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Abstract 
 

Intrinsically disordered protein regions (IDRs) play a variety of essential 

roles in regulating cellular function. Instead of folding into a single stable structure, 

an IDR exists in an ensemble of interconverting conformations biased by local and 

long-range intramolecular interactions. The absence of a fixed 3D structure 

combined with high solvent accessibility makes IDRs sensitive to changes in their 

physical-chemical surroundings. This dissertation describes investigations related 

to the ability of IDRs to sense and respond to changes in their surrounding solution 

conditions, and proposes a new paradigm of IDRs as sensors of cellular 

physicochemistry. Chapter 1 introduces the concept of IDRs as physicochemical 

sensors. Chapter 2 describes a project in which I developed a pipeline to allow 

medium-throughput FRET assays of IDR global dimensions in a wide variety of 

solution conditions, as well as benchmarking and analytical tools to allow 

meaningful comparison of the behavior of diverse IDRs, and used this system to 

characterize the end-to-end distance and solution sensitivity of several naturally-

occurring IDRs. Chapter 3 describes a project in which my colleague and I 

performed parallel assays on naturally-occurring and synthetic IDRs in vitro and in 

live cells to test whether structural biases and sensitivity seen in vitro would be 

preserved when the same IDRs were tested in live cells. Chapter 4 describes a 

bioengineering project in which my colleagues and I used the systems described 

in Chapters 2 and 3 to contribute to the design and testing of a novel IDR-based 

biosensor that can monitor osmotic stress in live cells. Chapter 5 concludes the 

dissertation and suggests directions for further research. 

 

 

 

David C. Moses 

Chemistry and Biochemistry, Ph.D. 

University of California, Merced, 2023 

 

Committee Chair: Andy LiWang 
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1. Introduction: Intrinsically disordered regions as 

physicochemical sensors  
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1.1 Intrinsically disordered regions and their conformational biases 

  

Intrinsically disordered regions (IDRs) make up around a third of most 

eukaryotic proteomes and play critical roles in various cellular functions1. Unlike 

folded domains, IDRs lack a fixed folded structure and instead exist in a set of 

interconverting conformations known as an ensemble (Fig. 1.1A). While IDRs are 

characterized as disordered, they are not “unstructured.” Instead, IDRs possess 

conformational biases that are dependent on their amino acid sequence2–4. These 

conformational biases may be driven by polar, hydrophobic, electrostatic, cation-

pi, or pi-pi interactions between amino acid side chains that lead to attraction or 

repulsion between distal regions of an IDR5–12. Such interactions tune 

intramolecular distance distributions and ensemble-average global dimensions. As 

an example, long-range electrostatic interactions driven by clusters of oppositely 

charged residues can tune IDR global dimensions13–15, as in the case of the cell 

cycle inhibitor protein p27Kip114. Alternatively, short-range transient secondary 

structure can manifest as specific conformational states that appear as distinct 

subpopulations within the overall ensemble16, e.g., transient helicity within specific 

subregions of IDRs, as seen in the RNA binding protein TDP-43 or the transcription 

factor p5317,18. For any given IDR, the emergent combination of sequence-

encoded attractive and repulsive molecular interactions will dictate its 

conformational biases.  

 

Besides amino acid sequence, another factor that influences IDR 

conformational biases, and therefore ensemble properties, is their 

physicochemical environment19,20. Folded domains benefit from a network of 

intramolecular non-covalent bonds that determine a consistent molecular topology. 

In IDRs, the lack of such a network has two implications. First, the designation of 

“buried” and “surface-exposed” residues commonly made in reference to folded 

proteins is not applicable as, in general, all residues in an IDR will be at least 

transiently solvent-exposed (Fig. 1.1A). Thus, the entire sequence is in direct 

interaction with the solution and can sense any change in surrounding chemistry. 

A second implication is that the sparse interactions that exist in an IDR are often 

too weak to resist the push and pull of the chain’s interactions with its surrounding 

solution. For example, interactions with denaturants like urea can pull apart the 

non-covalent bonds that maintain a protein’s structure. However, denaturation of 

a folded protein often requires a high urea concentration (6-8 M as a standard) 

because a network of intramolecular bonds resists this pull. IDRs, on the other 

hand, can be dramatically extended even by urea concentrations that are almost 

an order of magnitude smaller (< 1 M)19–22.  
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Why do IDR conformational biases matter? The emerging sequence-

ensemble-function paradigm for IDRs, analogous to the familiar sequence-

structure-function paradigm for folded proteins, posits that IDR function is at least 

partly dependent on an ensemble’s conformational biases2,16. Conformational 

biases can prime IDRs for molecular recognition that involves folding of the IDR 

upon its binding to a binding partner18,23,24. Alternatively, they can tune global 

dimensions or facilitate the formation of fuzzy complexes, where a bound structure 

lacks a defined 3D orientation24–26. Specific examples of the sequence-ensemble-

function relationship include regions that form binding motifs when they exist as a 

transient helix18, global dimensions tuning motif binding accessibility27, and tuning 

of interactions by changing the overall volume occupied by the ensemble28,29. 

Additionally, IDRs can themselves play key functional roles without directly 

interacting with partners. For example, when two globular domains are tethered by 

an intervening IDR, the “effective concentration” of the two domains with respect 

to each other, and therefore the extent of their interactions, can be tuned by 

changing the end-to-end distance of the IDR tether30,31. Recent work has 

highlighted the importance of effective concentration to function by revealing that 

IDR dimensions – without conservation of a specific amino acid sequence – can 

be under evolutionary selection to ensure optimal linker lengths in a model termed 

“conformational buffering”32. In short, the relationship between sequence and 

ensemble can be critical for the biological function of IDRs. 

 

The importance of conformational ensembles to IDR function, coupled to 

the inherent sensitivity of IDRs to their physicochemical environment, gives rise to 

the possibility of IDRs acting as molecular sensors of their surrounding 

physicochemical environment. The broad palette of chemistry available through 

the twenty natural amino acids (plus their post-translational modifications) makes 

possible the evolution of chemically orthogonal IDRs that are differentially sensitive 

to a variety of distinct physicochemical changes19,20,33,34. Sensing based on IDR 

ensemble changes would bring obvious advantages to the cell. In contrast to, for 

example, kinase signaling, IDR ensemble changes require no expenditure of ATP. 

Also, given that IDRs undergo conformational rearrangement on timescales of 50-

200 ns, sensing based on IDR ensemble changes could occur extremely rapidly35. 

These features position IDRs to be exceptionally efficient protein-based sensors.  
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1.2. The molecular basis of physicochemical sensing 

 

For an IDR to act as a physicochemical sensor, it must reproducibly respond 

to changes in its physicochemical environment (Fig. 1.1B). These responses may 

take the form of global changes in ensemble conformations or changes in local 

transient structure. Although these are often coupled, for simplicity we will consider 

them independently in our discussion below.  

 

 
1Figure 1.1. Disordered regions exist in an ensemble that is inherently sensitive to the physicochemical environment. 

Figure 1.1. Disordered regions exist in an ensemble that is inherently sensitive to the 

physicochemical environment. (A) Protein conformational heterogeneity exists on a continuum, 
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whereby well-folded domains are at one extreme and fully disordered regions with no strong 

conformational biases are at the other. Regions that are highly conformationally heterogeneous 

contain fewer intramolecular bonds and are more solvent-exposed, and hence, in general, are more 

sensitive to even modest changes in the physicochemical environment. Here, the x-axis represents 

conformational heterogeneity while the y-axis represents some change in solution chemistry. (B) 

Scheme showing some examples of how changes in the physicochemical environment can alter 

IDR conformational biases. Changes in solution chemistry (salt, osmolytes, pH) may weaken (or 

strengthen) intramolecular interactions leading to a decrease (or increase) in transient 

intramolecular interactions. The presence (or loss) of ligands, including specific ions, small 

molecules, second messengers, and other biomacromolecules, can lead to the gain (or loss) of 

structure upon binding (or unbinding). Changes in physical parameters such as temperature or 

pressure can lead to the enhancement (or suppression) of intramolecular interactions, which can 

drive the acquisition (or loss) of secondary or even tertiary structure. These are just a handful of 

examples of how changes in physicochemistry can be sensed by IDRs. 

 

1.2.1 Solution dependence of global conformational biases in IDRs 

 

Changes in global IDR dimensions can be viewed through the lens of 

polymer physics3,36. If we represent an IDR as a homopolymer, its global 

dimensions depend on the balance between attractive and repulsive 

intramolecular interactions. This balance can be quantified as a single interaction 

energy that reflects the average overall attraction (or repulsion) of the polymer 

units (monomers) for one another, i.e., the mean-field self-interaction energy (ε) 

(Fig. 1.2A). 

 

The mean-field self-interaction energy is inherently dependent on the 

solution environment. In a solution of polymer and solvent, increasing 

solvent:monomer repulsion is equivalent to increasing monomer:monomer 

attraction. Moving from a solution in which the mean-field self-interaction is 

repulsive to one in which it is attractive can manifest as a coil-to-globule transition36 

(Fig. 1.2B). The sharpness of this transition depends on the chain length and the 

magnitude of the change in self-interaction energy. 

 

For homopolymers, only a single type of monomer unit is present, so there 

exists only a single type of pairwise interaction energy (εi,i) (Fig. 1.2A). For 

heteropolymers (like IDRs), chemically distinct monomers give rise to a matrix of 

pairwise interaction strengths (E ≡ [εi,i,εi,j,...,εk,n]) (Fig. 1.2C,D). A key concept in IDR 

sensitivity is that each of these individual pairwise interaction strengths may be 

modulated differently by changes in the physicochemical environment; that is, they 

may be chemically orthogonal (Fig. 1.2D). As a specific example, attractive 

pairwise interactions driven by electrostatics may be sensitive to salt, while 

attractive pairwise interactions driven by hydrogen bonding may not (Fig. 1.2D,E). 
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Two central conclusions emerge from this framework. First, IDR global 

dimensions must depend on amino acid sequence, as has been established by 

prior work2,3,7,9,10,12,22,37. Second, an IDR’s sensitivity – that is, how much global 

dimensions change as a function of the changing physicochemical environment – 

depends on (a) the underlying IDR sequence, i.e., where on the coil-to-globule 

curve an ensemble begins (Fig. 1.2E); and (b) how the intramolecular interactions 

encoded in this sequence respond to their environment, i.e., how much the overall 

mean-field pairwise interaction energy changes in response to physicochemical 

changes19 (Fig. 1.3A).  

 

 
2Figure 1.2. Physical principles that underlie sequence-specific IDR sensitivity to changes in physicochemistry. 
Figure 1.2. Physical principles that underlie sequence-specific IDR sensitivity to changes in 

physicochemistry. (A) Homopolymers are defined by a single interaction strength between each 

polymer unit, which also defines the mean-field self-interaction energy (ε). (B) If ε is repulsive, a 

homopolymer behaves as an extended coil with large chain dimensions, whereas if ε is attractive, 

a homopolymer behaves as a compact globule. The mean-field interaction energy can be varied 

by changing the chemical identity of the polymer unit, but can also be varied by altering the 

physicochemical environment the polymer finds itself in (temperature, pH, solutes, etc.). (C) Unlike 

homopolymers, heteropolymers consist of many chemically distinct units. A complete description 

of a heteropolymer requires knowledge of how each unique inter-residue interaction behaves, and 

the mean-field self-interaction energy (ε) is now defined in terms of the composition-weighted and 

context-dependent integral over all possible interactions. (D) The various types of interactions that 

may occur between residues in a heteropolymer can be, to first order, described by an interaction 

matrix. The strengths of these interactions depend on solution conditions. (E) The response of a 

heteropolymer to changes in the solution environment depends on the heteropolymer’s chemistry. 

For example, a highly-charged IDR with blocks of oppositely-charged residues will be compact at 
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low salt due to strong intramolecular electrostatic interactions. However, under high-salt conditions, 

those attractive interactions are screened, leading to an expanded ensemble driven by the 

substantial solvation free energies associated with charged groups. In contrast, a charge-depleted 

heteropolymer may be relatively salt-insensitive and is relatively compact compared to the blocky 

IDR in the high-salt limit.  

 

For IDR ensembles that begin near one of the baselines (either coil or 

globule), large changes in the mean-field energy can have a relatively small impact 

on chain dimensions, making them less sensitive (Fig. 1.3A, left)19. Analogously, 

for ensembles that begin in the middle of the coil-to-globule transition, relatively 

small changes in the mean-field interaction energy drive large changes in global 

dimensions, making them more sensitive (Fig. 1.3A, right). One could consider 

folded domains to be at the globular extreme of this transition, illustrating their lack 

of solution sensitivity. The upshot of this is that chain sensitivity peaks at the 

midpoint of the coil-to-globule transition (Fig. 1.3B). Indeed, prior work has shown 

that this conceptual framework is able to quantitatively normalize the solution 

dependence of IDRs across a wide range of different cosolutes (Fig. 1.3C)19. 

 

 
3Figure 1.3. An IDR’s sensitivity to the physicochemical environment depends on its intrinsic conformational biases. 
Figure 1.3. An IDR’s sensitivity to the physicochemical environment depends on its intrinsic 

conformational biases. (A) The extent of change in chain dimensions (gray shaded region) in 

response to a change in mean-field self-interaction strength tuned by the physiochemical 

environment (green shaded region) depends on both the underlying sequence and the polymer’s 
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behavior prior to the change. From equivalent changes in interaction strength, very different 

changes in polymer dimensions can emerge. (B) Chains at the midpoint of the coil-to-globule 

transition are most sensitive to changes in the solution environment. (C) Comparison of 

experimental data and analytical theory demonstrating the broad applicability of this framework 

(see Fig. 2.4E). 

 

In short, baseline conformational behavior and sensitivity to environmental 

change, both of which depend on sequence, combine to determine an IDR’s global 

dimensions (Fig. 1.2E). Together, these two features offer a quantitative 

framework through which IDR sensitivity can be interpreted and, looking forward, 

used as a design principle for the development of novel sensors. 

 

1.2.2 Solution dependence of local conformational biases in IDRs 

 

Local conformational biases, such as the gain or loss of transient secondary 

structure (especially transient helicity), can also be tuned by the environment38,39 

(Fig. 1.4). Importantly, the ability of ensemble conformations to change locally and 

not just globally means that ensembles can have different structural features even 

though global dimensions are the same12,40,41. This poses an additional challenge 

to experiments which often measure only a single global dimension. 

 

 
4Figure 1.4. Examples of physicochemically-driven changes in IDR ensembles. 
Figure 1.4. Examples of physicochemically-driven changes in IDR ensembles. (A) Promotion 

of secondary structural elements such as residual helicity (shown by the tube on the right) can form 

or dissolve binding motifs, modulating binding affinities. By prepaying an entropic cost for binding, 

the effective concentration of binding motifs can be rapidly enhanced or suppressed without the 

need to alter protein copy number. (B) Amphipathic sequences with patches of hydrophobic or 
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hydrophilic residues can compact or expand locally in different solutions, tuning accessibility of 

specific regions. (C) Sequences with high net charge (positive or negative) can compact when an 

increase in ionic strength screens out repulsive interactions. (D) Charged sequences with 

sequestered, opposite charges can expand at high ionic strength due to screening of attractive 

interactions.  

 

1.3 Dynamic solution composition of biological systems 

 

The cellular environment in which IDRs exist is primarily aqueous, but at the 

same time is crowded with macromolecules, osmolytes and ions42. Although cells 

employ many mechanisms to maintain homeostasis with respect to parameters 

such as pH, osmotic pressure, cell shape, and ion concentrations43–46, the 

environment in the cell is nonetheless prone to changes in viscosity, crowding, 

ionic strength, and concentrations of various osmolytes and macromolecules45,47. 

These changes may come about as a result of routine cell-cycle events, stress, 

response to stress, or pathological conditions48–51. Changes in the concentrations 

of small and large cosolutes in vitro have been shown to alter the equilibrium 

stability of protein interactions52 as well as the kinetics of protein folding and 

unfolding53; titration of small cosolutes into cells have been shown to produce 

changes in protein structure and aggregation propensity54; and rapid cell volume 

changes have been observed to alter the equilibrium between protein monomers 

and complexes, perhaps suggesting the modulation of weak protein-protein 

interaction networks by crowding55. Whether an IDR is part of a pathway critical to 

the life of a cell or critical to the ability of a virus to infect host cells, the cell or virus 

depends on the ability of the IDR to respond to changes in its surrounding 

environment by changing its conformation in a way that results in the required 

activity being performed. 

 

1.4 IDR ensembles are modulated by changes in solution conditions 

 

The ability of crowding to influence the structure and activity of 

macromolecules in the cellular cytoplasm, including their tendency to demix into 

separate phases, has long been acknowledged56–58. In recent years, a great deal 

of information has been obtained about the response of IDR structure and function 

to changes in solution conditions, such as that an IDR’s response to changes in 

ionic strength is related to the IDR’s net charge7; that, in accordance with polymer 

effects explained by Flory, IDRs existing above the θ-state in the absence of 

crowding should be more susceptible than IDRs existing below the θ-state in the 

absence of crowding to compaction by polymeric crowders59; that disordered 

proteins can mitigate the risks of solution exposure by forming interaction networks 
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that provide robustness in the face of solution changes60; and that changes in ionic 

strength or crowding can modulate the binding behavior of IDRs39,60,61. All of this 

is in addition to the evidence gathered in recent years linking protein intrinsic 

disorder to LLPS in response to cellular stress62. Even more recently, some groups 

have begun to attempt to systematically characterize the sensitivity of IDR 

ensembles to solution changes, whether by computationally modeling solutions 

that are more or less “attractive” or “repulsive” to given sequences20, or through 

conducting low-resolution but high-throughput experiments placing IDRs in a 

variety of solution conditions and measuring ensemble-average structural 

changes19. However, despite the understanding gained thus far of the sensitivity 

of IDRs to their surrounding environment, and despite the pivotal roles IDRs play 

in the health and disease of cells and whole organisms, the modulation of IDR 

function by physical-chemical changes in the surrounding environment is still not 

well understood, and, in particular, there has been little effort devoted to 

systematically characterizing the sensitivity of IDR-mediated LLPS behavior to 

solution conditions. 

 

1.5 Use of in vitro experiments to model cellular environment 

 

My projects have involved in vitro experiments that place IDRs in 

surroundings that model phenomena common to cellular life. Crowding is one such 

phenomenon. Macromolecules crowd living cells at concentrations as high as 0.4 

g/mL, or 40% by volume57,63. To simulate the experience of an IDR as its 

surrounding solution becomes more or less crowded with macromolecules, I used 

inert crowders such as Ficoll and PEG of various degrees of polymerization at 

concentrations ranging up to the estimated total concentration of macromolecules 

in living cells. The same logic applies to using widely varying concentrations of a 

single salt, such as NaCl, to model changes in ionic strength, or widely varying 

concentrations of a single osmolyte to model changes in total osmolyte 

concentration. Such in vitro experiments necessarily produce one-dimensional 

findings that neither fully reflect the true environment of an IDR within a living cell 

nor fully explain the mechanisms behind the findings. To try to fill in such gaps, I 

have worked with collaborators capable of investigating the behavior of the same 

IDRs in living cells, and with collaborators who specialize in computer simulations 

of macromolecular behavior. 
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1.6 In vitro methods for measuring IDR sensitivity 

 

As discussed above, IDRs exist in a constantly changing ensemble of 

conformations, and their susceptibility to conformational change in response to 

their surrounding environment, specifically the dynamic environment in cells, has 

important implications regarding their function, and therefore the health and 

disease of the organisms in which they live. Hence it is necessary to understand 

how IDRs change their conformations in response to changes in their physical-

chemical environment. As IDRs do not exist in a single native structure as in the 

case of folded proteins, they are not amenable to X-ray crystallography for 

structural study. High-resolution structural study of IDRs has been accomplished 

using single-molecule FRET and solution NMR, yielding knowledge of specific 

conformations adopted by IDRs, but these methods are not appropriate for high-

throughput research. Therefore I settled on the use of ensemble FRET as a main 

method and SAXS as an orthogonal, model-free secondary method. These 

methods allowed me to obtain ensemble-average data describing global 

dimensions of IDRs, and allowed me to do so in a high-throughput fashion, 

enabling measurement of IDR behavior in a large number of solution conditions.  

 

1.7 Overview of the work 

 

Chapter 2 describes a project in which I first developed our FRET-based 

pipeline to allow medium-throughput assays of IDR global dimensions in a wide 

variety of solution conditions, as well as benchmarking and analytical tools to allow 

meaningful comparison of the behavior of diverse IDRs, and then used this system 

to characterize the end-to-end distance and solution sensitivity of several naturally-

occurring IDRs. The project described in Chapter 2 synergistically combines this 

in vitro system with in silico experiments by my colleague Feng Yu. Building on 

this, Chapter 3 describes a project in which my colleague Karina Guadalupe and I 

performed parallel assays on naturally occurring and synthetic IDRs in vitro and in 

live cells to test whether structural biases and sensitivity seen in vitro would be 

preserved when the same IDRs were tested in live cells. To ensure accuracy of 

the in vitro FRET results, I also carried out SEC-SAXS experiments on each IDR 

and a colleague performed simulations of the IDR ensembles we used for 

benchmarking. To show a practical application of these methods, Chapter 4 

describes a bioengineering project in which my colleagues and I used the systems 

described in Chapters 2 and 3 to contribute to the design and testing of a novel 

IDR-based biosensor that can monitor osmotic stress in live cells. Finally, Chapter 
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5 concludes the dissertations by describing some implications of IDRs as 

physicochemical sensors and suggesting directions for further research. 
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2. Revealing the hidden sensitivity of intrinsically 

disordered proteins  
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2.1 Abstract 

 

Intrinsically disordered protein regions (IDRs) make up roughly 30% of the 

human proteome and are central to a wide range of biological processes. Given a 

lack of persistent tertiary structure, all residues in IDRs are, to some extent, solvent 

exposed. This extensive surface area, coupled with the absence of strong 

intramolecular contacts, makes IDRs inherently sensitive to their chemical 

environment. Despite the sensitivity of IDR ensembles to their surrounding solution 

and their demonstrated link to IDR function, our understanding of how these 

ensembles are influenced by their chemical environment is limited. We report a 

combined experimental, computational, and analytical framework for high-

throughput characterization of IDR sensitivity we call solution space scanning. Our 

framework reveals a sequence-dependent sensitivity of IDRs to solution chemistry, 

with complex behavior that can be interpreted through relatively simple polymer 

models. These results imply that solution-responsive IDRs are ubiquitous and can 

provide an additional layer of biological regulation. 

 

2.2 Introduction 

 

Intrinsically disordered protein regions (IDRs) play key roles in mediating 

cellular signalling, transcriptional regulation, and homeostatic functions64. IDRs 

differ from well-folded proteins in that they exist in an ensemble of rapidly changing 

configurations (Fig. 2.1A). This conformational ensemble is often tied to IDR 

function18,39,65. IDR ensembles have extensive surface area exposed to the 

surrounding solution, and few non-covalent intramolecular bonds that constrain 

their structure. As such, IDR ensembles are highly malleable and can be strongly 

affected by the chemistry of their surrounding environment66. Inside the cell, the 

chemical composition can change due to routine cell-cycle events or external 

stress47–49,54,60. The plasticity of IDR ensembles makes them ideal sensors and 

actuators of these changes20,67,68, but perhaps also impairs their activity in 

deleterious environments such as metabolically rewired cancer cells69. Still, little 

effort has been directed at systematically characterizing IDR sensitivity to solution 

changes.  

 

The effects of solution chemical changes on protein structure can be likened 

to a “tug-of-war” between intra-protein interactions and interactions between 

protein moieties and the surrounding solution. This tug-of-war is a balance that can 

be shifted by changes to sequence (mutations or post-translational 

modifications)70,71, but also by changes in the physical-chemical composition of the 
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intracellular environment47,69. While the sensitivity of IDRs to solution composition 

has been discussed1,68,72, it has not been systematically characterized. Here we 

set out to systematically evaluate the sensitivity of IDRs to changes in their 

surrounding environment.  

 

2.3 Results 

 

2.3.1 A high-throughput approach to reveal IDR dimensions using ensemble 

FRET 

 

We use “solution space” scanning to characterize IDR sensitivity to solution 

composition changes. This is analogous to “sequence space” scanning, but uses 

different chemical environments instead of sequence mutations to probe protein 

behavior. To scan IDRs in solution space at high throughput, we developed a 

protocol that leverages ensemble FRET to report on changes in the average 

distance between their termini. We use a protein construct comprising an IDR of 

interest sandwiched between two fluorescent proteins (FPs) that together form a 

Fӧrster resonance energy transfer (FRET) pair (Fig. 2.1A). The FPs selected were 

mTurquoise273 (donor) and mNeonGreen74 (acceptor)30,75. We chose four IDRs 

whose ensembles play functional roles: the 61-residue N-terminal transactivation 

domain of p53 (p53)18; the 34-residue BH3 domain of apoptosis regulating protein 

PUMA (PUMA)39; the 83-residue C-terminal domain of the yeast transcription 

factor Ash1 (Ash1)12; the 40-residue N-terminal domain of the adenoviral hub 

protein E1A (E1A)76 (see Table A1.1 for amino acid sequences). For each of these 

constructs the FRET efficiency, 𝐸𝑓, was determined as described in Appendix 1, 

Section A1.1.5. 

 

To derive changes in IDR dimensions from 𝐸𝑓 we began by measuring a 

series of Gly-Ser (GS) repeats in our FRET backbone to generate a length-

dependent point of reference.  𝐸𝑓  for these constructs scales linearly with GS 

repeats as expected (Fig. 2.1B, and see Appendix 1, Section A1.1.6), allowing us 

to interpolate 𝐸𝑓 for a GS linker of a given length to create a ratio χ: 

 

𝜒 =
𝑅𝑒

𝑖

𝑅𝑒
𝐺𝑆 − 1 

 

where 𝑅𝑒 is the end-to-end distance between donor and acceptor FPs obtained 

from 𝐸𝑓 as described in Appendix 1, Section A1.1.7, and the superscript 𝑖 or 𝐺𝑆 

refers to a specific IDR sequence or a GS linker of the equivalent length, 

https://www.codecogs.com/eqnedit.php?latex=R_e#0
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respectively. Thus, a negative χ value indicates the chain is more compact, while 

a positive value indicates it is more expanded, than a GS linker of the equivalent 

length. Conveniently, χ allows us to plot IDRs of different lengths on the same axes. 

Our calculations of χ in neat buffer (i.e., in buffer without additional co-solutes) for 

different FRET constructs reveal a range of behaviors, with Ash1 and p53 having 

more expanded, and PUMA and E1A more compact, ensembles (Fig. 2.1C).   

 

2.3.2 IDR ensemble dimensions are sensitive to solution composition and 

protein sequence, but not to length 

 

We next investigate how IDR dimensions change in different chemical 

environments. The solutions we use are not representative of the cellular 

environment. Instead, solutions containing osmolytes, polymeric crowders, polyols, 

free amino acids, denaturants and salts probe IDR structure by “pushing” or 

“pulling” against the attractions or repulsions of intra-protein interactions. We 

calculated χ for each combination of IDR/solution as described in SI Section S1.7. 

The resulting changes in χ reveal a distinctive solution-space "fingerprint" for each 

IDR (Fig. 2.2A) and highlight that different sequences have different sensitivities 

to the same solute77,78. This is in sharp contrast to the sensitivity of GS linkers, 

which all display a similar fingerprint regardless of length (Fig. A1.1).  

 

 
5Figure 2.1. Quantifying IDR ensemble dimensions. 
Figure 2.1. Quantifying IDR ensemble dimensions. (A) Fluorescence spectra normalized to 

donor peak intensity of a FRET construct in compacting (red), buffer (black), and expanding (blue) 

solutions. Cyan and green areas are base spectra of donor and acceptor FPs, respectively. Inset 

shows single configurations for various degrees of expansion. (B) FRET efficiency of Gly-Ser 
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repeat linkers vs. number of residues (N) in a buffer solution. UT is a solution of untethered, 

equimolar donor and acceptor. Dashed line shows linear fit of the data. (C) Calculated χ for FRET 

constructs in buffer determined by experiment (average of four repeats with 6 replicates each) and 

simulation (average of five repeats). Error bars are SD of all replicates/repeats.  

 

Focusing on several solute archetypes reveals interesting trends (Fig. 

2.2B). Short polyethylene glycol (PEG) chains, such as PEG200, display disparate 

effects on different sequences, causing only Ash1 to compact, and the rest to 

expand, in line with other observations79. Larger polymers such as PEG2000 and 

Ficoll appear to compact the dimensions of all IDRs as shown for other disordered 

proteins61, with a sequence-dependent magnitude that is stronger for Ash1 and 

PUMA as previously reported59. Smaller solutes like sarcosine and tricine also 

reveal a linear expanding or compacting effect, but show that different proteins 

expand or compact by different magnitudes under the same solution. Salts like 

NaCl display a characteristic non-monotonic effect, as described previously60,80,81. 

In ionic solutes, the initial expansion likely stems from screening of attractive 

electrostatic interactions that may in fact arise not only from the IDR chain but also 

from the FP tags, as indicated by the effect on uncharged GS linkers (Fig. A1.1), 

while the compaction trend stems from specific ion effects, and differs between 

protein types82. Overall, the picture that emerges is that different solution 

environments affect IDRs in a way that strongly depends on sequence composition 

and arrangement, but much less on length.  

 

 
6Figure 2.2. Solution space scans of IDRs. 
Figure 2.2. Solution space scans of IDRs. (A) Solution space scans of four naturally 

occurring IDRs. Each data point shows the average χ vs. concentration of a specific solute for 

each protein taken from two repeats. Vertical grey bars show spread of data, and are often too 

small to see. Proteins vary down columns, and solutes across rows. Background color 

represents the sensitivity of change to solute addition: stronger colors imply higher sensitivity, 

red hues indicate compaction, and blue hues indicate expansion. Purple background indicates 

non-monotonic behavior. (B) Differential response of IDRs to individual solutes. Each panel 
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point shows Δ𝜒 = 𝜒([𝑠𝑜𝑙𝑢𝑡𝑒]) − 𝜒([𝑠𝑜𝑙𝑢𝑡𝑒] = 0)  vs. concentration from two repeats of a 

specific solute for several different constructs. Vertical lines are the spread of the data. 

 

2.3.3 IDR dimensions in neat buffer predict sensitivity to solution changes 

 

To see how sensitivities play out in a larger range of IDRs, we turn to all-

atom simulations. We use the ABSINTH forcefield that has previously been shown 

to reproduce experimentally measured IDR ensembles (see Section 

A1.2.1).10,12,14,83 To maintain connection with experiments, we start by simulating 

GS linkers of various lengths (Fig. A1.2), and use ensemble-averaged 𝑅𝑒  to 

calculate χ for simulated IDRs according to Eq. 1. The simulation-derived χ for the 

four different proteins used in our experiments qualitatively agrees with our FRET 

experiments, aside from Ash1 which is significantly more expanded in simulations 

than our FRET experiments show (Fig. 2.1C). It is important to note that the 

absence of FPs in these simulations dictates that the value of χ is necessarily 

different between experiment and simulations, and a quantitative match is not 

expected. 

 

 
7Figure 2.3. All-atom simulations of IDR sensitivity to solutions. 
Figure 2.3. All-atom simulations of IDR sensitivity to solutions. (A) Heatmap of protein 

sensitivity and molecular features. Protein identity varies from top to bottom across cells, and 

molecular features vary left to right. Colormaps are shown for each molecular feature. (B)  The 

magnitude Δχ in attractive (blue) or repulsive (red) solutions as a function of χ in aqueous solution 

https://www.codecogs.com/eqnedit.php?latex=R_e#0


19 
 

 

for each protein in (A). Darker points represent proteins shows in Fig. 2.1C. Error bars calculated 

from SD of 5 repeats. 70 points are plotted in each condition.  

 

We next wanted to see how other naturally occurring disordered sequences 

would respond to different solution conditions. We have previously designed and 

calibrated an approach to perform computational solution space scanning with 

ABSINTH.20 We selected 70 experimentally identified IDRs84, and used our 

computational solution space scanning approach to change interactions between 

the solvent and the backbone of these proteins, akin to the effect of osmolytes and 

denaturants85–87. We quantified the sensitivity of the protein to compacting or 

expanding solutions based on the extent of change in χ (Fig. A1.3). The dataset is 

sorted from compact to expanded (negative to positive χ) in Fig. 2.3A and shows 

little correlation with many sequence-based parameters, but relatively strong 

correlation with the change Δ𝜒 = 𝜒([𝑠𝑜𝑙𝑢𝑡𝑒]) − 𝜒([𝑠𝑜𝑙𝑢𝑡𝑒] = 0) in solutions that 

cause the sequence to compact (repulsive solutions) or expand (attractive 

solutions). We refer to this value as the “solution sensitivity” of the protein. We plot 

the solution sensitivity, Δχ, vs. protein dimensions in buffer, χ,  in Fig. 2.3B. As 

expected from Fig. 2.3A, sequences with a negative χ have a larger tendency to 

expand, but a limited ability to compact, and vice versa for positive χ. Remarkably, 

both compaction and expansion show the same dependence on χ, even at different 

solution interaction strengths (see Fig. A1.4). 

 

2.3.4 Predicting the extent of solution sensitivity in intrinsically disordered 

chains 

 

To see if the non-monotonic trend shown in Fig. 2.3B can be generalized, 

we measured solution-induced expansion and compaction in a lattice-based 

heteropolymer model detailed in Section A1.2.2.10,12. We simulated a total of 104 

sequences with lengths ranging from 20 to 100 residues in 11 solution conditions, 

and quantified  χ and Δχ for each sequence/solution pair (Fig. A1.5). The trends 

from all-atom simulations, re-drawn as a density map in Fig. 2.4A, match the 

coarse-grained simulations shown in Fig. 2.4B. A non-monotonic change in Δχ is 

observed, with the inflection point centered approximately around χ = 0.0 and a 

‘dead zone’ in the center of the plot. For naturally expanded chains (χ → 0.4) 

solution sensitivity is minimized, while for naturally compact chains (χ → –0.4) a 

broad distribution of sensitivity is observed with respect to expansion, while 

sensitivity through compaction trends to zero. 

 

Based on these results, we developed an analytical homopolymer model to 

relate changes in chain-solvent interaction to chain dimensions (see Section 

https://www.codecogs.com/eqnedit.php?latex=%5Cchi#0
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A1.2.3). Using this model we generated chains with a specific χ value in buffer and 

perturbed the chain-solvent interactions, and directly calculated Δχ (Fig. 2.4C, Fig. 

A1.6). Despite being a simplified homopolymer model, our analytical expression 

revealed the same phenomenological pattern as obtained in our all-atom and 

coarse-grained simulations. 

 

The χ-dependence of the chain-solvent interaction strength is shown in Fig. 

2.4D (black line), which reveals that Δχ depends on both the strength of the change 

in chain-solvent interaction and the χ value in an aqueous solution. Our model 

offers direct physical intuition as to the origin of the complex relationship between 

χ and Δχ. Perhaps most importantly, it implies that while expanded or compact 

proteins display a wide range of sensitivities, IDRs where χ ~ 0 display a basal 

sensitivity to solution interactions. In this region, where most IDRs fall9, even small 

changes to solution composition are predicted to have a measurable effect on IDR 

dimensions and/or residual structure.20 

 

Under the assumption that cosolute-protein interactions scale linearly77,88, 

we globally fit our experimental data onto our analytical model leveraging the fact 

that all experimental measurements start in the same neat buffer (Fig. 2.4E, Fig. 

A1.7). All solution perturbations can be rationally interpreted as driving sequence-

dependent shifts along the coil-to-globule transition, in which the magnitude of the 

shift maps directly to modulation of  chain-solvent interactions. The scaling factors 

required for this mapping qualitatively mirror known co-solute interaction 

coefficients, and reveal quantitative sequence-dependent differences in the 

solution response (Fig. A1.8). Chain dimensions can also be represented using 

an apparent scaling exponent ( 𝜈𝑎𝑝𝑝 ) (see Section A1.2.4)89,90. The solvent-

induced changes observed are substantial, and for many solutes drive changes 

equal to or greater than changes observed in IDRs due to mutagenesis10.  

 

In this work we set out to measure the ability of IDRs to respond to chemical 

composition changes in their surrounding solution. Although the solutions used 

here do not represent real cellular  environments, they reveal that IDR ensembles 

carry an inherent, sequence-encoded sensitivity to changes in their chemical 

environment. This sensitivity can stem from different molecular features, and as 

far as we determined correlates only with the dimensions of the sequence (𝜒) in 

aqueous buffer. IDR function through conformational selection has been reported 

for numerous proteins. In this mechanism, function is linked to the conformational 

ensemble of the IDR, directly linking environment-induced ensemble changes to 

IDR activity. The most exciting idea our data suggests is that changes in the 
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chemical composition which commonly occur in the cell can tune the function (or 

malfunction) of intrinsically disordered proteins. 

  

 
8Figure 2.4. Using all-atom simulations to predict solution sensitivity of IDRs. 
Figure 2.4. Using all-atom simulations to predict solution sensitivity of IDRs. (A-C). Density 

maps of all-atom simulations shown in Fig. 2.3B. (A), PIMMS coarse-grained simulations (B), and 

an analytical model (C) for solution sensitivity Δ𝜒 vs. dimensions in aqueous buffer 𝜒. (D) Coil-to-

globule transition obtained from an analytical model (SARC = self-avoiding random coil). Δ 𝜒 is 

measured as the height of the blue (contraction) or red (expansion) shaded regions. When the 

same chain-solvent perturbation (Δsol) is applied to a 100-residue chain with different starting 𝜒 

values, very different Δ 𝜒 are expected. (E) Projection of experimental data for Ash1 onto the 

analytical model from (D), with solute concentrations scaled to the change in mean-field chain-

solvent interaction as compared with neat buffer. The x axis here represents the same units as in 

panel D but reports on the change in chain:solvent interaction relative to aqueous solvent, which is 

set to 0. Chain dimensions are also shown by their apparent scaling exponent 𝜈𝑎𝑝𝑝. Mapping of 

other proteins is shown in Fig. A1.7. 

 

  

https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20%5Cchi#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20%5Cchi#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20%5Cchi#0
https://www.codecogs.com/eqnedit.php?latex=%5CDelta%20%5Cchi#0
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2.4 Methods and supplementary figures 

 

Experimental methods and supplementary figures for in this study are in 

Appendix 1. Full in vitro and simulation data sets can be found online at 

https://github.com/sukeniklab/IDP_structural_bias. 

 

2.5. Author contributions 

 

S.S. and A.S.H. conceptualized and led the project. D.M. designed and 

performed all in vitro experiments and analysis with the help of N.M.S. and P.K. 

A.S.H., F.Y. and G.G. designed, ran and analyzed simulations. S.S., D.M., F.Y. 

and A.S.H. wrote and revised the manuscript.  

https://github.com/sukeniklab/IDP_structural_bias
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3. Structural biases in disordered proteins are 

prevalent in the cell  
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3.1 Abstract 

 

Intrinsically disordered protein regions (IDRs) are essential to cellular 

function in all proteomes. Unlike folded proteins, IDRs exist in an ensemble of 

rapidly interchanging conformations. IDR sequences encode interactions that 

create structural biases within the ensemble. Such structural biases determine the 

three-dimensional shape of IDR ensembles and can affect their activity. However, 

the plasticity and sensitivity of IDR ensembles means that structural biases, often 

measured in vitro, may differ in the dynamic and heterogeneous intracellular 

environment. Here we reveal that structural biases found in vitro in well-studied 

IDRs are recapitulated inside human-derived cells. We further show that ensemble 

structural biases can change in a sequence-dependent manner due to changes in 

the intracellular milieu, subcellular localization, and interactions with tethered well-

folded domains. We propose that the structural sensitivity of IDR ensembles can 

be leveraged for biological function, be the underlying cause of IDR-driven 

pathology, or be used to design disorder-based biosensors and actuators. 

 

3.2 Introduction 

 

Intrinsically disordered protein regions (IDRs) play key roles in many cellular 

pathways and are vital to cellular function in all kingdoms of life64,91. Compared to 

folded proteins, IDRs lack a stable tertiary structure, have fewer intramolecular 

interactions, and expose a greater area of their sequence to the surrounding 

solution1. As a result, an IDR exists in an ensemble of conformations that can 

change rapidly in response to the physical-chemical characteristics of its 

surroundings19,20.  

 

Despite being highly dynamic, IDR ensembles often contain structural 

biases, or preferences for certain subsets of conformations within the ensemble2. 

Such structural biases may arise from short- or long-range interactions within the 

protein sequence (Fig. 3.1A)16. An extensive body of work has established the 

importance of IDR structural biases to their function18,39,64,65,92–94. For example, 

local biases that form transient ɑ-helical segments modulate binding affinity in 

PUMA39 and p5318,95 and the liquid-liquid phase separation properties of TDP-4394. 

Changes to long-range structural biases were found to influence IDR function in 

p5396, BMAL197 and Myc98. Thus, uncovering the structural biases of IDR 

ensembles is a prerequisite for understanding IDR function14,32,62,99. With few 

exceptions100–102, studies linking IDR ensemble structure to its function are 

performed in vitro. The differences between an aqueous buffer and the cellular 
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environment are dramatic47,103, casting doubt as to whether or not structural biases 

linked to function in vitro persist in the cell. 

 

The structural malleability of IDR ensembles, coupled with the dynamic 

nature of the cellular environment, prompts two major unanswered questions: (1) 

To what degree are IDR structural biases observed in vitro preserved inside the 

cell? (2) How do IDR structural biases respond to physical-chemical changes in 

the dynamic intracellular environment?  

 

Answering these questions requires studying IDRs inside the cellular 

environment. However, resolving IDR structural biases inside the heterogeneous 

and dynamic cellular environment is especially challenging. Changes to the cellular 

physical-chemical composition occur regularly during the cell cycle19,20,60,104 (e.g., 

the breakdown of the nuclear envelope during mitosis48). Alternatively, these 

changes may result from pathology, such as the elevation in intracellular pH and 

rewiring of metabolic pathways common to nearly all cancer cells69,105. Such 

compositional changes are known to affect even well-folded proteins47,103,106,107, 

but their effect on IDR structural biases has not been studied. 

 

Here we demonstrate that IDR structural biases observed in vitro persist in 

live cells, but display sequence-dependent sensitivities to physical-chemical 

changes in the cellular environment. Our observations rely on ensemble 

fluorescence resonance energy transfer (FRET). To obtain a structural metric for 

IDR ensembles, we place sequences of interest between two fluorescent proteins 

(FPs) that form a FRET pair, mTurquoise2 and mNeonGreen (Fig. 3.1B)19,30,75. 

Ensemble FRET provides, among other advantages, unmatched throughput and 

ease-of-use when working in live cells, but suffers from drawbacks when it comes 

to accurate quantification of distances. To mitigate these drawbacks, we have 

established a characterization pipeline that combines ensemble FRET (FRET, Fig. 

3.1C), analytical size exclusion chromatography (SEC, Fig. 3.1C), small angle X-

ray scattering (SAXS, Fig. 3.1C), changes in solution composition19,20 (Fig. 3.1D), 

and molecular simulations to identify structural biases of IDRs in vitro. We then 

leverage this characterization to examine the same constructs inside live cells 

using FRET microscopy (Fig. 3.1E). Finally, we perturb the cellular ensembles by 

subjecting cells to osmotic challenges that rapidly change cell volume, and 

measure the response of IDR ensembles through changes in FRET signal (Fig. 

3.1F). 

 



26 
 

 

We first validate our pipeline using dipeptide Gly-Ser (GS) repeats, 

establishing these sequences as homopolymer benchmarks that contain no 

significant structural biases30,108,109. We next compare the BH3 domain of PUMA, 

a naturally occurring IDR containing well-defined helical structural biases, against 

three variants where the wild-type sequence is scrambled. By scrambling a 

sequence, we confirm that structural biases are encoded by amino acid sequence, 

rather than amino acid composition. Finally, we investigate five well-studied 

naturally occurring IDRs whose conformational biases have been linked to their 

physiological function. We find that in all cases, the structural biases that define 

the ensemble in vitro also exist inside the cell. Furthermore, we highlight cases 

where IDRs respond in a sequence-dependent manner to a changing environment: 

through osmotic challenges, changes in subcellular localization, or interaction with 

a folded domain, some IDRs show sequence-encoded ensemble changes that are 

not observed in GS repeats.  

 

Our work offers clear evidence that sequence-encoded structural biases 

exist in IDR ensembles in living cells, and that these biases can be tuned by 

changes to protein sequence or to the cellular environment. The existence of 

structural biases in IDR ensembles inside the cell suggests that they are subject 

to evolutionary pressure, and that IDRs can be rationally designed to create 

disorder-based sensors and actuators. 

 

3.3 Results 

 

3.3.1 Glycine-serine repeats are an unbiased, model-free standard to 

quantify IDR ensembles 

 

The structure of a folded protein is commonly described in terms of its 

“native” conformation discerned through X-ray crystallography. For an IDR, no 

single structure can be obtained. Instead, IDR structure is often described with 

reference to well-established homopolymer models22,59. However, no models exist 

for our dumbbell-shaped FRET construct, especially not models that are relevant 

in the cellular environment. We therefore wanted to create an empirical standard 

against which we could compare IDRs of arbitrary lengths. 
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9Figure 3.1. Diagrams of methods used in this study. 

Figure 3.1. Diagrams of methods used in this study. (A) IDR ensembles with and without 

structural biases. In all schemes, a single conformation is shown in color and other conformations 

are shown in gray. Structural biases increase the density in specific regions of the ensemble and 

alter its average dimensions. (B) FRET construct consisting of an IDR between two fluorescent 

proteins that serve as a FRET donor and a FRET acceptor. (C) In vitro experiments. Top: 

fluorescence resonance energy transfer (FRET). Middle: small angle X-ray scattering (SAXS). 

Bottom: analytic size-exclusion chromatography. (D) In vitro solution space scanning measures the 

FRET signal of a sequence in the presence of denaturing (urea, guanidinium), stabilizing (sucrose, 

ethylene glycol, glycine, sarcosine), and crowding (PEG400, PEG2k, Ficoll) solutes, as well as salts 

(NaCl, KCl) that screen electrostatic interactions. (E) Live-cell FRET microscopy is performed on 
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cells expressing the same constructs used in vitro. (F) Changes in ensemble dimensions are 

measured using live-cell FRET following rapid hyperosmotic and hypoosmotic challenges. 

 

As a benchmark against which to compare properties of naturally occurring 

heteropolymeric IDRs, we inserted homopolymeric dipeptide repeats into our 

FRET construct (Table A2.1). Specifically, we chose glycine-serine (GS) repeats 

for benchmarking because (1) they lack hydrophobicity, charge, and aromaticity 

which makes them easy to express and highly soluble2, (2) they have been shown 

to lack local and long-range structural biases, instead behaving as expected for a 

random coil across the range of lengths studied in our work109,110, and (3) they 

have been shown to behave as real-chain mimics of ideal Gaussian chains in 

aqueous solutions110–112.  

 

Ensemble FRET experiments provide an apparent FRET efficiency (𝐸𝑓
𝑎𝑝𝑝

), 

which is inversely proportional to the distance between the two FPs. When the FPs 

are close together, 𝐸𝑓
𝑎𝑝𝑝

 is high, and when they are far apart, 𝐸𝑓
𝑎𝑝𝑝

 is low. 

Increasing and decreasing 𝐸𝑓
𝑎𝑝𝑝

 can indicate compaction and expansion of an 

ensemble. As previously reported, 𝐸𝑓
𝑎𝑝𝑝

 decreased linearly with the number of GS 

repeats in a dilute buffer solution19 (Fig. 3.2A,B, A2.1). However, the three-

dimensional structure of the ensemble cannot be resolved by a single-distance 

measurement40,41,113.  

 

To obtain additional, orthogonal measurements that can inform about the 

structure of the ensemble, we performed size-exclusion chromatography coupled 

with small-angle X-ray scattering (SEC-SAXS) on the same constructs as we 

measured using FRET114–116. The chromatograms obtained from SEC showed a 

consistent, linear, size-dependent increase in elution volume (Figs. 3.2C,D, A2.2), 

indicating that the proteins increase in dimension with GS repeat length. Analysis 

of SAXS intensity curves showed a similar linear dependence on GS length (Figs. 

3.2E,F, A2.3, A2.4), displaying linearly increasing radii of gyration (𝑅𝑔, Fig. 3.2F) 

in agreement with our other results.  

 

Finally, we conducted all-atom simulations of all GS-repeat sequences to 

enable a molecular benchmark between SAXS and FRET results. Our simulations 

assumed that the FPs only take up space (i.e., are non-interacting) and that GS 

repeats behave like homopolymers. From these simulations, ensembles were 

selected to quantitatively match the SAXS scattering data (Fig. A2.5). These 

ensembles reproduced the GS length-dependent 𝐸𝑓
𝑎𝑝𝑝 values as well, indicating 
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that the simulation conditions at least managed to reproduce our experimental 

results (Fig. 3.2B,F). The application of one experimental dataset as a constraint 

to assess simulations against an orthogonal experimental dataset has been used 

previously to assess unfolded protein ensembles to great effect116,117. 

 

Taken together, our methods consistently show the same length-dependent 

trend for the GS repeats, and that the length of the sequence, rather than, e.g., 

intramolecular interactions between or with FPs, is the dominant factor affecting 

these dimensions. The excellent quantitative agreement with our simulations 

further indicates that GS repeats behave like ideal homopolymers, which lack 

structural biases40,113. 

 

 
10Figure 3.2. Characterization of GS repeat standards. 

Figure 3.2. Characterization of GS repeat standards. (A) Fluorescence spectra from in vitro 

measurements of FRET GSX constructs, where X indicates the number of Gly-Ser repeats. (B) 

Average apparent in vitro FRET efficiencies (𝐸𝑓
𝑎𝑝𝑝

) of GS repeats. Error bars represent the SD 
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(N=12). Here and in Fig. 3.2D, 3.2F and 3.2G, dashed lines represent expected values for GS 

repeats of corresponding lengths based on a linear fit. Here and elsewhere, the blue shaded region 

represents the standard error of the linear fit. All-atom simulations of GS repeats are shown in 

purple, with error bars representing the median 50% of simulation results. (C) SEC chromatograms 

for GS repeats. (D) SEC elution volumes, expressed as the position of the peak in mL, vs. number 

of residues in the GS-repeat sequence. Error is assumed to be one frame in each direction. (E) 

Guinier regions and fitted lines from SAXS experiments for GS repeats. (F) Radii of gyration (𝑅𝑔) 

derived from Guinier analysis of SAXS data for GS repeats. White error bars represent error from 

fitting lines to Guinier plots. The same all-atom simulations of GS repeats shown in Fig. 3.2B are 

used to calculate the simulated 𝑅𝑔, shown in purple, with purple error bars representing the median 

50% of simulation results. (G) FRET efficiencies of GS repeats measured in live cells (𝐸𝑓
𝑐𝑒𝑙𝑙). In all 

live-cell results, violin plots span the entire dataset and their thickness represents the probability. 

The median is shown as a white square, and the median 50% and 95% are shown as thick and 

thin lines at the center of the violin, respectively. The blue line is a linear fit of the medians, and fit 

error is shown by the shaded region. (H) Response to osmotic challenge expressed as change in 

𝐸𝑓
𝑐𝑒𝑙𝑙 from before to after the challenge (𝛥𝐸𝑓

𝑐𝑒𝑙𝑙).  

 

To further verify that GS repeats do not contain structural biases, we 

conducted FRET-based solution space scanning of GS-repeat constructs19,20. 

Solution space scanning probes structural biases in the ensemble by modulating 

interactions between the sequence and the solution. We reason that if structural 

biases exist, different GS-repeat lengths will show a different structural response 

to the same solution. The solutes we added as chemical probes in this case were 

salts, amino acids, polymeric crowders and their monomeric units, and denaturants. 

We stress that these solutes were not intended to directly mimic the cellular 

environment, but rather to probe the response of the ensemble to changes in 

solution chemistry. We measured the change in FRET efficiency 𝛥𝐸𝑓
𝑎𝑝𝑝 =

𝐸𝑓,𝑠𝑜𝑙𝑢𝑡𝑒
𝑎𝑝𝑝 − 𝐸𝑓,𝑏𝑢𝑓𝑓𝑒𝑟

𝑎𝑝𝑝
 for all GS repeat lengths (Fig. A2.6). As expected, GS repeats 

of all lengths responded identically to each of the solution conditions we created 

(Fig. A2.6). Overall, the internal consistency of the results from our orthogonal 

characterization methods establishes GS repeats as a model-free homopolymer 

standard which lacks structural biases. 

 

3.3.2 Live-cell measurements recapitulate in vitro results for GS repeat 

ensembles 

 

We next sought to establish GS repeats as a bias-free standard in live cells. 

To facilitate direct and straightforward comparison with our in vitro experiments, 

we used the same genetically encoded FRET constructs as we had used in vitro. 

GS-repeat FRET constructs were expressed in HEK293T cells, which all showed 
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similar morphology and expression levels regardless of the construct being 

expressed (Fig. A2.7).  

 

Our live-cell measurements of GS repeats showed trends in FRET 

efficiency calculated from live-cell imaging ( 𝐸𝑓
𝑐𝑒𝑙𝑙 ) that are in quantitative 

agreement with in vitro measurements (Fig. 3.2B,G). Notably, in live cells our 

FRET constructs showed a much broader distribution of 𝐸𝑓
𝑐𝑒𝑙𝑙  compared to the 

distribution of 𝐸𝑓
𝑎𝑝𝑝

 shown in vitro. This variability may be caused by a range of 

factors, including cell-to-cell differences in composition, cell state, and construct 

expression levels. Despite this, the remarkable agreement with in vitro data 

indicates that the lack of structural biases for GS repeats detected in vitro persists 

inside live cells. 

 

To test whether GS ensemble dimensions are sensitive to the cellular 

environment, we subjected cells to osmotic challenge. To resolve their immediate 

effects on a protein, these perturbations are performed rapidly and measured as 

quickly as possible to prevent any kind of transcriptional response54,55. We use 

rapid osmotic challenges induced by the addition of NaCl (hyperosmotic, 750 

mOsm) or water (hypoosmotic, 100 mOsm) to media (isosmotic, 300 mOsm). 

Osmotic challenges were previously shown to produce robust and reproducible 

changes in cellular volume through the efflux or influx of water54,55,118. We report 

on the difference in FRET signal of each cell following this perturbation, 𝛥𝐸𝑓
𝑐𝑒𝑙𝑙 =

𝐸𝑓,𝑎𝑓𝑡𝑒𝑟
𝑐𝑒𝑙𝑙 − 𝐸𝑓,𝑏𝑒𝑓𝑜𝑟𝑒

𝑐𝑒𝑙𝑙 . The measurements before and after the challenge are collected 

within a span of 45 seconds or less (Fig. 3.1F).  

 

Hyperosmotic perturbations resulting in cell shrinkage caused a positive 

𝛥𝐸𝑓
𝑐𝑒𝑙𝑙 that scaled with the length of the construct (Fig. A2.8). This is in line with 

previous studies of IDRs in crowded conditions and in the cell59,104,118, and can be 

explained by the increased ability of longer sequences to compact. Hypoosmotic 

perturbations, on the other hand, produced no significant change in 𝐸𝑓
𝑐𝑒𝑙𝑙 (Fig. 

A2.8). This lack of response was surprising, especially considering the fact that 

GS polymers are capable of expansion in vitro (Fig. A2.6). Regardless, our 

osmotic challenge experiments define a standard for the response of bias-free IDR 

ensembles to osmotically induced changes in cellular volume.  
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3.3.3 Amino acid sequence determines IDR structural biases and their 

response to changes in solution composition 

 

Having established a reliable homopolymer standard in vitro and in live cells, 

we set out to investigate how a naturally occurring IDR compares with GS repeats. 

We chose the sequence of the PUMA BH3 domain (wild-type (WT) PUMA) (Fig. 

3.3A,B, Table A2.1) because its residual helicity is a well-studied example of 

functionally linked structural biases in IDRs23,39. We first established the previously 

reported short-range helical structural biases of the unlabeled sequence119 as 

indicated by the characteristic double minima in the circular dichroism (CD) 

spectrum (Fig. 3.3B,C). Next, we measured the 𝐸𝑓
𝑎𝑝𝑝

, 𝑅𝑔, and SEC elution volume 

of WT PUMA using our in vitro pipeline (WT in Fig. 3.3D-F). Although in SEC WT 

PUMA eluted near the same volume as would be expected of GS repeats of the 

same length (Fig. 3.3E), SAXS and FRET showed WT PUMA to be significantly 

more compact than corresponding GS repeats (Fig. 3.3D,F), confirming that we 

are able to detect local structural biases present in WT PUMA but absent in GS 

repeats. 

 

Is residual helicity like that observed in WT PUMA a prerequisite for 

detectable structural biases? To answer this question, we generated sequence 

scrambles of WT PUMA (Fig. 3.3A, Table A2.1) and measured their ensembles 

in vitro. Sequence scrambles retain the amino acid composition but change their 

order, disrupting structural biases present in the wild type40,41. The three scrambles 

of WT PUMA were designed to have varying degrees of charge clustering, as 

measured by the parameter 𝜅 (kappa) in CIDER120 (sequences S1-3, Fig. 3.3A,B). 

To test for the existence of helical structural biases in the scrambled sequences, 

we measured the secondary structure of the label-free IDRs using CD. As 

expected, the CD spectra of the scrambles showed no double minima (Fig. 3.3C, 

A2.9), indicating that the helical structural biases of WT PUMA were no longer 

present.  

 

We next characterized ensemble dimensions of the scrambles using FRET 

(Fig. 3.3D), SEC (Fig. 3.3E), SAXS (Fig. 3.3F), and all-atom Monte Carlo 

simulations (Fig. A2.10). FRET and SAXS show that not only are the scrambles 

more compact than a GS repeat of the same length, but they also all differ from 

each other despite having similar CD spectra and identical amino acid composition 

(Fig. 3.3A-C). The overall agreement between trends from FRET and SAXS 

measurements shows that the WT PUMA sequence ensemble is the most compact, 

followed by S2, S3, and finally S1. This trend is also recapitulated in label-free all-
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atom simulations, indicating that tethering to the two fluorescent protein labels 

does not change the trends in ensemble dimensions for this measurement (Fig. 

A2.10). SEC data shows a different trend, with all sequences appearing more 

expanded than a GS linker and S3 showing an almost equal compaction to the WT 

(Fig. 3.3E). This may be due to chemical interactions between the constructs and 

the SEC column matrix121. However, since all four sequences contain the same 

amino acid composition, even these different interactions indicate sequence-

dependent structuring within the ensemble.  

 

The differences shown by all methods, between WT PUMA and the three 

scrambles and also among the scrambles, demonstrate not only that the WT 

PUMA ensemble is uniquely more compact than the scrambles, but also that 

structural biases exist even in the absence of the helical structural biases in the 

WT sequence. These results also show that, in this case, charge patterning alone 

does not dictate ensemble dimensions, since S3 has similar patterning to WT but 

is significantly more expanded according to FRET and SAXS results (although not 

according to SEC measurements). 

 

We hypothesized that different structural biases in PUMA and its scrambles 

would also manifest in their response to different solutions. To test this, we 

performed solution space scans for all four PUMA variants (Fig. 3.3H, A2.11). We 

compare 𝛥𝐸𝑓
𝑎𝑝𝑝

 of each sequence against the interpolated 𝛥𝐸𝑓
𝑎𝑝𝑝

 of GS repeats of 

the same length in the same solution condition (Fig. 3.3H, A2.12). Deviations from 

𝛥𝐸𝑓
𝑎𝑝𝑝

 of length-equivalent GS repeats indicate higher/lower sensitivities of the 

sequences (indicated by red/blue backgrounds, respectively) (Fig. 3.3H). We were 

surprised to find that despite having the most compact ensemble, WT PUMA 

showed the highest sensitivity of all scrambles (as indicated by the stronger blue 

and red backgrounds in Fig. 3.3H). Specifically, the WT sequence displayed 

stronger compaction in response to polymeric crowders (specifically PEG2000) 

and stronger expansion in response to denaturants (urea and GuHCl) compared 

to both the corresponding GS-repeat sequence and the three sequence scrambles. 

The three scrambles showed milder responses, with a notable difference for S2, 

which was significantly less sensitive to all solutes. These differences indicate that 

IDRs possess sequence-encoded sensitivity to the chemical composition of their 

environment. Furthermore, the presence of structural biases does not preclude 

ensemble sensitivity to the surrounding solution, and may even amplify it.  
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3.3.4 Sequence-dependent structural biases seen in vitro persist in live cells 

 

We next wanted to see if the structural biases measured in vitro for WT 

PUMA and its scrambles were retained in the cellular environment. We expected 

helical structural biases to persist in the cell due to the intrinsic stability of helical 

secondary structure122, but reasoned that biases within the scrambled sequences 

were weaker and therefore might not be retained. To test this, we performed our 

live-cell FRET imaging experiments on WT PUMA and the three variants (Fig. 

3.3G). Our live-cell FRET experiments showed striking agreement with the FRET 

measurements done in dilute aqueous buffers (Fig. 3.3D). Specifically, both the 

relative magnitude and the trend in 𝐸𝑓
𝑎𝑝𝑝

 measured in vitro was replicated in live 

cells, with WT > S2 > S3 > S1. Overall, 𝐸𝑓
𝑐𝑒𝑙𝑙 reveals that the structural biases found 

in these sequences in vitro persist inside the cell, even in the absence of short-

range helical structural biases (which occur only in WT). 

 

Our next goal was to measure whether these ensembles differ in their 

response to changes in the cellular environment. We again used osmotically-

triggered cell volume perturbations as a means to reproducibly change the 

concentration of all cellular solutes. The change in value of each cell’s average 

FRET signal following osmotic challenge, 𝛥𝐸𝑓
𝑐𝑒𝑙𝑙, is reported and compared with 

the interpolated 𝛥𝐸𝑓
𝑐𝑒𝑙𝑙 for a GS-repeat of the same length (Fig. 3.3I). We were 

surprised to find that the WT sequence, which displayed more sensitivity than a 

corresponding GS-repeat sequence to certain solutes in vitro, showed a response 

similar to that of GS repeats under both cell volume increase and decrease. 

Remarkably, this similarity to GS-repeat sensitivity in live cells was seen in all 

sequences except S2, which displayed a markedly lower tendency to compact 

under hyperosmotic conditions (as indicated by the lack of overlap between the 

median 50% of the data and the GS-repeat equivalent). The lower sensitivity of S2 

was also observed in vitro (Fig. 3.3H). This result indicates that IDR ensemble 

sensitivity to changes in the cellular environment is encoded in sequence, but is 

difficult to predict since it may or may not correlate with the sensitivity measured in 

dilute buffers. 
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11Figure 3.3. Comparison of global dimensions and solution sensitivity of GS repeats and PUMA variants. 
Figure 3.3. Comparison of global dimensions and solution sensitivity of GS repeats and 

PUMA variants. (A) Sequence of wild-type PUMA BH3 domain (WT PUMA) and three sequences 

(S1, S2, S3) derived by shuffling WT PUMA’s sequence. Red: negative charge; blue: positive 

charge; black: hydrophobic; green: polar; orange: aromatic. 𝜅 measures charge clustering in the 
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sequence (positive indicates a better separation of charges across the sequence) (B) Molecular 

features of WT PUMA and shuffles. Predicted helicity was calculated using all-atom simulations. 

Other parameters were evaluated by localCIDER120. FCR: fraction of charged residues. NCPR: net 

charge per residue. hydro: Kyte-Doolittle hydrophobicity. Value at each position on the x axis 

represents the average of the indicated residue and its four nearest neighbors. (C) CD 

spectroscopy signatures of PUMA variants without flanking FPs. See also Fig. A2.9. (D) Average 

𝐸𝑓
𝑎𝑝𝑝 of PUMA constructs. Error bars represent the SD (N=12). In all panels the horizontal dashed 

line represents the expected value for a GS-repeat construct of the same length (34 residues). (E) 

SEC elution volume for PUMA constructs. Error is assumed to be one frame in each direction. (F) 

SAXS-derived 𝑅𝑔 of PUMA constructs. Error bars represent error from fitting lines to Guinier plots. 

(G) 𝐸𝑓
𝑐𝑒𝑙𝑙  of PUMA constructs. Features are as in Fig. 3.2G. (H) Solution space scans of PUMA 

constructs, with results expressed as 𝛥𝐸𝑓
𝑎𝑝𝑝

. White circles: 𝛥𝐸𝑓
𝑎𝑝𝑝

 of IDR. Black dashed lines: 

interpolated 𝛥𝐸𝑓
𝑎𝑝𝑝

 of a GS-repeat sequence of the same length as the IDR (Fig. A2.12). Green 

shaded regions are differences between 𝛥𝐸𝑓
𝑎𝑝𝑝

 of IDR and GS repeats. Red/white/blue background 

shows more/same/less sensitivity (more expansion or compaction) than a GS-repeat sequence of 

the same length, respectively. Shaded regions on left side for solutes NaCl and KCl: approximate 

range of concentrations within which electrostatic screening is the dominant effect; the leftmost two 

points of each series, since they are within that range, are not used in the assignment of 

background color. (I) Osmotic challenge of HEK293T cells expressing PUMA constructs. Violin 

plots represent the data for PUMA constructs and squares represent 𝛥𝐸𝑓
𝑐𝑒𝑙𝑙  of a GS-repeat 

equivalent. Features are as in Fig. 3.2G,H.  

 

3.3.5 Structural biases in naturally occurring IDRs persist inside the cell 

 

Having seen that structural biases in vitro persist inside the cell for PUMA 

and its scrambles, we wanted to see whether this is a general property of other 

IDR sequences. We inserted a range of well-studied IDRs of different lengths into 

our construct and characterized them in vitro and in live cells. We tested the N-

terminal disordered region of p53 (residues 1-61, p53)18 which contains the N-

terminal activation domain (NTAD)18, the low-complexity domain of FUS (residues 

1-163, FUS)123, the N-terminal region of the adenovirus hub protein E1A (residues 

1-40, E1A)76, and the C-terminal region of the yeast transcription factor Ash1 

(residues 418-500, Ash1)12 (Fig. A2.13, Table A2.1). Importantly, the ensemble 

structure of each of these IDRs has previously been characterized in vitro and has 

been shown or proposed to determine IDR function (see Discussion).  

 

Using our in vitro characterization pipeline, we found clear divergence in 

nearly all constructs from GS repeats. Our FRET experiments show that three 

sequences (PUMA, E1A, FUS) are more compact than a GS-repeat sequence of 

the same dimensions (indicated by 𝐸𝑓
𝑎𝑝𝑝

 averages whose standard deviation is 

above the GS line, Fig. 3.4A). The two that fell close to the GS line, p53 and Ash1, 
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have been reported to be relatively expanded in other studies12,18. A similar trend 

was observed for SAXS-derived 𝑅𝑔  values (Fig. 3.4C). SEC data (Fig. 3.4B) 

shows mostly similar trends, though PUMA, E1A, and p53 appear to be more 

expanded than GS repeats. As before, the deviations from the GS-equivalent line, 

together with the changes in trends between characterization methods, highlight 

the differences in structural biases between different IDR sequences. 

 

Our next goal was to determine the extent to which the structural biases 

observed in vitro for these constructs persist in the cell. As before, we expressed 

the same constructs in HEK293T cells, and used live-cell imaging to quantify the 

in-cell FRET efficiency, 𝐸𝑓
𝑐𝑒𝑙𝑙 (Fig. 3.4D). Good agreement was observed between 

𝐸𝑓
𝑎𝑝𝑝

 measured in vitro and the in-cell 𝐸𝑓
𝑐𝑒𝑙𝑙 values (Fig. 3.4A,D). As before, this 

agreement indicates that structural biases that determine IDR ensemble shape in 

vitro largely exist inside the cell.  

 

We next wanted to see how the localization of IDRs in the cell might affect 

their ensembles. We reasoned that different organelles have different physical-

chemical compositions, and this may affect the ensemble preferences encoded in 

IDR sequences124. To test this idea, we measured 𝐸𝑓
𝑐𝑒𝑙𝑙  in the cytoplasm and 

nucleus of U-2 OS cells for all our sequences. GS repeats showed the same 𝐸𝑓
𝑐𝑒𝑙𝑙 

in both cytoplasm and nucleus within error, indicating their ensemble is unaffected 

by changes in localization (Fig. A2.14). All 𝐸𝑓
𝑐𝑒𝑙𝑙 measurements were normalized 

to a GS repeat of the same length (Fig. 3.4E). Most sequences showed no 

significant difference between the cytoplasm and the nucleus. This is in line with 

our results thus far: if moving these sequences from aqueous buffers to the cellular 

environment induced little change in ensemble structure, we expect the same to 

happen moving from the cytoplasm to the nucleus. An exception was observed for 

the FUS low-complexity domain which was significantly more expanded in the 

nucleus (p ≤ 0.0001, Fig. 3.4E). This might be due to its ability to interact with 

nuclear-abundant RNA125,126. 

 

3.3.6 Naturally occurring IDRs differ in their sensitivity to solution changes 

 

Next, we performed solution space scanning on PUMA, FUS, p53, Ash1 

and E1A (Fig. 3.4F, A2.15). In particular, we wondered whether Ash1 and p53, 

despite their similarity in dimensions to GS repeats of the same length, would 

display different behavior in different solutions. As expected, different sequences 

showed markedly different sensitivities to the solutes used. PUMA and Ash1 
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showed an outlying degree of sensitivity, with larger changes compared to GS 

repeats of the same length in both compacting and expanding solutes, while E1A 

appeared to be less sensitive to the same solutes (Fig. 3.4F). The response to 

salts also showed deviations, with less response to high salt concentrations for 

E1A (indicated by the constant value in 𝛥𝐸𝑓
𝑎𝑝𝑝

 at concentrations above 0.25 M salt). 

Interestingly, p53, whose dimensions were closest to those of its GS equivalent in 

dilute buffer (Fig. 3.4A), also displayed sensitivity most similar to its GS equivalent 

(Fig. 3.4F). In line with our previous results19, we found that PEG 2000 produces 

greater increases in 𝐸𝑓
𝑎𝑝𝑝

 than the smaller PEG 400 at equal monomer-molar 

concentrations, and that the monomer units of the crowders (sucrose, ethylene 

glycol) produce relatively small changes in the dimensions of the IDRs. This wide 

range of responses to changes in solution conditions further supports the existence 

of sequence-dependent structural biases found in our FRET, SAXS, and SEC 

results. Moreover, the different IDR ensembles show differing and specific 

sensitivities to changes in their chemical environment.  

 

Finally, we wanted to measure the response of these IDRs to changes in 

intracellular composition. We subjected cells to hypoosmotic or hyperosmotic 

challenges and followed the changes in average FRET signal for each cell, 𝛥𝐸𝑓
𝑐𝑒𝑙𝑙 

(Fig. 3.4G). We compare these to the changes expected for GS repeats of the 

same length, shown as the squares adjacent to each violin plot. We observe that 

some sequences behaved as expected from GS repeats—namely PUMA, Ash1, 

FUS, and p53 all fall within the range expected of a GS-repeat equivalent. FUS 

displayed a similar behavior to GS repeats upon hyperosmotic challenge, but 

showed an outlying ability compared to the other naturally occurring IDRs to 

expand in hypoosmotic conditions. However, most striking was E1A's response to 

cellular perturbations. Expansion of IDRs under increased crowding has been 

previously reported in vitro68, and may be caused inside the cell by protein-protein 

interactions such as chaperone binding127 or post-translational modifications71.  

 

Taken together, these results show not only that structural biases in IDR 

ensembles exist both in vitro and inside the cell, but also that IDR ensembles are 

able to sense and respond to changes in the composition of their environment. 

This ability is encoded in sequence, and occurs both in the test tube and in the cell. 

However, despite the agreement between IDR structural biases in a dilute solution 

in vitro and in isosmotic conditions in the cell, comparing in vitro and in-cell solution 

sensitivity is not straightforward.  
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12Figure 3.4. Comparison of global dimensions and solution sensitivity of GS repeats and naturally occurring IDRs. 

Figure 3.4. Comparison of global dimensions and solution sensitivity of GS repeats and 

naturally occurring IDRs. (A) Average 𝐸𝑓
𝑎𝑝𝑝

 of IDR constructs. Error bars represent the SD (N=12). 

Here and in Fig. 3.4B-D, the dashed line represents expected values for GS repeat sequences of 

corresponding lengths. (B) SEC elution volume of IDR constructs. Error is assumed to be one frame 

in each direction. (C) Rg of IDR constructs. Errors are from fitting lines to Guinier plots. (D) 𝐸𝑓
𝑐𝑒𝑙𝑙 of 

IDR constructs. Features are as in Fig. 3.2G. (E) 𝐸𝑓
𝑐𝑒𝑙𝑙 of four IDR constructs measured in the 

cytoplasm (C) and nucleus (N) of U-2 OS cells and normalized to the 𝐸𝑓
𝑐𝑒𝑙𝑙 of an equivalent GS 

linker. Each box represents the 25th and 75th percentiles with the median shown as the black line 

and the whiskers showing the minimum and maximum for each construct. Each circle corresponds 

to a single cell. Asterisks denote the significance between distributions determined by a Mann-

Whitney test (**** indicates p < 0.0001). (F) Solution space scans of IDR constructs. Features are 

as in Fig. 3.3H, except for FUS for which the GS repeat trends could not be accurately extrapolated. 

(G) Osmotic challenge of IDR constructs. Features are as in Fig. 3.2G,H.  
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3.3.7 Interactions between IDRs and their tethered folded domains 

 

One alternative possibility that could explain the aberrant behavior of E1A 

is that the IDR interacts with one or both of the FPs in our FRET construct, and 

that cellular perturbations disrupt this interaction. To test whether IDR ensemble 

structural biases are influenced by interactions with the tethered FPs, we repeated 

our FRET experiments using constructs with the locations of the FPs flipped from 

their original locations (Fig. 3.5A). We reasoned that since the surface of each FP 

(Fig. A2.16A), their termini (Fig. A2.16B), and the termini of the IDR differ, 

changes in FRET signal in the flipped vs. the original construct would indicate the 

involvement of interactions between the IDR and the FPs in determining 𝐸𝑓
𝑎𝑝𝑝

.  

 

As with previous experiments, we first started with a GS-repeat sequence. 

In this case, the IDR termini are identical, and any difference would be a result of 

changes in the FPs themselves rather than a difference in IDR:FP interactions. 

Our in vitro measurements showed a higher 𝐸𝑓
𝑎𝑝𝑝

 for the flipped GS16 construct, 

indicating a more compact conformation (Fig. 3.5B). Further NaCl titration 

experiments and analysis of raw fluorescence spectra showed that (1) electrostatic 

interactions do not account for the difference in 𝐸𝑓
𝑎𝑝𝑝

 (Fig. A2.17A-C), and that (2) 

the difference in 𝐸𝑓
𝑎𝑝𝑝

 between the original and flipped construct is likely a result of 

changes in the structure of the mNeonGreen tail tethered to the IDR (Fig. A2.17D). 

As described above, our analysis indicates that 𝐸𝑓
𝑎𝑝𝑝

 of GS-repeat homopolymers 

is not driven by IDR:FP interactions. When measured in live cells, flipped GS16 

again displayed similar results to those seen in vitro, with a higher 𝐸𝑓
𝑐𝑒𝑙𝑙 for the 

flipped GS16 construct (Fig. 3.5C). 

 

We next compared the basal in vitro 𝐸𝑓
𝑎𝑝𝑝

 and live-cell 𝐸𝑓
𝑐𝑒𝑙𝑙 distributions of 

the original and flipped versions of three previously measured constructs (Fig. 

3.4G): E1A (whose original version had shown a significantly different response 

than GS repeats to osmotic challenge), Ash1 (whose original version had only 

shown a difference in hyperosmotic conditions compared to GS repeats), and p53 

(whose original version had shown a similar response to GS repeats to osmotic 

challenge). Unlike GS16, these naturally occurring IDRs contain different 

sequences at their N and C termini, as well as charged residues that could 

contribute to electrostatic interactions between the FPs and IDR. Both in vitro and 

in cells, E1A displayed a dramatic reduction in FRET efficiency, while flipped Ash1 

and p53 showed little change compared to the original constructs (Fig. 3.5D). This 

points to interactions between one or both of the FPs and the sequence of E1A. 
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As with GS16, further tests of emission peak wavelengths implicated mNeonGreen 

as the FP with significant changes to spectra upon tethering. It also showed a 

different trend in peak wavelength shift for E1A compared to Ash1 and p53 (Fig. 

A2.17D). 

 

 
13Figure 3.5. Determination of FRET pair influence on IDR ensemble dimensions. 

Figure 3.5. Determination of FRET pair influence on IDR ensemble dimensions. (A) Original 

FRET construct (left) consisting of an IDR between two fluorescent proteins that serve as a FRET 

donor and a FRET acceptor and the flipped construct (right) with the FRET pairs on the opposite 

ends. (B) 𝐸𝑓
𝑎𝑝𝑝

 of selected constructs measured in vitro for the original (darker color) and flipped 

(lighter color) constructs. (C) 𝐸𝑓
𝑐𝑒𝑙𝑙 of selected constructs measured in HEK293T cells for original 

(darker color) and flipped (lighter color) constructs. (D) Response to osmotic challenge of each 

construct expressed as change in 𝐸𝑓
𝑐𝑒𝑙𝑙 before and after the challenge (𝛥𝐸𝑓

𝑐𝑒𝑙𝑙).  
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We hypothesized that if there were significant changes to the ensemble in 

the flipped construct, it would also alter the response to changes in cell volume. 

Testing this, we indeed found that p53, but not Ash1, displayed similar responses 

to changes in cell volume (Fig. 3.5E). This is despite p53 and Ash1 having similar 

dimensions between the original and flipped constructs. E1A, on the other hand, 

showed a completely opposite response between the flipped and original 

constructs (Fig. 3.5E). These results indicate that IDR:folded-domain interactions 

can alter the ensemble’s response to changes in the cellular environment. But 

regardless of these differences between the constructs, the ensemble dimensions 

as measured by FRET efficiency remain similar in vitro and in the cell. 

 

3.3.8 Limitations and drawbacks 

 

One drawback of this work is the use of fluorescent proteins (FPs) in our 

constructs. There are many advantages to genetically encoded FRET constructs. 

They can be produced easily in E. coli with no need for further labeling, or 

transiently or stably expressed in any genetically tractable cell line. Additionally, 

the FPs flanking the sequence increase solubility and signal from scattering 

methods, and hinder aggregation and phase separation. However, as indicated for 

E1A, the presence of bulky folded domains tethered to the IDR of interest may 

affect our results through intramolecular interactions of the FPs with each other or 

with the IDR sequence.  

 

Nonetheless, concerns regarding artifacts from our use of FPs are mitigated 

by (1) the use of the same FPs for all constructs and the comparison against GS-

repeat constructs, which facilitate meaningful comparison between all sequences; 

and (2) the agreement between our experiments and all-atom simulations of the 

GS-repeats (Figs. 3.1B, 3.1F, and A2.10).  

 

As a final point, we acknowledge that interactions between the studied IDRs 

and the FPs that make up our FRET construct exist and likely affect the dimensions 

of our measured ensembles. To address this, we point to the fact that nearly all 

studied IDRs (including those in this work) are excised from full-length proteins in 

which they would be tethered to folded domains. Our results point to the 

importance of the intramolecular context of an IDR: interactions with a tethered 

folded domain can alter IDR ensembles, as well as their response to changes in 

the cell. The importance of IDR:folded domain interactions has already been 

pointed out in several recent studies128–131. Despite all this, our results show that 
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even where FP:IDR interactions exist, the structural biases shaping disordered 

protein ensembles in vitro are recapitulated in the cell. 

 

3.4 Discussion 

 

The study of disordered proteins requires shifting from the classical 

sequence-structure-function paradigm to one where the structural biases of the 

ensemble beget function2. While an extensive body of work has established the 

existence of structural biases in IDR ensembles in vitro, few studies have 

attempted to do so in the cell across many constructs in a self-consistent manner. 

Our results systematically show that structural biases are prevalent in IDR 

sequences, are encoded in amino acid sequence rather than composition, and 

exist even in the absence of local secondary structural biases (e.g., local helical 

preference, Fig. 3.1A).  

 

The cell is often treated as a chemically monolithic environment, yet spatial 

and temporal regulation of volume, water content, pH, ions, and metabolites 

accompany key processes and pathology in cell biology132–134. Our in-cell study 

establishes that IDR structural biases observed in vitro also occur in live cells for 

almost all cases reported here. Furthermore, both in cells and in vitro, IDR 

structural biases can reshape in response to changes in the surrounding 

environment. This provides a mechanistic explanation for numerous cases where 

IDRs sense and actuate a response to such changes28,33,135, since a change in 

structural bias in response to physical-chemical changes can alter IDR function. 

Importantly, sensing and actuating through this mechanism occurs at the speed of 

protein conformational changes (milliseconds or less119) and requires no additional 

energy (e.g., ATP).  

 

The importance of IDR ensembles for molecular function has been shown 

or proposed for all of the naturally occurring IDRs characterized in this study. The 

structural preferences of the PUMA BH3 ensemble have been shown to affect its 

binding kinetics to MCL1 - a key event in the function of PUMA as a modulator of 

p53, and it has further been shown that this structural change can be induced by 

changing the composition of the solution39. Changing the structural preferences of 

the p53 N-terminal ensemble affects its binding affinity to MDM2, a potent inhibitor 

of p53’s protective function, altering downstream p53 function18. FUS low-

complexity region can undergo phase separation in vitro and in vivo. Recent work 

has shown that for monomeric low-complexity sequences, chain dimensions 

dominated by intramolecular interactions can quantitatively inform on 
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intermolecular interactions in the context of phase transitions136. The Ash1 

ensemble has been shown to remain largely unperturbed by phosphorylation, 

indicating the need for robust activity of this key transcription factor in yeast12. 

Finally, a region proximal to the E1A sequence used here has been shown to be 

highly conserved in terms of the average end-to-end distance of its ensemble, and 

this length critical to its function, implicating strong selection for ensemble 

properties across the whole protein32.  

 

Given that IDR ensemble sensitivity can be encoded by amino acid 

sequence, we suggest that this sensitivity could also be subject to evolutionary 

selection. We propose that certain sequences have evolved to act as sensors and 

actuators of changes in the cellular environment. In the same vein, other 

disordered sequences have the ability to resist structural changes (as shown for 

the case of PUMA S2). Indeed, changes in ensemble structure provide a rapid, 

specific, and energetically efficient way for IDRs to sense and respond to changes 

in the cellular environment. This sensing capability of IDRs has been demonstrated 

not only for changes in solution conditions and osmotic pressure as studied here, 

but also for changes in other conditions such as membrane curvature28, water 

availability137, and temperature138. As our understanding of IDR sensing expands, 

we expect to uncover novel functions for this important class of proteins. In addition, 

learning to predict and control this sensitivity will allow for the design of IDR-based 

sensors targeting specific physicochemical intracellular conditions, as has already 

been demonstrated for the case of osmotic pressure sensing33.  

 

An additional implication of the evolved ability to sense and respond to 

changes in the environment is that a misregulated intracellular environment may 

disparately affect IDR function. Metabolic rewiring, a hallmark of cancer, viral 

infection, and other pathologies, can dramatically alter the physicochemical 

composition of the cell139,140. Even if this change would alter the activity of only a 

small subset of IDRs, their role as central signaling hubs could cause widespread 

cellular malfunction. In this way, IDR sequences can be drivers of pathology in a 

deleterious cellular environment, even in the absence of mutations. We propose 

that this phenomenon is a previously overlooked cause of IDR-driven 

proteopathies. 
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3.5 Methods and supplementary figures 

 

Experimental methods and supplementary figures for in this study are in 

Appendix 2. Full in vitro, live cell and simulation data sets can be found online at 

https://github.com/sukeniklab/IDP_structural_bias. 

 

3.6 Author contributions 

 

S.S. conceptualized and led the project. D.M. designed and performed all 

in vitro experiments and analysis with the help of R.M. K.G. designed and 

performed all live cell experiments and analysis with the help of N.M.S. and G.K. 

E.F., assisted by E.C.Z., performed in vitro controls. A.R.P. synthesized, purified 

and characterized unlabeled PUMA peptides with assistance from A.D.M. E.W.M. 

assisted D.M. with SAXS analysis. A.S.H. and F.Y. designed, ran and analyzed 

simulations. S.S., D.M., K.G. and A.S.H. wrote and revised the manuscript. 
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4. Leveraging biophysical understanding to aid in the 

design of a biosensor based on an intrinsically 

disordered region  
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4.1 Abstract 

 

Cell homeostasis is perturbed when dramatic shifts in the external 

environment cause the physical-chemical properties inside the cell to change. 

Experimental approaches for dynamically monitoring these intracellular effects are 

currently lacking. Here, we leverage the environmental sensitivity and structural 

plasticity of intrinsically disordered protein regions (IDRs) to develop a FRET 

biosensor capable of monitoring rapid intracellular changes caused by osmotic 

stress. The biosensor, named SED1, utilizes the Arabidopsis intrinsically 

disordered AtLEA4-5 protein expressed in plants under water deficit. 

Computational modeling and in vitro studies reveal that SED1 is highly sensitive 

to macromolecular crowding. SED1 exhibits large and near-linear osmolarity-

dependent changes in FRET inside living bacteria, yeast, plant, and human cells, 

demonstrating the broad utility of this tool for studying water-associated stress. 

This study demonstrates the remarkable ability of IDRs to sense the cellular 

environment across the tree of life and provides a blueprint for their use as 

environmentally-responsive molecular tools. 

 

4.2 Introduction 

 

Intracellular osmotic fluctuations are one of the most common 

physicochemical perturbations cells experience throughout their life141. In the 

absence of external stressors, the metabolic activity of the cell can induce large 

changes in the concentration of different metabolites that alter intracellular 

osmolarity142. Additional osmotic variations can be caused by the activity of ion 

channels that change the total concentration of free inorganic ions (K+, Na+, Mg2+, 

etc.)143. Severe intracellular osmotic perturbations are readily caused by 

environmentally-induced stress conditions, where the osmolarity outside of the 

cells changes dramatically. For instance, a decrease in water content in the 

exterior of a cell increases extracellular osmolarity in a way that causes the passive 

efflux of water out of the cell. This results in an immediate collapse of cell volume 

and concomitant increase in the concentration of solutes, macromolecular 

crowding, and the viscosity of the cell interior, impacting a plethora of molecular 

and cellular functions55,144–146. 

 

Despite the importance of osmotic regulation on cell function, our 

mechanistic understanding of how cells sense such conditions, particularly in 

multicellular organisms, is limited147,148. One of the main barriers to better 

understanding the intracellular effects of osmotic stress is the lack of methods to 
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reliably monitor physical-chemical changes that occur in single cells, in real time, 

and in a non-destructive manner147,149,150.  

 

Genetically encoded fluorescent biosensors are optical tools that enable the 

dynamic visualization and quantification of biochemical events that occur in living 

cells at various scales, from single cells to whole organisms151. Fluorescent 

biosensors are chimeric proteins composed of at least one fluorescent protein 

fused to a sensing domain. The selection of the sensing domain is based on its 

ability to specifically change its conformation in the presence or absence of an 

analyte152. The conformational change of the sensing domain then causes a 

change in the fluorescence readout that can be quantified. As of today, there are 

dozens of different fluorescent biosensors used to track small molecules, 

phosphorylation events, neurotransmitters, posttranslational modifications, and 

hormones; however, just a small fraction of biosensors are designed to report 

changes in the physical-chemical properties of the environment153–157. The main 

challenge for developing environmentally-responsive biosensors is in sourcing 

sensory domains capable of specifically and reversibly altering their structure in 

response to changes in a specific physical-chemical property.  

 

Intrinsically disordered protein regions (IDRs) are protein domains that lack 

a stable tertiary structure and instead behave as ensembles of dynamic and rapidly 

changing conformations64. Because IDRs have a more extended surface area than 

globular proteins, they are highly sensitive to the physical-chemical properties of 

the solvent. Conditions such as pH, temperature, redox state, and high osmolarity 

induce conformational changes in some IDRs124. Recent work shows that 

environmental sensitivity is a shared property of many IDRs19,20. Furthermore, it 

has been proposed that the environmental sensitivity of IDRs could be used to 

regulate their activity, potentially allowing them to function as sensors of the 

environment135,150,158. Based on the aforementioned properties, we propose that 

IDRs are promising candidates for use in the development of environmentally-

responsive biosensors. 

 

Here, we report the design, development and implementation of a Förster 

Resonance Energy Transfer (FRET) biosensor that tracks the effects of osmotic 

stress on living cells from a wide variety of organisms. For the sensory domain we 

tested a group of hyperosmotic-induced IDRs from plants. Specifically, we used 

group 4 LATE EMBRYOGENESIS ABUNDANT (LEA) proteins from the model 

plant Arabidopsis thaliana159, which we previously reported are intrinsically 

disordered proteins that exhibit conformational rearrangements in vitro upon 
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changes in the osmolarity of the solution137. Initial screening of prototype 

biosensors in budding yeast revealed that these proteins, particularly AtLEA4-5, 

undergo a rapid and reversible conformational change in response to 

hyperosmotic treatments with different osmolytes in cells. All-atom simulations and 

in vitro experiments revealed that the physical dimensions of the AtLEA4-5 

conformational ensemble can change dramatically when the composition of the 

surrounding solution is altered, supporting our findings in living cells. The resulting 

FRET biosensor, named SENSOR EXPRESSING DISORDERED PROTEIN 1 

(SED1), can dynamically monitor the response of budding yeast to osmotic stress 

at the cellular level. SED1 can also be used to track the effects of osmotic stress 

on live bacteria (Escherichia coli) cells, plant (Nicotiana benthamiana) cells, and 

U-2 OS human cells. The use of fluorescent biosensors such as SED1 will aid in 

understanding how cells sense, respond, and acclimate to dynamic environmental 

fluctuations caused by water-associated stress.  

 

4.3 Results 

 

4.3.1 Design of a biosensor for studying the effects of osmotic stress on 

living cells 

 

To track the effects of osmotic stress on living cells, we sought to combine 

the power of osmo-sensitive IDRs and ratiometric FRET readouts to build a 

genetically encoded fluorescent biosensor. For the sensory domain, we tested two 

members of the group 4 LEA proteins from the model plant Arabidopsis thaliana159. 

Group 4 LEA proteins are intrinsically disordered proteins that exhibit a reversible 

disorder-to-folded transition in response to increased osmolarity in vitro137. We 

hypothesized that such osmolarity-dependent conformational changes would also 

occur inside living cells, making them excellent candidates for environmentally-

responsive biosensor development.  

 

To test the ability of group 4 LEA protein structure to change in response to 

osmotic stress in vivo, we fused either AtLEA4-2 or AtLEA4-5 ORFs between the 

coding sequences of a FRET-compatible pair of fluorophores (mCerulean3 as the 

donor and mCitrine as the acceptor) (Fig. 4.1A). These constructs were expressed 

in live budding yeast (Saccharomyces cerevisiae) cells and treated with NaCl to 

induce hyperosmotic shock. Both constructs exhibited a NaCl-concentration-

dependent increase in the acceptor-to-donor emission ratio33. We observed that 

the treatment displayed typical FRET behavior with an increase in fluorescence 

intensity of the acceptor (donor excitation-acceptor emission; DxAm) coupled to a 
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decrease in fluorescence intensity of the donor (donor excitation-donor emission; 

DxDm), leading to a higher acceptor to donor emission ratio (DxAm/DxDm)33. The 

FRET ratio change was significantly smaller when we tested a globular protein 

(arabinose-binding protein, ABP) as a reference160. Hyperosmotic treatment with 

increasing concentrations of other ionic and non-ionic osmolytes showed that the 

change in FRET of both constructs is osmolarity-dependent and not osmolyte-

specific33. Since AtLEA4-5 exhibited the largest FRET change in response to 

osmotic shock, we continued our characterization with this construct. The 

fluorescence intensity of single mCerulean3 or mCitrine fused to AtLEA4-5 was 

not significantly affected by hyperosmotic shock induced with different solutes, 

demonstrating the stability of the fluorophores in such conditions33. Finally, testing 

ten different FRET pairs revealed that the mCerulean3-mCitrine pair had the 

highest dynamic range among monomeric fluorescent proteins33. 

 

 
14Figure 4.1. Contribution of our system to the design of a biosensor. 

 
Figure 4.1. Contribution of our system to the design of a biosensor. (A) Schematic 

representation of the biosensor design under low and high macromolecular crowding/osmolarity—

prevalent intracellular conditions upon hypoosmotic or hyperosmotic stress, respectively. The 

conformations are selected from the ensemble of all-atom simulations of AtLEA4-5 in the 

corresponding conditions. Cyan: mCerulean3. Yellow: Citrine. Gray: AtLEA4-5. (B) Computational 

solution space scan of the normalized radius of gyration (Rg) of AtLEA4-5 (blue), five different 

scrambled sequences (red), and 70 different naturally occurring IDRs (gray) under different solution 

repulsion levels (low to high solution repulsion of the protein backbone). Mean ± SD from n = 5 

independent simulations. (C) Experimental solution space scan of AtLEA4-5 and CS. Open circles 

show the normalized FRET ratio (DxAm/DxDm) for the indicated concentration of each solute, with 

two points (that often overlap) for each concentration taken from separate repeats, highlighting the 
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reproducibility of the data. Background color intensity represents sensitivity to the addition of solute. 

Stronger colors indicate stronger sensitivity. Red: compaction; blue: expansion; white: no change. 

Solution concentrations are given in weight percent (0–25 or 0–12 wt%) or molar (0–1.5 M). (D) 

Ratiometric image of live SED1-expressing U-2 OS cells at 300 mOsm (isosmotic) or 600 mOsm 

(hyperosmotic) treated with sorbitol. Scale bar = 50 μm. Calibration bar represents the normalized 

FRET ratio (DxAm/DxDm). (E) Normalized FRET ratio of SED1-expressing U-2 OS cells exposed 

to different osmotic treatments with sorbitol and NaCl. One-way ANOVA. *p < 0.05, **p < 0.01, ***p 

< 0.001. 

 

4.3.2 AtLEA4-5 is highly sensitive to the chemical composition of the 

solution 

 

As water leaves the cell during hyperosmotic shock, a number of physical-

chemical properties of the intracellular environment change; in particular, the 

concentration of organic and inorganic solutes rises, as does the extent of 

macromolecular crowding. Any of these properties could underlie the biophysical 

mechanism driving the conformational changes in AtLEA4-5.  Macromolecular 

crowding is a general condition of the cell interior that gets exacerbated under 

hyperosmotic conditions due to water loss161–163. In order to further investigate the 

mechanism of AtLEA4-5 responsiveness observed in cells, we designed an 

approach to test AtLEA4-5 sensitivity to different solutions in silico and in vitro.  

 

First, we performed all-atom Monte Carlo simulations to sample the 

conformational landscape of AtLEA4-5 under a wide range of solution conditions. 

This class of simulation, known as solution space (SolSpace) scanning, has been 

used to investigate the solution-protein interactions of dozens of IDRs19,20. We 

used this method to exert a compacting force on a range of IDRs and compared 

the tendency of the different sequences to compact. We observed that AtLEA4-5 

shows an enhanced sensitivity to such compaction compared to the scrambled 

versions of the sequence, in agreement with our in vivo observations33. 

Furthermore, a comparison with 70 different naturally occurring IDRs shows that 

AtLEA4-5 is an outlier in terms of its sensitivity (Figure 4.1B). 

 

We further investigated the solution sensitivity of AtLEA4-5 in vitro. We used 

the FRET efficiency of purified full-length AtLEA4-5 fused to mCerulean3 and 

mCitrine as a proxy for the end-to-end distance of the construct under different 

solution conditions. We induced macromolecular crowding with solutions of 

different molecular weight polyethylene glycol (PEG) isoforms at various 

concentrations, and compared these results to a previously reported 

macromolecular crowding biosensor (CS) as a reference157. The CS sensory 

domain is a synthetic, helical peptide with a hinge-like topology thought to compact 
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in response to higher macromolecular crowding. Our experiments showed that 

PEG induced the compaction of AtLEA4-5 in a concentration and size-dependent 

manner (Fig. 4.1C). The PEG-induced compaction was more prominent in 

AtLEA4-5 than in CS, confirming the relative sensitivity of AtLEA4-5 to 

macromolecular crowding. Together, these data show that despite its intrinsic 

disorder, the conformational ensemble of AtLEA4-5 is highly responsive to 

changes in the chemical composition of the solution, particularly macromolecular 

crowding, in silico and in vitro, and that these properties are based on both 

topology and amino acid sequence. 

 

4.3.3 SED1 tracks changes in osmolarity in a wide set of organisms 

 

Given the ability of SED1 to report the effects of osmotic stress on budding 

yeast [not excerpted here; please see the original paper], we sought to apply it to 

other biological systems. We first expressed SED1 in the bacteria Escherichia coli. 

Similar to what we found in yeast, we observed a hyperosmotic stress-dependent 

increase in the FRET readout33. Next, we tested SED1 in two evolutionarily distant 

multicellular organisms: plants and humans.  

 

Plants heavily rely upon water to provide structural support and to facilitate 

gas exchange with the environment150. To test the utility of SED1 in this context, 

we transiently expressed a nuclear-localized SED1 transgene in tobacco leaves. 

Small discs of leaf tissue were placed onto 96-well plates, in wells containing 

hyperosmotic (sorbitol or NaCl) or hypoosmotic (water) solutions. We found that 

when SED1-expressing leaf discs were incubated with sorbitol or NaCl, the FRET 

readout increased over time, with an increase in fluorescence intensity of the 

acceptor and a concomitant decrease in fluorescence of the donor33. 

 

We further tested SED1 in human cells. To do so, we stably introduced 

SED1 into human epithelial (U-2 OS) cells and measured the SED1 FRET signal 

in response to sorbitol and NaCl treatments at different osmolarities using live-cell 

confocal microscopy. We observed that both treatments induced an increased 

FRET ratio immediately after the addition of the solution (Fig. 4.1D,E). The 

increased fluorescence of the acceptor and decreased fluorescence of the donor 

after the treatments, along with the acceptor photobleaching control, confirmed the 

expected FRET behavior. This data demonstrates that SED1 is responsive in live 

human cells. 
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In conclusion, we showed that SED1 is a versatile, genetically-encoded 

optical tool that can be used to dynamically track the response to osmotic stress 

of living cells from a plethora of organisms in an inherently quantitative manner. 

This opens new avenues to investigate the poorly-understood impact of 

environmental perturbations on the regulation of cellular function. 

 

4.4 Discussion 

 

The use of SED1 to monitor osmotic variations in living cells has the 

potential to reveal new fundamental aspects of cell biology. SED1 might be used 

to 1) dynamically track the macromolecular crowding of individual cells during 

perception, response, and acclimation to osmotic stress; 2) screen for mutants 

disrupted in the sensing and response mechanisms to osmotic shock; 3) test 

whether other kinds of stressors induce intracellular osmotic variation; 4) generate 

osmolarity and/or macromolecular crowding maps of different cell types of 

multicellular organisms. This has the potential to revolutionize our understanding 

of the biological processes that enable desiccation survival, extreme salt tolerance, 

and rehydration. The ability of SED1 to work in evolutionarily distant organisms 

means that these processes can be studied across the tree of life to broaden our 

understanding of the ways in which water regulates life on earth. 

 

4.5 Relation to other chapters in this dissertation 

 

Chapter 2 of this dissertation describes how I, my colleague Feng Yu, and 

other colleagues developed a combined in vitro and in silico “solution-space 

scanning” system for investigating the physicochemical sensing capabilities of 

IDRs. Chapter 3 describes how I, my colleague Karina Guadalupe, and other 

colleagues built on this system to carry out parallel FRET experiments in vitro and 

in live cells. This chapter describes a practical application of this system, focusing 

on the contribution that Feng, Karina and I were able to make to the design and 

testing of a novel biosensor based on the sensing capabilities of a plant IDR. 

Please see the original paper for further discussion of the design, testing and 

implications of this biosensor33. 

 

4.6 Methods 

 

The methods for the experiments excerpted here are described in Appendix 

C. For other methods used in this study, please see the original paper33. 
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4.7 Author contributions 

 

To show a practical application of the systems developed in Chapters 2 and 

3, this excerpt concentrates on data obtained in vitro by David Moses, in silico by 

Feng Yu, and in U-2 OS human cells by Karina Guadalupe. Fig. 4.1B shows data 

obtained by F.Y., Fig 4.1C shows data obtained by D.M. and Fig. 4.1D and E show 

data obtained by K.G. The excerpted paragraphs were written and edited by Cesar 

L. Cuevas-Velazquez, Shahar Sukenik and José R. Dinneny with assistance from 

the other co-authors. The method descriptions in Appendix C were written by D.M., 

K.G. and F.Y. and edited by C.L.C.V. and S.S. 



55 
 

5. Conclusion  



56 
 

 

5.1 Summary of this work 

 

During the past five years, my collaborators and I have worked to establish 

a new paradigm of IDRs as physicochemical sensors in the cell. To qualify as a 

sensor of a given stimulus, an IDR must respond differently than other IDRs to that 

stimulus, and also must respond differently to that stimulus than it does to other 

stimuli164. With that in mind, in the study described in Chapter 2, building on the 

concept of “solution-space scanning” proposed earlier the same year by 

Holehouse and Sukenik20, my colleague Feng Yu and I, along with other 

colleagues used ensemble FRET experiments in vitro along with computer 

simulations to systematically and rigorously quantify the sensitivity of IDRs to a 

variety of changes in solution conditions19. We found enough variation among IDRs 

in responses to varying concentrations of salts, osmolytes, crowders, etc. (Fig. 

2.2), to validate our hypothesis and cause us to push forward in the development 

of this paradigm.  

 

The question of whether conformational biases of IDRs seen in vitro 

accurately represents the conformational biases of the same IDRs in the cellular 

environment has been an important gap in the disordered protein subfield. 

Believing that we could contribute to filling this gap in knowledge, Karina 

Guadalupe and I, along with other colleagues, embarked on the study described 

in Chapter 334. We built a solid foundation by characterizing each IDR via FRET, 

SAXS, and analytical SEC in vitro, and complemented this experimental 

foundation with strategic simulations of our benchmark GS-repeat IDRs that 

provided a bridge between the FRET and SAXS results (Fig. 3.2B,F). Seeing 

excellent agreement between FRET and SAXS results, and very good agreement 

between those results and the results of analytical SEC and simulations, we felt 

confident moving our constructs into cells and running FRET experiments as 

similar as possible to what we had done in vitro. As shown in Chapter 3, we saw 

excellent agreement between our in vitro and live-cell results in almost all cases 

(Figs. 3.2B,G, 3.3D,G, 3.4A,D). This agreement held true even for IDRs such as 

the PUMA scrambles where disagreement would not have been at all surprising 

since we had abolished the local helical structure of the wild type, leaving only 

interactions not identifiable as secondary structure to cause any differences in 

conformational biases.  

 

Chapter 4 described an immediate practical application of the parallel in 

vitro, in silico and live-cell IDR characterization and solution-space scanning 

systems my colleagues and I had developed, as our collaborator Cesar Cuevas-
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Velazquez combined his previous research on LEA proteins with our systems to 

design a biosensor sensitive to osmotic stress33 (Fig. 4.1). This biosensor fills an 

important gap in the field, enabling real-time monitoring of osmotic stress in live 

cells. Taken together, these studies show that IDRs sense their environment in 

vitro, that IDR conformational biases seen in vitro are likely to remain prevalent 

when the same IDR is moved into live cells, and that this knowledge could be 

harnessed to design a biosensor that can monitor a key process in real time in live 

cells. 

 

5.2 Implications and future direction 

 

The implications of IDRs serving as physicochemical sensors are far-

reaching. In the context of healthy cells, sensing by IDRs offers cells a fast and 

energy-efficient way to respond to changes in intracellular conditions. For example, 

the metabolic profile of cells routinely changes over the cell cycle165. If IDRs can 

sense these changes, how do they respond, and how do these responses affect 

the health of the cell? In the context of disease, the sensitivity of IDRs means that 

deleterious changes to the cellular environment could produce changes in IDR 

ensembles, and therefore function, that could potentially drive pathology even in 

the absence of mutations. For example, the prevailing idea in cancer research is 

that genetic mutations change the function of proteins, causing healthy cells to 

become cancerous166. But given the sensing capabilities of wild-type p53 and 

PUMA that we have seen in Chapters 2 and 3, could their cancer-preventative 

functions be compromised, without mutation, by changes in their surrounding 

conditions? Also, the metabolic profiles of cells in various types of tumors are 

extensively altered compared to the metabolic profiles of healthy cells167. How 

might IDR ensembles be perturbed by these changes, and how might these 

responses contribute to the progress of cancer?  

 

Just as exciting as these questions is the possibility of leveraging the 

versatile sensing capabilities of IDRs to design biological and medical tools. Could 

biosensors based on IDRs be designed that could sense differences between 

healthy and diseased cells? Could our understanding of IDR structural biases allow 

custom design of IDRs that would form biomolecular condensates capable of 

catalyzing desirable reactions or sequestering undesirable entities in the cell? 

Would it be possible to design IDR-based drug-delivery vehicles that could discern 

the correct destination at which to release the drug? Innovative labs have started 

down the road toward tackling such projects by developing algorithms for 

designing IDRs with specific structural or molecular properties168,169 and showing 
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how changes to IDR sequence can modulate the material properties of biological 

condensates170. 

 

To gain a better understanding of the roles of IDRs in health and disease 

and to move forward with further inventions, one immediate need is to build our 

understanding of the relationship between IDR ensemble and function. Many 

proposed ensemble-function relationships that need further investigation are listed 

in my review article excerpted in Chapter 1164. I anticipate that better understanding 

of the sensory capabilities of IDRs, as well as the relationship between IDR 

ensemble and function, will lead to major innovations in disease therapies and 

biomolecular tools. 
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Appendix 1 

 

A1.1 Experimental Methods 

 

A1.1.1 FRET construct design and cloning 

 

FRET backbone (called fIDR_pET-28a(+)-TEV, Fig. A1.9) was prepared by 

ligating mTurquoise2 and mNeonGreen into pET28a-TEV backbone using 5’ NdeI 

and 3’ XhoI restriction sites. Genes encoding for IDR regions were obtained from 

GenScript, and ligated between the two fluorescent proteins using 5’ NdeI and 3’ 

HindIII restriction sites. Cloned plasmids were amplified in XL1 Blue (Invitrogen) 

cell lines using manufacturer supplied protocol. Sequences of all IDR sequence 

inserts used in this study are shown in Table A1.1. 

 

A1.1.2 FRET construct expression and purification 

 

Plasmids encoding for FRET constructs were expressed in BL21 (DE3) 

cells in LB medium with 50 μg/mL kanamycin. Cultures were incubated at 37 °C 

while shaking at 225 rpm until OD600 of 0.6 was reached (approx. 3 h), then 

induced with 1 mM IPTG and incubated for 20 h at 16 °C while shaking at 225 rpm. 

Cells were harvested by centrifugation for 15 min at 3,000 rcf, the supernatant was 

discarded, and the cells were lysed in lysis buffer (50 mM NaH2PO4, pH 8, 0.5 M 

NaCl) using an Avestin Emulsiflex C3 homogenizer. Lysate was centrifuged for 1 

h at 20,000 rcf and the supernatant collected and flowed through a column packed 

with Ni-NTA beads (Qiagen). FRET construct was eluted with 50 mM NaH2PO4, 

pH 8, 0.5 M NaCl, 250 mM imidazole, and further purified using size-exclusion 

chromatography on a Superdex 200 PG column (GE Healthcare) in an AKTA go 

protein purification system (GE Healthcare). The purified FRET constructs were 

aliquoted into 200 μL aliquots, flash-frozen in liquid nitrogen, and stored at -80 °C 

in 20 mM sodium phosphate buffer, pH 7.4, with the addition of 100 mM NaCl. 

Protein concentration was measured after thawing and before use using UV-vis 

absorbance at 434 and 506 nm (the peak absorbance wavelengths for 

mTurquoise2 and mNeonGreen, respectively; the molar absorbance coefficients 

for mTurquoise2 and mNeonGreen are 30,000 cm-1M-1 and 116,000 cm-1M-1, 

respectively.171 Calculations of concentration based on 𝜆 = 434 nm produced 

slightly higher values than calculations based on 𝜆 = 506 nm, so the concentrations 

based on the measurement at 𝜆 = 506 nm were used), and purity was assessed 

by SDS-PAGE after thawing and before use. 
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A1.1.3 Solution preparation and specifics 

 

Solutes were purchased from Alfa Aesar (Dextran, Xylitol, L-Tryptophan, 

Sarcosine, PEG200, PEG400, PEG1500, PEG2000, PEG4000, PEG6000, 

PEG8000, PEG10000), VWR (D-Sorbitol), GE Healthcare (Ficoll), TCI (Meso-

Erythritol, D-(+)-Trehalose Dihydrate), Thermo Scientific (Guanidine 

Hydrochloride), Acros Organics (D-Mannitol, Betaine Monohydrate, L(+)-

Arabinose), Sigma-Aldrich (Myo-Inositol, Taurine), and Fisher BioReagents 

(Ethylene Glycol, D-Galactose, Glycerol, Glycine, L-Proline, Tricine, Potassium 

Chloride, Sodium Chloride, Urea), and used without further purification. Stock 

solutions were made by mixing the solute with 20 mM sodium phosphate buffer, 

pH 7.4, with the addition of 100 mM NaCl except for NaCl and KCl solutions, which 

were free of additional salt. The same buffer was used for all dilutions. 

 

A1.1.4 FRET experiments 

 

FRET experiments were conducted in black plastic 96-well plates (Nunc) 

using a CLARIOstar plate reader (BMG LABTECH). Buffer, stock solution, and 

purified protein solution were mixed in each well to reach a volume of 150 μL 

containing the desired concentrations of the solute and the FRET construct, with 

a final concentration of 1 μM protein (or of each FP in the case of the “untethered” 

control). Fluorescence measurements were taken from above, at a focal height of 

5.7 mm, with gain fixed at 1020 for all samples. For each FRET construct, two 

repeats with 12 replicates each were performed for each protein in neat buffer, and 

at least two repeats were done in every other solution condition. Fluorescence 

spectra were obtained for each FRET construct in each solution condition by 

exciting the sample in a 16-nm band centered at 𝜆 = 420 nm, with a dichroic at 𝜆 = 

436.5 nm, and measuring fluorescence emission from 𝜆 = 450 to 600 nm, 

averaging over a 10 nm window moved at intervals of 0.5 nm. Base donor and 

acceptor spectra for each solution condition were obtained using the same 

excitation and emission parameters on solutions containing 1 μM mTurquoise2 or 

mNeonGreen alone, and measuring fluorescence emission from 450 to 600 

nm171,172.  

 

A1.1.5 Calculation of FRET efficiency 

 

The process of calculating the FRET efficiency 𝐸𝑓 for a FRET construct in 

one solute at a range of concentrations is summarized in Fig. S10. Specifically, 𝐸𝑓 

of each FRET construct in each solution condition was calculated by linear 
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regression of the fluorescence spectrum of the FRET construct with the spectra of 

the separate donor and acceptor emission spectra (in order to correct for solute-

dependent effects on fluorophore emission) in the same solution conditions. 𝐸𝑓 

was calculated using : 

 

𝐸𝑓 = 1 −
𝐹𝑑

𝑄𝑑𝑓𝑑

𝑄𝑎𝑓𝑎
𝐹𝑠  + 𝐹𝑑

 

 

 

where 𝐹𝑑  is the decoupled donor contribution, 𝐹𝑠  is the decoupled acceptor 

contribution, 𝑓𝑑 is the area-normalized donor spectrum, 𝑓𝑎 is the area-normalized 

acceptor spectrum, 𝑄𝑑 = 0.93 is the quantum yield of the donor, and 𝑄𝑎 = 0.8 is 

the quantum yield of the acceptor75,172. 

 

More specifically, the data for each series of solution conditions consisting 

of increasing concentrations of a single solute was processed in the following 

manner: 

 

1. Raw spectra for the free donor and free acceptor in the various solution 

conditions were loaded, and the averages of all repeats in each solution condition 

were computed. These averages are referred to as the "raw" donor and acceptor 

spectra below because they will be further corrected. 

 

2. The donor and acceptor peak intensities were assumed to change in a linear 

fashion with increasing solute concentration, so peak height of donor or acceptor-

only spectra vs. concentrations were linearly fit.  

 

3. To correct for artifacts (such as variations in FRET construct concentration 

between different wells) that may contribute to unexpected differences in 

fluorescence intensity, a correction factor was applied to each raw donor and 

acceptor spectrum to bring the peak intensity to the linear fit described in step 2, 

resulting in "corrected" donor and acceptor spectra. Importantly, while this 

corrected well-to-well variations in raw data, it did little to affect the overall values 

or trends in 𝜒 (e.g., without this correction Figs. 2.1 and 2.2 would vary by less 

than 5%). 

 

4. The raw FRET construct fluorescence spectra for the series were loaded. 
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5. To compensate for unintended direct excitation of the acceptor by donor 

excitation frequency, the corrected acceptor spectrum for each solution condition 

was subtracted from the FRET construct spectrum for each solution condition, 

resulting in "corrected" FRET construct spectra. 

 

6. The corrected donor, acceptor and FRET construct spectrum for each solution 

condition was fitted with a linear regression function to determine the decoupled 

contributions of the donor and acceptor to the FRET construct spectrum. 

 

7. 𝐸𝑓 of each FRET construct in each solution condition was calculated using the 

equation shown above. 

 

A1.1.6 Assessment of the expected scaling behavior for interprotein 

distances  

 

For flexible polymers, the end-to-end distance (𝑅𝑒) and radius of gyration 

(𝑅𝑔) follow well-defined scaling relationships defined by 𝑅  =  𝐴𝑁𝜈 . Here, 𝑅 is a 

physical distance (i.e., 𝑅𝑒  or 𝑅𝑔 ), 𝐴 is a constant in units of distance, 𝑁  is the 

unitless degree of polymerization (i.e., number of residues) 𝜈 is a unitless scaling 

exponent117,173. In the limit of finite-sized polymers, 𝜈 is more correctly written as 

𝜈𝑎𝑝𝑝. For constructs with two fluorescent proteins connected by a flexible linker, in 

the limit of infinitely long linkers, the inter-fluorescent protein distance will 

approximately equal the end-to-end distance of the intervening linker. However, in 

the limit of finite-length linkers where the linker dimensions are on a par with the 

dimensions of the fluorescent proteins, we anticipated that deviations from 

conventional scaling theory might arise due at least in part to the excluded volume 

effects of the fluorescent proteins. 

 

To assess the role of excluded volume effects in deviation, we examined 

the expected intra-fluorescent protein distance dependence on linker length for a 

well-defined self-avoiding random coil system. Such a model is convenient in that 

the dependence of the end-to-end distance for a flexible self-avoiding polymer is 

well defined analytically as 𝑅𝑒 =  𝐵𝑁0.59.   

 

We built a series of fluorescent-protein linker constructs with linkers of 

various lengths and performed simulations at all-atom resolution using the 

CAMPARI simulation engine and the ABSINTH implicit solvent model (see also 

Section A1.2). To achieve behavior in the true self-avoiding random coil limit, the 

Hamiltonian (which here refers to the instantaneous potential energy function) 
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used to generate the ensemble does not experience a contribution from the 

attractive portion of the Lennard-Jones potential for short-range non-bonded 

interactions, nor solvation effects, nor electrostatic interactions, as described 

previously174. The backbone dihedral angles associated with residues in the two 

fluorescent proteins were held fixed, while the backbone dihedral angles 

associated with residues in the linker were allowed to vary. All side chain angles 

were fully flexible. In effect, this provides a “toy” system in a well-defined polymer 

limit which allows us to assess the impact of the fluorescent proteins without any 

confounding concerns for forcefield accuracy, sampling challenges, etc. 

 

We first established that a flexible linker between two FPs indeed scales as 

expected for a self-avoiding random coil. The scaling exponent obtained by fitting 

a number of GS repeats vs. intra-chain distances revealed a scaling exponent of 

0.61 – extremely close to the value of 0.59 expected from analytical theory (Fig. 

A1.11). 

 

We then repeated the same analysis for the same system assessing the 

inter-domain distance between the chromophores in the fluorescent proteins - i.e., 

the inter-fluorescent protein distance (Fig. A1.12). Unlike the intra-chain distances 

(Fig. A1.11),  the inter-domain distances showed a linear dependence on linker 

length. This behavior is readily explained by the excluded volume impact of the 

fluorescent proteins. For shorter chains the inter-fluorescent protein distance is 

much larger than the distance between the ends of an analogous flexible polymer 

because the excluded volume from the fluorescent proteins effectively acts as 

repulsors at the chain ends. However, as chain length increases this effect 

becomes less significant, the offset becomes negligible and the system returns to 

a power-law dependence. This behavior is not specific to the self-avoiding random 

coil, and as such we expected an approximately linear dependence of inferred 

distance on the number of GS repeats. Indeed, this linear dependence mirrors 

what we observed experimentally, providing confidence that our experimentally-

derived distances are following expected trends given the physical nature of the 

setup. 

 

A1.1.7 Calculation of 𝜒 

 

For each FRET construct in each solution condition, 𝜒 was calculated in 

three steps: 
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1. The mean FRET efficiency values for 24 replicates (in 4 repeats) each for linkers 

of 8, 16, 24, 32 and 48 GS repeats (16, 32, 48, 64 and 96 amino acids in length) 

in a buffer solution (20 mM NaH2PO4, 100 mM NaCl) were linearly fit to arrive at a 

relation between FRET efficiency in buffer to the number of amino acids (𝑁) in the 

GS linker. 

 

2. The resulting slope and y-intercept (shown in Fig. 2.1B) were used to interpolate 

an implied FRET efficiency (𝐸𝑓
𝐺𝑆) for a GS linker of the same length 𝑁 as the IDR 

of interest. 

 

3. 𝜒 was then calculated as: 

 

𝜒 =
𝑅𝑒

𝑖

𝑅𝑒
𝐺𝑆 − 1 =

𝑅0
𝑖 (1 𝐸𝑓

𝑖⁄ − 1)
1
6

𝑅0
𝐺𝑆(1 𝐸𝑓⁄ − 1)

1
6

− 1 =
𝑛𝑖(1 𝐸𝑓⁄ − 1)

1
6

𝑛𝐺𝑆(1 𝐸𝑓
𝐺𝑆⁄ − 1)

1
6

− 1 

 

where 𝑅0 is the Förster distance, defined as the distance between the FPs at which 

𝐸𝑓 = 0.5, the superscript 𝑖 indicates the IDR we are measuring, the superscript 𝐺𝑆 

indicates a GS linker of length equivalent to that of IDR 𝑖, and 𝑛 is the refractive 

index of the solution in which the IDR is measured. We have tried modulating the 

refractive index between 1.33 (for neat buffer) and 1.37 (the refractive index of 24 

w/w% PEG10000)175 and noticed no significant changes in the trends of our data, 

and an absolute change of < 5% in absolute values of 𝜒. We therefore decided not 

to use this correction for the work presented in Figs. 2.1 and 2.2. 

 

A1.1.8 Impact of macromolecular crowding 

 

To assess the impact of macromolecular crowding, we computed the 

overlap concentration using the established scaling relationship for PEG derived 

by Devanand and Selser176. Specifically, this states that 𝑅𝑔 = 0.0215 𝑀0.583 where 

𝑀 is the PEG molecular weight and 𝑅𝑔 is measured in nanometers. Using PEG-

dependent 𝑅𝑔 values we computed the overlap concentration in molars, first by 

computing the chain volume: 

 

𝑉𝑙 = 1000 (
4𝜋𝑅𝑔

3

3
) 
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where 𝑅𝑔 is the radius of gyration in meters and 𝑉𝑙 is the chain volume in liters. 

The overlap concentration is then defined as: 

 

 

𝑐∗ =
1

𝑉𝑙 × 𝑁𝐴
 

 

where 𝑁𝐴 is Avogadro's number and 𝑐∗ is the overlap concentration in moles per 

liter. We then made the approximation that molarity and molality are sufficiently 

close under the concentration regimes explored, allowing us to determine the 

overlap concentration in weight/weight (%). 

 

In parallel, we computed the end-to-end distance of the shorter synthetic 

construct examined (GS8) using all-atom simulations in which the linker was 

allowed to move freely (see Figs. A1.11 and A1.12). The radius of gyration of this 

system is approximately 4.6 nm. In comparison, the radius of gyration of the largest 

PEG used (PEG10000) is computed to be 4.6 nm. As such, in essential every 

scenario the crowder is equal to or smaller than the size of the protein reporter of 

interest. 

 

For each protein, we assessed how 𝜒 varies as a function of PEG with the 

PEG-dependent overlap concentrations annotated (Figs. A1.17, A1.18). For GS-

linker constructs, we observe a systematic drop in 𝜒 as a function of PEG 

concentration (Fig. A1.17). While this decrease becomes increasingly pronounced 

as a function of PEG molecular weight, there is minimal dependence on the 

number of GS repeats. Moreover, the overlap concentration does not represent an 

obvious threshold but instead demarks the beginning of a regime where a gradual 

drop in 𝜒 is observed as a function of concentration. For example, 𝜒 values for 

systems in which the PEG concentration is at 12% are relatively similar, regardless 

of whether the PEG concentration is above the overlap concentration (PEG1500) 

or far below the overlap concentration (PEG10000). The same cannot be said at 

higher PEG concentrations, however, where crowding-induced compaction affects 

longer GS linkers more substantially than shorter linkers, as expected. 

 

For non-GS IDRs, more complex behavior is observed, notably sharper or 

weaker dependencies, depending on the sequence (Fig. A1.18). For example, p53 

𝜒 values show a shallow and essentially linear dependence on PEG concentration, 

where the 𝜒-dependence becomes steeper as PEG becomes larger. In contrast, 
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E1A 𝜒 values show a non-linear decrease, implying that E1A is substantially more 

sensitive to crowding-induced compaction than p53.  

 

A1.2 Computational Methods 

 

A1.2.1 All-atom simulations 

 

All-atom Monte Carlo-based simulations were performed using the 

CAMPARI simulation suite, with the ABSINTH implicit solvent model83. In 

CAMPARI, the effective Hamiltonian is a combination of 4 energy terms: 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑊𝑠𝑜𝑙𝑣 + 𝑈𝐿𝐽 + 𝑊𝑒𝑙 + 𝑈𝑐𝑜𝑟𝑟 

 

Here 𝑈𝐿𝐽 is the Lennard-Jones potential between protein residues, 𝑊𝑒𝑙 is 

the electric potential term based on coulombic potential, 𝑈𝑐𝑜𝑟𝑟 is a term applied to 

the dihedral angles, and 𝑊𝑠𝑜𝑙𝑣 is a solution-protein interaction term based on the 

ABSINTH implicit solvent model177, which is equivalent to a transfer free energy 

from a vacuum to a dilute aqueous solution. 

 

Our solution space scanning method is carried out as described 

previously20. Briefly, the implicit solvation term, 𝑊𝑠𝑜𝑙𝑣, is first calculated for each 

sequence based on its fully extended protein conformation.  This represents the 

maximum transfer free energy (𝑊𝑠𝑜𝑙𝑣
𝑚𝑎𝑥) since it is the most exposed configuration 

accessible to the protein. Solution space is then probed by modulating 𝑊𝑠𝑜𝑙𝑣
𝑚𝑎𝑥 by 

changing the attraction/repulsion of different protein moieties in relation to the 

implicit solvent. We express the total strength of solution interaction by the 

parameter 𝜓 where 

 

𝜓 =
𝑊𝑠𝑜𝑙𝑣

𝑚𝑎𝑥(𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛) − 𝑊𝑠𝑜𝑙𝑣
𝑚𝑎𝑥(𝑤𝑎𝑡𝑒𝑟)

𝑊𝑠𝑜𝑙𝑣
𝑚𝑎𝑥(𝑤𝑎𝑡𝑒𝑟)

× 100% 

 

In this paper we change 𝜓 by making interactions with the backbone less or 

more attractive (negative or positive 𝜓 values, respectively). Our previous 

calibration based on helix-to-coil transition has shown that a 1 M urea solution is 

equivalent to 𝜓 ≈ +1.2%.20 

 

Our all-atom simulation dataset consists of 70 proteins (not including GS 

repeats). We selected sequences that were shown experimentally to be disordered, 

as collected on the DisProt server84. All sequences were simulated at 310 K with 

https://www.codecogs.com/eqnedit.php?latex=W_%7Bsolv%7D#0


68 
 

 

107 steps of equilibration, followed by 7×107 steps of production. Conformations 

were written every 12,500 steps, resulting in a total of ~ 5,000 conformations for 

every simulation. Each sequence was simulated in five independent repeats, 

resulting in an ensemble containing 20,000 conformations per sequence. The 

MDtraj python library178 was used to calculate the radius of gyration and end-to-

end distance of the ensemble.  

 

A1.2.2 Coarse-grained simulations 

 

Our coarse-grained depiction of heteropolymer IDRs uses the PIMMS 

simulation framework10. PIMMS is a lattice-based Monte Carlo simulation engine 

in which inter-bead interactions are determined by nearest-neighbor interactions. 

All bead interactions are anisotropic along on-lattice and diagonal directions. The 

system evolves through a collection of moves that include individual crankshaft 

moves, chain translation/rotation, and chain pivot moves. For our purposes, 

residues are represented as beads, and a simple heteropolymer amino acid 

alphabet was used to generate chains of various lengths with a heteropolymeric 

distribution of residues that are similar to polar, hydrophobic, and charged amino 

acid residues. We emphasize that the parameters generated here, shown in Fig. 

A1.5A, are phenomenological and not meant to reflect specific amino acids. The 

set of PIMMS sequences used are available upon request. 

 

The parameters chosen demonstrate sequence-specific coil-to-globule 

transitions, as shown in Fig. A1.5B.  The simulation temperature was set to be 

units of 𝑘𝐵𝑇 . Accordingly, the total energy of the system in a given state is 

calculated based on a summation over pairwise interactions involving nearest-

neighbor, non-bonded contacts, or a solution interaction in the case that no 

neighbors are present. Moves are accepted or rejected via a standard Metropolis 

criterion whereby the acceptance ratio is min{1, exp(−ΔΕ/𝑘𝐵𝑇)} where 𝑘𝐵  = 1, ΔΕ 

is the energy difference between the current and proposed configurations, and 𝑇 

has the same units as the contact energies thus making the ratio ΔΕ/𝑘𝐵𝑇  a 

dimensionless quantity. This conversion makes the point that the parameterized 

interactions that reproduce the observed experimental data are in fact relatively 

weak, being less than 𝑘𝐵𝑇, depending of course on the simulation temperature. 

 

For each chain length, 2000 sequences were randomly generated, and 

each sequence simulated in 10 solution interaction strengths (plus “buffer” 

condition) for a total of 11 trajectories per sequence. Each simulation consisted of 

a 20-step equilibration followed by a 1020-step production run at T = 70. Upon 
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each step, tens to hundreds of thousands of individual Monte Carlo accept or reject 

moves are performed (on average 1000 local chain perturbations per bead in the 

chain per step). Simulation analysis was performed every 10 steps, and the 

reported distances are averages of the entire trajectory. Simulations were 

performed in a sufficiently large box to avoid finite-size effects. Average end-to-

end distances vs. solution interaction strengths for the entire dataset are shown in 

Fig. A1.5B. 

 

A1.2.3 Analytical model for the solution-driven coil-to-globule transition of a 

polymer   

 

We developed a simple and generic analytical model to characterize the 

coil-to-globule transition of a homopolymer as assessed by a mean-field net inter-

monomer interaction parameter. This model was then parameterized using 

homopolymeric PIMMS simulations performed for a range of chain lengths and 

interaction strengths to provide an analytical expression that relates the inter-

monomer interaction strength to the degree of compaction/expansion as measured 

by the parameter χ. While we “parameterize” using PIMMS simulations, the 

simulations essentially tailor the model parameters to reproduce the interaction 

strengths and dimensions as are native to PIMMS. In principle, any polymer model 

could be used to obtain key numerical parameters that dictate spatial and 

interaction features. 

 

This model is built on the assumption that the coil-to-globule transition can 

be empirically mapped as a cooperative transition in which the cooperativity and 

midpoint show an exponential dependence on chain length, and the end-points 

reflect defined expected χ values for a flexible polymer in the globule (compact) or 

coil (expanded) limits. Specifically, we define χ as 

 

𝜒 = 𝑎 + 𝑏 (
1

(𝑚 𝑒⁄ )𝜃
) 

 

where 

 

𝜃 = 𝑐 log(𝐿) + 𝑑 

 

and 

𝑚 = 𝛾𝐿𝛾 
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𝑎 = (
𝐿0.33

𝐿0.50
) − 1 

 

𝑏 = [(
𝐿0.59

𝐿0.50
) − 1] − 𝑎 

 

 

 

The parameters in this model are defined as follows: 

● 𝐿 is chain length 

● 𝜀 is the apparent net inter-monomer interaction energy (measured in 𝑘𝐵𝑇) 

● 𝜃 is a measure of the cooperativity of the coil-to-globule transition, and itself 

depends logarithmically on 𝐿 and two free parameters (𝑐 and 𝑑) 

● 𝑚 is a measure of the midpoint of the coil-to-globule transition and depends 

exponentially on chain length and one free parameter (𝛾) 

 

The free parameters (𝑐, 𝑑, and 𝛾) are obtained by fitting to homopolymeric 

PIMMS simulations where 𝜒 is calculated directly from the simulations (Figs. A1.13 

and A1.14). The specific values for these three parameters will depend on the 

physical nature of the polymer model but do not ultimately influence the limiting 

behavior or trends of the model behavior, assuming they retain physically realistic 

values. These parameters depend on chain stiffness and monomer valence.  

 

This model was chosen to provide a simple analytical description, under the 

simplifying assumption that chain solvent-dependence can, to a first-order 

approximation, be described using a simple homopolymer that expands/compacts 

as reported by 𝜒. Chain-solvent interactions are captured in terms of an apparent 

intra-bead interaction parameter (𝜀), which reports on the net favorable energy 

associated with monomer-monomer interaction in a given solution.  

 

In the limit of a self-avoiding chain, the coil-to-globule transition is entirely 

determined by the chain-solvent interaction strength. In the limit of a chain where 

chain-solvent interactions are set to zero, the coil-to-globule transition is entirely 

determined by the monomer-monomer interaction strength. Real chains sit 

somewhere between these two limits, where both chain-chain and chain-solvent 

interactions contribute to the chain dimensions. Our model is formally 

parameterized in the non-interacting chain-solvent limit, but this can be recast as 

the non-interacting chain-chain limit in which the apparent chain-solvent 

interactions are defined as half the chain-chain interactions. In this way, we can 
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write the coil-to-globule transition as a function of either chain-chain interactions or 

chain-solvent interactions, as is shown in Fig. A1.15. For simplicity, we have 

leveraged the chain-solvent representation, as most easily dovetails with our 

experimental work. 

 

In its current format, the maximum chain expansion reflects the self-

avoiding chain limit in which chain-solvent interactions are set to zero. Note that 

for polypeptides with charged residues, further expansion is possible via 

electrostatic repulsion22. These longer-range repulsive interactions are not 

captured by our analytical model nor by the model parameters used for our PIMMS 

simulations. However, they are evident in our all-atom simulations, offering an 

explanation as to why the 𝜒 axes for the all-atom simulations extend to 

substantially larger values than in either the theory or coarse-grained simulations. 

 

A1.2.4 Converting from χ to νapp 

 

As in Section 2.3.1, we define 𝜒 as:  

 

𝜒𝑖 =
𝑅𝑒

𝑖

𝑅𝑒
𝐺𝑆 − 1. 

 

𝑅𝑒 can also be written as: 

 

𝑅𝑒
𝑖 = 𝐵𝑁𝜈𝑖

𝑎𝑝𝑝

 

 

where 𝐵 is a prefactor in units of distance, and the apparent scaling exponent (𝜈𝑎𝑝𝑝) 

is a measure of the apparent solvent quality for the chain89,173. In both our 

simulations and prior experiments, a GS linker in neat buffer behaves as a polymer 

in a theta solvent, a reference state in which chain-chain and chain-solvent 

interactions are counterbalanced, and where 𝜈𝑎𝑝𝑝 = 0.50.30  

 

Operating under this assumption, we can rewrite 𝜒 as: 

 

𝜒𝑖 =
𝐵𝑁𝜈𝑖

𝑎𝑝𝑝

𝐵𝑁0.5
− 1 
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And more simply as  

 

𝜒 =
𝑁𝜈𝑖

𝑎𝑝𝑝

𝑁0.5
− 1 

 

As such, it is trivial to convert between 𝜒 and the apparent scaling exponent 

(𝜈𝑎𝑝𝑝) for the chain of a given length 𝑁 in the limit of a homopolymer instantiation 

of our model under the simplifying assumption of a fixed, sequence-independent 

and 𝜈-independent prefactor (B). For heteropolymers this assumption may not be 

valid, but as applied to our simple homopolymer model this is a reasonable set of 

approximations. 

 

The major advantage of using 𝜒 over 𝜈 (or 𝜈𝑎𝑝𝑝, as we have described here) 

reflects the fact that while 𝜈 is derived from polymer scaling theory, 𝜒 is simply a 

ratio whereby the denominator is some directly measurable reference state. 𝜈 has 

precise mathematical meaning in the context of analytical polymer physics. 

Unfortunately, this meaning frequently fails to hold true in the context of finite-sized 

heteropolymers, necessitating finite-sized corrections179–183. Moreover, 

approaches for calculating 𝜈 in finite-size polymers (leading to the apparent scaling 

exponent, 𝜈𝑎𝑝𝑝 ) can be method-dependent due to necessary assumptions 

regarding the nature of the scaling prefactor, end-effects, heteropolymeric 

interactions, and the intrinsic uncertainty associated with finite-sized 

polymers117,180,184–188. Taken together, the application of scaling theory to finite-

sized polymers can be misleading unless bona fide scaling behaviour can be 

shown in terms of the dependence of global chain dimensions as a function of 

chain length over a sufficiently large number of long polymers173,188,189. In contrast, 

𝜒 is simply a mathematical ratio of measured values. It imposes no assumptions 

other than the fact that the denominator reflects a reference value measured for a 

length-matched glycine-serine (GS) linker in aqueous (neat) buffer. Even the 

explicit polymeric behavior of the GS linker is relatively unimportant, although prior 

work has established that GS linkers behave in a manner at least qualitatively if 

not quantitatively as a flexible random coil30,31. 

 

In the context of our FRET-based assay, the application of homopolymer 

theory raises an additional challenge since our system is by definition outside of a 

regime in which homopolymer physics can be easily applied owing to the relative 

size of the fluorescent proteins compared to the disordered regions (Figs. A1.11 

and A1.12). Using 𝜒 allows us to bypass the clear limitations that making 

homopolymer-based assumptions would necessitate. 
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Supplementary Figures 

 

 
 
Figure A1.1 (A) Solution space scans of Gly-Ser linkers. Each data point shows the average 𝜒 vs. 

concentration of a specific solute for a specific IDR taken from two repeats. Vertical lines show the 

spread of repeats, and are often too small to see. IDRs vary down columns, and solutes vary along 

rows. Background color represents the sensitivity of change to solute addition: stronger colors imply 

higher sensitivity, red hues indicate compaction, and blue hues indicate expansion. Purple 

background indicates non-monotonic behavior. (B) Identical response of GS linkers to individual 

solutes contrasts with the differential response of other sequences shown in Fig. 2.2B. Each panel 

point is the average of the solution-induced change in 𝜒 vs. concentration of a specific solute and 

construct from two repeats. Vertical lines are the spread of the data. 
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Figure A1.2. The end-to-end distance of Gly-Ser repeat sequences as a function of their total 

number of residues N, obtained from all-atom simulations in aqueous solution. Each data point is 

an average of five individual repeats, with lines being the standard deviation of the data. The blue 

curve is a power-law fit of the data, shown in the inset. The fitted exponent, 0.48 ± 0.03 is within 

error of the exponent expected of an ideal polymer (0.5). 
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Figure A1.3. 𝜒 vs strength of solution interactions 𝜓 (see Section A1.2.1) for each of the 70 IDRs 

shown in Fig. 2.3. Each subplot represents a single IDR. Blue points are attractive solutions (𝜓 > 

0) and red points are repulsive solutions (𝜓 < 0). IDs are UniProt ID when available.  
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Figure A1.3 (cont.).  𝜒 vs. strength of solution interactions 𝜓 (see Section A1.2.1) for each of the 

70 IDRs shown in Fig. 3. Each subplot represents a single IDR. Blue points are attractive solutions 

(𝜓 > 0) and red points are repulsive solutions (𝜓 < 0). IDs are UniProt ID when available.  
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Figure A1.4. Solution sensitivity of IDRs shown in Fig. A1.3. Each point represents the solution-

induced change in 𝜒 (Δχ), for 𝜓 = ±1 (weak interactions), ±2 (intermediate interactions) or ±3 (strong 

interactions). Blue points represent the response to repulsive solutions and red points represent 

the response to attractive solutions. Error bars are calculated from five independent simulations. 

See also Fig. A1.6.  
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Figure A1.5. (A) Summary of the PIMMS parameters that were used for heteropolymer simulations. 

Interaction energies are defined in units of kBT and were selected to approximate the chemical 

diversity observed in polypeptides. B1-B4 are “bead” 1 to “bead” 4. (B) End-to-end distances (in 

grid units) for PIMMS coarse-grained simulations of various sequences and chain lengths N. These 

curves were used to produce Fig. 2.4B. 
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Figure A1.6. Dependence of Δχ vs. χ as a function of the most and least sensitive chains in an 

ensemble of sequences. Each figure defines the maximum and minimum perturbation to the chain-

solvent interaction. As the maximum perturbation grows (left to right), Δχ becomes larger in a 

uniform manner along the χ axis. As the minimum perturbation grows (top to bottom), the opening 

of a central “pore” region emerges. These two phenomena can be understood intuitively. At the 

limit of the minimum perturbation being zero, this effectively means there exist chains that are fully 

insensitive to changes in the solution, such that Δχ is zero. As that minimum increases, every chain 

is somewhat sensitive, with a minimum sensitivity defined by this minimum value. Chains along the 

coil-to-globule transition are more sensitive than at the coil or globule limits (Fig. 2.4D) such that 

the pore is centered around χ = 0. The maximum perturbation defines the magnitude of Δχ, but is 

bounded by the chain dimensions, such that Δχ has upper and lower bounds. As the maximum is 

increased, more perturbations push up against that maximum, such that increasing Δχ density is 

observed at the bounds (i.e., see top right). 
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Figure A1.7. Full fit curves for all eight IDRs. Horizontal dashed lines reflect the χ value as 

measured in buffer. Black curve is a length-derived prediction from our analytic model. Note that 

for many of the curves the high-molecular weight PEG solutions lead to substantial deviations from 

the master curve, as expected as chain behavior enters the semidilute regime79, the concentration 

regime in which PEG chains begin to overlap with one another. PUMA shows the worst agreement 

with the analytical model; a behavior interpreted as being due to its considerable residual helical 

structure.  
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Figure A1.8. Derived solute-specific scalar factors that relate change in chain-solute interaction 

strength to a change in χ. More positive values lead to chain expansion while more negative values 

lead to chain compaction.  
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Figure A1.9. Plasmid map for FRET construct bacterial expression vector. Disordered sequences 

are inserted between 5’ SacI and 3’ HindIII restriction sites. 
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Figure A1.10. Visual summary of the data processing procedure detailed in Section A1.1.5. All 

panels show intensity vs. wavelength data for solutions containing donor-only, acceptor-only, and 

IDR construct (unless specified otherwise). Spectra are arranged from light to dark going from 

buffer to high concentrations of solute. Beginning from raw data, base spectra are corrected for 

pipetting error and protein absorbance to the plate to get corrected base spectra. The acceptor 

channel is then subtracted from the raw IDR data to remove cross-excitation artifacts. After this, 

both corrected base spectra are used to fit the corrected IDR spectrum by linear regression. Results 

of the linear regression are used to calculate the FRET efficiency, 𝐸𝑓, as described in Section 

A1.1.5, and 𝐸𝑓 is used to calculate 𝜒 as described in Section A1.1.7. 
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Figure A1.11. The intra-chain distance of glycine-serine (GS) linkers connecting two fluorescent 

proteins in a system that rigorously behaves as a self-avoiding random coil. GS linker end-to-end 

distance is measured between the first and last residue in the GS repeat region. Note that short (3-

7 residue) cloning scars are also present in our model to replicate the actual experimental construct, 

and these do not contribute residues to the GS linkers in this analysis. Cloning scars are shown as 

teal parts of the linker. 
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Figure A1.12. Intra-fluorescent protein distance for the same system as in Fig. A.1.11. The 

distance here is measured between the two chromophore centers in each of the two fluorescent 

proteins. Note that when intra-fluorescent protein distances are measured, we obtain a linear 

relationship (as opposed to a power law relationship as in Figs. A1.11 and A1.2). 
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Figure A1.13. Fit of length-dependent model parameters to match PIMMS homopolymer 

simulations. The orange curves represent the analytical expressions defined in Section A1.2 using 

the best fit parameters to fit to the experimentally measured values. (A) The fitting of the parameters 

c and d to reproduce the experimentally-derived length dependence of the cooperativity of the coil-

to-globule transition, as quantified by θ. (B) The fitting of the parameter γ to reproduce the 

experimentally-derived length dependence of the midpoint on the coil-to-globule transition, as 

quantified by m. 
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Figure A1.14. Best fit of floating parameters for analytical model (line) to PIMMS simulations (filled 

circles). (A) Data plotted in terms of inter-monomer interaction strength (assuming neutral chain-

solvent interactions). (B) Same data plotted in terms of chain-solvent interaction strength (assuming 

neutral inter-monomer interactions). Colors denote chain lengths as specified in the legends. 
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Figure A1.15. Relationship between inter-monomer interaction strength and χ. As chain length 

increases, cooperativity of the coil-to-globule transition increases. Note that the maximum and 

minimum χ values show a modest but well-defined length dependence. (A) Data plotted in terms of 

inter-monomer interaction strength (assuming neutral chain-solvent interactions). (B) Same data 

plotted in terms of chain-solvent interaction strength (assuming neutral inter-monomer interactions). 
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Figure A1.16. Dependence of the end-to-end distance (𝑅𝑒) on χ. As the chain becomes longer, 

both the maximum and the steepness of the 𝑅𝑒-dependence on χ become larger. 
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Figure A1.17: PEG-dependence of GS linkers plotted on same axes. Blue line represents overlap 

concentration (c*), with concentrations higher than c* identified by the light-blue shaded regime. 
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Figure A1.18: PEG-dependence of χ from naturally occurring IDRs as a function of PEG 

concentration and PEG molecular weight. Where present, horizontal lines are PEG-specific overlap 

concentration (c*). Each of the four columns represents a distinct IDR and each row is a distinct 

PEG solution. (a-i) PEG-dependence of χ for PUMA.  (j-r) PEG-dependence of χ for E1A. (s-ab) 

PEG-dependence of χ for p53. (ac-ak) PEG-dependence of χ for Ash1. 
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Supplementary Tables 

 

Table A1.1. IDR sequences used in this study. 

 

IDR Number of 
residues 

Amino acid sequence 

GS0 0 
 

GS8 16 GSGSGSGSGSGSGSGS 

GS16 32 GSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGS 

GS24 48 GSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSG
SGSGSGSGSGS 

GS32 64 GSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSG
SGSGSGSGSGSGSGSGSGSGSGSGSGS 

GS48 96 GSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSG
SGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGS
GSGSGSGSGSGSGSGSGSGSGS 

PUMA 34 VEEEEWAREIGAQLRRIADDLNAQYERRRQEEQH 

p53 61 MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAM
DDLMLSPDDIEQWFTEDPGPD 

Ash1 83 GASASSSPSPSTPTKSGKMRSRSSSPVRPKAYTPSPRSPN
YHRFALDSPPQSPRRSSNSSITKKGSRRSSGSSPTRHTTR
VCV 

E1A 40 MRHIICHGGVITEEMAASLLDQLIEEVLADNLPPPSHFEP 
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Appendix 2 

 

A2.1 Materials and Methods 

 

A2.1.1 FRET construct design and cloning 

 

The monomeric fluorescent proteins mTurquoise2 and mNeonGreen have 

high quantum yields, fast maturation and are highly photostable73,75. Compared to 

other FRET pairs, mTurquoise2 and mNeonGreen have a higher FRET efficiency 

with little cell to cell variation and were therefore selected as our FRET pair in our 

experiments75. The FRET backbone for bacterial expression (fIDR_pET-28a(+)-

TEV) or for mammalian expression (fIDR_pCDNA3.1(+)) was prepared by ligating 

mTurquoise2 and mNeonGreen into pET28a-TEV or pCDNA backbone using 5’ 

NdeI and 3’ XhoI restriction sites. Genes encoding for IDR regions were obtained 

from GenScript (Piscataway, NJ) and ligated between the two fluorescent proteins 

using 5’ SacI and 3’ HindIII restriction sites. Cloned plasmids were amplified in XL1 

Blue (Invitrogen) cell lines using manufacturer-supplied protocol. Sequences of all 

IDR inserts used in this study are shown in Table A2.1. 

 

A2.1.2 FRET construct expression and purification 

 

BL21 (DE3) cells were transformed with fIDR_pET-28a(+)-TEV plasmids 

according to manufacturer protocol and grown in LB medium with 50 μg/mL 

kanamycin. Cultures were incubated at 37 °C while shaking at 225 rpm until 

OD600 of 0.6 was reached (approx. 3 h), then induced with 1 mM IPTG and 

incubated for 20 h at 16 °C while shaking at 225 rpm. Cells were harvested by 

centrifugation for 15 min at 3,000 rcf, the supernatant was discarded, and the cells 

were lysed in lysis buffer (50 mM NaH2PO4, pH 8, 0.5 M NaCl) using a QSonica 

Q700 Sonicator (QSonica, Newtown, CT). Lysate was centrifuged for 1 h at 20,000 

rcf and the supernatant collected and flowed through a column packed with Ni-

NTA beads (Qiagen). The FRET construct was eluted with 50 mM NaH2PO4, pH 

8, 0.5 M NaCl, 250 mM imidazole, and further purified using size-exclusion 

chromatography on a Superdex 200 PG column (GE Healthcare) in an AKTA go 

protein purification system (GE Healthcare). The purified FRET constructs were 

divided into 200 μL aliquots, flash-frozen in liquid nitrogen, and stored at -80 °C in 

20 mM sodium phosphate buffer, pH 7.4, with the addition of 100 mM NaCl. Protein 

concentration was measured after thawing and before use using UV-vis 

absorbance at 434 and 506 nm (the peak absorbance wavelengths for 

mTurquoise2 and mNeonGreen, respectively; the molar absorbance coefficients 
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for mTurquoise2 and mNeonGreen are 30,000 cm-1M-1 and 116,000 cm-1M-1, 

respectively171. Calculations of concentration based on 𝜆 = 434 nm produced 

slightly higher values than calculations based on 𝜆 = 506 nm, so the concentrations 

based on the measurement at 𝜆 = 506 nm were used), and purity was assessed 

by SDS-PAGE after thawing and before use. To verify the brightness of the FPs, 

we measured the UV-Vis absorbance of both donor and acceptor molecules before 

each FRET assay. We used only samples that displayed an absorbance ratio 

Abs506/Abs434 = ratio of 2.8 ± 0.2, a reasonable ratio given the difference in the 

molar extinction coefficients of mTurquoise2 and mNeonGreen. Samples where 

the ratio deviated from this value were discarded. 

 

A2.1.3 Preparation of solutions for solution-space scanning 

 

Solutes were purchased from Alfa Aesar (Sarcosine, PEG400, PEG2000), 

GE Healthcare (Ficoll), Thermo Scientific (Guanidine Hydrochloride), and Fisher 

(Ethylene Glycol, Glycine, Potassium Chloride, Sodium Chloride, Sucrose, Urea), 

and used without further purification. Stock solutions were made by mixing the 

solute with 20 mM sodium phosphate buffer, pH 7.4, with the addition of 100 mM 

NaCl except for experiments where the concentration of NaCl or KCl was varied, 

which began free of additional salt. The same buffer was used for all dilutions. 

 

A2.1.4 In vitro FRET experiments 

 

In vitro FRET experiments were conducted in black plastic 96-well plates 

(Nunc) with clear bottom using a CLARIOstar plate reader (BMG LABTECH). 

Buffer, stock solution, and purified protein solution were mixed in each well to 

reach a volume of 150 μL containing the desired concentrations of the solute and 

the FRET construct, with a final concentration of 1 μM protein. Fluorescence 

measurements were taken from above, at a focal height of 5.7 mm, with gain fixed 

at 1020 for all samples. For each FRET construct, two repeats from different 

expressions with 6 or 12 replicates each were performed in neat buffer, and two 

repeats from different expressions were done in every other solution condition. 

Fluorescence spectra were obtained for each FRET construct in each solution 

condition by exciting the sample in a 16 nm band centered at 𝜆 = 420 nm, with a 

dichroic at 𝜆 = 436.5 nm, and measuring fluorescence emission from 𝜆 = 450 to 

600 nm, averaging over a 10 nm window moved at intervals of 0.5 nm. Base donor 

and acceptor spectra for each solution condition were obtained using the same 

excitation and emission parameters on solutions containing 1 μM mTurquoise2 or 
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mNeonGreen alone, and measuring fluorescence emission from 450 to 600 

nm171,172.  

 

A2.1.5 Calculation of FRET efficiencies 

 

The apparent FRET efficiency ( 𝐸𝑓
𝑎𝑝𝑝)  of each FRET construct in each 

solution condition was calculated by linear regression of the fluorescence spectrum 

of the FRET construct with the spectra of the separate donor and acceptor 

emission spectra in the same solution conditions (in order to correct for solute-

dependent effects on fluorophore emission). 𝐸𝑓
𝑎𝑝𝑝

 was calculated using the 

equation190: 

𝐸𝑓
𝑎𝑝𝑝 = 1 −

𝐹𝑑

𝑄𝑑𝑓𝑑

𝑄𝑎𝑓𝑎
𝐹𝑠  +  𝐹𝑑

 

 

where 𝐹𝑑  is the decoupled donor contribution, 𝐹𝑠  is the decoupled acceptor 

contribution, 𝑓𝑑 is the area-normalized donor spectrum, 𝑓𝑎 is the area-normalized 

acceptor spectrum, 𝑄𝑑 = 0.93 is the quantum yield of mTurquoise2, and 𝑄𝑎 = 0.8 

is the quantum yield of mNeonGreen75,172. 

 

The data for each series of solution conditions consisting of increasing 

concentrations of a single solute was processed in the following manner:  

 

(1) Raw spectra for the free donor and free acceptor in the various solution 

conditions were loaded, and the averages of all repeats in each solution condition 

were computed. These averages are referred to as the “raw” donor and acceptor 

spectra below because they will be further corrected.  

(2) The donor and acceptor peak intensities were assumed to change in a linear 

fashion with increasing solute concentration, so peak height of donor- or acceptor-

only spectra vs. concentrations were linearly fit.  

(3) To correct for artifacts (such as variations in FRET construct concentration 

between different wells) that may contribute to unexpected differences in 

fluorescence intensity, a correction factor was applied to each raw donor and 

acceptor spectrum to bring the peak intensity to the linear fit described in step 2, 

resulting in “corrected” donor and acceptor spectra. Importantly, we have seen in 

our previous work that this correction corrects well-to-well variations in raw data 

but has a negligible effect on overall values and trends19.  

(4) The raw FRET construct fluorescence spectra for the series were loaded.  
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(5) To compensate for unintended direct excitation of the acceptor by excitation at 

the donor excitation frequency, the corrected acceptor spectrum for each solution 

condition was subtracted from the FRET construct spectrum for each solution 

condition, resulting in “corrected” FRET construct spectra.  

(6) The corrected donor, acceptor and FRET construct spectrum for each solution 

condition was fitted with a linear regression function to determine the decoupled 

contributions of the donor and acceptor to the FRET construct spectrum.  

(7) 𝐸𝑓
𝑎𝑝𝑝

 of each FRET construct in each solution condition was calculated using 

the equation shown above. 

 

A2.1.6 Size exclusion chromatography and small-angle X-ray scattering 

experiments 

 

Small-angle X-ray scattering (SAXS) experiments were performed at 

BioCAT (beamline 18ID at the Advanced Photon Source, Chicago). The 

experiments were performed with in-line size exclusion chromatography (SEC-

SAXS) (Fig. A2.2) to separate monomeric protein from aggregates and improve 

the accuracy of buffer subtraction. Experiments were conducted at 20 °C in 20 mM 

sodium phosphate, pH 7.4, with 100 mM NaCl. Samples of approximately 300 µL 

were loaded, at concentrations in mg/mL approximately equal to 240 divided by 

the molecular weights of the constructs in kD (for example, a typical construct of 

molecular weight 60 kD would have a target concentration for SEC-SAXS of 

240/60 = 4 mg/mL), onto a Superdex 200 Increase 10/300 column (GE Life 

Sciences) and run at 0.6 mL/min using an ÄKTA Pure FPLC system (Cytiva). The 

column eluent passed through the UV monitor and proceeded through the SAXS 

flow cell which consists of a 1.5 mm ID quartz capillary with 10 μm walls. The 

column to X-ray beam dead volume was approximately 0.1 mL. Scattering intensity 

was recorded using a Pilatus3 1M (Dectris) detector placed 3.5 m from the sample 

providing access to a q-range from 0.003-0.35 Å-1. 0.5 second exposures were 

acquired every 2 seconds during the elution. Data was reduced at the beamline 

using BioXTAS RAW version 2.1.1191–193. The contribution of the buffer to the X-

ray scattering curve was determined by averaging frames from the SEC eluent 

which contained baseline levels of integrated X-ray scattering, UV absorbance and 

conductance. Frames were selected as close to the protein elution as possible and, 

ideally, frames pre- and post-elution were averaged. Multiple peaks for GS48, WT 

PUMA, E1A, and FUS were deconvolved using evolving factor analysis (EFA) (Fig. 

A2.18)194,195 and the peak with calculated molecular weight corresponding to the 

monomer was chosen for further analysis. Final scattering profiles were generated 

by subtracting the average buffer trace from all elution frames and averaging 
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curves from elution volumes close to the maximum integrated scattering intensity; 

these frames were statistically similar in both small and large angles. Buffer 

subtraction and subsequent Guinier fits (Fig. A2.3), as well as Kratky 

transformations (Fig. A2.4) and deconvolution of peaks using EFA (Fig. A2.18), 

were done in BioXTAS RAW. Radii of gyration (𝑅𝑔) were calculated from the slope 

of the fitted line of the Guinier plot at maximum 𝑞 × 𝑅𝑔 = 1 using the equation196:  

 

𝑙𝑛[𝐼(𝑞)]  =  𝑙𝑛[𝐼(0)] − (
𝑅𝑔

2

3
) 𝑞2 

 

A2.1.7 Mammalian cell culture  

 

HEK293T and U-2 OS cells were cultured in Corning treated flasks with 

Dulbecco’s modified Eagle medium (Advanced DMEM:F12 1X, Gibco Cat. No. 

12634-010) supplemented with 10% FBS (Gibco Cat. No. 16000-044) and 1% 

penicillin/streptomycin (Gibco Cat. No. 15140-122). For live-cell microscopy 

experiments, 5,000 HEK293T cells or 10,000 U-2 OS cells were plated in a µ-Plate 

96-well black treated imaging plate (Ibidi Cat. No. 89626) and allowed to adhere 

overnight (~16 hours) before transfection. Cells were incubated at 37 °C and 5% 

CO2. Before transfection, the media was switched out with new warmed media. 

XtremeGene HP (Sigma Cat. No. 6366236001) was used to transfect FRET 

construct plasmids into HEK293T or U-2 OS cells per manufacturer’s protocol. 

Cells were incubated at 37 °C and 5% CO2 for 48 hours post transfection, ensuring 

that maturation of the FRET pairs (which occurs in 10-30 minutes74,197) does not 

alter our results. NaCl stock solution was prepared by dissolving NaCl (Fisher 

Bioreagents CAS 7647-14-5) in 1X PBS (Gibco Cat. No. 70011-044) and filtering 

using a 0.2 µm filter. The solutions used for perturbations were obtained by diluting 

the imaging media (1X PBS) with autoclaved DI water to achieve hypoosmotic (100 

mOsm) conditions or by adding NaCl stock solution for hyperosmotic (750 mOsm) 

conditions. Isosmotic (300 mOsm) conditions were obtained by adding 1X PBS. 

To prepare for imaging, cells were rinsed once with 1X PBS and left in 200 μL PBS 

(300 mOsm) for imaging.  
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A2.1.8 Live-cell microscopy 

 

Imaging was done on a Zeiss epifluorescent microscope using a 10X 0.3 

NA dry objective for whole-cell experiments or a 40X 0.9 NA dry objective for 

localization experiments. Excitation was done with a Colibri LED excitation module 

and data was collected on a duocam setup with two linked Hamamatsu Flash v3 

sCMOS cameras. The cells were imaged at room temperature before and after 

perturbation with 150 ms exposure times. Imaging was done by exciting 

mTurquoise2 at 430 nm (donor and acceptor channels, Fig. 3.1E) or mNeonGreen 

at 511 nm (direct acceptor channel, Fig. 3.1E). Emitted light was passed on to the 

camera using a triple bandpass dichroic (467/24, 555/25, 687/145). When 

measuring FRET, emitted light was split into two channels using a downstream 

beamsplitter with a 520 nm cutoff. For each perturbation, the cells were focused 

using the acceptor channel and imaged before manually adding water 

(hypoosmotic condition), PBS (isosmotic condition) or NaCl solution (hyperosmotic 

condition) and pipetting up and down 10 times to ensure mixing. The final 

osmolarities that were used for the perturbations were: 100 mOsm, 300 mOsm 

(isosmotic), and 750 mOsm with NaCl as the osmotic agent. Imaging was typically 

completed in ~ 45 seconds.  

 

A2.1.9 Image analysis 

 

Images were analyzed using ImageJ198. Images collected before and after 

osmotic challenge, containing three channels each, were stacked and aligned 

using the StackReg plugin with rigid transformation (Fig. A2.19).199 The aligned 

image was segmented based on the donor channel before perturbation. 

Segmentation was done using several methods to ensure that the results were 

robust. The methods included the ImageJ built-in implementations of the Triangle 

and MinError algorithm, as well as a fixed threshold that selected only pixels with 

intensities between 1,500 - 40,000. All methods gave nearly identical results, so 

the fixed threshold method was finally selected for the data shown in all live cell 

figures. The resulting mask was processed using the Open and Watershed binary 

algorithms of imageJ. Cells were selected using the Analyze Particles option of 

ImageJ, picking only those with an area between 65 - 845 μm², and with a 

circularity of 0.1 - 1.0. The resulting regions of interest were averaged in each 

channel at each timepoint. The resulting cells were filtered to remove cells with an 

intensity over 10,000 (to correlate with in vitro experiment concentrations, see Fig. 

A2.20) and cells where the absolute change in direct acceptor emission was over 

2,000 (which tended to be cells that moved or lifted off the coverslip during 
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measurement). To correct for donor bleedthrough and cross-excitation, cells were 

transfected with the mTurquoise2 or mNeonGreen construct only, the cells were 

imaged and analyzed using the same protocol as previously mentioned, and 

correlation plots were generated to determine percent bleedthrough and cross-

excitation (Fig. A2.21). The final filtering step removed cells with a corrected 

donor/acceptor ratio that was negative or higher than 6. Cell FRET efficiency 

before and after perturbation (𝐸𝑓,𝑏𝑒𝑓𝑜𝑟𝑒
𝑐𝑒𝑙𝑙  and 𝐸𝑓,𝑎𝑓𝑡𝑒𝑟

𝑐𝑒𝑙𝑙  respectively) was calculated by:  

 

𝐸𝑓
𝑐𝑒𝑙𝑙 =

𝐹𝐴

𝐹𝐷+ 𝐹𝐴
 . 

 

Images for localization experiments contained three channels that were stacked 

and aligned using the StackReg plugin with rigid transformation. The multipoint 

tool was used to manually select one 10 μm² circle in the cytoplasm and a second 

in the nucleus for each cell. The resulting measurements were filtered to remove 

cells with an intensity over 10,000 (to correlate with in vitro experiment 

concentrations). Cell FRET efficiency was calculated as previously stated.  

 

A2.1.10 In vitro concentration dependence experiments 

 

Protein aliquot samples were diluted into a series of varying concentrations 

using 20 mM sodium phosphate, 100 mM NaCl, pH 7.4 buffer. Samples were 

prepared on a µ-Plate 96-well black treated imaging plate (Ibidi Cat. No. 89626). 

Fluorescent beads (Phosphorex Cat. No. 2225) were added to the prepared 

aliquots to ensure focus on the bottom of the well. Imaging parameters were the 

same parameters as were used for the live-cell microscopy experiments. Images 

were also analyzed using ImageJ198. Instead of segmentation, the center of the 

images were selected and the average pixel intensities were measured. In order 

to correlate emission with concentration, we plotted protein concentration against 

direct acceptor emission (Fig. A2.20).  

 

A2.1.11 Label-free peptide synthesis and purification 

 

WT PUMA and shuffled sequences were prepared via standard microwave-

assisted solid-phase peptide synthesis protocols using a Liberty Blue automated 

microwave peptide synthesizer (CEM, NC, USA) and ProTide Rink Amide resin 

(CEM). Fmoc-deprotection was achieved by treatment with 4-methylpiperidine 

(20% v/v) in dimethylformamide (Sigma-Aldrich), and Fmoc-amino acids were 

activated using N,N'-Diisopropylcarbodiimide (Sigma-Aldrich) and Oxyma Pure 

(CEM). Peptides were N-terminally acetylated and C-terminally amidated. After 
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synthesis, the peptidyl resins were filtered and rinsed with acetone and air-dried. 

The crude peptides were cleaved from the resin for 4 hours at room temperature 

with a 92.5% trifluoroacetic acid (TFA), 2.5% H2O, 2.5% 3,6-dioxa1,8-octane-

dithiol, 2.5% triisopropylsilane cleavage solution, precipitated with cold diethyl 

ether, and centrifuged at 4000 rpm for 10 min at 4 °C. After centrifugation, the 

supernatants were discarded, and the pellets were dried under vacuum overnight. 

Crude peptides were purified by high-performance liquid chromatography (HPLC) 

using an Agilent 1260 Infinity II HPLC instrument equipped with a preparative scale 

Phenomenex Kinetex XB-C18 column (250 x 30 mm, 5 μm, 100 Å) (Fig. A2.22). 

Peptides were eluted with a linear gradient of acetonitrile-water with 0.1% TFA. 

The target fractions were collected, rotovapped, and lyophilized. Purified peptides 

were analyzed by mass spectrometry using a Q-Exactive Hybrid Quadrupole-

Orbitrap mass spectrometer (Thermo Scientific) (Fig. A2.23, Table A2.2). 

 

A2.1.12 CD spectroscopy 

 

Lyophilized protein constructs were weighed and dissolved in a 20 mM 

sodium phosphate, 100 mM NaCl buffer at pH 7.4 to make a 200 μM stock. The 

stock was diluted into a concentration series to measure the CD spectra. CD 

spectra were measured using a JASCO J-1500 CD spectrometer with a 1 cm 

quartz cell for 1 μM and 2 μM protein concentration and 0.1 cm quartz cell for other 

concentrations (Starna Cells, Inc., Atascadero, CA) using a 0.1 nm step size, a 

bandwidth of 1 nm, and a scan speed of 200 nm/min between 260 to 190 nm. Each 

spectrum was measured 7 times and averaged to increase the signal-to-noise ratio. 

The buffer control spectrum was subtracted from each protein spectrum. CD 

spectra were normalized using UV 280 nm absorbance to eliminate the small 

concentration difference between different protein constructs. 

 

A2.1.13 All-atom simulations of constructs with fluorescent proteins  

 

To verify that our in vitro SAXS and FRET results report on the same 

conformational ensemble, we performed all-atom simulations of full-length 

constructs that include both fluorescent proteins using an identical amino acid 

sequence to the experimental constructs. Fluorescent protein models were 

constructed from PDB files 4AR7 (mTurquoise2)200 and 5LTR (mNeonGreen)74. 

Simulations were performed using the ABSINTH implicit solvent model and 

CAMPARI Monte Carlo simulation engine83.  
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Considering the size of these proteins, simulating them at full-length and 

all-atom resolution raises a number of challenges. Given that our objective here 

was to determine whether SAXS and FRET were in agreement in the context of a 

simple homopolymeric linker, we took advantage of the ABSINTH implicit 

forcefield’s ability to tune specific components of the Hamiltonian. Specifically, we 

performed simulations in which all excluded-volume interactions were present (i.e., 

the repulsive component of the Lennard-Jones potential was turned on). However, 

the attractive component of the Lennard-Jones potential was only turned on for 

residues within the glycine-serine (GS) linker, and limited only to intra-linker 

interactions by varying the inherent Lennard-Jones parameters of all atoms outside 

of the GS linker. Beyond these two components, all additional non-bonded 

Hamiltonian terms (i.e., long and short-range electrostatics and solvation effects) 

were turned off, dramatically lowering the computational cost of simulations. By 

systematically tuning the overall strength of the attractive GS repeat intramolecular 

interactions, we in effect performed simulations for GS homopolymers for all 

relevant homopolymer interaction strengths and GS-repeat lengths from 0 to 48 

(i.e., 0 residues to 96 residues).  

 

We initially performed simulations using a GS0 construct, where the only 

backbone degrees of freedom available were associated with the set of flexible 

residues that connect the two beta-barrels. Specifically, all backbone dihedral 

angles for amino acids within the two beta-barrels were switched off, but all 

sidechain degrees of freedom were accessible. The residues between the two 

beta-barrels that had their backbone degrees of freedom sampled consist of amino 

acids 227 to 255 (GITLGMDELYKEGLSKLMVSKGEEDNMAS) in the GS0 

construct19. After running thousands of short independent simulations in which 

these twenty-nine amino acids were sampled with variable intramolecular 

interaction strengths, we subselected an ensemble of 1000 distinct conformations 

which, on average, reproduced the experimentally measured SAXS scattering 

data for the GS0 construct (Fig. A2.5A). This GS0 ensemble was then used to 

define the starting configurations of the FPs and the ‘handles’ (non-GS component 

of the construct) for all other GS simulations. 

 

For each of the other GS-repeat lengths (8, 16, 24, 32, 48), we performed 

simulations in which the attractive Lennard-Jones potential was scaled from 0.30 

to 0.62 in steps of 0.02. This range straddles intramolecular interaction strengths 

that cause the longer GS chains to behave as a self-avoiding random coil 

(attractive LJ scaling parameter = 0.3) and a compact globule (attractive LJ scaling 

parameter = 0.62). For each combination of GS length and LJ strength, we 
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performed 1000 independent simulations in which the fluorescent proteins and 

associated handles defined in the GS0 simulations were also fixed in place. As 

such, in total we performed 17,000 independent simulations for each separate GS 

length (i.e., 85,000 independent simulations in total). This approach enables to in 

effect construct a large collection of ensembles with (defined GS lengths but 

variable GS intramolecular interaction strengths) from which we will ultimately 

subselect and concatenate many individual simulation trajectories based on the 

agreement between the simulated scattering profile and the real scattering profile. 

These data will be used to construct a sub-ensemble that recapitulates the 

experimental scattering data – i.e., an unbiased, data-driven approach to construct 

an ensemble consistent with the experimental measurements. 

 

Each simulation was run in a spherical droplet with a radius of 500 Å to 

avoid any possible finite size effects. Given the absence of any electrostatic 

components, no ions were included in the simulations. Each simulation was run 

for 100,000 Monte Carlo steps. The first 50,000 steps were discarded as 

equilibration, and conformations were then sampled every 5000 steps. As such, 

each independent simulation generated 10 conformations, such that each GS/LJ 

combination generated a 10,000 conformer ensemble (1000 independent 

simulations with 10 conformations per simulation). Other than the repulsive 

component of the Lennard-Jones potential and (for some atoms) the attractive 

component of the Lennard-Jones potential, all other modes of nonbonded 

interactions were switched off. As such, each individual simulation takes on the 

order of 10 minutes. 

 

Having performed this set of simulations we calculated predicted scattering 

profiles for each independent simulation using FoXS software, as described 

previously117,201. To assess the agreement between each short simulation and the 

experimental scattering data we computed 𝜒𝑓𝑟𝑒𝑒
2  , a parameter explicitly developed 

to assess the goodness-of-fit for scattering data202].We calculated 𝜒𝑓𝑟𝑒𝑒
2  for GS-

length matching simulations to assess how well each length-matched sub-

ensemble compared to the experimentally measured scattering data. Using a 𝜒𝑓𝑟𝑒𝑒
2  

of 3.2 (a large value that reflects the relatively small error in the experimentally 

measured SAXS data), we generated sub-ensembles with scattering curves that 

quantitatively reproduced the experimental data at each of the GS-repeat lengths 

(Fig. A2.5A).  

 

Finally, using the SAXS-matched sub-ensembles, we computed the inter-

barrel distance based on the distance between two residues in the center of the 
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beta-barrel (Fig. A2.5B). Distances were calculated between alpha-carbon atoms, 

such that we subtracted a 6 Å offset to approximately account for the distance 

between the alpha-carbon atoms and the anticipated chromophore centers. The 

resulting inter-beta-barrel distances are in excellent agreement with distances 

measured from ensemble FRET experiments. For Fig. 3.2B, these end-to-end 

distances (𝑅𝑒) were converted to 𝐸𝑓 values using the equation 𝐸𝑓 = 𝑅0
6 / (𝑅0

6 + 𝑅𝑒
6), 

assuming 𝑅0, the Förster distance for the mTurquoise2-mNeonGreen FRET pair, 

to be 62 Å172. Taken together, this approach shows that the ensembles that best 

describe the SAXS data also correctly describe the distances inferred from FRET, 

confirming that these orthogonal methods are reporting on the same underlying 

conformational ensemble. The final sub-ensembles for each GS-repeat length and 

the associated data are provided in 

https://github.com/sukeniklab/IDP_structural_bias. Simulation analysis was 

performed with SOURSOP (https://soursop.readthedocs.io/)203.  

 

A2.1.14 All-atom simulations of IDRs 

 

Simulations of label-free IDR sequences used in this study were done using 

the CAMPARI simulation suite and the ABSINTH forcefield83,177. For each 

sequence, five independent simulations were run at 310 K using 8x107 Monte 

Carlo steps (following 1x107 steps of equilibration) starting from random 

conformations to ensure proper sampling. Protein conformations were written out 

every 12,500 steps. The end-to-end distance and the helicity of the simulated 

conformation ensembles were determined using the MDTraj python library178.  

 

  

https://github.com/sukeniklab/Moses_2021_v2
https://soursop.readthedocs.io/
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Supplementary Figures 

 

 
 
Figure A2.1. Fluorescence spectra from measurements of FRET constructs in a dilute phosphate 

buffer solution. Spectra of constructs incorporating IDRs that are not GS-repeat sequences are 

compared with expected fluorescence spectra of FRET constructs incorporating GS-repeat 

sequences of equal length (black dotted curves), where N refers to the number of amino acids. 

Blue and green shaded areas are the base spectra for mTurquoise2 and mNeonGreen, 

respectively, in the same buffer solution.  
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Figure A2.2. Chromatograms from SEC-SAXS experiments in which the samples were donor-IDR-

acceptor FRET constructs in a dilute phosphate buffer solution. Vertical dotted line labeled “GS” in 

each panel represents the expected elution peak position of a FRET construct containing a GS-

repeat sequence equal in length to the IDR, where N refers to the number of amino acids. Shaded 

region in each panel represents the standard error of the expected GS peak position. 

 

  



106 
 

 

 

 

 
 
Figure A2.3. Guinier plots for donor-IDR-acceptor FRET constructs from SEC-SAXS experiments. 

For IDRs that are not GS-repeat sequences, the fitted line is compared with the expected fitted line 

for a construct containing a GS-repeat sequence of the same length (black dotted lines), where N 

refers to the number of amino acids. Lines are fitted to a maximum 𝑞 ∗ 𝑅𝑔 value of 1. 
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Figure A2.4. Dimensionless Kratky plots derived by transforming the scattering profiles from which 

the 𝑅𝑔  values reported in the main text were calculated. For a globular protein, the peak position 

should be at 𝑞𝑅𝑔 = √3 ~ 1.73 (shown by vertical dashed line) and the peak height should be 

(𝑞𝑅𝑔)2 ∗ 𝐼(𝑞)/𝐼(0) = 3/𝑒 ~ 1.1 (shown by horizontal dashed line).  
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Figure A2.5. (A) Comparison of experimentally measured small-angle X-ray scattering profiles with 

simulation-derived synthetic for GS-repeat sequences of different lengths. (B) Example snapshots 

from simulations. 𝑅𝑒
𝑎𝑝𝑝

 is calculated based on the distance between residues from the center of the 

two beta-barrels (dashed red line). 
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Figure A2.6. Solution space scans of GS-repeat homopolymers. Each cell shows 𝛥𝐸𝑓
𝑎𝑝𝑝

 as a 

function of increasing solute concentration. Blue background indicates expansion and red indicates 

compaction, with deeper colors indicating more change. monoM: Concentration of a polymer 

expressed as a concentration of monomeric units. Light gray shaded regions on left side of cells 

for solutes NaCl and KCl: approximate range of concentrations within which electrostatic screening 

is the dominant effect; the leftmost two points of each series, since they are within that range, are 

not used in the assignment of background color. 
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Figure A2.7. Probability density of cellular features across cells expressing different FRET 

constructs. Each histogram contains over 103 cells, with a total of over 2.1 ⨉ 105 cells. (A) Cell area 

(in μm2). (B) Cell circularity calculated as 4π(area/perimeter2). A value of 1 is a perfect circle and 

as the value approaches 0 it indicates an increasingly elongated polygon. The HEK293T cells used 

in these experiments tend to be rounder than others, resulting in a sphericity close to 1. (C) Direct 

acceptor emission (cells excited at 511 nm) is a metric for in-cell construct concentration. To 

eliminate artifacts resulting from high overexpression, and to facilitate accurate comparison with in 

vitro measurements done at 1 uM, we left cells with a direct acceptor emission higher than 10,000 

out of the analysis, indicated by the dashed vertical line (see also Fig. A2.17). 
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Figure A2.8. Linear fit of 𝛥𝐸𝑓
𝑐𝑒𝑙𝑙  as a function of GS linker length for hypo, iso, and hyperosmotic 

perturbations. Dashed green line is a linear fit of the medians, shown as white dashes, and shaded 

areas are the errors of the fit. Thick and thin red bars span median 50% and 90% of the data, 

respectively.  
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Figure A2.9. Concentration dependence of circular dichroism measurements of PUMA WT and 

sequence scrambles.  
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Figure A2.10. All-atom simulations, using the ABSINTH forcefield83, of all  sequences in this work. 

Simulations did not contain the fluorescent protein labels. Violin plots are obtained from random 

sampling of 2000 frames from ensembles containing at least 20,000 conformations. White circles 

represent the mean and black points are individual frames. FUS shows a multimodal, highly 

compact distribution since its ensemble is collapsed and poorly sampled, and is likely not indicative 

of the ensemble for this construct. 
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Figure A2.11. Solution space scans of WT PUMA and sequence scrambles. Each cell shows 𝐸𝑓
𝑎𝑝𝑝

 

as a function of increasing solute concentration. Blue background indicates expansion and red 

indicates compaction, with deeper shades indicating more change. Purple background indicates a 

non-monotonic response, with deeper shades representing more curvature. monoM: Concentration 

of a polymer expressed as a concentration of monomeric units. 
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Figure A2.12. 𝐸𝑓
𝑎𝑝𝑝

 vs. length of GS-repeat sequence in various solution conditions. A second 

degree polynomial fit, shown as dashed lines, is used for interpolation of 𝛥𝐸𝑓
𝑎𝑝𝑝

 for arbitrary 

sequence lengths in Figs. 3H and 4F. 
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Figure A2.13. Sequence features of IDR sequences in Fig. 3.4, calculated using localcider204. All 

bars represent the average over a five-residue window centered at the specified residue number. 

FCR: Fraction of charged residues; Hydro: Kyte-Doolitle hydrophobicity scale; NCPR: net charge 

per residue; apolar: fraction of ALMIV residues; aromatic: fraction of FYW residues; neg: fraction 

of ED residues; pos: fraction of KR residues; polar: clusters of QNSTGHC residues; proline: fraction 

of P residues. 
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Figure A2.14. FRET efficiencies of GS-repeats measured in HEK293T and U-2 OS cells. (A) 

HEK293T live cell measurements - identical to Fig. 2G. The violin plots span the entire dataset and 

their thickness represents the probability. The median is shown as a white square, and the median 

50% and 95% are shown as thick and thin lines at the center of the violin, respectively. The gray 

line is a linear fit of the medians, and fit error is shown by the shaded region. Images were taken at 

10X with N > 5000 for each violin plot. (B-C) Cytoplasm and nucleus measurements taken in U-2 

OS cells and at high magnification. The box represents the 25th and 75th percentiles, the whiskers 

showing the minimum and maximums for each GS-repeat construct, and the median is shown as 

a black line. The purple and blue lines are the linear fits of the medians and fit error is shown by 

the shaded regions. Points correspond to individual cells.  Images were taken at 40X with N > 25 

for each box plot. (D) The linear fits of the medians with fit error shown by the shaded regions for 

HEK293T (gray), U-2 OS cytoplasm (purple), and U-2 OS nucleus (blue).  
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Figure A2.15. Solution space scans of naturally occurring IDRs. Features are as in Fig. A2.11. 
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Figure A2.16. Original and flipped GS16 repeat constructs. (A) Surface electrostatic analysis using 

APBS205 shows different surface charges for mNeonGreen and mTurquoise2. The N and C termini 

are labeled as yellow and cyan spheres, respectively. (B) Sequences of GS16 with the nearest 20 

residues from the flanking fluorescent proteins, aligned using Clustal Omega206,207. Color codes are 

from CIDER analysis208. Red: negative charge; blue: positive charge; black: hydrophobic residues; 

green: polar residues; orange: aromatic residues. Blue and green boxes show residues at the 

terminals of mTurquoise2 and mNeonGreen, respectively, connected to the GS-repeat sequence.  
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Figure A2.17. (A) FRET experiments showing effect of NaCl titration on original GS-repeat 

constructs and the GS16 construct with FP locations flipped. The experiments for GS0, GS8, GS24 

and GS32 are the same as shown in Fig. A2.6, while measurements at a greater number of low 

NaCl concentrations were performed on original and flipped GS16 to facilitate a precise direct 
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comparison of electrostatic effects. Experimental data was fit to an exponential decay with a sloping 

baseline, 𝐸𝑓
𝑎𝑝𝑝([𝑁𝑎𝐶𝑙]) = 𝐴𝑒(−𝑘[𝑁𝑎𝐶𝑙])  +  𝑚[𝑁𝑎𝐶𝑙]  +  𝑏. In this equation 𝑘 is a decay constant that 

indicates the effect of screening of electrostatic interactions on ensemble structure, and 𝑚 is a 

linear slope that accounts for the specific interactions of the ions at higher concentrations 19,82,209. 

(B) Comparison of 𝑘 of the original and flipped GS16 constructs. Identical 𝑘 for the original (6.8 ± 

0.7 𝑀−1) and the flipped construct (6.8 ± 0.6 𝑀−1) indicates that electrostatic interactions cannot 

explain the difference in 𝐸𝑓
𝑎𝑝𝑝

 between the two constructs. (C) Slope 𝑚 vs. the length of all GS-

repeat sequences. All original GS repeats show a linear relationship between 𝑚 and length. The 

flipped GS16 construct falls below this line, indicating a tighter packing of one or both of the FPs. 

(D) Comparison of the peak emission wavelengths for mTurquoise2 (left) and mNeonGreen (right) 

untethered vs. in the original and flipped constructs compared in Fig. 3.5B and C. For mNeonGreen, 

P < 0.0001 for untethered vs. each original construct and untethered vs. each flipped construct 

(n=24 for mNeonGreen untethered, n=24 for each original construct, and n=12 for each flipped 

construct). The shifts of the mNeonGreen peak indicate changes in mNeonGreen between the 

original and flipped construct as a result of IDR presence. 
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Figure A2.18. Screens from BioXTAS RAW software193 showing process of deconvolution of SEC 

peaks using evolving factor analysis. Left: raw chromatograms. Center: ranges of deconvoluted 

peaks. Right: 𝐼(𝑞) vs. 𝑞 series, calculated radius of gyration, and calculated molecular weight for 

each deconvoluted peak. Same colors in center and right panels represent the same deconvoluted 

peaks. 
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Figure A2.19. Analysis pipeline for live cell data. The donor channel before perturbation (Ch 1) 

was segmented using a fixed threshold to include any pixels with an intensity value between 1,500 

- 40,000. The ImageJ “analyze particles” algorithm was used to select thresholded regions with a 

circularity between 0.1 -1.0 and a size of 65 - 845 μm². All channels were aligned using the 

StackReg plugin before segmented regions were applied and measured. Final measurements were 

corrected for bleedthrough and cross-excitation using slopes obtained from Fig. A2.21.   
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Figure A2.20. In vitro measurement of direct acceptor emission for known recombinant, purified 

proteins measured on the same setup as the live cells. Dashed line shows the emission cutoff used 

to select cells with a concentration range around 5 μM or lower to correlate with in vitro experiments. 
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Figure A2.21. Measurements of cross-excitation (left) and bleedthrough (right) from donor to 

acceptor channel. To calculate cross-excitation, cells expressing mNeonGreen only were imaged. 

To calculate bleedthrough, cells expressing mTurquoise2 only were imaged. In both cases, the 

same imaging settings as those used for FRET constructs were used. (left) The x-axis shows 

acceptor emission under acceptor excitation. (right) The x-axis shows donor emission under donor 

excitation. In both figures, the y-axis shows acceptor emission under donor excitation. The slopes 

of these two values were used to correct the signal from the FRET construct according to the 

following equation: 

 

𝐹𝐴 = 𝐹𝐴,𝑢𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 − (0.19 × 𝐹𝐴,𝑑𝑖𝑟𝑒𝑐𝑡 + 0.53 × 𝐹𝐷) 

 

where 𝐹𝐴 is used to calculate 𝐸𝑓
𝑐𝑒𝑙𝑙. The numbers 0.19 ± 0.001 and 0.53 ± 0.001 are the slopes from 

the figures above.  

 
Additionally, we performed photobleaching experiments where mNeonGreen of various FRET 

constructs were bleached. These bleached constructs were used to measure and calculate 

bleedthrough and similar results were obtained (slope of 0.51 ± 0.007).  
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Figure A2.22. HPLC traces from purification of label-free peptides. (A) PUMA WT. (B) PUMA S1. 

(C) PUMA S2. (D) PUMA S3.   
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Figure A2.23. High-resolution ESI mass spectra of purified label-free peptides. (A) PUMA WT. (B) 

PUMA S1. (C) PUMA S2. (D) PUMA S3. Calculated and experimental masses are shown in Table 

A2.2. 
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Supplementary Tables 

 

Table A2.1. IDR sequences used in this study. 

 

IDR Number of 
residues 

Amino acid sequence 

GS0 0 
 

GS8 16 GSGSGSGSGSGSGSGS 

GS16 32 GSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGS 

GS24 48 GSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSG
SGSGSGSGSGS 

GS32 64 GSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSG
SGSGSGSGSGSGSGSGSGSGSGSGSGS 

GS48 96 GSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSG
SGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGSGS
GSGSGSGSGSGSGSGSGSGSGS 

WT PUMA 34 VEEEEWAREIGAQLRRIADDLNAQYERRRQEEQH 

PUMA S1 34 ELARQEERGIAVHYARQEQWANQLERERDEIERD 

PUMA S2 34 LEWLERRRQEEVAGQEYIRDNRAEQDRIAAEEQH 

PUMA S3 34 IHRAIDDQYERQLERQARLVWEEEGERERNEQAA 

p53 61 MEEPQSDPSVEPPLSQETFSDLWKLLPENNVLSPLPSQAM
DDLMLSPDDIEQWFTEDPGPD 

Ash1 83 GASASSSPSPSTPTKSGKMRSRSSSPVRPKAYTPSPRSPN
YHRFALDSPPQSPRRSSNSSITKKGSRRSSGSSPTRHTTR
VCV 

E1A 40 MRHIICHGGVITEEMAASLLDQLIEEVLADNLPPPSHFEP 

FUS 163 MASNDYTQQATQSYGAYPTQPGQGYSQQSSQPYGQQSY
SGYSQSTDTSGYGQSSYSSYGQSQNTGYGTQSTPQGYG
STGGYGSSQSSQSSYGQQSSYPGYGQQPAPSSTSGSYG
SSSQSSSYGQPQSGSYSQQPSYGGQQQSYGQQQSYNPP
QGYGQQNQYNS 

 

Table A2.2. Calculated and experimental masses of label-free peptides. 

 

Peptide Calculated 
Mass (Da) 

Experimental Mass 
from ESI-MS (Da) 

Retention Time 
(minutes) 

PUMA WT 4263.0918 4263.0974 22.47 

PUMA S1 4263.0918 4263.1014 12.64 

PUMA S2 4263.0918 4263.0923 13.59 

PUMA S3 4263.0918 4263.0948 12.94 
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Appendix 3 

 

A3.1 Materials and Methods 

 

A3.1.1 Protein purification 

 

2 L of LB supplemented with ampicillin (100 µg/mL) was inoculated with 20 

mL/L of a saturated culture of cells containing pDEST-HisMBP-SED1. The culture 

was grown at 37°C, shaking at 225 rpm, to OD600 ~ 0.6. At this point, recombinant 

protein was induced with 1 mM IPTG (BIOSYNTH International) and the culture 

was transferred to 16°C and 250 rpm for 20 hours. Cells were collected and lysed 

in lysis buffer (50 mM NaH2PO4, pH 8, 0.5 M NaCl) by sonication on ice using a 

Q700 sonicator (Qsonica), and the extract was clarified by centrifugation. The His-

tagged recombinant fusion protein was separated by affinity chromatography using 

Ni-NTA beads (Qiagen) and eluted with 50 mM NaH2PO4, pH 8, 0.5 M NaCl, 250 

mM imidazole. To remove the His-MBP tag, the recombinant protein was 

incubated at 4°C overnight with TEV protease. Tag-free recombinant SED1 was 

separated by size-exclusion chromatography in an ÄKTA go purification system 

(Cytiva) in 20 mM sodium phosphate, pH 7.4, 100 mM NaCl. The purity of 

recombinant SED1 was confirmed by SDS-PAGE. The same strategy was 

followed for pDEST-HisMBP-CS.       

 

A3.1.2 Solution preparation and specifics 

 

Solutes were purchased from Alfa Aesar (Sarcosine, PEG200, PEG2000, 

PEG6000), VWR (D-Sorbitol), GE Healthcare (Ficoll), TCI (D-(+)-Trehalose 

Dihydrate, Trimethylamine N-Oxide Dihydrate (TMAO)), Thermo Scientific 

(Guanidine Hydrochloride), Acros Organics (Betaine Monohydrate), and Fisher 

BioReagents (Ethylene Glycol, Glycerol, Glycine, Magnesium Chloride 

Hexahydrate, Potassium Chloride, Sodium Chloride, Sucrose, Urea), and used 

without further purification. Stock solutions were made by mixing the solute with 

20 mM sodium phosphate buffer, pH 7.4, with the addition of 100 mM NaCl except 

for NaCl and KCl solutions, which were initially free of additional salt. The same 

buffer was used for all dilutions. 

 

A3.1.3 Fluorescence analysis of purified recombinant proteins 

 

FRET experiments were conducted in black plastic 96-well plates (Nunc) 

using a CLARIOstar plate reader (BMG LABTECH). Buffer, stock solution, and 
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purified protein solution were mixed in each well to reach a volume of 150 μL 

containing the desired concentrations of the solute and the FRET construct, with 

a final concentration of 0.8 μM protein. Fluorescence measurements were taken 

from above, at a focal height of 5.7 mm, with gain fixed at 1020 for all samples. 

For each construct, 24 replicates were performed in neat buffer containing NaCl, 

12 replicates were performed in neat buffer not containing NaCl, and two repeats 

were performed in every other solution condition. Fluorescence spectra were 

obtained for each construct in each solution condition by exciting the sample in a 

10-nm band centered at 433 nm, with a dichroic at 446.5 nm, and measuring 

fluorescence emission from 460 to 600 nm, averaging over a 10 nm window moved 

at intervals of 1 nm. The ratio of acceptor to donor intensity (DxAm/DxDm) was 

calculated by dividing the total measured fluorescence intensities from 500 to 600 

nm by the total measured fluorescence intensities from 460 to 499 nm. 

 

A3.1.4 All-atom simulations 

 

Simulations of AtLEA4-5 protein, its scrambles, and other IDRs were done 

using solution space scanning20, an all-atom Monte Carlo simulation method 

based on the ABSINTH force field83,177 that has been previously described20. 

Briefly, the Hamitonian function to be evaluated in each step can be written as the 

following representation. 

 

𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑊𝑠𝑜𝑙𝑣 + 𝑈𝐿𝐽 + 𝑊𝑒𝑙 + 𝑈𝑐𝑜𝑟𝑟 

 

Here, 𝑊𝑠𝑜𝑙𝑣  is the energy describing the interaction between the protein 

surface and the surrounding solution. By changing the 𝑊𝑠𝑜𝑙𝑣 term, we can alter this 

interaction and sample a protein’s conformations in different solution conditions.  

 

For each combination of solution condition and protein (AtLEA4-5 and each 

of its sequence scrambles), we ran five independent simulations consisting of 

5x107 Monte Carlo steps (following 1x107 steps of equilibration) starting from 

random conformations to ensure proper sampling. Protein conformations were 

written out every 12,500 steps. The dataset of 70 other IDRs shown in Fig. 4.1B 

was obtained using the same methods, is publicly available on 

https://github.com/sukeniklab/HiddenSensitivity, and has been previously 

described19. We analyzed the average radii of gyration of the simulated 

conformation ensembles using the MDTraj python library 178. Standard deviations 

were calculated based on the average of five individual repeats. Each radius of 
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gyration was then normalized based on the most expanding solution to highlight 

solution sensitivity. 

 

A3.1.5 U-2 OS cell culture  

 

All U-2 OS (ATCC HTB-96) and HEK-293T (ATCC CRL-3216) cell lines 

used in this study were cultured at 37°C in 5% CO2 in high-glucose DMEM (GE 

Healthcare) supplemented with 10% FBS (Atlanta Biologicals), 1 mM sodium 

pyruvate (Gibco), 2 mM L-glutamine (Gemini Biosciences), 1x MEM non-essential 

amino acids (Gibco), 40 U/ml penicillin and 40 μg/ml streptomycin (Gemini 

Biosciences). Stable U-2 OS SED1-expressing cell lines were generated by 

lentiviral transduction. To produce lentiviral particles, the SED1 construct was first 

subcloned into EcoRV-HF (NEB)-digested pLenti-CMV Puro DEST (Addgene 

#17452) using the NEBuilder HiFi DNA Assembly master mix (NEB), and then 

transfected into HEK-293T cells together with pMD2.G (Addgene #12259) and 

psPAX2 (Addgene #12260). Virus was harvested 48 h after transfection, filtered 

through non-binding 45 μm syringe filters (Pall Corporation) and used to transduce 

U-2 OS cells. After 24 h, the virus-containing medium was removed and replaced 

with selection medium containing 2 μg/ml Puromycin (Sigma–Aldrich). After 7 days 

of selection, single-cell clones were derived by sorting for the top ~60% fluorescent 

cells using a Sony SH800 flow cytometer. Two individual clones were randomly 

selected for further use. 

 

A3.1.6 U-2 OS sample preparation 

 

U-2 OS cells expressing SED1 were cultured in Corning treated flasks with 

Dulbecco’s modified Eagle’s medium (DME:F-12 1X from Hyclone Cat No 

SH30023.01) supplemented with 10% FBS (Gibco REF 16000-044) and 1% 

penicillin/streptomycin (Gibco REF 15140-122). Cells were incubated at 37°C and 

5% CO2. Sorbitol (VWR CAS 50-70-4) and NaCl (Fisher Bioreagents CAS 7647-

14-5) stock solutions of 3 M and 5 M respectively were prepared by dissolving the 

corresponding amounts of sorbitol or NaCl in autoclaved DI water and filtering 

using a 0.2 µm filter. The solutions used for perturbations were obtained by diluting 

the stock solutions with autoclaved DI water. 

 

Prior to imaging, 13,000 cells were plated in a µ-Plate 96-well black treated 

imaging plate (Ibidi) and allowed to adhere overnight (~16 hours) before 

perturbations. Cells were stained with DAPI (Thermo). To prepare the stain, a 14.3 

mM DAPI stock dissolved in DI water was diluted to a final concentration of 300 
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µM with complete media. The media from the cells was aspirated and DAPI-

containing media was added to the cells, which were then incubated for 15 minutes 

at 37°C and 5% CO2. After the incubation period, the cells were rinsed twice with 

PBS and 200 µL of PBS was added. 

  

A3.1.7 U-2 OS fluorescence microscopy 

 

Imaging was done on a Zeiss epifluorescent microscope using a 40X 0.9 

NA dry objective. Excitation was done with a Colibri LED excitation module and 

data was collected on dual Hamamatsu Flash v3 sCMOS cameras. The cells were 

imaged at room temperature before and less than 1 minute following perturbation 

with 300 ms exposure times. Imaging was done by exciting DAPI (385 nm) under 

donor excitation (Dx, 430 nm) or acceptor excitation (Ax, 511 nm). Emitted light 

was passed on to the camera using a triple bandpass dichroic (467/24, 555/25, 

687/145). When measuring FRET, emitted light was split into two channels using 

a downstream beamsplitter with a 520 nm cutoff.  For each perturbation, the cells 

were focused using the DAPI channel, and imaged with two channels using Dx, in 

one channel using Ax. The final osmolarities that were used for the perturbations 

were: 150 mOsm, 300 mOsm (isosmotic), 525 mOsm, 600 mOsm, and 650 mOsm 

with sorbitol or NaCl as the osmotic agents. From each well in the 96-well plate, 4-

5 cells were analyzed. Each perturbation was replicated at least 3 times in a single 

plate, and the data reported are combined from at least two plates prepared on 

different days. 

 

A3.1.8 U-2 OS image analysis 

 

The images were analyzed using ImageJ. For each cell, 5 ROIs were 

selected: (1) background ROI, located where no cells were present, to measure 

any background changes that may have occurred due to media changes; (2-5) four 

ROIs in the cytoplasm of each cell. For each ROI, the background signal was 

subtracted, and average intensity values were reported in four channels: (a)  donor 

emission under donor excitation (DxDm), (b) acceptor emission under donor 

excitation (DxAm), (c) acceptor emission under acceptor excitation (AxAm), and 

(d) DAPI emission under DAPI excitation. To correct for donor bleedthrough, cells 

were plated and stained as previously mentioned. Cells were imaged, the acceptor 

was photobleached under prolonged direct acceptor excitation, and the cells were 

imaged again. ROIs of all the cells present in the plane of view were measured. A 

correlation plot of donor emission against acceptor emission was generated to 

determine percent bleedthrough.  
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