adopted throughout this chapter as the

definition of a Fourier coefficient. For the coupling function G
(1)
n (x), Ĝq = π(δn+q + δn−q).

Here δi stands for Kronecker delta function which equals 1 when i = 0 and equals 0 otherwise.
When α is equal to π

2
, all the splay states are marginally stable. With a random incoherent

initial condition, the system tends to remain incoherent as time evolves. When α < π
2
, the
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Figure 3.3: Chimera states with (a) G
(1)
1 (x) ≡ cos(x) and (b) G

(1)
2 (x) ≡ cos(2x) obtained

from random initial conditions. In both cases β = 0.1 and N = 512.

splay states with |q| = n become linearly stable while all the others become unstable. This
is consistent with our numerical simulations. Snapshots of two different stable splay states
are shown in Fig. 3.2. Starting from an unstable splay state with small random noise added
or simply from a completely incoherent state with R = 0 (see below) we find that the system
always evolves into one of two attractors: a stable splay state with |q| = n or a multi-cluster
chimera state. The system is therefore bistable, with the final state selected by the initial
condition chosen, cf. [33]. The properties of the multi-cluster chimera states are discussed
in the next subsection.

Multi-cluster chimera states

As mentioned above, multi-cluster chimera states are obtained in numerical simulations
with the coupling function G

(1)
n (x) and different values of n. Figures 3.3 and 3.4 show the

results for n = 1, 2, 3 and 4 and appropriate values of β, all at t = 5000. In previous
studies [26, 27, 32], chimera states were only observed when starting from carefully prepared
initial conditions while here chimera states are easily obtained even from random initial
conditions. This is also the case in the system with nonlinear nonlocal coupling described in
[43]. This suggests the chimera states with the coupling function G

(1)
n (x) have a larger basin

of attraction than with the exponential coupling function used by Kuramoto and Battogtokh
[26]. However, as in the previous studies, chimera states first appear when β is small but
nonzero, while for large β the splay state is preferred and appears more and more frequently
when the system is initialized using random initial conditions.

The chimeras shown in Figs. 3.3 and 3.4 are stationary in the sense that they do not
display any organized or coherent motion. This is a consequence of the symmetry of these
states under spatial reflection. Of course, owing to the incoherence of the surrounding
oscillators and their finite number, each coherent cluster will undergo fluctuations in both
its location and rotation frequency, although the clusters remain, on average, evenly spaced.
These fluctuations are quite small for the simulations reported here and become even smaller
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Figure 3.4: Chimera states with (a) G
(1)
3 (x) ≡ cos(3x) and (b) G

(1)
4 (x) ≡ cos(4x) obtained

from random initial conditions. (a) β = 0.05 and N = 512; (b) β = 0.02 and N = 1024.

as the number N of oscillators increases. Our simulations suggest that the length of the
cluster and the positions of the bounding fronts execute zero-mean Brownian motion with
standard deviation σ(N) (see below).

For G
(1)
n (x) ≡ cos(nx), the number of coherent clusters in the chimera state is always 2n.

In fact, if θ(x, t) is a solution for G
(1)
1 (x), then θm(x, t) ≡ θ(mx, t) is a solution for G

(1)
m (x).

Thus each multi-cluster chimera with G
(1)
n (x) is in fact a concatenation of n single-cluster

chimeras with G
(1)
1 (x).

To study these chimera states, we adopt the effective description as in Chapter 2. The
effective equation for the current case can be written as:

∂z(x, t)

∂t
=

1

2

[
exp(−iα)Z(x, t)− exp(iα)z2(x, t)Z∗(x, t)

]
, (3.8)

where Z(x, t) ≡ Kz(x, t) and K is a compact linear operator defined by

Kv(x, t) ≡
∫ π

−π
G(x− y)v(y, t) dy. (3.9)

The variable z(x, t) can be interpreted as local mean field [41], which can be defined as the
local average of exp[iθ(x, t)],

z(x, t) ≡ lim
δ→0+

1

δ

∫ δ/2

−δ/2
exp(iθ(x+ y, t)) dy. (3.10)

The local mean field z(x, t) effectively smooths out the phase in the incoherent region and
yields a well-defined dynamical system.

The chimera states reported above belong to a special class of solutions of Eq. (3.8)
referred to as standing waves [45]. Solutions belonging to this class are stationary in an
appropriate rotating frame. We assume that this frame has angular frequency −Ω relative
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Figure 3.5: (Color online) (a) The phase distribution θ in a chimera state with cou-

pling G
(1)
1 (x) ≡ cos(x). (b) The local order parameters R (red dashed line) and Θ (blue

dotted line) computed from Eq. (3.10) and the definitions z(x, t) ≡ exp(−iΩt)z̃(x) and
Z̃ ≡ R(x) exp(iΘ(x)) = Kz̃. The simulation was done with β = 0.1 and N = 512.

to the original frame. In this case the rotating wave takes the form z(x, t) ≡ exp(−iΩt)z̃(x)
and Eq. (3.8) reduces to

iΩz̃(x) +
1

2

[
exp(−iα)Z̃(x)− z̃2(x) exp(iα)Z̃∗(x)

]
= 0, (3.11)

where Z̃(x) ≡ exp(iΩt)Z(x, t). Solving Eq. (3.11) as a quadratic equation in z̃ we obtain
[41]

z̃(x) = exp(iβ)
Ω− µ(x)

Z̃∗(x)
=

exp(iβ)Z̃(x)

Ω + µ(x)
, (3.12)

where, for reasons explained in [41], µ(x) is equal to
√

Ω2 − |Z̃(x)|2 when |Ω| > |Z̃(x)| and

i
√
|Z̃(x)|2 − Ω2 when |Ω| < |Z̃(x)|. As explained below this choice of root also corresponds

to solutions with a stable essential spectrum and hence to solutions that are potentially
stable. Since Z̃(x, t) ≡ Kz̃(x, t), Eq. (3.12) is equivalent to the self-consistency relation [26]

Z̃(x) ≡ R(x) exp(iΘ(x)) = exp(iβ)

∫ π

−π
G(x− y) exp(iΘ(y))

Ω− µ(y)

R(y)
dy. (3.13)

The x dependence of the quantity µ arises from its dependence on the unknown function
Z̃(x). Here R > 0 and Θ are real-valued functions of x and play the role of local order
parameters.

Equation (3.13) may be applied to our model (Fig. 3.5). Since Eq. (3.2) is invariant
under (i) translation in x, and (ii) phase rotation (i.e., translation in θ), it follows that if
R(x) exp(iΘ(x)) is a solution of Eq. (3.13), then so is R(x+x0) exp(i [Θ(x+ x0) + Θ0]). Here
x0 and Θ0 are arbitrary real constants. Using this property, we pick x0 and Θ0 such that
the self-consistency relation for the G

(1)
n (x) coupling takes the form

R exp(iΘ) = a cos(nx) + ib sin(nx), (3.14)
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where a > 0 and b are real constants satisfying

a = exp(iβ)〈h(y) exp(iΘ(y)) cos(ny)〉, (3.15)

ib = exp(iβ)〈h(y) exp(iΘ(y)) sin(ny)〉. (3.16)

The bracket 〈·〉 is defined by 〈f〉 =
∫ π
−π f(y) dy.

This procedure can be applied to the local order parameters R(x) and Θ(x) shown in
Fig. 3.5(b). Moreover, since both R and Θ are even functions of x with respect to a suitable
origin, it follows that b = 0 except at phase discontinuities where R = 0 (Fig. 3.5(b)), and
hence that R(x) = R0| cos(nx)|, R0 = a. The self-consistency relation thus becomes

R2
0 = exp(iβ)

〈
Ω−

√
Ω2 −R2

0 cos2(ny)

〉
. (3.17)

For any integer n, we have∫ π

−π
F (cos(ny))dy =

1

n

∫ nπ

−nπ
F (cos(y′))dy′ =

∫ π

−π
F (cos(y))dy (3.18)

for any integrable function F . Based on this observation, we can see that the solution of
Eq. (3.17) is independent of n provided n is an integer. With a similar change of variable
process, we can prove this is also true for a half-integer n.
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Figure 3.6: (a) The quantities R0 and Ω, and (b) the coherent fraction e, all as functions of

β for the 2-cluster chimera state with G
(1)
1 (x) coupling (Fig. 3.5(a)).

Equation (3.17) can be regarded as two equations (real and imaginary parts) with two
unknowns a and Ω. Solving these equations by numerical continuation with n = 1 and
β = 0.1 as the starting point we can determine the dependence of a, Ω and the coherent
fraction e on β (Fig. 3.6). The coherent fraction e is defined as the ratio of the total length
of coherent clusters to the spatial domain size, 2π. The starting values of a and Ω are first
obtained by temporal simulation and then corrected via the self-consistency relation (3.17).
The plots indicate the 2-cluster chimera states are born from an incoherent state with R > 0
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as β increases from zero. Even though the self-consistency relation indicates the existence
of chimera states for 0 < β < π/2, such states are not necessarily stable or have a large
enough basin of attraction to be observed in numerical simulations. For example, starting
from the 2-cluster chimera state in Fig. 3.5(a), we increased β from 0.1 in small steps, each
time evolving the system until it reached a steady chimera solution. This process failed for
the first time at β ≈ 0.170±0.005, where the solution evolved into a |q| = 1 splay state. The
calculation was repeated with four different choices of N , N = 512, 1024, 2048 and 4096,
with essentially identical results.

Linear stability of the chimera states can be studied by linearizing Eq. (3.8) about z̃(x),
as described in Chapter 2:

∂v(x, t)

∂t
= iµv(x, t) +

1

2

[
exp(−iα)V (x, t)− z̃2(x, t) exp(iα)V ∗(x, t)

]
. (3.19)

Here v(x, t) represents a small deviation from z̃ and V (x, t) ≡ Kv(x, t). This equation is
solved by

v(x, t) = exp(λt)v1(x) + exp(λ∗t)v∗2(x), (3.20)

leading to the eigenvalue problem

λ

(
v1

v2

)
=

1

2

(
2iµ+ exp(−iα)K − exp(iα)z̃2K
− exp(−iα)z̃∗2K −2iµ∗ + exp(iα)K

)(
v1

v2

)
. (3.21)

The spectrum consists of two parts, a continuous spectrum given by {iµ(x),−iµ∗(x)} with
x ∈ [−π, π] and a point spectrum. The continuous spectrum is stable or neutrally stable.
Thus the stability of the chimera states is determined by the point spectrum. To compute
unstable point eigenvalues λp, we rewrite Eq. (3.21) in the form(

2− exp(−iα)K
λp−iµ

exp(iα)z̃2K
λp−iµ

exp(−iα)z̃∗2K
λp+iµ∗

2− exp(iα)K
λp+iµ∗

)(
v1

v2

)
= 0 (3.22)

and define f ≡ 1
4

exp(−iα)
λp−iµ , f ∗ ≡ 1

4
exp(iα)
λp+iµ∗

, g ≡ 1
4

exp(iα)z̃2

λp−iµ , and g∗ ≡ 1
4

exp(−iα)z̃∗2

λp+iµ∗
. Note that

f ∗ and g∗ are not necessarily the complex conjugate of f and g, as λp can be complex.
As suggested in [39], it is convenient to solve the eigenvalue problem using Fourier basis
functions, especially so since the coupling function is sinusoidal. Equation (3.22) then takes
the form ∑

m

Blmv̂m = 0, (3.23)

where

Blm =

(
πδl,m − f̂l−mĜm ĝl−mĜm

ĝ∗l−mĜm πδl,m − f̂ ∗l−mĜm

)
,

v̂m =

(
v̂1,m

v̂2,m

)
,
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and f̂l, f̂
∗
l , ĝl, ĝ

∗
l are the Fourier coefficients of f , f ∗, g and g∗, respectively; the latter are

defined by f̂l =
∫ π
−π f exp(ilx)dx, etc.

The point eigenvalue λp satisfies the condition det(B(λp)) = 0. With the coupling func-

tion G
(1)
n we obtain

det


1− f̂0 ĝ0 −f̂−2n ĝ−2n

ĝ∗0 1− f̂ ∗0 ĝ∗−2n −f̂ ∗−2n

−f̂2n ĝ2n 1− f̂0 ĝ0

ĝ∗2n −f̂ ∗2n ĝ∗0 1− f̂ ∗0

 = 0, (3.24)

or equivalently

w(λ) ≡ det


1− f̂0 −f̂−2n ĝ0 ĝ−2n

−f̂2n 1− f̂0 ĝ2n ĝ0

ĝ∗0 ĝ∗−2n 1− f̂ ∗0 −f̂ ∗−2n

ĝ∗2n ĝ∗0 −f̂ ∗2n 1− f̂ ∗0

 = 0. (3.25)

The resulting point eigenvalue is computed using continuation based on Newton’s method.
For the chimera state in Fig. 3.5(a) the calculation shows that an unstable real point eigen-
value emerges from the continuous spectrum as β increases above β ≈ 0.17, in agreement
with the result from direct numerical simulation. To confirm that there is only one unsta-
ble point eigenvalue, we evaluate the integral 1

2πi

∮
w′(λ)/w(λ) dλ for closed contours in the

upper half of the complex λ plane. Since the integral is consistently equal to 1 there are
no additional unstable point eigenvalues. Figure 3.7(a) shows the spectrum of Eq. (3.21)
when β ≈ 0.83 while Fig. 3.7(b) shows the point eigenvalue λp as a function of β. The
corresponding eigenvector is shown in Fig. 3.8 and is symmetric under reflection x→ −x.
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Figure 3.7: (a) Spectrum of the linearized operator in Eq. (3.21) for G
(1)
1 when β ≈ 0.83.

(b) Dependence of the point eigenvalue λp on β.

As mentioned earlier, owing to the finite number of oscillators in the simulations, each
coherent cluster in a multi-cluster chimera undergoes fluctuations in both its location and
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Figure 3.8: The eigenvector (v1, v2) of the unstable point eigenvalue with coupling G
(1)
1 (x)

at threshold. Left panels: |v1(x)| and |v2(x)|. Right panels: phase of v1(x) and v2(x). The
phase jumps by ±π whenever the modulus vanishes.

rotation frequency, although the clusters remain on average evenly spaced. Here we examine
the details of the associated fluctuations numerically for the case n = 1 using several different
values of N : 256, 362, 512, 724, 1024, 1448, and 2048. For each value of N , we collect data
based on time simulation of a 2-cluster chimera state starting with three different but initial
conditions with R ≈ 0. The total simulation time for each run is 5000. To avoid initial
transients data points between t = 0 and 1000 are excluded from the calculation of the
statistics.

To obtain the location and rotation frequency of each coherent cluster, we compute
the discrete version of the local order parameter Z(N) ≡ 2π

N

∑N
m=1 G(x−xm) exp(iθm), where

xm = 2πm
N

and θm = θ(xm), and compare it with the general form of the local order parameter

{a cos[n(x− x0)] + ib sin[n(x− x0)]} exp(−i
∫

Ω dt′) (3.26)

to obtain the real coefficients x0, a, b, and Ω, all of which fluctuate as time evolves. Figure 3.9
shows a sample plot of the position x0 of one of the coherent clusters as a function of t when
β = 0.1 and N = 256. Because of the reflection symmetry of this state on average we expect
the position x0 to undergo fluctuations with zero mean, cf. [35].

The dynamics of ẋ0(t), Ω(t)−Ω, and a(t)−a are modeled well by a Gaussian white noise
η(t) satisfying η(t)η(t′) = σ2δ(t − t′). Figure 3.10 shows the dependence of the standard
deviation σ on log2N for ẋ0(t), Ω(t) − Ω, and a(t) − a. The results show that σ scales as
N−0.523 for ẋ0, N−0.536 for Ω and N−0.515 for a. For comparison, for a step-like coupling
function and a 1-cluster chimera the corresponding result is σ ∼ N−0.845 [35].

3.3 G
(2)
n coupling

In this section we consider the case with the coupling function G
(2)
n .
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Figure 3.9: The position x0 of a coherent cluster as a function of t in a chimera state obtained
with the coupling G

(1)
1 (x) when β = 0.1 and N = 256.
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Figure 3.10: The dependence of the standard deviation σ of (a) x0, (b) Ω−Ω, and (c) a− a
on log2N when β = 0.1.

Splay states

Splay states with G
(2)
n and their linear stability properties are determined as for G

(1)
n .

The growth rate λm for an eigenmode of the form exp(imx) still satisfies the relation (3.7)
but this time with

Ĝq = π(δn+q + δn−q + δn+1+q + δn+1−q). (3.27)

The |q| = n, n+ 1 splay states become linearly stable for nonzero β while all the other splay
states become unstable. Figure 3.11 shows the frequency Ω for the stable q = 3, 4 splay states
for G

(2)
3 coupling as a function of β together with their drift speeds c = Ω/q. This speed is

positive, implying that positive slope splay states travel to the right. As before the final state
reached from random initial conditions can be either a splay state with |q| = n or n+ 1, or
a stationary multi-cluster chimera state. However, this time we have also identified a family
of entirely new states that can also be reached from random initial conditions: traveling
chimera states. Traveling coherent states are also present, as discussed further below.



CHAPTER 3. MULTI-CLUSTER AND TRAVELING CHIMERA STATES IN
IDENTICAL NONLOCAL PHASE-COUPLED OSCILLATORS 40

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

β

c

(a)

0 0.5 1 1.5
0

1

2

3

β

Ω

(b)

Figure 3.11: (a) The dependence of speed c on β for q = 3 (solid lines), and q = 4 (dashed

line) splay states with G
(2)
3 coupling. (b) The dependence of frequency Ω on β for splay

states with G
(2)
3 coupling, it is the same in both q = 3 and q = 4 cases.

−2 0 2

−2

0

2

x

θ

(a)

−2 0 2

−2

0

2

x

θ
(b)

Figure 3.12: Chimera states with (a) G
(2)
1 ≡ cos(x)+cos(2x) and (b) G

(2)
2 ≡ cos(2x)+cos(3x)

obtained from random initial conditions. In both cases β = 0.03 and N = 512.

Multi-cluster chimera states

Here we report our results on stationary multi-cluster chimera states with the coupling
G

(2)
n . Figures 3.12 and 3.13 show the phase distribution in multi-cluster chimera states

obtained with n = 1, 2, 3 and 4. The figures reveal a total of 2n + 1 coherent clusters in
each case, distributed evenly across both the spatial domain and the phase θ.

We examine the properties of these states in the case n = 1. Figure 3.14 shows the
position of one of the coherent clusters as a function of time. The plot indicates that the
cluster remains on average stationary, at least for moderate times, although slow drift over
very long times cannot be excluded. The apparent stationarity of the cluster permits us to
employ a self-consistency analysis analogous to that leading to Eq. (3.13). With G = G

(2)
1

this equation yields

R exp(iΘ) = a cosx+ b sinx+ c cos(2x) + d sin(2x), (3.28)
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Figure 3.13: Chimera states with (a)G
(2)
3 ≡ cos(3x)+cos(4x) and (b)G

(2)
4 ≡ cos(4x)+cos(5x)

obtained from random initial conditions. In both cases β = 0.03 and N = 512.
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Figure 3.14: The position x0 of a coherent cluster in the 3-cluster chimera state obtained
with coupling G

(2)
1 ≡ cos(x) + cos(2x) as a function of t for t ≥ 5000 when β = 0.1 and

N = 512, starting from random initial conditions at t = 0.

where a, b, c, and d are complex numbers given by

a = exp(iβ)〈h exp(iΘ) cos y〉, (3.29)

b = exp(iβ)〈h exp(iΘ) sin y〉, (3.30)

c = exp(iβ)〈h exp(iΘ) cos 2y〉, (3.31)

d = exp(iβ)〈h exp(iΘ) sin 2y〉, (3.32)

with h defined as h(x) ≡ Ω−µ(x)
R(x)

. Translations in x and θ allow us to fix two of the unknown
variables in the self-consistency equation. With these conditions, we can solve for a, b, c, d
and the real quantity Ω.

Instead of solving the self-consistency equation by brute force, Fig. 3.15 indicates that
one can shift the coordinate so that R(x) becomes an even function of x,

R(x) = R0| cos(3x/2)|, R0 > 0, (3.33)
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Figure 3.15: (Color online) (a) The phase distribution θ(x) in a 3-cluster chimera state with

coupling G
(2)
1 ≡ cos(x) + cos(2x) and β = 0.05, N = 512 (Fig. 3.12(a)). (b) The local order

parameters R (red dashed line) and Θ (blue dotted line).

while Θ(x) consists of straight line segments with slope ±1/2 and phase jumps ±π whenever
R(x) touches zero (the case of positive slope is not shown in Fig. 3.15 but is also observed in
the simulations). The even parity of R(x) is consistent with the observation that the chimera
is stationary. Combining these observations with phase translation, we conclude that the
local order parameter for the multi-cluster chimera state takes the form

R exp(iΘ) = R0 cos(3x/2) exp(±ix/2); (3.34)

indeed, Z̃(x) = R0 cos[(2n + 1)x/2] exp±ix/2 for n ≥ 1. Comparing Eq. (3.34) with
Eq. (3.28), one obtains a = c = R0/2 and b = −d = ∓iR0/2. Substituting Eq. (3.34)
into the self-consistency equation (3.13) we obtain four relations from the requirement that
the coefficients of cosx, sinx, cos(2x) and sin(2x) all vanish. It turns out that these relations
are all identical, leading to the final self-consistency requirement

R2
0 = exp(iβ)

〈
Ω−

√
Ω2 −R2

0 cos2 (3y/2)

〉
. (3.35)

This equation is of the form (3.17). Since the solutions of this equation are independent of
n when n is an integer or half-integer, the solutions presented in Fig. 3.6 also describe the
β-dependence of R0, Ω and the coherent fraction e for the 3-cluster chimera state with G

(2)
1

coupling. The multi-cluster chimera states are thus also born from the incoherent state as
β increases from zero. Direct numerical simulations show that this time the solution loses
stability when β reaches approximately 0.125 ± 0.005, a result obtained with N = 512 and
confirmed using N = 1024, and 2048.

These results are in close agreement with a theoretical stability analysis based on Eq. (3.23).
This time the calculation reveals a pair of unstable complex point eigenvalues that appear as
β increases above β ≈ 0.120, followed by an unstable real point eigenvalue that emerges as
β reaches β ≈ 0.174. The corresponding eigenvectors are again even, implying that neither
instability results in drift. Numerical contour integration indicates that no other unstable
point eigenvalues are present. Figure 3.16(a) shows the spectrum of Eq. (3.21) when β ≈ 0.83
while Fig. 3.16(b) shows the unstable point eigenvalues λp as a function of β. The results
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Figure 3.16: (Color online) (a) Spectrum of the linearized operator in Eq. (3.21) for G
(2)
1

coupling when β ≈ 0.83. (b) Dependence of the point eigenvalues on β. Black line: real
point eigenvalue. Red (or gray) solid line: real part of the complex point eigenvalues. Red
(or gray) dashed line: imaginary part of the complex point eigenvalues.
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Figure 3.17: Eigenvectors of (a) the real unstable mode and (b) the Hopf mode at threshold
(Fig. 3.16(b)). In each plot, the left panels correspond to |v1(x)| and |v2(x)| while the right
panels show the phase of v1(x) and v2(x). The phase jumps by ±π whenever the modulus
vanishes.

for G
(2)
3 are qualitatively similar, with the oscillatory instability appearing at β ≈ 0.129 and

the stationary instability located at β ≈ 0.176.
There remains the question whether the multi-cluster chimera states with the coupling

G
(2)
n are the only nontrivial solutions of Eq. (3.13) other than the splay states. Our numerical

simulations indicate that the answer is no. Figures 3.18 and 3.19 provide two examples of
stationary but ”exotic” chimera states. Figure 3.18 shows the results for G

(2)
1 ≡ cos(x) +

cos(2x) while Fig. 3.19 shows the results for G
(2)
2 ≡ cos(2x)+cos(3x), both with β = 0.03 and

N = 512. There are several differences between these states and the multi-cluster chimera
states already discussed. First, the number of the clusters is not equal to 2n + 1. Second,
the coherent clusters in these states are distributed non-uniformly in space. As shown in the
snapshots, these states consist of two pairs of coherent domains with the components of each
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Figure 3.18: (Color online) (a) The phase distribution θ(x) in a 4-cluster chimera state with

coupling G
(2)
1 ≡ cos(x) + cos(2x) and β = 0.03, N = 512. (b) The local order parameters

R (red dashed line) and Θ (blue dotted line). (c,d) A related chimera state with order
parameters R and −Θ.
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Figure 3.19: (Color online) (a) The phase distribution θ(x) in a 4-cluster chimera state with

coupling G
(2)
2 ≡ cos(2x) + cos(3x) and β = 0.03, N = 512. (b) The local order parameters

R (red dashed line) and Θ (blue dotted line).

pair closer to one another than the mean separation. Finally, the phase of the local order
parameter is no longer linear in the spatial variable x and exhibits oscillations. However,
we can still shift the x-coordinate to make R(x) even, implying that these exotic chimera
states are stationary in space except for an overall rotation frequency Ω (and the presence
of fluctuations due to finite size effects).

To understand the properties of the nonuniform multi-cluster chimera state in Fig. 3.18
we translate the state such that R(0) = R(π) = 0. It follows from Eq. (3.28) that a = c = 0,
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Figure 3.20: (Color online) (a) The solution of the self-consistency conditions (3.36)–(3.37)
as a function of β (br: continuous black line, dr: continuous red line, di: broken red line, Ω:
broken black line). (b) The predicted order parameter R(x) at β = 0.24 (continuous line) in
comparison with the line R = Ω (broken line) indicating that 4-cluster chimeras are present
for β . 0.24; for β & 0.24 only 2-cluster chimeras are predicted.

leaving the following two consistency conditions:

b exp(−iβ) =

〈
b sin2 x+ d sinx sin 2x

Ω + µ(x)

〉
, (3.36)

d exp(−iβ) =

〈
b sinx sin 2x+ d sin2 2x

Ω + µ(x)

〉
. (3.37)

These equations constitute a pair of complex equations for the complex coefficients b and d
and the unknown frequency Ω. However, Fig. 3.18 also shows that Θ(π/2) = 0 (modulo π
phase jumps) and we use this observation to deduce that bi = 0. In this case Eqs. (3.36) and
(3.37) reduce to four real equations for br, dr, di and Ω.

We begin by observing that a solution with order parameter Z for (br, dr, di,Ω) implies the
presence of a solution with order parameter Z∗ for (br,−dr,−di,Ω). This is a consequence of
the invariance of the conditions (3.36)–(3.37) under d→ −d corresponding to invariance with
respect to the translation x → x + π. Figure 3.18 compares a 4-cluster chimera state with
complex order parameter Z with one with order parameter Z∗, both computed for β = 0.03.
Note also that a solution β, br, dr, di,Ω implies the presence of a solution −β, br, dr,−di,Ω.
In view of these symmetries the self-consistency conditions have two solutions for β = 0.03:
br = 2.1985, dr = ∓0.0073, di = ±1.8375, Ω = 2.4683. A similar calculation for G

(2)
2

(Fig. 3.19) yields the result br = −1.6529, dr = ±0.00296, di = ±1.7256,Ω = 2.2426, again
for β = 0.03. These results agree well with the measured order parameter in both cases.

Having established the value of the self-consistency analysis for the exotic chimera states
we now use it as a predictive tool. In Fig. 3.20 we present a plot of the coefficients
(br, dr, di,Ω) as a function of the parameter β. The results show that at β ≈ 0.24 the
local minima of R(x) touch the line R = Ω (Fig. 3.20(b)) and for larger β dip below R = Ω.
At this point the quantity µ(x) in the consistency condition becomes pure imaginary and the
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Figure 3.21: (Color online) (a) The computed phase distribution θ(x) at β = 0.24 and (b)
the corresponding order parameter R(x) (red dashed line) and the associated phase Θ(x)
(blue dotted line) for comparison with the prediction in Fig. 3.20.
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Figure 3.22: (Color online) (a) The phase distribution θ(x) at β = 0.6 and (b) the corre-
sponding order parameter R(x) (red dashed line) and the associated phase Θ(x) (blue dotted
line) for comparison with Fig. 3.21.

solution ceases to exist. We have checked this prediction using numerical simulations. These
indicate that for β & 0.24 the 4-cluster chimera state indeed disappears and that it does so
by a pairwise merger of the clusters, forming a 2-cluster chimera for β & 0.24 (Fig. 3.21).

With increasing β these two remaining clusters gradually grow in length (Fig. 3.22) but
do not merge. Instead this 2-cluster state loses stability at β ≈ 0.96 where a real eigenvalue
passes through zero. This prediction is consistent with direct numerical simulations provided
a sufficiently large number of oscillators is used (β ≈ 0.93 when N = 512, β ≈ 0.96 when
N = 2048). The simulations reveal that this instability is responsible for a strongly hysteretic
transition to the stationary fully coherent state shown in Fig. 3.23. Since the corresponding
order parameters R(x) and Θ(x) are both even with respect to the same point the coherent
state must again be stationary. We therefore write

R exp(iΘ) = a cos(x) + c cos(2x) (3.38)

and use the symmetries of the order parameter to set ai = 0. The self-consistency equations
for this case are

a exp(−iβ) =

〈
a cos2 x+ c cosx cos 2x

Ω + µ(x)

〉
, (3.39)
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Figure 3.23: (Color online) (a) The phase distribution θ(x) and (b) the corresponding order
parameter R(x) (red dashed line) and the associated phase Θ(x) (blue dotted line) for the

stationary coherent state with G
(2)
1 coupling present at β = 0.96.
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Figure 3.24: (Color online) (a) The solution of the self-consistency conditions (3.39)–(3.40)
as a function of β (ar: continuous black line, cr: continuous red line, ci: broken red line, Ω:
broken black line). (b) The predicted order parameter R(x) at β = 0.77 (continuous line) in
comparison with the line R = Ω (broken line).

c exp(−iβ) =

〈
a cosx cos 2x+ c cos2 2x

Ω + µ(x)

〉
. (3.40)

Figure 3.24(a) shows the solution of these equations as a function of β. Solutions exist for
all values of β but change their character dramatically below β ≈ 0.7644. Figure 3.24(b)
explains the reason for this change: at this value of β the global minimum of the order
parameter R(x) touches the line R = Ω for the first time as β decreases, and for β . 0.7644
the quantity µ(x) is no longer everywhere real. However, this time the consequences of this
fact are different and are discussed in the next section.

Traveling coherent states

Numerical simulations confirm the presence of a stable stationary coherent state for G
(2)
1

down to β ≈ 0.7644 (a threshold value computed with N = 512 oscillators) but reveal that
for lower values of β this state develops a small asymmetry (Fig. 3.25(b)) and begins to travel
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Figure 3.25: (a) The phase distribution θ(x) at (a) β = 0.77 (symmetric distribution), (b)
β = 0.76 (asymmetric distribution) and (c) β = 0.66 (asymmetric distribution), all for
N = 512. The state in (b) oscillates in time while drifting to the left; state (c) travels to the
left at constant speed. Reflected solutions travel to the right.

to the left. We have examined carefully the behavior of this state near the (nonhysteretic)
transition at β ≈ 0.7644. Figure 3.26(a) shows the position of the coherent state as a
function of time when β = 0.762. The figure reveals that the drift speed to the left is not
constant in time but is accompanied by small amplitude oscillations. As β increases and
one approaches the threshold for this transition the motion takes on the characteristic of
stick-slip motion, i.e., the coherent state spends longer and longer periods of time in a near-
stationary state, interrupted by brief episodes of slip during which the phase decreases by 2π.
In many if not most systems this type of behavior is associated with the presence of a sniper
bifurcation, a saddle-node bifurcation of two equilibria on an invariant circle [1]. However,
our detailed investigation of the origin of this behavior has failed to confirm the presence of
this bifurcation. Instead, our self-consistency analysis indicates that the symmetric coherent
state persists as β decreases but loses stability below βc ≈ 0.7644, a threshold value that
is in good agreement with the numerically determined threshold. At this parameter value
a single real eigenvalue passes through zero, becoming positive for β < βc. The associated
eigenfunction is antisymmetric (not shown), indicating that this bifurcation should be a
parity-breaking bifurcation leading to drift with a constant speed c that varies with β as
(βc − β)1/2 [48].

To understand why this behavior is not observed we have examined the origin of the
oscillations in the speed c. It turns out that these are associated with oscillations in the phase
distribution (Fig. 3.27(a)) localized in the vicinity of a near-discontinuity in the distribution
(compare Figs. 3.25(a) and (b)). The oscillators in this region periodically detrain and
entrain, and it is the detraining events that are responsible for the observed episodic drift. We
have checked that this is not a discreteness effect: the oscillation frequency at fixed β remains
unchanged when N is increased from 512 to 1024 and 2048. However, as one approaches βc
from below these episodes become more and more infrequent and in the vicinity of βc become
nonperiodic. In contrast to the periodic motion, the observed nonperiodic motion is likely a
consequence of intrinsic noise in the system whose effects are strongly amplified close to the
transition at β = βc. Indeed, sufficiently near the transition the sign of the phase slip begins
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Figure 3.26: (a) The position of the coherent state as a function of time at β = 0.762. (b) The
time-averaged speed c̄ of the coherent state as a function of β as β decreases. Note the abrupt
decrease in speed at β ≈ 0.7570 associated with the disappearance of the oscillations. (c)
The time-averaged speed c̄ of the coherent state as a function of β as β increases. Oscillations
reappear at β ≈ 0.7595 as shown in (d). The position x of the coherent state is measured
mod 2π. All calculations are for N = 512.

to fluctuate and the coherent state at times shifts to the left but at other times shifts to
the right (not shown). Figure 3.26(b) shows that as β decreases the time-averaged speed c̄
increases linearly with decreasing β until β ≈ 0.7570, where there is a hysteretic transition to
an oscillation-free drift with a substantially lower speed. Figure 3.26(c) shows that when β is
increased again the system remains in the oscillation-free state until β ≈ 0.7595; at this point
the oscillations reappear (Fig. 3.26(d)) and the speed jumps to a larger value. Evidently the
oscillations increase the mean speed because c̄ is dominated by the faster motion associated
with time intervals corresponding to maximum asymmetry.

We believe that the discrepancy between the linear stability predictions and the observed
behavior is a consequence of the fact that the former is based on the smoothed out order
parameter Z, which is insensitive to the near-discontinuity in the slope of the phase distribu-
tion that appears to be responsible for the instability. For this reason the analysis is unable
to capture the imaginary part of the eigenvalue, although it does correctly predict the onset
of the instability. Moreover, because the order parameter profile is symmetric the unstable
eigenfunction is necessarily antisymmetric, in contrast to the observed unstable mode which
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Figure 3.27: Hidden line plots of the phase distribution θ as a function of time when (a)
β = 0.762 (oscillatory drift, Fig. 3.26(a)) and (b) β = 0.755 (constant drift), both for
N = 512.

is asymmetric but not antisymmetric. For these reasons a consistency analysis of the type
used with success for stationary states does not appear to be appropriate for this type of
drifting state.

As β decreases further below the hysteresis region the speed c continues to grow linearly
but at β ≈ 0.646 the coherent state itself undergoes a hysteretic transition to a stationary
2-cluster chimera of the type represented in Fig. 3.22(a). We have not investigated the origin
of this instability in detail.

It turns out that the speed c and the angular frequency Ω of the coherent state can
both be computed theoretically and the predictions compared with measured values. For
this purpose we suppose that the coherent state is stationary in the moving frame (Fig. 3.27
indicates that this is at best an approximation), i.e., we suppose that z(x, t) ≡ u(ξ), where
ξ ≡ x − ct, obtaining a complex nonlinear eigenvalue problem for the speed c and the
frequency Ω of the coherent state:

cũξ + iΩũ+
1

2

[
exp(−iα)Ũ − ũ2 exp(iα)Ũ∗

]
= 0. (3.41)

Here ũ = u exp iΩt and likewise for Ũ . This equation is to be solved subject to periodic
boundary conditions on [−π, π]. Figure 3.28 compares the solution of this eigenvalue problem
(solid lines) with the measured values (open circles). The agreement is excellent. The inset
in Fig. 3.28(a) shows that sufficiently near βc the speed c varies as (βc − β)1/2, as expected
of a parity-breaking bifurcation, while Ω is linear in β. Away from this region numerical
fits yield |c| ≈ 0.82(βc − β) and |Ω| ≈ 1.03(βc − β). Figure 3.29 performs a more rigorous
test of the two procedures by comparing, for β = 0.66, the details of the order parameter
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Figure 3.28: Comparison of (a) the speed c and (b) the frequency Ω obtained from the
solution of the nonlinear eigenvalue problem (3.41) (solid lines) with measurements computed
with N = 512 oscillators (open circles), both as a function of β. The inset in (a) reveals
the expected square root behavior near βc ≈ 0.7644. In contrast, the behavior of Ω is
approximately linear everywhere.

profiles computed from simulation and from the nonlinear eigenvalue problem. Although
the agreement is now less good, it is clear that the nonlinear eigenvalue problem captures
the essential details of the order parameter profile and in particular of the asymmetry in the
profile that is responsible for the presence of drift. As β increases towards βc the agreement
between the measured and predicted profiles improves dramatically, although a small residual
discrepancy remains in regions of near-discontinuity, where the instantaneous profile exhibits
localized oscillations (Fig. 3.25(b)).

Traveling chimera states

Apart from the chimera states discussed in the previous subsections, which we consider
as stationary in the large N limit, we have also observed 1-cluster chimera states in which
the coherent cluster drifts at constant speed in the x direction as time evolves. Figure 3.30
shows a snapshot of such a traveling chimera state when the coupling function is G

(2)
2 ≡

cos(2x)+cos(3x), while Fig. 3.31 shows examples for G
(2)
3 ≡ cos(3x)+cos(4x). The direction

of motion is determined by the gradient of the phase in the coherent region: when the
gradient is positive (left panels in Figs. 3.30 and 3.31), the cluster travels to the left; when
it is negative, it travels to the right. However, the measured speeds are much smaller and in
the opposite direction from the drift speeds of the n = 2 and n = 3 (Fig. 3.30) or n = 3 and
n = 4 (Fig. 3.31) splay states, whose ghost-like signature is evident in the phase distribution
in the figures, and in particular in Fig. 3.32(c). However, despite these differences, the phase

gradient in the traveling chimera state with G
(2)
3 coupling is intermediate between the phase

gradients associated with the competing n = 3 and n = 4 splay states (Figure 3.32(a,b)),

and this is so for the G
(2)
2 coupling as well.

To determine the parameter dependence of the speed of these coherent structures we first
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Figure 3.29: (Color online) Comparison of the phase and order parameter profiles from
direct simulation (top panels) with those obtained from the nonlinear eigenvalue problem
when β = 0.66. The profiles are qualitatively similar modulo translation and overall phase
rotation.
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Figure 3.30: (a) A left-traveling 1-cluster chimera state. (b) A right-traveling 1-cluster

chimera state. The simulation is done for β = 0.03 with the coupling G
(2)
2 ≡ cos(2x)+cos(3x)

and N = 512.
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Figure 3.31: (a) A left-traveling 1-cluster chimera state. (b) A right-traveling 1-cluster

chimera state. The simulation is done for β = 0.03 with the coupling G
(2)
3 ≡ cos(3x)+cos(4x)

and N = 512.
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Figure 3.32: (a,b) Splay states with n = 3 and n = 4 for comparison with (c) the traveling

chimera state with G
(2)
3 ≡ cos(3x) + cos(4x) coupling. (d) Instantaneous phase velocity of

the state in (c). (e) Profile of the function F used to track the position of the coherent
structure.
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need to be able to track their position. As shown in Fig. 3.32(d), the spatial profile of θt at
a given instant in time consists of a flat part corresponding to the position of the coherent
cluster. Thus the shift in the θ̇ pattern provides a unique indication of a shift in the location
of the coherent cluster. Following [35] we pick a reference profile f(x, x∗) = − cos(x − x∗)
and use the value of x∗ which minimizes the function

F (x∗) :=
1

N

N∑
k

(θ̇ − f(xk, x
∗))2 (3.42)

as the position of the coherent cluster. Figure 3.32(e) shows a snapshot of the function
F (x∗). Figure 3.33(a) shows the position of the coherent cluster in a periodic domain as a
function of time determined using this method when N = 512, β = 0.03. The cluster moves
to the right at an almost constant speed c ≈ 0.0077. Figure 3.33(b) shows that the speed c is
approximately independent of the number N of oscillators, suggesting that the motion is an
intrinsic property of the state and not an artifact of the finiteness of N . Finally, Fig. 3.33(c)
shows that the speed c increases with increasing β. As in the case of the stationary chimeras
described above, the probability of obtaining a traveling chimera when the simulation starts
from random initial conditions decreases as β increases, i.e., the basin of attraction of this
state, like those of the stationary states, appears to shrink as β increases.

In fact, the traveling chimera state is more complex than suggested by the snapshots in
Figs. 3.30 and 3.31. This fact is clearly revealed only in a space-time plot of the instanta-
neous order parameter. Figure 3.34(a) shows the instantaneous modulus of the local order
parameter R(x, t) corresponding to Fig. 3.31(b), with time increasing upwards. The profile
resembles a half-wavelength of a sinusoidal function (Fig. 3.35) and propagates with approx-
imately constant speed to the right. However, the shape of the profile fluctuates in time,
with smaller amplitude waves running on top of the translating bulk profile (Fig. 3.34(b)).
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Figure 3.33: (a) The position of the coherent cluster as a function of time when N = 512,
β = 0.03. (b) The dependence of the speed c of the cluster on the oscillator number N
when β = 0.03. (c) The dependence of the speed c of the cluster on the parameter β when
N = 512.

Altogether we have found for the coupling G
(2)
3 as many as four distinct stable states:

splay states with n = 3 and n = 4, the stationary multi-cluster chimera state with 7 clusters
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Figure 3.34: (a) The local order parameter R(x, t) in a space-time plot for the traveling
chimera in Fig. 3.31(b). (b) Zoom of (a) showing additional detail.
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Figure 3.35: (Color online) (a) Snapshot of the phase distribution in a 1-cluster traveling

chimera state with G
(2)
3 ≡ cos(3x) + cos(4x) coupling. (b) Local order parameters R(red

dashed line) and Θ(blue dotted line). The simulation is done with β = 0.03 and N = 512.
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(Fig. 3.13(a)), and the 1-cluster traveling chimera (Fig. 3.31). Among these, the splay states
are stable for all 0 ≤ β < π

2
. The multi-cluster chimera is stable for small β (it is observed

in numerical simulations already when β = 0.001 although the fraction of the oscillators
in the coherent state is then very small). As β increases this state loses stability when β
reaches a value between 0.115 and 0.12 and evolves to one or other of the splay states. The
traveling chimera is stable in the interval 0.015 . β . 0.065; below this range a linear
instability takes it to the multicluster state while above this range it takes it into one or
other of the splay states. However, despite considerable effort and simulations of very large
oscillator systems to get accurate initial conditions, we have not succeeded in solving the
corresponding nonlinear eigenvalue problem for the speed c of this state. We attribute this
failure to the fact, clearly visible in Fig. 3.34, that this state does not in fact drift as a rigid
object – it is a time-dependent state even in the comoving frame.

3.4 Conclusion

In this chapter we have investigated, for the first time, the effects of nonlocal coupling
of indefinite sign on a system of identical phase-coupled oscillators. We focused on the case
with positive (attractive) coupling over small distances and negative (repulsive) coupling over

large distances, as exemplified by the coupling functions G
(1)
n ≡ cos(nx) and G

(2)
n ≡ cos(nx)+

cos[(n + 1)x], and identified a variety of evenly spaced stationary multi-cluster chimera
states without having to rely on the presence of time delay or parameter heterogeneity
[33, 37, 38]. More significantly, we also found a class of chimeras with uneven separation,
traveling coherent states and a novel traveling chimera state. In contrast to the earlier
systems referred to above the chimera states in the system studied here have relatively large
basins of attraction and no specially tailored initial conditions are required to obtain such
states. In particular, robust chimeras are realized starting from random initial conditions.

We have given a fairly complete description of the different accessible states using a
self-consistency analysis and showed that this type of analysis works well not only for sta-
tionary evenly spaced chimeras but also for the exotic unevenly spaced chimeras. In par-
ticular, we were able to show that the local order parameter profiles predicted by this type
of analysis agree well with the phase distribution generated in direct numerical simulations
of the coupled oscillator system. We used these results to make predictions for different
types of transitions that these states may undergo, merger of coherent clusters and transi-
tion to a drifting state, and confirmed these predictions using numerical simulations. The
self-consistency analysis predicted instability thresholds accurately but missed some crucial
details, including the presence of localized small amplitude oscillations near the onset of the
drift instability. Despite this failure the drift speed predicted from the solution of a nonlinear
eigenvalue problem obtained from the self-consistency analysis was in excellent agreement
with the numerically determined speed (3.28(a)), and likewise for the overall rotation fre-
quency Ω of the phase distribution (3.28(b)). Stable (nonsplay) traveling states appear to

require a significant contribution from both n and n+1 modes in the coupling function G
(2)
n .
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We have checked, for example, that with G(x) = cos(3x) + A cos(4x) the traveling chimera
present at A = 1 loses stability when A ≈ 0.95; when this occurs the system evolves to a
traveling splay state instead. It is of considerable interest to see to what extent the results
from the system studied here carry over to more realistic oscillator systems, such as those
studied in [49, 51, 52, 57], when these are coupled nonlocally with an attractive-repulsive
coupling.

Appendix

3.A Derivation of self-consistent equation (3.35)

In this appendix, we give the detailed derivation Eq. (3.35), which is the self-consistency
equation for 3-cluster chimera state. According to the discussion in the main text, we can
shift the coordinate to make R(x) even. Combining the numerical observation and phase
translation, the local order parameter can be written as

R exp(iΘ) = R0 cos(3x/2)e−ix/2. (3.43)

From this expression, the parameters a, b, c and d can be obtained: a = c = R0

2
and b =

−d = iR0

2
.

Substituting Eq. (3.43) into the self-consistency equation (3.29), we have

R0

2
= exp (iβ) 〈h exp(iΘ) cos(y)〉

= exp (iβ)

〈
Ω−

√
Ω2 −R2(y)

R2(y)
R(y) exp(iΘ) cos(y)

〉

= exp (iβ)

〈
Ω−

√
Ω2 −R2(y)

R0 cos
(

3y
2

) exp

(
−iy

2

)
cos(y)

〉

= exp (iβ)

〈
Ω−

√
Ω2 −R2(y)

R0 cos
(

3y
2

) exp
(
−iy

2

) exp(iy) + exp(−iy)

2

〉

= exp (iβ)

〈
Ω−

√
Ω2 −R2(y)

R0 cos(3y
2

)

exp( iy
2

) + exp(−3iy
2

)

2

〉

= exp (iβ)

〈
Ω−

√
Ω2 −R2(y)

R0 cos(3y
2

)

cos(y
2
) + i sin(y

2
) + cos(3y

2
)− i sin(3y

2
)

2

〉

= exp (iβ)

〈
Ω−

√
Ω2 −R2(y)

R0 cos(3y
2

)

cos(y
2
) + cos(3y

2
)

2

〉
. (3.44)
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Here, the terms with sin(y
2
) and sin(3y

2
) vanish because of their oddness. In addition, we

notice that ∫ π

−π
cos2k−1

(
3y

2

)
cos
(y

2

)
dy

=
1

22k

∫ π

−π

(
exp

(
3iy

2

)
+ exp

(
−3iy

2

))2k−1(
exp

(
iy

2

)
+ exp

(
−iy

2

))
dy

= 0 (3.45)

for any positive integer k. We can obtain〈
Ω−

√
Ω2 −R2(y)

R0 cos
(

3y
2

) cos
(y

2

)〉
= 0. (3.46)

So the self-consistency equation (3.29) finally becomes

R2
0 = exp(iβ)

〈
Ω−

√
Ω2 −R2

0 cos2

(
3y

2

)〉
. (3.47)

Similar calculations can be carried out for Eqs. (3.30), (3.31), and (3.32). It turns out that
they all lead to the same final equation.
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Chapter 4

Chimera states in systems of nonlocal
nonidentical phase-coupled oscillators

4.1 Introduction

In Chapter 1 we have derived a particular form of the phase-coupled oscillator model:

dθi
dt

= ωi −
K

N

N∑
j=1

Gij sin(θi − θj + α), (4.1)

where ωi is the natural frequency of oscillator i, Gij represents the coupling between oscil-
lators i and j, α is a phase lag and K is the overall coupling strength. A general treatment
of this system is not easy, and two types of simplifications are commonly used. One of them
is to assume global coupling among the oscillators, and assign the natural frequencies ωi
randomly and independently from some prespecified distribution [22, 23, 24]. The second
tractable case arises when all the oscillators are assumed to be identical, and the coupling Gij

is taken to be local, eg., nearest-neighbor coupling [25]. The intermediate case of nonlocal
coupling is harder but the phenomena described by the resulting model are much richer.

In this chapter we suppose that the oscillators are arranged on a ring. In the continuum
limit N →∞ the system is described by the nonlocal equation, cf. [14],

∂θ

∂t
= ω(x)−

∫
G(x− y) sin[θ(x, t)− θ(y, t) + α] dy (4.2)

for the phase distribution θ(x, t). When the oscillators are identical (ω is a fixed constant)
and G(x) = κ

2
exp(−κ|x|) this system admits a new type of state in which a fraction of the

oscillators oscillate coherently (i.e., in phase) while the phases of the remaining oscillators
remain incoherent [26]. In this chapter we think of this state, nowadays called a chimera state
[27], as a localized structure embedded in a “turbulent” background. Subsequent studies
of this unexpected state with different coupling functions G(x) have identified a variety of
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different one-cluster and multi-cluster chimera states [31, 32, 33, 34, 35, 36, 37, 38, 39, 75, 76],
consisting of clusters or groups of adjacent oscillators oscillating in phase with a common
frequency. The clusters are almost stationary in space, although their position (and width)
fluctuates under the influence of the incoherent oscillators on either side. In Chapter 3, a
new type of chimera state was discovered, a traveling chimera state. In this state the leading
edge plays the role of a synchronization front, which kicks oscillators into synchrony with
the oscillators behind it, while the trailing front kicks oscillators out of synchrony; these two
fronts travel with the same speed, forming a bound state.

It is natural to ask whether these states persist in the presence of spatial inhomogeneity,
in particular, in the presence of spatial inhomogeneity in the natural frequency distribution
(ω = ω(x)). It is known that in this case the phase-locked solution θ(x) = 0 present for iden-
tical oscillators with α = 0 perturbs to a unique phase-locked but spatially inhomogeneous
solution θ(x, α) as α increases from zero [14]. However, the persistence of the chimera state
has only been studied in restricted settings, such as the two population model [34]. This
model is perhaps the simplest model exhibiting chimera states [32] but includes no spatial
structure. Consequently, we focus in this chapter on a ring of adjacent oscillators with a
prescribed but spatially nonuniform frequency profile ω(x), where the continuous variable x
(−π < x ≤ π) represents position along the ring. To be specific, two classes of inhomogeneity
are considered, a bump inhomogeneity ω(x) = ω0 exp(−κ|x|), κ > 0, and a periodic inho-
mogeneity ω(x) = ω0 cos(lx), where l is a positive integer. In each case we follow Chapter 3
and study the coupling functions

G(1)
n (x) ≡ cos(nx),

G(2)
n (x) ≡ cos(nx) + cos[(n+ 1)x],

where n is an arbitrary positive integer, focusing in each case on small values of the parameter
ω0. These choices are motivated by biological systems in which coupling between nearby
oscillators is often attractive while that between distant oscillators may be repelling [40].
There are several advantages to the use of these two types of coupling. The first is that these
couplings allow us to obtain chimera states with random initial conditions. The second is
that we can identify a large variety of new states for suitable parameter values, including (a)
splay states, (b) stationary multi-cluster states with evenly distributed coherent clusters, (c)
stationary multi-cluster states with unevenly distributed clusters, (d) a fully coherent state
traveling with a constant speed, and (e) a single-cluster traveling chimera state (see Chapter
3).

In this chapter, we analyze the effect of the two types of inhomogeneity in ω on each of
these states and describe the results in terms of the parameters ω0 and κ or l describing the
strength and inverse length scale of the inhomogeneity, while varying the parameter β ≡ π

2
−α

representing the phase lag α. In Section 4.2, we briefly review the notion of a local order
parameter for studying chimera states and introduce the self-consistency equation for this
quantity. In Sections 4.3, 4.4, and 4.5 we investigate, respectively, the effect of inhomogeneity
on rotating states (including splay states and stationary chimera states), traveling coherent
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states and the traveling chimera state. We conclude in Section 4.6 with a brief summary of
the results and directions for future research.

4.2 Effective equation

Equation (4.2) is widely used in studies of chimera states. An equivalent description can
be obtained by constructing an equation for the local order parameter z(x, t) defined as the
local spatial average of exp[iθ(x, t)],

z(x, t) ≡ lim
δ→0+

1

δ

∫ δ/2

−δ/2
exp(iθ(x+ y, t)) dy. (4.3)

The evolution equation for z then takes the form [41, 44, 45]

zt = iω(x)z +
1

2

(
exp(−iα)Z − exp(iα)z2Z∗

)
, (4.4)

where Z(x, t) ≡ K[z](x, t) and K is a compact linear operator defined via the relation

K[u](x, t) ≡
∫ π

−π
G(x− y)u(y, t) dy. (4.5)

A derivation of Eq. (4.4) based on the Ott–Antonsen Ansatz [46] is given in Section 2.2
of Chapter 2. Equation (4.4) can also be obtained directly from Eq. (4.2) using the change
of variable

z(x, t) ≡ exp [iθ(x, t)] . (4.6)

In Section 2.2, we also derived a self-consistency equation for stationary rotating solutions
of the form

z(x, t) = z̃(x) exp(−iΩt), Z(x, t) = Z̃(x) exp(−iΩt). (4.7)

For these states, the common frequency Ω and Z̃ satisfy

Z̃(x) =

〈
G(x− y) exp(iβ)

Ω + ω(y)− µ(y)

Z̃∗(y)

〉
. (4.8)

Here the bracket 〈·〉 is defined as the integral over the interval [−π, π], i.e., 〈u〉 ≡
∫ π
−π u(y) dy.

This leads to Eq. (2.50) if we write

Z̃(x) = R(x) exp[iΘ(x)], (4.9)

where R(x) and Θ(x) are referred as the amplitude and phase of the complex order parameter
Z̃(x).
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4.3 Stationary rotating solutions

As shown in Chapter 3, Eq. (4.2) with constant natural frequency ω exhibits both sta-
tionary rotating solutions (splay states and stationary chimera states) and traveling solutions
(traveling coherent states and traveling chimera states) for suitable coupling functions G(x).
In this section, we investigate the effect of spatial inhomogeneity in ω (i.e., ω = ω(x)) on

the splay states and on stationary chimera states, focusing on the case G
(1)
n (x) = cosnx

studied in Chapter 3. We find that when the inhomogeneity is sufficiently weak, the above
solutions persist. However, as the magnitude of the inhomogeneity increases, new types of
solutions are born. The origin and spatial structure of these new states can be understood
with the help of the self-consistency relation (4.8). Since Eq. (4.8) is invariant under the
transformation z → z exp(iφ) with φ an arbitrary real constant, the local order parameter
Z̃(x) for the coupling function G(x) = cosnx can be written as

Z̃(x) = a cosnx+ b sinnx, (4.10)

where a is positive and b ≡ br + ibi with br and bi both real. Substituting the Ansatz (4.10)
into Eq. (4.8) we obtain the following pair of integral-algebraic equations

a exp(−iβ) =

〈
cos(ny)(Ω̃(y)− µ(y))

a cosny + b∗ sinny

〉
, (4.11)

b exp(−iβ) =

〈
sin(ny)(Ω̃(y)− µ(y))

a cosny + b∗ sinny

〉
, (4.12)

where µ(y) = (Ω̃(y)2 − |a cos(ny) + b sin(ny)|2)1/2 and Ω̃(y) ≡ Ω + ω(y). These equations
may also be written in the more convenient form〈

Ω̃(y)− µ(y)
〉

= exp(−iβ)(a2 + |b|2), (4.13)〈
(a2−b2) sin(2ny)−2ab cos(2ny)

Ω̃(y)+µ(y)

〉
= 0. (4.14)

In the following we consider two choices for the inhomogeneity ω(x), a bump ω(x) =
ω0 exp (−κ|x|), κ > 0, and a periodic inhomogeneity ω(x) = ω0 cos(lx) where l is a positive
integer. The resulting equations possess an important and useful symmetry, x → −x,
b → −b. Moreover, for ω(x) satisfying ω(x + 2π/l) = ω(x) with l an integer, a solution
Z̃(x) of the self-consistency relation implies that Z̃(x+ 2mπ/l) is also a solution. Here m is
an arbitrary integer.

In the following we use Eqs. (4.13) and (4.14) repeatedly to study the changes in both the
splay states and the stationary chimera states as the magnitude ω0 > 0 of the inhomogeneity
increases, and compare the resulting predictions with numerical simulation of N = 512
oscillators evenly distributed in [−π, π].
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Bump inhomogeneity: ω = ω0 exp (−κ|x|)
We now consider the case where ω(x) has a bump defect at x = 0. For the spatial profile

of the defect we pick ω(x) = ω0 exp (−κ|x|), where ω0 > 0 and κ > 0 are parameters that
can be varied.

Effect on splay states

When G(x) = cos(nx) and ω is a constant, Eq. (4.2) exhibits so-called splay state solu-
tions with θ(x, t) = qx − Ωt, where Ω is the overall rotation frequency and q is an integer
called the twist number. The phase in this type of solution drifts with speed c = Ω/q to the
right but the order parameter is stationary. Consequently we think of the splay states as
stationary rotating states. Linear stability analysis for G(x) = cosnx shows that the splay
state is stable when |q| = n, a result that is easily confirmed in simulations starting from
randomly distributed initial phases. In the following we consider the case n = 1 and simulate
N = 512 oscillators evenly distributed in [−π, π] for different values of ω0 and κ.

Figure 4.1 shows how the splay solutions change as ω0 increases. When ω0 becomes
nonzero but remains small, the splay states persist but their phase θ(x, t) no longer varies
uniformly in space. This effect may be seen in Fig. 4.1(a) upon enlargement. The figure
shows that

θ(x, t) ≡ φ(x)− Ωt, (4.15)

where φ(x) is a continuous function of x with φ(π)− φ(−π) = 2πq. When q 6= 0 we refer to
this type of state as a near-splay state. As ω0 becomes larger an incoherent region appears
in the vicinity of x = 0, with width that increases with increasing ω0 (Figs. 4.1(b,c)). We
refer to this type of state as a chimera splay state. As ω0 increases further and exceeds
a second threshold, a new region of incoherence is born (Fig. 4.1(d)). Figure 4.2 provides
additional information about the partially coherent near-splay state in Fig. 4.1(b). The
figure shows the real order parameters R(x) and Θ(x) together with θ̄t, the local rotation
frequency averaged over a long time interval (Fig. 4.2(d)), and reveals that in the coherent
region the oscillation frequencies are identical (with θ̄t = −Ω), with an abrupt but continuous
change in the frequency distribution within the incoherent region. Figure 4.2(d) also reveals
a slight asymmetry with respect to x = 0, the bump maximum. This asymmetry becomes
stronger and stronger as ω0 increases and is a consequence of the asymmetry introduced by
the direction of travel, i.e., the sign of the frequency Ω in Eq. (4.15), as discussed further
below.

These states and the transitions between them can be explained within the framework of
the self-consistency analysis. To compute the solution branches and the transition thresholds,
we numerically continue solutions of Eqs. (4.13) and (4.14) with respect to the parameter
ω0. When ω0 = 0, the splay state (with positive slope) corresponds to a = π, br = 0,
bi = π, with Ω = π. The order parameter is therefore R exp (iΘ) = π exp (±ix). We use this
splay state as the starting point for continuation. As ω0 increases, a region of incoherence
develops in the phase pattern in the vicinity of x = 0. From the point of view of the
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Figure 4.1: The phase distribution θ(x) for splay states observed with G(x) = cos(x), ω(x) =
ω0 exp(−2|x|), and β = 0.05. (a) ω0 = 0.006. (b) ω0 = 0.02. (c) ω0 = 0.05. (d) ω0 = 0.1.
The states travel to the right (Ω > 0). The inset in (a) shows an enlargement of the region
near x = 0.

self-consistency analysis, the incoherent region corresponds to the region where the natural
frequency exceeds the amplitude R(x) of the complex order parameter. The boundaries
between the coherent and incoherent oscillators are thus determined by the relation Ω +
ω(x) = |a cos(x) + (br + ibi) sin(x)|. For ω0 = 0.02, the left and right boundaries are thus
xl ≈ −0.4026 and xr ≈ 0.2724, respectively.

These predictions are in good agreement with the values measured in direct numerical
simulation (Fig. 4.2(d)). Figure 4.3(a) shows the overall frequency Ω obtained by numerical
continuation of the solution of Eqs. (4.13) and (4.14) in the parameter ω0, while Figs. 4.3(b)
and 4.3(c) show the corresponding results for the fraction e of the domain occupied by the
coherent oscillators and the extent of the two intervals xl ≤ x ≤ xr of incoherence, also as
functions of ω0. From Fig. 4.3(c) we can see a clear transition at ω0 ≈ 0.0063 from a single
domain-filling coherent state to a “splay state with one incoherent cluster” in xl ≤ x ≤ xr,
followed by a subsequent transition at ω0 ≈ 0.065 from this state to a “splay state with
two incoherent clusters.” These transitions occur when the profiles of Ω + ω(x) and R(x)
touch as ω0 increases and these points of tangency therefore correspond to the locations
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Figure 4.2: (a) A snapshot of the phase distribution θ(x, t) for G(x) = cos(x) and ω(x) =
0.02 exp(−2|x|). (b) The correspondingR(x). (c) The corresponding Θ(x). (d) The oscillator
frequency θ̄t averaged over the time interval 0 < t < 1000 (solid line). In the coherent region
θ̄t coincides with the global oscillation frequency −Ω (open circles). The inset in (a) shows an
enlargement of the region near x = 0. All simulations are done with β = 0.05 and N = 512.

where coherence is first lost. Figure 4.4 shows that tangencies between Ω + ω(x) and R(x)
occur when ω0 ≈ 0.0063 and 0.065, implying that intervals of incoherent oscillators appear
first at x = 0 (i.e., the bump maximum) and subsequently at x ≈ 1.83, as ω0 increases.
These predictions are in excellent agreement with the direct numerical simulations shown in
Fig. 4.1. Moreover, the critical values of ω0 predicted by the self-consistency analysis are
fully consistent with the simulation results when β is increased quasi-statically (not shown).
In each case we repeated the simulations for decreasing β but found no evidence of hysteresis
in these transitions.

Effect on stationary chimera states

Chimera states with 2n evenly distributed coherent clusters are readily observed when
G(x) = cos(nx) and ω is a constant. These states persist when a bump is introduced into the
frequency distribution ω(x). Figure 4.5 shows the phase distribution and the corresponding
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coherent oscillators as a function of the parameter ω0. (c) The two regions of incoherence
xl ≤ x ≤ xr that open up at ω ≈ 0.0063 and ω ≈ 0.065 corresponding to the transitions
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Figure 4.5: (a) A snapshot of the phase distribution θ(x, t) in a 2-cluster chimera state for
G(x) = cos(x) and ω(x) = 0.1 exp(−2|x|). (b) The corresponding order parameter R(x).
(c) The corresponding order parameter Θ(x). Note that the oscillators in the two clusters
oscillate with the same frequency but π out of phase. The calculation is done with κ = 2,
β = 0.05, and N = 512.

local order parameters R(x) and Θ(x) for G(x) = cos(x) when ω(x) = 0.1 exp(−2|x|). The
figure shows that the two clusters persist, but are now always located near x = −π

2
and

π
2
. This is a consequence of the fact that the presence of the bump breaks the translation

invariance of the system. Figures 4.5(b,c) show that the local order parameter Z̃(x) has the
symmetry Z̃(−x) = −Z̃(x). This symmetry implies Z̃ should take the form R exp (iΘ) =
b sin(x), where b = br is real. The corresponding self-consistency equation takes the form

b2 exp(−iβ) =

〈
Ω + ω(y)−

√
(Ω + ω(y))2 − b2 sin2 y

〉
. (4.16)

The result of numerical continuation of the solutions of Eq. (4.16) is shown in Fig. 4.6. The
2-cluster chimera state persists to large values of ω0, with the size of the coherent clusters
largely insensitive to the value of ω0. This prediction has been corroborated using direct
simulation of Eq. (4.1) with N = 512 oscillators.

When ω is constant, finite-size effects cause the phase pattern to fluctuate in location. In
Chapter 3, we demonstrate that this fluctuation is well modeled by Brownian motion in which
the variance is proportional to t, even though the original system is strictly deterministic.
As mentioned above, when ω(x) is spatially dependent, the translation symmetry is broken
and the coherent cluster has a preferred location. Figure 4.5 suggests that local maxima of
the order parameter R can be used to specify the location of coherent clusters. Consequently
we plot in Fig. 4.7 the position x0(t) of the right coherent cluster as a function of time for
three different values of the parameter κ. We see that the inhomogeneity pins the coherent
cluster to a particular location, and that the cluster position executes apparently random
oscillations about this preferred location, whose amplitude increases with increasing κ, i.e.,
with decreasing width of the bump. Figure 4.8 shows the standard deviation of the position
x0(t) of the coherent cluster as a function of the parameter κ.
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Figure 4.7: The position x0(t) of the coherent cluster as a function of time when ω0 = 0.1,
β = 0.05, N = 512, and (a) κ = 10, (b) κ = 6, and (c) κ = 2.

The behavior shown in Figs. 4.7 and 4.8 can be modeled using an Ornstein-Uhlenbeck
process, i.e., a linear stochastic ordinary differential equation of the form

dx0 = λ(µ− x0)dt+ σdWt, (4.17)

where λ represents the strength of the attraction to the preferred location µ, and σ indicates
the strength of the noise. Models of this type are expected to apply on an appropriate
time scale only: the time increment ∆t between successive steps of the stochastic process
must be large enough that the position of the cluster can be thought of as the result of a
large number of pseudo-random events and hence normally distributed, but not so large that
nonlinear effects become significant. Figure 4.9 reveals that for an appropriate interval of ∆t
the fluctuations x0(t+ ∆t)−Ax0(t)−B are indeed normally distributed, thereby providing
support for the applicability of Eq. (4.17) to the present system.
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Figure 4.9: The histogram of the residues ε ≡ x0(t+ ∆t)−Ax0(t)−B is well approximated
by a normal distribution when ∆t = 100.

Equation (4.17) has the solution

x0(t+ ∆t) = Ax0(t) +B + CN0,1, (4.18)

where A = exp(−λ∆t), B = µ(1− A) and C = σ
√

1−A2

2λ
. To fit the parameters to the data

in Fig. 4.7 we notice that the relationship between consecutive observations x0 is linear with
an i.i.d. error term CN0,1, where N0,1 denotes the normal distribution with zero mean and
unit variance (Fig. 4.9) and C is a constant. A least-squares fit to the data (x0(t), x0(t+∆t))
gives the parameters λ, µ, and σ. We find that for ω0 = 0.1, κ = 2, and β = 0.05, the choice
∆t = 100 works well and yields the empirical model parameters λ ≈ 0.016, µ ≈ −1.57, and
σ ≈ 0.02, a result that is in good agreement with the simulation results for κ = 2 summarized
in Fig. 4.8.
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Figure 4.10: A near-splay state for (a) ω(x) = 0.005 cos(x). Chimera splay states for (b)
ω(x) = 0.01 cos(x), (c) ω(x) = 0.1 cos(x), and (d) ω(x) = 0.2 cos(x). In all cases β = 0.05
and N = 512.

Periodic ω(x)

In this section we consider the case ω(x) = ω0 cos(lx). When ω0 is small, the states
present for ω0 = 0 persist, but with increasing ω0 one finds a variety of intricate dynamical
behavior. In the following we set G(x) = cosx and β ≡ π

2
− α = 0.05, with ω0 and l as

parameters to be varied.

Splay states, near-splay states and chimera splay states

When ω(x) is a constant, splay states are observed in which the phase θ(x, t) varies
linearly with x. When ω0 is nonzero but small, the splay states persist as the near-splay
states described by Eq. (4.15); Fig. 4.10(a) shows an example of such a state when ω(x) =
0.005 cos(x). As ω0 becomes larger, an incoherent region appears and it increases in width as
ω0 increases further (e.g., Figs. 4.10(b)-4.10(c)). We refer to this type of state as a chimera
splay state, as in the bump inhomogeneity case. For these solutions, the slope of the coherent
regions is no longer constant but the oscillators continue to rotate with a constant overall
frequency Ω. This type of solution is also observed for other values of l. Fig. 4.11 shows
examples of chimera splay states for l = 2, while Fig. 4.12 shows chimera splay states for
l = 3, 4, and 5, with l coherent clusters in each case.

To compute the solution branches and identify thresholds for additional transitions, we
continue the solutions of Eqs. (4.13) and (4.14) with respect to the parameter ω0. Figures 4.13
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Figure 4.11: A near-splay state for (a) ω(x) = 0.1 cos(2x). Chimera splay states for (b)
ω(x) = 0.2 cos(2x), (c) ω(x) = 0.3 cos(2x), and (d) ω(x) = 0.4 cos(2x). In all cases β = 0.05
and N = 512.
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Figure 4.12: Chimera splay states for G(x) = cos(x) and (a) ω(x) = 0.2 cos(3x) (3-cluster
state), (b) ω(x) = 0.2 cos(4x) (4-cluster state), and (c) ω(x) = 0.2 cos(5x) (5-cluster state).
In all cases β = 0.05 and N = 512.
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Figure 4.13: The dependence of (a) Ω and (b) the fraction e of the domain occupied by the
coherent oscillators on ω0, with ω(x) = ω0 cos(x) and β = 0.05.

and 4.14 show the dependence of Ω and of the coherent fraction e on ω0 when l = 1 and 2,
respectively. The figures indicate that the coherent fraction e falls below 1 at ω0 ≈ 0.0075
(l = 1) and ω0 ≈ 0.16 (l = 2); for l = 3, 4, and 5 the corresponding transition takes place
at ω0 ≈ 0.0048 (not shown). These values coincide with the parameter values at which an
incoherent region emerges in numerical simulations. For example, Figs. 4.10(a) and 4.10(b)
show that for l = 1 the transition takes place for ω0 between 0.005 and 0.01. The exact value
of ω0 for this transition can be determined from Fig. 4.15(a) which shows that at the critical
value of ω0 the profiles of Ω+ω(x) and R(x) touch; the location of the tangency corresponds
to the location of the resulting incoherent region. Figure 4.16 shows the corresponding
construction for l = 2.

Subsequent transitions may take place as ω0 increases just as in the case of a bump
inhomogeneity. As shown in Fig. 4.10 and 4.13(b) this is the case for l = 1, where a second
transition takes place at ω0 ≈ 0.13, creating a second incoherent region. Figure 4.15(b)
shows that at this critical value of ω0 the profiles of Ω + ω(x) and R(x) also touch, allowing
us to determine accurately the location of this second transition.

To understand the l-cluster chimera states (l ≥ 3) reported in Fig. 4.12, we computed the
local order parameter Z̃(x) and found that R(x) is approximately constant while the phase
Θ(x) varies at a constant rate, suggesting the Ansatz Z̃(x) = a exp(ix). With this Ansatz,
Eqs. (4.13) and (4.14) reduce to a single equation,

2πΩ−
〈√

(Ω + ω0 cos(ly))2 − a2
〉

= 2 exp(−iβ)a2, (4.19)

for all positive integers l ≥ 3. Figure 4.17 shows the result of numerical continuation of a
solution for l = 3. The figure reveals no further transitions, indicating that the l = 3 chimera
state persists to large values of ω0. Numerical simulation shows that these states (l = 3, 4,
5) are stable and persist up to ω0 = 1.
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Figure 4.14: The dependence of (a) Ω and (b) the fraction e of the domain occupied by the
coherent oscillators on ω0, with ω(x) = ω0 cos(2x) and β = 0.05.
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Figure 4.15: Comparison of Ω+ω(x) and R(x) at the critical values ω0 for the appearance of
a new region of incoherence around (a) x = 0 for ω0 = 0.0075 and (b) x = 2.8 for ω0 = 0.13.
Parameters: l = 1 and β = 0.05.
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Figure 4.16: Comparison of Ω + ω(x) and R(x) at the critical value ω0 ≈ 0.16. Parameters:
l = 2 and β = 0.05.
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Figure 4.17: Dependence of (a) Ω and (b) the coherent fraction e on ω0, with ω(x) =
ω0 cos(3x) and β = 0.05.

1-cluster chimera states

Figure 4.18 shows an example of a 1-cluster chimera state when ω(x) = 0.1 cos(x); 1-
cluster chimera states of this type have not thus far been reported for G(x) = cos(x),
ω0 = 0, where computations always result in 2-cluster states. To understand the origin of
this unexpected 1-cluster state we use Fig. 4.18(b) to conclude that Z̃(x) is of the form
a cos(x), and hence that Eqs. (4.13) and (4.14) reduce to the single equation

2πΩ−
〈√

(Ω + ω(y))2 − a2 cos2 y
〉

= exp(−iβ)a2. (4.20)

Figure 4.19 shows the result of numerical continuation of the solution of this equation as
a function of ω0. The figure reveals a transition at ω0 = 0.0463 (Figs. 4.19(a,b)). When
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Figure 4.18: (a) A snapshot of the phase distribution θ(x, t) in a 1-cluster chimera state for
G(x) = cos(x) and ω(x) = 0.1 cos(x). (b) The corresponding order parameter R(x). (c)
The corresponding order parameter Θ(x). Panel (a) shows the presence of a nearly coherent
region near x = 0 with oscillators that oscillate π out of phase with the coherent cluster.
The calculation is done with β = 0.05 and N = 512.
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Figure 4.19: (a) The quantities a and Ω, and (b) the coherent fraction e, all as functions of
ω0 for the chimera state shown in Fig. 4.18. (c) Ω + ω(x) and R(x) as functions of x when
ω0 = 0.0463.

ω0 < 0.0463, the solution is a 2-cluster chimera; as ω0 increases through ω0 ≈ 0.0463 the
coherent region around x = 0 disappears, leaving a single-cluster chimera state (Fig. 4.19(c)).

2-cluster chimera states

For G(x) = cos(x) and constant ω, simulations always evolve into either a 2-cluster
chimera state or a splay state. It is expected that when ω0 is small, the 2-cluster chimera
is not destroyed. Figs. 4.20(a) and 4.20(b) gives examples of this type of state with l = 2
and l = 3 inhomogeneities, respectively. In both cases the clusters are located at specific
locations selected by the inhomogeneity.

The order parameter profile with l = 3 corresponding to the numerical solution in
Fig. 4.20(b) has the same symmetry properties as that in Figs. 4.5(b,c). It follows that



CHAPTER 4. CHIMERA STATES IN SYSTEMS OF NONLOCAL NONIDENTICAL
PHASE-COUPLED OSCILLATORS 76

−2 0 2

−2

0

2

x

θ
(a)

−2 0 2

−2

0

2

x

θ

(b)

Figure 4.20: 2-cluster chimera states for G(x) = cos(x) and (a) ω(x) = 0.1 cos(2x) and (b)
ω(x) = 0.1 cos(3x). In both cases β = 0.05 and N = 512.
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Figure 4.21: The dependence of (a) Ω (solid line) and b (dashed line), and (b) the coherent
fraction e on ω0 when l = 3 and β = 0.05.

we may set a = 0, b = br > 0 in the order parameter representation (4.10), resulting once
again in the self-consistency relation (4.16). We have continued the solutions of this relation
for l = 3 using the simulation in Fig. 4.20(b) with ω0 = 0.1 to initialize continuation in ω0.
Figure 4.21 shows the result of numerical continuation of the order parameter for this state.
No further transitions are revealed. There are three preferred locations for the coherent clus-
ters, related by the translation symmetry x → x + 2mπ

3
, m = 0, 1, 2, as shown in Fig. 4.22.
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Figure 4.22: The three possible locations of the 2-cluster chimera state when ω(x) =
0.1 cos(3x). The simulation is done with β = 0.05 and N = 512.
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Figure 4.23: (a) A snapshot of the phase pattern in a traveling coherent state when ω is
constant. (b) The position x0 of this state as a function of time. The simulation is done for
G(x) = cos(x) + cos(2x) with β = 0.75 and N = 512.

4.4 Traveling coherent solutions

We now turn to states with a spatially structured order parameter undergoing translation.
With G(x) = cos(x) + cos(2x) and constant ω the system (4.2) exhibits a fully coherent
but non-splay state that travels with a constant speed c(β) when 0.646 . β . 0.7644.
Figure 4.23(a) shows a snapshot of this traveling coherent state while Fig. 4.23(b) shows
its position x0 as a function of time. The speed of travel is constant and can be obtained
by solving a nonlinear eigenvalue problem (see Chapter 3). In this section, we investigate
how the inhomogeneities ω(x) = ω0 exp (−κ|x|) and ω(x) = ω0 cos(lx) affect the dynamical
behavior of this state.
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Bump inhomogeneity: ω(x) ≡ ω0 exp (−κ|x|)
In this section we perform two types of numerical experiments. In the first we fix β and

start with the traveling coherent solution for ω0 = 0. We then gradually increase ω0 at fixed
values of κ and β. In the second we fix ω0 > 0, κ > 0, and vary β.

For each 0.646 . β . 0.7644 we find that the coherent state continues to travel, albeit
nonuniformly, until ω0 reaches a threshold value that depends on the values of β and κ.
The case β = 0.75 provides an example. Figure 4.24(a) shows the traveling coherent state
in the homogeneous case (ω0 = 0) while Fig. 4.24(b) shows the corresponding state in the
presence of a frequency bump ω(x) ≡ ω0 exp (−κ|x|) with ω0 = 0.04 and κ = 2. In this
case the presence of inhomogeneity leads first to a periodic fluctuation in the magnitude
of the drift speed followed by, as ω0 continues to increase, a transition to a new state in
which the direction of the drift oscillates periodically (Fig. 4.24(b)). We refer to states
of this type as direction-reversing waves, by analogy with similar behavior found in other
systems supporting the presence of such waves [80, 81]. With increasing ω0 the reversals
become localized in space (and possibly aperiodic; Fig. 4.24(c)) and then cease, leading to
a stationary pinned structure at ω0 = 0.12 (Fig. 4.24(d)). Figure 4.25 shows the position
x0 of the maximum of the local order parameter R(x, t) of the coherent state as a function
of time for the cases in Fig. 4.24, showing the transition from translation to pinning as ω0

increases, via states that are reflection-symmetric on average. The final state is a steady
reflection-symmetric pinned state aligned with the imposed inhomogeneity.

In fact, the dynamics of the present system may be more complicated than indicated
above since a small group of oscillators located in regions where the order parameter un-
dergoes rapid variation in space may lose coherence in a periodic fashion even when ω0 = 0
thereby providing a competing source of periodic oscillations in the magnitude of the drift
speed. As documented in Chapter 3 this is the case when 0.7570 < β < 0.7644. For
β = 0.75, however, the coherent state drifts uniformly when ω0 = 0 and this is therefore the
case studied in greatest detail.

The profile of the pinned coherent state can also be determined from a self-consistency
analysis. For G(x) = cos(x) + cos(2x), the local order parameter Z̃(x) can be written in the
form

Z̃(x) = a cos(x) + b sin(x) + c cos(2x) + d sin(2x). (4.21)

Owing to the reflection symmetry of the solution b = d = 0; on applying a rotation in θ we
may take a to be real. The self-consistency equation then becomes

a exp(−iβ) =

〈
cos(y)(Ω + ω(y)− µ(y))

a cos y + c∗ cos(2y)

〉
, (4.22)

c exp(−iβ) =

〈
cos(2y)(Ω + ω(y)− µ(y))

a cos y + c∗ cos(2y)

〉
. (4.23)

When ω0 = 0.12, κ = 2, and β = 0.75 the solution of these equations is Ω = 1.9879,
a = 3.1259, cr = −0.1007, ci = −2.7300, results that are consistent with the values obtained
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Figure 4.24: Hidden line plot of the phase distribution θ(x, t) when (a) ω0 = 0. (b) ω0 = 0.04.
(c) ω0 = 0.08. (d) ω0 = 0.12. In all cases, κ = 2, β = 0.75 and N = 512.

from numerical simulation. For these parameter values, Ω +ω(x) < |a cos(x) + c cos(2x)| for
x ∈ (−π, π], indicating that all phases rotate with the same frequency Ω. As we decrease ω0

to ω0 ≈ 0.11 the profiles Ω +ω(x) and |a cos(x) + c cos(2x)| start to touch (Fig. 4.26) and for
yet lower ω0 the stationary coherent state loses stability and begins to oscillate as described
in the previous paragraph.

We have also conducted experiments at a fixed value of ω0 > 0 and κ > 0 while changing
β. For example, at fixed ω0 = 0.12, κ = 2 and β = 0.75 the system is in the pinned state
shown in Fig. 4.24(a). Since the speed of the coherent state with ω0 = 0 gradually increases
as β decreases, we anticipate that a given inhomogeneity will find it harder and harder to
pin the state as β decreases. This is indeed the case, and we find that there is a critical
value of β at which the given inhomogeneity is no longer able to pin the structure, with
depinning via back and forth oscillations of the structure [81]. For yet smaller values of
β, this type of oscillation also loses stability and evolves into near-splay states. When we
increase β again we uncover hysteresis in each of these transitions. Figure 4.27 shows two
distinct states at identical parameter values: ω0 = 0.12, κ = 2 and β = 0.76 generated using
different protocols: Fig. 4.27(a) shows a direction-reversing state evolved from a traveling
coherent state when we increase ω0 from 0 to 0.12 at β = 0.76, while Fig. 4.27(b) shows a
pinned state generated from the pinned state at β = 0.75 when we change β from 0.75 to
0.76 at fixed ω0 = 0.12.
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Figure 4.25: The position x0 of the coherent state in Fig. 4.24 as a function of time for (a)
ω0 = 0, (b) ω0 = 0.04, (c) ω0 = 0.08, and (d) ω0 = 0.12. In all cases κ = 2, β = 0.75, and
N = 512.
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Figure 4.26: The profiles of Ω + ω(x) and R = |a cos(x) + c cos(2x)| for ω0 = 0.11, κ = 2,
and β = 0.75.
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Figure 4.27: Hidden line plot of the phase distribution θ(x, t) when ω0 = 0.12 and β = 0.76.
(a) Unpinned state obtained from a traveling coherent state with ω0 = 0 and β = 0.76 on
gradually increasing ω0 to 0.12. (b) Pinned state obtained from a traveling coherent with
ω0 = 0 and β = 0.75 on gradually increasing ω0 to 0.12, and then increasing β to 0.76. In
both cases κ = 2 and N = 512.
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Figure 4.28: (a) A snapshot of the phase distribution θ(x, t) of a coherent solution when
ω0 = 0.028. (b) The position x0 of the coherent solution as a function of time. In both cases
l = 1, β = 0.05 and N = 512.



CHAPTER 4. CHIMERA STATES IN SYSTEMS OF NONLOCAL NONIDENTICAL
PHASE-COUPLED OSCILLATORS 82

0 0.01 0.02 0.03
−2.0455

−2.045

−2.0445

−2.044
(a)

ω
0

Ω

Figure 4.29: (a) The mean angular velocity Ω and (b) the mean drift speed c̄, both as
functions of ω0 when l = 1, β = 0.7.

Periodic inhomogeneity: ω(x) ≡ ω0 cos(lx)

We now turn to the case ω(x) ≡ ω0 cos(lx). As in the bump inhomogeneity case, when
β is fixed, the traveling coherent state will continue to travel until ω0 reaches a certain
threshold. However, we did not find a pinned state around β = 0.75 as in the previous
subsection. Instead we focus on the case β = 0.7 for which the traveling coherent state
has a reasonable speed when ω0 = 0 and take l = 1. When ω0 is small, the state remains
coherent (Fig. 4.28(a)) and continues to drift, albeit no longer with a uniform speed of
propagation. Figure 4.28(b) shows that the speed executes slow, small-amplitude oscillations
about a well-defined mean value c̄(ω0) shown in Fig. 4.29(b); the corresponding time-averaged
oscillation frequency Ω(ω0) is shown in Fig. 4.29(a). When ω0 is increased in sufficiently
small increments the oscillations grow in amplitude but the solution continues to travel to
the left until ω0 ≈ 0.285, where a hysteretic transition to a near-splay state takes place.
Figure 4.29(b) shows that prior to this transition the average speed first decreases as a
consequence of the inhomogeneity, but then increases abruptly just before the transition
owing to the loss of coherence on the part of a group of oscillators and the resulting abrupt
increase in asymmetry of the order parameter.

4.5 Traveling chimera states

In addition to the states discussed in the previous sections, Eq. (4.2) with constant ω

admits traveling one-cluster chimera states for G(x) = G
(2)
n (x) ≡ cos(nx) + cos[(n+ 1)x] and

appropriate values of the phase lag β. This state consists of a single coherent cluster that
drifts through an incoherent background as time evolves at more or less a constant speed.
Figure 4.30(a) shows a snapshot of such a state when n = 3. The direction of motion is
determined by the gradient of the phase in the coherent region: the cluster travels to the
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Figure 4.30: (a) A snapshot of the phase distribution θ(x, t) for a traveling chimera state in
a spatially homogeneous system. (b) The position x0 of the coherent cluster as a function of
time. The simulation is done for G(x) ≡ cos(3x) + cos(4x) with β = 0.03 and N = 512.

left when the gradient is positive and to the right when the gradient is negative. Figure
4.30(b) shows the position x0 of the coherent cluster as a function of time and confirms
that the cluster moves to the right at an almost constant speed. In Chapter 3, we use
numerical simulations to conclude that for n = 3 the traveling chimera is stable in the
interval 0.015 . β . 0.065. We therefore focus on the effects of spatial inhomogeneity
on the traveling chimera state when β = 0.03. In fact the traveling chimera state is more
complex than suggested in Fig. 4.30(a,b): unlike the states discussed in the previous sections,
the profile of the local order parameter fluctuates in time, suggesting that the state does not
drift strictly as a rigid object (see Chapter 3).

Bump inhomogeneity: ω(x) ≡ ω0 exp (−κ|x|)
In this section we investigate the effect of a bump-like inhomogeneity ω(x) ≡ ω0 exp (−κ|x|)

on the motion of the traveling chimera state. Starting with the traveling chimera state for
ω0 = 0, we increase ω0 in steps of ∆ω0 = 0.01. To describe the motion of the coherent cluster,
we follow the method in [35] and determine the instantaneous position x0 of the cluster by

minimizing the function F (x∗) = 1
N

N∑
k

[θt(xk, t)− f(xk, x
∗)]2, where f(x, x∗) = − cos(x− x∗)

is a reference profile, and using the minimizer x∗(t) as a proxy for x0(t). We find that even
small ω0 suffices to stop a traveling chimera from moving: Fig. 4.31 shows that the threshold
ω0 ≈ 0.01 for κ = 1 and that it increases monotonically to ω0 ≈ 0.03 for κ = 10. The
resulting pinned state persists to values of ω0 as large as ω0 = 1.

Figures 4.32(a,c,e) show the position x0 of the coherent cluster as a function of time
obtained using the above procedure for ω0 = 0.04, 0.08, 0.12, respectively, i.e., in the pinned
regime. The figures show that the equilibrium position of the coherent region is located
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Figure 4.31: Dependence of the pinning threshold ω0 on κ when β = 0.03.
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Figure 4.32: The position x0 of the pinned coherent cluster in a traveling chimera state as
a function of time when (a) ω0 = 0.04, (c) ω0 = 0.08, (e) ω0 = 0.12. The average rotation
frequency θ̄t for (b) ω0 = 0.04, (d) ω0 = 0.08, (f) ω0 = 0.12. In all cases β = 0.03 and κ = 10,
N = 512.
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farther from the position x = 0 of the inhomogeneity peak as ω0 increases. The bump in
ω(x) thus exerts a “repelling force” on the coherent cluster, whose strength increases with the
height of the bump. We interpret this observation as follows. The coherent cluster can only
survive when the frequency gradient is sufficiently small, and is therefore repelled by regions
where ω(x) varies rapidly. In the present case this implies that the coherent cluster finds it
easiest to survive in the wings of the bump inhomogeneity, and this position moves further
from x = 0 as ω0 increases. This interpretation is confirmed in Figs. 4.32(b,d,f) showing
the average rotation frequency, θ̄t(x), of the oscillators. The plateau in the profile of θ̄t(x)
indicates frequency locking and hence the location of the coherent cluster; the fluctuations
in the position of the coherent cluster are smoothed out by the time-averaging.

Periodic inhomogeneity: ω(x) ≡ ω0 cos(lx)

We now turn to the effects of a periodic inhomogeneity ω(x) ≡ ω0 cos(lx). When l = 1
and ω0 increases the coherent cluster initially travels with a non-constant speed but then
becomes pinned in place; as in the case of the bump inhomogeneity quite small values of
ω0 suffice to pin the coherent cluster in place (for l = 1 the value ω0 ≈ 0.003 suffices).
As shown in Figs. 4.33(a) and 4.33(c) the position x0 of the pinned cluster relative to the
local maximum of the inhomogeneity (i.e., x = 0) depends on the value of ω0 > 0.003. For
ω0 < 0.003 (Fig. 4.34) the coherent cluster travels to the right and does so with a speed that
is larger when x0(t) > 0 than when x0(t) < 0. This effect becomes more pronounced as ω0

increases. This is because the coherent structure is asymmetric, with a preferred direction of
motion, and this asymmetry increases with ω0. Evidently, the speed of the synchronization
front at the leading edge is enhanced when ω′(x) < 0 but suppressed when ω′(x) > 0 and
likewise for the desynchronization front at the rear.

For l > 1 we observe similar results. The coherent cluster is pinned in space already at
small values of ω0. Since the inhomogeneous system has the discrete translation symmetry
x → x + 2π

l
the coherent cluster has l possible preferred positions. Figure 4.35 shows an

example for l = 2. Panels (a) and (c) show snapshots of the phase distribution θ(x, t) for
ω0 = 0.01 in the two preferred locations (separated by ∆x = π), while panels (b) and (d)
show the corresponding average rotation frequency θ̄t.

4.6 Conclusion

In this chapter we have investigated a system of non-identical phase oscillators with
nonlocal coupling, focusing on the effects of weak spatial inhomogeneity in an attempt to
extend earlier results on identical oscillators to more realistic situations. Two types of
inhomogeneity were considered, a bump inhomogeneity in the frequency distribution specified
by ω(x) = ω0 exp(−κ|x|) and a periodic inhomogeneity specified by ω(x) = ω0 cos(lx). In
each case we examined the effect of the amplitude ω0 of the inhomogeneity and its spatial
scale κ−1 (l−1) on the properties of states known to be present in the homogeneous case ω0 =
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Figure 4.33: The position x0 of the pinned coherent cluster in a traveling chimera state as a
function of time when (a) ω0 = 0.005, (c) ω0 = 0.01. The average rotation frequency θ̄t for
(b) ω0 = 0.005, (d) ω0 = 0.01. In all cases β = 0.03, l = 1 and N = 512.
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Figure 4.34: The position x0 of the coherent cluster in a traveling chimera state as a function
of time when (a) ω0 = 0.001, (b) ω0 = 0.002. In all cases β = 0.03, l = 1 and N = 512.
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Figure 4.35: (a,c) The two possible phase distributions θ(x, t) of pinned traveling chimera
states when ω0 = 0.01, β = 0.03 and l = 2. (b,d) The corresponding average rotation
frequencies θ̄t. In both cases N = 512.

0, viz., splay states and stationary chimera states, traveling coherent states and traveling
chimera states.

We have provided a fairly complete description of the effects of inhomogeneity on these
states for the coupling functions G(x) = cos(x), cos(x) + cos(2x) and cos(3x) + cos(4x)
employed in Chapter 3. Specifically, we found that as the amplitude of the inhomogeneity
increased a splay state turned into a near-splay state, characterized by a nonuniform spatial
phase gradient, followed by the appearance of a stationary incoherent region centered on
the location of maximum inhomogeneity amplitude. With further increase in ω0 additional
intervals of incoherence opened up, leading to states resembling the stationary multi-cluster
chimera states also present in the homogeneous system. These transitions, like many of the
transitions identified in this chapter, could be understood with the help of a self-consistency
analysis based on the Ott-Antonsen Ansatz [46], as described in the Chapter 2. The effect of
inhomogeneity on multi-cluster chimera states was found to be similar: the inhomogeneity
trapped the coherent clusters in particular locations, and eroded their width as its amplitude
ω0 increased, resulting in coalescence of incoherent regions with increasing ω0.
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More significant are the effects of inhomogeneity on traveling coherent and traveling
chimera states. Here the inhomogeneity predictably pins the traveling structures but the
details can be complex. Fig. 4.24 shows one such complex pinning transition that proceeds
via an intermediate direction-reversing traveling wave. These waves are generated directly
as a consequence of the inhomogeneity and would not be present otherwise, in contrast to
homogeneous systems undergoing a symmetry-breaking Hopf bifurcation as described in [80].
Many of the pinning transitions described here are hysteretic as demonstrated in Fig. 4.27.
The traveling chimera states are particularly fragile in this respect, with small amplitude
inhomogeneities sufficient to arrest the motion of these states. In all these cases the coherent
regions are found in regions of least inhomogeneity, an effect that translates into an effective
repulsive interaction between the coherent cluster and the inhomogeneity.

In future work we propose to explore similar dynamics in systems of more realistic non-
locally coupled oscillators and compare the results with those for similar systems with a
random frequency distribution.
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Chapter 5

Twisted chimera states and multi-core
spiral chimera states on a
two-dimension torus

5.1 Introduction

In previous chapters, as well as many other previous works, chimera states were studied
in one-dimensional systems. Rather less is known about chimera states in two-dimensional
oscillator arrays and existing results are largely based on numerical simulations [64, 65, 68].
Both two- and three-dimensional arrays have been studied and the results have revealed new
types of chimera states, in addition to the counterparts of the one-dimensional states already
mentioned. In two dimensions these include spiral chimera states with an incoherent core
while the oscillators outside the core oscillate coherently. In this chapter we consider the
case of two-dimensional oscillator arrays with nonlocal coupling, with a view of studying,
both numerically and analytically, different states of partial synchrony in two dimensions.
Like earlier work, our work is restricted to arrays of phase-coupled oscillators with periodic
boundary conditions in both directions, i.e., to phase oscillators on a flat torus.

First steps in this direction were taken by Kim et al. [103] in their study of the system

dθij
dt

= ω − K

N(R)

∑
(m−i)2+(n−j)26R2

(θij − θmn + α). (5.1)

Here θij denotes the phase of the oscillator at position (i, j) on a two-dimensional periodic
lattice, K is the coupling strength, and N(R) is the number of oscillators whose distance to
(i, j) is no larger than R. They found and investigated many interesting patterns that arise as
α varies in the range [−π, π], but did not observe chimera states. In 2012, Hagerstrom et al.
created a physical realization of a two-dimensional iterated map with nonlocal coupling and
periodic boundary conditions, and observed chimera states in an experiment [77]. Meanwhile,
Omel’chenko et al. [68] presented a series of numerical experiments on the same system
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as used in [103] but with a careful preparation of initial conditions. They reported chimera
states of three types: a coherent spot, an incoherent spot, and different stripe patterns.
In addition, they observed a stable configuration of four spirals. While Omel’chenko et
al.’s work is largely based on numerical simulations, Panaggio and Abrams used asymptotic
methods to derive conditions under which two-dimensional ”spot” and ”stripe” chimeras can
exist on a two-dimensional periodic domain [69]. With their method, they also reveal an
asymmetric chimera state; however, this state is unstable and appears in simulations only as
a transient. In the work reported below additional two-dimensional chimera states, including
states we call twisted chimera states and multi-core spiral wave chimera states, are observed
and studied.

The system we consider consists of an oscillator array on a two-dimensional torus. The
continuous version of the model leads to the following evolution equation for the phase
θ(x, y, t):

∂θ(x, y, t)

∂t
= −

∫ π

−π

∫ π

−π
G (x− x′, y − y′) sin(θ(x, y, t)− θ(x′, y′, t) + α) dx′ dy′. (5.2)

To make the system analytically tractable, we assume G can be decomposed as G(x, y) =
Gx(x) + Gy(y), where Gx and Gy are functions representing the coupling in the x and y
directions, respectively. Inspired by the work in Chapter 3, we choose Gx and Gy from the
following two families:

G(1)
n (x) ≡ cos(nx), G(2)

n (x) ≡ cos(nx) + cos[(n+ 1)x].

With these coupling functions, we observe chimera states on a two-dimensional torus with
random initial conditions, including twisted chimeras and a variety of spiral wave chimeras.
The simulations are carried out using a fourth-order Runge-Kutta method with time step
δt = 0.025 with both x and y directions discretized into N uniform intervals with N = 256
or N = 512.

This chapter is organized as follows. In Section 5.2 we introduce the effective order
parameter equation we will use to describe the phase patterns obtained in numerical simu-
lations. These are described in Sections 5.3 and 5.4 for two different choices of the coupling
function G(x, y). These sections also relate the simulations to solutions of the order param-
eter equation and use the latter to determine the stability properties of the different states
found. The chapter ends with a brief discussion in Section 5.5.

5.2 Effective equation

As in the one-dimensional case, an equivalent description of Eq. (5.2) can be obtained by
constructing an equation for the local order parameter z(x, y, t) defined as the local spatial
average of exp[iθ(x, y, t)],

z(x, y, t) ≡ lim
δ→0+

1

δ2

∫ δ/2

−δ/2

∫ δ/2

−δ/2
exp[iθ(x+ x′, y + y′, t)] dx′dy′. (5.3)
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The evolution equation for z then takes the form

zt =
1

2

(
exp(−iα)Z − exp(iα)z2Z∗

)
, (5.4)

where Z(x, y, t) ≡ K[z](x, y, t) and K is a compact linear operator defined via the relation

K[u](x, y, t) ≡
∫ π

−π

∫ π

−π
G(x− x′, y − y′)u(x′, y′, t) dx′dy′. (5.5)

A derivation of Eq. (5.4) based on the Ott–Antonsen Ansatz is very similar to the one-
dimensional case [45, 60] and is omitted.

Stationary rotating solutions of Eq. (5.4) take the form

z(x, y, t) = z̃(x, y) exp(−iΩt), (5.6)

whose common frequency Ω satisfies the nonlinear nonlocal eigenvalue problem

iΩz̃ +
1

2

[
exp(−iα)Z̃(x, y)− z̃2 exp(iα)Z̃∗(x, y)

]
= 0. (5.7)

Here z̃(x, y) describes the spatial profile of the rotating solution and Z̃ ≡ K[z̃].
Solving Eq. (5.7) as a quadratic equation in z̃ we obtain

z̃(x, y) = exp(iβ)
Ω− µ(x, y)

Z̃∗(x, y)
=

exp(iβ)Z̃(x, y)

Ω + µ(x, y)
, (5.8)

where β ≡ (π/2) − α and µ(x, y) = [Ω2 − |Z̃(x, y)|2]1/2. Combining this equation and the
relation between z̃ and Z̃ gives us the self-consistency equation

Z̃(x, y) = exp(iβ)

∫ π

−π

∫ π

−π
G(x− x′, y − y′)Ω− µ(x, y)

Z̃∗(x, y)
dx′dy′. (5.9)

As in the one-dimensional case, temporal stability of the stationary rotating solution is
determined by the spectrum of the following linear operator:

vt = L[v] ≡ iµ(x, y)v +
1

2

[
exp(−iα)V (x, y, t)− exp(iα)z̃2V ∗(x, y, t)

]
, (5.10)

where V (x, y, t) ≡ K[v] =
∫ π
−π

∫ π
−π G(x− x′, y − y′)v(x′, y′, t)dx′dy′.

5.3 The case Gx = Gy = G
(1)
n

Here we consider the case where Gx = cos(nx) and Gy = cos(ny). In Chapter 3 we
discussed the one-dimensional system with G(x) = cos(nx), where splay states and 2n-
cluster chimera states are observed. In the current two-dimensional system, the counterparts
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of splay states are still present, although no counterparts of 2n-cluster chimera states were
observed: 2n-cluster chimera states are always unstable in two dimensions. This is because
the 2-cluster state is unstable (Sec. 5.3) and the stability calculation for the case n > 1 is the
same. However, in addition to the stable splay states, we have also observed two new types
of chimera states. One is the twisted chimera state already mentioned, in which a coherent
stripe with uniformly varying phase distribution coexists with an incoherent domain, while
the other is a multi-core spiral wave chimera. These states are described below.

Before proceeding we wish to point out two facts about Eq. (5.2) with the present cou-
pling. First, the system is invariant under the three reflections (x, y) → (−x, y), (x, y) →
(x,−y), and (x, y) → (y, x), i.e., it is invariant under the group D4 of rotations and reflec-
tions of a square. It follows that if θ(x, y, t) is a solution, then so are θ(−x, y, t), θ(x,−y, t),
and θ(y, x, t). Second, if

∫ π
−π Gy(y) dy = 0, then the following statement holds: if θ1(x, t) is

a solution for the one-dimensional system

∂θ

∂t
= −

∫ π

−π
G(x− y) sin[θ(x, t)− θ(y, t) + α] dy, (5.11)

then θ2(x, y, t) ≡ θ1(x, 2πt) is a solution of Eq. (5.2). We say that the solution θ2 of the two-
dimensional system is inherited from the solution θ1 for the corresponding one-dimensional
system.

Splay states
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Figure 5.1: (Color online) Snapshot of the phase pattern for splay states in two dimensions.

(a) The phase distribution θ(x, y, t) for Gx = Gy = G
(1)
1 . (b) The phase distribution θ(x, y, t)

for Gx = Gy = G1
2. The simulations are done with β = 0.05, N = 256 from a random initial

condition. Colors indicate the phase of the oscillators.

Splay states with a phase that varies uniformly with respect to x are observed in one-
dimensional systems. The inherited solution of the two-dimensional system is also observed
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in numerical simulations. Figure 5.1 shows two examples in which the phase varies uniformly
in the x direction. Solutions in which the phase varies uniformly in the y direction are also
observed (not shown).

The splay state in Fig. 5.1 can be written in the form

θ(x, y, t) = −Ωt+ qx, (5.12)

where −Ω represents the overall rotation frequency and q is the twist number. Substituting
Eq. (5.12) into Eq. (5.2) we obtain a relation for the rotation frequency:

Ω =

∫ π

−π

∫ π

−π
G(x, y) sin(qx+ α) dx dy. (5.13)

As in the one-dimensional case, states of this type travel with speed c = Ω
q
, i.e., to the right

when both Ω and q have the same sign and to the left when Ω and q have opposite signs.
To investigate the linear stability of the splay states, we use the approach of Chapter 3 and

suppose that θ(x, y, t) is perturbed to θ(x, y, t)+ ε exp(λt) exp(i(kxx+ kyy)) with 0 < ε� 1.

A straightforward calculation, using the fact that Gx, Gy are both even and Ĝy 0 = 0, leads
to the following relation for the growth rate λ of the perturbation:

λ =
1

2

[
exp(iα)(Ĝx q−kxδky ,0 + δkx,qĜy−ky) + exp(−iα)(Ĝx−kx−qδky ,0 + δkx,−qĜy−ky)

]
−Ĝx q cosα,

(5.14)
where ûk ≡

∫ π
−π u(x) exp(ikx) dx. This relation shows that when 0 < α < π/2, the splay

state is linearly stable when |q| = n if Gx = Gy = G
(1)
n and |q| = n or n+1 if Gx = Gy = G

(2)
n .

Two-cluster chimera states

As in one dimension the splay states may coexist with stable chimera states. However, no
stable analogues of the 2n-cluster chimera states familiar from the one-dimensional problem
have been observed in two dimensions since such states are now unstable. To demonstrate
this we first compute such states using the self-consistency analysis and then determine their
stability properties.

The local order parameter takes the form

Z̃(x, y) = R(x, y) exp(iΘ(x, y)) = R0 cos(nx) (5.15)

and the self-consistency relation for R0 is

R2
0 = exp(iβ)

〈
Ω−

√
Ω2 −R2

0 cos2 (nx)

〉
. (5.16)

Here, the bracket 〈·〉 is defined by 〈f〉 =
∫ π
−π

∫ π
−π f(x′, y′) dx′ dy′. Thus the self-consistency

equation forR0 has the same form as in one dimension (1D) except that the bracket represents
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Figure 5.2: (Color online) Dependence of (a) R0 and Ω, and (b) the point eigenvalues λp on
the parameter β.

an integral over a torus rather than a ring. Therefore, if Ω′ and R′0 is the solution for 1D
case, then Ω = 2πΩ′ and R0 = 2πR′0 is the solution in two dimensions (2D). The solution
of Eq. (5.16) is shown in Fig. 5.2(a). Since the right side of Eq. (5.16) is identical for all
n = k/2, k ∈ N, it follows that the same solution describes all 2n-cluster chimera states,
n = 1, 2, . . ..

The linear stability of the 2n-cluster chimera states determined by the above analysis
can be studied using Eq. (5.10). This equation is solved by

v(x, y, t) = exp(λt)v1(x, y) + exp(λ∗t)v∗2(x, y), (5.17)

leading to the eigenvalue problem

λ

(
v1

v2

)
=

1

2

(
2iµ+ exp(−iα)K − exp(iα)z̃2K
− exp(−iα)z̃∗2K −2iµ∗ + exp(iα)K

)(
v1

v2

)
. (5.18)

Since K is compact, its spectrum consists of two parts, a continuous spectrum given by
{iµ(x, y),−iµ∗(x, y)} with x, y ∈ [−π, π] and a (possibly empty) point spectrum. The spec-
trum is in addition symmetric with respect to the real axis: if λ is an eigenvalue with
eigenvector (v1, v2)T , then λ∗ is an eigenvalue with eigenvector (v∗2, v

∗
1)T . The continuous

spectrum is stable (negative) or neutrally stable (purely imaginary). Thus the stability of
the chimera states is determined by the point spectrum.

We can compute unstable point eigenvalues λp numerically. For this purpose we rewrite
Eq. (5.18) in the form

Lv ≡
(

2− exp(−iα)K
λp−iµ

exp(iα)z̃2K
λp−iµ

exp(−iα)z̃∗2K
λp+iµ∗

2− exp(iα)K
λp+iµ∗

)(
v1

v2

)
= 0, (5.19)

and define f ≡ 1
4

exp(−iα)
λp−iµ , f ∗ ≡ 1

4
exp(iα)
λp+iµ∗

, g ≡ 1
4

exp(iα)z̃2

λp−iµ , and g∗ ≡ 1
4

exp(−iα)z̃∗2

λp+iµ∗
. As suggested

in [39, 60], it is convenient to solve the eigenvalue problem using Fourier basis functions,
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especially so since the coupling function is sinusoidal. Following the convention used in
Chapter 3, we write

v =
1

4π2

∑
m,n

v̂mn exp(−imx) exp(−iny). (5.20)

In this basis, Eq. (5.19) takes the form∑
m,n

Bkl,mnv̂mn = 0, (5.21)

where v̂mn = (v̂1,mn, v̂2,mn),

Bkl,mn =

(
2π2δk,mδl,n − f̂k−m l−nĜmn ĝk−m l−nĜmn

ĝ∗k−m l−nĜmn 2π2δk,mδl,n − f̂ ∗k−m l−nĜmn

)
,

and f̂l, f̂
∗
l , ĝl, ĝ

∗
l are the Fourier coefficients of f , f ∗, g and g∗, respectively; the latter are

defined by f̂kl = 〈f exp(ikx) exp(ily)〉, etc.
The point eigenvalue λp satisfies the condition det B(λp) = 0. We use n = 1 as an

example to calculate λp. In this case Ĝmn = 2π2 when (m,n) = (±1, 0) and (0,±1), and 0
otherwise. Therefore, λp satisfies

det



1− f̂0,0 ĝ0,0 −f̂−2,0 ĝ−2,0 −f̂−1,1 ĝ−1,1 −f̂−1,−1 ĝ−1,−1

ĝ∗0,0 1− f̂ ∗0,0 ĝ∗−2,0 −f̂ ∗−2,0 ĝ∗−1,1 −f̂ ∗−1,1 ĝ∗−1,−1 −f̂ ∗−1,−1

−f̂2,0 ĝ2,0 1− f̂0,0 ĝ0,0 −f̂1,1 ĝ1,1 −f̂1,−1 ĝ1,−1

ĝ∗2,0 −f̂ ∗2,0 ĝ∗0,0 1− f̂ ∗0,0 ĝ∗1,1 −f̂ ∗1,1 ĝ∗1,−1 −f̂ ∗1,−1

−f̂1,−1 ĝ1,−1 −f̂−1,−1 ĝ−1,−1 1− f̂0,0 ĝ0,0 −f̂0,−2 ĝ0,−2

ĝ∗1,−1 −f̂ ∗1,−1 ĝ∗−1,−1 −f̂ ∗−1,−1 ĝ∗0,0 1− f̂ ∗0,0 ĝ∗0,−2 −f̂ ∗0,−2

−f̂1,1 ĝ1,1 −f̂−1,1 ĝ−1,1 −f̂0,2 ĝ0,2 1− f̂0,0 ĝ0,0

ĝ∗1,1 −f̂ ∗1,1 ĝ∗−1,1 −f̂ ∗−1,1 ĝ∗0,2 −f̂ ∗0,2 ĝ∗0,0 1− f̂ ∗0,0


= 0.

(5.22)

This equation applies for the coupling Gx = Gy = G
(1)
1 and will be used in later sections.

For 2-cluster chimera states we have in addition f̂kl = ĝkl = f̂ ∗kl = ĝ∗kl = 0 whenever l 6= 0.
Thus Eq. (5.22) reduces to

det


1− f̂0,0 ĝ0,0 −f̂−2,0 ĝ−2,0

ĝ∗0,0 1− f̂ ∗0,0 ĝ∗−2,0 −f̂ ∗−2,0

−f̂2,0 ĝ2,0 1− f̂0,0 ĝ0,0

ĝ∗2,0 −f̂ ∗2,0 ĝ∗0,0 1− f̂ ∗0,0

 = 0, (5.23)

and

det

(
1− f̂0,0 ĝ0,0

ĝ∗0,0 1− f̂ ∗0,0

)
= 0. (5.24)



CHAPTER 5. TWISTED CHIMERA STATES AND MULTI-CORE SPIRAL CHIMERA
STATES ON A TWO-DIMENSION TORUS 96

One branch of the point spectrum comes from Eq. (5.23). The resulting point eigenvalue
is computed using continuation based on Newton’s method and shown in Fig. 5.2(b) (green
solid line). Notice that

f̂0,0 =

〈
1

4

exp(−iα)

λp − i
√

Ω2 −R2
0 cos2 x

〉
=

∫ π

−π

1

4

exp(−iα)

λp/(2π)− i
√

Ω′2 −R′20 cos2 x
dx. (5.25)

From this and similar relations we conclude that if λ′p is an eigenvalue in 1D, then λp = 2πλ′p
is an eigenvalue in 2D. Another branch of the point spectrum comes from Eq. (5.24) and
is also shown in Fig. 5.2(b) (red dashed line). From the figure, we see that this point
eigenvalue is positive for all 0 ≤ β ≤ π

2
, thereby explaining why we were unable to find

2n-cluster chimera states starting from random initial conditions.

Twisted chimera states

(a)

 

 

−3

−2

−1

0

1

2

3π

−π
−π

π

(b)

 

 

−3

−2

−1

0

1

2

3π

−π
−π

π

Figure 5.3: (Color online) Snapshots of the phase patterns for twisted chimera states. (a)

The phase distribution θ(x, y, t) for Gx = Gy = G
(1)
1 . (b) The phase distribution θ(x, y, t)

for Gx = Gy = G
(1)
2 . The simulations are done with β = 0.05, N = 256 and random initial

condition. Colors indicate the phase of the oscillators.

As mentioned above, twisted chimera states are obtained in numerical simulations with
the coupling Gx = cos(nx), Gy = cos(ny). Figure 5.3 provides examples for n = 1, 2 and
β = 0.05. In these states the coherent clusters form closed stripes on a torus. In addition, the
phase varies uniformly along the stripes. We still use the term twist number to indicate the
number of times the stripe wraps in either the x or the y direction. Numerical simulations
suggest that this type of chimera state is one of the two most frequently observed states (the
other being a splay state) when starting from random initial conditions with β < βc ≈ 0.12.
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Figure 5.4: (Color online) Snapshot of the phase pattern for the 1:1 twisted chimera state.
(a) The phase distribution θ(x, y). (b) The corresponding order parameter R(x, y). (c)
The corresponding order parameter Θ(x, y). The simulation is done with Gx = cos(x),
Gy = cos(y), β = 0.05, N = 256 from a random initial condition. In panels (a) and (c), the
color indicates the phase of the oscillators; in (b), the color indicates the amplitude of the
local order parameter R(x, y).

To understand the properties of the twisted chimera states we invoke the self-consistency
analysis. As in one-dimensional systems, Z̃ is interpreted as the local order parameter:

Z̃(x, y) ≡ R(x, y) exp[iΘ(x, y)] =

∫ π

−π

∫ π

−π
G(x, y, x′, y′) exp[iθ(x′, y′)] dx′ dy′. (5.26)

Equation (5.9) can therefore be written in the form

R(x, y) exp[iΘ(x, y)] = exp(iβ)

∫ π

−π

∫ π

−π
G(x, y, x′, y′) exp[iΘ(x′, y′)]h(x′, y′) dx′ dy′, (5.27)

where

h(x′, y′) ≡ Ω−
√

Ω2 −R2(x′, y′)

R(x′, y′)
. (5.28)

Figures 5.4(b) and 5.4(c) show the pattern of R(x, y) and Θ(x, y) for the 1:1 twisted
chimera state obtained from the numerical simulation reported in Fig. 5.4(a). To understand
the properties of these empirical order parameter fields we need to solve Eq. (5.27) for R(x, y)
and Θ(x, y). This formidable task can be simplified using appropriate symmetry relations
valid for our choice of Gx and Gy. We use the case n = 1 to illustrate the process.

First, we notice that Eq. (5.27) can be written

R(x, y) exp(iΘ(x, y)) = a cos(x) + b sin(x) + c cos(y) + d sin(y), (5.29)

where a, b, c, and d are complex numbers given by

a = 〈cos(x′) exp(iβ) exp(iΘ(x′, y′))h(x′, y′)〉, (5.30)
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b = 〈sin(x′) exp(iβ) exp(iΘ(x′, y′))h(x′, y′)〉, (5.31)

c = 〈cos(y′) exp(iβ) exp(iΘ(x′, y′))h(x′, y′)〉, (5.32)

d = 〈sin(y′) exp(iβ) exp(iΘ(x′, y′))h(x′, y′)〉. (5.33)

Since Eq. (5.27) is invariant under translation in x and y, we can choose the origin such
that R(x, y) is invariant under the transformation (x, y)→ (y, x), and Θ(x, y) has a π phase
jump across the line y = x. This property implies

R(y, x) exp(iΘ(y, x)) = R(x, y) exp(iΘ(x, y) + iπ), (5.34)

which is equivalent to

a cos(y) + b sin(y) + c cos(x) + d sin(x) = −(a cos(x) + b sin(x) + c cos(y) + d sin(y)). (5.35)

Matching the coefficients of the Fourier components gives a = −c and b = −d.
In addition, we find from Fig. 5.4(c) that Θ(x, y) decreases linearly along the (1, 1)

direction. This behavior is similar to the splay states with a twist number q. In Fig. 5.4(c),
q = −1. From Fig. 5.4(b), we see that R is constant along the (1, 1) direction. Using this
property, we obtain

R(x+ δ, y + δ) exp(iΘ(x+ δ, y + δ)) = R(x, y) exp(iΘ(x, y) + iδ), (5.36)

where δ represents an arbitrary displacement in the (1, 1) direction. From the limit δ → 0
we obtain

−a sin(x) + b cos(x)− c sin(y) + d cos(y) = i(a cos(x) + b sin(x) + c cos(y) + d sin(y)), (5.37)

implying that b = ia and d = ic.
The fact that Eq. (5.27) is also invariant under translations in θ allows us finally to choose

a to be real and positive. Writing a = R0/2, and substituting the expression R exp(iΘ) =
a(exp(ix)− exp(iy)) into Eqs. (5.30)–(5.33) leads to a single self-consistency requirement:

R2
0 = exp(iβ)

〈
Ω−

√
Ω2 −R2

0 sin2

(
x− y

2

)〉
. (5.38)

To solve this equation, we find it convenient to use the coordinates u ≡ y+ x, v ≡ y− x.
Since the right side of Eq. (5.38) is 2π-periodic in both x and y directions, the integration
domain can be changed from a square in (x, y) coordinates (black solid lines in Fig. 5.5(a))
to a rectangle in (u, v) coordinates (green dashed lines in Fig. 5.5(b)). In fact, for a general
2π-periodic function F (x, y), we have∫ π

−π

∫ π

−π
F (x, y) dx dy =

1

2

∫ 2π

−2π

(∫ 2π

0

F

(
u− v

2
,
u+ v

2

)
dv

)
du. (5.39)



CHAPTER 5. TWISTED CHIMERA STATES AND MULTI-CORE SPIRAL CHIMERA
STATES ON A TWO-DIMENSION TORUS 99

−5 0 5

−5

0

5

(a)

x

y

π−π

π

−π

−5 0 5

−5

0

5

(b)

u

v

π2π−2

π2

Figure 5.5: (Color online) (a) Integration domain before changes of coordinates. (b) Inte-
gration domain after change of coordinates.

One additional change of variables now shows that Eq. (5.38) is identical to Eq. (5.16). Thus
the dependence of Ω and R0 on β is identical to that shown in Fig. 5.2(a). When β = 0,
Ω = R0 ≈ 14.346, which is consistent with the value Ω = R0 = 4π2−8π obtained analytically
from Eq. (5.38). As in the 1D case, the boundary between coherent and incoherent domains
is determined by the relation Ω2 = R2

0 sin2
(
x−y

2

)
, implying that the coherent fraction (by

area) is given by r = 1−2π−1 sin−1(Ω/R0). The dependence of r on β is shown in Fig. 5.6(a).
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Figure 5.6: (Color online) Dependence of (a) the fraction r of coherent oscillators and (b)
the real part of the two point eigenvalues λp on the parameter β.

The stability of the twisted chimera states can be analyzed in the same way as done for
the 2n-cluster chimera states. When n = 1, λp is still determined by Eq. (5.22); in the new
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coordinates u and v, we have

µ =
√

Ω2 −R2
0 sin2 (v/2), (5.40)

Z̃ = −iR0 sin (v/2) exp (iu/2) , (5.41)

z̃ = −i exp(iβ)R0 sin (v/2) exp (iu/2)

Ω +
√

Ω2 −R2
0 sin2 (v/2)

, (5.42)

where

f =
1

4

exp(−iα)

λp − i
√

Ω2 −R2
0 sin2 (v/2)

, f ∗ =
1

4

exp(iα)

λp + i
√

Ω2 −R2
0 sin2 (v/2)

∗ , (5.43)

g =
R2

0 sin2 (v/2) exp(iu)f(
Ω +

√
Ω2 −R2

0 sin2 (v/2)
)2 , g∗ =

R2
0 sin2 (v/2) exp(−iu)f ∗(

Ω +
√

Ω2 −R2
0 sin2 (v/2)

∗)2 . (5.44)

Here, we emphasize that the ∗ represents complex conjugate in the right hand side of the
expressions, while f ∗ and g∗ are not necessarily the complex conjugate of f and g. Since
many elements in Eq. (5.22) vanish the equation for the point eigenvalue λp reduces to the
three conditions

det


1− f̂0,0 −f̂−1,1 ĝ−2,0 ĝ−1,−1

−f̂1,−1 1− f̂0,0 ĝ−1,−1 ĝ0,−2

ĝ∗2,0 ĝ∗1,1 1− f̂ ∗0,0 −f̂ ∗1,−1

ĝ∗1,1 ĝ∗0,2 −f̂ ∗−1,1 1− f̂ ∗0,0

 = 0, (5.45)

and

det

(
1− f̂0,0 −f̂−1,1

−f̂1,−1 1− f̂0,0

)
= 0, det

(
1− f̂ ∗0,0 −f̂ ∗−1,1

−f̂ ∗1,−1 1− f̂ ∗0,0

)
= 0. (5.46)

It turns out that Eq. (5.45) gives the same result as Eq. (5.23). This is not so surprising if
we compare the elements of the two matrices in Eq. (5.23) and Eq. (5.45). These two matrices
are almost identical except that part of the matrix elements in Eq. (5.45) have opposite sign
as compared with the corresponding terms in Eq. (5.23). However, this does not affect the
final determinant of the matrix. Equation (5.46) gives two additional branches of eigenvalues,
which are complex conjugates of one another. Figure 5.6(b) shows the dependence of the
real part of the two point eigenvalues λp that result on the parameter β. As β increases
from 0, the red (dashed) eigenvalue λp becomes unstable first, at β ≈ 0.122. This onset of
instability is consistent with direct numerical simulation.

Spiral wave chimeras

For larger values of β, stable configurations of multi-core spiral wave chimera states
are found. In this state a core of incoherent oscillators is surrounded by spiral arms con-
sisting of phase-locked oscillators. The arms rotate rigidly with a constant angular veloc-
ity. To pick out this rotation we define the time-averaged oscillation frequency θ̄t(x, y) ≡
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Figure 5.7: (Color online) Snapshots of the phase patterns for a spiral wave chimera states.

(a) The phase distribution θ(x, y) for Gx = Gy = G
(1)
1 . (b) The phase distribution θ(x, y)

for Gx = Gy = G
(1)
2 . The upper left spirals rotate clockwise in both (a) and (b), with the

direction of rotation alternating from core to core in both x and y directions. The phase
patterns have the symmetry D2 and not D4. Simulations are done with β = 1, N = 256 and
random initial conditions. Colors indicate the phase of the oscillators.

limT→∞[θ(x, y, T )− θ(x, y, 0)]/T . From the self-consistency analysis, we find that θ̄t(x, y) =
−Ω when Ω < R(x, y) (the coherent region outside the core) and θ̄t(x, y) = −Ω+

√
Ω2 −R(x, y)2

when Ω > R(x, y) (in the incoherent core). The former frequency corresponds to the an-
gular velocity of the spiral arms, i.e., to the rotation rate of the spatial pattern; the latter
frequency depends on the distance from the core (it vanishes at the core center where R = 0)
but because the core is incoherent the frequency cannot be identified with spatial rotation.
Figure 5.7 shows the phase distribution in multi-core spiral chimeras obtained with the cou-
pling functions G

(1)
1 and G

(1)
2 . These figures reveal the presence of 4 and 16 incoherent cores,

respectively, distributed evenly across both x and y directions. In addition, Figure 5.8 shows
three examples of spiral wave chimeras with G

(1)
1 and different values of β. These results

indicate that spiral wave chimeras can be present for α near π/2, in contrast to earlier work
in which such states were found only for α sufficiently close to zero [67]; see [68] for a more
recent numerical study of a related system.

To understand the origin of spiral wave chimeras, we examine the properties of these states
in the case n = 1 using the self-consistency analysis. It turns out that spiral wave chimera
states are also solutions of the self-consistency equations (5.30)–(5.33). To simplify the
analysis, we translate one of the cores to the origin (x, y) = (0, 0) (cf. Fig. 5.9). Figure 5.9(c)
shows that Θ(x, y) equals a constant, Θ(x, y) = θ0, say, along the line segment between the
point (0, 0) and the point (π, 0). Invariance of Eq. (5.27) under translation in θ allow us to
set θ0 = 0. With this choice, the local order parameters have the following symmetry:

(x, y)→ (y, x) =⇒ (R,Θ)→ (R,
π

2
−Θ). (5.47)
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Figure 5.8: (Color online) Snapshots of the phase patterns for spiral wave chimeras. (a)
β = 1.5. (b) β = 1. (c) β = 0.5. In all three panels, colors indicates the phase of the

oscillators. The simulations are done with Gx = Gy = G
(1)
1 , N = 256 and random initial

conditions.
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Figure 5.9: (Color online)Snapshot of the phase pattern for a four-core spiral wave chimera
state. (a) The phase distribution θ(x, y). (b) The corresponding order parameter R(x, y). (c)

The corresponding order parameter Θ(x, y). The simulation is done with Gx = Gy = G
(1)
1 ,

β = 1, N = 256 and random initial conditions. In panels (a) and (c) colors indicate the
phase of the oscillators; in (b) color indicates the amplitude of local order parameter R(x, y).
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This symmetry property implies that

a cos(y)+b sin(y)+c cos(x)+d sin(x) = i(a∗ cos(x)+b∗ sin(x)+c∗ cos(y)+d∗ sin(y)). (5.48)

Matching coefficients leads to a = ic∗ and d = ib∗. In addition, Figs. 5.9(b,c) suggest the
spiral wave chimera has a symmetry under rotation, viz.,

(x, y)→ (−y, x) =⇒ (R,Θ)→ (R,Θ +
π

2
), (5.49)

corresponding to

a cos(−y)+b sin(−y)+c cos(x)+d sin(x) = i(a cos(x)+b sin(x)+c cos(y)+d sin(y)). (5.50)

Matching coefficients leads to a = ic and d = ib. Finally, reflection with respect to the x
axis,

(x, y)→ (x,−y) =⇒ (R,Θ)→ (R,−Θ), (5.51)

requires that

a cos(x)+b sin(x)+c cos(−y)+d sin(−y) = a∗ cos(x)+b∗ sin(x)+c∗ cos(y)+d∗ sin(y) (5.52)

and hence implies a = a∗, b = b∗, c = c∗ and d = −d∗. Combining these relations we obtain

R exp(iΘ) = b(sin(x) + i sin(y)). (5.53)

Substituting this expression into Eqs. (5.30)–(5.33) we find that the expressions in Eqs. (5.30)
and (5.32) vanish, while Eqs. (5.31) and (5.33) give

2b2 = exp(iβ)

〈
Ω−

√
Ω2 − b2(sin2 x+ sin2 y)

〉
. (5.54)

The right side of Eq. (5.54) remains unchanged when sin2 x and sin2 y are replaced by sin2(nx)
and sin2(my) for all n, m ∈ 1

2
N. Solving Eq. (5.54) will give us the values of Ω and b. Notice

that the azimuthal wave number m of the spirals equals 1. Therefore, |Ω| is also the angular
frequency of the rotating spirals.

When β = π
2
, we obtain Ω = 0 and b =

〈√
sin2 x+ sin2 y

〉
/2 ≈ 18.91. Figure 5.10(a)

shows the dependence of b and Ω on β. As β decreases from π
2
, b decreases, Ω increases

and the area of incoherent cores increases. When β = βc ≈ 0.38, b = Ω and the incoherent
cores touch each other (Fig. 5.11(b)). When β decreases further, the incoherent domains
reconnect and the coherent domains separate into four isolated islands (Fig. 5.11(c)).

The stability of spiral wave chimera states can be analyzed in the same way as for the 2n-
cluster chimeras and twisted chimeras. When n = 1, the point eigenvalue λp is determined
by Eq. (5.22). In the current case, f and f ∗ are even with respect to the x and y axes, while
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Figure 5.10: (Color online) Dependence on the parameter β of (a) b, Ω, (b) the fraction r
of incoherent oscillators, and (c) unstable point eigenvalues λp, computed from Eq. (5.66)
(green solid line) and Eq. (5.67) (red dashed line).
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Figure 5.11: (Color online) Snapshots of the phase patterns for spiral wave chimeras showing
localized regions of coherence embedded in an incoherent background. (a) β = 0.4. (b)
β = 0.38. (c) β = 0.36. In all three panels, colors indicate the phase of the oscillators. The

simulation is done with Gx = Gy = G
(1)
1 , N = 256 when β is gradually decreased.

g and g∗ are not. We separate g and g∗ into even and odd parts, g = ge+go and g∗ = g∗e +g∗o ,
where

ge =
b2f(sin2 y − sin2 x)(

Ω +
√

Ω2 − b2(sin2 x+ sin2 y)
)2 , go =

−2ib2f sinx sin y(
Ω +

√
Ω2 − b2(sin2 x+ sin2 y)

)2 ,(5.55)

g∗e =
b2f ∗(sin2 y − sin2 x)(

Ω +
√

Ω2 − b2(sin2 x+ sin2 y)
∗)2 , g∗o =

2ib2f ∗ sinx sin y(
Ω +

√
Ω2 − b2(sin2 x+ sin2 y)

∗)2 .(5.56)

We then have

f̂1,±1 = f̂−1,±1 = f̂ ∗1,±1 = f̂ ∗−1,±1 = ĝ0,0 = ĝ∗0,0 = 0, (5.57)

f̂0 ≡ f̂0,0 = 〈f〉 , (5.58)
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f̂ ∗0 ≡ f̂ ∗0,0 = 〈f ∗〉 , (5.59)

f̂2 ≡ f̂0,±2 = f̂±2,0 = 〈f cos(2x)〉 , (5.60)

f̂ ∗2 ≡ f̂ ∗0,±2 = f̂ ∗±2,0 = 〈f ∗ cos(2x)〉 , (5.61)

ĝ2 ≡ ĝ0,±2 = ĝ±2,0 = 〈ge cos(2x)〉 , (5.62)

ĝ1 ≡ ĝ1,1 = ĝ−1,−1 = −ĝ1,−1 = −ĝ−1,1 = 〈go(− sinx sin y)〉 , (5.63)

ĝ∗2 ≡ ĝ∗0,±2 = ĝ∗±2,0 = 〈g∗e cos(2x)〉 , (5.64)

ĝ∗1 ≡ ĝ∗1,1 = ĝ∗−1,−1 = −ĝ∗1,−1 = −ĝ∗−1,1 = 〈g∗o(− sinx sin y)〉 ; (5.65)

the determinant in Eq. (5.22) therefore factors into three factors:

det

(
1− f̂0 − f̂2 ĝ2

ĝ∗2 1− f̂ ∗0 − f̂ ∗2

)
= 0, (5.66)

det

(
1− f̂0 + f̂2 −2ĝ1 − ĝ2

−2ĝ∗1 − ĝ∗2 1− f̂ ∗0 + f̂ ∗2

)
= 0, (5.67)

det

(
1− f̂0 + f̂2 2ĝ1 − ĝ2

2ĝ∗1 − ĝ∗2 1− f̂ ∗0 + f̂ ∗2

)
= 0. (5.68)

Solving these three equations determines the number of point eigenvalues and their de-
pendence on β, just as the case of 2n-cluster chimeras and the twisted chimeras. We plot
the unstable eigenvalues in Fig. 5.10(c). The green solid line is computed from Eq. (5.66)
while the red dashed line is computed from Eq. (5.67); Eq. (5.68) does not provide unstable
eigenvalues. Figure 5.10(c) indicates an onset of instability already at β ≈ 0.46 as β de-
creases. However, in numerical simulations we find that the spiral state remains stable down
to β = 0.349. We do not understand the origin of this discrepancy but note that the unstable
mode for 0.349 . β . 0.46 is reflection-symmetric in both modulus and phase (Fig. 5.12), in
contrast to the states in Fig. 5.11, suggesting that the unstable eigenvalue (red dashed line)
is likely spurious. In contrast, the onset of the instability from Eq. (5.66) (β ≈ 0.344, green
solid line) agrees quite well with the numerically determined onset of instability, β ≈ 0.349.

5.4 The case Gx = Gy = G
(2)
n

In this section, we consider the coupling function with Gx = cos(nx) + cos[(n+ 1)x] and
Gy = cos(nx) + cos[(n+ 1)x]. Much richer dynamics are observed.

Inherited solutions

Splay states with Gx = cos(nx) + cos[(n + 1)x] and Gy = cos(nx) + cos[(n + 1)x] are
also observed (not shown). Of these only the splay states with twist number |q| = n and
|q| = n+ 1 are linearly stable.
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Figure 5.12: (Color online) (a) Modulus and (b) phase of the eigenvector v(x, y) when
β ≈ 0.41. The corresponding eigenvalue is λp ≈ 0.717 as computed from Eq. (5.67).

(a)

 

 

−3

−2

−1

0

1

2

3π

−π
−π

π

(b)

 

 

−3

−2

−1

0

1

2

3π

−π
−π

π

Figure 5.13: (Color online) Snapshot of the phase pattern for (a) a 3-cluster chimera state,

and (b) a 4-cluster chimera state. The simulation is done for Gx = Gy = G
(2)
1 , with β = 0.05,

N = 256, starting from a random initial condition.

Apart from splay states, many of the states observed in one-dimensional systems [60] have
counterparts that are stable in two dimensions. Examples of 1D-like 3-cluster and 4-cluster
chimeras are shown in Fig. 5.13, while a traveling coherent state and a traveling chimera
state are shown in Fig. 5.14.

Twisted chimera states

When Gx = cos(nx) + cos[(n + 1)x] and Gy = cos(ny) + cos[(n + 1)y)], three types of
twisted chimera states are observed, n : n twisted chimeras, n+1 : n+1 twisted chimeras and
n : n+ 1 twisted chimeras. In the following, we use the case n = 1 to illustrate these states
and the associated self-consistency analysis. The 1 : 1 twisted chimera looks identical to
Fig. 5.4, while Figs. 5.15 and 5.16 show the phase distribution and the local order parameter
for a 2:2 and a 1:2 twisted chimera, respectively.
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Figure 5.14: (Color online) (a) Snapshot of the phase pattern in a right-traveling coherent

state. The simulation is done for Gx = Gy = G
(2)
1 , with β = 0.7 and N = 256. (b)

Snapshot of the phase pattern for a right-traveling chimera state. The simulation is done for
Gx = Gy = G

(2)
3 , with β = 0.03 and N = 256.
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Figure 5.15: (Color online) (a) Snapshot of the phase distribution in a 2:2 twisted chimera
state. (b) The corresponding order parameter R. (c) The corresponding order parameter

Θ. The simulation is done for Gx = Gy = G
(2)
1 , with β = 0.05, N = 256 and random initial

conditions.
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We discuss the 2:2 twisted chimera in detail. In this case, two closed stripes of coher-
ence are distributed uniformly on the torus. The self-consistency analysis can, once again,
be simplified using the observed symmetry properties of this state. First, the local order
parameter is written as

Z̃(x, y) = Σ2
m=1 {am cos(mx) + bm sin(mx) + cm cos(my) + dm sin(my)} , (5.69)

with the coefficients satisfying the self-consistency relations

am = 〈cos(mx′) exp(iβ) exp(iΘ(x′, y′))h(x′, y′)〉, (5.70)

bm = 〈sin(mx′) exp(iβ) exp(iΘ(x′, y′))h(x′, y′)〉, (5.71)

cm = 〈cos(my′) exp(iβ) exp(iΘ(x′, y′))h(x′, y′)〉, (5.72)

dm = 〈sin(my′) exp(iβ) exp(iΘ(x′, y′))h(x′, y′)〉, (5.73)

and h defined as in Eq. (5.28). From Figs. 5.15(b) and (c), we observe that the local order
parameters have the symmetry

(x, y)→ (x+ δ, y + δ) =⇒ (R,Θ)→ (R,Θ + 2δ). (5.74)

Thus
R(x+ δ, y + δ) exp(iΘ(x+ δ, y + δ)) = R(x, y) exp(iΘ(x, y) + 2iδ), (5.75)

which implies a1 = b1 = c1 = d1 = 0, b2 = ia2 and d2 = ic2. The symmetry

(x, y)→ (y, x) =⇒ (R,Θ)→ (R,Θ + π) (5.76)

leads to the relations a2 = −c2 and d2 = −b2. Combining these results we obtain Z̃(x, y) =
a2(exp(2ix)− exp(2iy)). Translation symmetry in θ allows us to set a2 = R0

2
, where R0 is a

positive real number. The final self-consistency equation is thus

R2
0 =

〈
Ω−

√
Ω2 −R2

0 sin2 (x− y)

〉
, (5.77)

which is also equivalent to Eq. (5.16) after a change of variables.
The 1:2 twisted chimera shown in Fig. 5.16 can be analyzed similarly. In this case, the

local order parameter has the symmetry

(x, y)→ (x+ 2δ, y + δ) =⇒ (R,Θ)→ (R,Θ + 2δ), (5.78)

implying that

R(x+ 2δ, y + δ) exp(iΘ(x+ 2δ, y + δ)) = R(x, y) exp(iΘ(x, y) + 2iδ). (5.79)

This condition is equivalent to c1 = d1 = a2 = b2 = 0, b1 = ia1 and d2 = ic2. The symmetry

(x, y)→ (2y, x/2) =⇒ (R,Θ)→ (R,Θ + π) (5.80)
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Figure 5.16: (Color online) (a) Snapshot of the phase distribution in a 1:2 chimera state.
(b) The corresponding order parameter R. (c) The corresponding order parameter Θ. The

simulation is done for Gx = Gy = G
(2)
1 , with β = 0.05, N = 256.

likewise yields a1 = −c2 and b1 = −d2 so that Z̃(x, y) = a1(exp(ix) − exp(2iy)). With
a1 = R0/2, we obtain the self-consistency equation

R2
0 =

〈
Ω−

√
Ω2 −R2

0 sin2 (x/2− y)

〉
. (5.81)

This condition is again equivalent to Eq. (5.16) after an appropriate change of variables.
The 1:1 chimera states have local order parameter Z̃ = R0

2
(exp(ix) − exp(iy)) and the self-

consistency equation is the same as Eq. (5.38). From the derivation of Eq. (5.38) (for a 1:1
twisted chimera), Eq. (5.77) (for a 2:2 twisted chimera) and Eq. (5.81) (for a 1:2 twisted

chimera) for the case Gx = Gy = G
(2)
1 , we see that even if multiple Fourier components are

included in the coupling function, some of them may not contribute to the final results owing
to the symmetries of the solution. However, the stability properties may be affected. For the
three types of twisted chimera states discussed above, the stability is determined by the point
eigenvalues satisfying det B(λp) = 0, where B(λp) is defined in Eq. (5.21). In the present
case, the corresponding matrices B are 16×16 matrices. It turns out that these share the
same point eigenvalues as the 1:1 chimera state for Gx = Gy = G

(1)
1 , which are determined

by Eqs. (5.45) and (5.46). Additional point eigenvalues may be present. However, these
additional eigenvalues do not affect the stability and hence the theory predicts that all three
types of twisted chimera lose stability at β ≈ 0.122. This value agrees reasonably well with
the instability threshold β = 0.13± 0.01 obtained from direct numerical simulations.

Spiral wave chimeras

Multi-core spiral wave states are also observed for Gx = cos(nx) + cos[(n + 1)x] and
Gy = cos(ny) + cos[(n + 1)y] and some examples are given in Fig. 5.17. The states shown
in Figs. 5.17(b,c) are similar to the spiral wave chimera states for Gx = cos(nx) and Gy =
cos(ny); in particular the spiral arms rotate with constant angular velocity given by the
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Figure 5.17: (Color online)Snapshots of the phase pattern in spiral wave chimeras. (a) 4 in-
termittently incoherent cores; (b) 8 incoherent cores; (c) 16 incoherent cores. The simulation

is done for Gx = Gy = G
(2)
1 , with β = 1.2, N = 256 and random initial condition.

time-averaged oscillator frequency θ̄t(x, y) introduced in section 5.3. The order parameters
of these states can also be reduced to simpler form by appropriate symmetry arguments
and it turns out that the order parameters for the solutions in Figs. 5.17(b,c) take the form
Z̃(x, y) = b2(sin(kx) + i sin(ly)) with k = 2 and l = 1, 2. The final self-consistency equation
is

2b2
2 = exp(iβ)

〈
Ω−

√
Ω2 − b2

2(sin2(kx) + sin2(ly))

〉
, (5.82)

and is equivalent to Eq. (5.54).
The state shown in Fig. 5.17(a) is particularly interesting. Unlike the other two spiral

wave states shown in Figs. 5.17(b,c) the cores of the state in Fig. 5.17(a) are incoherent
only intermittently; these partially or intermittently incoherent regions are not stationary
but rotate in the same sense as the coherent state to the outside but rather more slowly.
We illustrate this behavior using an example for β = 1.4. For this value of β, a snapshot
of the phase pattern at a particular instant is shown in panel (a) of Fig. 5.18. We should
emphasize that no persistently incoherent cores have as yet developed. Analysis of snapshots
of the phase distribution along a slice through one of the cores reveals the presence of
a group of oscillators in the core region that alternately detrain and then entrain as the
incoherent oscillators precess around the core (Fig. 5.19). The figure suggests that the
detraining/entraining process is approximately periodic (i.e., that the precession takes place
at a constant angular speed), much as is the case for a similar process observed in one-
dimensional oscillator arrays in Chapter 3. The resulting repeated detraining and entraining
at a fixed location implies that the phase distribution in the core is not time-independent and
hence that a self-consistency analysis based on the assumption that the order parameters
are time-independent must necessarily fail as soon as the number of oscillators undergoing
this process becomes substantial.

We performed a numerical experiment, starting from a 4-core spiral wave at β = 1.57
and decreasing β gradually. Figure 5.18 shows snapshots of the states for different values of
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Figure 5.18: (Color online) Snapshots of chimera states for Gx = Gy = G
(2)
1 , N = 256,

obtained by gradually decreasing β. (a) β = 1.4. (b) β = 1.2. (c) β = 1.118. (d) β = 1.117.
(e) β = 1.1. (f) β = 0.8. (g) β = 0.4. (h) β = 0.06. (i) β = 0.025.

β. When β & 1.118, the partially incoherent cores exhibit crescent moon phase structure
with m = 1 azimuthal wave number. As β decreases the mode number m increases from
m = 1 to m = 2 and once the fully incoherent cores are born at β ≈ 1.117 the patterns have
three arms (Fig. 5.18(d)). As β is further decreased, the fully incoherent cores grow in extent
and swallow the arms one by one (Fig. 5.18(f)). In contrast, the azimuthal wave number
for the coherent domain remains m = 1 as β decreases and the arms rotate clockwise in the
upper right and bottom left panels and counter-clockwise in the upper left and bottom right
panels. The arms of the partially coherent or incoherent cores rotate in the same sense, but
with a substantially slower angular velocity than in the coherent domain.

When β is decreased yet further some oscillators again detrain for a certain time interval
before entraining again. As a result the snapshot shown, for example, in Fig. 5.18(g) fluctu-
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Figure 5.19: Snapshots of the phase pattern θ(x, y0, t) for Gx = Gy = G
(2)
1 , with N = 256

and β = 1.4. (a) t = 0. (b) t = 5. (c) t = 10. (d) t = 15. (e) t = 20. (f) t = 25. Here, panel
(a) is a slice through the upper two cores of Fig. 5.18(a). Note the significant detraining of
some oscillators in panels (c) and (e).

ates in time. The intermittent incoherence is located along a vein-like structure surrounding
the cores and moves from one side of the incoherent core to another side as time progresses.
However, the size of the incoherent core appears to fluctuate only as a consequence of the
finite number of oscillators used in the simulations. When β is decreased further, the inco-
herent regions begin to merge at β ≈ 0.06 (Fig. 5.18(h)) and incoherence invades a larger and
larger portion of the two-torus for yet smaller values of β (Fig. 5.18(i)). Finally, the state
loses stability and evolves into a twisted chimera state at β ≈ 0.024. The process described
above exhibits some hysteresis – if β is increased from small values the transitions reflected
in Fig. 5.18 do not occur at identical β values. Figure 5.20 shows snapshots of the states
for different values of β when β is gradually increased. The fully incoherent cores disappear
at β ≈ 1.25, a value that differs from the value β ≈ 1.117 for the corresponding transition
when β is gradually decreased.

Figure 5.21 shows plots of the time-averaged frequency θ̄t(x, y) for different values of β
and provides more information about the regions of detraining/entraining oscillators. Com-
pared with the completely phase-random region, where θ̄t gradually increases (in absolute
value) from the center of an incoherent core towards the coherent region, θ̄t in the de-
training/entraining regions varies in a step-wise fashion, and not necessarily monotonically
(Fig. 5.21(a,b)). The vein-like structure surrounding the cores for certain values of β also
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Figure 5.20: (Color online) Snapshots of chimera states for Gx = Gy = G
(2)
1 , N = 256 and

(a) β = 1.12. (b) β = 1.2. (c) β = 1.25. The phase patterns are got when β is increased
gradually.

becomes clear (e.g., Fig. 5.21(g)). Compared with Figure 5.18, we conclude that, while
the reflection symmetry about the axis through the centers of incoherent cores is broken at
any given time t, it is retained in time-averaged quantities like the mean rotation frequency
θ̄t(x, y).

To confirm that the non-monotonic behavior is not a finite size effect, we plot in Fig. 5.22
the same figure as Fig. 5.21(a,b) but with N = 512. In addition, we plot the behavior of θ̄t as
a function of the distance d to the center of the core for different values of β (Fig. 5.23). As
the cores are not exactly circular, we pick two directions as representative. In Fig. 5.23(a),
we pick a horizontal cut through a core, and denote the distance to the center of the core as
dh. In Fig. 5.23(b), we pick instead a diagonal cut through a core, and denote the distance to
the center as dd. The behavior of θ̄t in these two cases is quite similar: θ̄t varies in general in
a step-wise fashion, but not necessarity monotonically. When β = 0.8, the core is completely
incoherent and the variation of θ̄t is similar to the case described in 5.3. Apart from non-
monotonic behavior, we also noticed that in a certain range of β the oscillator frequency at
the center of a core remains nonzero (e.g., Fig. 5.21(a)–(e)). To see in detail how the phase
oscillates in the core area, we investigate the dynamical behavior for particular oscillators
when β = 1.1. It turns out that even in the center of a fully coherent core the phase oscillates
with a nonzero frequency, in contrast to the spiral wave chimeras described in 5.3. We plot
θ as a function of t for different distances dh from the core (horizontal cut) in Fig. 5.24.
Figure 5.24(a) confirms that θ̄t 6= 0 in the center of the core, and reveals in addition that
the frequency fluctuates on a characteristic fluctuation timescale. Figures 5.24(b,c) show the
behavior of oscillators in the partially incoherent region farther from the core center. The
figures reveal that the oscillators at this location undergo episodes when their frequencies
fluctuate; between these episodes the oscillation frequency remains constant. We identify
these episodes (which appear to recur periodically) with the detraining/entraining events
mentioned above and conclude that at this location the spatial phase pattern undergoes
intermittent rigid rotation. The duration of the detraining/entraining events decreases as
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Figure 5.21: (Color online) Snapshots of the oscillator frequency θ̄t(x, y) averaged over the

time interval 0 ≤ t ≤ 250 for Gx = Gy = G
(2)
1 , and N = 256. (a) β = 1.4. (b) β = 1.2. (c)

β = 1.118. (d) β = 1.117. (e) β = 1.1. (f) β = 0.8. (g) β = 0.4. (h) β = 0.06. (i) β = 0.025.

dh increases and they are absent in the fully coherent region farther outside (Fig. 5.24(d)).
At the same time the mean oscillation frequency θ̄t(x, y) gradually increases to its value Ω
characterizing the fully coherent region.

To gain a partial understanding of the above results we note that in certain intervals
of β (0.8 & β & 0.45), the multi-core spiral wave states in Fig. 5.18 are similar to the
states found with Gx = cos(x) and Gy = cos(y) for which the self-consistency analysis
works. Since Eq. (5.27) is invariant under translations in x and y directions, we choose the
origin of coordinates such that R(x, y) and Θ(x, y) are invariant under the pair of reflections
(x, y)→ (−x, y) and (x, y)→ (x,−y). These symmetries allow us to write

R exp(iΘ) = a1 cos(x) + c1 cos(y) + a2 cos(2x) + c2 cos(2y). (5.83)

When β is around 0.8, as in the 4-core spiral wave chimera state of the case Gx = cos(x)
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Figure 5.22: (Color online) Snapshots of the oscillator frequency θ̄t(x, y) averaged over the

time interval 0 ≤ t ≤ 250 for Gx = Gy = G
(2)
1 , and N = 512. (a) β = 1.4, (b) β = 1.2,

confirming the presence of nonmonotonic rotation profiles in the partially incoherent cores.
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Figure 5.23: (Color online) The dependence of θ̄t as a function of distance to the center of
the cores for different values of β (color online). (a) dh represent the horizontal distance.
(b) dd represent the diagonal distance. Notice that the curve for β = 1.118 and β = 1.117
almost overlap.
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Figure 5.24: (Color online) The phase θ(x = dh, y = 0, t) as a function of t for β = 1.1 and
different values of dh. (a) dh = 0. (b) dh = π/8. (c) dh = 3π/16. (d) dh = π/4.

and Gy = cos(y), we can assume that the local order parameter R is invariant under the
transformation (x, y) → (y, x), at least approximately. Alternatively, we can solve a1, c1,
a2 and c2 directly without the use of this symmetry argument. The result is Ω ≈ 12.284,
a1 ≈ 17.533, c1 ≈ 17.533i, a2 = 0, and c2 = 0. For comparison, in view of the narrow spiral
structures along the core edge (Fig. 5.18(f)) one can not expect accurate agreement between
the simulation and the theory at this value of β. In fact the theory appears to work better
for smaller β. For example, when β = 0.7, a1 ≈ 17.11 from the self-consistency equation,
compared with the value a1 ≈ 17.15 from simulation. However, we emphasize here that the
self-consistency requirement must be regarded as an approximation that is valid only in a
certain range of β. In other regimes the self-consistency equation fails to account for the
more exotic chimera states observed there. This is for the following reasons:

• The self-consistency analysis requires that the incoherent cores have completely random
phases. Figures. 5.18(a)–(e) show that this is not the case.

• The self-consistency analysis requires that the local order parameter R vanishes at
the phase singularity point at the core center (x0, y0). It therefore predicts that
∂θ(x0, y0, t)/∂t = Ω in the rotating frame, or equivalently that θ̄t(x0, y0) = 0 in the
original frame. However, numerical calculations show that this is not the case (e.g.,
Fig. 5.21(a)–(e))
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These reasons are similar to those that were found to apply to phase-coupled oscillators
in one-dimensional arrays in the presence of intermittent detraining. In one dimension it
was possible to confirm that these oscillations were intrinsic to the system and hence not
an artifact of a finite oscillator number [60]. It is considerably harder to confirm that this
continues to be the case in two dimensions, although we believe that this is in fact the case
– computations with an 512×512 oscillator array yield results very similar to those obtained
for a 256×256 array (Fig. 5.22).

5.5 Discussion and conclusions

In this chapter we have investigated a two-dimensional system of identical phase-coupled
oscillators with nonlocal coupling of indefinite sign. We focused on the case when coupling
function G(x, y) can be decomposed into G(x, y) = Gx(x) + Gy(y). As in Chapter 3, Gx

and Gy are chosen from two families of coupling functions G
(1)
n (x) ≡ cos(nx) and G

(2)
n (x) ≡

cos(nx) + cos[(n + 1)x]. We found that the stationary solutions in the corresponding one-
dimensional system (5.11) have counterparts in the two-dimensional system, although their
stability properties may differ owing to possible longitudinal instability modes. For example,
2n-cluster chimera states were shown to be unstable in 2D for all values of β, while they
are stable for certain range of β in 1D systems. In addition to these expected states we
also found a class of twisted chimera states in which the phase varies uniformly along a
closed coherent stripe, and a class of spiral wave chimera states in which cores of incoherent
oscillators are surrounded by coherent spiral arms. With the coupling functions we have
used, these chimeras are quite common and robust in the sense that they can be obtained
starting from random initial conditions.

We have obtained a fairly complete description of the above-mentioned stationary phase
patterns using a self-consistency analysis based on Eq. (5.9). Symmetry arguments allowed
us to reduce Eq. (5.9) to several algebraic equations. The local order parameters obtained
using this approach agree well with those generated from direct simulations. In addition the
loss of stability of these states with respect to β was found to be predicted accurately via
a linearized equation of Eq. (5.4) describes the evolution of local mean field. The results
obtained are consistent with direct simulations when β is changed gradually (5.2(b),5.6(b)).

A key input into the analysis was the D4 symmetry of the coupling function G
(1)
n . It would

be of interest to perform a similar study of other D4 symmetric coupling functions in order
to determine whether these support similar states. We note that none of our states exhibit
the D4 symmetry of the coupling function, and surmise that all such states are unstable.

More exotic spiral wave chimera states were found to be present for the coupling function
Gx = Gy = G

(2)
n and their properties were investigated both as β is gradually decreased and

when it is gradually increased. Many of the remarkable states identified with this coupling
exhibit intermittent detraining and entraining on the part of a subset of the oscillators similar
to that found in one-dimensional oscillator arrays [60]. The presence of this intermittency
renders the self-consistency analysis unusable and a full understanding of these states remains
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a challenge. However, despite the absence of instantaneous D4 symmetry, time-averaged
quantities such as the time-averaged oscillation frequency θ̄t(x, y) were found to be accurately
D4 symmetric, suggesting that the results on “symmetry on average” obtained by Golubitsky
and colleagues [112, 113] for chaotic maps with symmetry could be extended to the nonlocal
systems studied here.

This chapter provides additional insight into chimera states in systems with dimension
higher than one. It shows that spiral wave chimeras are natural objects in two dimensions
and that these can be stable in a large range of the parameter β (or α). In future work
we will study the existence and properties of states of this type in more realistic systems,
including coupled arrays of Landau-Stuart oscillators.

Appendix

5.A Derivation of self-consistency equations

In this chapter, we used symmetry arguments to simplify the expressions of local order
parameter and reduce the self-consistency equation (5.9) for many cases. We use 1:1 twisting
chimera as an example to illustrate the idea. In this case, the symmetry arguments give

R exp(iΘ) = a(exp(ix)− exp(iy)) = 2ai sin

(
x− y

2

)
exp

(
i
x+ y

2

)
(5.84)

Substituting this expression into Eq. (5.30), we have

a = exp(iβ)

〈
Ω−
√

Ω2 −R2

R
exp(iΘ) cos(x)

〉
(5.85)

= exp(iβ)

〈
Ω−
√

Ω2 −R2

4a2 sin2
(
x−y

2

) 2ai sin

(
x− y

2

)
exp

(
i
x+ y

2

)
cos(x)

〉
(5.86)

= exp(iβ)

〈
Ω−
√

Ω2 −R2

2a sin
(
x−y

2

) i exp

(
i
x+ y

2

)
cos(x)

〉
(5.87)

= exp(iβ)

〈
Ω−
√

Ω2 −R2

2a sin
(
x−y

2

) i exp

(
i
x+ y

2

)(
exp(ix) + exp(−ix)

2

)〉
(5.88)

= exp(iβ)

〈
Ω−
√

Ω2 −R2

4a sin
(
x−y

2

) i

(
exp

(
i
3x+ y

2

)
+ exp

(
−ix− y

2

))〉
(5.89)

= exp(iβ)

〈
Ω−
√

Ω2 −R2

4a

〉
. (5.90)
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The final self-consistency equation is:

4a2 = exp(iβ)

〈
Ω−

√
Ω2 − 4a2 sin2

(
x− y

2

)〉
. (5.91)

Setting a ≡ R0

2
gives us Eq. (5.38). Similar process can be done for Eq. (5.31), (5.32) and

(5.33). The equations either vanish or give the same result as Eq. (5.38).
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Chapter 6

Conclusion

This thesis is dedicated to a study of chimera states in nonlocally phase-coupled oscillator
systems. The results of Chapter 3 appeared in [60]; the result of Chapter 4 appeared in [61].
We summarize here some of the major discoveries detailed in the previous chapters and
outline some ongoing and future work.

6.1 Summary of results

In Chapter 3 we studied the effects of nonlocal coupling of indefinite sign on a system
of identical phase-coupled oscillators. In these models, chimera states can develop from
random initial conditions. In fact, chimera states and splay states are two most frequently
observed states in simulations, suggesting that chimeras have a large basin of attraction.
Several classes of states have been found: (a) splay states, (b) stationary multicluster states
with evenly distributed coherent clusters, (d) stationary multi-cluster states with unevenly
distributed clusters, (d) a single cluster state traveling with a constant speed across the sys-
tem, and (e) traveling chimera states. The splay states are well understood. We derived an
analytical expression for the overall rotation frequency and the conditions for stability. For
multi-cluster chimera states, a self-consistent continuum description was provided. Using
this description the stability properties of multi-cluster chimera states could be analyzed
through a linear stability analysis and the prediction compared with numerical simulation.
In addition, finite size effects were also investigated. The motion of a coherent cluster was
found to follow a Brownian motion with the noise term modeling the effect of the incoher-
ent oscillation outside the cluster. Fully coherent traveling states were analyzed through a
nonlinear eigenvalue equation for the speed of travel. The traveling speed computed from
the nonlinear eigenvalue problem was found to be consistent with direct simulation. In
simulations, hysteresis behavior was observed in a certain parameter region due to the fact
that some oscillators periodically detrain and entrain. However we were unable to solve the
corresponding eigenvalue problem for the traveling chimera states. We attribute this failure
to the fact that this state does not in fact drift as a rigid object.
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In Chapter 4 we studied systems similar to those in Chapter 3 but with inhomogeneity
introduced through the dependence of the oscillator frequency on its location. Two types
of spatial inhomogeneity, localized and spatially periodic, were considered. We explored the
effects of these two sources of inhomogeneity on the existence and properties of each of the
states discussed in Chapter 3. The results were described in terms of the parameters ω0

and κ or l describing the strength and inverse length scale of the inhomogeneity. When
ω0 is small, the splay states persist but their phase varies nonuniformly in space. Further
increasing ω0 breaks up splay states, creating new regions of incoherence, while multi-cluster
chimera states were found to be pinned to specific locations. The motion of a coherent
cluster was modeled using an Ornstein-Uhlenbeck process. The traveling coherent states
and traveling chimera states were found to undergo a trapping transition when ω0 exceeded
some critical threshold. Many of these states would be studied using effective equations for a
complex order parameter. Solutions of this equation are in good agreement with the results
of numerical simulations.

In Chapter 5 we studied nonlocal phase oscillator systems on a two-dimensional torus.
We assumed that the coupling functions in the x and y directions decouple and chose them
from the family of functions used in Chapters 3 and 4. Each stationary solution discussed
in Chapter 3 has a corresponding solution in two dimensions. However, some of these lose
stability because some eigenmodes related to the y direction are unstable. In addition to
these states inherited from one-dimensional systems, two types of new chimera states were
discovered. One is the twisted chimera state, in which coherent clusters form closed stripes
on a torus. In addition, the phase varies uniformly along the stripe. The other is a multi-core
spiral wave chimera state, in which cores of incoherent oscillators are surrounded by spiral
arms consisting of phase-locked oscillators. Analysis based on self-consistency equations was
provided.

6.2 Ongoing work

In this section, we describe two ongoing projects we are currently studying. In the first,
we use the same model equation as in Chapter 3 but with different coupling functions. We
investigate how changes in the coupling scheme affect the solutions. In the second, a time-
dependent natural frequency is used. Alternating chimera states and other new states are
discovered.

Varying the coupling function

In this subsection, we still consider the model equation

∂θ

∂t
= −

∫ π

−π
G(x− y) sin[θ(x, t)− θ(y, t) + α] dy, (6.1)

which we studied in Chapter 3. However, here we consider the coupling function G(x) =
cos(nx) + γ cos[(n + 1)x]. There are two ways to motivate this kind of coupling. First,
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G(x) = cos(nx) + cos[(n + 1)x] is so special that we would like to see how the solutions
will change if the coupling functions deviate from this form. We expect the qualitative
behavior should remain when the deviation is small. But how the solutions change if the
deviation becomes larger is an interesting question. Second, we observed traveling solutions
when γ = 1 (e.g., traveling chimera states exist for G(x) = cos(3x) + γ cos(4x) and suitable
parameters), but did not find them when γ = 0. We would like to know what happens as
γ decreases from 1 to 0. This section focuses on how the traveling solutions (both traveling
chimera states and traveling coherent states) behave when γ deviates from 1.
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Figure 6.1: A snapshot of the phase pattern of a traveling chimera state. Simulation is done
with G(x) = cos(3x) + cos(4x), β = 0.03 and N = 512.

We consider first the case G(x) = cos(3x) + γ cos(4x). For suitable values of β (where
β = π

2
−α) and γ, traveling chimera states have been discovered. Fig. 6.1 shows an example

of such a traveling state for γ = 1 and β = 0.03, consisting of a traveling coherent cluster
with a nearly constant slope embedded in an incoherent background. These states travel
along the x direction at a nearly constant speed. When the slope of the coherent cluster is
positive (negative), this cluster travels to the left (right). Fig. 6.2(a) shows the dependence
of the position x0 of the coherent cluster on time t. The definition of x0 is given in Chapter
3 and [35]. As described in Chapter 3, a complete description of these states is still lacking.
Here, we perform some numerical experiments to investigate how this traveling chimera state
behaves as we decrease γ gradually from γ = 1.

As the value of γ decreases, the average drift speed of the coherent cluster decreases. In
Fig. 6.2, we show the dependence of x0 on t for γ = 1, 0.99, 0.98, 0.97, 0.96, 0.95. Surprisingly,
when γ ≈ 0.97, the coherent cluster switches traveling direction. Figs. 6.2(d,e,f) show that
when γ < 0.97, the coherent cluster with a positive slope travels to the right. As γ is
decreased further, this state loses stability at γ ≈ 0.94 and evolves into a splay state.

To see more detail about how the average velocity of the coherent cluster changes with
γ, we plot the dependence of the average velocity c̄ on γ in Fig. 6.3. The velocity is averaged
over a time interval ∆t = 5000. From the plots of x0 vs t (Fig. 6.2), this measurement
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Figure 6.2: Position of the coherent cluster x0 vs time t for (a) γ = 1, (b) γ = 0.99, (c)
γ = 0.98, (d) γ = 0.97, (e) γ = 0.96, and (f) γ = 0.95.
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Figure 6.3: Dependence of the mean speed of the traveling chimera state on γ.
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maybe be inaccurate as the velocity is not constant. However, we can clearly see that the
drift direction reverses as γ passes through a critical value γ = γc.

The traveling coherent state discovered in a system with G(x) = cos(x)+cos(2x) provides
another example for understanding how the profiles of the coupling functions affect the
solutions. Fig. 6.4 shows a phase pattern for G(x) = cos(x) + cos(2x) and β = 0.75.
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Figure 6.4: A snapshot of the phase pattern of a traveling coherent state. Simulation is done
with G(x) = cos(x) + cos(2x), β = 0.75 and N = 512.

We now include the parameter γ, and assume G(x) = cos(x) + γ cos(2x). We performed
a simulation starting with the solution shown in Fig. 6.4 and gradually decreased γ in steps
of size δγ = 0.01. The speed of the traveling coherent state decreases very rapidly as γ
decreases. It becomes zero when γ = 0.98 and remains zero as γ is decreased further.
Figs. 6.5 (a,b,c) show hidden line plots of the phase patterns for γ = 0.99, γ = 0.98 and
γ = 0.92. This fully coherent state loses stability and evolves to a splay state at γ = 0.91.

To look into the detail, we performed another numerical experiment. Starting with
γ = 0.99, we decreased γ gradually in steps of δγ = 0.001. The hidden line plots of the
phase patterns show that the speed becomes zero when γ ≈ 0.984. Figs. 6.6(b,c) show
the hidden line plots when γ is near the critical value (i.e., for γ = 0.984 and γ = 0.983).
However, when γ ≈ 0.985, the motion of the phase profile exhibits an oscillation (Fig. 6.6(a)).
The reason is that some oscillators periodically detrain from the coherent cluster thereby
breaking the reflection symmetry of the phase profile in a time-periodic fashion [80]. This is
verified in Fig. 6.7.

For the traveling coherent states, we can compute the speed of travel by solving a non-
linear eigenvalue problem. As described in Chapter 3, we suppose that the coherent state is
stationary in the moving frame, i.e., we suppose that z(x, t) ≡ u(ξ), where ξ ≡ x− ct. Thus
we obtain a complex nonlinear eigenvalue problem for the speed c and the frequency Ω of
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Figure 6.5: Hidden line plots of the phase pattern for (a) γ = 0.99, (b) γ = 0.98, and (c)
γ = 0.92.
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Figure 6.6: Hidden line plots of the phase pattern for (a) γ = 0.985, (b) γ = 0.984, and (c)
γ = 0.983.
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Figure 6.7: A phase pattern of a traveling coherent state for G(x) = cos(x) +γ cos(2x) when
γ = 0.985. Simulation is done with β = 0.75 and N = 512. At some values of x (e.g.,
x ≈ 0.27 or 2.21), oscillators deviate from coherent profile and create a discontinuity.

the coherent state:

cũξ + iΩũ+
1

2

[
e−iαŨ − ũ2eiαŨ∗

]
= 0. (6.2)

Here ũ = u exp iΩt and likewise for Ũ . This equation is to be solved subject to periodic
boundary conditions on [−π, π]. Fig. 6.8 shows the dependence of the speed c and Ω on γ.

The inset of Fig. 6.8(a) reveals that the speed c varies as (γ − γc)
1
2 , where γc ≈ 0.98307.
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Figure 6.8: (a) Dependence of speed of travel on γ. (b) Dependence of Ω on γ.

To compare the speed calculated from the nonlinear eigenvalue equation and the speed
from direct simulation, we plot these two speeds in the same figure, as shown in Fig. 6.9.
We can see that they match very well when γ < 0.982 or γ > 0.991. For the values of γ
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in between, due to the periodic entrainment and detrainment, the state is no longer a fully
coherent state. In addition, because the reflection symmetry is broken, first one way, and
then the other, in a periodic fashion, the speed oscillates in time [80]. In addition to Fig. 6.7,
Fig. 6.9(b) provides another example when γ = 0.99. This oscillatory effect was investigated
in Chapter 3. In this region of γ, hysteresis behavior was observed. So the solution of the
nonlinear equation does not match very well with the results from simulation.
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Figure 6.9: (a) The dependence of the speed c on γ. The circles are the speeds from the
nonlinear eigenvalue equation and the ’+’ represents the speed from simulation. (b) The
dependence of the position of the traveling coherent state on time t for a solution with
G(x) = cos(x) + 0.99 cos(2x); note the small-amplitude oscillations in x0(t).

Time-dependent systems

Possible applications of chimera states range across various disciplines. An important
example is uni-hemispheric sleep in various types of mammals and birds. In these phenomena,
the neurons in the active part of the brain show desynchronized behavior while the neurons
in the inactive part are synchronized. An interesting fact is that the synchronization is
known to alternate between the hemispheres. This alternating behavior was reproduced in
systems with periodic external forcing [105], in two groups of oscillators with heterogeneity
in natural frequency [36], and in oscillatory media with nonlinear global coupling [104].

Here, we investigate systems with time-varying natural frequencies, in which we observed
chimera states with alternating behavior. Moreover, we can control the position of the
chimera by controlling the natural frequencies. The model equation we are using is

∂θ

∂t
= ω(x, t)−

∫ π

−π
G(x− y) sin[θ(x, t)− θ(y, t) + α] dy. (6.3)

In contrast to Eq. (3.1), the natural frequencies in Eq. (6.3) are space and time-dependent. In
this section, we focus on two types of ω(x, t). The first one is ω(x, t) = ω(x) cos(2πft), where
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f is a constant frequency. The second one is ω(x, t) = ω(x−vt), where v is a constant speed.
We refer to the first case as the standing wave case and the second one as the traveling wave
case. For the coupling function G, we adopt G(x) = cos(x) as a specific example. We present
some numerical results using a 4th order Runge-Kutta method with simulation parameters
dt = 0.01 and N = 512.

Standing wave case

In this subsection, we consider the case when ω(x, t) = ω0 cos(x) cos(2πft). When the
frequency f is small, the system can be treated as quasi-static. We assume ω0 = O(1),
f = O(ε), and introduce a slow time scale τ = εt. Expanding θ = θ0 + εθ1 + · · ·, where
θj ≡ θj(x, t, τ), j = 0, 1, · · ·, and substituting it into Eq. (6.3), we obtain the leading order
of the phase equation

∂θ0

∂t
= ω0(τ) cos(x)−

∫ π

−π
G(x− y) sin[θ0(x, t)− θ0(y, t) + α] dy. (6.4)

This equation describes the evolution of θ0(x, t, τ) on the fast time scale t; at this order
the slow time τ is simply a parameter. Thus the leading order system corresponds to the
nonlocal phase-coupled oscillator system with spatial inhomogeneity, which we have studied
in Chapter 4. In this quasistatic regime the solution is therefore as given in Chapter 4 but
with parameters that vary on the slow time scale τ as obtained from the self-consistency
analysis with ω0 = ω0(τ).
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Figure 6.10: Snapshots of the phase pattern for (a) t = 1500, (b) t = 1750, and (c) t = 2000.
Simulation is done with G(x) = cos(x), ω(x, t) = 0.1 cos(x) cos(2πft), f = 0.001, N = 512
and random initial conditions.

Recall that several different states are observed when ω(x) = ω0 cos(x). When ω0 = 0,
we observe 2-cluster chimera states and splay states, depending on initial conditions. As
we increase ω0, 1-cluster chimera states and chimera splay states are observed. In the
case where ω(x, t) = ω0 cos(2πft) cos(x), with f = O(ε), the system exhibits near periodic
behavior with period T = 1

f
. Figure 6.10(a) shows a snapshot of the phase pattern for

t = 1500, where ω(x, t) = −ω0 cos(x). This is a 1-cluster chimera state with a coherent
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cluster located around x = 0, which is consistent with our previous result in Chapter 4.
When t = 1750, ω(x, t) = 0 and we observe a 2-cluster chimera state (Fig. 6.10(b)). When
t = 2000, ω(x, t) = +ω0 cos(x) and a 1-cluster chimera state with a coherent cluster located
near x = π is observed (Fig. 6.10(c)).

The oscillation between the chimera splay states and the near-splay states is shown in
Fig. 6.11. The state becomes fully coherent at time t = 1775, slightly after the time when
ω(x, t) = 0 (t = 1750).
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Figure 6.11: Snapshots of the phase pattern for (a) t = 1500, (b) t = 1775, (c) t = 2000.
Simulation is done with G(x) = cos(x), ω(x, t) = 0.1 cos(x) cos(2πft), f = 0.001, N = 512
and random initial conditions.

When f = O(1), we observe 2-cluster chimera states and near splay states (Fig. 6.12).
For certain values of f (e.g., f = 0.1), the position of the coherent cluster is still pinned
(Fig. 6.12(a)). However, when f is larger (e.g., f = 1), the location of the coherent cluster
moves chaotically, just as in the case when ω0 = 0. When the frequency f is large, one may
expect that the oscillation in ω averages out.
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Figure 6.12: (a) A snapshot of a chimera state. (b) A snapshot of a near-splay state.
Simulation is done with G(x) = cos(x), ω(x, t) = 0.1 cos(x) cos(2πft), f = 0.1 and N = 512.
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Traveling wave case

We now consider the case with ω(x, t) = ω0 cos(x − vt). In the following simulations
ω0 = 0.1 is used. Similar to the standing wave case, when v is small, this system can
be treated as quasi-static. Fig. 6.13(a) shows a snapshot of a 1-cluster chimera state with
v = 0.01. Fig. 6.13(b) shows the dependence of the location of the coherent cluster on time,
where the location is defined as the maximum of the local order parameter R (R is as defined
in Chapter 2). The coherent cluster moves with an average speed c ≈ 0.01.
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Figure 6.13: (a) A snapshot of a chimera state with G(x) = cos(x), ω(x, t) = 0.1 cos(x− vt),
v = 0.01 and N = 512. (b) Dependence of the position x0 on time t.

The behavior of the chimera splay states is similar to the 1-cluster chimera states. The
coherent region moves with an average speed c ≈ 0.01, as shown in Fig. 6.14.
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Figure 6.14: (a) A snapshot of a chimera splay state with G(x) = cos(x), ω(x, t) = 0.1 cos(x−
vt), v = 0.01, and N = 512. (b) Dependence of the position x0 on time t.

When v = 0.1, we observe a new traveling wave solution. Fig. 6.15(a) shows a snapshot
of the phase distribution, and Fig. 6.15(b) is a position-vs-time plot, showing that the speed
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of travel c = v.
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Figure 6.15: (a) A snapshot of traveling wave solution with G(x) = cos(x), ω(x, t) =
0.1 cos(x− vt), v = 0.1 and N = 512. (b) Dependence of the position x0 on time t.

We have shown some preliminary numerical results for nonlocal phase-coupled oscillator
systems with time-dependent natural frequencies. However, this work is in its beginning
stages and some of the results are not well understood. Future study will focus on higher-
order approximations from asymptotic expansions and the explanation of the constant-speed
traveling wave solution. Another direction we can explore is time-dependent systems with
other types of coupling. As described in previous chapters, interesting states, e.g., traveling
chimera states, exist for particular coupling and suitable parameters. It is worth seeing if
there are new and interesting phenomena when a time-dependent natural frequency term is
introduced.

6.3 Future work

We have investigated chimera states in one and two dimensions. Arrays of nonlocally
coupled oscillators in three-dimensions have not been studied. In general, three-dimensional
systems are difficult to simulate. However, with the methods discussed in Appendix C,
the time complexity is significantly reduced if some specific types of coupling functions are
chosen. Therefore, it is possible to explore three-dimensional systems by feasible simulations.
We expect to discover some new types of solutions.

Another direction we could explore is using different coupling functions in our model
equations. In Chapter 3, we allow the coupling to be negative and discovered many interest-
ing solutions. In the coupling functions we have used so far, the interaction is positive when
oscillators are close to each other. It is interesting to see what happens when this is not the
case. For example, G(x) = − cos(x) is a reasonable choice. In this case, the model equation
shares the same stationary solutions with the equation studied in Chapter 3. However, the
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stability of these solutions changes. It is worth seeing if there exist some stationary solutions
that we missed.

One aspect we would like to mention is that we used periodic boundary conditions for all
model equations. In the real world, it is hard to build a system on a ring or a torus. Open
boundary conditions are more realistic. It is natural to ask how the boundary conditions
affect the solutions. For example, in two-dimensional systems, only an even number of
incoherent cores can exist for topological reasons. With open boundary conditions, this
restriction does not apply.

A study of these topics will help us gain a better understanding of chimera states in
general, and their occurrence in physics, chemistry and biology.
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Appendix A

Linear stability in infinite dimensions

In this appendix, we briefly review some notions about the spectrum of linear operators
and discuss their relation to stability analysis. More details can be found in [107, 108]. In
Chapter 1, we reviewed the linear stability theory of finite-dimensional ordinary differential
equations. We would like to extend the results to the infinite-dimensional case, which will be
important in analyzing the stability properties of PDEs. In particular, it has application in
the stability analysis of the chimera states (see Section 2.2 in Chapter 2). We now consider
a system governed by

∂u(x, t)

∂t
= F (u) ≡ Lu+N(u), (A.1)

where u is some variable of interest (e.g., an order parameter), L is a linear operator on a
Banach space and N(u) represents the nonlinear part. Assume u0(x) is a stationary solution,
i.e., F (u0(x)) = 0. The temporal stability of u0 is investigated via a linearization of Eq. (A.1).
Writing u = u0 + v, we can get

vt = DF (u0)v +O(|v|2). (A.2)

When v is a small perturbation, the evolution near the solution u0 is dominated by vt =
DF (u0)v. Thus, the linear equation is of the form:

vt = Lv, (A.3)

where we have now incorporated the linear terms resulting from N(u) into L. In Chapter
1, we saw that in the finite-dimensional case, the stability of a hyperbolic equilibrium de-
pends strictly on the eigenvalues of the linear operator. The infinite-dimensional case is less
straightforward. However, the stability is still closely related to the spectrum of L.

A.1 Spectrum of linear operators

Let X be the Banach space on which L is defined. Assume L has a domain D(L) ⊂ X
and is closed (for every sequence {un} in D(L) converging to u and Lun converging to v,
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one has Lu = v. ) and densely defined (D(L) is dense in X). These conditions are required
for much of the theory. As they hold in most reasonable settings, we will try to avoid the
technicalities associated with these issues.

The resolvent set of L is defined as:

res(L) = {λ ∈ C : L− λ has a bounded inverse defined on X}. (A.4)

For λ in the resolvent set, the inverse (L−λ)−1 is called the resolvent operator. The spectrum
of L, denoted by Σ(L), is defined as:

Σ(L) = C \ res(L). (A.5)

Here, we would like to point out the fact that the spectrum is not the set of all eigenvalues
in infinite-dimensional case. A complex number λ is called an eigenvalue of L if the operator
L − λ has a nontrivial null space in X. In finite dimensions, the only way for L − λ to fail
to have a bounded inverse is if λ is an eigenvalue. In infinite dimensions, there are multiple
ways for the resolvent operator to fail to be bounded on all of X. Therefore, it is useful to
divide the spectrum according to how L− λ fails to have a bounded inverse.

The essential spectrum of L, denoted Σ(L)ess, is the set of all complex numbers λ such
that L− λ is not a Fredholm operator. Here, an operator is said to be Fredholm if its range
is closed and the dimensions of its kernel and the cokernel are finite. The complement of the
essential spectrum is called the point spectrum, so Σp(L) = Σ(L) \ Σess(L). A number λ is
in the point spectrum if it is an isolated eigenvalue of finite multiplicity. But we need to be
careful with this statement. As the eigenvalues can be embeded in the essential spectrum,
the point spectrum is not equivalent to the set of eigenvalues.

Dividing the spectrum into the point and essential parts is useful when computing the
spectrum, as shown in Chapters 2 and 3. We now turn our attention to the relation between
the spectrum of L and the stability of certain stationary solutions. We are interested in the
object T (t) = exp(Lt). T (t) is a semigroup with generator L, and exp(Lt)u0 is the solution
of the linear equation (A.3) with initial condition v(x, 0) = u0(x). The growth bound of T (t)
is defined as

η0(L) = inf{η : ∃M(η) <∞ such that ||T (t)|| ≤M(η) exp(ηt)∀t ≥ 0}. (A.6)

In finite dimensions, η0 is directly connected with the spectrum of L. As we mentioned
before, it is a bit more tricky in infinite dimensions. If we define the spectral bound of a
linear operator L as

s(L) = sup{Re(λ) : λ ∈ Σ(L)}, (A.7)

then we can only prove s(L) ≤ η0(L). However, for a large class of operators, one can show
that s(L) = η0(L). Thus we build a close connection between the stability and the spectrum
of L. A natural question is: How do we compute the spectrum of a linear operator? This is
a nontrivial question. For examples such as the Laplacian, one may explicitly determine the
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spectrum. But in general, no such straightforward solutions can be found. In Chapter 2, we
have the linear evolution equation (2.52)

vt = Lv ≡ iµ(x)v +
1

2

[
exp(−iα)V (x, t)− exp(iα)z̃2V ∗(x, t)

]
, (A.8)

where α is a constant, z is the stationary solution of original equation, µ(x) is a term related
to z (See Chapter 2), and

V (x, t) = K[v] ≡
∫ π

−π
G(x− y)v(y, t)dy. (A.9)

The spectrum of this linear operator L is discussed in Chapter 2 and 3. What we would like
to point out is that for a general coupling function G, the point spectrum λp is impractical
to determine, even numerically. We were able to obtain an exact equation for λp in previous
chapters because we only included a few Fourier components in the coupling function.
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Appendix B

Normal form theory

In Chapter 1, we used normal forms to analyze some basic bifurcations. In this appendix,
we briefly introduce the concept of a normal form, largely following Wiggins’ book [2] and
Crawford’s paper [109].

The basic idea behind normal form theory is finding a series of coordinate transformations
which algebraically simplify the equations of a dynamical system as much as possible. First,
we assume we have a system

Ẋ = JX + F2(X) + F3(X) + · · ·+ Fr−1(X) +O(|X|r), X ∈ Rn. (B.1)

Here, we have made a transformation such that the fixed point is at the origin and J is in
the Jordan canonical form of the linear part. Fi represents the terms including ith order
polynomials of Xi, i = 1, 2, · · · , n. We next introduce the coordinate transform

X = Y + h2(Y), (B.2)

where h2 is of second order in Y. For Y sufficiently small, Eq. (B.1) and Eq. (B.2) give

Ẏ = JY + Jh2(Y)−Dh2(Y)JY + F2(Y) + F̃3(Y) + · · ·+ F̃r(Y) +O(|Y|r). (B.3)

We will chose h2 to simplify O(|Y|2) as much as possible. We define a linear operator:

h2(Y) −→ −Jh2(Y) + Dh2(Y)JY (B.4)

Here h2(Y) can be viewed as an element in H2, where Hk is the space of vector-valued
homogeneous polynomials of degree k. As an example, consider basis on R2, and k = 2,

H2 = Span

{(
x2

0

)
,

(
xy
0

)
,

(
y2

0

)
,

(
0
x2

)
,

(
0
xy

)
,

(
0
y2

)}
. (B.5)

Similarly, this operator can be defined from Hk to Hk:

L
(k)
J (hk(Y)) ≡ −Jhk(Y) + Dhk(Y)JY. (B.6)
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It is clear that H2 is a vector space with finite dimension. From linear algebra, H2 can
be represented as

H2 = L
(2)
J (H2)⊕G2, (B.7)

where L
(2)
J (H2) is the range of L

(2)
J , and G2 is its complementary space. If F2 ∈ L(2)

J (H2), we
can chose h2 satisfying

−Jh2(Y) + Dh2(Y)JY = F2(Y). (B.8)

Then all O(|Y|2) terms can be eliminated from Eq. (B.3). In general, all O(|Y|2) terms

in L
(2)
J (H2) can be eliminated and only those are in G2 remain. These terms are called

“resonance” terms for reasons explained in Section 19.12 of [2]. Thus Eq. (B.3) can be
reduced to

Ẏ = JY + Fr
2(Y) + F̃3(Y) + · · ·+ F̃r(Y) +O(|Y|r), (B.9)

where Fr
2(Y) represent resonance terms.

This procedure can be iterated so that we have the following Normal form theorem.

Theorem 2 By a sequence of analytic coordinate changes (B.1) can be transformed into

Ẏ = JY + Fr
2(Y) + Fr

3(Y) + · · ·+ Fr
r−1(Y) +O(|Y|r), Y ∈ Rn, (B.10)

where Fr
r−1(Y) ∈ Gk, 2 6 r − 1, and Gk is a space complementary to L

(k)
J (Hk).

The normal form techniques can be extended to systems such as

Ẋ = F(X, µ), (B.11)

where µ is a control parameter. A similar procedure as for the systems with no parameters
can be followed. We illustrate this idea by deriving the normal form for the Hopf bifurcation
in detail.

Suppose X ∈ R2 and X0 = 0 is a fixed point of Eq. (B.11). DF(0, µ) has two eigenvalues
λ(µ) and λ̄(µ). For the Hopf bifurcation, we assume λ(0) = iω(0). In this two-dimensional
system, we introduce z = x + iy to make expressions more compact. Thus the equations
for x and y can be transformed to equations for z and z̄. Similar to Eq. (B.1), we have the
equation for z:

ż = λz + F2(z, z̄) + F3(z, z̄) + · · ·+ Fr−1(z, z̄) +O(|z|r, |z̄|r) (B.12)

The equation for z̄ is simply the complex conjugate of Eq. (B.12). We need keep in mind
that λ and Fi depend on the parameter µ.

We now introduce the coordinate transformation

z −→ z + h2(z, z̄), (B.13)
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where h2(z, z̄) is the second-order polynomial in z and z̄ with coefficients depending on µ.
Under this transformation, we have

ż +
∂h2

∂z
ż +

∂h2

∂z̄
˙̄z = λ(z + h2(z)) + F2(z, z̄) +O(3). (B.14)

Here we have used O(3) to denote terms of order higher than 2. Similarly, we will use O(r)
to denote terms of order higher than r − 1. Notice that

˙̄z = λ̄z̄ + F̄2 +O(3), (B.15)

and (
1 +

∂h2

∂z

)−1

= 1− ∂h2

∂z
+O(2), (B.16)

implying Eq. (B.14) becomes

ż = λz − λ∂h2

∂z
z − λ̄∂h2

∂z̄
z̄ + λh2 + F2 +O(3). (B.17)

We define a linear operator

L(2) : h2 −→ −h2 +

(
λ
∂h2

∂z
z̄ + λ̄

∂h2

∂z̄
z̄

)
. (B.18)

Now h2 is an element in H2 = Span(z2, zz̄, z̄2). The matrix representation of L(2) in this
basis is  λ 0 0

0 λ̄ 0
0 0 −λ+ 2λ̄

 . (B.19)

For µ = 0, we have λ 6= 0 and λ+ λ̄ = 0. So for sufficiently small µ, this matrix is invertible,
which means that L(2)(H2) = H2. Therefore, all second order terms in z and z̄ can be
eliminated and Eq. (B.17) becomes

ż = λz + F3(z, z̄) +O(4). (B.20)

Similarly, by introducing the coordinate transform

z −→ z + h3(z, z̄). (B.21)

Eq. (B.20) becomes

ż = λz − λ∂h3

∂z
z − λ̄∂h3

∂z̄
z̄ + λh3 + F3 +O(4). (B.22)

We define a linear operator

L(3) : h3 −→ −h3 +

(
λ
∂h3

∂z
z̄ + λ̄

∂h3

∂z̄
z̄

)
, (B.23)
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where h3 is an element in H3 = Span(z3, z2z̄, zz̄2, z̄3). In this basis, the matrix representation
of L(3) is 

2λ 0 0 0
0 λ+ λ̄ 0 0
0 0 2λ̄ 0
0 0 0 −λ+ 3λ̄

 . (B.24)

When µ = 0, the second diagonal element in (B.24) is zero, but the remaining diagonal
elements are nonzero. Therefore, third order terms that are not of the form z2z̄ can be
eliminated. Thus Eq. (B.22) becomes

ż = λz + cz2z̄ +O(4). (B.25)

where c may possibly depend on µ. Choosing λ = µ + iω, c = a + ib and neglecting the
terms of order higher than 3, we obtain the simplest normal form for the Hopf bifurcation

ẋ = µx− ωy + (ax− by)(x2 + y2), (B.26)

ẏ = ωx+ µy + (bx+ ay)(x2 + y2), (B.27)

which is used in Chapter 1.
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Appendix C

Numerical methods

In this appendix, we summarize the numerical methods which are frequently used in this
thesis.

C.1 Time stepping for simulations

The model equations we investigated in this thesis are integral-differential equations. In
the one-dimensional case, they are of the form

∂θ(x, t)

∂t
= ω −

∫ π

−π
G(x− y) sin(θ(x, t)− θ(y, t) + α) dy, (C.1)

where ω is constant for chapter 3, and ω = ω(x) for chapter 4. The discretized version of
Eq. (C.1) is

dθi
dt

= ωi −
2π

N

N∑
j

G(
2π|i− j|

N
) sin(θi − θj + α), (C.2)

where N is the number of oscillators on a ring. This is a set of N nonlinearly coupled
ordinary differential equations. To numerically simulate them, we adopt the fourth-order
Runge-Kutta method [110], or “RK4” for short. Generally, the initial value problem is
specified by:

ẏ = f(t, y), y(0) = y0. (C.3)

Here, y and f could be vectors, but we use the scalar case to illustrate the idea. Choosing
a time step size h, the iterative relations are

yn+1 = yn +
h

6
(k1 + 2k2 + 2k3 + k4), (C.4)

tn+1 = tn + h. (C.5)
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Here, the k1, k2, k3 and k4 are computed from

k1 = f(tn, yn), (C.6)

k2 = f(tn +
h

2
, yn +

1

2
k1h), (C.7)

k3 = f(tn +
h

2
, yn +

1

2
k2h), (C.8)

k4 = f(tn + h, yn + k3h). (C.9)

This time stepping process is quite standard. We now focus on each time step. To compute

k1, k2, k3 and k4, we need evaluate f(t, y), which in our case is ωi − 2π
N

N∑
j

G(2π|i−j|
N

) sin(θi −

θj + α). For a general coupling kernel G(x), the complexity is O(N2), requiring a large
amount of computation resources. For the coupling G(x) = cos(nx), we have

N∑
j

G

(
2π|i− j|

N

)
sin(θi − θj + α)

= Im
[

exp(iα)(cos

(
2iπ

N

)
exp(iθi)

N∑
j

cos

(
2jπ

N

)
exp(−iθj)

+ sin

(
2iπ

N

)
exp(iθi)

N∑
j

sin

(
2jπ

N

)
exp(−iθj))

]
. (C.10)

By rearranging terms, we can reduce the complexity of each time step from O(N2) to
O(N), making the computation much more efficient. A similar process may be used for
two-dimensional systems.

C.2 Newton’s method for the self-consistency

equation

In this thesis, we frequently used a self-consistency analysis. For the special class of
coupling functions we have studied, we can reduce the self-consistency equations to low-
dimensional algebraic equations. We use Newton’s method to solve these equations.

Consider a continuously differentiable function F : Rk → Rk. Here, k is the number of
equations, as well as the number of unknown variables. Newton’s method tells us that the
zeros of F can be found by the following iteration:

Xn+1 = Xn − J(Xn)−1F (Xn), (C.11)

where J is the Jacobian matrix at Xn. Sometimes, J is unavailable or too expensive to
compute, in which case a family of Quasi-Newton methods is used instead. One example
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is to use (F (X i
n + h) − F (Xj

n))/2h as an approximation for the elements of the Jacobian
matrix.

There are two points we mention here. First, Newton’s method can only be used to
find one of the roots of F . We need to choose the initial value X0 carefully to make the
iteration process converge to the root we want. In solving the self-consistency equations, the
initial values are obtained from direct numerical simulations. Second, even when reasonable
initial values are used, Newton’s method may converge to some other roots that we are not
interested in. One way to deal with this issue is to use the iteration scheme

Xn+1 = Xn − αJ(Xn)−1F (Xn), (C.12)

where α ∈ [0, 1] is a real number.
In self-consistency equations, complex numbers are involved. However, we can separate

the real and the imaginary parts. For example, consider the self-consistency equation (3.17)

R2
0 = exp(iβ)

〈
Ω−

√
Ω2 −R2

0 cos2(ny)

〉
. (C.13)

We can define

F1(R0,Ω) = Re

(〈
Ω−

√
Ω2 −R2

0 cos2(ny)

〉)
−R2

0 exp(−iβ), (C.14)

F2(R0,Ω) = Im

(〈
Ω−

√
Ω2 −R2

0 cos2(ny)

〉)
−R2

0 exp(−iβ). (C.15)

Then F (R0,Ω) is a function from R2 to R2. A Quasi-Newton method can be used to solve
R0 and Ω, as described in Chapter 3.
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