
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Solving partial differential equations on irregular domains with moving interfaces, with 
applications to superconformal electrodeposition in semiconductor manufacturing

Permalink
https://escholarship.org/uc/item/8zb4g18b

Author
Sethian, J.A.

Publication Date
2008-12-22

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8zb4g18b
https://escholarship.org
http://www.cdlib.org/


Solving Partial Differential Equations on Irregular Domains with Moving

Interfaces, with Applications to Superconformal Electrodeposition in

Semiconductor Manufacturing

J. A. Sethian and Ying Shan
Department of Mathematics

University of California, Berkeley
Berkeley, California 94720 ∗

March 4, 2008

Abstract

We present a numerical algorithm for solving partial differential equations on irregular domains with moving

interfaces. Instead of the typical approach of solving in a larger rectangular domain, our approach performs most

calculations only in the desired domain. To do so efficiently, we have developed a one-sided multigrid method to

solve the corresponding large sparse linear systems.

Our focus is on the simulation of the electrodeposition process in semiconductor manufacturing in both two and

three dimensions. Our goal is to track the position of the interface between the metal and the electrolyte as the

features are filled and to determine which initial configurations and physical parameters lead to superfilling.

We begin by motivating the set of equations which model the electrodeposition process. Building on existing

models for superconformal electrodeposition, we develop a model which naturally arises from a conservation law

form of surface additive evolution. We then introduce several numerical algorithms, including a conservative

material transport level set method and our multigrid method for one-sided diffusion equations. We then analyze

the accuracy of our numerical methods. Finally, we compare our result with experiment over a wide range of

physical parameters.

1 Introduction

In this article, we will design a numerical algorithm to solve partial differential equations on irregular domains with
moving interfaces. This approach is considerably faster than existing ones: most of the calculations are performed
only in the desired domain instead of in an extended rectangular domain, aided by the use of a one-sided version of
the multigrid method to solve the corresponding large sparse linear systems. Our method has been tested to give
accurate numerical solutions for problems defined on domains with convoluted geometries, including thin fingers and
sharp corners.

Our focus application is the simulation of the electrodeposition process. Electroplating (see [6]) is deposition
process that permits filling of high-aspect ratio features without seams or voids through the process of superconformal
deposition, also called superfilling. Our goal is to track the position of the interface between the metal and the
electrolyte as features are filled in order to determine numerically what initial configurations lead to superfilling.

Building on existing models for superconformal electrodeposition, we develop a model which naturally arises from
a conservation law form of surface additive evolution. This model allows us to perform a careful analysis of how
superfilling depends on the choice of physical parameters, with close comparison to experiment.

∗This work was supported in part by the Applied Mathematical Science subprogram of the Office of Energy Research, U.S. Department

of Energy, under Contract Number DE-AC03-76SF00098, and by the Computational Mathematics Program of the National Science

Foundation

1

JAWolslegel
Typewritten Text

JAWolslegel
Typewritten Text

JAWolslegel
Typewritten Text

JAWolslegel
Typewritten Text
This work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11232 through the Lawrence Berkeley NationalLaboratory, Berkeley, CA.

JAWolslegel
Typewritten Text



In order to successfully compute the solution to this model, several new computational techniques are developed
in this paper. These include:

1. A new conservative material transport level set method in two and three dimensions for interfaces that carry
scalar fields as they evolve.

2. An immersed interface type method for building one-sided difference operators for complex interfaces with thin
arms and fingers.

3. A multigrid method in two and three dimensions for solving one-sided diffusion equations with irregular moving
interface.

The outline of this paper is as follows. Section 2 briefly describes some existing work on electrodeposition, and
then describes a general overview of some related numerical methods. Section 3 describes the underlying physics of
the electrodeposition process and also the determination of some of the parameters used in our model. The basic
equations that need to be solved for modeling the deposition process are derived based on previously existing models.
However modifications are made so that the model is physically more reasonable.

Section 4 presents the finite difference methods for level set equations, conservation laws, and diffusion equations.
In this section, most of the discretizations are done in two space dimensions. We discuss in Section 5 how to solve
large linear systems in an efficient way and details of the one-sided multigrid method. The last section is devoted
to numerical results, conclusions, extension to the three-dimensional case, and suggestions for future work using the
methods described in this article.

2 Background Material

2.1 Target Application: Electrodeposition

Electrodeposited copper can be used as the material for on-chip trenches and vias. The process of copper electrodeposi-
tion (see Figure 1) depends on the use of additives that affect the local deposition rate and this leads to superconformal
filling of trenches.

Figure 1: An image of copper deposited from electrolyte. Voids are apparent in the trenches. The picture is taken
from [33].

Early modeling studies focused on leveling theory [48], in which the growth rate is dependent on the accumulation
of inhibiting species onto the metal surface. Such leveling methods are not very successful in explaining the superfilling
phenomena.

Subsequently, curvature-enhanced accelerator coverage (CEAC) has been proposed as the mechanism behind this
process. According to the CEAC mechanism, deposition on a non-planar surface is accompanied by changes in the
local surface area which affect the local adsorbate surface coverage. The coverage increases on concave segments and
decreases on convex segments. This leads to bottom-up filling of features since the deposition rate is proportional to
the catalyst coverage. Let κ be the local curvature. In [49],

∂θ

∂t
= κvθ + source term (1)

2



is taken as the equation satisfied by the accelerator coverage, while in [50],

∂θ

∂t
+ v∇ · (nθ) = source term (2)

is solved instead, which implicitly depends on the curvature since κ ∝ ∇ · n.
However, the numerical results in [49] and [50] somewhat demonstrate the superfilling phenomena, they both fail

to accurately predict the experimental results given in [34]. The idea of some sort of curvature dependence in the
CEAC mechanism is both appealing and natural, however the exact relationship between the rate of deposition and
the curvature of the interface is not clear. The approach in this paper is to build on geometric arguments: we devise
a physically reasonable equation for the accelerator coverage in the form of a conservation law, which depends on the
curvature in a rather implicit way. The equations are solved using fast and accurate schemes. A comparison between
the numerical solutions in section 7 and the experimental results in [34] shows that among all available methods, this
leads to the most accurate prediction to the experimental results.

2.2 Literature Survey of Related Work

2.2.1 The Physical Problem

A great deal of information on modeling electrodeposition can be found in [22], [23], [34] and [50], which are excellent
references for both overviews and detailed descriptions of the processes related to electrodeposition. In particular, [50]
surveys the CEAC mechanism and the corresponding numerical simulation of the process. The simulations in [34] and
[50] do not conform very well with the results from real experiments as shown in [34], in part because CEAC may
not be the correct way to model the process, in part because of numerical problems that may arise either when sharp
corners form or when the side walls of the trench are come close.

2.2.2 Survey of Numerical Algorithms

From an algorithmic standpoint, a successful numerical simulation of electrodeposition requires numerical techniques
to track moving interfaces, as well as schemes to solve partial differential equations on regions bounded by moving
boundaries. Many different approaches have been developed to tackle these issues. These include,

1. Structuredmesh finite volume methods [25] for solving problems on irregular domains with moving
interfaces. They are derived from conservation laws applied to a discrete control volume. Finite difference
operators can then be used to approximate fluxes across the control surface in such a way that the discrete
evolution equation is also in the form of a conservation law. The disadvantage of this approach is that it is
incapable of representing complicated geometries and thus may be inaccurate in the presence of close walls or
sharp corners.

2. Cartesian grid embedded boundary methods introduced in [21] and [32] to increase the geometric
flexibility of finite volume methods. Away from the boundaries of the computational domain, this approach
uses traditional finite difference discretizations on a regular Cartesian grid. On the domain boundary, the local
geometry is incorporated by intersecting the domain with each grid cell. The operator is then approximated on
each irregular cell using a finite volume discretization. This method may lose accuracy at the domain boundaries.

3. Finite difference methods on structured grids (see [44] and [46]). These methods are very popular, and
a great deal of work has been devoted to adaptive grid finite difference methods (see, for example, [36]) to deal
with boundary conditions defined along irregular interfaces. However, this approach can be very expensive for
time-dependent problems.

4. Level set methods introduced by Osher and Sethian in [35], which are numerical techniques
designed to track the evolution of interfaces. These methods track the moving boundary by embedding
the interface into higher dimensions, and rely in part on the theory of curve and surface evolution given in [39]
and [40] and on the link between front propagation and hyperbolic conservation laws discussed in [41]. The key
idea is to recast interface motion as a time-dependent Eulerian initial value partial differential equation.

3



5. A class of numerical methods described in [18] and [24] for nonlinear systems of conservation
laws. They are designed to solve conservation laws with some desired properties (such as the choosing a
solution satisfying the entropy condition).

6. Immersed interface methods designed by LeVeque and Li in [26] and [27]. These are numerical methods
which incorporate interface jump conditions and the given partial differential equation in a local coordinate
system. Time-step restrictions can be avoided by using implicit schemes, and the resulting large linear systems
can be solved with fast linear solvers such as GMRES [38] and the multigrid methods [9]. One drawback of this
approach is that it is not conservative due to the rotated local coordinate system. In addition, by using the
partial differential equation to cancel error terms in the finite difference stencil, generating stencil coefficients
becomes problem-dependent and thus more difficult to automate. A complete reference in this topic is [29].

7. Ghost fluid methods [16] for multimaterial interfaces problems. These methods track multimaterial
interfaces with level set functions, and use ghost cells to keep the density profile from smearing out while still
keeping the scheme robust and easy to program with simple extensions to multidimensions and multilevel time
integration.

8. A methodology to model arbitrary holes and material interfaces (inclusions) without meshing the
internal boundaries [45]. This numerical method couples the level set method to the extended finite-element
method (X-FEM), and the finite-element approximation is enriched by additional functions through the notion
of partition of unity.

9. An approach for solving Poisson equations on irregular domains in [19], [20] and [30]. This augmented
approach tracks moving boundaries with level set methods and solves Poisson equations using the fast Poisson
solver based on fast Fourier transform.

We will use a combination of some of the numerical methods mentioned above, including immersed interface
methods for discretizing the diffusion equations, adaptive finite difference methods for solving the discretized problems,
followed by multigrid methods for solving the large linear systems resulting from our implicit schemes, level set methods
for tracking the interface and making continuous extensions, and conservative schemes for solving equations in the
form of conservation laws. The combination leads to a direct method and is simple to implement.

3 Model Specification

Modeling of copper deposition requires the simultaneous tracking of the copper/electrolyte interface location, the
surface coverage of the additives, and the concentration profiles of different components in the electrolyte. We will
use a level set method along with a velocity extension methodology to track the evolution of the interface. The
evolution of the accelerator coverage is determined by an equation in the form of a conservation law with source terms
which accounts for the change of the interface shape, influx from the electrolyte and consumption into the metal.
Concentrations within the electrolyte satisfy diffusion equations.

Assume we have the configuration as shown in Figure 2 for a trench with width w and height h. Experiments
(see [34]) show that the relationship between the velocity of normal propagation of the interface and the accelerator
coverage can be expressed as:

v =
i(θ)Ωn

2F
, (3)

where i(θ) is the current density which is a function of θ, n is the unit normal of the interface pointing into the
electrolyte, Ω is the atomic volume of copper and F is Faraday’s constant. The ”2” in the denominator in Eqn. (3)
comes from the cupric ion charge. The current density i is given by the Butler-Volmer equation [50], namely

i = i(η) = i0
Ci

c

C∞
c

exp

(

−αF

RT
η

)

, (4)

where i0 is the exchange current density, Ci
c and C∞

c are the concentrations of copper along the interface and in
the far field respectively, α is the transfer coefficient determined by experiments, R is the gas constant, T is the

4



δ

w

h

C
oo

c Cm,

interface C
i

c Cm,
i

oo

Figure 2: A silicon trench is immersed in copper-contained electrolyte, with an initial thin layer of solid copper
deposited on the trench. C∞

c , C∞
m are constant concentrations in the far field, and Ci

c, Ci
m are concentrations along

the copper/electrolyte interface, where c is for copper and m is for accelerator

temperature and η is the over-potential. Dependence of the current density on the accelerator coverage θ, that is, the
i− θ relationship, is empirically established on flat surfaces to be of the form

i0(θ) = b0 + b1θ, (5)

and
α(θ) = m0 + m1θ, (6)

where b0, b1, m0 and m1 are constants. A combination of Eqns. (3), (4), (5) and (6) gives the final expression for the
normal speed of propagation:

v = (b0 + b1θ) ·
Ci

c

C∞
c

· exp

(

−(m0 + m1θ)F

RT
η

)

Ω

2F
. (7)

The concentrations of copper and accelerator in the electrolyte are governed by diffusion equations of the form

∂Cξ

∂t
= Dξ∆Cξ, Cξ = C∞

ξ in the far field, (8)

where Dξ is the diffusion coefficient and the subscript ξ is given by

ξ =

{

m for accelerator

c for copper.

The flux loss from the electrolyte at the interface defines another set of boundary conditions for Eqn. (8)

−Dξ
∂Cξ

∂n
=

{

−k(1 − θ)Ci
m for accelerator

−v(Vc −Ci
c) for copper,

(9)

where Vc is the molar volume of solid copper, and k is the jump potential that varies with the over-potential η

k(η) = k0 − k3η
3. (10)

The rate of change of accelerator coverage θ is partly due to adsorption and consumption. The conservation of the
accelerator in addition to adsorption from the electrolyte and consumption by the deposited copper gives

dθ

dt
+∇ · (vθ) = Ja − Jd, (11)

5



where the left hand side describes the conservation of the quantity θ, and Ja and Jd are the fluxes due to adsorption
and consumption given by

Ja = ka(1− θ)Ci
m, Jd = kdθ

q , q = mη + b, (12)

where the rate constants ka and kd are potential-dependent and again determined by experiments [34] to be

ka = k0 exp

(

−αaF

RT
η

)

, (13)

and

kd = Bd +
A

exp(Ba(η + Vd)) + exp(Bb(η + Vd))
, (14)

where A, Ba, Bb, Bd and Vd are constant coefficients computed by fitting experimental results.
If we look back at Eqns. (1), (2) and (11) for the evolution of the accelerator coverage θ, their differences lie in

the curvature-dependent term. We can rewrite the term v∇ · (nθ) as

v∇ · (nθ) = vθ∇ · n + v∇θ · n = vθκ +∇θ · v,

from which we can see that the curvature κ does indeed appear in all three equations, although we do not need to
compute κ explicitly in Eqn. (11) to solve this equation.

We also note that the term v∇ · (nθ) can be written as

v∇ · (nθ) = ∇ · (vnθ) − θn · ∇v = ∇ · (vθ) − θ
∂v

∂n
,

where ∂v
∂n vanishes if the velocity v is extended in a way such that v is constant along the normal direction, which

means that ∂v
∂n = 0. Other extension choices would not make this term vanish, however we note that regardless of the

choice of extension, numerical round-off errors will still lead to a non-zero component.
A summary of constant parameters used in the numerical simulation is given in Table 1. The parameters are

empirically determined by performing experiments on planar surfaces and fitting the results [34].
Given the equations and parameters, our goal is to solve them one at a time in each of the following sections,

starting from the level set equation for the moving interface discussed in the next section.

4 Numerical Methods for Solving the Differential Equations

4.1 Level Set Methods

To predict whether a void appears during the deposition process, it is necessary to track the interface between deposited
copper and the electrolyte. Given the initial position of this interface and the speed of propagation at each point along
the interface, we track the evolving interface using a level set method.

Level set methods, introduced in Osher and Sethian [35], are numerical methods for tracking moving interfaces:
they rely in part on the theory of curve and surface evolution given in [39] and [40] and on the link between front
propagation and hyperbolic conservation laws discussed in [41]. These techniques recast interface motion as a time-
dependent Eulerian initial value partial differential equation.

The equation of motion for the evolving level set function φ is given by

φt + F |∇φ|+ u · ∇φ = 0 (15)

given φ(x, t = 0) = ±d, (16)

where F is the speed of propagation in the normal direction, u is the advection velocity, and ±d is the signed distance
from a given point x to the initial interface. For a general introduction and overview, see Sethian [43].

Level set methods have been extended to solve material transport problems by Adalsteinsson and Sethian, see
[3], see also [52]. In this paper, we shall also develop such methods but follow a different approach, leading to a
conservative numerical scheme for the key variables.

6



Table 1: A list of some of the parameters

parameter value unit

b0 0.69 A/m2

b1 6.4 A/m2

m0 0.447 –
m1 0.299 –

Ω 7.1e−6 m3/mol
Dc 4e−10 m2/s

Dm 4e−10 m2/s
Vc 14100 mol/m3

m 4 V −1

b 2.65 –

Γ0 6.35e−6 mol/m2

F 96485 C/mol

R 8.314 J/K ·mol
T 298 K

h 9.2e−7 m
w 5e−7 m

δ 1e−6 m

η −0.25 V

4.2 Material Transport and Conservation Laws

The electrodeposition process was originally modeled using the leveling theory, which failed to explain the superfilling
phenomenon ([33] and [48]). Later, the CEAC mechanism was proposed, and has been shown to be able to model the
superconformal film growth better than the leveling theory. Superfilling is caused by the fact that the growth rate of
copper is proportional to the accelerator coverage, while the rate of buildup of the accelerator scales with the local
curvature κ. We will show that this can be explained more precisely by examining the role of conservation laws.

Given a short segment of the interface, the total amount of a scalar (or the integral of the scalar) is conserved
when the interface moves. Consider a segment at the concave part of the trench. When the interface moves into the
electrolyte, the length of this tiny segment decreases. For the integral of the scalar to be conserved, its point-wise
value has to increase. The opposite is true for the convex case where the length of a segment increases as the interface
moves into the electrolyte.

More specifically, we consider a closed curve moving in the xy-plane with a scalar quantity G(u) defined along this
curve, as shown in Figure 3. The interface is advected under the velocity field u = (u, v), which can be defined either
along the front only or in the whole domain.

4.2.1 Derivation of Interface Material Transport in Conservation Form

We assume that the advection velocity depends on time and position for simplicity of the equations in our proof. With

L =
√

φ2
x + φ2

y, we have the following lemma.

Lemma 1.
(LG)t + (uLG)x + (vLG)y = 0. (17)

Proof. Consider a parameterized curve Γ(s) = (α(s), β(s)) where s ∈ [0, 1] and Γ(0) = Γ(1) at time t0. Let the curve

7



t

t0

x

y

(α(  ), β(  ))ss

s

s ds+

length =(x +y ) ds s
2

s
22 2

Figure 3: Moving interface in 2D from time t0 to time t. The closed curve is parameterized as (x, y) = (α(s), β(s))

propagate under the speed functions (u, v) for a small time t. Then points along the interface satisfy:

x(s, t) = α(s) +

∫ t

t0

u(x(s, τ), y(s, τ), τ )dτ,

y(s, t) = β(s) +

∫ t

t0

v(x(s, τ), y(s, τ), τ )dτ.

Taking the derivative of (x, y) with respect to s and omitting (s, t) and (s, τ), we have

xs = αs +

∫ t

t0

(ux · xs + uy · ys)dτ,

ys = βs +

∫ t

t0

(vx · xs + vy · ys)dτ.

Define C(t) = xs(t)
2 + ys(t)

2, which measures the length of the tangent vector along the interface at time t. Then

C(t)2 = x2
s + y2

s = α2
s + β2

s + 2

(

αs

∫ t

t0

(uxxs + uyys)dτ + βs

∫ t

t0

(vxxs + vyys)dτ

)

+

(
∫ t

t0

(uxxs + uyys)dτ

)2

+

(
∫ t

t0

(vxxs + vyys)dτ

)2

.

To get the scaling of the length, we take the time derivative of C(t)2. Noting that xs(s, t0) = αs(s), ys(s, t0) = βs(s),
the differentiation yields

d

dt
(C(t))2 = 2xs(t0)(uxxs(t) + uyys(t)) + 2ys(t0)(vxxs(t) + vyys(t))

+ 2

(
∫ t

t0

(uxxs + uyys)dτ

)

(uxxs(t) + uyys(t))

+ 2

(
∫ t

t0

(vxxs + vyys)dτ

)

(vxxs(t) + vyys(t)).

Taking the limit as t→ t0, we have

C(t0)
dC(t0)

dt
= xs(t0)(uxxs(t0) + uyys(t0)) + ys(t0)(vxxs(t0) + vyys(t0)).

8



The conservation of the quantity CG implies that

C(t, s)G(t, x0 + u(t− t0), y0 + v(t − t0)) = C(t0, s)G(t0, x0, y0).

Thus, we have

d

dt

(

G(t, x0 + u(t− t0), y0 + v(t − t0))

G(t0, x0, y0)

)

=
d

dt

(

C(t0, s)

C(t, s)

)

= −C(t0, s)
dC(t,s)

dt

C(t, s)2
.

If we evaluate everything at time t0, since (nx, ny) = (ys,−xs)√
x2

s+y2
s

, we then have

(Gt + uGx + vGy)|(t0,x0,y0) = G(t0, x0, y0)

(

−C(t0, s)
dC(t0,s)

dt

C(t0, s)2

)

= −G(t0, x0, y0)
uxx2

s + uyxsys + vxxsys + vyy2
s

x2
s + y2

s

= −G(t0, x0, y0)(uxn2
y − (uy + vx)nxny + vyn2

x).

t0, x0 and y0 are arbitrary. Thus

Gt(x, y, t) = −(u, v) · ∇G− (n2
yux − nxny(uy + vx) + n2

xvy)G,

where the first term comes from advection, and the second from local compression/expansion.

Using the fact that L =
√

φ2
x + φ2

y, Eqn. (17) is equivalent to its expansion

LGt − G
uφxφxx + (uφy + vφx)φxy + vφyφyy

L
−G

uxφ2
x + (vx + uy)φyφx + vyφ2

y

L

+ uxLG + u
φxφxx + φyφxy

L
G + uLGx

+ vxLG + v
φyφyy + φxφxy

L
G + vLGy = 0,

which simplifies to

Gt −G
uxφ2

x + (vx + uy)φyφx + vyφ2
y

L2
+ uxG + uGx + vyG + vGy = 0.

Since (nx, ny) =
(φx,φy)

L , we can prove Eqn. (17) by substituting nx and ny.

Assume that in addition to advection, the curve propagates with normal speed F . The propagation can be thought
of as advection under velocity field (Fnx, Fny). Thus, we only need to replace (u, v) in Eqn. (17) with

u = uadv + Fnx, v = vadv + Fny.

Eqn. (17) can be generalized to the n-dimensional case in the following form:

(LG)t +∇ · (LG u) = 0, (18)

where u = (u1, ..., un), ui = ui
adv + Fni for 1 ≤ i ≤ n.

Maintaining the signed distance function implies that we always have that L = |∇φ| is approximately equal to 1,
and Eqn. (18) simplifies to

Gt +∇ · (G u) = 0,

9



4.2.2 Conservation Laws and Numerical Scheme

Eqn. (17) is in the form of a hyperbolic conservation law: a simple numerical scheme that obeys conservation form is
given by the Lax-Friedrichs method

un+1
j =

un
j−1 + un

j+1

2
− λ

f(un
j+1) − f(un

j−1)

2
(19)

where λ = dt
dx .

To produce a scheme that is second-order in space and time, we start with a general form

Hn+1
ij −Hn

ij = −λx(U(i, i + 1)− U(i− 1, i))− λy(V (j, j + 1)− V (j − 1, j)), (20)

where H = LG, λx = dt
dx

, λy = dt
dy

. A Taylor’s expansion of H(t + ∆t) gives

U(i, i + 1) =
uijHij + ui+1,jHi+1,j

2

+ dt
u′

ijHij + u′
i+1,jHi+1,j

4

− λx
(uij + ui+1,j)(ui+1,jHi+1,j − uijHij)

4

− λy

8
[uij(vi,j+1Hi,j+1 − vi,j−1Hi,j−1)

+ui+1,j(vi+1,j+1Hi+1,j+1 − vi+1,j−1Hi+1,j−1)],

where (·)′ is the time derivative, and U(i− 1, i), V (j, j + 1), V (j − 1, j) are defined by analogous formulas.

A first-order approximation of u′ is enough for the whole scheme to be second-order, and we take un−1−un−2

dt
to

approximate u′. We do not use un−un−1

dt
, because our speed functions may depend on G, which means Gn is sometimes

needed to compute un, and we would prefer to avoid an implicit formulation.
During the first step, since u′ is not available, we simply take u′ = 0. The first step itself is then only first-order

(local truncation error is second-order). But this does not affect the second-order accuracy of the entire procedure, as
this happens only once.

4.2.3 Other Implementation Issues

We use the narrow band level set method, as first introduced in [1].
With the source term included in Eqn. (11), we apply an operator splitting technique for each time step [18]. Let

At ◦ θ0 be the solution to
θt + (uθ)x + (vθ)y = 0, θ(t = 0) = θ0 ,

and St ◦ θ0 be the solution to
θt = Ja(θ) − Jd(θ), θ(t = 0) = θ0,

at time t, then we can update θ by
θn+1 = S∆t ◦ (A∆t ◦ θn),

where A∆t is computed using the conservative scheme explained above and S∆t is simply defined as

S∆t ◦ θ = θ + ∆t(Ja(θ) − Jd(θ)).

4.2.4 Numerical Tests

In this section, we test the numerical schemes to demonstrate convergence and second-order accuracy. To do so, we
solve a problem with known exact solution. Consider a test case (given in [3]) in which we have an ellipse with the

10



origin as its center and major axes 0.3 and 0.4. The ellipse is rotating around its center; equivalently, for each point
(x, y) on the interface, it moves with speed u = (−y, x). The scalar value G is chosen to be

G0(x, y) = x2 + y2 − xy
√

x2 + y2
+ 0.1. (21)

−0.4
−0.2

0
0.2

0.4

−0.4

−0.2

0

0.2

0.4
0.18

0.2

0.22

0.24

0.26

Figure 4: The interface and the exact solution

We test our numerical algorithm with four different mesh sizes: n = 122, n = 182, n = 242 and n = 362. The errors
are computed by subtracting the numerical solution interpolated from the grid points to the interface and the exact
solution on 1000 evenly distributed points. We compute both the 2-norm and the ∞-norm errors (see Figure 5 and
Figure 6). If we use straight lines to interpolate the two sets of points, the slopes of the lines are −2.13 and −2.16
respectively, which means that the order of accuracy is approximately 2.

100 200 300 400

1e−5

5e−5

5e−6

Figure 5: 2-norm error vs. mesh size

100 200 300 400

1e−4

5e−5

Figure 6: ∞-norm error vs. mesh size

4.3 Diffusion Equation on an Irregular Domain with Moving Interface

In this section, we consider the diffusion equation

ut = β∆u (22)

11



in a two-dimensional region Ω(t)+, with mixed boundary condition

β
∂u

∂n
+ αu = g(x, t) on Γ = ∂Ω(t)+. (23)

Cartesian grid finite difference methods are problematic for handling such boundary conditions on irregular, moving
interfaces. The difficulty is that first-order one-sided difference approximations to the normal derivatives close to the
interface, combined with a standard five-point stencil scheme for the Laplacian at regular interior points, are only
first-order accurate, while second-order approximations to the derivative yield desired accuracy at the cost of using
either a wide difference stencil or grid points from the other side. Another problem which results from the moving
interface is that an outward motion from Ω(t)+ to Ω(t + dt)+, where Ω(t)+ ⊂ Ω(t + dt)+, requires the estimation of
values of u(t) defined on Ω(t + dt)+ −Ω(t)+ to update from u(t) to u(t + dt).

4.3.1 Immersed Interface Methods

We will embed the irregular domain in a larger rectangular domain, with the partial differential equations extended
to the rectangular domain correspondingly by introducing jump conditions across the interface, and then apply the
immersed interface method to the rectangular domain. From now on, we will use u to denote both the numerical
solution and the analytical solution for simplicity.

To embed Eqns. (22) and (23) into the larger rectangular domain, we would like to impose the jump conditions

[u] ≡ u+ − u− = 0 (24)

and
[∆u] ≡ (∆u)+ − (∆u)− = 0 (25)

so that Eqn. (22) holds in the domain Ω = Ω+ ∪Ω−. The boundary condition given by Eqn. (23) can be rewritten as

β
∂u+

∂n
+ αu+ = g. (26)

x

Ω- +

ih, jh(         )

Γ

x*

η

ξ

5

x1 x2 x3

x4 x6

x7 x8 x9

Ω

Figure 7: x5 is an irregular point with one of its neighbors on the other side of the interface. x∗ is its closest point on
the interface Γ

Consider the grid point x5 as shown in Figure 7. We label points (like x5) with neighbors on the other side of the
interface as ”irregular points”. Let x∗ be the closest point on Γ to x5. Applying the immersed interface method (see
[26] and [27]) to Eqn. (22) with jump conditions given in Eqns. (24), (25) and (26) leads to a local linear system for
x5:

∑

k∈K+

(

1− α

β
ξk −

(

α

β

)′

ξkηk +
χ′′

2

α

β
(η2

k − ξ2
k)

)

γk +
∑

k∈K−

γk = 0, (27)

12



∑

k∈K+

χ′′

2
(η2

k − ξ2
k)γk +

∑

k∈K−

ξkγk = 0, (28)

∑

k∈K+

(

ηk +

(

χ′′ − α

β

)

ξkηk

)

γk +
∑

k∈K−

ηkγk = 0, (29)

∑

k∈K+

ξ2
kγk +

∑

k∈K−

ξ2
kγk = 2, (30)

∑

k∈K−

ξkηkγk = 0, (31)

∑

k∈K+

η2
kγk +

∑

k∈K−

η2
kγk = 2, (32)

where {γk} is the set of unknown coefficients, K+ and K− are a partition of the nine-point stencil which are the indices
of those points that are in Ω+∪Γ and Ω− respectively, (ξk, ηk) are the coordinates for xk in the local coordinate system,
ξ = χ(η) is the local representation of the interface, and χ′′ is the curvature evaluated at x∗. Then the Laplacian is
approximated as

∆u ≈
∑

k∈K+

γku(xk) +
∑

k∈K−

γku(xk) −C,

where

C =
∑

k∈K+

γk

{

g

β

[

ξk −
1

2
χ′′(η2

k − ξ2
k)

]

+

(

g

β

)′

ξkηk

}

.

4.3.2 Stencil Reduction

The next goal to determine which six points one should choose out of the nine-point stencil. As a preliminary, if we
look at Eqns. (27) - (32) carefully, we find out that if we multiply Eqn. (30) by 1

2χ′′ and Eqn. (32) by −1
2χ′′ and add

them to Eqn. (28), we have
∑

k∈K−

{

ξk +
1

2
χ′′(η2

k − ξ2
k)

}

γk = 0. (33)

This can be used to replace Eqn. (28). We observe that both Eqn. (31) and Eqn. (33) have nonzero terms only for
grid points in Ω−. Therefore, if there are exactly two exterior points in the six-point stencil we choose, the coefficients
of these two grid points are zero, and we only need solve the four equations (27), (29), (30) and (32) for the coefficients
for the four chosen interior points.

This observation not only reduces a 6 × 6 linear system to a 4 × 4 system, it saves a considerable amount of
computation time, assuming that we are able to choose a stencil with exactly four interior grid points and two exterior
points for each interior irregular point. In such cases, for each irregular point, we have a 4 × 4 linear system only
involving interior points. We also know that the standard five-point stencil for any regular points consists of interior
points only. Based on these two observations, and under the assumption of the existence of four interior points and
two exterior points, what happens to the exterior points is irrelevant. The interior part can be solved independent of
the exterior, though the values of the exterior points depend on the interior. Consider a unit circle embedded in a
square region with side length 2. Then with an N ×N discretization, the assembled linear system we need to solve
has size about π

16N2 instead of N2, which is a significant improvement.

4.3.3 Stencil Selection for High-Curvature Interfaces

The above discussion is based on the assumption that for each interior irregular point, there exists a six-point stencil
with four interior points and two exterior points. Unfortunately, this is not always true. For example, situations shown
in Figure 8 and Figure 9 are possible. Most significantly, this happens in our electrodeposition problem when sharp
corners arise at the bottom of the trench.

13



Figure 8: An irregular point with three interior
neighbors

Figure 9: An irregular point with two interior neigh-
bors

We do not want to add exterior grid points into the set of interior points and solve for them. If we add one exterior
point, we also need to add its neighbors due to the dependency. Similarly the neighbors’ neighbors should be added
as well. If we choose this approach, we are soon required to solve the full linear system defined in the whole domain
Ω = Ω+ ∪ Ω− instead of the reduced system in Ω+.

Instead, if we reexamine the procedure by which we deduce the six equations for the coefficients {γk}, we will
see that nowhere do we assume that xk’s need be grid points. With this observation, if an interior irregular point
has (including itself) less than four interior neighbors, we can just pick some arbitrary points which lie in Ω+ so
that we have four interior points in total, and we are then able to compute the four equations they satisfy. The
complication with this approach is that we are in fact introducing new points into the existing system, and they
require corresponding equations.

These equations can be determined if the additional points are carefully chosen. Consider an interior irregular
point that has only three interior neighbors including itself, as shown in Figure 10. We can find its neighbor closest to
the interface among all the exterior neighbors, then attach to this exterior point the information of its closest point
to the interface, and use the local coordinates of this closest point to compute the coefficients for the 4 × 4 or 6 × 6
linear system. This new point is counted as an interior point and all the information we need about it are its local
coordinates.

1

2 3
4

4'

Figure 10: Replacing an exterior neighbor x4 with
the closest point x′

4

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2

x 10
−7

3.5

4

4.5

5

5.5

6

6.5

7

7.5

x 10
−7

Figure 11: Adding exterior points into the unknown
set

In some cases, the corresponding exterior point already has four interior neighbors from which we can compute
the four equations. If this is not true, we perform the above procedure once more to this new point. The worst case

14



situation occurs when there is a thin tube with width less than one grid cell. Unlike the previous idea, this procedure
of adding new points will not keep going forever even in this worst case. It terminates with at most one layer of new
grid points as shown in Figure 11, where × are interior points, ◦ are exterior points that have been added into the
unknown set, and • are exterior points that will not be used to solve for the linear system. We can see that each
interior and newly added points has (including itself) at least four neighbors which are interior points or newly added
points.

To implement this algorithm, we first loop through all the interior points. For each irregular interior point with
less than four interior neighbors, we add some exterior points into the set and treat them as interior points. For any
of these points that has less than four interior neighbors, we add more points into the set recursively. After the loop,
each interior irregular point should have at least four interior neighbors. Therefore, we can compute the 4× 4 matrix
for each irregular point, solve for the coefficients, and assemble the big matrix.

4.3.4 Linear Programming and Least Squares in Stencil Selection

In contrast to what was discussed in the last section, sometimes an irregular point can have more than four interior
neighbors. In this case, the simplest thing we can do is to choose four points randomly. The question is: are there
better ways to do it?

Different stencil leads to different assembled matrices, some of which are much more ill-conditioned than others.
Our goal is to make the big matrix good-conditioned, or more advantageously, a diagonally dominant matrix, so that
an iterative solver used to solve the linear system converges fast.

One way to select such a stencil is via an associated linear programming problem. Assume that {γk} is the set of
coefficients, and that k = 1 corresponds to the center of the nine-point stencil. We then want to solve:

max |γ1| −
∑

k 6=1

|γk| (34)

s.t.
∑

j

cijγj = bi, 1 ≤ i ≤ 4.

For a regular point, the coefficients are γ1 = −4 and γk = 1 for k 6= 1. Therefore we would like to impose the conditions
γ1 ≤ 0 and γk ≥ 0, k 6= 1, and the optimization problem (34) simplifies to

max −γ1 −
∑

k 6=1

γk (35)

s.t. γ1 ≤ 0,

γk ≥ 0, k 6= 1
∑

j

cijγj = bi, 1 ≤ i ≤ 4.

The objective function tries to make the matrix as close as possible to be diagonally dominant, and the equality
constraints are the four equations satisfied by the coefficients {γk}. This approach was also discussed in [28] and [51].

The optimization problem (35) does not always have a solution. If the solution does not exist (sometimes the
inequality and equality constraints cannot be satisfied all at the same time), we switch to solving the least square
problem given by

min
∑

j

γ2
j (36)

s.t.
∑

j

cijγj = bi, 1 ≤ i ≤ 4.

The advantage of solving the above additional optimization problem is that it makes solving the whole linear
system with an iterative solver easier. For example, if we use Gauss-Seidel as the iterative solver to solve the linear
system Ax = b, the convergence rate is related to the magnitude of

||M ||= ||(D + L)−1U ||,

15



where D, L and U represent the diagonal, strictly lower triangular, and strictly upper triangular parts of the coefficient
matrix A. The 2-norm of M is usually less than 1 if stencils are chosen based on the solutions of the above optimization
problems, while ||M ||2 can be as large as 100 if stencils are chosen randomly, making it almost impossible for the
iteration to converge.

4.3.5 Second-Order Extension of the Solution

For our problem, the accelerator coverage θ is updated in a narrow band around the moving interface according to
Eqn. (11), where the source term Ja(θ) depends on Cm. Thus we need the concentration values in this narrow band,
instead of just on one side Ω+. Moreover, for other problems where the interface moves outwards, it is possible that
Ω+(t + dt) ⊂/ Ω+(t), that is, there exist points in Ω+(t + dt) that are not in Ω+(t). Therefore, we need to extend
the concentration values from Ω+ to Ω− at each time step. A C2-extension is desired because the concentrations
satisfy the diffusion equation with second-order derivative terms (in fact, usually an arbitrary order extension can be
made using the same mechanism to be explained in this section). A second-order extension usually suffices; similiar to
polynomial interpolation and extrapolation, extrapolated functions tend to be oscillating if higher order polynomials
are used.

The velocity extension mechanism associated with the level set method is explained in [2]. A C2-extension is quite
similar. Assume that we would like to extend u to the other side. First we make a continuous or C0-extension for
the second-order normal derivative unn, followed by a C1-extension for the first-order normal derivative un using the
values of unn, and then eventually a C2-extension for u using the values of un.

To be more specific, we first compute the value of un as

un = ∇u ·n = ∇u · ∇φ = uxφx + uyφy,

since the signed distance φ is extended such that |∇φ| = 1. The computation is performed on each point in Ω+ with
all four neighbors in Ω+, since these four neighbors are needed to approximate ux and uy using central differences.
Similarly, we compute unn as

unn = ∇un · n = (un)xφx + (un)yφy,

and we do this for points where the values of un have been computed already as above at all four neighbors. With

such values of unn and un available, we extend unn in the same manner as the way in which we extend the velocity

function according to ∇unn · ∇φ = 0

(unn)ij =
(unn)i−1,j · φij−φi−1,j

dx2 + (unn)i,j−1 · φij−φi,j−1

dy2

φij−φi−1,j

dx2 +
φij−φi,j−1

dy2

,

assuming that we are updating (i, j) from (i− 1, j) and (i, j − 1). For un, we use a slightly modified equation

∇un · ∇φ = unn

which can be verified to be a C1-extension. The corresponding difference equation is

(un)ij =
unn + (un)i−1,j · φij−φi−1,j

dx2 + (un)i,j−1 · φij−φi,j−1

dy2

φij−φi−1,j

dx2 +
φij−φi,j−1

dy2

.

Similarly we can build a C2-extension for u:

uij =
un + ui−1,j · φij−φi−1,j

dx2 + ui,j−1 · φij−φi,j−1

dy2

φij−φi−1,j

dx2 +
φij−φi,j−1

dy2

.

We note that if we start from a continuous extension of ∂ku
∂nk , we can build a Ck-extension.

16



The computations of un and unn do not need to be performed at every point: they are needed only within a very
thin narrow band. For example, consider the interface in Figure 12. We only need to compute un at points marked
as × which makes a band of bandwidth around 3 and then compute unn at points marked as ◦ which makes a band
of bandwidth about 1, since that is all we need to extend u to the other side of the interface.

Ω Ω+ -

Figure 12: The grid points that are involved in making a second-order extension

4.3.6 Numerical Tests

In this section, we test our proposed methods by solving several problems numerically. For all the problems in this
section, we use the simplest form of the diffusion equation with the same exact solution, but defined on different and
possibly moving regions.

If we let

u(r, t) = exp(−t) ·
∞
∑

k=0

(−1)k r2k

4k(k!)2
,

where r = r(x, y) =
√

x2 + y2, then u(x, y, t) is an exact solution to the diffusion equation ut = ∆u. For the mixed
boundary conditions, we can take an arbitrary function α and let g be defined as g = ∂u

∂n + αu where n is the unit
normal pointing inwards, then

∂u

∂n
+ αu = g

can be taken as the boundary condition. For example, we set α = r2, and

g =
∂u

∂n
+ αu = −∂u

∂r
+ r2u

= exp(−t)

(

−
∞
∑

k=0

(−1)k+1 r2k+1(k + 1)

4k · 2 · ((k + 1)!)2
+

∞
∑

k=0

(−1)k r2k+2

4k(k!)2

)

.

Solving the Diffusion Equation on a Nice, Fixed Domain First we solve the diffusion equation on the unit
disk with the above boundary condition defined along the unit circle. The immersed interface method discussed in
Section 4.3.1 with Taylor expansion and appropriate stencil selection is used to solve the diffusion equation. The
numerical solution is shown in Figure 13.

Solving the Diffusion Equation on a Moving Domain with Large Curvature The second test is performed
on an origin-centered star-shaped region, which rotates around the origin. The star shape has very sharp corners at
some points, thus we may not be able to find four neighbor grid points on the same side of the interface for each
point. We then adopt the trick mentioned in Section 4.3.3 to deal with the problem. We still have the same solution
as before except that this time it is defined on a different region as in Figure 15.

17



−2
−1

0
1

2

−2

−1

0

1

2

Figure 13: Solution on the unit disk with fixed in-
terface

100 200 300 400 500

1e−4

1e−3

5e−5

5e−4

Figure 14: Maximum error on the unit disk with
fixed interface

−2
−1

0
1

2

−2

−1

0

1

2

Figure 15: Solution on the rotating star shape

100 200 300 400 500

1e−4

1e−3

5e−4

5e−5

Figure 16: Maximum error on the rotating star
shape

Solving the Diffusion Equation on an Expanding Domain Lastly, we test on an expanding star shape. Since
Ω(t) ⊂ Ω(t + dt) for this test problem, we can verify correctness of our method for extension in Section 4.3.5 by
comparing the numerical solution with the exact solution. The numerical solution is shown in Figure 17.

−2
−1

0
1

2

−2

−1

0

1

2

Figure 17: Solution on the expanding star shape

100 200 300 400 500

1e−4

1e−3

5e−4

5e−5

Figure 18: Maximum error on the expanding star
shape

For each of the three test cases, we compute the maximum norm errors in the desired domain for four different
mesh sizes and make a plot of error versus mesh size. The plots are shown in Figures 14, 16 and 18. The slopes of the

18



lines for the three test cases are approximately −1.99, −1.85, and −1.86 respectively, which verify the second-order
accuracy of our numerical scheme.

5 Solving Large Linear Systems

Once we have a discrete approximation to the Laplacian operator, the differential equation (22) can be solved by either
an explicit scheme or an implicit scheme:

un+1 − un

dt
= β∆nu,

un+1 − un

dt
=

β

2
(∆nu + ∆n+1u), or

un+1 − un

dt
= β∆n+1u, (37)

where ∆n and ∆n+1 are the approximations to the Laplacian computed from section 4.3 at time tn and tn+1 respec-
tively.

If an explicit scheme is used to solve the diffusion equation, the time step size ∆t and spatial step size ∆x are
required to satisfy the CFL condition β ∆t

∆x2 6 C for some constant C of magnitude 1 for the method to be stable. For
our problem, we have ∆x ∼ 10−8 and β ∼ 10−10. Thus we need to have ∆t . 10−6 for stability. A physical deposition
takes about 100s to complete, which means that for our numerical calculation with time step ∆t . 10−6, 108 steps
will be needed for the whole process. Assuming that computing one time step takes 0.01s, the whole process will take
a total of 106s, which is less than desirable.

However, if an implicit scheme is used, the numerical method for the diffusion equation is unconditionally stable,
and we can take ∆t as large as we want, as long as the desired accuracy is achieved and the numerical methods for
other equations (especially the level set equation) are stable. Solving a differential equation with an implicit scheme
involves solving a large sparse linear system. For this deposition problem, the size of the linear system is about 10000
– 15000 if we use a mesh of size 100× 200, and the coefficient matrix is not symmetric. We need to solve two such
linear systems at each time step, one for the concentration of the copper and one for the accelerator.

The second-order Crank-Nicolson method sounds appealing, but it causes oscillations in the numerical solutions for
our problem unless the time step is as small as ∆x2. Moreover, even if we use a second-order accurate method to solve
diffusion equation, the overall method is at most first-order accurate: for each time step, the differential equations
(level set equations, conservation laws, and diffusion equations) are solved sequentially without the use of any time
splitting technique to make it second-order.

We now consider both direct and iterative methods. For direct methods, one typically has two phases: symbolic
determination of the nonzero structure of the factors, and numeric factorization and solutions. If the linear systems
for different time steps have the same nonzero structure, then phase one needs to be performed only once. This leads
to a very efficient scheme for solving the linear systems.

In our problem, however, the boundary of the interface is moving. It crosses some grid points at each time step,
leading to a change in the structure of the coefficient matrix at such points. Moreover, we may want to write out the
linear system only on one side of the interface instead of the whole rectangular domain for efficiency. In this case even
the dimension of the linear system changes since the total number of points changes.

An iterative method starts with an initial guess, and its performance is closely related to the accuracy of the initial
guess and the convergence rate of the coefficient matrix. The concentration values at consecutive time steps do not
differ much, thus the solution from the last time step would be a good starting point. We can even make an initial
guess by extrapolating from the last two steps.

This section gives an efficient iterative multigrid method to solve a large linear system resulting from the finite
difference discretization of a differential equation on a rectangular mesh.

5.1 The Basics of the Multigrid Method

The four basic components of multigrid methods are the smoothing, interpolation, and restriction operators, and the
definitions of coarse grid problems (see [9] and [31]). We define these operators as follows:

Smoothing Operator Sh We use a variation of the red-black Gauss-Seidel iteration as the smoothing operator. As
shown in Figure 19, where we first update the points at the corner (•) which are also the coarse grid points, followed

19



by the points in the center (◦), and then points on the vertical edge (△) and finally points on the horizontal edge (×).
Assume that the finite difference scheme is based on the standard nine-point stencil. Since for each of the four sets,
the update of one point is completely independent of the values of the points in the same set, this ordering has a clear
advantage in terms of parallel computation. Let the smoothing operator with mesh size h be Sh .

Figure 19: Variation of red-black Gauss-Seidel

Interpolation Operator Ih
2h To interpolate from coarse grid values to fine mesh, we can use a linear interpolation.

In the one-dimensional case we have

uh
2i = (Ih

2hu2h)2i = u2h
i ,

uh
2i+1 = (Ih

2hu2h)2i+1 =
1

2
(u2h

i + u2h
i+1),

and for two-dimensional problems,

uh
2i,2j = (Ih

2hu2h)2i,2j = u2h
ij ,

uh
2i+1,2j = (Ih

2hu2h)2i+1,2j =
1

2
(u2h

ij + u2h
i+1,j),

uh
2i,2j+1 = (Ih

2hu2h)2i,2j+1 =
1

2
(u2h

ij + u2h
i,j+1),

uh
2i+1,2j+1 = (Ih

2hu2h)2i+1,2j+1 =
1

4
(u2h

ij + u2h
i+1,j + u2h

i,j+1 + u2h
i+1,j+1).

Restriction Operator R2h
h Two straightforward ways to project the solution from the fine mesh (with mesh size

h) to the coarse mesh (with mesh size 2h) are to use a weighted average of the values at neighboring fine mesh points,
or to simply use the value at the same grid point. However, for a coarse grid point next to the interface, not all its
neighboring fine mesh points are easily available. Therefore we adopt the second choice.

Coarse Grid Problem Still yet to be determined is the coarse grid problem. We are given only the information to
solve for the finest grid in the form of Ahuh = fh where Ah and fh are known, and uh is to be solved. Similarly the
coarse grid problem can be written as A2hu2h = f2h, and one commonly used way to define the problem is

A2h = R2h
h AhIh

2h, and f2h = R2h
h fh ,

where the first equation is called the Galerkin condition.
With the smoothing, restriction, interpolation and coarse-grid operators defined as above, a family of multigrid

cycling schemes called the µ-cycle method is given in [9]. We usually set either µ = 1 (called the V-cycle multigrid) or
µ = 2 (called the W-cycle multigrid), and the numbers of smoothing steps ν1 and ν2 seldom exceed 3. To apply this
multigrid algorithm to our deposition problem, three things should be noted.

20



First, we have a constant Dirichlet boundary condition at the top of the whole rectangular region, and the concen-
tration values at points that are far away from the interface are not likely to change much across different time steps,
compared with points close to the interface. To save the workload further, we may not have to perform the smoothing
step for each point in the rectangular domain or Ω+. Instead, consider a total of three levels. We can carry out the
procedure on the finest level mesh for points in a band around the interface, and for the second level, we do it on a
thicker band which contains the band for the first level. We only update all the points for the coarsest level, as shown
in Figure 21 for the interface given in Figure 20.

Figure 20: Some arbitrary interface position
Figure 21: Adaptive mesh corresponding to a given
interface

Second, the unknown variables are the concentrations of copper and the accelerator, which are defined only on one
side of the interface Ω+, an irregular domain. Thus we may not know how to write the equations for points in Ω−

that are on the other side, especially for points near the interface. Even if the equations are available to us, we would
prefer to solve only in Ω+ as mentioned before for efficiency.

Finally, the interpolation operator defined above is based on an underlying assumption that the solution (or the
error) is smooth, which is seldom true for any interface problem. We will use instead an “operator-induced” interpolator
which is explained in detail in later sections.

5.2 Adaptive One-sided Multigrid

The basic idea of the adaptive multigrid method is to use a finer mesh where more accurate solutions are desired. For
most interface problems, due to mixed boundary conditions on the interface or jump conditions across the interface,
we seek more accurate solutions near the interface where accuracy is required and where more significant changes in
the solutions of consecutive time steps will occur, compared with regions further from the interface. This reduces
the workload considerably since we only need to do smoothing, a major computation part in the whole multigrid
algorithm, at the finest level in a thin narrow band around the interface, rather than throughout the whole domain.

The way we use to generate adaptive mesh is to first assign value to a variable bw, which is the bandwidth, and
then loop through the coarsest level to the second-finest level. Assume that the current level has mesh size h. For
each regular cell in this level, if the distance between all the four corners (eight corners for three-dimensional problem)
and the interface di satisfies di < h · bw, we split the cell into four smaller cells, which are taken as regular cells for

21



the next finer level. For example, given the interface in Figure 20 with bw = 3 and four levels in total, the adaptive
mesh looks like Figure 21.

To switch from the original non-adaptive multigrid to the adaptive multigrid scheme, everything is the same, except
that we cannot do the same thing for the interpolation operator for points which lie between different levels of meshes,
for example, P in Figure 22. Here, we need an alternative approach to transfer between coarse and fine meshes for
such points.

P

Figure 22: A point with two different levels of neighbors

The rest of the section explains how we map from fine mesh to coarse mesh and vice versa in addition to the
smoothing operator. We need to pay attention to the domains and ranges of the mappings, especially across the
boundary between coarse and fine mesh. The details of the algorithm are given at the end of this section.

Now consider two levels for simplicity. Similar to the Fast Adaptive Composite Grid Method (FAC) [31], we divide
the points into four groups and add a set of imaginary points as in Figure 23. The fine mesh points with all neighbors
being fine mesh points are the first group (×); the remaining fine mesh points are the second group (•); we add two
more layers of imaginary fine mesh points with the first layer being the third group (△) and the second layer being
the fourth group (◦); the remaining coarse mesh points are the last group (⋆). In groups 1, 2 and 4, some points can
be either fine mesh points or coarse mesh points. We use upper indices to differentiate: ◦h is for fine mesh points, and
◦2h is for coarse mesh points.

Figure 23: Grid points divided into several groups

Now consider the points in ◦h. We cannot perform the smoothing step on them as mentioned above since some of
their neighbors do not exist. Therefore, the original multigrid algorithm needs to be revised. We store the fine mesh
solution values uh for all the grid points that are in ×h ∪ •h ∪ △h ∪ ◦h and the coarse mesh solution values u2h for
points in ×h ∪ •h ∪ ◦h ∪ ⋆h. For the fine mesh, the smoothing step is only performed on points in ×h, and solutions
at the remaining mesh grid points, i.e., those in •h ∪△h ∪ ◦h, are interpolated from coarse grid solutions.

22



The domain and range of the restriction and interpolation operators are specified as:

R2h
h : △h ∪ •h ∪ ×h → •2h ∪ ×2h, and Ih

2h : ×2h ∪ •2h ∪ ◦2h → ×h ∪ •h ∪△h ∪ ◦h,

and the coefficient operator for level h is given by

Ah : ×h ∪ •h → ×h.

Written in matrix form, Ah has dimension (Nh +mh)× (Nh), where Nh and mh are the number of points classified as
×h and •h respectively. Ah is not a square matrix anymore, because we must use points in •h in the smoothing step
to update a point in ×h with one of its neighbors in •h. Correspondingly, fh is a vector of size (Nh + 2). To compute
the entries of A2h, we still use the Galerkin condition A2h = R2h

h AhIh
2h for points in the domain of Ih

2h, and we will
compute the entries of A2h elsewhere from the discretization of the partial differential equation since no information
about Ah is available there. The solutions uh at all levels need to be recorded, and the same is true for fh. We use
another vector vh to record the solution at the finest level and the residual at all other levels.

With all of the above, the multigrid scheme is modified as follows:

0. Compute the operators R2h
h , Ih

2h and Ah for each level in matrix form as above. Find an initial guess uh and let
fh ← fh − Ahuh for each level.

vh ← AMh(vh, fh) :

1. Smoothing: repeat vh ← Sh(Ah, fh, vh) ν1 times for points in ×h.

2. Compute the residual rh ← fh − Ahvh in ×h ∪ •h ∪△h;
transfer it to the coarse mesh f2h ← R2h

h rh in ×2h ∪ •2h.

3. If 2h is the coarsest level, direct solve v2h ← DS(A2h , f2h), else v2h ← 0, v2h ← AM2h(v2h, f2h).

4. f2h ← f2h − A2hv2h in ⋆2h ∪ ◦2h.

5. Update coarse approximation for all coarse points: u2h ← u2h + v2h.

6. Interpolate correction and update approximation for all fine points: vh ← vh + Ih
2hv2h.

Finally, if we are close to the interface, we discretize the partial differential equation, choose the stencil and add new
points following the procedure described in Section 4.3: this multigrid scheme can be easily turned into a one-sided
scheme.

5.3 Operator-induced Interpolation Operator

A problem with the multigrid method is that it has to be specifically designed, or at least coded for each problem due to
different grid configurations, especially for interface problems with various irregular boundaries, since the interpolation
operator cannot be defined in the same way as before near the interface. In this section we discuss a particular choice
of interpolation operators based on the fine grid operator. This is called operator-induced coarsening ([5] and [12]).

This problem does not exist for the smoothing and restriction operators. The smoothing step is completely
determined by the coefficient matrix and the right hand side. Once they are computed, we can perform the smoothing
step regardless of the shape of the domain and the grid structure. For the restriction part, we simply use the fine grid
value for the coarse value at the same grid points.

Let Ahuh = fh be the linear system for the fine mesh. For each grid point, we look at its nine-point stencil as
shown in Figure 24. The equation for the unknown centered at x5 is:

a1u1 + a2u2 + a3u3 + a4u4 + a5u5 + a6u6 + a7u7 + a8u8 + a9u9 = f5.

Our adaptive multigrid scheme is applied to the error (or the residual) which satisfies a similar equation:

a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7 + a8e8 + a9e9 = r5 ≈ 0. (38)

23



1

4

7

2 3

5 6

8 9

x x x

x x x

xx x

Figure 24: The nine-point stencil

Given the above equation and the values of the error e2h at coarse mesh points, we need to interpolate eh = Ih
2he2h at

each fine grid point.
First we consider the case where x5 is a regular point, that is, all the nine points are in Ω+. Assume that x5 is also

a coarse grid point, then we can simply take the coarse grid error at this point to be the “interpolated” fine value.
Now we consider the case where x5 is on a vertical cell edge, that is, x2 and x8 are the coarse grid points. We want

to express the error as
e5 = c2e2 + c8e8,

where c2 and c8 are coefficients yet to be determined. Since only e2, e5 and e8 appear in this equation, we use Taylor
expansion for all the nine points and express them in terms of these three:

e1 ≈ e2, e3 ≈ e2, e4 ≈ e5, e6 ≈ e5, e9 ≈ e8.

Substituting into Eqn.(38) leads to

c2 = −a1 + a2 + a3

a4 + a5 + a6
and c8 = −a7 + a8 + a9

a4 + a5 + a6
.

Similarly, if x5 is on a horizontal cell edge with coarse grid points x4 and x6, we can interpolate the error on the
fine mesh as

e5 = c4e4 + c6e6,

where

c4 = −a1 + a4 + a7

a2 + a5 + a8
and c6 = −a3 + a6 + a9

a2 + a5 + a8
.

If x5 is the center of a cell, we first compute all the other eight error values and then substitute them into Eqn.(38)
to compute e5.

If x5 is an irregular point, it may have some coarse grid neighbors on the other side of the interface, and they
cannot be used to interpolate for the value of e5. Since we have the boundary condition as given in (23), we can simply
assume that the error satisfies the homogeneous version of the condition

β
∂e

∂n
+ αe = 0 on Γ = ∂Ω(t)+,

or even simpler, that the discrete error on the other side of the interface is 0. Then we slightly modify the interpolation
operator for regular points, with all the coefficients corresponding to points in Ω− set to 0, to get the interpolation
operator for irregular points. For example, in Figure 25’s case, we have

e5 = c2e2 + c8e8,

where

c2 = −a2 + a3

a5 + a6
and c8 = −a8 + a9

a5 + a6
.

a1, a4 and a7 are gone since they correspond to points in Ω−.
This way of treating irregular points works for our problem, where the boundary condition is in the form of (23).

For problems with jump conditions, this are somewhat different (see [4]).

24



2 3

5 6

8 9

x x

x x

xx

Ω-
+Ω

Figure 25: Interpolation from coarse grid points (x2 and x8) to fine grid point (x5)

5.4 Convergence

The underlying steps we use to update the solution in the multigrid method is the Gauss-Seidel iteration. A necessary
and sufficient condition for Gauss-Seidel iteration to converge for a specific class of matrices is given in [15]: if the
matrix has a sign structure such that in each line, the sign of the diagonal element is opposite to the sign of all
other elements, then a criterion called the generalized line criterion (GLC) is necessary and sufficient for Gauss-Seidel
iteration to converge. We can verify numerically that for some steps, especially when the curvature gets very large
at some point, the GLC is not satisfied. In that case, we switch to a direct solver (SuperLU [13], for example). We
start with the iterative method and record the relative magnitude of the update for the solution. If it exceeds a given
constant, we switch to the direct method.

6 Extension to Three-Dimensional Case

Most of the above discussion can be easily extended to three dimensions. However, certain aspects need to be treated
carefully. First we need to to find a new local orthogonal coordinate system (ξ, η1, η2) centered at a given point x∗ on
the interface.

The second-order structure of a surface is characterized by a quadratic patch that shares first- and second-order
contact with the surface at a point. The principal directions of the surface are those associated with the quadratic
approximation, and the principal curvatures κ1, κ2 are the curvatures in those directions. The principal directions
satisfy the properties that they are orthogonal to each other, and that they lie in the tangent plane of the surface at
the point. Therefore, (ξ, η1, η2), where ξ is the normal direction and η1, η2 are the principal directions, is an orthogonal
system and we can take it as our local coordinate system.

Assume that the surface is locally expressed as ξ = χ(η1, η2). Denote ∂χ
∂ηj

= χj and ∂2χ
∂ηj∂ηk

= χjk for j, k = 1, 2.

Then χ(0, 0) = χ1(0, 0) = χ2(0, 0) = χ12(0, 0) = 0, and χ11(0, 0) and χ22(0, 0) are the principal curvatures due to our
choice of the local coordinate system.

Similar to the two-dimensional case, we have the following ten relationships:

u+ = u−, (39)

u+
ξ χj + u+

ηj
= u−

ξ χj + u−
ηj

, j = 1, 2, (40)

u+
ξξχjχk + u+

ξηk
χj + u+

ξ χjk + u+
ξηj

χk + u+
η1η2

= u−
ξξχjχk + u−

ξηk
χj + u−

ξ χjk + u−
ξηj

χk + u−
η1η2

,

(j, k) = (1, 1), (1, 2), (2, 2), (41)

u+
ξξ + u+

η1η1
+ u+

η2η2
= u−

ξξ + u−
η1η1

+ u−
η2η2

, (42)

u+
ξ − u+

η1
χ1 − u+

η2
χ2 +

α

β
u+ =

(1 + χ2
1 + χ2

2)
1/2g

β
, (43)

u+
ξξχj + u+

ξηj
− u+

ξη1
χ1χj − u+

η1ηj
χ1 − u+

η1
χ1j − u+

ξη2
χ2χj

25



−u+
η2ηj

χ2 − u+
η2

χ2j +

(

α

β

)

j

u+ +
α

β
(u+

ξ χj + u+
ηj

)

=
∂

∂ηj

{

(1 + χ2
1 + χ2

2)
1/2 g

β

}

, j = 1, 2. (44)

Eqns. (40) - (43) are derived from continuity across the interface of the quantities u, uξχj + uηj
, uξξχjχk +uξηk

χj +
uξχjk + uξηj

χk + uηjηk
and uξξ + uη1η1

+ uη2η2
, and the rest are derived from the boundary condition.

These equations are evaluated at η1 = η2 = 0. Since we have chosen a local coordinate system such that χ(0, 0) =
χ1(0, 0) = χ2(0, 0) = χ12(0, 0) = 0, they can be simplified to the matrix form

A+U+ = A−U− + G, (45)

where

A+ =





































1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 χ11 0 0 0 0 1 0 0 0
0 χ22 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 0 1 0
α
β 1 0 0 0 0 0 0 0 0

(

α
β

)

1
0 α

β
− χ11 0 0 1 0 0 0 0

(

α
β

)

2
0 0 α

β − χ22 0 0 0 1 0 0





































,

A− =

































1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 χ11 0 0 0 0 1 0 0 0
0 χ22 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

































,

U = (u, uξ, uη1
, uη2

, uξξ, uξη1
, uη1η1

, uξη2
, uη2η2

, uη1η2
)T

and

G =

(

0, 0, 0, 0, 0, 0, 0,
g

β
,

(

g

β

)

1

,

(

g

β

)

2

)T

.

To explicitly find out the values of the local coordinate system, note that the second-order structure of the surface
can be computed from the first- and second-order structure of the level set function φ. All of the shape information
is contained in the field of normals given by n(x) = (φx, φy, φz)/|∇φ|.

To compute the principal curvatures, we compute the mean curvature and Gaussian curvature first. The mean
curvature is

H =
κ1 + κ2

2

=
φxx(φ2

y + φ2
z) + φyy(φ2

x + φ2
z) + φzz(φ

2
x + φ2

y) − 2(φxφyφxy + φyφzφyz + φxφzφxz)

2(φ2
x + φ2

y + φ2
z)

2/3
,

26



and the Gaussian curvature is given by

K = κ1 · κ2

=
φ2

x(φyyφzz − φ2
yz) + φ2

y(φxxφzz − φ2
xz) + φ2

z(φxxφyy − φ2
xy)

(φ2
x + φ2

y + φ2
z)

2
+

2[φxφy(φxzφyz − φxyφzz) + φyφz(φxyφxz − φyzφxx) + φxφz(φxyφyz − φxzφyy)]

(φ2
x + φ2

y + φ2
z)

2
,

The principal curvatures κi, i = 1, 2 can be computed as

κ1 = H +
√

H2 −G, κ2 = H −
√

H2 −G.

The 3× 3 matrix of derivatives of n(x) is

N = −[nx ny nz].

The projection of N onto the tangent plane of the surface gives the shape matrix S. Let P be the normal projection
operator, then

P = n⊗n =
1

|∇φ|2





φ2
x φxφy φxφz

φxφy φ2
y φyφz

φxφz φyφz φ2
z



 .

The tangential projection operator is T = I − P , and the shape matrix is given by

S = NT.

The shape matrix S is singular and it has three real eigenvalues with three corresponding orthogonal eigenvectors. The
eigenvector corresponding to the zero eigenvalue is the normal direction. The two eigenvectors η1 and η2 corresponding
to the nonzero eigenvalues are the principal directions.

A very complicated calculation gives for j = 1, 2:

ηj,1 = φxφ2
yφyz − φxφyφzφyy + φxφyφzφzz − φxφ2

zφyz − φ3
yφxz + φ2

yφzφxy − φyφ
2
zφxz + φ3

zφxy

ηj,2 = −φ2
xφyφyz − φ2

xφzφzz + φxφ2
yφxz + φxφyφzφxy + 2φxφ2

zφxz − φ2
yφzφxx − φ3

zφxx

+
wj

2v3
(φ2

xφz + φ2
yφz + φ3

z)

ηj,3 = φ2
xφzφyz + φ2

xφyφyy − φxφ2
zφxy − φxφyφzφxz − 2φxφ2

yφxy + φyφ2
zφxx + φ3

yφxx

− wj

2v3
(φxφxφy + φ3

y + φyφ
2
z),

where

v1 = [φ4
x(φyy − φzz)

2 + φ4
y(φzz − φxx)2 + φ4

z(φxx − φyy)2 +

φ2
x(φyyφz − 2φyφyz)

2 + φ2
x(φzzφy − 2φzφyz)

2 +

φ2
y(φzzφx − 2φzφxz)

2 + φ2
y(φxxφz − 2φxφxz)

2 +

φ2
z(φxxφy − 2φxφxy)

2 + φ2
z(φyyφx − 2φyφxy)2 +

4φ2
yφ

2
zφ

2
yz + 4φ2

xφ2
yφ

2
xy + 4φ2

xφ2
zφ

2
xz +

8φxφ2
yφzφyyφxz + 8φxφyφ2

zφzzφxy + 8φ2
xφyφzφxxφyz +

8φ3
yφxz(−φzφxy − φxφyz) + 8φ3

zφxy(−φxφyz − φyφxz) + 8φ3
xφyz(−φyφxz − φzφxy) +

4φ4
zφ

2
xy + 4φ4

yφ2
xz + 4φ4

xφ2
yz + 2φxxφyy(φ2

xφ2
y − φ2

yφ2
z − φ2

xφ2
z) +

2φxxφzz(φ
2
xφ2

z − φ2
xφ2

y − φ2
yφ2

z) + 2φyyφzz(φ
2
yφ2

z − φ2
xφ2

z − φ2
xφ2

y) +

4φ3
x(φyφzzφxy + φzφyyφxz − φyφyyφxy − φzφzzφxz) +

27



4φ3
y(φzφxxφyz + φxφzzφxy − φzφzzφyz − φxφxxφxy) +

4φ3
z(φxφyyφxz + φyφxxφyz − φxφxxφxz − φyφyyφyz)]

1/2,

v2 = φxx(φ2
y + φ2

z) + φyy(φ2
x + φ2

z) + φzz(φ
2
x + φ2

y) − 2(φxφyφxy + φyφzφyz + φxφzφxz),

v3 = φ2
x + φ2

y + φ2
z,

w1,2 = v2 ± v1.

These three eigenvectors are normalized to give the local coordinate system.
With the above choice of coordinates, let

Zk =

(

1, ξ, η1, η2,
1

2
ξ2, ξη1,

1

2
η2
1, ξη2,

1

2
η2
2 , η1η2

)T

k

,

then

C =
∑

k∈K+

γkZT
k (A+)−1G

=
∑

k∈K+

γk

{

g

β
ξ +

1

2

g

β
(χ11 + χ22)ξ

2 +

(

g

β

)

1

ξη1 −
χ11

2

g

β
η2
1 +

(

g

β

)

2

ξη2 −
χ22

2

g

β
η2
2

}

k

.

Finally, with
W = (0, 0, 0, 0, 1, 0, 1, 0, 1, 0)T,

W =
∑

k∈K+

γk

[

(A+)−1A−
]T

Zk +
∑

k∈K−

γkZk (46)

is our system of equations for determining the coefficients γk. Like what we do in two dimensions, we can apply a
linear transformation to the set of equations and get rid of the terms with γk, k ∈ K−. We premultiply Eqn. (46)
with the matrix

T =

































1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 1 0 0 χ11 + χ22 0 −χ11 0 −χ22 0

































,

and assume that we are able to find ten neighbors out of the 27 neighbors, among which exactly three of them are
exterior points. Now we are left with a 7× 7 system to solve:

∑

k∈K+ γk

{

1− α

β
ξ − 1

2

α

β
(χ11 + χ22)ξ

2 −
(

α

β

)

1

ξη1 +
1

2

α

β
χ11η

2
1

−
(

α

β

)

2

ξη2 +
1

2

α

β
χ22η

2
2

}

= 0,

∑

k∈K+ γk

{

η1 + ξη1

(

χ11 −
α

β

)}

= 0,

∑

k∈K+ γk

{

η2 + ξη2

(

χ22 −
α

β

)}

= 0,

∑

k∈K+ γk(ξ2)k = 2,
∑

k∈K+ γk(η2
1)k = 2,

28



∑

k∈K+ γk(η2
2)k = 2,

∑

k∈K+ γk(η1η2)k = 0.

We can do everything else in exactly the same way as what we do in two dimensions.

7 Numerical Results

With the numerical methods discussed in previous sections, we are able to solve each of the equations involved in the
modeling of the electrodeposition process. In this section, we will first talk about some accuracy issues associated with
solving our differential equations sequentially, followed by some numerical results. The last part gives some related
future research directions.

7.1 Time-Dependent Boundary Conditions and Time Splitting

Most of the numerical methods under discussion are second-order accurate for simple test problems. In general,
however, this may not be true for more complicated problems like the ones given in Section 3.

One difficulty lies in the fact that these differential equations usually depend on each other in complex ways. For
example, the speed of propagation of the interface depends on both the accelerator coverage θ and the concentration
of copper Cc as shown in Eqn. (7), while Eqns. (11) and (12) for θ depend on the speed and the concentration of the
accelerator Cm.

To illustrate, we consider the step from time t to time t + ∆t. Regardless of which equation we solve first, we will
need the values of some of the other variables at time t +∆t to make it second-order in space and time, and these are
not yet available.

Another difficulty is that the interface is moving, and hence carrying boundary conditions. As an example, consider
the diffusion equation. The mixed boundary conditions hold along the interface, which moves from time t to time
t+∆t. Thus we need to do something special to make it second-order accurate in time. One way to solve this problem
is to use the method of Twizell, Gumel, and Arigu (see [47]) for time-discretization, which solves the moving boundary
problem by solving a sequence of fixed boundary problems.

To illustrate, consider the diffusion equation

ut = ∆u in Ω(t)

∂u

∂n
+ α(t)u = g(t) on ∂Ω(t).

Let the time-dependent operator Lh(t) be such that Lh(t)u is the discretization of the term ∆u discretized as in
section 4.3. The TGA method splits the time step ∆t as

∆t = µ1 + µ2 + µ3.

For this numerical scheme to be second-order and L0-stable (see [47]), a value a is picked such that a ∈ [ 12 , 2−
√

2]
and we set

µ1 =
a−
√

a2 − 4a + 2

2
∆t, µ2 =

a +
√

a2 − 4a + 2

2
∆t, µ3 = (1− a)∆t.

The numerical solution un is then updated as

un+1 =
(

I − µ1L
h(tnew)

)−1 (
I − µ2L

h(tint)
)−1 (

I + µ3L
h(told)

)

un, (47)

where
told = tn, tnew = tn + ∆t = tn+1, tint = tn+1 − µ1 = tn + µ2 + µ3.

Specifically, the discretization (47) is done on Ω(tnew) at each step. The boundary conditions on the fixed boundary
∂Ω(tnew) are computed by interpolating values from the moving interface at time told . We use the second-order

29



extension from Section 4.3.5 for this purpose, and this leads to an overall second-order accurate method for diffusion
equations defined on a region with moving interface.

For our deposition problem, it is not really necessary to use a second-order scheme. A first-order scheme is enough
for us to capture the superfilling phenomena. Thus in our implementation, for each sub-problem, we solve it using
a second-order scheme. But we will not deal with the first difficulty mentioned above in any special way, leading to
an overall first-order scheme. At each time step tn, we update the variables sequentially. If some other variables are
needed during the updating process, we will use their values at tn+1 only if they are available. Otherwise, we will use
the values evaluated at time tn.

7.2 Numerical Results in Two Dimensions

First we test our algorithm on a trench with different values of initial coverage and accelerator concentration. The
trench has size 0.5µm× 1.1µm with a width-depth ratio of about 1 : 2. Experiments show that derivatization for 30
seconds in the electrolyte with 0.5, 5, 50, 500 and 1000 µ mol/L accelerator yields initial fractional catalyst coverage
of approximately 0.00054, 0.0054, 0.054, 0.44 and 0.88 respectively (see [34]). These are taken as the initial conditions
for our initial-boundary value problem.

We use a mesh with mesh size h = 1.5 · 10−8, and dt is computed based on the value of h and normal speed of
propagation of the interface v so that the CFL stability condition is satisfied.

Experimental results under the same configurations are shown in Figure 26. Our numerical results shown in Figure
27 conform with the experimental results very well. We see that with an initial catalyst coverage of 0.00054, the
deposition is predicted to be conformal because the geometric leveling is associated with the sloping sidewalls. In
real experiments, the trench to be filled may not be smooth. We add some randomness to the initial shape and can
observe the formation of void in this case as shown in Figure 28. Increasing the initial catalyst coverage an order of
magnitude results in superfilling behavior: enrichment of the catalyst begins on the bottom of the corners, leading
to significant acceleration of the copper deposition rate. Increasing the initial catalyst coverage even more to 0.054
results in near optimal superfilling behavior, which leads to the change in convexity on the bottom. Increasing the
initial catalyst coverage to 0.44 or 0.88 is predicted to result in failure to superfill the trench. Catalyst enrichment on
the advancing concave corners approaches unity, and a V-notch geometry is established. The CEAC mechanism fails
to fill the feature because the coverage on the bottom is not much more than coverage on the sidewalls due to the
near-saturation coverage on the concave corners.

If we measure the CPU time it takes for each time step, we can see that the multigrid approach to solving linear
systems is noticeably faster than using a direct solver. Since for each time step, all the equations are solved using
explicit methods except for the diffusion equation, we will just record the CPU time for the whole procedure instead
of the time for solving the linear system only.

On a 3.4GHz CPU machine, when the finest grid is of size 96× 160 with a total number of 4 levels, the multigrid
method (if it converges) for solving the linear system takes only less than 0.3s. In contrast, the SuperLU method
takes about 1.5s. While the difference may not seem to be big in this case, consider the situation where the accuracy
requires us to use finer mesh, say 192× 320 with 5 levels. Now multigrid takes about 1.2s to solve the linear system
and SuperLU takes about 20s. Thus, the time it takes for the multigrid method to solve such a linear system increase
much slower than a direct method like SuperLU as the mesh gets finer. Moreover it also makes efficient use of memory,
since we use the finest mesh only for the part of the domain that is close to the interface.

To estimate the order of accuracy of the overall scheme, we compute the numerical solutions for several different
mesh sizes, which correspond to different maximum number of levels. As we do not know the exact solution to this
problem, we compare all the numerical solutions to the one with a maximum number of 6 levels (with mesh size
385 × 641) and the result is shown in Figure 29. For error, we use the L-infinity error in the concentration. The
absolute value of the slope, which is an approximation to the order of accuray of the overall method, is 0.61.

7.3 Numerical Results in Three Dimensions

We test the algorithm on a three-dimensional trench with the size 0.5µm×0.5µm×1.1µm for two different cases with
5µ mol/L and 500µ mol/L accelerator in the electrolyte respectively.

30



Figure 26: Experimental results for different initial catalyst coverages. The picture is taken from [34]

The numerical results are shown in Figure 30 and Figure 31. We can see from Figure 27 and Figure 30 that in
two dimensions, we predict the phenomena of superfilling, while in the corresponding three dimensional case, we get
a void.

One possible explanation for this void is an analogy with a collapsing dumbbell evolving under mean curvature
flow: it is well-known that this can split into multiple objects (see [10]). Though the speed of propagation for the
interface does not depend on the mean curvature explicitly, it is a function of the additive coverage θ, which evolves
under a conservation law. The key issue is that this conservation law involves a mean curvature term if we rewrite it
by expanding out each term.

31



θ
0
 = 0.00054

C
m
∞ = 0.5 µ mol/L

−5 0 5

x 10
−7

0.5

1

1.5

2
x 10

−6

θ
0
 = 0.0054

C
m
∞ = 5 µ mol/L

−5 0 5

x 10
−7

0.5

1

1.5

2
x 10

−6

θ
0
 = 0.054

C
m
∞ = 50 µ mol/L

−5 0 5

x 10
−7

0.5

1

1.5

2
x 10

−6

θ
0
 = 0.44

C
m
∞ = 500 µ mol/L

−5 0 5

x 10
−7

0.5

1

1.5

2
x 10

−6

θ
0
 = 0.88

C
m
∞ = 1 m mol/L

−5 0 5

x 10
−7

0.5

1

1.5

2
x 10

−6

Figure 27: Numerical results for different initial catalyst coverages

7.4 Future Research Directions

The results of this article suggest some future research topics. First, the framework we have presented here can
be extended to a wide range of physical applications involving moving boundaries coupled with partial differential

32



θ
0
 = 0.00054, non−smooth initial shape

−8 −6 −4 −2 0 2 4 6 8

x 10
−7

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−6

Figure 28: Formation of void in a non-smooth configuration

3 4 5

1e−6

5e−7

2e−6

number of levels

er
ro

r

Figure 29: Errors of solutions with different mesh sizes: L-infinity error on the concentration

equations, for example, the hyperbolic conservation laws and the diffusion equation in particular.
An open question is how to solve the linear systems corresponding to the discretizations of diffusion equations, when

the interface has very large local curvatures, or spikes. We may rewrite local equations, choose appropriate stencils,
use non-rectangular grid cells or there may exist other ways for the multigrid algorithm to converge for problems with
bad geometries.

To model the process more realistically, we can add some noise terms which have physical meanings instead of just
by adding random numbers to the initial configuration, as what we did in our of our tests (Figure 28). This may give
a better prediction to what initial configurations lead to superfilling.

33



Figure 30: Numerical results for 5µ mol/L accelerator and thus 0.0054 initial fractional coverage at t = 32s, 50s, 58s, 62s
and 68s

Figure 31: Numerical results for 500µ mol/L accelerator and thus 0.44 initial fractional coverage at t = 1s, 3s, 6s and
9s

Acknowledgement

We would like to thank Daniel Josell for help with modeling the electrodeposition process, Beresford Parlett for
discussions concerning the linear system solver, and Jon Wilkening for discussions on the linear programming approach.

34

JAWolslegel
Typewritten Text

JAWolslegel
Typewritten Text



References

[1] D. Adalsteinsson, and J. A. Sethian, A Fast Level Set Method for Propagating Interfaces, J. Comp. Phys., 118,
2, pp. 269 – 277, 1995.

[2] D. Adalsteinsson, and J. A. Sethian, The Fast Construction of Extension Velocities in Level Set Methods, J.
Comp. Phys., 148, 1, pp. 2 – 22, 1999.

[3] D. Adalsteinsson, and J. A. Sethian, Transport and Diffusion of Material Quantities on Propagating Interfaces
via Level Set Methods, J. Comp. Phys., 185, 1, pp. 271 – 288, 2002.

[4] Loyce Adams, and Zhilin Li, The Immersed Interface/Multigrid Methods for Interface Problems, SIAM J. Sci.
Comput., 24, 2, pp. 463 – 479, 2002.

[5] R. E. Alcouffe, A. Brandt, J. E. Dendy Jr., and J. W. Painter, The Multi-grid Method for the Diffusion Equation
with Strongly Discontinuous Coefficients, SIAM J. Sci. Comput., 2, 4, pp. 430 – 454, 1981.

[6] P. C. Andricacos, C. Uzoh, J. O. Dukovic, J. Horkans, and H. Deligianni, Damascene Copper Electroplating for
Chip Interconnections, IBM J. Res. Dev., 42, 5, pp. 567 – 574, 1998.

[7] Tariq D. Aslam, A Partial Differential Equation Approach to Multidimensional Extrapolation J. Comp. Phys.,
193, 1, pp. 349 – 355, 2004.

[8] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and
H. Van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM,
1994.

[9] William L. Briggs, Van Emden Henson, and Steve F. McCormick, A Multigrid Tutorial, SIAM, 2000.

[10] David L. Chopp, and James A. Sethian, Flow under Curvature: Singularity Formation, Minimal Surfaces, and
Geodesics, Exp. Math., 2, 4, pp. 235 – 255, 1993.

[11] T. A. Davis, Direct Methods for Sparse Linear Systems, SIAM, 2006.

[12] J. E. Dendy Jr., Black Box Multigrid, J. Comput. Phys., 48, 3, pp. 366 – 386, 1982.

[13] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and Joseph W. H. Liu, A Supernodal
Approach to Sparse Partial Pivoting, SIAM J. Matrix Anal. Appl., 20, 3, pp. 720 – 755, 1999.

[14] L. C. Evans, Partial Differential Equations, AMS, 2002.

[15] M. V. P. Garcia, C. Humes Jr., and J. M. Stern, Generalized Line Criterion for Gauss-Seidel Method, Mat. Apl.
Comput., 22, 1, pp. 91 – 97, 2003.

[16] Ronald P. Fedkiw, Tariq Aslam, Barry Merriman, Stanley Osher, A Non-oscillatory Eulerian Approach to
Interfaces in Multimaterial Flows (the Ghost Fluid Method), J. Comput. Phys., 152, 2, pp. 457 – 492, 1999.

[17] G. H. Golub, and C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, 1989.

[18] H. Holden, and N. H. Risebro, Front Tracking for Hyperbolic Conservation Laws, Springer, 2000.

[19] T. Hou, Z. Li, S. Osher, and H.-K. Zhao, A Hybrid Method for Moving Interface Problems with Applications to
the Hele-Shaw Flow, J. Comp. Phys., 134, 2, pp. 236 – 252, 1997.

[20] J. K. Hunter, Z. Li, and H. K. Zhao, Reactive Autophobic Spreading of Drops, J. Comp. Phys., 183, 2, pp. 335
– 366.

[21] Hans Johansen, and Phillip Colella, A Cartesian Grid Embedded Boundary Method for Poisson’s Equation on
Irregular Domains, J. Comp. Phys., 147, 1, pp. 60 – 85, 1998.

35



[22] D. Josell, D. Wheeler, W. H. Huber, and T. P. Moffat, Superconformal Electrodeposition in Submicron Features,
Phys. Rev. Lett., 87, 1, 016102, 2001.

[23] D. Josell, D. Wheeler, W. H. Huber, J. E. Bonevich, and T. P. Moffat, A Simple Equation for Predicting
Superconformal Electrodeposition in Submicronmeter Trenches, J. ElecChem. Soc., 148, 12, C767 – C773, 2001.

[24] Randall J. LeVeque, Numerical Methods for Conservation Laws, Birkhäuser, 1990.

[25] Randall J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.

[26] Randall J. LeVeque, and Zhilin Li, The Immersed Interface Method for Elliptic Equations with Discontinuous
Coefficients and Singular Sources, SIAM J. Numer. Anal., 31, 4, pp. 1019 – 1044, 1994.

[27] Zhilin Li, The Immersed Interface Method: A Numerical Approach for Partial Differential Equations with In-
terfaces, PhD Dissertation, University of Washington, 1995.

[28] Zhilin Li, and Kazufumi Ito, Maximum Principal Preserving Schemes for Interface Problems with Discontinuous
Coefficients, SIAM J. Sci. Comput., 23, 1, pp. 339 – 361.

[29] Zhilin Li, and Kazufumi Ito, The Immersed Interface Method – Numerical Solutions of PDEs Involving Interfaces
and Irregular Domains, SIAM Frontiers in Applied mathematics, 33, 2006.

[30] Z. Li, H. Zhao, and H. Gao, A Numerical Study of Electro-migration Voiding by Evolving Level Set Functions
on a Fixed Cartesian Grid, J. Comp. Phys. 152, 1, pp. 281 – 304, 1999.

[31] Stephen F. McCormick, Multilevel Adaptive Methods for PDEs, SIAM, 2002.

[32] P. McCorquodale, P. Colella, and H. Johansen, A Cartesian Grid Embedded Boundary Method for the Heat
Equation on Irregular Domains, J. Comp. Phys., 173, 2, pp. 620 – 635, 2001.

[33] T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, D. R. Kelly, G. R. Stafford, and D. Josell,
Superconformal Electrodeposition of Copper in 500–90 nm Features, J. Electrochem. Soc., 147, 12, pp. 4524 –
4535, 2000.

[34] T. P. Moffat, D. Wheeler, M. D. Edelstein, and D. Josell, Superconformal Film Growth: Mechanism and Quan-
tification, IBM J. Res. Dev., 49, 1, pp. 19 – 36, 2005.

[35] S. Osher, and J. A. Sethian, Fronts Propagating with Curvature–Dependent Speed: Algorithms Based on
Hamilton–Jacobi Formulations, J. Comp. Phys., 79, 1, pp. 12 – 49, 1988.

[36] Ulrich Rüde, Mathematical and Computational Techniques for Multilevel Adaptive Methods, SIAM, 1993.

[37] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM, 2003.

[38] Y. Saad, and M. H. Schultz, GMRES: A Generalized Minimum Residual Algorithm for Solving Nonsymmetric
Linear Systems, SIAM J. Sci. Stat. Comput., 7, 3, pp. 856 – 869, 1986.

[39] J. A. Sethian, An Analysis of Flame Propagation, PhD Dissertation, University of California, Berkeley, 1982.

[40] J. A. Sethian, Curvature and the Evolution of Fronts, Comm. in Math. Phys., 101, pp. 487 – 499, 1985.

[41] J. A. Sethian, Numerical Methods for Propagating Fronts, Variational Methods for Free Surface Interfaces,
Proceedings of the Sept, 1985 Vallambrosa Conference, Eds. P. Concus and R. Finn, Springer-Verlag, NY, 1987.

[42] J. A. Sethian, A Fast Marching Level Set Method for Monotonically Advancing Fronts, Proc. Nat. Acad. Sci.,
93, 4, pp. 1591 – 1595, 1996.

[43] J. A. Sethian, Level Set Methods and Fast Marching Methods: Evolving Interfaces in Geometry, Fluid Mechanics,
Computer Vision, and Materials Sciences, Cambridge University Press, 1999.

36



[44] John Strikwerda, Finite Difference Schemes and Partial Differential Equations, SIAM, 2004.

[45] N. Sukumar, D. L. Chopp, N. Moës, and T. Belytschkoc Modeling holes and inclusions by level sets in the
extended finite-element method, Comput. Methods Appl. Mech. Engrg., 190, pp. 6183 – 6200, 2001.

[46] J. W. Thomas, Numerical Partial Differential Equations: Finite Difference Methods, Springer, 2004.

[47] E. H. Twizell, A. B. Gumel, and M. A. Arigu, Second-order, L0-stable Methods for the Heat Equation with
Time-dependent Boundary Conditions, Adv. Comput. Math., 6, pp. 333 – 352, 1996.

[48] Alan C. West, Theory of Filling of High-Aspect Ratio Trenches and Vias in Presence of Additives, J. Electrochem.
Soc., 147, 1, pp. 227 – 232, 2000.

[49] D. Wheeler, D. Josell, and T. P. Moffat, Modeling Superconformal Electrodeposition in Trenches, The Eighth
Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, 2002.

[50] D. Wheeler, D. Josell, and T. P. Moffat, Modeling Superconformal Electrodeposition Using the Level Set Method,
J. Electrochem. Soc., 150, 5, C302, 2003.

[51] Jon Wilkening, Multigrid on an Irregular Domain, unpublished, 1999.

[52] J.-J. Xu, and H.-K. Zhao, An Eulerian Formulation for Solving Partial Differential Equations along a Moving
Interface, J. Sci. Comp., 19, pp. 573 – 594, 2003.

37




