
UCSF
UC San Francisco Previously Published Works

Title
Genetics and biochemistry remain essential in the structural era of the spliceosome

Permalink
https://escholarship.org/uc/item/90d4q17r

Authors
Mayerle, Megan
Guthrie, Christine

Publication Date
2017-08-01

DOI
10.1016/j.ymeth.2017.01.006
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/90d4q17r
https://escholarship.org
http://www.cdlib.org/


Genetics and Biochemistry Remain Essential in the Structural 
Era of the Spliceosome

Megan Mayerle and Christine Guthrie*

Department of Biochemistry and Biophysics, University of California San Francisco, San 
Francisco, California 94143, USA

Abstract

The spliceosome is not a single macromolecular machine. Rather it is a collection of dynamic 

heterogeneous subcomplexes that rapidly interconvert throughout the course of a typical splicing 

cycle. Because of this, for many years the only high resolution structures of the spliceosome 

available were of smaller, isolated protein or RNA components. Consequently much of our current 

understanding of the spliceosome derives from biochemical and genetic techniques. Now with the 

publication of multiple, high resolution structures of the spliceosome, some question the relevance 

of traditional biochemical and genetic techniques to the splicing field. We argue such techniques 

are not only relevant, but vital for an in depth mechanistic understanding of pre-mRNA splicing.

1.0 Introduction

Eukaryotic genes contain introns that must be accurately and efficiently removed to ensure 

fidelity in gene expression. Our understanding of the mechanisms and regulation of pre-

mRNA splicing predominantly results from the clever combination of genetics and 

biochemistry. Recently the splicing field has been treated to high-resolution structures of 

human and S. cerevesiae tri-snRNP (PDB: 5GAN, 3JCM, 3JCR) [1–3], S. cerevesiae Bact 

(PDB: 5GM6, 5LQW) [4, 5], C (PDB: 5LJ3, 5GMK) [6, 7], and C*[8] complexes, as well as 

human C*[9], and the S. pombe Intron-Lariat Spliceosome (ILS) (PDB: 3JB9) [10]. These 

structures provide invaluable insights into spliceosome architecture, assembly, and function, 

and more spliceosome structures should be pursued. However, structural data are not without 

limitations. Here we review how genetic and biochemical approaches have traditionally 

informed our understanding of the spliceosome and discuss how these techniques remain 

essential in the structural era of the spliceosome.

The spliceosome is unique among cellular machines. Unlike the ribosome, which is 

assembled and then translates many cellular mRNAs, the spliceosome must assemble anew 

on each intron to be spliced. This elaborate assembly pathway allows for multiple points of 

regulation throughout the splicing cycle. Many assembly steps correspond to 
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interconversions between mutually exclusive RNA:RNA interactions, and are driven by 

DExD/H box ATPases (reviewed in [11]). These same DExD/H box ATPases also serve to 

regulate splicing fidelity, selectively promoting the advancement of “correct” substrates 

through consecutive splicing steps (reviewed in [12]).

The spliceosome (reviewed in [13]) catalyzes the removal of introns from nascent pre-

mRNA transcripts via two transesterification reactions. The first transesterification reaction 

links the pre-mRNA 5’ splice site (5’SS) and the branch site (BS) to form lariat-3’exon 

intermediate. The second reaction between the 5’ and 3’ splice sites forms spliced exon 

product. The spliceosome consists of five individual snRNAs and over one hundred unique 

proteins. These snRNAs and proteins are associated into a set of functional subcomplexes: 

the U1, U2, U4, U5, and U6 snRNPs, and the Nineteen Complex (NTC). These 

subcomplexes, in conjunction with associated proteins, proceed through the ordered series of 

compositional and conformational rearrangements required to splice each intron (Figure 1). 

Therefore, the spliceosome should not be thought of as a single entity, but rather as a 

dynamic, heterogeneous ensemble of subcomplexes that must interconvert throughout the 

splicing cycle.

2.0 Before the Structures

Here we highlight the genetic and biochemical approaches that have informed our 

understanding of spliceosome assembly and function.

2.1 In vitro Splicing and the Assembly of the Spliceosome

The spliceosome was first identified over 30 years ago[14]. Since then, in vitro splicing 

reactions have been used to define the canonical and alternative assembly pathways of the 

spliceosome and the components of the spliceosome present for each individual assembly 

step. In a typical in vitro splicing reaction, a labeled, In vitro transcribed pre-mRNA is 

incubated with ATP and yeast or human cell extract. This is followed by denaturing gel 

electrophoresis to visualize lariat-3’ exon intermediate, free 5’ exon, spliced mRNA product, 

and the excised lariat [15–17]. Nondenaturing gel electrophoresis of such splicing reactions 

allows detection of larger spliceosomal subcomplexes. In addition to the pre-mRNA, at least 

four distinct subcomplexes that differ in their snRNP complement and order of appearance 

can be resolved: the commitment complex (U1 and the Branchpoint Binding Protein (BBP), 

Complex E), pre-spliceosome (U1 and U2, Complex A), complete spliceosome (U1, U2, U4, 

U5, U6, Complex B), and active spliceosome (U2, U5, U6 and NTC, Complexes Bact, B*, 

and C), define the canonical assembly pathway (Figure 1) [18–20], which has been verified 

in vivo[21, 22].

Both steps of splicing can be reconstituted in vitro using a mixture of compositionally 

defined subcomplexes and recombinant proteins[23, 24]. Such assays have served as a basis 

for other more complex in vitro assays monitoring conformational rearrangements within the 

spliceosome[25], splicing fidelity and discard (release of the pre-mRNA from the 

spliceosome) [26], pre-mRNA conformation at the single-molecule level[27], and 

reversibility of the splicing reaction[28] (discussed in section 2.5).
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In vitro splicing reactions have also been exploited to understand the function of individual 

components of the spliceosome. Endogenous U1, U2, U4, U5, and U6 snRNA can be 

depleted from yeast or mammalian cell extracts by DNA oligonucleotide-directed RNaseH 

cleavage, or by affinity selection with 2’-O-methyl RNA oligos complementary to the 

snRNA. Extracts treated in this way will, when supplied with an in vitro transcribed snRNA, 

process and then incorporate it into snRNPs and form functional spliceosomes[29–33]. This 

technique has been used to study the effects of otherwise lethal snRNA mutants, as well as 

to incorporate snRNAs containing fluorophores or other nucleotide modifications into the 

spliceosome for further study[32, 34, 35]. For example, metal ion rescue experiments, which 

required sulfur substitution at specific nucleotides in U6 snRNA, proved that RNA alone was 

the catalytic component of the spliceosome[35].

Conceptually similar immunodepletion-reconstitution assays have been exploited to study 

the protein components of the spliceosome(see [36–38] for examples). Such techniques can 

be adapted to isolate spliceosome subcomplexes through the immunoprecipitation of protein 

components, which have been studied in depth by mass spectrometry, crosslinking, and 

other biochemical techniques[39]. Studies of this type have produced an extensive list of 

“parts” and have been compiled into a searchable spliceosome database (http://

spliceosomedb.ucsc.edu/)[40].

Decades of research into in vitro splicing and spliceosome purification techniques have 

yielded detailed purification protocols for the isolation of spliceosome A, B, Bact, B*, C, and 

ILS subcomplexes (Figure 1), as well as the individual snRNPs, the tri-snRNP, and the NTC 

(reviewed in [41, 42]). These provide an important starting point for structural studies of the 

spliceosome, as spliceosome subcomplexes isolated in this manner represent particularly 

stable intermediate forms of the spliceosome, and are thus excellent targets for structural 

determination.

2.2 Mutually Exclusive RNA Interactions in the Spliceosome

At the molecular level, many spliceosome assembly steps correspond to changes in mutually 

exclusive basepairing interactions between RNAs and between RNA and protein (reviewed 

in [43]). Three main techniques have contributed to our understanding of these structural 

switches in the spliceosome: phylogenetics, genetics, and photochemical crosslinking. These 

disparate approaches have yielded highly complementary data, establishing that direct 

physical interactions correspond to functional interactions and vice-versa.

The experiments that led to our understanding of how the 5’SS is recognized by the 

spliceosome provide an elegant example of how structural switches in the spliceosome are 

identified and characterized (Figure 2A). Basepairing between U1 snRNA and the pre-

mRNA 5’SS was initially proposed based on sequences complementarity between the 5’ end 

of U1 snRNA and the 5’SS consensus sequence[44, 45]. Subsequently it was shown that this 

interaction was functional; splicing of an intron with a mutated 5’SS could be rescued by 

expression of U1 snRNA containing a compensatory mutation in its 5’SS recognition 

sequence[46, 47]. This clever compensatory mutagenesis technique was further exploited to 

show that cleavage at the 5’SS was not simply a matter of maximizing Watson-Crick 

basepairing between U1 snRNA and the 5’SS. Instead, the 5’SS likely interacts with another 
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component of the spliceosome to direct 5’SS cleavage[48]. From crosslinking experiments it 

was known that, in addition to U1, the U6 snRNA interacts directly with the 5’SS[49, 50], 

and that the U1 and U6 snRNA interactions with the 5’SS are mutually exclusive (Figure 

2A)[51]. Subsequent genetic experiments showed that the 5’SS:U6 snRNA interaction was 

required for selection of a correct 5’SS cleavage site[52].

This same general strategy was used repeatedly to discover and confirm other switches in the 

splicing cycle. Recognition of the pre-mRNA branch point requires sequential, mutually 

exclusive interactions with the branch point binding protein (BBP) and the U2 snRNA[53–

56]. The stem II region of the U2 snRNA toggles between alternative conformations each 

required at distinct steps of the splicing cycle (Figure 2B)[57, 58]. U6 snRNA, extensively 

base-paired to the U4 snRNA while in the tri-snRNP[18, 59], base pairs with U2 snRNA 

once unwound [60] and forms an internal stem loop structure required for splicing 

catalysis[35, 61]. All of these mutually exclusive interactions were validated physically 

through crosslinking studies and functionally via phylogenetic and genetic approaches years 

before they could be visualized in high resolution structures of the spliceosome.

2.3 Control of Splicing Fidelity

Splicing must proceed with high fidelity to avoid introducing errors during gene expression. 

Estimates of the splicing error rate range from 1 in 100 to 1 in 100,000[62, 63], and errors in 

splicing have been shown to contribute to cancer[64] and other diseases[65]. Numerous core 

spliceosome components contribute to splicing fidelity. The best characterized are the 

DExD/H box ATPases Prp16, Prp22, and Prp5 (reviewed in [12]). These DExD/H box 

ATPases act via a kinetic proofreading mechanism (Figure 3) [66, 67]. In kinetic 

proofreading, the DExD/H box ATPases function as timers, restricting the window of time 

allotted for a particular splicing event before hydrolyzing ATP to promote a conformational 

change in the spliceosome. If a splicing substrate is proofread before the ATPase hydrolyzes 

ATP, ATPase activity promotes a productive conformational change in the spliceosome, 

driving the splicing reaction forward. If the substrate is still in the proofreading state when 

the ATPase hydrolyzes ATP, the ATPase instead promotes rejection of the substrate from the 

spliceosome (Figure 3) (reviewed in [12]).

Genetic screens for mutants in splicing factors, along with in vivo splicing reporter 

constructs that provide a means to link splicing efficiency to an easily measurable 

phenotype, have been key to dissecting splicing mechanics, including those that pertain to 

fidelity. For example, ACT-CUP splicing reporters link relative growth in copper-containing 

media to splicing efficiency[68]. Mutation of the core splicing sequences of these reporters 

allows screening for factors involved in splicing fidelity. Prp16 was the first spliceosome 

associated kinetic proofreader discovered by this method (Figure 3). Cold sensitive prp16 
alleles were identified in a screen designed to isolate alleles that could suppress a branch site 

A to C mutation[69,70]. Techniques to express and purify Prp16 in vitro followed by 

enzymatic assays revealed that these prp16 mutants exhibit reduced ATPase and helicase 

activities in vitro. Most importantly, inhibition of ATPase activity correlated directly with 

how readily a given prp16 allele would accommodate an aberrant splicing substrate, linking 

irreversible ATP hydrolysis to fidelity, a necessary condition for kinetic proofreading[70–
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73]. Later screens identified suppressors of prp16 cold sensitivity that also suppressed 

defects in Prp16 ATPase and helicase activities, demonstrating that fidelity could be 

regulated by the spliceosome[74]. Modified in vitro splicing assays have since shown that 

Prp16 proofreads by competing directly with 5’SS cleavage in vitro splicing reactions[37, 

38].

In the currently available high resolution C complex structure, Prp16 is found on the 

spliceosome’s periphery, distant from the spliceosome’s active site, a position that does not 

immediately suggest that Prp16 would play a role in proofreading[7]. It is only because of 

the wealth of biochemical and genetic data available that Prp16’s impact on splicing fidelity 

can be rationalized from this position[7]. Specifically, Prp16’s position is consistent with 

crosslinking data between Prp16 and the pre-mRNA[75]. Furthermore, it is compatible with 

the current leading model for Prp16 action, wherein Prp16 functions at a distance by 

translocating towards, but not through, the intron branch point to disengage candidate splice 

sites from the active site of the spliceosome[76]. With only a structure, Prp16’s role in 

fidelity would not have been apparent.

2.4 Reversibility in Splicing

Shrewd application of biochemical and genetic techniques have shown that spliceosome 

assembly, 5’SS cleavage (1st step), exon ligation (2nd step), and the discard of pre-mRNAs 

and splicing intermediates from the spliceosome are all reversible. Both single molecule 

FRET and in vitro splicing assays coupled with immunoprecipitation techniques have been 

essential for studies of splicing reversibility.

Previous bulk biochemical data had indicated that the spliceosome committed an intron to 

splicing very early in the splicing cycle, during the formation of the so-called commitment 

complex[77]. However, single molecule FRET experiments performed in yeast whole cell 

extracts show that each step of spliceosome assembly is reversible; the chances of an 

individual intron being spliced increase as the spliceosome successfully completes each 

assembly step[78]. Because of the heterogeneity inherent in In vitro splicing reactions, 

single molecule techniques are essential to our understanding of reversibility as well as other 

dynamic changes in the spliceosome.

Other aspects of pre-mRNA splicing are also reversible. DExD/H box ATPases function to 

promote forward progress through the splicing cycle (reviewed in [12]). When these 

ATPases are inhibited, or when splicing is slowed by other means, the spliceosome exhibits 

reversibility. By careful manipulation of potassium chloride levels and the use of a Prp22 

variant defective in mRNA release, both catalytic steps of splicing can be reversed in the 

absence of ATP in vitro[28].

Together these biochemical and genetic studies demonstrate that essentially all aspects of 

pre-mRNA splicing are reversible, a conclusion that would be hard to support with structural 

data alone. It would be interesting to see the conformation of the spliceosome’s catalytic 

core in a structure determined in conditions when the spliceosome exhibits reversibility.
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3.0 After the Structures

High resolution structures of human and S. cerevesiae tri-snRNP [1–3], S. cerevesiae Bact [4, 

5], C [6, 7], and C* complexes [8], human C* complex [9], and the S. pombe Intron-Lariat 

Spliceosome (ILS)[10] have recently been published and more will undoubtedly be 

forthcoming. Thus, we are now in the structural era of the spliceosome, allowing 

reinterpretation of previous genetic and biochemical data from a structural perspective. At 

the same time, spliceosome structures suggest new avenues for genetic and biochemical 

investigation. We anticipate that further elucidation of splicing mechanism and regulation 

will come from combining these traditional approaches with the detailed structural 

information. Here we focus on the spliceosome protein Prp8 as a case study. We discuss how 

structural data have advanced our understanding of Prp8 as well as key questions that remain 

best answered by a combination of genetics, biochemistry and other non-structural 

approaches.

Prp8 is the largest and most highly conserved protein in the spliceosome [79, 80]. Prp8 is 

present in multiple spliceosome subcomplexes including the U5 snRNP[81], the U4/U6-U5 

tri-snRNP, and the catalytically active spliceosome (Figure 1). Long considered the “master 

regulator of splicing” Prp8 impacts both splicing efficiency and fidelity in a variety of 

contexts (reviewed in [82]). As Prp8 crosslinks to and genetically interacts with splicing 

sequences in the pre-mRNA[75, 83–94] as well as the U2, U4, U6 and U5 snRNAs [95–97], 

it has long been assumed to form part of the catalytic core of the spliceosome.

Sometimes a structure can validate a hypothesis, as in the case of Prp8 and the evolutionary 

origin of the spliceosome. The group II intron is thought to be the evolutionary precursor of 

the spliceosome as the catalytic cores of both the group II intron and the spliceosome are 

highly similar and catalysis occurs through a similar two-step mechanism in both systems 

[60, 98–101]. This hypothesis was strongly strengthened in 2013 when the crystal structure 

of Prp8 in complex with U5 biogenesis factor Aar2 was solved[102]. This structure revealed 

that Prp8 consisted of a Reverse Transcriptase domain followed by thumb/X, linker, 

endonuclease, RNaseH-like, and Jab1-MPN domains. Both the domain organization and 

fold of Prp8 are highly similar to that of group II intron maturase proteins[102–105]. In fact 

the overall fold of the maturase RT domain is more like the Prp8 RT domain than that of any 

other polymerase[105] confirming that Prp8 is likely the evolutionary descendent of a group 

II intron maturase protein.

Structural data can also clearly and directly rationalize seemingly conflicting or inexplicable 

genetic and/or biochemical data. Crystal structures of the Prp8 Jab1/MPN domain provided 

such a rationalization for control of Brr2 unwinding of the U4/U6 snRNAs during 

spliceosome activation (B→Bact transition), a key step in the splicing cycle (Figure 4) [106, 

107]. This is a highly regulated process, as U4/U6 duplex unwinding allows the U6 snRNA 

to assume a catalytically competent form and premature catalytic activity could lead to 

errors in gene expression [60]. Genetics data originally hinted that the C-terminal Jab1/MPN 

domain of Prp8 negatively regulated Brr2 activity[108]. Later biochemical studies seemed to 

conflict with these data, showing that the Jab1/MPN domain promoted U4/U6 unwinding by 

stimulating Brr2 helicase activity and repressing ATPase activity (Figure 4A) [109, 110]. 
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These data were resolved by a co-crystal of human Brr2 and the Prp8-Jab1/MPN domain, 

trapping a form of the complex wherein a long extension from the Jab1/MPN domain blocks 

the Brr2 RNA-binding channel (Figure 4B) [111]. Biochemistry confirmed that this 

extension inhibited Brr2 activity, however its truncation stimulates U4/U6 unwinding by 

Brr2[111]. Thus, structures rationalized how the Prp8 Jab1/MPN could both stimulate and 

repress Brr2 (Figure 4).

Now, a combination of genetics, biochemistry and structural data are what is most needed to 

understand the spliceosome. For example, the structures of the tri-snRNP, Bact, C, and ILS 

complexes revealed the existence of a prominent Prp8 surface loop. Dubbed the switch loop 

(amino acids 1402–1439 in S. cerevisiae), this stretch of amino acids adopts strikingly 

different conformations depending upon the structure examined [1, 4, 10]. In Bact and C 

complex the switch loop associates with the Prp8 NTD, RT domain, Thumb/X domains as 

well as the Nineteen Complex (NTC) protein Cwc21, GTPase Snu114, and the pre-mRNA 

5’ exon, stabilizing the interaction between the pre-mRNA and stem-loop1 of the U5 snRNA 

(Figure 5A) [4]. This is consistent with previous genetic and physical interaction data that 

indicate that Cwc21 interacts with Prp8, the U5 stem-loop 1, Snu114 [87, 112, 113], and 

with NTC component Isy1 [114]. Furthermore, cwc21Δ, isy1Δ, and specific prp8 point 

mutants all show defects in 3’SS positioning during exon ligation[74, 113–116]. These data 

suggest that the Prp8 switch loop positions the 5’ exon for branching and exon ligation 

during the 1st and 2nd catalytic steps, respectively[9]. Intriguingly, in the preand post-

catalytic tri-snRNP and ILS, the switch loop has flipped approximately 180 degrees (Figure 

5B), suggesting that the switch loop contributes to maintenance of a catalytically inactive 

conformation of the spliceosome. This hypothesis is far from proven, and the available 

structural data do not inform what drives this switch. If the Prp8 switch loop is critical for 

the positioning of the exons, one prediction is that mutagenesis of the Prp8 switch loop 

would result in temperature sensitive prp8 alleles showing defects in 3’SS positioning. Such 

prp8 alleles might also show genetic interactions with cwc21 or other NTC alleles, as well as 

with various snu114 alleles. Together these data could provide critical mechanistic details of 

how the spliceosome positions pre-mRNA exons for catalysis.

4.0 Moving Forward

The new spliceosome structures provide a much needed structural framework and are likely 

to transform the splicing field in the years to come, as high resolution ribosome structures 

did the translation field in the early 2000s. However, genetic and biochemical techniques 

remain essential to understanding the significance of these spliceosome structures, and to 

our understanding of splicing fidelity and mechanism.
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Highlights

- The spliceosome is a complex, heterogeneous, dynamic machine

- Our understanding of pre-mRNA splicing results from years of genetic and 

biochemical analyses, as little high-resolution structural data were available 

until very recently

- While structural data are critical for the advancement of the splicing field, 

genetic and biochemical techniques remain essential

Mayerle and Guthrie Page 14

Methods. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
The splicing cycle. SnRNPs are indicated as colored circles, the pre-mRNA exons are gray 

and white boxes connected by a line representing the intron. The transitions between key 

spliceosomal subcomplexes (E, A, B, Bact, C, ILS) are illustrated, and the two catalytic steps 

of splicing are labeled.
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Figure 2. 
Mutually exclusive RNA:RNA rearrangements during the splicing cycle. A. The 5’SS 

interacts sequentially with the U1 and U6 snRNAs[117]. B. U2 snRNA exhibits two 

conformations during the splicing cycle, stem IIc and stem IIa[58].
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Figure 3. 
Branch-site proofreading by DEAH-box helicase Prp16. For substrates with optimal, 

consensus branch-site sequences, after 5’SS cleavage (dark arrow), Prp16 promotes pre-

mRNA rearrangements (dark arrow) required for exon ligation during the 2nd step. For 

substrates with a suboptimal (nonconsensus) branch-site sequence, Prp16-mediated rejection 

(light arrow) competes with 5’SS cleavage.
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Figure 4. 
Regulation of Brr2 activity by the Prp8 Jab1/MPN domain. A. Activated Brr2. When Jab1 is 

bound, and its extension is not in the Brr2 RNA-binding pocket, Brr2 can unwind dsRNA 

helices. B. Repressed Brr2. When Jab1 is bound, but its extension is inserted into the Brr2 

RNA-binding pocket, Brr2 can no longer interact with RNA. Figures made using pdb files 

4BGD and 5DCA.
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Figure 5. 
The Prp8 switch loop. A. The switch loop (blue) of Prp8 (cyan) is shown in the context of an 

activated spliceosome[4]. Cwc21 is colored in magenta, the U5 snRNA in gray, the pre-

mRNA 5’ exon is shown in green, and Snu114 is shown in brown. B. Positional 

heterogeneity of the switch loop. The Prp8 large domains from Bact (cyan) and the ILS 

(pink) are aligned. The relative positions of the switch loop from Bact (blue) and the ILS 

(red) are indicated.
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