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RESEARCH Open Access

Meanders as a scaling motif for
understanding of floodplain soil
microbiome and biogeochemical potential
at the watershed scale
Paula B. Matheus Carnevali1, Adi Lavy1, Alex D. Thomas2, Alexander Crits-Christoph3, Spencer Diamond1,
Raphaël Méheust1,4, Matthew R. Olm3,5, Allison Sharrar1, Shufei Lei1, Wenming Dong6, Nicola Falco6,
Nicholas Bouskill6, Michelle E. Newcomer6, Peter Nico6, Haruko Wainwright6, Dipankar Dwivedi6,
Kenneth H. Williams6, Susan Hubbard6 and Jillian F. Banfield1,2,3,4,6,7*

Abstract

Background: Biogeochemical exports from watersheds are modulated by the activity of microorganisms that
function over micron scales. Here, we tested the hypothesis that meander-bound regions share a core microbiome
and exhibit patterns of metabolic potential that broadly predict biogeochemical processes in floodplain soils along
a river corridor.

Results: We intensively sampled the microbiomes of floodplain soils located in the upper, middle, and lower
reaches of the East River, Colorado. Despite the very high microbial diversity and complexity of the soils, we
reconstructed 248 quality draft genomes representative of subspecies. Approximately one third of these bacterial
subspecies was detected across all three locations at similar abundance levels, and ~ 15% of species were detected
in two consecutive years. Within the meander-bound floodplains, we did not detect systematic patterns of gene
abundance based on sampling position relative to the river. However, across meanders, we identified a core
floodplain microbiome that is enriched in capacities for aerobic respiration, aerobic CO oxidation, and thiosulfate
oxidation with the formation of elemental sulfur. Given this, we conducted a transcriptomic analysis of the middle
floodplain. In contrast to predictions made based on the prominence of gene inventories, the most highly
transcribed genes were relatively rare amoCAB and nxrAB (for nitrification) genes, followed by genes involved in
methanol and formate oxidation, and nitrogen and CO2 fixation. Within all three meanders, low soil organic carbon
correlated with high activity of genes involved in methanol, formate, sulfide, hydrogen, and ammonia oxidation,
nitrite oxidoreduction, and nitrate and nitrite reduction. Overall, the results emphasize the importance of sulfur,
one-carbon and nitrogen compound metabolism in soils of the riparian corridor.
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(Continued from previous page)

Conclusions: The disparity between the scale of a microbial cell and the scale of a watershed currently limits the
development of genomically informed predictive models describing watershed biogeochemical function. Meander-
bound floodplains appear to serve as scaling motifs that predict aggregate capacities for biogeochemical
transformations, providing a foundation for incorporating riparian soil microbiomes in watershed models. Widely
represented genetic capacities did not predict in situ activity at one time point, but rather they define a reservoir of
biogeochemical potential available as conditions change.

Keywords: Microbiome, Floodplain, Soil, Watershed, Genome-resolved metagenomics, Metatranscriptomics

Background
Watersheds are geographic areas that capture precipita-
tion that is ultimately discharged into rivers and other
larger water bodies. Of particular interest are watersheds
in mountainous regions, as these are major sources of
freshwater [1, 2]. Within mountainous watersheds, com-
plex interactions among vegetation, hydrology, geochem-
istry, and geology occur within and across watershed
compartments, including across bedrock–soil–vegetation
compartments of terrestrial hillslopes, across terrestrial–
aquatic interfaces, and within the fluvial system itself.
Interactions within a reactive watershed typically vary as
a function of disturbance as well as landscape position
and topography. For example, interactions in an alpine
region of a mountainous watershed are likely to be quite
different from a lower montane floodplain region [3].
Floodplains, which extend from the river banks to the
base of hillslopes, comprise the riparian zone (a vege-
tated interface between the river channel and the rest of
the ecosystem), and are notable as they integrate inputs
from all watershed compartments. They also display
depositional gradients and features associated with past
and current river channel positions. Unlike hillslopes,
floodplains receive water and constituents either by
surface runoff or groundwater discharge. They are typically
significantly impacted by changes in river conditions and
can be inundated when river flow and stage increase fol-
lowing snowmelt. Consequently, floodplains are dynamic
compartments in which hydrobiogeochemical processes
vary seasonally and potentially spatially. Overall, flood-
plains are important watershed regions in which microbial
activity can modulate the form and abundance of nutrients
and contaminants derived from hillslopes and river water
prior to their export from the watershed.
Here, we conducted a study of floodplain soils of the

mountainous East River (CO) watershed to investigate
how patterns in the distribution of soil microorganisms
and their associated functions and activities could con-
tribute to geochemical gradients that impact riverine nu-
trient fluxes. We tested a “system of systems” approach
[4] wherein meander-bound regions were selected as
scaling motifs (repeating patterns along the river that
can be used for ecosystem modeling at the watershed

scale), in which microbially mediated biogeochemical
processes that are shaped by reactions occurring at the
micron scale might be representative of processes through-
out the floodplain. Detailed analyses of meander-bound
floodplain soils may reveal patterns that approximate
watershed processes at the tens of kilometer scale, and
could provide much needed input for watershed hydrobio-
geochemical models. This study applied genome-resolved
metagenomic and metatranscriptomic bioinformatics
methods to large nucleic acid sequence datasets to investi-
gate microbial community composition and distribution
and to infer capacities for microbially mediated C, S, H, and
N cycling and in situ activity in floodplain soil microbial
communities.

Results
Metagenome overview
Three meander-bound floodplains following the
meandering pattern of the East River (Fig. 1 a ) were
chosen for this study: one upstream (meander-bound
floodplain G (Floodplain G) (Fig. 1 b)), one midstream
(meander-bound floodplain L (Floodplain L) (Fig. 1 c)),
and one downstream (meander-bound floodplain Z
(Floodplain Z) (Fig. 1 d)). Sample number was priori-
tized over sequencing depth to better resolve the types
and distribution patterns of the most abundant organ-
isms across the meander-bound floodplains (“flood-
plains” subsequently). An average 6.4 giga base pairs
(Gbp; 3.2–11.5 Gbp) of sequencing data was obtained
from 90 DNA extractions out of 94 floodplain soil
samples collected in 2015. An average 12 Gbp (6.0–15.0
Gbp) of sequencing data was obtained from the other
four samples. In total, ~ 0.6 Tbp of DNA sequence in-
formation was acquired from samples collected in 2015.
Our strategy aimed to capture the most abundant mem-
bers of the microbial community (instead of the whole
community), so it is not surprising that an average 13%
(3–30%) of reads mapped to their respective assemblies
(Table S1, Additional file 1). This result also reflects the
large (but variable) tail on the abundance distribution of
microorganisms in soil [5]; and the communities cap-
tured by the smaller assemblies resulting from samples
with lower sequencing depth.
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We constructed 1704 draft genomes from three flood-
plain datasets. About one third (622) of these genomes
were classified as draft quality (237 from floodplain G,
150 from floodplain L, and 235 from floodplain Z). After
dereplication at 99% average nucleotide identity (ANI)
within each floodplain and correction of local assembly
errors, we recovered 375 distinct genomes (173 from G,
94 from L, and 108 from Z). Dereplication across
floodplains at 98% ANI generated a final set of 248 rep-
resentative genomes for further analyses, predominantly
≥ 70% complete (Table S2, Additional file 2) and 46% of
which were near-complete (≥ 90%).
We assessed our genome recovery effectiveness by

comparing the number of genomes recovered to a
secondary metric for quantifying unique species, the
number of unique ribosomal protein L6 (rpL6) marker
sequences within unbinned assemblies (see Methods
section). The marker rpL6 has been shown to have high
recoverability and species delineation accuracy [6],
relative to methods such as full genome ANI. From the
94 metagenomes, we detected 930 distinct organisms
based on rpL6 sequences clustered at 97.5% nucleotide
identity. However, 571 of the distinct rpL6 sequences
were on fragments with coverage that is too low for
comprehensive genome sampling (< 7 X coverage given
our sequencing depth). The disparity relative to 248 re-
constructed representative genomes relative to 359 rpL6
on contigs at > 7 X coverage is attributed to significant
challenges associated with genome recovery from soil
(Figure S1, Additional file 3).
Candidate draft genomes were generated for almost all

the organisms present at > 5–10 X coverage in each

sample. However, on average, only 5.5% of the total read
dataset was stringently mapped (2 mismatches per read
of the pair) to the 248 genomes. This is not surprising,
given that most sequencing allocations per sample were
sufficient to genomically sample only organisms at > ~
0.25% relative abundance, and the most abundant organ-
isms in each sample comprised only a few percent of the
community.
In 2016, we returned to one of the floodplain sites

(floodplain L) to collect samples for metatranscrip-
tomics. We performed additional genomic sequencing
from 19 of the original 32 sites (see Methods section;
Table S1, Additional file 1) to provide a reference data-
base for transcript mapping. These new DNA samples
were sequenced at an average 3.7 Gbp per sample (2.7–
4.7 Gbp), for a total ~ 0.2 Tbp of sequencing. The RNA
samples were sequenced at an average 10.8 Gbp per
sample (3.2–15.1 Gbp) for a total of ~ 0.15 Tbp of se-
quencing. A total of 299 draft genomes were recovered
from these samples, 123 of which passed our quality
thresholds after curation. To examine stability across
time, we pooled the 2015 and 2016 genome sets and
dereplicated (at 95% ANI) the combined set of 371 ge-
nomes, generating 215 genomes representative of distinct
species. Notably, 32 species-level groups were detected in
both years, and 29 were only detected in 2016 (Table S3,
Additional file 4).

Distribution of organisms within and across meander-
bound floodplains
To assess the presence of a representative genome in a
sample, we relied on the sensitivity of read mapping to
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Fig. 1 Sampling sites on the East River watershed and genome detection across samples. a Overview of the East River, CO study site,
highlighting the three sampled floodplains (green dots) and the Rocky Mountain Biological Laboratory (RMBL, yellow dot), b meander-bound
floodplain G, c meander-bound floodplain L, and d meander-bound floodplain Z. Sampling sites as green and purple dots along two sets of four
transects. One set of transects in one direction (in green), and the second set of transects along another direction (in purple). e Hellinger
transformed abundance of dereplicated genomes across samples based on cross-mapping. Genomes and samples clustered by average linkage
and Euclidean distance respectively

Matheus Carnevali et al. Microbiome           (2021) 9:121 Page 3 of 23



the dereplicated genome set. Based on our threshold for
detection, about one-third of the genomes were from or-
ganisms that were consistently found across floodplains
at similar levels of abundance (Purple boxes in Fig. 1 e).
Regardless of their level of abundance, or which
floodplain a representative genome was reconstructed
from, the genomes were present in a median > 75% of
the samples (78% of upstream floodplain G samples,
84% of midstream floodplain L samples, and 87% of
downstream floodplain Z samples; Figure S2a, Additional
file 3). Additionally, the 248 organisms were present in the
majority (median 88–91%) of the other samples from the
same floodplain from which the genome was recon-
structed from (Figure S2b, Additional file 3).
Except for some genomes reconstructed from two

floodplain G samples, the rest of the genomes were from
organisms that shared more similar abundance levels if
the floodplains were closer together within the river
corridor (Yellow boxes in Fig. 1 e). More specifically,

floodplains G and L or floodplains L and Z shared more
organisms than floodplains G and Z, which are located
in the upper and lower reaches, respectively. Addition-
ally, floodplain G is narrow, and is at times completely
flooded, floodplain L is wider and may only flood par-
tially, whereas floodplain Z is the widest and least prone
to flooding.
Finally, we examined the number of samples where

members of a 98% ANI genome cluster were recon-
structed from. The 248 genome clusters contained ge-
nomes reconstructed from between 2 and 39 samples.
The largest genome set was for a large group of Betapro-
teobacteria strains generally related to strains detected
in other environments such as soil, sediment, and water
(Figure S3, Additional file 3; Data S1, Additional file 5).
Genomes were reconstructed from two thirds of all sam-
ples from floodplain L. This result indicates that strains
belonging to this Betaproteobacterial clade may play im-
portant roles in floodplain biogeochemistry (Fig. 2; Table

Fig. 2 Diagram depicting Betaproteobacteria genomes and environmentally relevant capacities encoded by representatives of 98% ANI clusters.
Note that no single genome harbors all of these genes, but combinations of them instead (Table S4, Additional File 6). Some genomes harbor
methanol dehydrogenases that are potentially able to turn methanol directly into formate (XoxF type). Enzymes delineated with solid lines were
predicted using KOFAM HMMs, and the number of genomes (> 1*) encoding those genes are shown in the bar plot. Enzymes that were
predicted using methods as part of ggKbase are shown with dashed lines (long dashes) and enzymes or subunits that are presumably encoded
are shown with dotted lines. For more information about metabolic potential see Methods section. *AMO was included in this diagram even
though it was detected in only 1 genome, to indicate aerobic ammonia oxidation is also possibly carried out by members of this clade
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S4, Additional file 6), especially in soils associated with
floodplain L.

Taxonomic composition of the community
Based on the 248 representative genomes detected in
each sample, the phylum- or class-level community
composition was broadly consistent both within and
across floodplains (Fig. 3 a; Table S1, Additional file 1).
This is also reflected in measures of alpha diversity
between sites, as there was no significant difference in
Shannon’s diversity indices or unique number of organ-
isms (Figure S4, Additional file 3). Some exceptions to
this were Candidate Phyla Radiation (CPR) bacteria that
seemed to be detected mostly in floodplain Z, while
Thaumarchaeota seemed least present in this floodplain.
Additionally, the number of the 248 genomes detected
in each sample varied from sample to sample (min = 35
and max = 212). We detected particularly low numbers
of genomes in five samples (T157 and T800 from floodplain

G and T133, T266, and T620 from floodplain Z), although
only samples T133 and T266 from floodplain Z may
have been affected by lower sequencing depths (Table S1,
Additional file 1).
Betaproteobacteria was the group with the highest

number of representative genomes (80) in all three
floodplains. Other abundant taxa across floodplains in-
cluded Deltaproteobacteria (27 representatives), Acidobac-
teria (21 representatives), Nitrospirae and Planctomycetes
(both with 13 representatives), Gemmatimonadetes,
Gammaproteobacteria, Chloroflexi, and Ignavibacteria (12,
11, 11, and 10 respectively).

Uncovering a core floodplain microbiome
To define a set of organisms representing a core flood-
plain microbiome, we identified organisms that were
detected in most sampled sites (≥ 89 of the 94 samples;
90th percentile), and whose abundance did not indicate
a statistically significant enrichment in any specific
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Fig. 3 Microbial community composition and core floodplain microbiome. a Taxa at the phylum or class level detected across samples and
floodplains, samples are in numerical order (Table S1, Additional File 1:) from the upstream to the downstream floodplain. b Taxonomic
composition of genomes in the core floodplain microbiome (core), genomes associated with 1 floodplain (one site), and genomes associated
with two floodplains (two sites). UMAP showing clustering of Hellinger-transformed genome abundances of c genomes in the core floodplain
microbiome (n = 42; in teal) and genomes not in the core floodplain microbiome (n = 242; red), and d overlay of the coefficient of variation
(ratio of standard deviation to the mean) of genome abundances across samples, and e overlay of genomes associated with individual, pairs, or
all floodplains based on an Indicator Species Analysis (ISA). Genomes that were present in 89 samples or more (teal) were not associated with
any particular floodplain by ISA (group 7 in brown) and their abundance displayed a low coefficient of variation across samples. ISA genome
associations: with floodplain G (1), with floodplain L (2), with floodplain Z (3), with both floodplain G and floodplain L (4), with both floodplain G
and floodplain Z (5), with both floodplain L and floodplain Z (6), and not associated with any particular floodplain (7)
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floodplain (by Indicator Species Analysis (ISA); see
Methods section and Table S5, Additional file 7). This
operational definition resulted in the identification of 42
high-prevalence organisms with low variance abundance
profiles across all 3 meander-bound sites, which we refer
to as the core floodplain microbiome (Fig. 3 c). In
general, genomes with a low coefficient of variation of
their abundance (blue dots in Fig. 3 d) overlapped with
genomes that did not display a statistically significant
association with any given floodplain (group 7, brown
dots in Fig. 3 e), suggesting a wide distribution of these
organisms across floodplains at similar abundance levels.
The core floodplain microbiome was dominated by Beta-
proteobacteria, with lower abundances of Nitrospirae,
Rokubacteria, Gemmatimonadetes, Gammaproteobac-
teria, Deltaproteobacteria, and Candidatus Letescibac-
teria (Fig. 3 b).
Genomes from organisms not considered to be part of

the core floodplain microbiome were associated with
one floodplain (G, L, or Z; n = 41) or two floodplains (n
= 39; Fig. 3 e). Other genomes were not classified as part
of the core microbiome because although they were not
statistically associated with one or two floodplains, they
were not detected in ≥ 89 samples (n = 126). Genomes
affiliated with Acidobacteria, Bacteroidetes, and Chloro-
flexi were not part of the core floodplain microbiome
and were associated with one or two floodplains. The
ISA analysis supports the association of some CPR with
one floodplain (i.e., between floodplain Z and Yanofsky-
bacteria, Taylorbacteria, Harrisonbacteria, Staskawicz-
bacteria, and Zambryskibacteria-like bacteria). Similarly,
bacteria in the Verrucomicrobia were associated with
one floodplain (Z). Alphaproteobacteria, Thaumarch-
eota, Planctomycetes, other CPR (e.g., Zambryskibacteria
and Doudnabacteria) and Eisenbacteria-like bacteria
were associated with two floodplains.

Geochemical functions, including those enriched in the
core floodplain microbiome
To determine what role floodplain soil Bacteria and
Archaea may play in nutrient exports to the East River,
we investigated a set of pathways involved in biogeo-
chemical cycling and the microorganisms potentially
responsible for them. The biogeochemical processes in-
vestigated include oxidation/reduction reactions associ-
ated with nitrogen, sulfur and hydrogen, C1 compound
metabolism (e.g., CO2-fixation, CO oxidation, methano-
genesis, methane oxidation, methanol oxidation, formate
oxidation, methylamine oxidation, formaldehyde oxida-
tion), H2 consumption or production, and the ability to
use O2 as a terminal electron acceptor for aerobic
respiration.
A set of Hidden Markov Models (HMMs) was used to

annotate genes encoding for individual protein subunits

that make up key enzymes and complete or partial meta-
bolic pathways. For a given “function” (defined as the
capacity to carry out a given biogeochemical transform-
ation) to be encoded in a genome, certain criteria for
presence had to be met (see Methods section; Table S4,
Additional file 6). A total of 32 functions comprised the
final set of biogeochemical transformations under inves-
tigation (Table S6, Additional file 8). It is important to
note that in some cases, we also examined individual
steps that are involved in a function, recognizing that
some functions could be absent in a single genome be-
cause the pathway is carried out by multiple taxa (i.e.,
steps are encoded in multiple genomes). For example,
denitrification occurs in separate steps involving
different enzymes, and these steps can be performed by
multiple different organisms. Complete ammonia oxida-
tion, anaerobic ammonia oxidation, and methanogenesis
(of any kind), were not detected in the dereplicated gen-
ome set, although some intermediary steps may still be
ecologically relevant. Therefore, some steps involved in
these pathways were included in downstream analyses.
To study the distribution of the functions of interest

among genomes and across floodplains, we determined
whether a function was present or absent in each genome
in addition to where genomes were detected within and
across floodplain samples. To describe the distribution of
functions, we calculated the proportion of genomes with a
given function compared with the total number of genomes
detected in a sample. We found that the ability to use oxy-
gen as an electron acceptor (aerobic respiration) was the
most prevalent function among genomes (a median of 70–
85% of genomes in each sample), followed by acetate me-
tabolism (a median of 40–65% of genomes in each sample),
aerobic carbon monoxide (or other small molecule) oxida-
tion, formate oxidation, and sulfide oxidation (a median of
30–50% of genomes in each sample; Fig. 4 a; Table S4,
Additional file 6). This set of functions was consistently
present across all three floodplains, whether encoded by the
same or different taxa.
We also considered the distribution of functions that

were detected in < 25% of genomes (Fig. 4 b–e; Table
S4, Additional file 6). Of the remaining C1 transforma-
tions examined, methanol oxidation to formaldehyde
was found in a median of ~ 10% of the genomes. Of the
sulfur transformations, sulfite (SO3

-2) oxidation to sul-
fate (SO4

-2), and thiosulfate (S2O3
-2) oxidation without

sulfur (S0) deposition and thiosulfate oxidation with sul-
fur deposition were most prevalent. For reactions involv-
ing hydrogen consumption or formation, genes encoding
group 1 NiFe hydrogenases (likely used for H2 oxidation)
were found in a higher proportion of genomes than any
other types of hydrogenases.
Nitrogen transformations were studied individually

and as part of the nitrogen cycle. We found the capacity
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for nitrate (NO3
-) use as a terminal electron acceptor in

dissimilatory NO3
- reduction in a substantially lower

proportion of genomes (2–10%) than the capacity to use
O2 as a terminal electron acceptor. Of the reactions
involved in nitrification, namely ammonia oxidation,
hydroxylamine oxidation and nitrite (NO2

-) oxidation,
genomes encoding the oxidation of nitrite via nitrite oxi-
doreductase (NXR) were more common than genomes
encoding the first two steps. The capacity for NO3

- re-
duction as part of denitrification (NapAB or NarGHK)
was encoded by far fewer genomes than NO2

- reduction
(which can be carried by via multiple enzymes, including
NirK, NirS, NrfAH for dissimilatory nitrite reduction or
NirBD for assimilation). Fewer genomes are predicted to
encode the capacity to reduce nitric oxide (NO, the
product of nitrite reduction) to nitrous oxide (via
NorBC) than genomes with the capacity for nitrous
oxide (N2O) reduction to N2. Overall, the most prevalent
genomically encoded function was nitrite reduction, and
capacities for consecutive nitrogen cycling steps were
typically encoded in multiple different genomes. In other
words, there is evidence to support the prevalence of
metabolic handoffs [7] in the nitrogen cycle.
We identified functions that were significantly

enriched (FDR ≤ 0.05; hypergeometric test) in the core
floodplain microbiome (a subset of ISA group 7) and
found that the capacities to use O2 as a terminal electron
acceptor, to perform aerobic CO or other small mol-
ecule oxidation, and thiosulfate oxidation (both with and
without sulfur deposition) were enriched in these
organisms.

Environmental factors as drivers of function distribution
across and within floodplains
Environmental variables (Figure S5, Additional file 3)
may explain in part the patterns of enrichment of geno-
mically encoded functions described above. We first
looked into correlations involving the following vari-
ables: total carbon (TC), total organic carbon (OC), total

inorganic carbon (IC), total nitrogen (TN), organic car-
bon to nitrogen ratio (OC:N), distance of a sample to
the river (Dist. to river), easting and northing (Cartesian
coordinates for position on the floodplain), distance to
the inner bank edge (from here on: toe distance) and
distance to middle of the meander-bound floodplain as
alternative measures of position on the floodplain
(Figure S6, Additional file 3 ), topographic position index
(TPI; as a proxy for the likelihood a site would be
flooded during periods of high discharge or snowmelt),
and elevation. Statistical analysis indicated that TC, OC,
TN, and OC:N were all highly correlated with each other
across the same set of metagenomic samples (Figure S7,
Additional file 3 ), and their individual effects were not
possible to disentangle. Thus, we chose either TC or OC
for downstream analyses. Given the Northwest to South-
east orientation of the watershed, elevation, easting, and
northing were all highly correlated with floodplain (G vs
L vs Z), so only floodplain was included as a categorical
variable. In summary, TC, floodplain, IC, TPI, distance
to the river, and toe distance were the variables evalu-
ated with the fourth corner method [8] to assess the re-
sponse of each function at the gene level to the selected
environmental or soil chemistry and GIS variables (see
Methods section).
A group of biogeochemical transformations (gene level)

displayed some correlation with environmental variables,
particularly with individual floodplains (Fig. 5 a). Genome
abundances were used as proxies for abundance of func-
tions each genome encoded. The upstream floodplain G
was positively correlated with thiosulfate oxidation (with
and without S deposition), sulfite oxidation, sulfide oxida-
tion, O2 as a terminal electron acceptor, aerobic CO or
other small molecule oxidation, and acetate metabolism.
Only N2O reduction was positively correlated with the
middle floodplain L. The downstream floodplain Z was
positively correlated with H2 oxidation via group 1 NiFe
hydrogenases (a function that was negatively correlated
with upstream floodplain G). Most sulfur compound

(See figure on previous page.)
Fig. 4 Proportion of representative genomes at the subspecies level with a given function among genomes detected in each sample within each
floodplain. Box plots in each panel represent floodplain G (left), floodplain L (middle), and floodplain Z (right). a Most abundant functions: 1.
Acetate formation, 2. Oxidation of CO and other small molecules, 3. Formate oxidation: CH2O2 to CO2 + H2, 4. Sulfide oxidation: H2S to S0. b
Geochemical transformations in the Carbon cycle: 5. CO2 fixation pathways, 6. Anaerobic CO oxidation, 7. Methanol oxidation, 8. Formaldehyde
oxidation pathways (see Table S4, Additional File 6). c Geochemical transformations in the sulfur cycle: 9. Sulfide oxidation (reverse dsr) from
hydrogen sulfide: H2S to SO3

2-, 10. Sulfite oxidation to sulfate (or vice versa): SO3
2- to SO4

2-, 11. Thiosulfate oxidation without sulfur deposition:
S2O3

2- to SO4
2-, 12. Thiosulfate oxidation with sulfur deposition: S2O3

2- to SO4
2- + S0. d The nitrogen cycle: 13. Nitrogen fixation: N2 to NH3, 14.

Ammonia oxidation: NH3 to NH2OH, 15. Hydroxylamine oxidation (requires additional, undetermined enzyme): NH2OH to NO2
-, 16. Nitrite

oxidation: NO2
- to NO3

- (reversible), 17. Nitrate reduction (cytoplasmic): NO3
- to NO2

-, 18. Nitrate reduction (periplasmic): NO3
- to NO2

-, 19.
Assimilatory nitrite reduction: NO2

- to NH4, 20. Dissimilatory nitrite reduction: NO2
- to NH4, 21. Assimilatory or dissimilatory nitrate reduction (ANRA

or DNRA): 17 or 18 + 19 or 20, 22 & 23. Nitrite reduction (Denitrification): NO2
- to NO, 24. Nitric oxide reduction: NO to N2O, 25. Nitrous oxide

reduction: N2O to N2. e Hydrogen metabolism via hydrogenases: 26. FeFe hydrogenases group A (fermenting and bifurcating), 27. FeFe
hydrogenases group C (H2 sensors), 28. NiFe hydrogenases group 1 (H2 oxidation), 29. NiFe hydrogenases group 2 (H2 oxidation), 30. NiFe
hydrogenases group 3b (bidirectional), 31. NiFe hydrogenases group 3c (bidirectional), 32. NiFe hydrogenases group 3d (bidirectional). Paired,
same color bars above boxplots indicate statistically significant differences between those two floodplains (two-way ANOVA)
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transformations, as well as nitrite reduction, aerobic res-
piration and acetate metabolism were negatively corre-
lated with floodplain Z (Fig. 5 a).
Overall, genomes with the capacity for aerobic respir-

ation and sulfur compound oxidation are most prevalent
towards the headwaters (floodplain G), and within this
floodplain, sulfur compound oxidation apparently is as-
sociated with low IC (Fig. 5 b). Within the downstream
meander where aerobic respiration is least prominent in
the genomes, bacteria able to oxidize H2 via Group 1
NiFe hydrogenases appear correlated with somewhat ele-
vated concentrations of IC (Fig. 5 b).

Potentially active genes encoding key biogeochemical
transformations in the riparian zone
To determine whether key functions encoded in the
genomes were transcriptionally active at the time of
sampling (early September 2016; during base flow
conditions like previous year), we resampled flood-
plain L for metatranscriptomics and metagenomics.
This floodplain was chosen among the three because
it shared the majority of organisms detected in 2015
with the other two floodplains.

Considering potential differences between the 2 years,
metatranscriptomic reads were mapped to a dereplicated
genome set at the species level (95% ANI), which
comprised 215 genomes reconstructed from samples
collected in 2015 and 2016. We calculated transcript
counts using read pairs mapped to predicted open read-
ing frames (ORFs) with at least 95% nucleotide identity
(see Methods section). The highest median transcript
counts were observed for Nitrospirae and Betaproteo-
bacteria, followed by Candidatus Latescibacteria and
Eisenbacteria-like bacteria, Rokubacteria, and Deltapro-
teobacteria (Fig. 6 a; Data S2, Additional file 9). We also
evaluated the number of reads mapping to genes encod-
ing key functions and determined what percentile in the
distribution of transcription levels each gene fell in.
Key genes involved in potentially active biogeochem-

ical transformations with a median transcription > 75th
percentile of all the genes transcribed in a given genome
included amoCAB, and nxrAB, involved in nitrification.
The amoCAB genes for aerobic ammonia monooxygen-
ase were found in the 90th percentile of transcribed
genes across genomes. However, these genes were
present in very few genomes (one Nitrospirae and two
Thaumarcheota). Similarly present in few genomes and

Fig. 5 Function abundance and its correlation with environmental variables. a Significant positive (green) or negative (violet) correlations
between environmental variables (bottom) and biogeochemical transformations (left) identified by a fourth corner analysis. b Abundance of
genomes encoding functions positively correlated with inorganic carbon concentrations (IC; %)
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also highly transcribed were genes involved in CO2 fix-
ation, specifically RuBisCO forms I and II and enzymes
in the reductive TCA cycle (OFOR and citrate lyase).
Other highly transcribed genes were for methanol oxida-
tion to formaldehyde (xoxF, mxaF) and formate oxida-
tion (fdhAB, fdoG, fdhF, fdwA, fdsD, fdwB) as part of C1
metabolism (Figure S8, Additional file 3 ).
Functions enriched in the core floodplain microbiome

(aerobic CO or other small molecule oxidation, thiosul-
fate oxidation, and the ability to use O2 as a terminal
electron acceptor via coxABCD, cydAB or ccoN) and
functions that displayed some degree of correlation with
environmental variables in gene abundance (e.g., sulfite
oxidation via sat and aprAB or dsrAB and sulfide oxida-
tion via fccAB) were most often between the 50th and
75th percentiles of transcribed genes per genome.
Surprisingly, given their prominence in genomes, genes
involved in nitrogen cycling such as narGHI or napA

and especially nrfAH responsible for dissimilatory nitrite
reduction, nirK and nosZ responsible for some denitrifi-
cation steps, displayed transcription levels only between
the 35th and 50th percentiles (Fig. 6 b).
We tested for differential transcription levels in re-

sponse to changes in environmental variables (Table S7,
Additional file 1) using DESeq2 [9]. Of the four environ-
mental variables that were highly correlated with each
other (TC, OC, TN, OC:N; either positively or negatively
(Figure S9, Additional file 3), we observed the strongest
differential gene expression in response to OC (Fig. 6 c).
In samples with higher concentrations of OC, genes in-
volved in the Sox pathway for thiosulfate oxidation
(soxAX and soxCD) and those involved in aerobic CO or
other small molecule oxidation (coxLMS) were highly
transcribed. More specifically, transcripts mapped to one
coxL form I gene (true carbon monoxide dehydrogenase,
CODH) and the rest mapped to four other coxL form II

Fig. 6 Analyses of transcription from samples collected in 2016 mapped to the genome set representative of the species level. a Transcription
activity of genomes grouped by phylum or class based on total transcript read counts mapped to the representative genomes. Other bacteria:
Candidatus Latescibacteria and Eisenbacteria-like bacteria. Phylogeny of the genomes at the species level was confirmed based on a
concatenated ribosomal proteins tree (Data S2, Additional File 9). b Average transcription percentile for all genes encoding enzymes involved in a
given biogeochemical transformation in each representative genome across all 2016 metatranscriptomes. c Differentially transcribed genes in
response to soil OC. Statistically significant (DESeq2; q < 0.05) genes are colored by function, and not significant (n.s.) genes are in grey. d
Differentially transcribed genes encoding CAZy in response to soil OC
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genes (carbon monoxide-like dehydrogenase). The form
I transcripts were correlated with high OC, and the form
II transcripts with both low (1 hit) and high OC (3 hits).
In samples with low OC, highly transcribed genes

included those involved in methanol oxidation (xoxF,
mxaF), formate oxidation (fdhA), sulfide oxidation
(fccAB), hydrogen metabolism (NiFe Grp1), ammonia
oxidation (amoABC), nitrite oxidoreduction (nxrA), ni-
trate reduction (napA), and nitrite reduction (nirK).
Samples with low OC also have low TN, which may in
part be attributed to high activity of microbial nitrifica-
tion followed by denitrification, with denitrification
reliant on consumption of OC.
As might be expected, RuBisCO form I was highly

transcribed under conditions of low OC. Activity of the
Calvin Benson Bassham (CBB) pathway for CO2 fixation
is linked to Betaproteobacteria, Deltaproteobacteria,
Gammaproteobacteria, and NC10, some of which have
metabolisms fueled by oxidation of intermediate sulfur
compounds (e.g., sulfide or thiosulfate oxidation). The
observations reveal a potentially important source of or-
ganic carbon in some floodplain soils. In terms of overall
transcriptional activity, autotrophic pathways may not be
expressed but the organisms may otherwise be highly
transcriptionally active. In fact, mostly organisms from
the phyla Thaumarchaeota, Rokubacteria, NC10, and
Nitrospirae were active under low OC conditions. Beta-
proteobacteria and Acidobacteria were transcriptionally
active under conditions of higher OC.
We also investigated the potential for organic matter

degradation through transcription of genes encoding
carbohydrate-active (CAZy) enzymes (Table S8,
Additional file 11) [10]. We narrowed our search to
CAZy enzyme types that were present in at least 60% of
the genomes, as a proxy for widespread distribution in
the floodplain soil microbial community. The most
abundantly transcribed CAZy genes were in the glycosyl
hydrolase (GH) and carbohydrate esterase (CE) classes.
In general, the highly transcribed enzymes in the CE
class use hemicellulose and amino sugars as substrates,
resulting in acetate as a byproduct. Acetate could be uti-
lized by many floodplain organisms, considering the
prevalence of genes involved in acetate metabolism
among the genomes. Enzymes in the GH class use cellu-
lose, pectin, chitin, and starch as substrates, releasing a
variety of sugars as byproducts, which can be utilized for
central metabolism during growth. We then tested for
CAZy differential expression in response to changing
concentrations of organic carbon. Twelve CAZys (both
GH and CEs) expressed by three strains of Betaproteo-
bacteria increased in expression in samples with high
OC. Many of the same classes of GH and CE displayed
high levels of transcription correlated with both low and
high OC levels (e.g., GH23, GH28, CE4, and CE11; Fig. 6

d), although gene expression by three strains of Betapro-
teobacteria correlated with high levels of OC. Similar
CAZy enzymes were expressed by NC10, Nitrospirae,
and Rokubacteria, the same organisms commonly asso-
ciated with high levels of transcription under low OC.

Discussion
Biogeochemical processes modulate C, S, and N exports
from watersheds, including the East River [11]. Import-
ant questions relate to the sources and sinks of these
compounds and the biological controls on them. Some
data indicate that a subset of the organic carbon in
sediments from East River floodplains derives from the
shale, although plants are the obvious central source for
fixed carbon in areas of more developed soils [12]. CO2

fixation genes were relatively rarely detected in the bac-
terial genomes, which might be interpreted to support
this deduction. However, genes for CO2 fixation in a few
organisms were very highly transcribed, indicating at
least periodic inputs of microbially produced organic
carbon into riparian zone soils. Spatially, high activity of
genes involved in CO2 fixation was correlated with low
organic carbon concentrations in soil. Many organisms
predicted to rely on CO2 fixation as their main carbon
source are aerobic chemolithoautotrophs that oxidize in-
organic compounds (e.g., NH3

+, NO2
-, S0, H2S, H2, CO,

S2O3) as a source of energy. Thus, we infer significant
linkages among these key element nutrient cycles.
Low concentration of organic carbon also correlated

with high activity of genes involved in methanol oxida-
tion. Methanol results from the breakdown of plant
material, such as pectin and lignin [13, 14], and the
activity of methanol dehydrogenases may be indicative
of decomposed organic matter. Similarly, low concentra-
tion of organic carbon correlated with high activity of
genes involved in sulfide and H2 oxidation, nitrification,
and interconversion of nitrite and nitric oxide. The or-
ganisms responsible for these reactions are primarily
autotrophs.
Interestingly, the capacities for thiosulfate oxidation/

elemental sulfur formation, sulfite oxidation and H2

oxidation, as well as assimilatory or dissimilatory nitrate
reduction to ammonia (ANRA or DNRA) were patchily
spatially distributed (Fig. 5 b), possibly localized by lower
inorganic carbon concentrations. Further, genes for
sulfur compound oxidation were more prominent in ge-
nomes of organisms from the upstream floodplain,
which is closer to the adjoining hill, possibly reflecting
higher inputs of intermediate sulfur compounds from
rock weathering reactions in the headwater compared
with downstream regions. The sources of thiosulfate
could be weathering of detrital grains of shale-associated
pyrite and/or reoxidation of microbially produced sulfide
in anoxic OC-rich regions of the soil or underlying river
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sediment. Closer proximity to igneous intrusives in the
upstream part of the drainage (e.g., near Floodplain G)
leads to greater incidence of pyrite-bearing shales. It has
been shown previously that hydrological connectivity
can shape microbial activity, with low connectivity
linked to higher abundance of genes involved in sulfur
metabolism [15]. In the East River, sulfur compounds
may be redistributed from upstream to downstream re-
gions, but the degree of hydrologic connectivity within
and across floodplains is uncertain and varies dramatic-
ally over the course of the year [16]. Additionally, these
shallow soils may only be hydrologically connected to
the river during high water flood events or through
vertical transport.
By contrast, high OC levels correlated with high activity

of genes involved in oxidation of CO (form I CODH), and
other small carbon compounds (form II or other subtypes),
which may be substrates for carbon monoxide dehydroge-
nases [5]. CO may be sourced from the atmosphere, by
thermochemical, photochemical, and chemical degradation
of organic matter in soils and marine sediments, and from
biological production by microbes, leaves, roots, and ani-
mals [17]. East River CO oxidizers are most likely carboxy-
dovores that require organic carbon to grow, even though
they can oxidize CO at atmospheric levels (i.e., they use a
high affinity form I CODH) [18, 19]. This is in contrast to
carboxydotrophs that grow with CO as the sole energy and
carbon source and require CO at greater than atmospheric
concentrations (for a low affinity form I carbon monoxide
dehydrogenase (CODH) [17]). Additionally, form II CO de-
hydrogenases seem to play a key role in this ecosystem, al-
though very little is known about their actual function.
Detection of a high prevalence of CODH and CODH-like
enzymes echoes results from a grassland soil system, a
study by Diamond et al. [5], reinforcing the suggestion that
small carbon compounds such as plant exudates, may be
an important carbon currency under some conditions.
High organic carbon levels also correlated with high

activity of genes involved in thiosulfate oxidation, and
carbohydrate esterases and glycosyl hydrolases such as
GH23 (lysozyme) and GH18 (chitinase). These GHs
would be required for organic matter degradation at lo-
cations of higher carbon availability, where presumably
plants and fungi are more abundant. Bacteria that de-
grade plant biomass are also known to employ catabolite
repression of CAZy enzymes [20], perhaps explaining
the lower diversity of CAZys under these conditions.
Different variants of these carbohydrate-active genes
were highly expressed in a variety of taxa including
Rokubacteria, Nitrospirae, and NC10 in soil with low
organic carbon, where diverse carbon sources must be
exploited for survival.
Many watershed ecosystems are limited by access to

biologically available nitrogen, the important sources of

which are likely to be shale bedrock weathering [21], at-
mospheric deposition [22], and nitrogen fixation. A
complex interplay of biological processes impact nitro-
gen speciation and bioavailability, including ammonia
oxidation (nitrification), denitrification to N2, and nitrite
assimilation via ANRA or DNRA. The nitrogen budget
can be addressed by direct measurement of inputs,
plant-associated inventories, and the concentration of in-
organic and organic nitrogen compounds exported from
the watershed via rivers [23, 24]. By comparing these
numbers, it may be possible to estimate the fraction of
the bioavailable nitrogen that is lost from the system via
loss as N2 and trace gases. What is missing from this
analysis is an estimate of the degree to which nitrogen
compounds are recycled, the role of riparian zone soils
in these processes, and the potential for subsurface stor-
age of nitrogen compounds in microbial biomass.
Using genome-resolved metagenomics, we identified the

capacity for nitrogen fixation and ammonia oxidation to
nitrite and nitrate in relatively few organisms, yet the
metatranscriptomic data show these to be highly active
functions. Thus, we infer important microbial contribu-
tions to reservoirs of oxidized nitrogen compounds in ri-
parian zone soils, with the potential to substantially
augment inputs from atmospheric deposition and bedrock
weathering. Genes involved in nitrite reduction (dissimila-
tory nitrate reduction to ammonium or denitrification to
N2), while abundant in comparison to other capacities for
nitrogen transformation, displayed surprisingly low levels
of transcription at the time of sampling. Over the course
of the year, the fluctuating water table and periodic flood-
ing should provide environmental niches for both obli-
gately aerobic, and anaerobic processes. Furthermore, the
soil oxidation state and the carbon to nitrate ratio, par-
ticularly in nitrogen-limited systems, may favor DNRA
over denitrification [25]. The current study was conducted
during base flow conditions (both years), well after the
snowmelt season, when high river discharge induces
flooding and therefore anoxic conditions. In the meander-
bound floodplains, snowmelt-derived flow in this ecosys-
tem persists well into the year [12], so shallow soils may
be flooded long after discharge levels drop. The results
raise the possibility of coupling of nitrification and dis-
similatory nitrate pathways on a temporal basis, under
baseflow conditions (when nitrification is dominant), or
under snowmelt conditions (when dissimilatory processes
occur). High net nitrification has been reported for ripar-
ian zones when the water table is below − 30 cm [26], ac-
cordingly the water table in floodplain L was observed to
be below this level in September 2016. Overall, re-
assimilation of nitrogen as ammonium may be important
in this ecosystem, particularly if nitrogen limited.
An important result from the current study was that

there appears to be a core floodplain microbiome composed
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of specific bacterial species from Betaproteobacteria,
Gammaproteobacteria, Deltaproteobacteria, Nitros-
pirae, Candidatus Latescibacteria, and Rokubacteria;
and all of these groups were transcriptionally active at
the time of sampling. Many of the clusters of related
genomes are relatively distantly related to previously
described bacterial types. Thus, we conclude that many
of the most abundant taxa in these riparian zone soils
are organisms that have, until now, remained essentially
outside of the range of scientific investigations. Import-
antly, capacities for aerobic respiration, aerobic oxida-
tion of CO and other small molecules, as well as
thiosulfate oxidation with formation of elemental sul-
fur, were enriched in the core floodplain microbiome.
Notably, the most abundant functions of the core
microbiome were only moderately transcribed at the
time of sampling.
The current study uncovered functions that are widely

encoded in genomes across all three floodplains and
assayed in situ microbial activity. The findings motivate
extensive detailed chemical characterization, particularly
of one carbon compounds, ammonia and other nitrogen
and sulfur species so that it will be possible to link
microbial activity to fluxes of nutrients from the riparian
zone. Our interpretations regarding biogeochemical
cycling of C, N, S, and H were based on the set of recon-
structed genomes from the floodplain soils. It is certainly
true that this may have made some patterns harder to de-
tect than might have been the case with more comprehen-
sive analyses. Importantly, however, we were able to
recover genomes with widespread distribution across the
soils and to incorporate into our analyses organisms that
were much less abundant, but transcriptionally active. In
general, we found that gene and organism abundances do
not predict transcription levels. The in situ transcription
data revealed the potentially very high importance of rare
genes and organisms. However, it is important to note
that transcript datasets are a snapshot from a moment in
time, and that transcription patterns will vary across sea-
sons and maybe even daily. Notably, our analyses showed
organismal and functional overlap in microbial communi-
ties found both within and across the three floodplains
over two consecutive years (~ 15% of species in common,
despite the very high diversity and complexity of the soils).
Thus, in contrast to potentially substantial transcriptome
variability, gene inventories reflect metabolic potential that
likely remains fairly constant throughout the year.

Conclusions
This study employed deep sequencing and genome-
resolved metagenomics, in combination with geochemistry,
to document commonalities among three similar but geo-
graphically distant meander-bound floodplain ecosystem
compartments. We report the existence of microbial strains

that potentially perform similar biogeochemical functions
across these compartments. This is important, given that
soil microbial communities are exceedingly complex and
potentially very heterogeneous. We conclude that, at the
watershed scale, meander-bound regions of floodplain soils
can be defined as “functional zones” that likely predict bio-
geochemical transformations along the riparian corridor,
thereby providing broadly generalizable inputs to ecosystem
models.

Methods
Study site and sample collection
The East River (ER) watershed has been described else-
where [3]. In brief, the ER watershed is a 300-km2 area
largely underlain by marine shales of the Cretaceous
Mancos formation located in the Elk Mountains in west-
central Colorado. The ER is a headwaters catchment in
the Upper Colorado River basin, with an average eleva-
tion of 3350 m. At about 62-km long, the ER traverses
an elevational gradient that includes alpine, subalpine,
and montane life zones as a function of stream reach.
The average annual temperature is ~ 0 °C, with long
cold winters and short cool summers, and the majority
of precipitation is received in the form of snow [27].
The sampling sites are located across an altitudinal

gradient followed by the river (~ 2700–2900 m). The
floodplain at the highest elevation is located ca. 6 km
from the headwaters, nearby Gothic, Colorado, site of
the Rocky Mountain Biological Laboratory (RMBL, Fig. 1).
Therefore, samples collected from this site were named
East River Meander-bound floodplain G (ERMG). The
second site was located ca. 8 km downstream of Gothic,
among a series of floodplains, one of which is situated ad-
jacent to an intensive research site of the Watershed
Function SFA [3]. This floodplain stands out because of
its larger size, and samples were named ERML (L for
large). The third site was located ca. 18 km downstream of
Gothic and just upstream of the confluence with Brush
Creek. Samples from this site were named ERMZ, with
the stream reach between ERML and ERMZ being charac-
terized by a relatively low gradient with high sinuosity.
In September 2015, during base flow conditions, two

series of perpendicular transects were laid out at each
site. Each set of transects comprised four transects that
were parallel between them (Fig. 1). One set of transects
were approximately North to South (T1–T4), and the
other set of transects were East to West (T5–T8). The
starting point of each transect was designated “0 m”, and
the location of the other sites along the transect was
relative to the point of origin. A Trimble Geo 7X GPS
was used to determine the exact location of each site
along the transects with an accuracy of 0.5 m. The dis-
tance (in meters) of each sample to the point of origin
was included in the sample name, which comprised the
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initials of the study area (ER), the initials for each
meander-bound floodplain (i.e., MG, ML, or MZ), the
transect number (i.e., T1–T8), and the distance in me-
ters from the first sample collected at the start point
(e.g., 19 m). We sampled areas of ~ 4600 m2 in flood-
plain G, ~ 8000 m2 in floodplain L, and ~ 5400 m2 in
floodplain Z.
Four soil samples from the 10–25 cm (± 1–2 cm) soil

depth interval were collected in the span of 10 days along
each one of the eight transects, for a total of 32 samples
per floodplain. Each site was cleared of grasses and other
vegetation with clippers, and the first ~ 10 cm of soil was
removed with a sterile shovel. Soil samples were collected
using sterile tools, including a soil core sampler and 7.6 ×
15.2 cm plastic corer liners (AMS, Inc), stainless-steel
spatulas, and Whirl-pak bags. Samples were immediately
stored in coolers for transportation to RMBL, where sam-
ples were prepared for archival and transportation to the
University of California, Berkeley. Soil cores were broken
apart and manually homogenized inside the Whirl-pak
bags. Subsamples for chemical analyses, DNA extractions,
and long-term archival were obtained inside a biosafety
cabinet, kept at − 80 °C, transported in dry ice, and stored
at − 80 °C at the University of California, Berkeley.
In September 2016, another round of sample collec-

tion was conducted at floodplain L for metagenomics,
metatranscriptomics, and chemical analyses. A subset of
19 out of the 32 sampling sites from the previous year
was targeted, and a subset (15) of those was also selected
for metatranscriptomics (Table S1, Additional file 1).
Given that floodplain L was the site with the lowest total
number of draft genomes recovered in 2015, we added
new sites closer to the original sites with the intent of in-
creasing this number by leveraging differential coverage
across samples [28]. Four new sites located in between
the original transects (denominated ERMLIBT) and two
sites adjacent to ERMLT660 (ERMLT660_1 and ERML
T660_2) were sampled. Additionally, samples were
collected from above the water table (approximately
below 40–50 cm from the surface) at a depth of 32–47
cm (± 4–6 cm) from three sites (ERMLT200, ERML231,
and ERML293) along T2. Samples from the 11–25 cm
(± 1–1 cm) soil layer were obtained following the same
protocol as the previous year, with the exception that
subsamples for RNA sequencing were preserved in situ.
Once the soil cores were transferred to a Whirl-pak bag,
they were manually homogenized inside the bags. Eight
grams (8 g) of soil were collected using sterile stainless-
steel spatulas directly into 50-mL sterile falcon tubes
containing 20 mL of LifeGuard Soil Preservation
Solution (Qiagen) for RNA preservation. The samples
were mixed by hand to saturation with the LifeGuard so-
lution, stored in a chilled cooler for transportation to
RMBL and later stored at − 80 °C.

Soil chemistry
Total carbon (TC) and total inorganic carbon (TIC)
were analyzed using a Shimadzu TOC-VCPH analyzer
equipped with a solid sample module SSM-5000A
(Shimadzu Corporation, Japan). Total organic carbon
(TOC) was obtained from the difference between TC
and TIC. For TC quantification, a subsample of the dried
solids was weighed into a ceramic boat and combusted in
a TC furnace at 900 °C with a stream of oxygen. To ensure
complete conversion to CO2, the generated gases are
passed over a mixed catalyst (cobalt/platinum) for cata-
lytic post-combustion. The CO2 produced is subsequently
transferred to the NDIR detector in the main instrument
unit (TOC-VCSH). Quantification of the inorganic carbon
was carried out in a separate IC furnace of the module.
Phosphoric acid is added to the sample, and the resulting
CO2 is purged at 200 °C and measured.
Total nitrogen (TDN) was analyzed using a Shimadzu

Total Nitrogen Module (TNM-1) coupled to the solid
sample module (SSM-5000A) and TOC-VCSH analyzer
(Shimadzu Corporation, Japan). TNM-1 is a nonspecific
measurement of TN. All nitrogen species in samples
were combusted at 900 °C, converted to nitrogen mon-
oxide and nitrogen dioxide, then reacted with ozone to
form an excited state of nitrogen dioxide. Upon return-
ing to the ground state, light energy is emitted. Then,
TN is measured using a chemiluminescence detector.

DNA extraction and sequencing
Genomic DNA was extracted from ~ 10 g of thawed soil
using Powermax Soil DNA extraction kit (Qiagen) with
some minor modifications as follows. Initial cell lysis by
vortexing vigorously was substituted by placing the tubes
in a water bath at 65 °C for 30 min and mixing by inver-
sion every 10 min to decrease shearing of the genomic
DNA. After adding the high concentration salt solution
that allows binding of DNA to the silica membrane col-
umn used for removal of chemical contaminants, vac-
uum was used instead of multiple centrifugation steps.
Finally, DNA was eluted from the membrane using 10
mL of the elution buffer (10 mM Tris buffer) instead of
5 mL to ensure full release of the DNA. DNA was pre-
cipitated out of solution using 10 mL of a 3-M sodium
acetate (pH 5.2) and glycogen (20 mg/mL) solution and
20 mL 100% sterile-filtered ethanol. The mix was incu-
bated overnight at 4 °C, centrifuged at 15,000 × g for 30
min at room temperature, and the resulting pellet was
washed with chilled 10 mL sterile-filtered 70% ethanol,
centrifuged at 15,000 × g for 30 min, allowed to air dry
in a biosafety cabinet for 15–20 min, and resuspended in
100 μL of the original elution buffer. Genomic DNA
yields were between 0.1 and 1.0 μg/μL except for two
samples with 0.06 μg/μL. Power Clean Pro DNA clean
up kit (Qiagen) was used to purify 10 μg of DNA
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following manufacturer’s instructions except for any vor-
texing which was substituted by flickering of the tubes
to preserve the integrity of the high-molecular-weight
DNA. DNA was resuspended in the elution buffer (10
mM Tris buffer, pH 8) at a final concentration of 10 ng/
μL and a total of 0.5 μg of genomic DNA. DNA was
quantified using a Qubit double-stranded broad range
DNA Assay or the high-sensitivity assay (ThermoFisher
Scientific) if necessary. Additionally, the integrity of the
genomic DNA was confirmed on agarose gels and the
cleanness of the extracts tested by absence of inhibition
during PCR. For samples collected the following year,
DNA was co-extracted with RNA (see next section), in
addition to extracting subsamples (10 g of soil) from the
same core following the extraction protocol described
above (Table S1, Additional file 1).
Clean DNA extracts and co-extracts were submitted

for sequencing at the Joint Genome Institute (Walnut
Creek, CA), where samples were subjected to a quality
control check. Two of the 96 samples from 2015 failed
QC and thus were not sequenced (ERMZT233 and
ERMZT446), and four samples were sequenced ahead of
the others (ERMLT700, ERMLT890, ERMZT100, and
ERMZT299). Ten out of 15 of the DNA co-extracts
from 2016 failed QC due to low DNA yields and were
not sequenced either. Sequencing libraries for the first
four samples were prepared in microcentrifuge tubes.
One hundred nanograms of genomic DNA was sheared
to 600 bp pieces using the Covaris LE220 and size
selected with SPRI using AMPureXP beads (Beckman
Coulter). The fragments were treated with end repair,
A-tailing, and ligation of Illumina-compatible adapters
(IDT, Inc) using the KAPA Illumina Library prep kit
(KAPA biosystems). Libraries for the rest of the samples
were prepared in 96-well plates. Plate-based DNA library
preparation for Illumina sequencing was performed on
the PerkinElmer Sciclone NGS robotic liquid handling
system using Kapa Biosystems library preparation kit.
Two hundred nanograms of sample DNA was sheared
to 600 bp using a Covaris LE220 focused-ultrasonicator.
The sheared DNA fragments were size selected by
double-SPRI and then the selected fragments were end-
repaired, A-tailed, and ligated with Illumina-compatible
sequencing adaptors from IDT containing a unique mo-
lecular index barcode for each sample library.
All the libraries were quantified using KAPA Biosys-

tem’s next-generation sequencing library qPCR kit and a
Roche LightCycler 480 real-time PCR instrument. The
quantified libraries were then multiplexed with other li-
braries, and the pool of libraries was prepared for sequen-
cing on Illumina HiSeq sequencing platform utilizing a
TruSeq paired-end cluster kit, v4, and Illumina’s cBot in-
strument to generate a clustered flow cell for sequencing.
Sequencing of the flow cell was performed on the Illumina

HiSeq 2500 sequencer using HiSeq TruSeq SBS sequen-
cing kits, v4, following a 2 × 150 indexed run recipe.

RNA–DNA co-extraction and sequencing
Total RNA was extracted from a subset of 15 samples
using the RNA PowerSoil Total RNA isolation kit (Qia-
gen). Soil samples (8 g) preserved in LifeGuard solution
(Qiagen) were thawed on ice and centrifuged at 2500 × g
for 5 min to collect the soil at the bottom of the tubes.
As a supernatant, the LifeGuard solution was extracted
from the tubes and aliquoted into three 15-mL conical
tubes that were used to transfer three separate 2-g sub-
samples for later use. The remaining 2 g were split in
half into two of the kit’s bead tubes with pre-aliquoted
bead solution (to disperse the cells and soil particles).
The lysis solution (SR1) and the non-DNA organic and
inorganic precipitation solution (SR2) were not added to
the bead tube until all the subsamples to be processed in
a given day had been aliquoted. Subsamples were kept at
− 20 °C before transferring them to a − 80 °C freezer for
permanent storage. The remainder of the extraction was
carried out following the manufacturer’s instructions.
An RNA PowerSoil DNA elution accessory kit was used
to co-extract DNA from the RNA capture columns,
which was quantified as previously described. A DNase
treatment was performed in all the RNA extracts with a
TURBO DNA-free kit (Ambion) using 4 U of TURBO
DNase at 37 °C for 30 min. The absence of DNA was
tested by PCR with universal primers to the SSU rRNA
gene, and the integrity of the RNA was checked using a
Bioanalyzer RNA 6000 Nano kit following the manufac-
turer’s instructions. Total RNA was quantified before
and after DNase treatments using a Qubit high-
sensitivity RNA assay (ThermoFisher Scientific). One of
the RNA extracts (ERMLT590) did not yield enough
RNA for sequencing.
Total RNA and DNA co-extracts were submitted for

sequencing at the Joint Genome Institute in Walnut
Creek, CA, where samples were subjected to a quality
control check. rRNA was removed from 1 μg of total
RNA using Ribo-ZeroTM rRNA Removal Kit (Illumina).
Stranded cDNA libraries were generated using the Illu-
mina Truseq Stranded mRNA Library Prep kit. The
rRNA-depleted RNA was fragmented and reverse tran-
scribed using random hexamers and SSII (Invitrogen)
followed by second-strand synthesis. The fragmented
cDNA was treated with end pair, A-tailing, adapter
ligation, and 8 cycles of PCR. For low-input extracts,
rRNA was removed from 100 ng of total RNA using
Ribo-ZeroTM rRNA Removal Kit (Illumina). Stranded
cDNA libraries were generated using the Illumina Tru-
seq Stranded mRNA Library Prep kit. The rRNA-
depleted RNA was fragmented and reverse transcribed
using random hexamers and SSII (Invitrogen) followed
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by second-strand synthesis. The fragmented cDNA was
treated with end pair, A-tailing, adapter ligation, and 10
cycles of PCR. The prepared libraries were quantified
using KAPA Biosystem’s next-generation sequencing
library qPCR kit and run on a Roche LightCycler 480
real-time PCR instrument. The quantified libraries were
then multiplexed with other libraries, and the pool of li-
braries was prepared for sequencing on the Illumina
HiSeq sequencing platform utilizing a TruSeq paired-
end cluster kit, v4, and Illumina’s cBot instrument to
generate a clustered flow cell for sequencing. Sequencing
of the flow cell was performed on the Illumina HiSeq
2500 sequencer using HiSeq TruSeq SBS sequencing
kits, v4, following a 2 × 150 indexed run recipe.

Metagenomes assembly and annotation and ribosomal
protein L6 analysis
Methods used for 2015 and 2016 metagenome assembly
and annotation are described elsewhere [29]. In brief,
after quality filtering, reads from individual samples were
assembled separately using IDBA-UD v1.1.1 [30] with a
minimum k-mer size of 40, a maximum k-mer size of
140, and step size of 20. Only contigs > 1 Kb were kept
for further analyses. Gene prediction was done with
Prodigal v2.6.3 [31] in meta mode, annotations obtained
using USEARCH [32] against Uniprot [33], Uniref90 and
KEGG [34], and 16S rRNA and tRNAs predicted as de-
scribed in Diamond et al. [5]. Reads were mapped to the
assemblies using Bowtie2 [35] and default settings to es-
timate coverage. To estimate the number of genomes
potentially present across all 94 metagenomes, we used
the ribosomal protein L6 as marker gene and RPxSuite
(https://github.com/alexcritschristoph/RPxSuite) as de-
scribed in Olm et al. [6]. L6 OTU clusters were consid-
ered “binned” if any L6 containing scaffold within an L6
OTU cluster across all samples was associated with a
binned genome. L6 clusters were taxonomically classi-
fied using GraftM (https://doi.org/10.1093/nar/gky174)
against all L6 sequences from the GTDB database (Re-
lease 05-RS95) with default parameters. Rank abundance
curve plotting was accomplished using the ggplot2 [36]
package in R [37].

Genome binning, curation, and dereplication
Annotated metagenomes from both years were uploaded
onto ggKbase (https://ggkbase.berkeley.edu), where bin-
ning tools based on GC content, coverage, and winning
taxonomy [38] were used for genome binning. These
bins and additional bins that were obtained with the
automated binners ABAWACA1 (https://github.com/
CK7/abawaca), ABAWACA2, MetaBAT [39], Maxbin2
[40], and Concoct [41] were pooled, and DAStool [42]
was used for selection of the best set of bins from each
sample as described by Diamond et al. [5]. Notably, no

bins were recovered from sample ERMZT266 by any
method.
Genomic bins were filtered based on completeness ≥

70% of a set of 51 bacterial single copy genes (BSCG) if
affiliated with Bacteria and a set of 38 archaeal single-
copy genes (ASCG); and a level of contamination ≤ 10%
based on the corresponding list of single-copy genes
[42]. Additionally, bins that were 59–68% complete with
a highest taxonomic level defined as Bacteria in ggKbase,
or potential members of the candidate phyla radiation
(CPR) were kept for further scrutiny. To obtain a set of
genomes for visual curation in ggKbase, genomes were
dereplicated at 99% ANI across samples located within a
given floodplain using dRep [43] with the --ignoreGen-
omeQuality flag [43]. Any assembly error in the derepli-
cated set was addressed using ra2.py [44], and contigs that
fell below the 1-Kb length minimum after this step were
removed from the bins. At this point, the level of com-
pleteness of CPR genomes was confirmed based on a list
of 43 BSCG [7]. Genomes that did not meet the complete-
ness thresholds post-assembly error correction and that
were not affiliated with CPR or novel bacteria were re-
moved from the analysis. Considering that bins changed
as a result of this process, genes were re-predicted using
Prodigal [31] in single mode, reads were mapped to the
bins using Bowtie2 [45], and bins were reimported onto
ggKbase. Visual inspection of taxonomic profile, GC con-
tent and to a minor extent coverage, allowed us to further
reduce contamination. The final set of 248 curated bins
from 2015 was dereplicated at 98% ANI this time across
floodplains including the --genomeInfo flag to take into
account completeness and contamination in the process
of representative bin selection. Within this set, genomes ≥
90% complete were deemed near-complete (Table S2,
Additional file 2). Eight relatively low-coverage genomes
fell just below the completeness requirement due to frag-
mentation after curation to remove possible local assem-
bly errors; these were retained as they represent important
taxonomic diversity.
Similarly, genomes reconstructed from floodplain L

samples collected in 2016 that passed the completeness
(≥ 70%) and contamination thresholds (≤ 10%) were
visually inspected and improved in ggKbase. Assembly
errors were corrected with ra2.py [44], and contigs that
fell below the 1-Kb length were removed, as well as ge-
nomes that did not pass the thresholds for completeness
after assembly error correction. Genes were re-predicted
using Prodigal [31] in single mode, and the final set of
curated genomes were imported onto ggKbase.
To determine whether the same species were present

in two different years, we pooled the genome set from
2015 and the curated 2016 set and dereplicated using
dRep [43] at 95% ANI including the --genomeInfo flag
to take into account completeness and contamination in
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the process of representative bin selection [43]. In this
set of genomes, 13 were reconstructed from a deeper
depth (Table S3, Additional file 4). However, only 3
genomes were unique and the other 10 clustered with
genomes reconstructed from the ~ 10–25-cm depth,
indicating overlap between the species found at the two
depths. Therefore, we kept these genomes for further
analyses.

Genome metabolic annotation
We carefully chose a set of ecologically relevant pro-
teins that catalyze geochemical transformations related
to aerobic respiration, metabolism of C1 compounds,
hydrogen metabolism, nitrogen cycling, and sulfur
cycling (Table S4, Additional file 6). Hidden Markov
Models (HMMs) for the majority of these proteins were
obtained from KOfam, the customized HMM database
of KEGG Orthologs (KOs) [46]. Custom-made HMMs
targeting nitrite oxidoreductase subunits A and B
(NxrA and NxrB), periplasmic cytochrome c nitrite re-
ductase (NirS, cd1-NIR heme-containing), cytochrome
c-dependent nitric oxide reductase (NorC; cNOR),
hydrazine dehydrogenase (HzoA), hydrazine synthase
(HzsA), dissimilatory sulfite reductase D (DsrD), sul-
fide:quinone reductase (Sqr), sulfur dioxygenase (Sdo),
ribulose-bisphosphate carboxylase (RuBisCO) form I
and form II, and alcohol dehydrogenases (Pqq-XoxF-
MxaF) were obtained from Anantharaman et al. [7].
NiFe and FeFe hydrogenases were predicted using
HMMs from Méheust et al. [47] and assigned to func-
tional groups following Matheus Carnevali et al. [38]
(see Phylogenetic analyses subsection below for tree
construction methods; Data S3, Additional file 12 and
Data S4, Additional file 13; Table S9, Additional file 14
and Table S10, Additional file 15). No real group 4
membrane-bound NiFe hydrogenases were identified
among the East River representative genomes (data not
shown). HMMER3 [48] was used to annotate the dere-
plicated sets of genomes following predefined score
cutoffs [46]. A subset (10%) of the hits to all of these
HMMs were visually checked to determine whether the
cutoffs were appropriate for this dataset as described in
Lavy et al. [49] and Jaffe et al. [50]. Only in the case of
formate dehydrogenase (FdhA (K05299 and K22516),
FdoG/FdhF/FdwA (K00123)) was the cutoff lowered to
include additional hits.
For a protein to be considered potentially encoded in

the genome, the catalytic subunit and the majority of the
accessory subunits had to be detected by the corre-
sponding HMMs at the established cutoffs. The implica-
tion for these function definitions is that in some cases
even if some subunits that make up an enzyme were
detected, the enzyme could have been deemed absent
because a key part was missing (Table S4, Additional

file 6). Similarly, pathways that require the activity of
multiple enzymes were only detectable if all of the
enzymes were present. Only in cases like the Wood-
Jungdahl pathway, we required the majority of the
genes to be present, taking into consideration genome
completeness. Furthermore, if multiple enzymes could
catalyze a given reaction (e.g., use O2 as a terminal
electron acceptor), the presence of genes encoding
one such enzyme in a genome would be indicative
that this capacity was present in the genome. Add-
itionally, if different pathways lead to the same bio-
geochemical transformation (e.g., CO2-fixation), the
presence of genes encoding one of those pathways (or
key enzymes) was considered as sufficient to indicate
its presence (Table S4, Additional file 6). In a limited
number of cases, a given pathway may also involve
enzymes that are part of central metabolism or that
are part of multiple pathways, and in these cases, we
chose to define presence based on the key catalyst in-
stead of the whole pathway (e.g., RuBisCO in the
Calvin Benson pathway).
Carbohydrate-active enzymes were predicted using the

Carbohydrate-Active enZYmes Database (CAZy; http://
www.cazy.org/) [10] (version 1.0) and dbCAN2 [51] (e value
cutoff 1e–20).

Genome coverage and detection
Reads were mapped to the dereplicated set of bins using
Bowtie2 [35] and a mismatch threshold of 2% dissimilar-
i ty . Calculate_coverage.py (https ://github.com/
christophertbrown/bioscripts/tree/master/ctbBio) was
used to estimate the average number of reads mapping
to each genome and the proportion of the genome that
was covered by reads (breadth). Genomes with a
coverage of at least 0.01 X were considered to be
detected in a given sample. The Hellinger transform-
ation was used to account for differences in sequen-
cing depth among samples and determine final
genome abundance. To illustrate genome detection
across samples, we used the ggplot2 package [36].
Genomes were clustered by average linkage using the
Hellinger-transformed abundance across samples
(from read mapping), and the samples were clustered
by Euclidean distance in R [37].

Phylogenetic analyses
Two phylogenetic trees were constructed with a set of
14 ribosomal proteins (L2, L3, L4, L5, L6, L14, L15, L18,
L22, L24, S3, S8, S17, and S19). One tree included Beta-
proteobacteria genomes from this study at the subspecies
level (98% ANI) and ~ 1540 reference Betaproteobacteria
genomes from the NCBI (Figure S3, Additional file 3 and
Data S1, Additional file 5). The other tree included the set
of 215 genomes dereplicated at 95% ANI and ~ 2228
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reference genomes from the NCBI genome database (Data
S2, Additional file 9). For each genome, the ribosomal
proteins were collected along the scaffold with the highest
number of ribosomal proteins. A maximum-likelihood
tree was calculated based on the concatenation of the
ribosomal proteins as follows: Homologous protein se-
quences were aligned using MAFFT (version 7.390)
(--auto option) [52], and alignments refined to remove
gapped regions using Trimal (version 1.4.22) (--gappyout
option) [53]. Tree reconstruction was performed using
IQ-TREE (version 1.6.12) (as implemented on the CIPRES
web server [54], using ModelFinder [55] to select the best
model of evolution (LG + I + G4), and with 1000 ultrafast
bootstrap [56]. Taxonomic affiliations were determined
based on the closest reference sequences relative to the
query sequences on the tree and extended to other mem-
bers of the ANI cluster. In many cases, the phylogeny was
not clear upon first inspection of the tree and additional
reference genomes were added if publicly available. Phylo-
genetic trees for proteins of interest were reconstructed
using the same methods described above, except with dif-
ferent sets of reference sequences. East River homologs in
the dimethyl sulfoxide reductase (DMSOR) superfamily
such as the catalytic subunit of formate dehydrogenase
(FdhA), nitrite oxidoreductase (NxrA), membrane-bound
nitrate reductase (NarG; H+-translocating), and periplas-
mic nitrate reductase subunit A (NapA) were confirmed
by phylogeny on a tree with reference sequences from
Méheust et al. [47] (Table S11, Additional file 16 and Data
S5, Additional file 17). To distinguish form I and form II
CODHs and other subtypes among homologs to K03520,
we used Diamond’s et al. [5] dataset, which comprises ref-
erence sequences from Quiza et al. [18] (Table S12, Add-
itional file 18 and Data S6, Additional file 19). Similarly,
homologs identified using the Pqq-XoxF-MxaF HMM for
alcohol dehydrogenases were placed on a phylogenetic
tree with reference sequences from Diamond’s et al. [5]
dataset, comprising references from Keltjens et al. [57]
and Taubert et al. [58]. In this tree, all East River homo-
logs were clustered with methanol dehydrogenases (Table
S13, Additional file 20 and Data S7, Additional file 21) in-
stead of other types of alcohol dehydrogenases. To distin-
guish between dissimilatory (bi)sulfite reductase oxidative
or reductive bacterial types, DsrA and DsrB homologs
from individual genomes were concatenated to each other,
aligned, and added to a phylogenetic tree with reference
sequences from Muller et al. [59] (Table S14, Additional
file 22 and Data S8, Additional file 23).

Community diversity and composition
Diversity indices for each sample were calculated from
the Hellinger transformed abundance table for the
genome set at subspecies level (98% ANI) using the
vegan package in R [60]. Species numbers and Shannon

diversity per sample were quantified using the specnum-
ber and vegdist functions of vegan, respectively (Figure
S4, Additional file 3 ). An analysis of variance, imple-
mented in the aov function in R [37], was used to test
for significant differences in mean species number and
Shannon diversity in relationship to the floodplain sam-
ples originated from. No significant differences in group
means were detected considering a p value < 0.05 as
significant.
To investigate community composition at the phylum/

class level as determined by phylogenetic analysis, the
Hellinger-transformed abundance table for the genome
set at the subspecies level (98% ANI) was converted to a
presence/absence table. The number of samples where
each genome was detected was counted, and the number
of genomes affiliated to a given taxon was summed by
sample and plotted in R [37] with ggplot2 [36].

Identification of a core floodplain microbiome
To identify organisms that were a “core” or “shared” set
across all sampled sites, we operationally defined a core
set as (1) organisms that were not statistically associated
with any specific floodplain using indicator species ana-
lysis (ISA) and (2) that were detected (displayed ≥ 0.01X
coverage) in at least 89 of the 94 total samples (the 90th
percentile for this level of presence across all 248
genomes). Indicator species analysis was performed on
the log transformed coverage values that were filtered to
include only coverage values ≥ 0.01X using the indicspe-
cies package [61] in R version 3.5.2 [37] with 9999 per-
mutations. All p values for associations of an organism
genome with a floodplain or group of floodplains were
then subsequently corrected using False Discovery Rate
with FDR ≤ 0.05 being considered a significant associ-
ation. This resulted in 42 genomes that were not statisti-
cally associated with any floodplain by ISA and were
also detected in ≥ 89 samples (Table S5, Additional file
7). For visualization of organism abundance profiles in
relationship to their membership in the core floodplain
microbiome, ISA clusters, and relative to the coefficient
of variation of their coverage, Hellinger normalized
coverage data was projected onto a two-dimensional
space using Uniform Manifold Approximation and Pro-
jection (UMAP) implemented in the uwot package in R
[62] using the following parameters: umap(data = cover-
age_data, n_neighbors = 15, nn_method = “fnn”, spread
= 5, min_dist = 0.01, n_components = 2, metric = “eu-
clidian”, n_epochs = 1000).

Identification of enriched metabolic functions in core
floodplain microbiome
Overrepresentation of metabolic functions within the set
of genomes comprising the core floodplain microbiome
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(n = 42) was assessed using hypergeometric testing. The
probability of observing the number of genomes in the
core floodplain microbiome carrying each of 33
functions, given the total number of genomes with that
function across our full genomic dataset (n = 248), was
calculated using the phyper function in R [37]. Probabil-
ities calculated across all metabolic functions were
corrected for multiple testing using false discovery rate
with the p.adjust function in R [37] and with FDR ≤ 0.05
being considered a significant enrichment of a function
in the core microbiome.

Analysis of correlations among environmental variables
Correlations between numeric soil biogeochemical vari-
ables across samples were calculated using Spearman rank
correlation implemented in the rcorr function of the
Hmisc package in R (https://github.com/harrelfe/Hmisc).
Correlations between variables were then plotted as a cor-
relogram and ordered using hierarchical clustering with
Ward’s method using the corrplot package in R [63].

Fourth-corner analysis
A rlq fourth-corner analysis was performed on genome
abundances, environmental data, and genome metabolic
annotations using the R package ade4 [64]. Specifically,
the pre-Hellinger-transformed genome abundance table
was used for a correspondence analysis, the selected en-
vironmental variables (see Soil Chemistry and GIS) were
used for a Hill-Smith analysis, and the genome meta-
bolic annotations were used for PCA. A randomization
test (as described by ter Braak et al. [65] and Dray et al.
[8] was used to test the global significance of the trait–
environment relationships. The fourth-corner statistic
was then calculated on the same inputs as the rlq ana-
lysis with 50,000 permutations and p value adjustments
using the FDR global methods. The results of the rlq
fourth-corner analysis were plotted using the ggplot2
package [36].

Metatranscriptomic analyses
To determine differentially transcribed genes, potential
levels of activity by phylum or class, most transcribed
CAZy, and most transcribed genes among key geochem-
ical transformations, metatranscriptomic reads were
mapped using Bowtie2 [35] to a set of high-quality draft
genomes dereplicated at 95% (see above). Metagenomic
reads from the subset of floodplain L sites that were
sampled both in 2015 and 2016 (Table S1, Additional
file 1) were also mapped to confirm high transcription
levels were not due to higher gene abundance in 2016.
Read pairs were then filtered by a minimum identity of
95% to the reference with MAPQ ≥ 2, and total number

of mapped read pairs was counted for each gene. Counts
for metabolic genes were analyzed with DESeq2 [9] to
determine differential expression in response to soil or-
ganic carbon, and p values were adjusted to correct for
multiple hypothesis testing (FDR < 0.05).

GIS
All GIS operations and cartographic visualizations
were performed in QGIS v2.12.1 except where
otherwise stated. The base remote-sensed imagery
used was obtained from USDA NAIP (USDA-FSA
Aerial Photography Field Office publication date
20171220; 1 m ground pixel resolution). Digital ter-
rain model (DTM) at a ground resolution of 0.5 m/
pixel was derived by airborne LiDAR data acquired
by Quantum Spatial in collaboration with Eagle
Mapping Ltd [66] (doi:10.21952/WTR/1412542) in
2015. All maps were projected using EPSG:26913
NAD83/ UTM zone 13N. Meander and adjacent
river polygons were manually delineated in QGIS.
The distance from a sample point to the manually
delineated river polygons was calculated using the
NNJoin tool. To calculate the sample distances to
meander toe, lines were manually drawn between all
samples and the meander toe perpendicular to river
flow and distances calculated using NNJoin (Figure
S6, Additional file 3 a). Similarly, to calculate sample
distances to the middle of the meander, a line per-
pendicular to the meander toe line was drawn across
the middle of the meander (Figure S6, Additional
file 3 ). Sample distances to this line were also cal-
culated using NNJoin and samples on the down-
stream side of the line were converted to negative
values to indicate upstream and downstream sides of
the meander. TPI is computed from the DTM as the
difference between the elevation of a center point
and the average elevation measured in the neighbor-
ing area (3 by 3 m) [66]. To display genome abun-
dances as used in the rlq fourth-corner analysis,
filtered abundance values were chi-square trans-
formed in R using the decostand in the vegan pack-
age and exported to display in QGIS. Spatial kriging
of inorganic carbon was performed in R. The manu-
ally delineated meander polygons were converted to
SpatialPixelsDataFrame using the sp package. A sim-
ple variogram model was fit to the natural log-
transformed inorganic carbon values with a spatial
cutoff of 60 m. Kriging was then performed using
the sample points, the meander SpatialPixelsData-
Frame, and the fitted variogram model. The natural
log-transformed inorganic carbon values were then
back transformed and the kriged map exported for
visualization in QGIS.
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Additional file 1: Table S1. Sample sequencing and assembly
information, and NCBI accession numbers.

Additional file 2: Table S2. Representative genomes (of 248 sub-
species clusters at 98% ANI) information. This set of genomes was recon-
structed from soil samples collected in September 2015.

Additional file 3: Figure S1. Rank abundance curve of rpL6 scaffolds
(centroids for sequences clustered at 97.5 % nucleotide identity) and
their taxonomic assignment. Black ticks represent clusters with scaffolds
that were binned in genomes. Clusters with < 5 sequences were
combined in “others”. The taxonomic affiliation presented here
corresponds to that of the Genome Taxonomy Database (GTDB release
05-RS95), while the taxonomy of the genomes was assigned based on
phylogenetic placement in a tree of 14 concatenated ribosomal pro-
teins. There may be discrepancies in the taxonomic assignments be-
tween the single rpL6 genes and the genomes, arising from the use of
a different method to generate this figure. For example, Gammaproteo-
bacteria in GTDB (https://gtdb.ecogenomic.org/) include Betaproteo-
bacteria, and Deltaproteobacteria in NCBI include Myxococcota and
Desulfobacterota, which are separate clades in GTDB. Scaffolds from
multiple CPR (Patescibacteria) were not classified by GTDB and have
been grouped as “Unk” or unclassified in this figure. Figure S2. Percent
of samples within each floodplain where a genome was detected at
the sub-species level (98% ANI). Presence or absence was determined
based on Hellinger transformed abundance (average coverage ≥ 0.01).
(a) Detection regardless of where the genome was reconstructed from.
(b) Detection according to floodplain of origin. Genomes were de-
tected in a higher number of samples from a given floodplain if they
were reconstructed from a sample within that floodplain. Figure S3.
Concatenated ribosomal proteins IQ-TREE of Betaproteobacteria at the
sub-species level (98% ANI) and ~ 1540 reference genomes from the
NCBI. East River Betaproteobacteria are shown in bold magenta font
(from this study) and violet font (from [49]). Some environmental se-
quences related to East River Betaproteobacteria are highlighted in or-
ange, and next to the accession number is the environment of origin.
Clades at the family level follow GTDB taxonomy [68] for additional ref-
erence. Figure S4. Diversity indices calculated for a set of representa-
tive genomes at the sub-species level (98% ANI). Figure S5.
Environmental variables used in fourth corner analysis: solid face chem-
istry from soil samples collected in 2015 including total carbon (TC; %),
inorganic carbon (IC; %), organic carbon (OC; %), total nitrogen (TN; %),
total carbon to total nitrogen ratio (OC:N) and measures associated
with sample site locations: distance to river, elevation, easting, northing,
topographic position index (TPI), and distance to the inner bank edge
(or toe distance) and distance to middle of the meander-bound flood-
plain. Figure S6. Diagram representing imaginary lines used to deter-
mine distance to the middle of the meander-bound floodplain and
distance to the inner bank edge (toe distance) as alternative measures
of samples position on the floodplains. Figure S7. Spearman’s correlation
among environmental variables (2015). Figure S8. Number of reads mapped
to genes encoding geochemically relevant functions in the species-level set of
215 genomes. (a) Number of DNA reads mapped from 2015 metagenomes
and from 2016 metagenomes. This plot shows a high degree of correspond-
ence between the two different years. (b) Number of RNA and DNA reads
mapped from 2016 metatranscriptomes and 2015 metagenomes obtained
from the same sampling sites. (c) Number of RNA and DNA reads from 2016
metatranscriptomes and metagenomes from the same subset of sampling
sites. These plots show that in some cases there are high numbers of RNA
reads mapping to low abundance genes (represented by low number of
mapped DNA reads). Most obvious examples on figures b and c: MeDH:
methanol dehydrogenase. nxrB: nitrite oxidoreductase subunit B. narH:
membrane-bound nitrate reductase (H+ - translocating). fdoG, fdhF, fdwA:
NAD+-dependent formate dehydrogenase major subunit. oorAB: 2-
oxoglutarate/2-oxoacid ferredoxin oxidoreductase subunits alpha and beta.
coxL: aerobic carbon monoxide dehydrogenase large subunit. Figure S9.
Spearman’s correlation among environmental variables (2016).

Additional file 4: Table S3. Representative genomes (of 215 species
clusters at 95% ANI) information. This set of genomes includes genomes
reconstructed from samples collected in September 2015 and September
2016.

Additional file 5. Data S1: Concatenated ribosomal proteins
phylogenetic tree of Betaproteobacteria among 248 representative
genomes of sub-species level clusters at 98% ANI.

Additional file 6: Table S4. Presence/Absence of gene homologs
identified among 248 representative genomes using selected HMMs.
Includes rules used to define functions.

Additional file 7: Table S5. Results of the indicator species analysis.

Additional file 8: Table S6. Presence/Absence of functions among 248
representative genomes.

Additional file 9. Data S2. Concatenated ribosomal proteins
phylogenetic tree of 215 representative genomes of species level clusters
at 95% ANI.

Additional file 10: Table S7. Solid phase chemistry for subset of
samples collected in September 2016 with paired metatranscriptomes.

Additional file 11: Table S8. Carbohydrate active enzymes (CAZys) in
the glycosyl hydrolases (GH), carbohydrate esterases (CE), polysaccharide
lyases (PL), and auxiliary activities (AA) classes detected among the 215
representative genomes (e- value cut-off 1e-20).

Additional file 12. Data S3. Phylogenetic tree of NiFe hydrogenases
groups 1, 2 and 3 reference sequences and homologs identified among
unique sequences from both genome sets.

Additional file 13. Data S4. Phylogenetic tree of FeFe hydrogenases
groups A, B and C reference sequences and homologs identified among
unique sequences from both genome sets.

Additional file 14: Table S9. Unique sequences from both genome
sets confirmed to be homologous to NiFe hydrogenases groups 1, 2 or 3
based on a phylogenetic analysis.

Additional file 15: Table S10. Unique sequences from both genome
sets confirmed to be homologous to FeFe hydrogenases groups A, B or
C based on a phylogenetic analysis. Sequences identified among the 248
representative genomes were used in analyses based on presence/
absence. Sequences identified among the 215 representative genomes
were used in transcript analyses.

Additional file 16: Table S11. Unique sequences from both genome
sets confirmed to be homologous to FdhA/FdoG/FdhF/FdwA, NxrA,
NapA, and NarG based on a phylogenetic analysis.

Additional file 17. Data S5. Phylogenetic tree of DMSOR superfamily
reference sequences and homologs identified among unique sequences
from both genome sets.

Additional file 18: Table S12. Unique sequences from both genome
sets confirmed to be homologous to CoxL based on a phylogenetic
analysis. Subtype is indicated next to the sequences.

Additional file 19. Data S6. Phylogenetic tree of CoxL reference
sequences and homologs identified among unique sequences from both
genome sets.

Additional file 20: Table S13. Unique sequences from both genome
sets confirmed to be homologous to methanol dehydrogenases.

Additional File 21. Data S7. Phylogenetic tree of PQQ-containing alco-
hol dehydrogenases reference sequences and homologs identified
among unique sequences from both genome sets.

Additional File 22: Table S14. Unique sequences from both genome
sets homologous to DsrAB. Subtype is indicated next to the sequences.

Additional file 23. Data S8: Phylogenetic tree of concatenated DsrAB
reference sequences and homologs identified among unique sequences
from both genome sets.
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