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Abstract

We examined whether cognitive reserve (CR) impacts level of, or rate of change in, biomarkers of 

Alzheimer’s disease (AD) and small vessel cerebrovascular disease in >250 individuals who were 

cognitively normal and middle-aged and older at baseline. The four primary biomarker categories 

commonly examined in studies of AD were measured longitudinally: cerebrospinal fluid (CSF) 

measures of amyloid (A) and tau (T); CSF and neuroimaging measures of neuronal injury (N); and 

neuroimaging measures of white matter hyperintensities (WMH) to assess cerebrovascular 

pathology (V). CR was indexed by a composite score including years of education, reading, and 

vocabulary test performance. Higher CR was associated with lower levels of WMH, particularly 

among those who subsequently progressed from normal cognition to MCI. CR was not associated 

with WMH trajectories. Additionally, CR was not associated with either levels of, or rate of 

change in, A/T/N biomarkers. This may suggest that higher CR is associated with lifestyle factors 
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that reduce levels of cerebrovascular disease, allowing individuals with higher CR to better tolerate 

other types of pathology.
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1.1 Introduction

The concept of cognitive reserve (CR) was originally based on the observation that there can 

be marked discrepancies between the amount of neuropathology in the brain and the severity 

of cognitive or clinical impairment. For example, both biomarker and autopsy studies have 

shown that higher levels of CR (most commonly measured by variables related to lifetime 

cognitive experience, such as educational attainment, IQ, and literacy) reduce the impact of 

neuropathology on cognitive performance and clinical symptoms (e.g., Bennett et al., 2003; 

Brickman et al., 2011; Soldan et al., 2013; Stern et al., 1992).

The term cognitive reserve has been defined in a number of ways, as reflected by several 

recent publications that have recommended terminology based on varying conceptual 

frameworks (Arenaza-Urquijo & Vemuri, 2018; Cabeza et al., 2018; Stern et al., 2018). 

Although there remains debate about the definitions of specific terms, it is widely agreed 

that CR reflects a property of the brain that mitigates the effects of neuropathology on 

cognitive performance, and that the neurobiological mechanisms underlying CR are not well 

understood.

One possibility is that CR affects the rate at which disease-related pathology accumulates in 

the brain, which has been variously referred to as ‘brain maintenance’ (Stern et al., 2018) or 

‘resistance’ (Arenaza-Urquijo & Vemuri, 2018). In the present study, we test this possibility 

within the context of the recent framework proposed for categorizing individuals on the 

basis of their Alzheimer’s disease (AD) biomarkers, the so-called ‘A/T/N’ framework. This 

schema classifies AD biomarkers into three categories: amyloid (A), tau (T), and neuronal 

injury (N) (Jack et al., 2016). Since mixed pathologies are extremely common among older 

persons (Schneider et al., 2009), Jack and colleagues also suggested that categorization of 

individuals on the basis of their AD biomarkers might be supplemented with a biomarker of 

cerebrovascular disease (V). This study therefore examined whether a measure of CR was 

associated with the level of, or altered rate of change in, A/T/N/V biomarkers in a cohort of 

individuals who were cognitively normal and middle aged and older at baseline. It seemed 

particularly important to examine this issue among individuals who were middle age when 

first evaluated since there is increasing evidence that the pathological features of AD begin 

to develop in middle age (Pletnikova et al., 2015; 2018), and that vascular risks present in 

middle age are associated with late life cognitive decline (Gottesman et al., 2017).

A number of cross-sectional studies have reported less abnormal levels of biomarkers of AD 

and small vessel cerebrovascular pathology among cognitively normal individuals with 

higher CR, as measured by variables such as education, occupation, and engagement in 

cognitively stimulating activities (Alemedia et al., 2015; Arenaza-Urquijo et al., 2017a, 
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2017b; Landau et al., 2012; Liu et al., 2012; Schreiber et al., 2016; Wirth et al., 2014a, 

2014b). This is consistent with the notion that CR delays or reduces the accumulation of 

pathology. However, studies have also reported no difference in AD biomarker levels by 

level of CR (Alemedia et al., 2015; Gidicsin et al., 2015; Ko et al., 2018; Pettigrew et al., 

2017b; Schreiber et al., 2016; Shpanskaya et al., 2014; Vemuri et al., 2012; Wirth et al., 

2014a).

The few longitudinal studies that have examined this issue among cognitively normal 

individuals have provided only weak support for the hypothesis that CR directly impacts 

biomarker trajectories. For example, some studies with smaller sample sizes have found that 

measures of CR are associated with a reduced rate of decline in hippocampal volume (Suo et 

al., 2012) and cerebrospinal fluid (CSF) Aβ42 (Lo & Jagust, 2013). However, other studies 

have found no associations between similar CR proxies and rates of change in hippocampal 

volume (Lo & Jagust, 2013; Soldan et al., 2015) or other brain regions vulnerable to AD 

(Soldan et al., 2015; Walters et al., 2018); amyloid levels as measured by positron emission 

tomography (PET) or CSF Aβ1–42 (Soldan et al., 2013; Walters et al., 2018); CSF total tau 

(t-tau) or phosphorylated tau (p-tau) (Soldan et al., 2013); or white matter hyperintensities 

(WMH) (Cook et al., 2004).

Using data from the BIOCARD study, which includes longitudinal biomarker and clinical 

assessments, the present study expands prior work in a number of ways. First, we examined 

four categories of biomarkers, A/T/N/V, in the same cohort, using the following measures: 

(A) CSF Aβ1–42; (T) CSF p-tau; (N) CSF t-tau and magnetic resonance imaging (MRI) 

measures of medial temporal lobe (MTL) volumes and cortical thickness in ‘AD vulnerable’ 

regions; and (V) WMH volumes. Second, we examined whether the relationship between 

CR and change in biomarkers over time differs by other factors that might impact biomarker 

trajectories, including age and APOE-4 genetic status. Third, the long clinical follow-up 

available in the BIOCARD study also made it possible to examine whether the relationship 

between CR and change in biomarkers differed by diagnostic outcomes many years later, by 

comparing individuals who were initially cognitively normal but subsequently progressed to 

Mild Cognitive Impairment (MCI) to those who have remained cognitively normal 

throughout the course of follow-up.

2.1 Materials and Methods

2.2 Study Design and Participant Selection

The data presented here were derived from the BIOCARD study, which is an ongoing 

longitudinal prospective cohort study designed to identify variables among cognitively 

normal individuals that predict subsequent development of mild to moderate symptoms of 

AD. As described previously (Albert et al., 2014; see also Supplementary Materials 1), the 

BIOCARD study was initiated in 1995 at the National Institutes of Health (NIH). 

Participants were excluded at baseline if they were judged to be cognitively impaired, as 

determined by the cognitive testing or by evidence of clinical symptoms based on reports by 

collateral sources, or had significant medical problems (such as severe cardiovascular or 

cerebrovascular disease (CVD), chronic psychiatric disorders, or chronic neurologic 

disorders). After providing written informed consent, 349 cognitively normal, primarily 
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middle aged (M = 57.3 years, SD = 10.4, range = 20.0–85.8) participants were enrolled over 

time, beginning in 1995 and ending in 2005. By design, approximately 75% of the cohort 

had a first degree relative with dementia of the Alzheimer type.

While the study was at the NIH, participants were administered a comprehensive 

neuropsychological battery and clinical assessment annually, which included a physical and 

neurological examination, record of medication use, and behavioral and mood assessments. 

Blood, CSF, and MRI scans were obtained approximately every two years. The study was 

stopped in 2005 for administrative reasons and reinitiated in 2009 when a research team 

from the Johns Hopkins University (JHU) was funded to re-establish the cohort and continue 

annual cognitive and clinical assessments, collect blood, and evaluate the previously 

acquired cognitive and biomarker data. In 2015, biennial collection of CSF and MRI scans 

was re-established, and the acquisition of positron emission tomography scans, using 

Pittsburgh Compound B, was begun. Tau PET imaging was initiated in 2017. See Figure 1 

for a study timeline. This study was approved by the JHU Institutional Review Board, and 

data collection is ongoing.

2.3 Clinical Assessments

Clinical assessments and consensus diagnosis procedures were completed annually at both 

the NIH and JHU, and have been described in detail previously (Albert et al., 2014; see 

Supplementary Materials 1). Briefly, participants received a consensus diagnosis by the staff 

of the JHU BIOCARD Clinical Core, with all cases handled in a manner comparable with 

those used in the National Institute on Aging Alzheimer’s Disease Centers program. This 

involves first establishing a syndromic diagnosis using three sources of information: (1) 

clinical data pertaining to an individual’s medical, neurological, and psychiatric status; (2) 

reports of changes in cognition by the individual and by collateral sources (using the Clinical 

Dementia Rating scale (CDR®; Morris, 1993); and (3) decline in cognitive performance, 

based on review of longitudinal testing from multiple domains (and comparison to published 

norms). We followed the diagnostic recommendations incorporated in the NIA-AA working 

group reports for the diagnosis of MCI (Albert et al., 2011) and dementia due to AD 

(McKhann et al., 2011). The diagnosis of Impaired Not MCI typically reflected contrasting 

information from the CDR interview and the cognitive test scores (i.e., the subject or 

collateral source expressed concerns about cognitive changes in daily life but the cognitive 

testing did not show changes, or visa versa; see Albert et al., 2014). Individuals with a 

diagnosis of Impaired Not MCI were included among the cognitively normal group, as in 

most prior analyses in this study (e.g., Pettigrew et al., 2017b; Soldan et al., 2017).

All clinical diagnoses were made without knowledge of the biomarker measures. By 

definition, all participants included in these analyses were judged to be cognitively normal at 

baseline. For follow-up diagnoses, each individual’s most recent (i.e., last) diagnosis was 

coded by a dichotomous indicator variable: 0 if participants have remained cognitively 

normal over time, or 1 if they have since progressed from normal cognition to MCI or 

dementia.
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2.4 Biomarker Assessments

The analyses presented here are based on CSF and MRI data that were acquired over time 

while the study was at the NIH (i.e., 1995–2005). These data were later analyzed at a single 

point in time by JHU investigators, as described below. Biomarker measures acquired at 

JHU from 2015 onwards were not included in the present analyses because harmonization of 

the biomarker data collected during the NIH and JHU phases is still ongoing. Although 349 

participants were enrolled in the cohort, the N included in each set of biomarker analyses 

was smaller, as specified below (see Supplemental Table 1 for reasons participants were 

excluded from each set of biomarker analyses).

2.4.1 Cerebrospinal Fluid Assessments—CSF samples were analyzed with the 

same protocol used in the Alzheimer Disease Neuroimaging Initiative. This protocol used 

the xMAP-based AlzBio3 kit (Innogenetics) run on a Bioplex 200 system, containing 

monoclonal antibodies specific for Aβ1–42 (4D7A3), t-tau (AT120), and p-tau181p (AT270), 

each chemically bonded to unique sets of color-coded beads, and analyte-specific detector 

antibodies (HT7, 3D6). Each participant had all samples (run in triplicate) analyzed on the 

same plate. Additional details about the CSF assays and intra-assay coefficients of variation 

have been published elsewhere (Moghekar et al., 2013). The present study included CSF 

measures of Aβ1–42, p-tau, and t-tau from 271 participants.

2.4.2 Magnetic Resonance Imaging Assessments—MRI scans were acquired over 

time on a GE 1.5T scanner using a standard multimodal protocol, as described in Miller et 

al. (2013). Relevant to the present study, this protocol included a coronal Spoiled Gradient 

Echo (SPGR) sequence (TR = 24, TE = 2, FOV = 256 × 256, thickness/gap = 2.0/0.0 mm, 

flip angle = 20, 124 slices) and an axial Flair sequence (TR = 9,002, TE = 157.5, FOV = 256 

× 256, thickness/gap = 5.0/0.0 mm, flip angle = 90, 28 slices), which were used to derive our 

MRI measures of interest.

2.4.3 Volume of Medial Temporal Lobe Structures—Volumes of the hippocampus, 

entorhinal cortex, and amygdala were derived from the coronal SPGR scans using a semi-

automated method based on large deformation diffeomorphic metric mapping (LDDMM) 

techniques (see Miller et al., 2013). Briefly, for each region of interest (ROI), landmarks 

were manually placed in each scan, as well as a hand segmented template, to mark the 

boundaries of the ROI, following previously published protocols. ROI-LDDMM was then 

used to generate segmented binary images by mapping the template to the individual subject 

scans. Volumes of the hippocampus, entorhinal cortex, and amygdala were calculated by 

summing the number of voxels within the volume within each hemisphere. For the present 

analyses, volumes of the hippocampus, entorhinal cortex, and amygdala were normalized for 

head size by regressing the average of the left and right hemispheres on intracranial volume 

(ICV), at each time point. The three standardized residuals were then averaged to create a 

MTL composite score for each time point (Pettigrew et al., 2017a). Because the residuals 

were standardized (i.e., mean of 0, standard deviation of 1), all three MTL measures were on 

the same scale, and therefore given equal weight. The present study included MTL 

composite scores from 288 participants.
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2.4.4 Cortical Thickness in ‘AD Vulnerable’ Regions—Measures of cortical 

thickness in AD vulnerable regions were derived from the coronal SPGR scans using 

FreeSurfer, an automated image processing pipeline that is documented and freely available 

online (http://surfer.nmr.mgh.harvard.edu/). All scans were first processed with FreeSurfer’s 

cross-sectional pipeline (as described in Pettigrew et al., 2016). In order to extract reliable 

thickness estimates for longitudinal analysis, the images where then processed with the 

FreeSurfer longitudinal stream (version 5.3). The longitudinal stream creates an unbiased 

within-subject template space and image using robust, inverse consistent registration, and 

initializes several processing steps using common information from the within-subject 

template, significantly increasing reliability and statistical power (Reuter et al., 2012). 

Following completion of the FreeSurfer pipeline, all scans were reviewed to assess the 

quality of skull stripping and ensure that surfaces followed the gray and white matter 

boundaries. Where needed, manual edits were performed to improve segmentation and 

parcellation accuracy, which primarily included the correction of pial surface misplacement 

and errors in white matter segmentation. Regions judged to have unreliable surfaces were 

excluded from analysis. The dependent variable was a measure of mean cortical thickness in 

seven FreeSurfer-labeled regions of interest, previously classified as ‘AD vulnerable’, 

including: temporal pole, inferior temporal gyrus, middle temporal gyrus, inferior parietal 

cortex, superior parietal cortex, precuneus, and posterior cingulate cortex (Pettigrew et al., 

2016). At each time point, the cortical thickness measures were first averaged over the left 

and right hemispheres; the seven bilateral measures were then averaged to create a measure 

of mean thickness of AD vulnerable regions. The present study included mean thickness 

measures from 251 participants.

2.4.5 Volume of White Matter Hyperintensities—Global WMH volumes were 

derived from the axial FLAIR scans and quantified using an automated method described 

previously (Decarli, Maillard, & Fletcher, 2013). Briefly, following skull removal, images 

were nonlinearly registered to a minimal deformation template adapted for age range of 60 

years and above. Field inhomogeneity bias was corrected and the bias field was modeled 

using a spatially smooth thin-plate spline interpolation. An Expectation-Maximization (EM) 

algorithm was used to segment gray, white, and CSF tissues, and WMH measures were 

calculated based on a combination of FLAIR and 3D T1 images using a modified Bayesian 

probability structure based on histogram fitting. Likelihood estimates of the native image 

were calculated through histogram segmentation and thresholding. All segmentation was 

initially performed in standard space resulting in probability likelihood values of WMH at 

each voxel in the white matter. These probabilities were then thresholded at 3.5 SD above 

the mean to create a binary WMH mask. Further segmentation was based on a modified 

Bayesian approach that combines image likelihood estimates, spatial priors and tissue class 

constraints. The segmented WMH masks were then back-transformed to native space for 

tissue volume calculation. In the present study, the dependent variable was a log-transformed 

measure of global WMH volume (to correct for skewness), from each time point. The 

present study included WMH volumes from 277 participants.
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2.5 Cognitive Reserve Composite Score

CR was operationalized by a composite score that included three measures commonly used 

as proxies of CR, hypothesized to reflect lifetime cognitive experiences. These included: (1) 

baseline scores from the National Adult Reading Test (Nelson, 1982); (2) baseline scores on 

the vocabulary subtest of the Wechsler Adult Intelligence Scale–Revised (Wechsler, 1981); 

and (3) years of education. To calculate the composite, these measures were z-scored and 

then averaged. Of note, this composite has previously been shown to be associated with 

better cognitive and clinical outcomes after adjusting for biomarkers of AD pathology 

(Pettigrew et al., 2017b; Soldan et al., 2013, 2015, 2017).

2.6 APOE Genotype

APOE genotypes were determined by restriction endonuclease digestion of polymerase 

chain reaction amplified genomic DNA (Athena Diagnostics, Worcester, MA). Genotypes 

were coded dichotomously (APOE-4 carriers = 1, non-carriers = 0). Analyses including 

APOE-4 excluded APOE ε2/ε4 carriers given these alleles have contrasting effects on 

dementia risk (Corder et al., 1993, 1994).

2.7 Statistical Analyses

Longitudinal linear mixed effects models were used to estimate the association between the 

baseline CR composite score and level of, and longitudinal change in, the A/T/N/V 

biomarkers described above. These models included linear effects of time and were specified 

with random intercepts and slopes (Laird & Ware, 1982; Diggle et al., 1994). Separate 

models were run for each biomarker, which served as the dependent variable, including 

baseline measures and all available follow-up. The primary set of models included the 

following predictors: age at first biomarker measurement, sex, CR composite score, time 

(years from baseline), and the interaction (cross-product) of each predictor with time. The 

main effect of the CR composite score, and the two-way CR composite score x time 

interaction, were of primary interest, as these terms reflect differences in biomarker levels 

and biomarker trajectories (respectively) as a function of the CR composite score. Time was 

modeled in the unit of year. All other continuous variables were standardized before model 

fitting. Although we previously examined the relationship between CR and longitudinal CSF 

and MTL biomarker trajectories using simple slope measures to estimate change (Soldan et 

al., 2013, 2015), the methods used here are more robust because they allow subject-specific 

trends over time to be estimated on a continuous scale, can account for a different number of 

observations between subjects, and allow for participants with only one biomarker measure 

to be included in the same models (McCulloch & Neuhaus, 2005).

The second set of linear mixed regression models tested whether the relationship between 

the CR composite score and level of, and longitudinal change in, the A/T/N/V biomarkers 

was modified by age, APOE-4 genetic status, and follow-up diagnosis by including the 

relevant two-way and three-way interactions (in addition to all lower-order interaction 

terms). For example, the CR composite score x APOE-4 interaction indicates whether the 

effect of CR on baseline biomarker levels differed by APOE-4 genetic status, whereas the 

three-way CR composite score x APOE-4 x time interaction indicates whether the effect of 

CR on biomarker trajectories differed by APOE-4 genetic status. Where reported below, we 
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used the Benjamini, Hochberg, and Yekutieli (Benjamini & Yekutieli, 2001) method to 

adjust for multiple comparisons. All analyses were run in R, version 3.5.0.

2.8 Research Data

Anonymized BIOCARD study data are available upon request from qualified investigators; 

for more details, visit www.biocard-se.org.

3.1 Results

At their baseline biomarker assessment, the participants were middle-aged and older 

(approximately 60 years old). Participant characteristics are shown in Table 1, for those 

included in the MTL analyses. Participant characteristics for the other biomarker categories 

were comparable (see Supplemental Table 2). Characteristics for the entire BIOCARD 

cohort are shown in Supplemental Table 3.

Across the 6 biomarkers evaluated, a total of 305 unique participants contributed at least one 

biomarker measure to these analyses. On average, participants had 5.3/6 (SD = 1.2) 

biomarkers measured. Of these, 70% (212/305) had at least one data point on all 6 

biomarkers, and an additional 14% (42/305) had at least one data point on 5/6 biomarkers. 

On average, participants had approximately 2.3 biomarker measures over time (range, 1–7; 

see also Supplemental Table 4), with approximately 2.6 years between an individual’s first 

and last biomarker measurement (range, 0–10). At least 60% of participants had biomarker 

measures acquired at two or more time points. For this subset, participants had an average of 

approximately 3.1 biomarker measures over time, with approximately 4.0 years between an 

individual’s first and last biomarker measurement.

Results of the linear mixed effects models are shown in Tables 2–3. With the exception of t-

tau, there were significant main effects of time, indicating increased biomarker abnormality 

over the follow-up period (see Supplemental Figure 1 for spaghetti plots of raw biomarker 

trajectories). For most measures, there were also significant main effects of age, reflecting 

more abnormal biomarker levels among older adults. For WMH volumes, there was a main 

effect of the CR composite score, reflecting lower levels of WMH among participants with 

higher CR composite scores (Figure 2; p = 0.078 after correction for multiple comparisons). 

However, none of the biomarker trajectories were modified by baseline levels of CR (CR 

composite score x time, all p ≥ 0.56). The pattern of results was similar for a measure of 

entorhinal cortex thickness derived from LDDMM, as for the MTL composite score (data 

not shown). The relationship between CR and WMH remained the same when the WMH 

models were corrected for ICV (data not shown), and when the CR composite score was 

replaced with the individual CR measures (Supplemental Table 5).

The second set of models tested whether the relationship between the CR composite score 

and biomarker levels and trajectories was modified by baseline age, APOE-4 genetic status, 

and follow-up diagnosis. As shown in Table 1, participants had undergone approximately 13 

years of longitudinal clinical follow-up since their first biomarker measure, and 

approximately 23% of participants later progressed to MCI or dementia.
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None of the three-way interactions were significant, providing no evidence that the 

relationship between the CR composite score and biomarker trajectories differed by baseline 

age (all p ≥ 0.11), APOE-4 genetic status (all p ≥ 0.09), or follow-up diagnosis (all p ≥ 0.34) 

(Supplemental Table 6). However, in the models evaluating follow-up diagnosis, there was a 

significant two-way CR composite score x follow-up diagnosis interaction for WMH volume 

(estimate = −0.356, 95% CI = (−0.57, −0.14), p < .001, p = 0.012 after correction for 

multiple comparisons), indicating that the relationship between higher CR composite scores 

and lower WMH volumes was stronger among individuals who progressed to MCI/dementia 

over the course of follow-up, relative to those who remained cognitively normal.

4.1 Discussion

This study examined the association between a CR composite score and level of, and 

longitudinal change in, A/T/N/V biomarkers of AD pathology and small vessel CVD among 

individuals who were cognitively normal and largely middle-aged at baseline. Higher CR 

composite scores were associated with lower levels of WMH, but not with rate of change in 

WMH volumes. This association was particularly evident among individuals who eventually 

progressed to MCI or dementia (relative to those who remained cognitively normal). 

However, there was no evidence of a direct relationship between the CR composite score 

and level of, or rate of change in the A/T/N biomarkers. Furthermore, the relationship 

between the CR composite score and biomarker trajectories was not modified by 

participants’ age or APOE-4 genetic status.

Our results suggest that higher CR is associated with lower levels of CVD pathology, as 

measured by WMH volumes. These findings are consistent with a prior cross-sectional study 

among individuals with normal cognition (Wirth et al., 2014a). While some studies among 

non-demented participants (which includes individuals with MCI) also agree with our 

findings, others have not found significant relationships between measures of CR and WMH 

(Brickman et al., 2011; Raz et al., 2012; Valenzuela et al., 2008), which may reflect 

variations in pathology levels and participant clinical status across studies. These findings 

are also consistent with a study of brain tissue in which higher CR, as measured by a 

composite score reflecting education, occupation, and social engagement, was associated 

with less CVD in men at autopsy (Valenzuela et al., 2012), though neuropathology studies 

examining this same question using measures of education as a proxy for CR have produced 

mixed results (Del Ser et al., 1999; EClipSE Collaborative Members, 2010; Wilson et al., 

2019). In addition, a recent study by Aiello Bowles and colleagues (2019) found that both 

higher education and lower levels of non-AD pathology, including microinfarcts, were 

independently associated with ‘cognitive resilience’ among individuals with AD pathology 

at autopsy.

In light of the considerable evidence that cerebrovascular pathology and AD pathology have 

additive effects on the ‘threshold’ for a dementia diagnosis (Kapasi et al., 2017; Troncoso et 

al., 2008), the present findings suggest that lower levels of CVD may allow individuals with 

high CR to tolerate (i.e., be less affected by) higher levels of other types of age- or disease-

related brain changes, including AD pathology, with fewer cognitive or clinical 

consequences. Thus, lower levels of small vessel CVD may be one mechanism by which CR 
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is associated with reduced symptoms of cognitive decline in the presence of co-existing 

pathology. Consistent with this, we found a stronger relationship between the CR composite 

score and lower WMH volumes among the subset of individuals who progressed to MCI/

dementia, who have higher levels of AD pathology at baseline (e.g., Soldan et al., 2017). We 

have also previously found that individuals with higher levels of baseline CR have an older 

age of clinical symptom onset of MCI (Soldan et al., 2017). The results of the present study 

suggest this may be due, at least in part, to lower levels of CVD among individuals with 

higher CR. Because we and others (Cook et al., 2004; Raz et al., 2012; Valenzuela et al., 

2008) have failed to find a relationship between CR and short-term changes in WMH, it may 

be that CR impacts the severity of WMH, but not the rate of accumulation. However, 

additional studies are needed to examine WMH change over longer intervals, and in 

participants with greater variability in CVD burden, given that those with severe 

cardiovascular and cerebrovascular disease were excluded at baseline in this study.

Importantly, our results also suggest that CR is not related to the development of AD 

pathology, as measured by the A/T/N biomarkers included here, but instead appears to 

moderate the impact of AD pathology on cognition. For example, prior studies in this cohort 

(Pettigrew et al., 2017b; Soldan et al., 2013) and others (Mungas et al., 2018) have found 

that the protective effect of CR on clinical and cognitive outcomes is reduced at higher levels 

of biomarkers of (T) and (N) pathology, as measured by CSF p-tau, CSF t-tau, and cortical 

atrophy. Moreover, several longitudinal studies among cognitively normal individuals 

indicate that the protective effect of CR is equivalent across observed levels of amyloid, 

suggesting CR and amyloid have relatively independent effects on cognitive outcomes (for a 

review, see Soldan et al., 2018).

It is important to note that when measured by variables related to educational attainment, CR 

is likely conflated with a number of factors that promote healthier lifestyles, including 

socioeconomic status, management of vascular risks and medical conditions, engagement in 

cognitive and physical activities, nutrition, etc. (e.g., Hoeymans et al., 1996; Winkleby et al., 

1992). The extent to which CR reflects mechanisms that are distinct from these health and 

lifestyle factors remains to be determined. The fact that the mechanisms underlying CR may 

be influenced by potentially modifiable factors has important implications for identifying 

possible biomarkers of CR, so that they might be used in interventions designed to reduce 

cognitive decline and dementia risk.

It remains to be seen whether CR is associated with other neurobiological features, not 

measured here, that might also mitigate age- and/or disease-related brain changes. For 

example, CR may provide resilience by enhancing neural architecture or synaptic integrity 

(Arnold et al., 2013; Boros et al., 2017; Iacono et al., 2009; Perez-Nievas et al., 2013; Teipel 

et al., 2009; Valenzuela et al., 2012), which may be mediated by (or preserved through) 

repeated neurotransmitter expression (Garibotto et al., 2013; Robertson, 2013). These neural 

characteristics may support more robust functional networks, for maintaining performance 

or allowing for compensatory recruitment in the presence of pathology (Cabeza et al., 2018; 

Stern et al., 2018). Thus, there may be several neurobiological characteristics that underlie 

the mechanisms by which CR is protective. Moreover, as suggested by others, the neural 

resources underlying reserve are likely complex, highly interactive, and result from a 
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mixture of lifestyle, environmental, and genetic factors, as well as their interactions with 

each other (Cabeza et al., 2018; Stern et al., 2018). More work is clearly needed to 

understand these mechanisms.

The results of this study extend prior literature in a number of ways. First, to our knowledge, 

this is the first study to evaluate the relationship between CR and the four categories of 

A/T/N/V biomarkers together, in the same cohort. Second, prior longitudinal studies on this 

topic among initially cognitively normal individuals have tended to include individuals who 

were in their 70’s at their baseline biomarker assessment, and have been limited by small 

sample sizes. Third, few prior studies have examined whether the relationship between 

proxies for CR and biomarker trajectories is modified by other factors that might affect the 

accumulation of disease-related pathology, including baseline age, APOE-4 genetic status, 

and presence of preclinical disease, as indicated by eventual progression to MCI/dementia in 

a subset of participants (operationalized by last follow-up diagnosis). Notably, because we 

have previously demonstrated that our CR composite score is related to cognitive and 

clinical outcomes after adjusting for biomarkers of AD pathology, it is unlikely that the 

present study’s null findings for the A/T/N biomarkers can be attributed to the use of an 

ineffective CR proxy.

This study must be interpreted within the context of its limitations. Although the mean 

follow-up of the cohort for the purposes of examining subsequent clinical decline was over 

12 years, on average, there were approximately 4 years between an individual’s first and last 

biomarker, which is a relatively brief snapshot of pathological processes that may occur over 

decades. The effects of CR on A/T/N/V biomarkers may act over longer time frames than 

were measured here or in prior studies. Because biomarker collection in the BIOCARD 

study is ongoing, we will be able to address this question in future analyses. Additionally, 

the BIOCARD study is a volunteer sample of well-educated, primarily Caucasian 

participants, the majority of whom had a family history of AD dementia. Thus, the findings 

may not generalize to more diverse populations with a wider range of educational attainment 

and genetic risk, or to other measures of lifetime experiences (e.g., leisure activities, 

occupational complexity).

5.1 Conclusions

These results suggest that CR is related to levels of small vessel CVD, but do not provide 

support for the idea that CR impacts the rate at which AD pathology develops in the brain, 

as measured by A/T/N biomarkers. Therefore, lower levels of CVD may be one mechanism 

that enables individuals with high CR to delay the clinical and cognitive consequences of 

other brain changes, including those related to age and AD pathology. It will be important to 

determine if other brain mechanisms associated with CR are associated with modifiable 

lifestyle factors, as these could serve as additional targets for delaying the onset of MCI.
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Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Cognitive reserve (CR) reduces the impact of neuropathology on cognition

• The neurobiological mechanisms underlying CR are not well understood

• Higher CR was associated with lower levels of WMH, but not change in 

WMH over time

• CR was unrelated to AD biomarkers of amyloid, tau, and neurodegeneration

• Lower cerebrovascular disease may be a mechanism by which CR impacts 

cognition
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Figure 1. 
Timeline showing the design of the BIOCARD study, and types of data collected from 1995 

to 2019.

Abbreviations: CSF, cerebrospinal fluid; MRI, magnetic resonance imaging; NIH, National 

Institutes of Health; PET, positron emission tomography; PiB, Pittsburgh compound B.
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Figure 2. 
Adjusted estimates of levels and longitudinal trajectòries of log-transformed WMH for 

individuals with low and high CR (by median split). There was a main effect of the CR 

composite score on WMH levels (p = 0.01), but no effect of the CR composite score on 

longitudinal WMH trajectories (as indicated by a non-significant CR composite score x time 

interaction, p = 0.63).

The depicted linear mixed effects model estimates were adjusted for baseline age, sex, and 

their interactions with time. In the primary models, CR was modeled as a continuous 

variable; this variable was dichotomized by median split for illustration purposes only. 

Abbreviations: CR, cognitive reserve; WMH, white matter hyperintensity.
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