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Biogenic Secondary Organic Aerosols (bSOA) account for a large fraction of the global 

aerosols budget, and thus have a significant impact on climate and public health. Observations of 

bSOA in the southeastern U.S. included Fourier Transform Infrared Spectroscopy (FTIR) and 

Aerosol Mass Spectrometer (AMS) measurements of submicron mass at Look Rock (LRK), 

Tennessee, and Centreville (CTR), Alabama. At LRK, Organic mass (OM) sources were 

apportioned to three factors, including “sulfate-related bSOA” that correlated to sulfate (r=0.72). 

Single-particle mass spectra also showed three composition types that corresponded to the mass-



	

xvii	

based factors with spectra cosine similarity of 0.93 and time series correlations of r>0.4. The 

similarity of the m/z spectra (cosine similarity=0.97) and the time series correlation (r=0.80) of 

the “sulfate-related bSOA” to the sulfate-containing single-particle type provide evidence for 

particle composition contributing to selective uptake of isoprene oxidation products onto sulfate 

particles. NOx had nighttime-to-early-morning peaks 3~10 times higher at CTR than at LRK, but 

OM sources identified by FTIR had three very similar factors at both sites including Biogenic 

Organic Aerosols (BOA). The BOA spectrum from FTIR is similar (cosine similarity > 0.6) to 

that of lab-generated particle mass from isoprene and monoterpene with NOx. NOx was 

correlated with FTIR-BOA and AMS related biogenic factors for NOx concentrations higher than 

1 ppb at both sites, producing 0.5 to 1 µg m-3 additional biogenic OM for each 1 ppb increase of 

NOx. Submicron organic mass (OM), particle number, and cloud condensation nuclei 

concentrations were measured at a costal Antarctica site and were found to be highest in summer. 

Natural sources that included marine sea spray and seabird emissions contributed 56 % of OM in 

austral summer but only 3 % in austral winter. Fourier transform infrared spectra showed the 

natural sources of organic aerosol were characterized by amide group absorption, which may be 

from seabird populations. Carboxylic acid group contributions from natural sources were 

correlated to incoming solar radiation, indicating both seasonal sources and likely secondary 

reactions.
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Introduction 

 

Aerosols are an important component of the atmosphere because of their significant 

impact on climate [Charlson et al., 1992; Ramanathan et al., 2001], visibility [Watson, 2002], 

and public health [Ostro and Chestnut, 1998; Pope et al., 2009]. Organic compounds contribute 

the largest fraction of fine aerosols, and secondary organic aerosols (SOA) make up as much as 

70% of the organic carbon (OC) mass in aerosol particles [Hallquist et al., 2009]. SOA 

formation starts with emissions of volatile organic compounds (VOCs). VOCs are oxidized with 

chemical reactions in the atmosphere, and their volatility decreases [Ziemann and Atkinson, 

2012]. The lower volatility of the oxidized VOCs causes them to partition preferentially to the 

particle phase by condensation on preexisting aerosol particles or by forming new particles 

[Odum et al., 1996]. 

At the global scale, plant foliage contributes more than two-thirds of total VOC emissions 

to the atmosphere [Guenther et al., 1995; Guenther et al., 2006]. The high emission rate of 

isoprene (600 Tg yr−1) makes it the most abundant non-methane VOC [Guenther et al., 2006]. 

The southeastern United States is one of the highest biogenic VOC (BVOC) emission regions in 

the world. The emission rates of both isoprene and monoterpenes rival the rates measured in 

tropical rainforests [Goldstein et al., 2009]. Although BVOCs are abundant in the region, SOA 

components correlate with emissions that are largely from anthropogenic combustion sources, 

such as carbon monoxide (CO) [Weber et al., 2007]. The current understanding of this apparent 

contradiction is that SOA is most likely from BVOCs but that anthropogenic emissions can 

contribute to the formation process. Consequently, for many years biogenic SOA (BSOA) was 

not considered to be controllable by policy or regulations because they are produced by natural 
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vegetation [Kleeman et al., 2007; Park et al., 2003]. However, modeling studies now show it is 

possible to affect the amount of BSOA formation by regulating the anthropogenic emissions that 

contribute to the SOA-forming reactions [Carlton et al., 2010].  

In polar regions, the sources of biogenic aerosols are completely different due to the 

absence of terrestrial vegetation [Guenther et al., 1995; Guenther et al., 2006] but the presence 

of coastal species. VOCs emitted from the ocean are small compared to terrestrial vegetation 

[Stocker et al., 2013], but biogenic aerosols are still important in polar regions. For example, 

natural aerosols can explain seasonal and spatial patterns of Southern Ocean cloud albedo 

[McCoy et al., 2015]. Ammonia from seabird-colony guano may be a key factor contributing to 

bursts of newly formed particles in the Arctic [Croft et al., 2016]. There are few places on Earth 

where measurements of ambient aerosol and CCN (Cloud condensation nuclei) are as scarce as 

in Antarctica. Yet since West Antarctica is one of the most rapidly warming regions on Earth 

[Bromwich et al., 2013; Lambeck et al., 2002; Steig et al., 2009], these measurements may be 

crucial to understanding the changing climate – especially given the close connection between 

the Antarctic ice sheets and potential global sea level rise.  

Identification of the contributions of different natural and man-made emission sources to 

SOA measured in the atmosphere is essential for better understanding and quantifying BSOA. 

However, measurements of aerosol organic composition are extremely difficult due to its low 

concentration and high complexity. Before 2000, there was very little instrumentation for 

measuring the composition of organic aerosol species [McMurry, 2000],  and other chemical 

analyses were limited by sampling constraints and resolution. Source apportionment of SOA was 

largely dependent on tracers for specific sources, such as vehicle emission and wood burning 

[Cass, 1998; Rogge et al., 1993a; b; Rogge et al., 1991]. This method was found to be useful for 
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direct or “primary” emissions of so-called primary organic aerosols (POA, i.e. aerosols that are 

emitted rather than formed by reactions in the atmosphere), but it is not an appropriate approach 

for SOA since the components of SOA change with oxidation reactions making it difficult to 

identify a conservative tracer [Russell, 2014].  

With the introduction of the Aerosol Mass Spectrometer (AMS) in 2000, quantification 

of non-refractory ion fragments from size-resolved aerosol particles with high time resolution 

was made possible [Jayne et al., 2000]. The AMS provides measurements of the mass 

distribution of fragments that have different ratios of mass to charge (m/z), providing the m/z 

spectra that characterize the chemical composition every 5 min. Further, FTIR spectroscopy, 

which quantifies organic aerosol composition on filter substrates by quantifying the absorption 

spectrum as a function of wavelength, has greatly improved quantification of the major organic 

functional groups (OFGs) in aerosol particles [Maria et al., 2002; Russell et al., 2009a; 

Takahama et al., 2013]. AMS and FTIR have provided two independent methods for 

characterizing the chemical composition in sufficient detail to allow SOA apportionment, i.e. 

separation of an observed mixture into its uncorrelated components, allowing us to improve our 

understanding of SOA formation processes. One common statistical method that has been used 

to assist in solving this type of partially-constrained inversion problems for the complex 

chemical measurements provided by AMS and FTIR is Positive Matrix Factorization (PMF). 

PMF incorporates weighting of the residuals from factorization by measurement errors [Paatero 

and Tapper, 1994], and has been widely used for atmospheric source apportionment [Reff et al., 

2007; Weber et al., 2007]. Factors have been identified by PMF for measurements from around 

the world, and these factors have been used to apportion organic aerosol components to specific 

emission sources [Jimenez et al., 2009; Lanz et al., 2007; Ulbrich et al., 2009]. PMF has also 
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been applied to FTIR spectra to effectively separate contributions from different organic particle 

sources in multiple studies [Russell et al., 2011]. 

This dissertation focuses on two key aspects of bSOA: first, the interaction of bSOA with 

anthropogenic emissions, such as sulfate and NOx in the southeastern U.S., and, second, the 

apportionment of particle organic mass to seabird emission sources at McMurdo Station, 

Antarctica.  The first two chapters are based on the Southern Oxidant and Aerosol Study (SOAS 

in 2013. Website: http://soas2013.rutgers.edu ), a comprehensive study aimed at studying bSOA 

in the southeastern U.S.  The measurements in the third chapter were collected during the ARM 

West Antarctica Radiation Experiment (AWARE in 2016; Website: 

https://www.arm.gov/research/campaigns/amf2015aware). 

Chapter 1 describes measurements collected at an elevated (800m ASL) forested site as 

part of the SOAS campaign, at Look Rock, Tennessee. The main objective of this study was to 

understand the mixing state of anthropogenic sulfate-containing particles and the isoprene-

derived bSOA. In this chapter, PMF factors from ensemble mass and k-means [Hartigan and 

Wong, 1979] clusters from single particles, both from AMS, were compared. The sources of 

aerosols were apportioned by the two statistical approaches and direct evidence of heterogeneous 

reactions of bSOA were evaluated. 

Chapter 2 compares measurements from two SOAS sites: Look Rock, Tennessee, and 

Centreville, Alabama. While both sites are rural, the Centreville site had higher NOx 

concentration. The objective of this study was to compare the measurements from the two sites 

and gain information about the role of NOx on bSOA formation. AMS, FTIR, and their PMF 

factors from both sites were evaluated to compare the two sites in this chapter. The bSOA 

formed at the two sites are very similar except for the NOx related bSOA. Comparison of the 
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ambient measurements to FTIR from lab-generated bSOA provides additional insights on the 

formation pathways of the SOA. The measurements were also compared to simulated bSOA 

from CMAQ model [B N Murphy et al., 2017; Pye et al., 2010; Pye et al., 2015; Pye et al., 2017; 

Pye et al., 2013] to assess the implications for the region. 

Chapter 3 reviews an entire year of FTIR measurements of organic aerosol composition 

at McMurdo Station, which is on Ross Island, Antarctica, as a part of the AWARE campaign. 

Two methods were used to separate contributions to particle number and composition from 

activities at McMurdo Station from those from natural biogenic sources. The first method used 

spike removal from the concentration time series to identify short contamination events. The 

second method was PMF, which used the organic chemical composition and seasonal variation 

to separate anthropogenic sources from natural sources. The natural aerosols are likely from the 

nearby seabird colonies on Ross Island based on the seasonal variation and the unique amide 

signal in the FTIR spectra. Evidence of photochemical bSOA in Antarctica is also described in 

this chapter. 

Together, this dissertation investigates the identification of bSOA in the southeastern 

U.S. and coastal Antarctica, and the extent to which bSOA in the southeastern U.S. is influenced 

by anthropogenic emissions. The sources and composition of the OM at rural sites in the 

summertime southeastern U.S. were identified. The dependence of bSOA formation on 

anthropogenic emission, particularly sulfate and NOx was investigated. Evidence of 

heterogeneous reactions in bSOA formation was shown. The composition of lab-generated 

bSOA was compared to the composition of ambient aerosol particles from field studies. OM 

sources at coastal Antarctica and seasonal variation were also studied.   
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Chapter 1 

Observational Evidence for Pollution-influenced 

Selective Uptake Contributing to Biogenic Secondary 

Organic Aerosols in the Southeastern US 

 

 During the 2013 Southern Oxidant and Aerosol Study, aerosol mass spectrometer 

measurements of submicron mass and single-particles were taken at Look Rock, Tennessee. 

Their concentrations increased during multi-day stagnation events characterized by low wind, 

little rain, and increased daytime isoprene emissions.  Organic mass (OM) sources were 

apportioned as 42% "vehicle-related" and 54% biogenic secondary organic aerosol (bSOA), with 

the latter including “sulfate-related bSOA” that correlated to sulfate (r=0.72) and “nitrate-related 

bSOA” that correlated to nitrate (r=0.65). Single-particle mass spectra showed three composition 

types that corresponded to the mass-based factors with spectra cosine similarity of 0.93 and time 

series correlations of r>0.4. The vehicle-related OM with m/z 44 was correlated to black carbon, 

“sulfate-related bSOA” was on particles with high sulfate, and “nitrate-related bSOA” was on all 

particles. The similarity of the m/z spectra (cosine similarity=0.97) and the time series 
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correlation (r=0.80) of the “sulfate-related bSOA” to the sulfate-containing single-particle type 

provide evidence for particle composition contributing to selective uptake of isoprene oxidation 

products onto particles that contain sulfate from power plants.   
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1.1 Introduction 

Organic compounds contribute the largest fraction of submicron aerosol mass in many 

regions worldwide, and secondary organic aerosols (SOA) contribute as much as 70% of the 

organic carbon mass (OM) in aerosol particles [Hallquist et al., 2009]. Emission rates of both 

isoprene and monoterpenes in the southeastern United States [Goldstein et al., 2009] compete 

with the rates measured in tropical rain forests [Rinne et al., 2002]. One reason that mean annual 

temperatures in the southeastern United States decreased in the 20th century despite overall 

global-mean warming may be the direct radiative effect of the SOA formed from biogenic 

volatile organic compounds, known as bSOA [Goldstein et al., 2009; Portmann et al., 2009]. 

This recent cooling trend may also have contributions from internal variability [Banerjee et al., 

2017], aerosol sources aloft [Ford and Heald, 2013], cloud forcing [Yu et al., 2014],  particle 

phase water [Nguyen  et al., 2016], and other changes in particle composition [Kim et al., 2015]. 

The high global flux of biogenic volatile organic compounds of 1000 Tg yr-1 [Guenther et al., 

2012] provides ample precursors that may form bSOA in many regions of the world. 

Identifying the contributions of different natural and man-made emission sources to SOA 

quantifies the factors that control bSOA. Data inversion methods have been applied to aerosol 

mass spectrometry (AMS) measurements to separate and quantify different types or “factors” of 

bSOA in aerosol OM with both reasonable accuracy and consistency [Budisulistiorini et al., 

2013; Budisulistiorini et al., 2015; Chen  et al., 2015; Corrigan et al., 2013; Robinson et al., 

2011; Slowik et al., 2011; Xu et al., 2015b]. Two biogenic factors in particular have been 

identified at multiple locations and shown to have similar chemical compositions (spectra of 
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mass fragments) and correlations [Devore and Berk, 2012] to tracers: one factor with high m/z 

82 (which we refer to as Factor82, also referred to as 82fac, IEPOX OA, or Isoprene OA, as 

noted in Table 1.1) [Budisulistiorini et al., 2013; Budisulistiorini et al., 2015; Chen  et al., 2015; 

Robinson et al., 2011; Slowik et al., 2011; Xu et al., 2015b]) showed moderate to strong (r=0.7 

to 0.88) correlations to sulfate [Budisulistiorini et al., 2013; Budisulistiorini et al., 2015; Xu et 

al., 2015b] and another factor with a characteristic fragment ion at m/z 91 (which we refer to as 

Factor91, also referred to as  91fac, OOA3, BSOA1, BSOA2, or Isoprene OA as noted in Table 

1.1) [Budisulistiorini et al., 2015; Chen  et al., 2015; Lee et al., 2016b; Robinson et al., 2011]). 

The consistent identification of these two factors in studies across North and South America as 

well as Europe indicates both the prevalence of bSOA worldwide and the general similarity of 

their composition (Table 1.1).   

  



	

15	

 

  

Table 1.1: AMS Biogenic Secondary Organic Aerosol PMF Factors Reported Previously. 

Factor Name Reference 
m/z 

Markers 
Factor-related Information 

Factor82 This study 
44>43 Selective uptake of isoprene related aerosol onto 

preexisting sulfate particles 53,82 

82fac 
[Robinson et al., 

2011] 

44>43 
Product of Isoprene oxidation similar to 

methylfuran 

53,82 

AMS m/z 82 and m/z 53 correlated to 

methylvinylketone and methacrolein in both 

airborne and ground-based measurements 

UNKN(Unknown) 
[Slowik et al., 

2011] 

43>>44 Reactive uptake of isoprene onto preexisting 

sulfate aerosol and/or condensation of early-

generation isoprene reaction products; Highest 

concentration during sulfate plume 

31,82 

IEPOX OA 
 [Budisulistiorini 

et al., 2013] 

44<43 IEPOX as oxidation products. IEPOX-OA factor 

correlates well (R2 = 0.59) with the summed mass 

concentrations of the measured IEPOX-derived 

SOA tracer 

53,82 

44>>43, 

91 
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Table 1.1 AMS Biogenic Secondary Organic Aerosol PMF Factors Reported Previously. 
(Continued) 

 

OOA-2 
 [Chen et al., 

2015] 

44<43 Produced by the reactive uptake of isoprene photo-

oxidation, including possible aqueous-phase oxidation in 

haze, fog, and cloud droplets. Factor loading correlated 

with isoprene concentration (R2 =0.65) 

53,82 

Isoprene-

OA 
[Xu et al., 2015] 

44>43 Isoprene-SOA formed via reactive uptake of IEPOX and 

correlated with methyl tetrols (R=0.68) as well as sulfate 

(R=0.77) 
53,82 

IEPOX OA 
[Budisulistiorini et 

al., 2015] 

44>43 IEPOX as oxidation products. Factor strongly correlated 

(R2 >0.7) with 2- methyltetrols, C5-alkene triols, IEPOX-

derived organosulfates, and dimers of organosulfates. 

Factor strongly correlated with sulfate (R2 = 0.58) 

53,82 

Factor91 This Study 
44<<43 

Biogenic SOA correlated to nitrate  
91 

91fac 
[Robinson et al., 

2011] 

44<<43 Biomass burning aerosols, except for absence of m/z 60 

and 73  expected from levoglucosan 91 
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Table 1.1 AMS Biogenic Secondary Organic Aerosol PMF Factors Reported Previously. 
(Continued) 

OOA3 [Chen et al., 2015] 

44<<43 Freshly produced Biogenic SOA. A linear combination of the 

three chamber spectra (50% isoprene- derived Secondary 

Organic Material (SOM), 30% α-pinene-derived SOM, and 

20% β- caryophyllene-derived SOM) largely reproduced the 

OOA-3 factor 

91 

91fac 
[Budisulistiorini 

et al., 2015] 
44>43 

An aged aerosol that may be associated with nitrate radical 

chemistry or as yet unidentified pathways 

BSOA1 

BSOA2 
[Lee et al., 2016] 

44<43, 

91 

Both from gas-phase oxidation of monoterpenes and 

perhaps sesquiterpenes 

BSOA1: gas-phase ozonolysis and nitrate radical chemistry at 

night 

BSOA2: gas-phase oxidation by OH radical and ozone during 

daytime 

 

These similarities in bSOA chemical composition suggest commonalities in their 

atmospheric formation processes, for which chamber studies provide a proxy. Recent studies 

have provided a link between chamber-generated and atmospheric isoprene-related bSOA by 

identifying the characteristic fragment ion at m/z 82 found in AMS datasets to be associated to 

isomeric isoprene epoxydiols (IEPOX)-derived SOA [Budisulistiorini et al., 2013; Lin et al., 

2012]. To understand what factors contribute to forming this IEPOX-derived bSOA, chamber 

studies have investigated a variety of different atmospheric conditions: particle acidity [Gaston et 

al., 2014b; Surratt et al., 2010] and particle-phase water [Nguyen et al., 2011; Nguyen et al., 

2015; H Zhang et al., 2011] were both found to increase IEPOX-related bSOA.  The source of 
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the other bSOA (Factor91) is less clear but is likely associated (in part) with gas-phase isoprene 

oxidation pathways that do not involve particle-phase reactions such as low-volatility 

multifunctional hydroperoxides produced from oxidation of isoprene hydroxyhydroperoxides 

[Budisulistiorini et al., 2016; Krechmer et al., 2015; Liu  et al., 2016; Riva et al., 2016]. A high 

m/z 91 signal was measured in chamber studies of reactions of 𝛽-pinene and NO3 radical [Boyd 

et al., 2015] and of ozonolysis of β-caryophyllene [Chen  et al., 2015], suggesting that m/z 91 

could be an indicator for bSOA formed from monoterpene or sesquiterpene oxidation in ambient 

aerosol mass spectra [Boyd et al., 2015]. 

Atmospheric bSOA measurements have not found a correlation between IEPOX-related 

bSOA and either calculated particle-phase water or acidity [Budisulistiorini et al., 2015; 

Rattanavaraha et al., 2016; Worton et al., 2013; Xu et al., 2015b], but other atmospheric factors 

could have hidden such relationships because of larger variability in other field conditions. Xu et 

al. [2016] showed that, in sulfate-rich plumes, sulfate enhances the heterogeneous reaction rates 

of IEPOX due to both enhanced particle surface area and particle acidity. Hu et al. [2016] used 

the similarity in the mass size distribution peak of the characteristic m/z 82 fragment ion and 

sulfate in particles from both the southeastern U.S. and the Amazon to suggest sulfate control of 

the IEPOX uptake formation pathway. Both studies provide indirect evidence of contributions to 

bSOA from heterogeneous reactions of IEPOX with sulfate based on correlations of tracers and 

submicron mass composition. 

To provide more direct evidence of the processes controlling bSOA formation, we 

compared characteristic fragment ions associated with bSOA identified in submicron particle 

mass and in single particles measured during the 2013 Southern Oxidant and Aerosol Study 

(SOAS) at Look Rock, Tennessee. The prevalence of biogenic emissions and the meteorological 
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conditions resulted in large contributions of bSOA to OM.  Single-particle AMS measurements 

with light scattering (LS) provided direct information on differences in particle composition.  As 

a result, this work provides biogenic-specific single-particle spectra to evaluate the role of 

particle-composition dependent processes in SOA formation.   

1.2 Methods 

As part of the SOAS campaign from 1 June to 17 July 2013 in a forested area at Look 

Rock, Tennessee, we measured size-resolved non-refractory chemical composition of submicron 

particles with a high-resolution time-of-flight aerosol mass spectrometer (AMS, Aerodyne 

Research, Inc.). The LS module attached to the AMS triggered collection of single-particle non-

refractory mass fragment ion spectra for particles in the vacuum aerodynamic diameter range of 

350 to 700 nm (i.e. mobility diameter of 230 to 500 nm, using 5% sampling efficiency as the 

cutoff diameters, see Appendix) [Cross et al., 2007; Cross et al., 2009; Kostenidou et al., 2007]. 

The same aerosol inlet [Bates et al., 2012] was used for filter collection for Fourier Transform 

Infrared (FTIR) spectroscopy [Russell  et al., 2009; Takahama et al., 2013] and particle size 

distributions by Scanning Electrical Mobility Spectrometer (SEMS, Model 2000C, Brechtel 

Manufacturing Incorporated). Specific details of instrument operation, performance and 

calibration, including evaluation of the AMS collection efficiency (CE), are provided in the 

Appendix.  

Two statistical methods were used to identify characteristic compositions in the AMS 

mass fragment spectra. Positive Matrix Factorization (PMF) incorporates weighting of residuals 

from factorization by measurement errors [Paatero, 1997; Paatero and Tapper, 1994; Paatero 

and Hopke, 2003; Paatero et al., 2002] and has been widely used for atmospheric source 
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apportionment [Reff et al., 2007; Weber et al., 2007]. AMS PMF factors associate mixtures of 

organic aerosol components to specific emission sources [Jimenez et al., 2009; Lanz et al., 2007; 

Ulbrich et al., 2009]. K-means clustering aims to partition observations into clusters in which 

each observation belongs to the cluster with the nearest mean [Hartley, 1955]. K-means 

clustering has been applied to AMS light scattering single particle spectra to identify 

atmospheric particle types [Lee et al., 2015; Lee et al., 2016a; Liu et al., 2013; Willis et al., 

2016]. The criteria used for identifying the most accurate and robust solutions for both PMF and 

K-means clustering are provided in the Appendix. 

Three factors were identified by PMF of the AMS high-resolution measurements:  

Factor44 (“vehicle-related SOA”) with a high fraction of oxygenated organic mass fragment ions 

(including m/z 44), Factor82 (“sulfate-related bSOA”) with high m/z 82 ion signals (IEPOX-

OA), and Factor91 (“nitrate-related bSOA”) with high m/z 91 ion signals. K-means clustering of 

LS mode single-particle measurements also identified three types of particles: Cluster44 with a 

high fraction of oxidized organic fragment ions at m/z 43 and 44, Cluster82 with a high sulfate 

fraction and m/z 82 fragment ion signals, and Cluster91 with a high fraction of less oxidized 

organic mass fragment ions (including m/z 91). Interestingly, although the clusters were based on 

single-particle measurements while factors were from mass-based measurements, they resulted 

in very similar mass spectra, as indicated by the near-unity values of the cosine similarity 

between the m/z spectra and moderate to strong correlations of the time series (shown in Table 

1.2). The correlation of the time series of the concentrations of Factor82 mass and Cluster82 

number was r=0.80, which was higher than that of Factor44 and Cluster44 (r=0.66) and of 

Factor91 and Cluster91 (r=0.48). 
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Table 1.2: Cosine Similarities of m/z Spectra and Correlations of Time Series of HR AMS 
Factors, LS AMS Clusters and m/z 44, 82 and 91 Signals. 

Spectral Cosine 

Similarity/ Time Series 

Correlation Coefficient (R) 

Factor44 Factor82 Factor91 

Cluster44 0.93/0.66 0.91/0.48 0.66/0.50 

Cluster82 0.66/0.55 0.97/0.80 0.74/0.45 

Cluster91 0.56/0.55 0.88/0.66 0.93/0.48 

m/z 44 NA/0.91 NA/0.69 NA/0.86 

m/z 82 NA/0.82 NA/0.92 NA/0.77 

m/z 91 NA/0.91 NA/0.69 NA/0.94 

 

 

1.3 Results 

1.3.1 Enhancement of Particle Concentrations by Stagnation 

One interesting feature of the AMS submicron particle mass concentration time series is 

that multiple-day events of nearly-continuously increasing concentrations are much more evident 

than diurnal cycles. Each event consists of 3-6 days of concentrations higher than 2 µg m-3, 

typically ended by a rain event that scavenged most of the aerosol mass.  Dividing the campaign 

according to these criteria shows there are seven multi-day periods of aerosol accumulation that 

are separated by low AMS organic concentration during the 7-week campaign (Figure 1.1).  
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Figure 1.1: Top: Time series of AMS non-refractory submicron mass concentrations of OM, 
sulfate, nitrate and ammonium (2 g m-3 OM is marked on the plot to indicate the criterion for 
separation between the seven events identified). Bottom: Time series of isoprene concentration, 
solar radiation, precipitation and wind speed  (1.8 m s-1 is marked on the plot as a cutoff for low 
wind speed associated with stagnation conditions). 

Most of these events are characterized by 3-4 days of continually increasing 

concentration that obscure the mid-day peaks expected for daytime production of photochemical 

SOA. To illustrate the photochemical contribution to SOA, we calculated the loading in the 

boundary layer column, assuming a well-mixed boundary layer source and negligible 

concentrations above the layer ([Wagner et al., 2015], details in the Appendix) with regional 

soundings and reanalyses for mixed layer height (Figure 1.2) [Draxier and Hess, 1998; Wang 

and Wang, 2014]. Figure 1.3 shows the daytime loading in the boundary layer column (defined 

as from 0900 to 2100) accounted for 92% of the daily loading in the boundary layer column for 

non-refractory organic components for the 48-day campaign. The diurnal cycles of the three 

PMF factors are similar to that of the combined non-refractory organic components. Higher 

isoprene concentrations were moderately correlated (r=0.68) to higher daily maximum radiation, 
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which likely contributed to part of the multi-day event pattern by contributing more SOA on 

days with fewer clouds. 

 

Figure 1.2: Bottom: Boundary layer height (BLH) retrieved from ECMWF reanalysis and 
measured average of boundary layer height at four surrounding sounding locations (Nashville, 
Peachtree City, Blacksburg and Greensboro). Top left: ECMWF and HYSPLIT reanalysis vs 
Sounding; Top right: ECMWF reanalysis vs HYSPLIT reanalysis.  All heights are above ground 
level. 
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Figure 1.3: (a) Diurnal pattern of loading in the boundary layer column of the three PMF 
factors. Errors bars give the standard deviation to indicate variability. (b) Comparison of organic 
loading in the boundary layer column and maximum daily solar radiation (400 to 1100 nm 
wavelength) with isoprene (R=0.32 and 0.68, respectively). 

1.3.2 Comparison of mass-based AMS Factor and number-based LS Cluster 

Sources 

By comparing the AMS PMF factor mass spectra to factors reported in the literature and 

by evaluating the correlations of time series of factor concentrations to tracers, the probable 

source of each factor was identified. Factor44 and Cluster44 had moderate correlations with 

several anthropogenic emission tracers (r>0.5 for Black Carbon (BC), CO, NOy and O3) and had 

clear diurnal cycles that peaked for about 3 hours after local noon each day, similar to the results 

of Zhang et al. [2011]. The moderate correlation (r=0.73 and 0.58, respectively) of both Factor44 

and Cluster44 time series to BC concentration time series (shown in Figure 1.4) suggests that the 

factor is influenced by aged anthropogenic combustion emissions from regional vehicle traffic 

emissions. Factor44 also showed moderate correlations to sulfate  (r=0.76) and nitrate (r=0.63), 
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consistent with transported and aged OM typically from anthropogenic emissions [Jimenez et al., 

2009]. The afternoon maximum indicated that photochemical reactions likely caused the aerosol 

formation. Factor44 was similar to AMS spectra of gasoline and diesel SOA in a region with 

high m/z 44 fraction (∼0.1) and low m/z 43 fraction (∼0.05) [Presto et al., 2014] and to their 

ambient LV-OOA factor, which was attributed to vehicle sources (see also in  Appendix 

[Elsasser et al., 2012; Fine et al., 2001; Mano and Andreae, 1994]). 

 

 Figure 1.4: Hourly averaged scatter plots of AMS HR PMF factors and LS-AMS clusters 
with tracers for anthropogenic emissions: Left shows Factor44 and Cluster44 vs Black Carbon 
(BC), r=0.73 and 0.58, respectively; Middle: Factor82 and Cluster82 vs sulfate, r=0.72 and 0.73, 
respectively; Right: Factor91 and Cluster91 vs nitrate, r=0.65 and 0.57, respectively; Normalized 
hourly-averaged concentration are shown in the plots; Lines are the linear regression of factors 
and clusters. Only hours for which the LS-detectable range (230 < mobility diameter < 500 nm, 
measured by SEMS) represented more than 50% of submicron mass were included in this 
correlation, which was approximately 87% of the 33-day study.

Factor82 and Cluster82 were moderately correlated (r=0.72 and 0.73, respectively) with 

sulfate concentration time series, as given in Figure 1.4. This correlation suggests Factor82 and 

Cluster82 are likely from acid-catalyzed reactive uptake of IEPOX that occurred in the presence 



	

	

	

of acidic sulfate, consistent with previous studies [Lin et al., 2012; Surratt et al., 2010]. Factor91 

and Cluster91 time series were moderately correlated (r=0.65 and 0.57, respectively) with nitrate 

concentration, which can indicate several types of combustion and oxidants [Song et al., 2001] as 

well as N2O5 reactive uptake [Finlayson-Pitts et al., 1989]. Isoprene concentration (~2 ppb) is 

higher than monoterpene (<1 ppb) during the SOAS study [Budisulistiorini et al., 2015].  

Factor91 had a maximum concentration at 1300 (Figure 1.5). Both of these features are more 

consistent with isoprene as a source of Factor91 since isoprene concentration had a strong 

correlation (r=0.83) to the measured radiation at the surface. Therefore, Factor91 is likely to also 

be formed from isoprene through a non-IEPOX route based on the similarity to published mass 

spectra from smog chamber products of isoprene oxidized under relatively low-sulfate and NOx 

conditions [Budisulistiorini et al., 2016; Chen  et al., 2015; Liu  et al., 2016; Riva et al., 2016]. 

Factor91 could also be from a number of other sources, given the many associations of this 

marker fragment reported previously (Table 1.1). Factor91 is similar to a previously reported 

OOA3 PMF factor in Chen et al. [2015] with cosine similarity of 0.87, which was adequately 

reconstructed by a linear combination of multiple lab generated bSOA (30% α-pinene-derived 

OM, 20% β-caryophyllene-derived OM, and 50% isoprene-derived OM). Organic nitrate has 

also been calculated in this study with the NO+/NO2
+ ratio method [Xu et al., 2015a], as 

described in Appendix. The estimated fraction of molecules containing organonitrate groups (3.2 

- 16.4% of OM) is comparable with Xu et al. [2015a] (5 - 12%) and could indicate a potential 

connection between organic nitrate and Factor91. However, there were no nighttime increases of 

Factor91, NOx, or nitrate (Figure 1.5), which rules out a contribution to Factor91 from nighttime 

monoterpene-NOx reactions. In addition, the weak correlation (r=0.48) of the time series of 

Factor91 and Cluster91 and the similar fractions of nitrate on all three particle types (26%, 37%, 



	

	

	

39% of nitrate were on Cluster44, Cluster82, and Cluster91, respectively) indicate that Factor91 

was not forming selectively on Cluster91 particles.  

 
Figure 1.5: Diurnal patterns of (a) Nitrate; (b) NOx; (c) AMS OM and PMF factors. The 
boxes show the 25th and 75th percentile values; the Whiskers show the 5th and 95th percentile 
values, and errors bars give the standard deviation to indicate variability. 

 

1.3.3 Evidence for Selective Formation of m/z 82 Factor and Sulfate-

Containing Particles  

To investigate the dependence of the clustering of the organic mass fragment ions on the 

inorganic components, K-means clustering was carried out with only organic mass fragment ions 

and with all non-refractory mass fragment ions. The two clustering approaches produced nearly 

identical groups of particles, and this high degree of consistency shows the method was robust in 

producing similar particle types with or without inorganic components. In addition, spectra 



	

	

	

within each cluster were very similar to the spectrum of the centroid for that cluster. The 

distributions of cosine similarities of the individual particles and the cluster centroid spectra in 

Figure 1.6(a) shows that all of the spectra in each cluster were both well separated from other 

clusters and very similar to the centroid spectrum.  

 

Figure 1.6: (a) Cosine similarity of individual single particle LS-AMS mass spectra to the 
centroids of the three clusters. Purple: cluster44, 9808 particles; Dark green: cluster82; 12022 
particles; Light green: cluster 91, 12598 particles. The boxes show the 25th and 75th percentile 
values; the Whiskers show the 5th and 95th percentile values. (b) Schematic diagram of sources, 
processes and final mixing state of aerosols in Look Rook, Tennessee, for summer 2013. The 
particle pie graphs are proportional to the non-refractory signal fractions of the three Clusters 
(ammonium is excluded because of baseline noise in LS spectra [Lee et al., 2015], and chloride 
is excluded because it is negligible). The processes shown are based on both direct 
measurements and correlations. 

Other causes of the high-OM events likely include the low wind conditions associated 

with all seven events, suggesting that stagnation might be contributing to the high aerosol 

concentration events (Figure 1.7). The frequencies of occurrence of the highest concentrations of 

OM and all three factors are higher at lower wind speeds, in particular at less than 1.8 m s-1. The 

seven high-OM events are not associated with back trajectories from a particular region, 



	

	

	

indicating that a single location of emission sources (power plant or forest) does not explain the 

pattern of events, as shown in Figure 1.8.   

 
Figure 1.7: Distribution of 5-minute averaged HR AMS organic concentration and PMF 
factor concentrations as a function of measured local wind speed: solid line shows maximum 
valus; bars give median values; boxes are 25th and 75th percentile values; whiskers show the 0 
and 100 percentile values; markers are 5th and 95th percentile values; dashed lines indicate wind 
speed of 1.8 m s-1. 
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Figure 1.8: Mass size 24-hour HYSPLIT back trajectories for times with the highest 25% of 
concentrations of (a) Factor44, (b) Factor91 and (c) Factor82. The 7 events separated by low 
organic mass concentration (<1 µg m-3) identified in Figure 1 are shown in different colors. SO2 
emission in 2012 from coal power plants is marked on the map, with the area of the circles 
proportional to emission (EPA Egrid2012). (d) Model estimated isoprene emission potential 
from the MEGAN model [Guenther et al., 2012]. 

The robustness and separation of the clusters show that the particles are externally mixed, 

namely that the three distinct types of particles have different compositions. The strong 

association of Factor82 with bSOA on Cluster82 particles that contain sulfate from power plants 

(time series correlation of r=0.80 and cosine similarity of mass spectra of 0.97) indicates that 

partitioning of IEPOX to particles was likely chemically selective. More than 76% of the sulfate 

ion signal is in Cluster82, and the sulfate signal fraction is 0.17 for Cluster82 but less than 0.08 
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for the other two clusters. This difference is shown in Figure 1.9. This preference for Factor82 

condensing onto particular particles could be driven by reactive uptake caused by sulfate, acidity, 

or other components [Gaston et al., 2014a; Lin et al., 2012; Riedel et al., 2015; Surratt et al., 

2010; Surratt et al., 2006] but the correlation to sulfate indicates that sulfate is likely a 

controlling reactant. In addition, potential organosulfate group concentrations measured by FTIR 

correlated moderately with Factor82 (r=0.69), providing a direct role for sulfate in the particle-

phase reactions. The organosulfate is likely related to the IEPOX-derived organosulfates that 

were previously reported at Look Rock to be the most abundant organosulfates [Budisulistiorini 

et al., 2015], further showing that particle-phase reactions of IEPOX with sulfate may have been 

the reactions that effectively pulled the gas-to-particle equilibrium toward the particle phase. In 

contrast, the inorganic components from Cluster44 and Cluster91 are very similar to each other, 

and Factor91 is not as strongly correlated to Cluster91 (Table 1.2), meaning that production 

pathways of the “vehicle-related SOA” and the “nitrate-related bSOA” are, in contrast, 

independent of inorganic particle composition and hence likely limited by gas-phase reactions. 

Figure 1.6(b) shows a schematic diagram of the sources, processes, and resulting mixture of 

aerosol particle types that are consistent with these observations.  
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Figure 1.9: Frequency histogram of sulfate mixing ratio in three LS clusters. 

 The timing of emissions from collocated sources could also have contributed to the 

separation of the factors onto different particles and may explain the association of Factor44 with 

Cluster44 (r=0.66) and BC (r=0.73) since vehicles emit both BC and Factor44 precursors. 

However, the correlation of Factor82 (isoprene-related) bSOA with (anthropogenic) sulfate 

(r=0.72) and organosulfate (r=0.69) cannot be explained by collocation. 

1.4 Conclusions 

Stagnation events with lower wind speed were an important factor controlling day-to-day 

changes in aerosol concentration at Look Rock during SOAS, masking the typical diurnal pattern 

expected for secondary photochemical aerosol. However, aerosol loading in the boundary layer 

column from scaling concentrations by reanalysis estimates of boundary layer height showed a 

peak in the afternoon for all factors and clusters that correlated to solar radiation and isoprene 

concentration, consistent with sunlight-driven reactions. Daytime loading in the boundary layer 
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column of organic aerosols is estimated to account for 92% of the daily column loading during 

the campaign, consistent with the expectation that photochemical reaction is the likely 

mechanism for most of the secondary aerosol formation at the site. 

The similarity of the three types of single particles and the three mass-based factors as 

well as the significant differences between the particle types suggest that the aerosol particles 

were largely separated into three distinct types of organic particles. The most oxidized organic 

aerosol type and factor (Factor44 and Cluster44) were from (at least in part) vehicle-related  

sources and accounted for 42% of particle mass and 28% of particle number. The "sulfate-

related" bSOA Factor82 and Cluster82 were similar to factors identified previously as produced 

from isoprene oxidation under low-NO pathways in the presence of acidic sulfate aerosol 

[Budisulistiorini et al., 2013; Budisulistiorini et al., 2015; Xu et al., 2015b] and accounted for 

20% of the mass and 35% of the number of the measured aerosol. The "nitrate-related" bSOA 

(Factor91 and Cluster91) had similar time series correlation to nitrate concentration as Factor44 

and similar nitrate fraction as Cluster 44 and accounted for 34% of mass and 37% of number of 

the measured aerosol.  

The strong time series correlation (r=0.80) of the mass-based Factor82 and the number-

based Cluster82 as well as the distinct differences between the three particle types provides the 

most direct single-particle composition evidence to date of the selective uptake of biogenic 

volatile organic compound oxidation products onto particles containing (anthropogenic) sulfate. 

Since the Cluster82 particle type has 76% of the sulfate on all clusters of the detected single 

particle size range, this correlation and composition provide a strong indication that particle-

phase reactions of isoprene-derived oxidation products with sulfate were responsible for 



	

34	

	

Factor82. This pathway is also consistent with the moderate correlation (r=0.69) between 

Factor82 and organosulfate groups and fragments as well as with laboratory identification of 

organosulfate formation pathways [Budisulistiorini et al., 2015; Surratt et al., 2010]. In contrast, 

the moderate correlation (r=0.65) of nitrate with "nitrate-related" bSOA (Factor91) and the weak 

correlation of Factor91 with Cluster91 (r=0.48), as well as the lower nitrate signal (39%) on 

Cluster91 than sulfate signal (76%) on Cluster82, mean that composition-dependent particle-

phase reactions likely did not contribute to Factor91 bSOA. 

The similarity and correlation of the mass and single particle chemical compositions 

provide the first direct evidence of selective uptake of isoprene-related bSOA onto sulfate-

containing particles.  These results show the significance of heterogeneous reactions on sulfate 

particles from anthropogenic emissions for bSOA and specifically link the near doubling of 

bSOA to sulfate from power plants in the region. Recent studies have shown that hygroscopicity 

[Cerully et al., 2015] and optical properties [Washenfelder et al., 2015] are related to different 

PMF factors of organic aerosols in the southeastern U.S. Combining these findings with the 

identification of the three distinct particle types in this study implies that the optical and drop-

nucleating properties of each particle type may be different from those of other types. For this 

reason, future work linking the chemical characterization of particle types to their different 

properties explicitly would improve constraints on the direct and indirect radiative forcing of 

particles in the southeastern U.S. 
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1.6 Appendix 

1.6.1 Instrument Deployment and Field Campaign Specifications 

At the Look Rock field site, the aerosol instruments used for this study were housed in a 

20’x20’x8’ container with air conditioning set to 21 °C. The nozzle of the inlet for air sampling 
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was ~5 m AGL and the site was at an elevation of 802 m. Concentration data are reported at 

ambient pressure. Ambient air was pulled isokinetically through the inlet at about 900 L min-1 

using a blower to provide sufficient bypass air to keep flow conditions constant [Bates et al., 

2012]. Sampled air lines were dried by diffusion driers in the van before distribution to 

instruments. Teflon filters (Teflo, Gelman Sciences, Ann Arbor, MI) were collected twice per 

day after a 2.5 𝛍m cyclone (SCC, Rupprecht & Patashnick, East Greenbush, NY) from 0800 to 

1900 and from 2000 to 0700 and four per day behind a 1 𝛍m cyclone from 0800~1200, 

1200~1600,1600~1900 and 2000~0700. Flow rates were controlled by mass flow controllers at 

constant volume (MCR-100SLPM, Alicat, Tucson, AZ) and recorded. Collected filters were 

analyzed by Fourier Transform Infrared spectroscopy (FTIR) to quantify organic functional 

groups [Russell  et al., 2009; Takahama et al., 2013] and 42 filters were selected for X-ray 

fluorescence (XRF) of major elements above 23 amu (Chester Labnet, Tigard, OR). Dust mass 

was calculated from XRF assuming elements were present as the following oxides: Na2O, 

MgCO3, Al2O3, SiO2, K2O, CaCO3, TiO2, Fe2O3, MnO, and BaO [Usher et al., 2003]. 

Isoprene was measured using a proton-transfer-reaction time-of-flight mass spectrometer 

(PTR-TOF-MS 8000, Ionicon Analytik GmbH, Austria) equipped with switchable reagent ion 

capability as described in Budisulistiorini et al. [Budisulistiorini et al., 2015] Ambient air was 

sampled from an inlet mounted on a tower 2 m above the rooftop of a permanent building at the 

Look Rock site located approximately 20 m from the van in which the aerosol measurements 

were made.  

The light scattering (LS) module of the high-resolution time-of-flight aerodynamic mass 

spectrometer (AMS, Aerodyne Research, Inc.) uses a 405 nm source that emits a laser beam 
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through the air beam of the AMS. The length of the AMS chamber is divided by the difference 

between the time that the laser light is scattered and the time the chopper allows a particle to 

enter the chamber to give the particle velocity, which is used to determine the time to record the 

m/z spectra of that single particle. The AMS was operated with a 6 min duty cycle. Each cycle 

consisted of V-mode mass spectra (MS) mode and particle time-of-fight (ptof) mode (2 min), W 

mode MS (2 min) and a light scattering mode (90 s). The remaining 30 sec in the cycle allowed 

time for voltage switching between modes.  

The particle size distribution from 10 nm to 20 µm was measured by a Scanning 

Electrical Mobility System (SEMS, Model 2000C, Brechtel Manufacturing Incorporated), an 

Optical Particle Sizer (OPS, Model 3330,TSI), and an Aerodynamic Particle Sizer (APS, Model 

3321, TSI). Meteorological conditions including temperature, relative humidity, precipitation, 

and wind direction and speed were monitored by a meteorological sensor (HMP45C RH/T, 

Vaisala Vantaa, Finland). Black carbon (BC), organic carbon (OC) as well as gas-phase sulfur 

dioxide (SO2), nitric oxide (NO), and sum of reactive and reservoir nitrogen oxides (NOy) were 

also measured in the permanent structure that houses the IMPROVE Great Smoky Mountains 

National Park site 20 m away, for which details are provided in the supplement file of 

Budisulistiorini et al. [Budisulistiorini et al., 2015]. IMPROVE sampling during the study 

Included OC/EC, PM10, PM2.5, standard metals and common inorganic components in fine 

particles every three days.  

Density of submicron particles was estimated to be 1.5 g cm-3 by comparing the size of 

the AMS mass-based and SEMS number-based particle modes; AMS Collection efficiency (CE) 
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was found to be 0.8 by comparing non-refractory mass concentration of AMS and SEMS mass 

concentration excluding BC and dust [Kostenidou et al., 2007] (Figure 1.10). 

 

 

Figure 1.10: Left: Comparison between 6-min averaged V-mode AMS non-refractory mass 
concentration and EMS mass concentration; Right: Comparison between  AMS non-refractory 
mass concentration and SEMS mass concentration ( BC and dust subtracted ) for the 42 XRF-
analyzed filter sample periods. 

1.6.2 PMF Analysis and Factor Selection of AMS Ensemble MS Mode 

PMF analysis of the AMS ensemble MS mode measurements was carried out after 

pretreatment of the PMF input matrix. The data matrix and error matrix were generated from HR 

organic fragments from the whole campaign using the PIKA module (Tof-AMS HR Analysis 

1.15D). The PMF Evaluation Toolkit (PET V2.06) [Ulbrich et al., 2009] was used for PMF 

analysis. PET served as a front-end for the PMF2 V4.2 executable [Paatero, 1997]. No spike 

removal or data smoothing was applied to the matrices. Signal to noise ratios (SNR) were 

calculated for each m/z value. Values of m/z with SNR values smaller than 0.2 were removed 
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from the PMF analysis. For SNR between 0.2 and 2, the m/z was down-weighted by a factor of 2 

[Paatero and Hopke, 2003]. Since the information from m/z 44 is repeated in several related ions 

(m/z 16, 17, 18, 28, 44), we down-weighted those ions so that m/z 44 will only contribute to the 

signal once. The details of this approach are provided by the Appendix of [Ulbrich et al., 2009]. 

PMF solutions with 1 to 7 factors were explored at 11 different Fpeak values (±1, ±0.8, 

±0.6, ±0.4, ±0.2,0). The decrease of minimum Q/Qexpected was used as a mathematical 

diagnostic [Paatero et al., 2002] and was significant from the 1-factor to 2-factor solution and 

from the 2-factor to 3-factor solution. The decrease was negligible for more than 3 factors, 

indicating that the improvement of the solution for 4 or more factors was limited. The different 

rotations resulted in nearly identical factors and the minimum Q/Qexpected was always at zero 

rotation, leading us to choose Fpeak = 0 to represent the results. The sum of the factors 

reconstructed 90% of the OM even with only the 2-factor solution. The 2-factor solution 

consisted of one oxygenated factor and one HOA-like factor and was not useful because the time 

series of the two factors were nearly identical. The results from solutions with 4, 5, 6, and 7 

factors also had at least one pair of factors that had almost identical m/z profiles. That is likely 

due to splitting of some sources into multiple factors. For example, two factors in the 4 factor-

solution have similar time series (r=0.87) and spectra profiles (r=0.93) (Figure 1.11).  
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Figure 1.11: The uncentered correlation coefficients plot for (a) 4-factor solution (fpeak=0) 
and (b) 5-factor solution (fpeak=0). 

To describe correlation strength, we use the definition that the correlation is weak if 0 < 

|r|< 0.5, strong if 0.80 <|r|< 1, and moderate if 0.5 < |r|< 0.80 [Devore and Berk, 2012]. The time 

series correlations reported here are for instantaneous rather than time-lagged measurements. 

Since SOA involves multiple precursors and products, some of which are anti-correlated to each 

other, the correlations are not expected to be very strong, consistent with the fact that none are 

above 0.9.  The correlations of all factors with tracers are in Table 1.3. 
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Table 1.3: Tracer Correlations with AMS PMF Factors. 

Correlation 

Coefficient (R) 
Factor44 Factor82 Factor91 

SO2 0.16 0.16 0.03 

NOx 0.10 -0.01 0.06 

CO 0.61 0.50 0.47 

NO 0.05 -0.03 -0.11 

NOY 0.55 0.29 0.46 

BC 0.73 0.52 0.53 

SO4 AMS 0.75 0.72 0.56 

NO3 AMS 0.63 0.35 0.65 

NH4 AMS 0.74 0.66 0.57 

O3 0.68 0.37 0.47 

Radiation 0.18 0.01 0.20 

Isoprene 0.26 0.11 0.26 

MVK and 

MACR 

0.66 0.56 0.67 

Benzene 0.49 0.29 0.51 

Potential 

Organosulfate 

0.43 0.69 0.31 

Organonitrate 0.18 0.12 0.17 

Factor44 - 0.59 0.72 

Factor82 0.59 - 0.49 

Factor91 0.72 0.49 - 
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Figure 1.12: AMS m/z spectra for MS V mode factors and LS mode clusters. For clusters, both 
solutions including non-refractory and organic only are shown. 

The 3-factor solution (Figure 1.12) with Fpeak=0 was selected because it minimized 

Q/Qexpected and contained distinct spectra and independent factors (no correlation between any 

two factors has uncentered R larger than 0.8, as shown in Table 1.4). Factors were named by 

characteristic m/z values.  The three factors are similar to three PMF factors from Aerosol 

Chemical Speciation Monitor (ACSM) in the same campaign [Budisulistiorini et al., 2015] with 

cosine similarities higher than 0.66 and time series correlations of greater than 0.87.  
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Table 1.4: AMS PMF Factor Number Evaluation. 
                                Factor Number 
 
Criteria 

1 2 3 4 5 6 7 

Q/Qexp 3.10 2.66 2.20 1.99 1.79 1.70 1.60 
Absolute residual 13.1% 9.0% 8.2% 7.8% 6.6% 5.9% 5.6% 
Temporal correlation factor strength (r>0.8) N/A 1 pair None 1 pair 1 pari 1 pair 1 pair 
Similarity of factor spectra (r>0.8) N/A None None 1 pair 4 pairs 6 pairs 8 pairs 

Factors with less than 10% OM None None None None None 1 pair 2 pairs 

Factor44 is not likely to be associated with biomass burning because there was no 

evidence of biomass burning tracers, such as m/z 60 associated with levoglucosan [Elsasser et al., 

2012]). In addition, elemental biomass burning markers potassium [Fine et al., 2001] and 

bromine [Mano and Andreae, 1994] measured by XRF were consistently low (0.0018± 0.0014 

µg m-3 and 0.0012± 0.0008 µg m-3, respectively) during the campaign and their correlation with 

BC was weak (r=0.44 and 0.41, respectively). HYSPLIT back-trajectories associated with high 

Factor44 were not associated with power plant locations (Appendix Figure 1.8).  The association 

of Factor44 with BC and not with biomass burning or power plants makes vehicle combustion 

the most likely source of VOC precursors of this factor, but an additional contribution from 

bVOCs [Budisulistiorini et al., 2015; Xu et al., 2015b] has not been ruled out. 

1.6.3 AMS LS Mode Operation, K-means Analysis and Cluster Selection 

AMS LS-mode measurements were collected for 33 days during the campaign (11-13 

June and 20 June to 17 July). 184012 particle events were triggered, 43921 (25%) of them were 

considered to be "prompt" (the mass spectrum of the particle is recorded at a time consistent with 

the particle size and velocity) [Cross et al., 2009]. The threshold of "null" particles was set in the 
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CIPP panel [Lee et al., 2015], and the light scattering measurements were processed by 

SPARROW 1.04F (http://cires1.colorado.edu/jimenez-group/ToFAMSResources/ToFSoftware/). 

The number of particles measured was scaled by the duty cycle of the LS mode (90 s in 

360 s) in order to represent the ensemble aerosol components. 4 background-related fragments 

m/z 18 (H2O+), 28 (N2
+), 32 (O2

+), and 39 (K+) were removed from the analysis. 16 m/z signals 

containing both organic and inorganic fragments (m/z 15, 30, 35, 36, 41, 43, 46, 48, 55, 57, 64, 

71, 73, 80, 81, 98) were chosen based on MS mode measurements to estimate signal abundance 

of single particles. 

The distribution of LS “prompt” particles was compared to the SEMS distribution to 

calibrate the size range of single particles collected in this study. The density of 1.5 g cm-3 was 

applied to convert from aerodynamic to mobility diameter based on the comparison of pToF and 

SEMS peaks described above.  Figure 1.8 shows that LS particles were detected in the dry 

vacuum aerodynamic diameter range of 350 to 700 nm, which corresponds to 230 to 460 nm 

mobility diameters at 1.5 g cm-3. LS only detected about 16% of the particles at 450 nm vacuum 

aerodynamic diameter (Dva), similar to the results of Liu et. al. [2013]. The likely explanation 

for the lower detection efficiency relative to the theoretical value is that the laser beam was not 

aligned to completely coincide with the air beam of the AMS. Comparing the SEMS and LS 

particle size distributions shows that LS captured the majority of particle mass and number since 

they were below 400 nm Dva (270 mobility diameter), reducing the extent to which the low 

collection efficiency could bias the analysis. 

K-means clustering was applied to the LS measurements using the cluster analysis panel 

(CAP) after ammonium signals were removed [Lee et al., 2015]. The clustering was applied to 
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the mass fragment spectra both including and excluding inorganic fragments. Solutions with 1 to 

10 clusters were explored, and the 3-cluster solution (Figure 1.12) was chosen because the total 

distance from the 1- and 2-factor solutions are still large while similar clusters from splitting 

showed up in 4 and more cluster solutions (Table 1.5). The 3-cluster solutions with and without 

inorganic components were nearly identical in both concentration and m/z spectra. The clusters 

without inorganic components are more suitable for comparison to PMF factors. Cluster44 

accounts for 28% of the particle number while Cluster82 and Cluster91 have 35% and 37%, 

respectively.  

Table 1.5: AMS LS K-Means Cluster Number Evaluation. 

                     Cluster 

Number 

 

Criteria 

1 2 3 4 5 6 7 8 9 10 

Total distance 1071 916 830 784 753 739 715 698 684 671 

Temporal correlation 

Cluster strength (r>0.8) 
N/A None None 2 pairs 2 pairs 1 pair 3 pairs 4 pairs 5 pairs 6 pairs 

Similarity of Cluster 

spectra (r>0.8) 
N/A None None 1 pair 6 pairs 5 pairs 7 pairs 

11 

pairs 

11 

pairs 

15 

pairs 

Cluster with less than 

10% of particle number 
None None None None None None None 2 pairs 2 pairs 4 pairs 

All particle clusters that were identified contained a substantial fraction of organic 

components. The fragments m/z 82 and m/z 91 have lower signal fractions in Cluster82 and 
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Cluster91 than in the factors, but the cosine similarity is high between Cluster82 and Factor82 

(0.97) and between Cluster91 and Factor91 (0.93). Comparing the cluster compositions shows 

that m/z 91 in Cluster91 has the highest signal fraction of all three clusters as does m/z 82 in 

Cluster82. Since the correlations of m/z 44 and Factor44, m/z 82 and Factor82, and m/z 91 and 

Factor91 are strong (r=0.91,0.92 and 0.94, respectively, as given in Table 1.2), the size 

distributions of m/z 44, 82 and 91 provide proxies for the size distributions of the three factors. 

The size distribution of m/z 44 and OM show a size mode with peak near 400 nm, and m/z 82 

and sulfate mass had modes centered near 500 nm, similar to Hu [2016]. The difference between 

the mass fraction of Factor44 and the number fraction of Cluster44 results in part from the lower 

limit of detection of LS compared to MS modes of the HR-AMS, since the mass mode of m/z 44 

(which is correlated in time with Factor44) is smaller than that of m/z 82 or m/z 91 (which are 

associated with Factor82 and Factor91, respectively), as shown in Fig. S4. Specifically the 

fraction of m/z 44 mass that is smaller than 350 nm Dva is 40% compared to only 25% of m/z 82 

(Figure 1.13), meaning that more Cluster44 particles are missed by LS than Cluster82 particles.  
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Figure 1.13: (a) Size distributions of OM, sulfate, nitrate, m/z 44, m/z 82 and m/z 91. (b) Size 
distributions of Cluster44, Cluster82 and Cluster91. (c) Light Scattering collection efficiency 
compared to SEMS from SOAS (this study) and Bakersfield [Liu et al., 2013]. Both Dva 
(Vacuum Aerodynamic Diameter) and Dm (Mobility Diameter) are shown. 
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1.6.4 Back Trajectories and Boundary Layer Heights from Reanalysis Models 

The Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model was used 

to compute back trajectories of air parcels ending at the Look Rock site [Draxier and Hess, 

1998]. The starting points of back trajectories were at 50 m, 100 m and 200 m above the site, and 

the default option of constraining the vertical velocity to the meteorological data field was used. 

To evaluate the performance of the HYSPLIT model for this location and time period, the 

modeled transport speed of the air parcel arriving at the site was found to compare reasonably 

well to the wind speed measured at the site (Figure 1.14).  

 

Figure 1.14: Measured CDNC and LWC correlate for the SJL01A (left) and SJL13A (right) 

cases. 

 Two reanalysis models and four regional atmospheric sounding locations were compared 

to estimate the boundary layer height (BLH) at the Look Rock site. Hourly BLH data was 

retrieved from 12 km NAM (North American Mesoscale Model) hybrid sigma pressure 

coordinate data though HYPSLIT. The Monitoring Atmospheric Composition and Climate 

(MACC) model from the European Centre for Medium-Range Weather Forecasts (ECMWF) 

was also used for BLH hourly with a 0.125-degree grid box. The four atmospheric sounding 

locations used are Nashville, Greensboro, Blacksburg and Peachtree City. BLH was retrieved 
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and interpreted as the mixed layer height according to the method of Wang and Wang [2014]. 

BLH from the soundings and reanalysis models generally agreed well (Figure 1.2).  Since there 

was no evident daily pattern of upslope and downslope winds or any indication of free 

troposphere intrusions in the concentrations at the site, BLH was assumed to be terrain-following 

such that the grid-cell BLH from ECMWF was interpreted to be the same height above the site 

as simulated for the height above the grid-cell average altitude.  

The assumption of a well-mixed boundary layer is used in the calculation of OM loadings 

in the boundary layer column. The aircraft profiles from non-mountainous parts of the 

southeastern US consistently show an approximately 1.2 km well-mixed boundary layer topped 

by a transition layer that extends to a height of 2.2 km above ground on average [Wagner et al., 

2015]. If these results are representative of the Look Rock region and constant throughout the 

day, then the magnitude of the loading should be adjusted to include the transition layer but the 

daily pattern and the relative fraction of OM from daytime photochemistry that is reported here 

(92%) would not be changed. In the absence of aircraft profiles for Look Rock during this study 

to characterize a transition layer, we have used the simple approach of the single well-mixed 

layer retrieved from the HYSPLIT and ECMWF model simulations. 

1.6.5 Organic Nitrate Calculation using NO+ and NO2
+ Method 

The AMS organic nitrate calculation followed the method in Xu et. al. [2015a]. The 

organic nitrate is calculated with the following equation: 

NO!,!"#! =
NO!,!"#! × R!"# − R!"

R!" − R!"
 ,    NO !"#

! =  R!"× NO!,!"#!   

Where  
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RAN = ratio of NO!"! /NO!,!"!  from ammonium nitrate from Ionization Efficiency (IE) 

calibrations; 

RON = ratio of NO!"! /NO!,!"!  from organonitrate standard;  

Robs= ratio of NO!"#! / NO!,!"#!  from AMS ambient measurements. 

Since RAN is instrument dependent, RAN=3 was used, consistent with SOAS calibration 

measurements. Given upper and lower bound values of χ =RON/RAN of 1.9 and 4.3 [Xu et al. 

[2015a] assuming the conditions of that study are sufficiently similar to this study, the resulting 

values were 0.053 µg m-3 for NO!"#!  and 0.008 µg m-3 for NO!"#! . Organic nitrate accounted for 

29% to 100% of nitrate mass depending on the value used for χ, accounting for 0.49% to 1.6% of 

OM. If we assume the molecular weight of the molecule that contains organic nitrate is between 

200 g mol−1 and 300 g mol−1, then organic nitrate can account for 3.2% to 16.4% of the OM. 

This range is comparable to 5-12% found by [Xu et al., 2015a] at multiple southeastern U.S. sites 

during summertime. 
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Chapter 2 

Regional Similarities and NOx-related Increases in 

Biogenic Secondary Organic Aerosol in Summertime 

Southeastern U.S. 

 

 

 

 During the 2013 Southern Oxidant and Aerosol Study, Fourier Transform Infrared 

Spectroscopy (FTIR) and Aerosol Mass Spectrometer (AMS) measurements of submicron mass 

were collected at Look Rock (LRK), Tennessee, and Centreville (CTR), Alabama. Carbon 

monoxide and submicron sulfate and organic mass concentrations were 15-60% higher at CTR 

than at LRK but their time series had moderate correlations (r~0.5). However, NOx had no 

correlation (r=0.08) between the two sites with nighttime-to-early-morning peaks 3~10 times 

higher at CTR than at LRK. Organic mass (OM) sources identified by FTIR Positive Matrix 

Factorization (PMF) had three very similar factors at both sites: Fossil Fuel Combustion (FFC) 

related organic aerosols, Mixed Organic Aerosols (MOA), and Biogenic Organic Aerosols 

(BOA). The BOA spectrum from FTIR is similar (cosine similarity > 0.6) to that of lab-

generated particle mass from the photochemical oxidation of both isoprene and monoterpenes 
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under high NOx conditions from chamber experiments. The BOA mass fraction was highest 

during the night at CTR but in the afternoon at LRK. AMS PMF resulted in two similar pairs of 

factors at both sites and a third nighttime NOx-related factor (33% of OM) at CTR but a daytime 

nitrate-related factor (28% of OM) at LRK. NOx was correlated with BOA, LO-OOA and 

Factor91 for NOx concentrations higher than 1 ppb at both sites, producing 0.5 to 1 𝜇g m-3 

additional biogenic OM for each 1 ppb increase of NOx. 
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2.1 Introduction 

Biogenic secondary organic aerosols (SOA) are estimated to be increased by as much as 

78% because of interactions involving anthropogenic emissions on the U.S. east coast [Carlton 

et al., 2010] and in eastern Asia [Matsui et al., 2014]. The resulting aerosol particle mass may 

account for as much as 70% of the global organic aerosol budget [Spracklen et al., 2011]. More 

than 90% of sulfate (from SO2) and nitrogen oxides (NOx, or NO+NO2) are anthropogenic and 

increase the yield of biogenic SOA [Shilling et al., 2013; Shrivastava et al., 2017; Spracklen et 

al., 2011; Xu et al., 2015a]. For example, some field studies have shown that a 1 µg m-3 decrease 

in sulfate can lead to a 0.2–0.42 µg m-3 decrease in isoprene SOA [Blanchard et al., 2016; 

Budisulistiorini et al., 2017; Pye et al., 2013; Shrivastava et al., 2017; Xu et al., 2015a; Xu et al., 

2016]. Similarly, decreases in NOx have been shown to decrease biogenic SOA formation but 

there are also studies that have shown increases of biogenic SOA in some regimes with 

decreased NOx (Table 1) [de Sa et al., 2017; Edwards et al., 2017; Kroll et al., 2006; Lane et al., 

2008; Liu et al., 2016; Matsui et al., 2014; Ng et al., 2007; Pye et al., 2010; Pye et al., 2015; Pye 

et al., 2013; Rollins et al., 2012; Wildt et al., 2014; Xu et al., 2015a; Xu et al., 2014; Zhang et al., 

2017; Zheng et al., 2015]. Since these effects of NOx have been shown by laboratory studies to 

affect biogenic SOA formation by changing oxidation pathways and ultimate products [Atkinson 

et al., 2004; Hoyle et al., 2011; Kroll et al., 2006; Presto et al., 2005; Shrivastava et al., 2017; 

Surratt et al., 2006; Ziemann and Atkinson, 2012], it is important to quantify them in 

atmospheric field studies. 
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Chemical transport models capture some aspects of the influence of NOx on organic 

aerosols. Zheng et al. [2015] used an updated SOA scheme in the global NCAR (National Center 

for Atmospheric Research) Community Atmospheric Model version 4 with chemistry (CAM4-

chem) with a 4-product volatility basis set scheme with NOx-dependent SOA yields and aging 

parameterizations and predicted only 6–12% biogenic SOA decreases in the southeastern U.S. 

for 50% NOx reductions. Pye et al. [2015] updated the comprehensive coupled gas and aerosol 

processes in CMAQ5.1 with SAPRC07tic (State Air Pollution Research Center mechanism 

update, https://www.airqualitymodeling.org/index.php/CMAQ_v5.1_SAPRC07tic_AE6i) 

[Hutzell et al., 2012; Lin et al., 2013; Xie et al., 2013]. NO3–related reactions of monoterpenes 

(MTNO3) and isoprene as well as monoterpene peroxy radical reactions with NO resulted in 

semivolatile organic nitrates that contributed to organic aerosol [Pye et al., 2015]. The model 

predicted a 25% reduction in NOx emissions would cause a 9% reduction in organic aerosol for 

June 2013 in Centreville, Alabama.  
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Table 2.1: Summary of effects of NOx on biogenic SOA formation from field studies and 
model simulations. 

Simulated Effect Effect of NOx on 
bSOA Model Version Mechanism  Reference 

25% of NOx reduction 
will increase 5% 

bSOA from June to 
August 2006 in 

Southeastern U.S. 

Negative CMAQ5.0 
SOA formation based 

on 
semivolatile organic 

[Pye et al., 2013] 

25% of NOx reduction 
will reduce 9% bSOA 
for June 2013 SOAS 

conditions at 
Centreville, Alabama 

Positive 
CMAQ5.1 with 

SAPRC07tic 
(Centreville, AL) 

SOA formation based 
on 

semivolatile organic 
nitrates 

[Pye et al., 2015] 

NOx and preexisting 
OA and anthropogenic 

VOCs 
enhanced bSOA 
formation and 

accounted for 78% of 
bSOA 

Positive 
WRF-CHEM 

MOZART-MOSAIC 
(East Asia) 

VBS fit to β-pinene + 
NO3 

experiment 
 [Matsui et al., 2014]  

By including aerosol 
from NOx-depending 

nitrate radical 
oxidation, Terpene 

(monoterpene + 
sesquiterpene) aerosol 
approximately doubles 
and isoprene aerosol is 

enhanced by 30 to 
40% in the 

southeastern U.S. 

Positive 
GEOS-CHEM with 

VBS fit (Southeastern 
U.S.) 

VBS fit with isoprene+ 
NO3 and terpene NO3 

[Pye et al., 2010] 

SOA concentrations 
increase in northern 
U.S. cities by around 

3% but decrease in the 
rural southeastern U.S. 
by approximately 5% 

with 25% NOx 
reduction; 50% 

reduction in NOx will 
decease bSOA by ~0.5 

µg m−3 

Conditionally 
Positive 

PMCAMx (Eastern 
U.S.) 

NO3 SOA yields same 
as 

photooxidation (OH+ 
O3) yields 

[Lane et al., 2008] 

50% NOx reduction 
gives limited SOA 

reductions of 0.9–5.6, 
6.4–12.0, and 0.9–2.8 

% for global, 
southeastern U.S., and 
Amazon (respectively) 

Positive but limited  CAM4 with VBS 
(Global) 

NO3 SOA yields same 
as 

photooxidation (OH + 
ozone) yields 

[Zheng et al., 2015] 

Measured Effect Effect of NOx on 
bSOA  Campaign Measured Correlation Reference 

NOx positively 
correlated with 

nighttime oxidation of 
bVOCs when NOx to 
bVOC ratio is lower 

than 0.5; they are 
independent when the 
ratio is higher than 0.5 

Conditionally 
Positive 

Night-time flights 
during SENEX VOCs loss and NOx [Edwards et al., 2017] 

43% to 70% of bSOA 
are enhanced by NOx 

and SO2 
Positive SOAS at  Centreville, 

AL 
AMS factor LOOA 

and NOx 
[Xu et al., 2015a]  
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Table 2.1 Summary of effects of NOx on biogenic SOA formation from field studies and model 
simulations. (Continued) 

NOx related OM was 
negatively correlated 
with bVOCs; NOx + 
bVOCs products are 

more volatile than NOx 
+ anthropogenic VOCs 

products 

Conditionally 
Negative 

CalNex at Bakersfield, 
CA 

Particulate total alkyl 
and multifunctional 

nitrates and NOx 
[Rollins et al., 2012]  

NOy suppress bSOA 
formation through 
IEPOX pathway 

Negative Amazon, Brazil IEPOX SOA and NOy  [De Sa et al., 2017] 

High concentrations of 
NOx (average: 21 ppb) 

suppress bSOA 
formation through 
IEPOX pathway 

Negative Nanjing, Eastern 
China IEPOX SOA and NOx  [Zhang et al., 2017] 

Isoprene SOA yields 
increase and then 
decrease as NOx 

concentration 
increases 

Positive and negative Lab studies Isoprene SOA yield 
and NOx  

[Kroll et al., 2006; Ng 
et al., 2007; Xu et al., 

2014]  

Addition of NOx has 
minor effect on SOA 

yield up to a threshold 
and SOA yields 

decrease afterwards 

None or negative Lab study Isoprene SOA yield 
and NOx 

[Liu  et al., 2016] 

Nucleation of bSOA 
was suppressed by 
NOx reactions with 

monoterpenes 

Negative Lab study New particle formation 
rates and NOx 

[Wildt et al., 2014] 
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These model schemes incorporate the results of laboratory experiments that show that 

NOx affects biogenic SOA formation in at least three different, competing and counteracting 

ways. First, NOx can reduce O3 formation in the high-NOx regime but under low-NOx conditions 

increasing NOx will result in increases in OH radicals and O3 [Seinfeld and Pandis, 2016], both 

of which result in higher SOA yields [Zheng et al., 2015]. Second, high concentrations of 

nighttime nitrate radical (NO3) increased SOA formation from isoprene in chamber experiments 

[Ng et al., 2008] by forming organonitrates [Ng et al., 2017]. Third, reaction of NO with organo-

peroxy radicals (RO2) in the high NOx regime can lower SOA yields due to more volatile 

products compared to reaction with hydroperoxy radicals (HO2) [Kroll et al., 2006; Kroll and 

Seinfeld, 2008; Zheng et al., 2015; Ziemann and Atkinson, 2012]. However, the role of NOx in 

systems that undergo autoxidation, particularly monoterpenes [Ehn et al., 2014], has not been 

elucidated. These multi-faceted effects mean that the role of NOx on biogenic SOA formation in 

the atmosphere depends on the specific atmospheric conditions and precursors that are present. 

In order to use field measurements as constraints for models, we need sufficient aerosol 

chemical composition measurements to separate biogenic SOA from other organic aerosol 

components. The separation is difficult because biogenic SOA formation is influenced by the 

same oxidants that form other SOA, and there is often overlap between primary and secondary 

emission sources. Positive Matrix Factorization (PMF) of AMS measurements [Lanz et al., 2007; 

Ulbrich et al., 2009] use high time resolution to separate small differences in the timing of 

emissions and photochemical accumulation [Corrigan et al., 2013; Liu et al., 2012], but FTIR 

[Hallquist et al., 2009; Russell, 2014; Russell et al., 2009] provides specific chemical 
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fingerprints that associate co-emitted primary and secondary components [Russell et al., 2011]. 

For example, PMF of FTIR has provided substantial evidence for non-acid carbonyl groups 

associated with biogenic SOA in forest conditions [Corrigan et al., 2013; Schwartz et al., 2010; 

Takahama  et al., 2011]. One challenge is that a common AMS PMF factor has highly oxidized 

organic fragments with high m/z 28 and m/z 44 and accounts for a substantial fraction of OM 

both from anthropogenic sources like vehicle emissions [Presto et al., 2014] and from natural 

biogenic emissions [Chen  et al., 2015; Xu et al., 2015a]. In addition, oxidized organic fragments 

can also result from vegetative detritus [Corrigan et al., 2013; Takahama  et al., 2011], which 

often coincide with biogenic Volatile Organic Compounds (bVOC) emissions and contain high 

O/C from hydroxyl groups in primary plant materials [Medeiros et al., 2006]. Biomass burning 

factors [Corrigan et al., 2013; Hawkins and Russell, 2010; Takahama  et al., 2011] from FTIR 

PMF also have high non-acid carbonyl group content similar to biogenic factors, possibly from 

oxidation at higher temperatures in wildfires or lower temperatures in residential burning 

[Corrigan et al., 2013]. 

FTIR biogenic SOA has been characterized by PMF and clustering in several field 

studies and shows 15 to 25% hydroxyl, 14 to 41% carbonyl, and 14 to 25% carboxylic acid 

groups in a variety of atmospheric conditions [Corrigan et al., 2013; Schwartz et al., 2010; 

Takahama  et al., 2011] and chamber studies [Palen et al., 1992; Russell et al., 2011; Schwartz et 

al., 2010]. Organic functional groups of FTIR biogenic factors identified at Whistler, British 

Colombia, were similar to SOA reported from chamber oxidation of bVOCs [Schwartz et al., 

2010].  
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To understand the influence of NOx and other pollutants on biogenic SOA, we compared 

measurements from the Southern Oxidant and Aerosol Study (SOAS) 2013 at Look Rock (LRK), 

Tennessee, and Centreville (CTR), Alabama. The differences and similarities between the 

aerosol sources and composition at these two sites were evaluated by comparing the AMS and 

FTIR PMF factor concentrations with anthropogenic source marker concentrations. Comparisons 

to FTIR results from lab-generated biogenic SOA properties provide the likely source of 

biogenic SOA. Model simulations were compared at the two sites and used to investigate the 

regional representativeness of these two sites. Both the measurements and the simulations 

illustrate how NOx affects biogenic SOA composition and concentration in the southeastern U.S.  

2.2 Methods 

Aerosol measurements were made from 1 June 2013 to 18 July 2013 at LRK and CTR in 

the southeastern U.S. The LRK site (35.63314 N, 83.94185 W) is on the northern slope of the 

Great Smoky Mountains and has an elevation of 801 m above sea level, where a permanent 

structure with a long-term IMPROVE sampling program has measured O3 and PM2.5 

components. The CTR site (32.90289 N, 87.24968 W) is part of the Southeastern Aerosol 

Research and Characterization (SEARCH) air quality sampling network within a high isoprene-

emitting broad-leaf forest and is located on the west side of the Cahaba River at an elevation of 

126 m. Both sites are forested and rural. Local times are used in all comparisons to better reflect 

diurnal patterns in the measurements. Note that in summer LRK uses Eastern Daylight Time 

zone and CTR uses Central Daylight Time, but time correlations are calculated based on local 

time at both sites. For example, 4pm EDT at LRK is compared with 4pm CDT at CTR. 
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Following Devore and Berk [2012], the sample Pearson correlation coefficient (r) is used to 

discriminate among relationships which exhibit weak (|r|< 0.5), moderate (0.5 < |r|< 0.8), and 

strong (|r|> 0.8) correlations. |r|<0.35 is identified as “no correlation”  [Taylor, 1990]. 

2.2.1 Aerosol Particle Measurements  

 At LRK, a climate-controlled van with an isokinetic inlet pulled air into the van 

for distribution to a high-resolution time-of-flight aerosol mass spectrometer (AMS), a scanning 

electrical mobility spectrometer (SEMS), and filters for FTIR and X-ray fluorescence (XRF). At 

CTR, submicron aerosol particles were collected in a van with air drawn from a window-

mounted inlet and through a silica gel denuder with a sharp-cut cyclone for collection of dry PM1 

and PM2.5 particles on filters.  

Filter samples were collected on pre-scanned Teflon filters (Teflon, Pall Life Science 

Inc., 37mm diameter, 1.0 µm pore size) at CTR and LRK behind PM1 and PM2.5 sharp-cut 

cyclones (SCC2.229 PM1 and SCC2.229 PM2.5, BGI Inc). Four PM1 (from 0800 to 1200, from 

1200 to 1600, from 1600 to 1900, and from 2000 to 0700 local time) and two PM2.5 (from 0800 

to 1900 and from 2000 to 0700 local time) samples were collected each day at each site. Samples 

were frozen and transported to the Scripps laboratory for FTIR spectroscopy. A Bruker Tensor 

27 FTIR spectrometer with a deuterated triglycine sulfate (DTGS) detector (Bruker, Waltham, 

MA) was used to scan the filters both before and after sampling. Filters were installed in the 

sampling van each morning and solenoid valves controlled the start and stop of collection; the 

filter holders were mounted in a 5 ft3 refrigerator to keep the filter holders at 4 °C during and 

after collection each day and minimize losses due to vaporization of higher vapor pressure 
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components, as well as reactions that could change organic composition during storage. An 

automated algorithm was applied to quantify the mass of the organic functional groups [Russell 

et al., 2009; Takahama et al., 2013]. Five groups (alkane, amine, hydroxyl, carbonyl and 

carboxylic acid) were quantified by the area of absorption peaks, and the sum of the mass of the 

five functional groups is used as the quantified OM [Maria et al., 2002]. Absorption peaks for 

other groups (organosulfate, organonitrate, aromatic and alkene group) were fit but more than 

90% of the samples were below the limit of quantification and are excluded. Fifty-four filters at 

LRK and 2 at CTR were selected for X-ray fluorescence (XRF) (Chester Labnet, OR) 

quantification of major elements above 23 amu. The mass of dust was calculated from the metals 

on these filters by assuming the dust consists of Na2O, MgCO3, Al2O3, SiO2, K2O, CaCO3, TiO2, 

Fe2O3, MnO and BaO using the following equation: 

𝐶!"#$

=
𝑀!"!!×𝐶!"
2×𝑀!"

+
𝑀!"#$!×𝐶!"

𝑀!"
+
𝑀!"!!!×𝐶!"
2×𝑀!"

+
𝑀!"#!×𝐶!"

𝑀!"
+
𝑀!!!×𝐶!
2×𝑀!

+
𝑀!"!#!×𝐶!"

𝑀!"

+
𝑀!"#!×𝐶!"

𝑀!"
+
𝑀!"!!!×𝐶!"
2×𝑀!"

+
𝑀!"#×𝐶!"

𝑀!"
+
𝑀!"#×𝐶!"
2×𝑀!"

 

where 𝐶!"#$ is mass concentration of dust, 𝑀 is the molar weight of the compound or metal, and 

𝐶!"#$% is the mass concentration of the measured metal [Usher et al., 2003]. 

The high-resolution time-of-flight AMS measured non-refractory particle mass ionized 

by electron impact after vaporizing at 600-650°C surface [DeCarlo et al., 2006]. The AMS 

operation, calibration, and measurements at LRK and CTR are reported by Liu et al. [2017] and 
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Xu et al. [2015a]. Measurements at both sites were collected in two modes, V-mode with higher 

m/z resolving power and W-mode with higher mass sensitivity; single particle light scattering 

(LS) mode was also used at LRK [Liu et al., 2017; Xu et al., 2015a]. V-mode is reported here 

because of its high signal sensitivity at 5 min time resolution. Aerosol Chemical Speciation 

Monitor (ACSM) [Ng et al., 2011] was also deployed at LRK and the ACSM scanning rate was 

set at 200 ms amu−1 and collected for 30 min intervals [Budisulistiorini et al., 2015]. CE 

(Collection Efficient) was applied to mass concentration from AMS and ACSM. Budisulistiorini 

et al. [2015] used a CE value of 0.5 calculated based on Middlebrook et al. At LRK, the AMS 

CE of 0.80 was calculated by scaling to SEMS mass distribution (after removing refractory 

components) using density of 1.5 (calculated from matching the modal peak from AMS to that 

from SEMS). AMS CE-corrected sulfate was correlated to sulfate from XRF Sulfur with R=0.74 

and slope of 1.14) [Liu et al., 2017]; at CTR, a composition-dependent CE with a mean value of 

0.59 was applied based on the sulfate and ammonium composition [Middlebrook et al., 2012; Xu 

et al., 2015a]. 

Cloud condensation nuclei (CCN) measurements were collected at LRK and CTR. At 

CTR, the CCN counter was operated in Scanning Flow CCN Analysis mode [Moore and Nenes, 

2009], scanning flow rate sinusoidally from 0.2 to 0.9 L min−1 then back to 0.2 L min−1 over 2 

min to give CCN spectrum between 0.15 and 0.54 % supersaturation [Cerully et al., 2015]. At 

LRK size-resolved CCN measurements were conducted at 0.20%, 0.37% and 0.58% 

supersaturation.   
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2.2.2 CMAQ Model  

CMAQ v5.1 simulations described by Pye et al. [2015; 2017] and Murphy et al. [2017] 

cover the southeastern United States domain for June 2013 at 12 km by 12 km horizontal 

resolution using meteorology from Advanced Research Weather Research and Forecasting 

(WRF) model (ARW) version 3.6.1 [Pye et al., 2015; Pye et al., 2017]. The model includes gas-

phase chemistry based on SAPRC07tic [Xie et al., 2013] with additional updates for the 

formation of isoprene-epoxydiol (IEPOX) SOA [Pye et al., 2015; Pye et al., 2017] and 

semivolatile organic nitrates, primarily from monoterpene reactions with nitrate radicals [Pye et 

al., 2015] as well as other semivolatile SOA [Pye et al., 2017]. The semivolatile primary organic 

aerosol (POA) and potential secondary organic aerosol from combustion emissions (pcSOA) 

introduced by Murphy et al. [2017] were included to better represent anthropogenic OM.  

2.2.3 FTIR Measurements of Chamber Experiments 

 Chamber biogenic SOA experiments were carried out at CU Boulder using isoprene 

and  𝛼 -pinene 

(https://cfpub.epa.gov/ncer_abstracts/index.cfm/fuseaction/display.abstractDetail/abstract/9975/r

eport/F). Three different types of oxidation (NO3 radicals, O3, and OH radicals + NOx) were 

investigated in the experiments. Neutral ammonium sulfate particles were used as seed particles 

in some of the experiments. RH was 50% in all the experiments.  NO3 radicals were formed with 

N2O5 with mixing ratio from 0.33 to 1 ppm.  For OH radicals + NOx conditions, oxidants were 

10 ppm CH3ONO and 10 ppm NO with ultraviolet light. Two FTIR samples were collected on 

filters in each biogenic SOA formation experiment. The filters were scanned and spectral peaks 
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were integrated following the same procedure used for the ambient samples [Russell et al., 2009; 

Takahama et al., 2013]. 

2.3 Results 

 The LRK and CTR sites are influenced by the Bermuda-Azores High in summer, with 

warm humid air moving northward and northeastward from the Gulf of Mexico into the interior 

of the continent [Davis et al., 1997]. The aerosol particle concentrations accumulated for periods 

of several days with low wind and little precipitation before being washed out [Liu et al., 2017]. 

The precipitation events overlapped 70% of the time at the two sites during SOAS, 

synchronizing particle removal and thus contributing to the correlation of the time series of 

concentrations (Figure 2.1). 
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Figure 2.1: Time series of AMS OM and FTIR functional group concentrations at (a) LRK 
and  (b) CTR. Time of percipitation is marked on the plot. 

2.3.1 Fine and submicron chemical components of aerosols and level of 

pollutants 

 Figure 2.1 shows the project average AMS PM1 non-refractory component and FTIR 

functional group mass concentrations. AMS non-refractory mass had average concentrations of 

5.3 ± 3.7 µg m−3 at LRK and 7.5 ± 4.0 µg m−3 at CTR. The fractions of non-refractory 

components were similar with high OM fractions (67% and 67%, at LRK and CTR, respectively) 

followed by sulfate (23% and 26% at LRK and CTR, respectively), and ammonium (9% and 6% 

at LRK and CTR, respectively). Nitrate and chloride mass concentrations were below 2% of OM 

at both sites (Figure 2.2). For comparison, ACSM OM concentrations were 4.9 ± 3.0 µg m-3 at 
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LRK [Budisulistiorini et al., 2015] and 5.2 ± 3.0 µg m-3 at CTR [Saha et al., 2017]. FTIR OM 

varied from 0.1 to 12 µg m-3 at LRK and from 0.2 to 12 µg m-3 at CTR, with average 

concentrations of 2.7 ± 1.4 µg m-3 at LRK and 2.7 ± 1.8 µg m-3 at CTR. The functional group 

compositions were very similar at the two sites with 52% alkane group mass, followed by 17% 

carboxylic acid, 14% hydroxyl, 12% carbonyl, and 5% amine group mass at LRK. At CTR, the 

organic functional group mass fractions were less than 4% different from LRK. PM2.5 OM was 

correlated to that of PM1 (r=0.89 and 0.85) but about 15% higher and with similar concentration 

(2% higher) at LRK and CTR, respectively. PM2.5 organic functional group concentrations were 

also very similar at the two sites.  
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Figure 2.2: Average of (a) FTIR organic functional group concentrations and (b) AMS OM at 
LRK and CTR. AMS OM is correlated with FTIR OM (r=0.75 and 0.65, respectively).  Pies are 
mass fractions of organic functional groups (FTIR) and non-refractory species (AMS). 

 AMS and FTIR OM concentration had moderate correlation coefficients between the two 

sites with r=0.80 at LRK and r=0.68 at CTR (Figure 2.3). FTIR OM concentrations were 20% to 

40% lower than ACSM and AMS OM at both sites, consistent with the ±20% uncertainty of 

each measurement [Allan et al., 2003a; Allan et al., 2003b; Bahreini et al., 2009; Jimenez et al., 

2016; Russell et al., 2011; Takahama et al., 2013]. Much of the AMS uncertainty is associated 

with correcting ambient measured concentrations by the AMS CE. Since semi-volatile 
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compounds may evaporate from filters contributing to lower concentrations, the difference in 

OM concentration between FTIR and AMS may suggest that there were more semi-volatile 

compounds at CTR, since FTIR has been found to be approximately 70% to 80% of AMS OM at 

urban sites where substantial HOA (Hydrocarbon-like Organic Aerosol) can be semivolatile 

[Day et al., 2010; Gilardoni et al., 2009; Liu et al., 2012]. Losses of semivolatile components at 

CTR are also consistent with the CIMS measurements of volatilized OM from filters, which 

detected 50% of the CTR AMS OM [Lopez-Hilfiker et al., 2016].  

 

Figure 2.3: Scatter plots of (a) AMS OM with FTIR OM at CTR (R=0.68,  slope=1.33)  and 
(b) AMS OM (R=0.80,  slope=1.07)  and ACSM OM (R=0.80,  slope=1.26)  with FTIR OM at 
LRK 
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Figure 2.4: Scatter plots of (a) AMS OM 𝜇g m-3 , r=0.47 , slope=0.37, 3 outliers omitted; 
sulfate 𝜇g m-3, r=0.51, slope=0.39, 3 outliers omitted; (b) BC  𝜇g m-3, r=0.40, slope=0.27, 19 
outliers omitted; nitrate 𝜇g m-3, r=0.30, slope=0.23 of LRK and CTR. 

 

Figure 2.5: Scatter plots of (a) CO ppb, r=0.51, slope=0.38; NOx ppb, r=0.08, slope=0.03, 1 
outlier omitted, concentrations were multiplied by 100; NOy ppb, r=0.22, slope=0.10, 3 outliers 
omitted; (b) SMPS and SEMS number mean size of LRK and CTR 
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 OM, sulfate, BC, and CO concentrations as well as particle sizes had weak to moderate 

correlations (r= 0.47, 0.51, 0.40, 0.51 and 0.46 respectively) of the time series at the two sites, 

and the concentrations were all lower at LRK than CTR (Figure 2.4 and Figure 2.5). Average 

concentrations were 3.6 and 5.0 µg m−3 for OM, 1.2 and 1.9 µg m−3 for sulfate (both observed by 

AMS), 0.23 and 0.26 µg m−3 for BC, and 115 and 134 ppb for CO at LRK and CTR, 

respectively. NOx and NOy showed almost no correlation of the time series at the two sites, with 

different mixing ratios and diurnal cycles: NOx mixing ratio at CTR was 3 to 10 times higher 

than at LRK during late night and early morning hours (0100~0900) but was roughly the same 

mixing ratio during the rest of the day (Figure 2.6). The higher mixing ratio at CTR suggest that 

CTR has more anthropogenic emissions than LRK during SOAS for two reasons: (1) substantial 

vehicle NOx emissions surrounding CTR and (2) the higher altitude at LRK (801 m) resulted in 

less transport of short-lived local emissions. Dust was 3% of submicron mass. 
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Figure 2.6: Diurnal plot of (a) NOx and (b) O3 at both sites. Medians, 25th percentiles and 75 
percentiles are shown on the figure. 
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2.3.2 AMS PMF Organic Factors  

 The AMS PMF factors that were identified by Xu et al. [2015a] and Liu et al. [2017] at 

LRK and CTR during SOAS include two pairs of factors that showed almost identical m/z 

spectra with cosine similarities higher than 0.98: LRK-Factor44 and CTR-MO-OOA (with 

characteristic m/z 44 signal) and LRK-Factor82 and CTR-Isoprene-OA (with m/z 82 signal), 

(Table 2.2). The factor with high m/z 82 was also referred to as 82fac, IEPOX OA, IEPOX-SOA 

or Isoprene-OA measured in other studies [Budisulistiorini et al., 2013; Budisulistiorini et al., 

2015; Chen  et al., 2015; de Sa et al., 2017; Hu et al., 2015; Robinson et al., 2011; Slowik et al., 

2011; Xu et al., 2015a] as noted in Liu et al. [2017], and showed moderate to strong (r=0.6 to 

0.88) correlations to sulfate: similar to results reported previously [Budisulistiorini et al., 2013; 

Budisulistiorini et al., 2015; Xu et al., 2015a]. The factor with high m/z 44 was also referred to 

as LV-OOA in other publications [Presto et al., 2014; Zhang et al., 2011]. Both LRK-Factor44 

and CTR-MO-OOA have high contributions of oxygen-containing organic fragments and 

account for roughly the same fraction of OM (48% at LRK and 39% at CTR). LRK-Factor44 and 

CTR-MO-OOA have the highest correlation with atmospheric anthropogenic emission tracers 

(BC, CO, O3, NOy). For example, LRK-Factor44 was correlated to CO (R=0.61), with O3 

(R=0.68) and CTR-MO-OOA with CO (R=0.62), with O3 (R=0.49) with 1 hour time resolution. 

The correlations are more reflective of day-to-day differences. The high m/z 44 level suggested 

that this factor likely includes substantial contributions from secondary sources. LRK-Factor82 

and CTR-Isoprene-OA have been associated with isomeric isoprene epoxydiols (IEPOX) [Liu et 
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al., 2017; Xu et al., 2015a]. This factor contributed 20% to OM at LRK and 18% to OM at CTR. 

CTR had a nighttime factor (CTR-LO-OOA) and a biomass burning factor (CTR-BBOA) but 

LRK did not. LRK also had a less oxidized daytime OM identified as LRK-Factor91 but no 

factor similar to CTR-LO-OOA. The LRK AMS PMF factors have cosine similarity greater than 

0.6 and temporal correlation efficient great than 0.8 for the ACSM PMF factors identified at 

LRK, which were identified by Budisulistiorini et al. [2015] (Table 2.2). If the smaller, more 

common and variable peaks of CO+, CO2
+, H2O+, and CHO+ are excluded, the cosine similarity 

is 0.99 for the m/z spectra of CTR-LO-OOA and LRK-Factor91. This indicates that the larger 

ions at m/z 55, 67,77, 91, which are more representative of the parent molecules, have consistent 

relative concentrations that indicate that both factors have contributions from similar bVOCs. 

Cosine similarity is a measure of angular separation between two non-zero vectors of an inner 

product space that measures the cosine of the angle between them.  
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Table 2.2: Cosine similarity of AMS PMF factors at CTR and LRK.  Numbers in bold are 
the highest numbers in each column (if above 0.7). 

Cosine Similarity LRK-Factor82 LRK-Factor44 LRK-Factor91 
CTR-Isoprene-OA 0.99 0.78 0.65 
CTR-MO-OOA 0.81 0.98 0.35 
CTR-LO-OOA 0.95 0.84 0.66 
CTR-BBOA 0.95 0.87 0.55 

ACSM LRK-IEPOXOA 0.80 0.82 0.36 
ACSM LRK-LVOOA 0.67 0.84 0.49 

ACSM LRK-91fac 0.82 0.80 0.66 
Correlation of Time Series LRK-Factor82 LRK-Factor44 LRK-Factor91 
ACSM LRK-IEPOXOA 0.93 0.43 0.51 
ACSM LRK-LVOOA 0.59 0.87 0.71 

ACSM LRK-91fac 0.51 0.74 0.87 
 

 

2.3.3 FTIR PMF Organic Factors 

 Three factors are identified by PMF from baselined FTIR spectra at both sites by the 

method of Takahama et al. [2013] as described in Appendix. More than 85% of the spectra could 

be reconstructed by the FTIR PMF factors at LRK and more than 87% at CTR. FTIR PMF 

spectra for PM1 and PM2.5 factors are shown in Figure 2.7. Spectra of PM1 and PM2.5 factors at 

both sites are almost identical (cosine similarity > 0.94). Cosine similarities between each of the 

three identified FTIR factors ranged from 0.40 to 0.75. The first factor contributed 36% and 41% 

of the FTIR OM at LRK and CTR, respectively, and had high cosine similarity (0.99 at 

Bakersfield and 0.98 at Hyytiälä) to FTIR spectra of fossil fuel combustion factors identified at 

Bakersfield and Hyytiälä [Corrigan et al., 2013; S Liu et al., 2012]. Alkane groups made up 70% 

of the OM of this first factor, followed by hydroxyl (17%) and carboxylic acid (10%) groups. 
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The O/C of the factor is 0.3, indicating a high fraction of hydrocarbon-like organic components. 

Consequently, the ratio of carboxylic and carbonyl groups to alkane groups is the lowest of the 

three factors, consistent with factors related to combustion emissions in other studies [Russell et 

al., 2011]. The O/C of 0.3 is similar to values reported for AMS SV-OOA (O/C=0.37) and 

higher than those of HOA (O/C=0.06) AMS [Zhang et al., 2011] likely suggesting the factor 

includes secondary organic products from combustion sources rather than primary emissions. 

The factor had weak to moderate correlations with CO (r=0.53), NOy (r=0.40), and BC (r=0.51) 

at LRK but had lower correlations with CO (r=0.28), NOy (r=0.23), and BC (r=0.23) at CTR 

(Table 2.3). The Fossil Fuel Combustion (FFC) factor time series was correlated more strongly 

to Ca, Mn and Fe concentrations (r = 0.3 to 0.6) than the other FTIR factors (r = -0.4 to 0.3) at 

both sites. These metals were found in combustion sources and can serve as combustion tracers 

in previous studies [Agarwal et al., 2015; Cheung et al., 2010; Verma et al., 2010]. The FFC  

factors at the two sites peaked in the late afternoon (1600-1900, 40% higher than the rest of the 

day), indicating a photochemical contribution to the OM, for example, 8 June to 9 June at both 

sites (Figure 2.8). This factor has accounted for ~40% fraction of OM at these two rural sites, but 

it is likely not exclusively from fossil fuel combustion sources. A similar factor accounted for 

less than 10% of OM at a boreal forest site, consistent with the lower man-made emissions at 

Whistler [Takahama  et al., 2011]. This factor is named as FFC factor following the 

nomenclature of previous studies [Corrigan et al., 2013; Takahama  et al., 2011]. Although the 

factor is affected by combustion source, the weak to intermediate correlations indicate that 

combustion is not the exclusive source of the factor.  
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Table 2.3: Time series correlation coefficients of FTIR PMF factors with tracers. Numbers in 
bold are the highest numbers in each column (if above 0.4). 

    LRK     CTR   

Correlation Coefficient (R) FFC BOA MOA FFC BOA MOA 

SO2 0.15 0.12 -0.01 0.26 0.01 0.11 

NOx 0.1 -0.02 0.07 0.1 0.41 0.12 

NOy 0.4 0.34 0.28 0.23 0.54 0.25 

CO 0.53 0.45 0.46 0.28 0.71 0.38 

O3 0.32 0.51 0.36 0.27 0.22 0.19 

BC 0.51 0.55 0.43 0.23 0.62 0.28 

Ca 0.64 0.31 0.06 0.31 0.06 0.28 

Fe 0.32 0 -0.25 0.32 0.01 0.28 

Mn 0.37 0.09 -0.37 0.41 0.16 0.31 

MVK/MACR 0.28 0.66 0.36 - - - 

SO4 0.64 0.45 0.65 0.31 0.28 0.38 

NO3 0.25 0.44 0.37 0.09 0.51 0.29 

NH4 0.59 0.44 0.62 0.35 0.34 0.43 

CTR-Isoprene-OA/ LRK-Factor82 0.43 0.56 0.58 0.41 0.34 0.47 

CTR-MO-OOA/LRK-Factor44 0.47 0.76 0.45 0.33 0.51 0.25 

LRK-Factor91 0.25 0.73 0.28 - - - 

/CTR-LO-OOA - - - 0.04 0.61 0.16 
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Figure 2.7: FTR PMF factors spectra in this study and pervious studies: Whistler 
2008[Schwartz et al., 2010] Bakersfield 2010[Liu et al., 2012] and Hyytiälä 2010[Corrigan et al., 
2013]: (a) Factors similar to FFC, cosine similarity is higher than 0.97; (b) Factors similar to 
MOA, cosine similarity is higher than 0.95; (c) Factors similar to BOA, cosine similarity is 
higher than 0.94. 
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Figure 2.8: Time series of FTIR PMF factor OM at (a) LRK and  (b) CTR. 

 The second factor has substantial alkane group (57%) and also an absorption region at 

2600 cm-1 associated with carboxylic acid groups (23%), making it more oxidized than the FFC 

factor with an O/C of 0.5. This factor contributed 25% and 27% of FTIR OM at LRK and CTR, 

respectively. A similar factor was identified in boreal forests in Hyytiälä, Finland [Corrigan et 

al., 2013], which had a similar spectrum (cosine similarity >0.94, shown in Figure 2.7) and the 

highest correlations to sulfate (r=0.64 and 0.38 for LRK and CTR, respectively), CTR-Isoprene-

OA (r=0.75), and LRK-Factor82 (r=0.47). This factor had evidence of man-made primary or 

secondary organic components and is named Mixed Organic Aerosols (MOA) since it has both 

anthropogenic sulfate and biogenic isoprene-related organic contributions.  
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 The third factor has high carbonyl group absorption at 1800 cm-1 and contributed 25% 

OM at LRK and 19% OM at CTR. The high non-acid carbonyl group concentration can indicate 

particles from both biomass burning and biogenic emissions reported previously [Corrigan et al., 

2013; Hawkins and Russell, 2010]. This factor is identified as biogenic organic aerosols (BOA) 

because it includes primary and secondary sources of particles from plant vapor emissions and 

decaying plant matter. The BOA factor is similar to factors identified at forested sites [Corrigan 

et al., 2013; Schwartz et al., 2010], as shown by the similarity of the FTIR spectra in Figure 2.7, 

even though monoterpenes account for more of the bVOC than isoprene at these pine forest sites. 

The coincidence of the emission timing and locations as well as the similarities in organic 

functional group biogenic SOA composition does not allow separation of isoprene and 

monoterpene sources. The largest organic functional group fraction is carbonyl groups (29%), 

which is consistent with the carbonyl group mass fraction reported for pine forest sites [Corrigan 

et al., 2013; Schwartz et al., 2010; Takahama  et al., 2011]. A biomass burning factor [Corrigan 

et al., 2013; Hawkins and Russell, 2010; Takahama  et al., 2011] was not identified by the multi-

hour FTIR samples at either CTR or LRK during SOAS, which is consistent with the small and 

short-duration biomass burning emissions identified by AMS [Xu et al., 2015a].  The small 

methylene peaks in BOA at both CTR and LRK indicate a very small fraction of BOA could be 

vegetative detritus.  Alkane and hydroxyl groups each contributed approximately 25% of BOA 

OM. Carboxylic acid and amine group contributions to the BOA factor are lower than 10% and 

the factor is highly oxidized with O/C of 0.45. The BOA factor time series correlated to Methyl 

Vinyl Ketone/Methacrolein (MVK/MACR) concentration time series with r=0.66 at LRK, 

consistent with these intermediate products serving as markers of isoprene [Liu et al., 2013] and 
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pinene [Zhang et al., 2009] biogenic SOA formation. The correlation of BOA with sulfate is 

weak with correlation coefficient of 0.45 at LRK and 0.28 at CTR (Table 2.3), perhaps because 

the BOA factor does not include the sulfate-enhanced biogenic oxidation products as these may 

be included in MOA instead.  

 In summary, FTIR PMF factors were consistent with AMS factors in apportioning OM to 

sources (Figure 2.9), despite the differences in apportioning oxidized SOA fragments and groups 

noted by previous work [Corrigan et al., 2013]. Specifically, the lower time resolution and lack 

of fragmentation of FTIR tends to associate oxidation products with functional groups that are 

associated with products from specific classes of precursor molecules, so that primary and 

secondary components are in the same factor [Russell et al., 2011]. The higher time resolution of 

AMS often separates POA hydrocarbon fragments that peak in the morning and evening from the 

SOA fragments produced during afternoon photochemistry. In addition, fragmentation of 

molecules in the AMS means that many secondary components (such as CO2
+) occur in different 

peaks than the primary molecules that may have similar chemical composition that were emitted 

from the same source. These differences in resolution and fragmentation mean that primary and 

secondary components from the same source are separated into different factors in AMS 

measurements even though FTIR tends to retain products from the same source in a single factor. 

In addition, the higher time resolution AMS chemical signatures identified CTR-BBOA, which 

only had several 1- or 2- hour sharp concentration peaks during the campaign [Xu et al., 2015a].  
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Figure 2.9: Schematic diagram of sources, processes and components of aerosol particles in 
Centreville, Alabama, and Look Rook, Tennessee, for SOAS 2013. Corresponding FTIR and 
AMS factors are plotted to illustrate the consistency of the source attribution of organic 
components. The processes shown are based on both direct measurements and correlations. 

2.4 Discussions 

 The parallel deployment of both FTIR and AMS OM measurement techniques at CTR 

and LRK during SOAS provided an opportunity to evaluate the similarities and differences of 

biogenic SOA formation at the different NOx conditions at the two sites. The chemical 

compositions of biogenic SOA are very similar at both sites and are similar to chamber 

experiments, but the minor differences show an important role for NOx.  
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2.4.1 Regional Uniformity of Biogenic SOA in the Southeastern U.S. 

 Although the two SOAS sites in this study are approximately 500 km apart, OM, BC, 

CO, and sulfate concentrations as well as particle size showed weak to moderate correlations of 

the time series at the two sites (Figure 2.4 and Figure 2.5). Organic functional groups and 

submicron non-refractory mass components (nitrate, sulfate, organic, and ammonium) were 

similar fractions of submicron particle mass (Figure 2.2). OM was approximately 70% and 

sulfate was 20% of the non-refractory mass. Oxidized organic functional groups (non-acid 

carbonyl, hydroxyl and carboxylic acid) accounted for 50% of OM (Figure 2.2). Despite the 

similarity in chemical composition and in submicron particle size (Figure 2.4, Figure 2.5 and 

Figure 2.10), it is not surprising that the CCN/CN had weak positive correlation at both sites at 

three different supersaturation levels (r=0.22 to 0.37, Figure 2.11). The fact that the correlation is 

lower relative to the correlations to sulfate, size and number could suggest a role for local factors 

in organic composition and associated particle hygroscopicity, even though the concentrations 

are controlled to a substantial extent by scavenging of regional rain (Figure 3.2). These 

similarities indicate that the aerosol particle concentrations at these two rural locations in the 

southeastern U.S. are controlled both by scavenging of regional rain and by very similar mixtures 

of precursor emissions and photochemical reaction pathways.  
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Figure 2.10: Scatter plot of CCN/CN and number mean diameters at both sites for 
supersaturation of 0.1%, 0.2%, and 0.5%. 
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Figure 2.11: Scatter plot for CCN/CN ratio at both sites (R=0.22 and Slope=0.35 with 0.2% 
supersaturation. R=0.26 and Slope=0.47 with 0.37% supersaturation.R=0.37 Slope=0.45 with 
0.58% in LRK and 0.54% in CTR) . 

 

 

 The three very similar FTIR factors and two nearly identical AMS factors measured at 

both sites were consistent with biogenic SOA formation from largely the same emissions and 

reactions. The two isoprene-related factors LRK-Factor82 and CTR-Isoprene-OA accounted for 

approximately 20% of OM and were correlated strongly to sulfate (r>0.75), suggesting heterogeneous 

sulfate reactions with IEPOX [Liu et al., 2017] were important at both sites. Factors similar to LRK-Factor82 and 
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CTR-Isoprene-OA were also identified by other summertime studies in the Southeastern U.S. 

[Budisulistiorini et al., 2016; Budisulistiorini et al., 2017; Xu et al., 2015b]. LRK-MOA and 

CTR-MOA from FTIR contributed approximately 25% of OM at each site and had a weak 

correlation of CTR-MOA to CTR-Isoprene-OA (r=0.47) and a moderate correlation of LRK-

MOA to LRK-Factor91 (r=0.58), indicating that MOA may also have contributions from 

biogenic emissions [Budisulistiorini et al., 2015; Xu et al., 2015a].  

 

Figure 2.12: Comparison of laboratory-generated biogenic SOA from 𝛼-pinene and isoprene to 
BOA factors from the two SOAS sites, Whistler [Schwartz et al., 2010] and Hyytiälä [Corrigan 
et al., 2013]. Spectra are normalized at 2927 cm-1, a common methylene peak showed up in all 
spectra. Ammonium signals were fitted and removed.  

 With NOx + OH and O3 as oxidants, chamber biogenic SOA were very similar to BOA 

factors at multiple sites (cosine similarities = 0.84 to 0.90), as shown in Table 2.4. Most of these 
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chamber and factor spectra (Figure 2.12) have both acid and non-acid carbonyl groups and 

similar shapes of peaks, indicating similar mixtures of functional groups. The peak at 3200 cm-1 

shows a high and broad hydroxyl functional group absorption consistent with previous biogenic 

factors at Whistler [Schwartz et al., 2010]. The ammonium peak reflects seed particles in 

chamber samples and ambient ammonium in the field samples were removed from spectra. In 

contrast, low carbonyl and high organonitrate groups measured in the NO3 oxidation products of 

𝛼-pinene were not similar to BOA factors (cosine similarities = 0.38 to 0.61).  The high degree 

of similarity of the chamber isoprene and monoterpene biogenic SOA spectra from NOx + OH 

and O3 may be one reason that the FTIR PMF BOA factors from Whistler, Hyytiala, and the 

southeastern U.S. are similar even though they have differing amounts of these two bVOCs 

(Figure 2.12). The samples from chamber experiments had lower carbonyl group mass 

concentration compared to the field studies in which biogenic SOA underwent a longer reaction 

time with lower oxidants compared to chamber. Chamber biogenic SOA had significantly higher 

organonitrate group fraction (10 to 20% OM) than the ambient BOA, likely because chamber 

experiments with OH were run in a high NOx regime whereas field samples could have had 

contributions from low NOx conditions as well. The high oxidant level also contributes to the 

differences between ambient and chamber biogenic SOA. The seeded chamber bSOA was less 

similar, possibly because the neutral ammonium sulfate did not represent ambient seeds well. 

The ammonium subtraction process might also contribution to the difference. CTR-BOA and 

LRK-BOA could have had contributions from both NOx + OH and O3 reactions. FFC and MOA 

are not similar to chamber biogenic SOA, with cosine similarities lower than 0.4. IEPOX 

biogenic SOA was not formed because the chamber experiments did not include conditions for 
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low-NOx, acid-catalyzed chemistry of isoprene oxidation [Lin et al., 2012; Surratt et al., 2010; 

Surratt et al., 2007]. 

Table 2.4: Cosine similarity of FTIR biogenic factors and chamber isoprene and α-pinene 
bSOA. Ammonium absorption was removed.  

Cosine Similarity 
Experiment 

Conditions 

Ambient BOA Factors+ 

Hyytiala/

Whistler 

CTR 

pm1 

CTR 

pm2.5 

LRK 

pm1 

LRK 

pm2.5 

 𝛼- Pinene + NO3 

seeded* 

RH=50%; 

UV light off 
0.38/0.48 0.38 0.44 0.61 0.57 

 𝛼 - Pinene + O3 

unseeded 

RH=0; UV 

light off 
0.8/0.85 0.83 0.86 0.91 0.9 

 𝛼 - Pinene + OH 

and NOx unseeded 

RH=50%; 

UV light: 30 

min at 50% 

0.84/0.87 0.85 0.85 0.88 0.88 

Isoprene + OH and 

NOx unseeded 

RH=0; 

UVlight: 40 

min at 

100% 

0.88/0.9 0.89 0.89 0.87 0.88 

Isoprene + OH and 

NOx seeded*  

RH=50%; 

UV light: 30 

min at 50% 

0.52/0.61 0.53 0.58 0.74 0.70 
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 The CMAQ model simulations (Appendix) also had similar concentrations at the two 

sites, except for the higher monoterpene-related biogenic SOA at CTR (Figure 2.13). The model 

components that tracked biogenic SOA from isoprene (Appendix) had similar and substantial 

concentrations at both sites (0.70 𝜇g m-3 at LRK and 0.61 𝜇g m-3 at CTR), consistent with the 

substantial contribution to OM from LRK-Factor82 and CTR-Isoprene-OA. The spatial 

distribution of simulated IEPOX products is more uniform than the NOx in the southeastern U.S. 

(Figure 2.14). The sulfate simulated by CMAQ model was prevalent across the region during the 

month of June (Figure 2.14), and distribution of isoprene and monoterpene emissions shows 

spatially uniform across the region because of the high forest coverage over most of the region 

[Guenther et al., 2012; A Guenther et al., 2006; McRoberts et al., 2005]. Consistent with this 

study, simultaneous ACSM and AMS measurements from multiple field campaigns at multiple 

sites showed that OA is homogeneous in the great Atlanta area in summer [Xu et al., 2015b].   
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Figure 2.13: Average concentration of CMAQ modeled species and  heat map of correlation 
coefficients of CMAQ model species to measurements in (a) CTR and (c) LRK. Low 24-hour 
significance level pairs (P>0.05) are shaded. (b) Concentrations of CMAQ modeled species. 
Concentrations of measured species at (d) CTR and (e) LRK. Details of the modeled species can 
be found in Appendix. Low concentration species (<0.05 µg m-3) are excluded in this figure. 



	

	

	

	
98 

 

Figure 2.14: Spatial distribution of (a) NOx, (b) sulfate, (c) monoterpene organic nitrate 
biogenic SOA, and (d) IEPOX related biogenic SOA in Southeastern U.S. from CMAQ model. + 
sign marks Centreville and × sign marks Look Rock 

2.4.2 Difference in NOx Reactions with bVOC in the Southeastern U.S. 

 Despite the regional uniformity of particle composition discussed above, there were also 

important differences between the two sites. Although the two sites are both rural, LRK is more 

pristine because it is at 801 m altitude and more than 15 km away from cities and highways 

while CTR is at 126 m altitude and also less than 10 km from the Centreville city, resulting in the 

higher NOx and NOy concentrations at CTR than LRK (Figure 2.4). Aircraft measurements 
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during the campaign showed a consistent NOx decrease with increasing altitude in the lowest 2 

km of the atmosphere, with the NOx concentration approaching zero at 2 km above ground level 

[Travis et al., 2016]. NOx concentration at CTR also had a clear peak from 0200 to 0900 (Figure 

2.6). Similar nighttime NOx increases have been observed at both urban [Alghamdi et al., 2014] 

and forested sites [Alghamdi et al., 2014; Seok et al., 2013]. Limited ventilation of surface NOx 

emissions in the low nighttime boundary layers may contribute to this the diurnal pattern. Since 

the high concentration of NOx coincides with the northerly wind at CTR (Figure 2.15), the early 

morning NOx peak at CTR is likely due to transport from vehicle sources from the I-20 morning 

commute, which is located 30 km north of the site. The resulting NOx spatial distribution (Figure 

2.14) is consistent with National Emissions Inventory at Bibb County (https://www.epa.gov/air-

emissions-inventories/national-emissions-inventory-nei), where NOx is largely from mobile 

sources (50%)).  

 

Figure 2.15: Wind rose plot of NOx concentration at LRK and CTR. 
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 Since the measured mixing ratio and diurnal cycle of isoprene (~3 ppb) and 

monoterpenes (<1 ppb) were similar at the two sites [Budisulistiorini et al., 2015; Xu et al., 

2015a], the different NOx loadings at LRK and CTR were likely the cause of the differences in 

the OM concentrations and diurnal patterns [Liu et al., 2017; Xu et al., 2015a]. While OM 

peaked in the early afternoon (1200-2000) at LRK consistently, it peaked both in late afternoon 

(1800) and at night (0200) at CTR. The nighttime CTR-BOA was 2.5 times higher than the rest 

of the time while the nighttime CTR-BOA had similar concentration (92%) with the rest of the 

time. For example, this diurnal trend is obvious from 11 June to 14 June  (Figure 2.8). These 

different diurnal patterns of the two FTIR BOA factors from LRK and CTR suggests that they 

were driven by different oxidation pathways. In addition, the correlation of NOy to O3 is higher 

at CTR than LRK in afternoons (1200-1600) with r values of 0.55 and 0.17, respectively, 

suggesting that NOx could have contributed to daytime ozone formation at CTR but not, or not 

directly, at LRK [Milford et al., 1994]. For this reason, NOx at CTR may have contributed both 

directly to biogenic SOA formation and indirectly by increasing O3. 

 The direct role of NOx in contributing to CTR-BOA is evident in its early morning peak 

similar to that of CTR-LO-OOA [Xu et al., 2015a], which suggests a contribution of dark NO3 

oxidation as well as OH + NOx oxidation (RNO2 + NO) after sunrise [Lee et al., 2016] that is not 

present at LRK. Further, the two BOA factors were correlated to NOx (r=0.41) at CTR but to O3 

(r=0.51) at LRK. NOx had little effect on biogenic SOA formation at LRK (Figure 2.16) and 

nighttime BOA factor (analogous to CTR-LO-OOA) was not observed. The daytime LRK-

Factor91 accounted for 34% of OM and was correlated to nitrate (r=0.65) and radiation at the 

surface (r=0.83), consistent with NOx contributing to oxidants in a photochemically-driven 
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reaction. Chamber measurements of m/z 91 in products of gas phase isoprene oxidation 

[Budisulistiorini et al., 2016; Krechmer et al., 2015; Liu et al., 2016; Riva et al., 2016] support 

this type of formation given the measured m/z 91 in LRK-Factor91. Although the factor peaked 

in daytime with isoprene, we cannot rule out a contribution of monoterpene to this biogenic SOA 

type [Liu et al., 2017]. This factor was not evident at CTR, indicating its formation may rely on 

photochemical reactions favored by low NOx conditions. CTR-LO-OOA and CTR-BOA had 

weak to moderate correlations to NOx (r=0.36 and 0.69, respectively) for NOx higher than 1 ppb 

(Figure 2.17). LRK-Factor91 and LRK-BOA had moderate correlations of the very limited 

number of measurements for NOx >1 ppb (Table 2.5). There was no correlation (r<0.2) of NOx 

with CTR-LOOA, LRK-Factor91, CTR-BOA or LRK-BOA for NOx mixing ratio below 0.5 ppb 

(Table 2.5). The measurements of CTR-LO-OOA and CTR-BOA for NOx lower than 1 ppb were 

excluded from the linear regression because the variability below 1 ppb made the correlation 

coefficients low and fitted slopes uncertain (Table 2.6).  These results suggest that the 

enhancement of biogenic SOA by NOx is only clear for NOx concentrations greater than 1 ppb. 

NOx-related enhancement of biogenic SOA formation resulted in 0.5 µg m-3 per 1 ppb NOx for 

CTR-LO-OOA and 0.6 per 1 ppb NOx for CTR-BOA, based on the slopes of the regression lines 

shown. The 1 ppb cutoff does not indicate a chemical threshold but rather results from the many 

other factors that affect OM concentration during the course of the SOAS campaign at the two 

sites. These other factors include meteorological events (rain, cloud, transport) during the 36 

days of the SOAS study that cause day-to-day differences in OM. In addition, since NOx can 

either enhance or suppress bSOA formation, these processes may cancel themselves out when 

NOx is low. In the high NOx regime (>1 ppb), the enhancement effect is sufficiently large that it 
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is evident despite other factors. The threshold is also consistent with a role for autoxidation as 

NOx levels continue to decrease below1 ppb [Praske et al., 2018].  

 

Figure 2.16: Scatter plots of AMS OM at CTR with (a) O3 with r=0.42 and (b) NOx with 
r=0.22, respectively. Scatter plots of AMS OM at LRK with (a) O3 with r=0.61 and (b) NOx 
with r=0.08. 
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Figure 2.17: Scatter plot of (a) CTR-LO-OOA, CTR-BOA; (b) LRK-Factor91 and LRK-BOA, 
and NOx. 

Table 2.5: Correlation table of NOx to AMS and FTIR OM and factors for low NOx (<0.5 
ppb) and high NOx (>1 ppb) regimes.  

Correlation Coefficient Low NOx 
(<0.5 ppb) 

High NOx 
(>1 ppb) 

CTR-LO-OOA/CTR-BOA -0.18/0.13 0.36/0.69 
LRK-Factor91/LRK-BOA 0.16/0.15 0.83/NA* 
CTR-MO-OOA/CTR-FFC -0.22/0.00 -0.26/0.37 
LRK-Factor44/LRK-FFC 0.23/0.01 0.45/NA* 

CTR-Isoprene-OA/CTR-MOA -0.11/0.04 0.25/0.23 
LRK-Factor82/ LRK-MOA 0.10/0.09 0.12/NA* 

CTR-AMS OM/CTR-FTIR OM 0.03/0.06 0.14/0.58 
LRK-AMS OM/LRK-FTIR OM 0.00/0.08 -0.36/NA* 

*NA indicates that there were too few measurements for a 
comparison, namely less than 6 AMS or 2 FTIR measurements. 
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Table 2.6: Sensitivity analysis for the slope, correlation coefficients and normalized standard 
deviation. 

Threshold 0.7 0.8 0.9 1 1.1 1.2 1.3 

AMS LOOOA 

Normailized SD 0.51 0.48 0.48 0.49 0.49 0.49 0.49 

Slope 0.53 0.45 0.48 0.53 0.52 0.50 0.46 

R 0.36 0.32 0.35 0.36 0.36 0.33 0.30 

FTIR BOA 

Normailized SD 0.81 0.78 0.78 0.76 0.69 0.66 0.65 

Slope 0.37 0.42 0.88 0.98 1.06 1.01 1.03 

R 0.27 0.30 0.61 0.69 0.58 0.54 0.52 

 

In the CMAQ simulation, NOx and NOx-related biogenic SOA was more spatially 

variable than sulfate-related biogenic SOA in the SOAS study region and was very low (<0.2 𝜇g 

m-3) in some areas, such as at LRK (Figure 2.14). The high spatial variation of NOx-related 

biogenic SOA is consistent with the spatial distribution of NOx emissions as well as significant 

contributions from nitrate radical reactions, which tend to occur at night when atmospheric 

conditions are more stable and reduce transport. Measured NOx mixing ratio was moderately 

correlated to model components from NO3 oxidation products of monoterpene, namely particule-

phase monoterpene-derived organic nitrates (Appendix) at CTR (r=0.64 to 0.72) but not at LRK 

(r<0.25) (Figure 2.13). The mass concentration of NO3 oxidation products of monoterpene was 

2.3 times higher at CTR at 0.28 µg m-3 compared to 0.12 µg m-3 at LRK from the CMAQ model 

simulation. 
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2.5 Conclusions 

 Fourier Transform Infrared Spectroscopy and Aerosol Mass Spectrometer measurements 

of submicron mass at LRK, Tennessee, and CTR, Alabama, showed that CTR was more polluted 

by emissions from cities and highways while LRK was more pristine because of its higher 

elevation. OM composition and source apportionment were very similar at these two sites, 

although biomass burning and nighttime NOx contributed to OM at CTR but not at LRK. The 

time series of CO, sulfate, BC and OM concentrations at LRK and CTR had weak and moderate 

correlations of r= 0.51, 0.51, 0.40 and 0.47, respectively. However, NOx had a very low 

correlation (r=0.08) between the sites with nighttime-to-early-morning peaks 3 to 10 times 

higher at CTR than at LRK.  

 The organic functional group and submicron non-refractory component (sulfate, nitrate, 

ammonium, organic) compositions were very similar at both sites. Three almost identical FTIR 

PMF factors of both PM1 and PM2.5 had nearly identical contributions to OM with ~40% related 

to fossil fuel combustion (FFC), ~25% related to mixed organic aerosol (MOA), and ~20% 

associated with biogenic organic aerosol (BOA) sources. BOA was similar to chamber SOA 

generated from both isoprene and monoterpene precursors for NOx + OH and O3 oxidants with 

cosine similarity higher than 0.8. LRK Factor82 and CTR-Isoprene-OA factor was associated 

with sulfate and with isoprene oxidation products such as IEPOX. This isoprene related factor 

contributed 22% at LRK and 18% at CTR, consistent with summertime observations from 

several other sites in the southeastern U.S. [Budisulistiorini et al., 2016; Budisulistiorini et al., 

2017; Xu et al., 2015b] and despite the differences in NOx concentrations.  
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 The enhancement of biogenic SOA by NOx was only evident for NOx higher than 1 ppb, 

which only occurred at CTR during SOAS. NOx enhanced biogenic SOA formation by 0.5 to 1 

µg m-3 per ppb NOx. The negligible contribution of NOx-enhanced OM at lower than 1 ppb NOx 

at LRK provided the most striking difference between the two sites. Organic mass (OM) had a 

maximum in the afternoon at both sites but increased again during nighttime only at CTR. The 

correlation of biogenic SOA species from the CMAQ model simulations also showed NOx 

produced more OM at CTR during late-night-early-morning periods than at LRK, which may be 

associated with nitrate-radical oxidation pathways at high NOx. 
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2.7 Appendix 

 Figure 2.1 shows the time series of AMS OM and organic functional group 

concentrations.  The correlations of AMS/ ACSM OM to FTIR OM are moderate to strong 

(r=0.68~0.80) at CTR and LRK (Figure 2.3). Emissions by county were available from Nation 

Emission Inventory (NEI). Both counties have vehicles as the most abundant source of 

NOx.AMS and ACSM PMF factors at CTR and LRK are compared in Table 2.7.  Time series 

correlations of FTIR PMF factors to tracers are shown in Table 2.3. The chamber generated 

bSOA FTIR spectra are compared with ambient biogenic factor spectra in Table 2.4. The 
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threshold effect of NOx on bSOA formation is shown in Table S4 and sensitivity analysis is 

shown in Table 2.6.   

Table 2.7: Properties of FTIR PMF factor solution evaluation at LRK and CTR. 

                           Factor Number  

Criteria 
2 3 4 5 6 

Q/Qexp 2.35/1.33 0.95/0.57 0.62/0.42 0.54/0.36 0.48/0.34 

Absolute residual 20.6/18.3% 14.7/13.0% 13.9/11.7% 13.4/10.9% 12.9%/10.1% 

Temporal correlation factor 

strength (r>0.8) 
None/None None/None None/None None/None 1 pair/None 

Similarity of factor spectra (r>0.8) None/None None/None 2 /1 pair(s) 4/2 pairs 4/3 pairs 

Factors with less than 6% OM None/None None/None None/None 1/1 1/2 

 

 

 

2.7.1 FTIR PMF operation and factor selection 

 Factorization was applied to the baselined IR spectra from FTIR for both PM1 and 

PM2.5 samples at LRK and at CTR. Six factor spaces (1~6) were analyzed.  Fpeaks were 

explored from -2 to 2 at 0.5 increments. Seeds of 1, 10 and 100 were used for each Fpeak and 

factor to examine the robustness of each solution. Figure 2.18 and Figure 2.19 and Table 2.7 

show that the properties of the solutions are generally robust. The change of solutions with 

rotation values is small in all solutions. Q/Qexpected decreases smoothly when factor number 

increases in solutions with more than 3 factors (Table 2.7). The Q/Qexpected of PM1 is lower 
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than PM2.5, which is consistent with their higher time resolution of the PM1 samples, making 

PM1 the stronger solution. The PM2.5 solution is similar to that of PM1, so only the PM1 PMF 

solutions at LRK are reported here. 

Two factors that contain a large amount of ammonium were identified from the PMF in 

the 2-factor space, See Figure 2.18 and Figure 2.19. Those two factors are produced  in almost 

all solutions with different factor numbers and rotations. However, with only these two factors, 

~20% of the OM cannot be explained and is categorized as residual. A third factor with higher 

hydroxyl and carbonyl group is identified from the 3-factor solution and accounts for ~20% of 

the total OM. The 3-factor solution reduces the residual to <15%. The time series of the factors 

are independent with the highest correlation coefficient of 0.72 in the 3-factor solution.  

Degenerate spectra appear in solutions with 4 or more factors. Two pairs of factors at LRK and 

one pair at CTR have similar cosine similarity (>0.80) in the 4-factor solutions. 

 

 



	

	

	

	
110 

 

Figure 2.18: FTIR PMF factors for solutions with 2 to 5 factors and fpeak values of -2 to 2 at 
LRK. 
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Figure 2.19: FTIR PMF factors for solutions with 2 to 5 factors and fpeak values of -2 to 2 at 
CTR. 

 

2.7.2 Group of model species in CMAQ model 

The CMAQ model simulations are used here to show the regional uniformity of bSOA 

[Murphy et al., 2017; Pye et al., 2015; Pye et al., 2017].  CMAQ predictions for summer 2013 
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have been evaluated regionally with measurements from the SEARCH network, IMPROVE 

network, CSN network, and CASTNET for species including OA, nitrate (nitric acid + aerosol 

nitrate), sulfate, ammonium, NOx, VOCs, oxidants, and other atmospheric constituents [Pye et 

al., 2015; Pye et al., 2017]. The names of CMAQ model species can be found in the supplement 

of two recent CMAQ model papers [Pye et al., 2015; Pye et al., 2017]. The nitrate radical related 

species are ISOPNN, MTNO3 (gas phase), AISOPNN and AMTNO3 (aerosol phase). The 

chemistry processes were introduced in the introduction of main text. ASQT  (sesquiterpene 

species) is not included since it’s small (0.05 𝜇g m-3).  The species from CMAQ model were 

simplified in Figure 6, and the simplified groups are defined in Table 2.8.  
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Table 2.8: Nomenclature of the bSOA categories from the CMAQ model. 

Category 

Average 

CMAQ model species Concentration 

(CTR/LRK) 𝜇g m-3 

bSOA 

NOx 

related 

Monote

rpene  
0.3/0.1 AMTNO3 

Isopren

e  
  <0.1/<0.1 AISOPNN 

Not related 

to NOx 

Isopren

e 

Dry 0.5/0.5 

AISO1+AISO2+ 

AOLGB*(AISO1+AISO2)/(ATRP1+AT

RP2+ASQT+AISO1J+AISO2) 

IEPOX 0.6/0.7 AIETET+AIEOS+AIDIM 

MAE, 

HMML 
<0.1/<0.1 AIMGA+AIMOS 

Monoterpene 0.4/0.2 

ATRP1+ATRP2+ 

AOLGB*(ATRP1+ATRP2)/(ATRP1+AT

RP2+ASQT+AISO1J+AISO2) 

Anthrop

ogenic 

OA 

Anthropog

enic  
    1.1/1.3 

Benzene OA+ toluene OA+ xylene OA + 

PCSOA+POA+OPOA. 
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Chapter 3 

High Summertime Aerosol Organic Functional Group 

Concentrations from Marine and Seabird Sources at 

Ross Island, Antarctica, during AWARE 

 
 

 

 Observations of the organic components of the natural aerosol are scarce in Antarctica, 

which limits our understanding of natural aerosols and their connection to seasonal and spatial 

patterns of cloud albedo in the region. From November 2015 to December 2016, the ARM West 

Antarctic Radiation Experiment (AWARE) measured submicron aerosol properties near 

McMurdo Station at the southern tip of Ross Island.  Submicron organic mass (OM), particle 

number, and cloud condensation nuclei concentrations were higher in summer than other 

seasons. The measurements included a range of compositions and concentrations that likely 

reflected both local anthropogenic emissions and natural background sources. We isolated the 

natural organic components by separating a natural factor and a local combustion factor. The 

natural OM was 150 times higher in summer than in winter. The local anthropogenic emissions 

were not hygroscopic and had little contribution to the CCN concentrations. Natural sources that 
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included marine sea spray and seabird emissions contributed 56% OM in summer but only 3% in 

winter. The natural OM had high hydroxyl group fraction (55%), 6% alkane, and 6% amine 

group mass, consistent with marine organic composition. In addition, the Fourier transform 

infrared (FTIR) spectra showed the natural sources of organic aerosol were characterized by 

amide group absorption, which may be from seabird populations. Carboxylic acid group 

contributions were high in summer and associated with natural sources, likely forming by 

secondary reactions.  
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3.1 Introduction 

 West Antarctica is one of the most rapidly warming regions on Earth [Bromwich et al., 

2013], which has potential impacts for the melting of the Antarctic ice sheets and consequent sea 

level rise [Lambeck et al., 2002; Steig et al., 2009]. In some regions, ambient aerosols contribute 

substantially to the radiation balance [Stocker et al., 2013], but little is known about the sign and 

magnitude of their contribution in Antarctica because of the lack of measurements of their 

abundance, composition, and sources. In fact, there are few places on Earth where measurements 

of aerosols and their properties are needed to constrain modeled radiation as much as in 

Antarctica. 

 Since McMurdo Station is the only site with measurements of PM (Particulate Matter), 

Elemental Carbon, Organic Carbon and number concentrations that is within 300 km of the Ross 

Ice Shelf (which covers an area of more than 500,000 km2). Furthermore, the station is unique in 

that McMurdo Station is one of the two sites that have published aerosol measurements starting 

in 1968, with the other one being the Amundsen Scott Station at the South Pole. The site has at 

least 10 publications describing aerosol measurements over the past 50 years, most of which 

were limited to summer [Cadle et al., 1968; Giordano et al., 2017; Hansen et al., 2001; D 

Hofmann, 1988; Hogan, 1975; Kalnajs et al., 2013; Khan et al., 2018; Mazzera et al., 2001a; 

Mazzera et al., 2001b; Ondov et al., 1973a; Warburton, 1973].  No stations in Antarctica 

measured inorganic chemical composition year-round until 1978 [Parungo et al., 1981], and 

none have measured year-round organic components. In 1966, electron micrographs of particles 

collected on a four-stage impactor provided some of the first aerosol measurements carried out at 

McMurdo Station [Cadle et al., 1968]. Filter samples were collected for elemental analysis in 
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1970-1971 [Ondov et al., 1973].  During the austral summers of 1969 and 1970, the Aitken 

nuclei concentration was reported to be ~1000 cm-3 [Warburton, 1973]. In another study, the 

number concentration was 50 to 150 cm-3 with continental winds and ~300 cm-3 with maritime 

winds [Hogan, 1975]. Balloon measurements were conducted later for stratospheric aerosols, and 

long distance signals from volcanic sources in tropical areas were found in the stratosphere 

[Hofmann et al., 1986; Solomon et al., 1994]. Hansen et al. [2001] measured black carbon at 

McMurdo in austral summer in 1995-1996. Another study [Mazzera et al., 2001b] reported more 

detailed PM10 elemental composition, elemental and organic carbon, and nitrate concentrations 

for 1995–1996 and 1996–1997 at McMurdo. Chemical Mass Balance (CMB) receptor modeling 

estimated that soil dust, sea salt, combustion emissions, sulfates, methanesulfonate, and nitrates 

contributed 57%, 15%, 14%, 10%, 3%, and 1%, respectively, to the summertime PM10 mass 

[Mazzera et al., 2001a]. Kalnajs et al. [2013] showed that ozone depletion is correlated to aerosol 

concentrations because halogen-containing aerosol consumed ozone. An aerosol mass 

spectrometer (AMS) at a site 20 km northeast from McMurdo Station during October 2014 to 

December 2014 and August to October 2015 [Giordano et al., 2017] found sulfate accounted for 

more than 50% of non-refractory composition. Many measurement campaigns were limited to 

austral summer months because of restrictions on access [Cadle et al., 1968; Ondov et al., 1973a; 

Warburton, 1973] and so lack information on seasonal changes. 

The few year-round aerosol concentration and composition measurements in Antarctica 

were collected at several sites in coastal Antarctica (all of which are more than 1500 km from 

McMurdo Station) [Gras, 1993; Keiichiro Hara et al., 2004; K. Hara et al., 2005; K Hara et al., 

2010; Jourdain and Legrand, 2002; Minikin et al., 1998; Read et al., 2008; Wagenbach et al., 

1998; Rolf Weller et al., 2013] and at several sites on the Antarctic Peninsula (more than 3000 
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km from McMurdo Station) [Asmi et al., 2018; Kim et al., 2017; Loureiro et al., 1992; Mishra et 

al., 2004; Savoie et al., 1993; Saxena and Ruggiero, 1990], as well as at the South Pole (more 

than 1000 km from McMurdo Station) [Bodhaine, 1983; Bodhaine et al., 1986; Hansen et al., 

1988; Harder et al., 2000; Hogan and Barnard, 1978; Parungo et al., 1981] and at Dome C 

(more than 1000 km from McMurdo Station) [Legrand et al., 2017a; Legrand et al., 2017b; 

Udisti et al., 2012]. At the South Pole, aerosol particle number concentration ranged from 10 to 

30 cm-3 in winter and 100 to 300 cm-3 in summer [Bodhaine, 1983; Hogan and Barnard, 1978; 

Parungo et al., 1981]. This low winter and high summer seasonal difference has been observed 

also at coastal Antarctic sites, but the average concentrations were typically higher with 

summertime concentrations ranging from 300 to 2000 cm-3 and wintertime concentrations from 

10 to 200 cm-3 [Gras, 1993; Kim et al., 2017]. Consistent with this seasonal difference in particle 

number concentrations, most summertime non-sea salt sulfate mass concentrations were at least 

5 times higher than winter concentrations [Asmi et al., 2018; Jourdain and Legrand, 2002; 

Legrand et al., 2017a; Udisti et al., 2012; R. Weller and Wagenbach, 2007], likely because of the 

contributions from biogenic DMS emissions from the surrounding Southern Ocean. However, 

most sea salt aerosols had wintertime maximum concentrations with more than two times more 

Na+ mass concentrations in winter than summer [Asmi et al., 2018; Jourdain and Legrand, 2002; 

Jourdain et al., 2008; Legrand et al., 2017a; Legrand et al., 2017b; Parungo et al., 1981; Udisti 

et al., 2012; Wagenbach et al., 1998; R. Weller and Wagenbach, 2007]. 

 The few hygroscopicity and CCN measurements reported near West Antarctica are also 

recent and sparse. DeFelice et al. [1997] conducted CCN measurements at Palmer Station on the 

Antarctic Peninsula in January and February 1994. They collected CCN for 27 days at 0.3% and 

1% SS and found CCN concentration to be between 79 and 158 cm-3. Asmi et al. [2010] found 
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that aerosol particles over the Southern Ocean are very hygroscopic with a growth factor of 1.75 

at 90 nm. At King Sejong Station on King George Island, Kim et al. [2017] found that CCN 

concentrations are high in summer (~200 cm-3) and low in winter (~50 cm-3). Biological 

emissions from marine sulfate sources have been proposed to explain a large fraction of CCN in 

the Southern Ocean region [McCoy et al., 2015]. Biological sulfate aerosol accounts for 43–65% 

of the summer zonal mean CCN concentrations and 7–20% of the winter CCN over the oceans in 

the Southern Hemisphere, including the circumpolar Southern Ocean [Korhonen et al., 2008]. 

This important role for biological sulfate in the Southern Ocean suggests that biogenic organic 

components may also contribute significantly to particle number and mass, but measurements of 

organic particles are too scarce to determine if this is the case [McCoy et al., 2015]. 

For comparison, in marine and Arctic regions, the organic composition of particles have shown a 

high fraction of hydroxyl group (61% of OM for the North Atlantic and 47% of OM for the 

Arctic)  as well as some alkane and amine groups, likely associated with sugars, carbohydrates, 

and amino sugars originated from biological materials in seawater [Frossard et al., 2013; 

Hawkins and Russell, 2010; Leaitch et al., 2017; Modini et al., 2015; L. M. Russell et al., 2010; 

Shaw et al., 2010].  Organic nitrogen has also been identified as a tracer component (0.02 to 10 

ng m-3) in aerosol particles in various studies in Antarctic [Barbaro et al., 2015; Dall'Osto et al., 

2017; Schmale et al., 2013] and Arctic [Dall'Osto et al., 2012; Scalabrin et al., 2012] regions. 

Some of the few measurements of organic aerosol particle composition that have been made in 

marine and polar regions are those of amino acids, which are summarized in Table 3.1 [Barbaro 

et al., 2015; Kuznetsova et al., 2005; Mace et al., 2003a; Mace et al., 2003b; Mandalakis et al., 

2011; Matsumoto and Uematsu, 2005; Scalabrin et al., 2012; Shi et al., 2010; Violaki et al., 

2010; Wedyan and Preston, 2008]. Amino acids in remote marine and coastal regions have been 
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used as markers for biological activities since they are natural chemical constituents of many 

marine and terrestrial organisms [Barbaro et al., 2015; Cowie and Hedges, 1992; Milne and 

Zika, 1993; Scalabrin et al., 2012]. In addition, amino acids contain organic nitrogen and 

specifically amine groups, which are also consistent with measurements in polar regions of 

CHNO fragments [Schmale et al., 2013] and amine groups [Frossard et al., 2011; Shaw et al., 

2010]. Sugar, levoglucosan, phenols and anthropogenic persistent organic compounds were 

measured in ambient aerosols at Mario Zucchelli Station and Concordia Station [Barbaro et al., 

2015a; Barbaro et al., 2017; Barbaro et al., 2016; Zangrando et al., 2016]. Carboxylic acids 

with low molecular weights were also measured at Mario Zucchelli Station, Concordia Station, 

and Dumont d'Urville [Barbaro et al., 2017; Legrand et al., 2012]. 
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Table 3.1: Marine amino acid measurements. 

Study Ye
ar Location Sea

son Type Particl
e Size 

Amino Acid 
Concentration 
Free 
dissolv
ed 

Com
bined 

Tot
al  

ng m-3 ng m-

3 
ng 
m-3 

Mace et al. 
2003b 

20
00 

Erdemli 
(Mediterranean 
coast), Turkey 

Spri
ng Marine TSP 

33.8 
– – (3.65–

102) 

Wedyan and 
Preston, 2008 

20
03 

Atlantic Ocean 
(cruise) 

Spri
ng Marine TSP 

1.83 9.13 

– (0.27–
9.13) 

(1.83
–
36.5) 

Kuznetsova 
et al. 2005 

20
03 

Ligurian Sea (NW 
Mediterranean Sea) 

Spri
ng Marine TSP – – 

22
5.8
8 

Shi et al. 
2010 

20
06 

Qingdao (Coastal 
China) 

Spri
ng 

Marine TSP 

214 – – 

20
05 

outh China Sea 
(cruise) 

Spri
ng 44.5 – – 

20
05 
-
20
06 

Yellow Sea (cruise) Spri
ng 131 – – 

Matsumoto et 
al. 2005 

20
00 

Western Pacific 
Ocean (cruise) 

Spri
ng 

Marine TSP 

0.98 

– – Su
mm
er 

(0.14–
2.81) 

Mace et al. 
2003a 

20
00 

Cape Grim, 
Tasmania, Australia 

Spri
ng Marine TSP 

8.74 
– – (1.83–

20.0) 

Mandalakis 
et al. 2011 

20
07 

Finokalia, Crete 
island, Greece 

Su
mm
er 

Marine TSP 
23.6 98.4 

– (0.82–
88.7) 

(34.8
–215) 

Violaki et al. 
2010 

20
07 

Finokalia, Crete 
island, Greece 

Su
mm
er Marine PM1 

45.6 

– – Aut
um
n 

– 
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Table 3.1: Marine amino acid measurements. (Continued) 

Scalabrin et 
al. 2012 

20
10 

Svalbard Islands, 
Norway 

Su
mm
er 

Polar 
(Arctic) 

PM10 
0.23 

– – (0.02–
0.52) 

PM0.5 
0.15 

– – (0.02–
0.43) 

Barbaro et al. 
2015 

20
10 Faraglione Camp, 

Antarctica 

Su
mm
er 

Polar 
(Antarcti
ca) 

PM10 1.51 
– – 20

11 PM1 1.55 

20
10 
-
20
11 

Ross Sea (cruise) TSP 

0.48 

– – 
(0.27–
1.64) 

20
11 

Dome C Station, 
Antarctic plateau PM10 

0.11 

– – 

20
12 
20
12 

Dome C Station, 
Antarctic plateau 

0.1 20
13 

 
Assuming an average amino acid molecular weight of 136.9 g.mol−1 
Assuming an average amino acid nitrogen number of 1.
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 The Ross Sea has a surprisingly high biological primary production rate in the summer, 

making it the most biologically active part of the southern polar region [Arrigo et al., 2008]. 

Seabird emissions were linked to new particle formation [Weber et al., 1998] and to particles 

containing CHN and CHNO fragments [Schmale et al., 2013]. The CHNO fragments identified 

by mass spectrometry have been associated with uric acid and other nitrogen containing 

components that are produced from penguin guano [Schmale et al., 2013]. The ammonia 

emissions from seabird colonies have also been shown to contribute substantially to atmospheric 

particle formation and cloud-albedo radiative effects in the Arctic [Croft et al., 2016b]. Organic 

aerosol components were also associated with melt-water ponds in continental Antarctica [Kyro 

et al., 2013] 

  AWARE (ARM West Antarctic Radiation Experiment) provides the most thorough 

yearlong aerosol and radiative property measurements yet obtained from Antarctica, and the only 

four-season time series of weekly FTIR measurements of organic functional groups in 

Antarctica. This manuscript characterizes the sources of organic aerosol across four seasons in 

Antarctica. Dust, sea salt, and non-sea salt sulfate mass concentrations measured by XRF are 

used to separate the seasonal contributions to inorganic particle components.  Seasonal patterns 

of natural marine and coastal-sourced organic aerosol are identified from the functional groups 

after separation of local emissions. 

3.2 Methods 

 The AWARE aerosol measurements were collected from 23 November 2015 to 29 

December 2016 at the Cosray site on the eastern edge of McMurdo Station (77.85°S, 166.66°E), 

which is located on the southern tip of Ross Island in Antarctica. To quantify seasonal 
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differences, four seasons were defined as Summer (November through February), Fall (March 

through April), Winter (May through August) and Spring (September through October) (Figure 

3.1). The four-month winter is characterized by irradiance of nearly zero and average 

temperature below -20 °C.  The four-month summer had irradiance above 250 W m-2 and 

temperature higher than -10 °C. Spring and fall marked transitions between summer and winter. 

The station hosts more than 1000 scientists and support personnel during austral summer and 

consumes more than 2 million gallons of AN-8 diesel fuel (with a 0.3% sulfur content by weight) 

for station operations [Mazzera et al., 2001a]. The aerosol inlet samples at ~10 m above ground 

level and has a rain guard and bug screen, 1000 L min-1 turbulent flow through 4.6 m of large-

diameter (20 cm ID), powder-coated aluminum tubing, a 2.1 m smaller-diameter tube (4.76 cm 

ID) that extracts 150 L min-1 flow from the center of the larger-diameter tubing, and a flow 

distributor with five ports, each drawing 30 L min-1 through 25 cm of 1.59 cm (5/8”) inner 

diameter stainless-steel tubing. The size-dependent losses were measured below 10% for 

particles from 10 nm to 10 𝜇m diameter (https://www.arm.gov/publications/tech_reports/doe-sc-

arm-tr-191.pdf). Other details of the measurement system can be found online in the description 

of the second ARM Mobile Facility (AMF2, 

https://www.arm.gov/capabilities/observatories/amf) and Aerosol Observing System (AOS, 

https://www.arm.gov/capabilities/instruments/aos).   

Ambient aerosol particles were measured by CPC (Condensation Particle Counter, TSI model 

3772), HTDMA (Hygroscopic Tandem Differential Mobility Analyser, Brechtel model 3002), 

and CCN Counter (Cloud Condensation Nuclei, DMT model CCN100) and were collected on 

filters for off-line FTIR and X-ray fluorescence (XRF).  
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Figure 3.1: ReMonthly average of (a) Temperature, shortwave downwelling irradiance 
measured in this study and sea ice expansion rate of the Ross Sea [Holland, 2014]; (b) Sea salt, 
dust and non-sea salt sulfate concentration from XRF and FTIR peak location at 1500~1800 cm-
1 wavenumber region. Standard deviations are shown on the plot as error bars. 

 CN (condensation nuclei from CPC) concentrations had frequent short-lived increases 

that typically had high concentrations (>1000 particles cm-3 for 1 Hz CN), which we attributed to 

short-term local contamination events (SLCE) (Figure 3.2). High CN concentrations (>1000 cm-

3) occurred 48% of the time when the wind was from the west (Figure 3.3), which is the same 

direction as the McMurdo Station central facilities. However, westerly winds only occurred 3% 

of the time, so emissions at McMurdo Station were unlikely to account for most of the emissions.  
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Spikes were separated using a “de-spike” algorithm based on running median filters [Beaton and 

Tukey, 1974; Goring and Nikora, 2002; Tukey, 1977; Velleman, 1977]. We applied a running 

median length of 24 hr and weighted by cosine bell running mean of 24 hr to the 1 Hz CN 

concentration and assigned the CN concentration above the resulting filter as SLCE. The SLCE 

were characterized by an average duration of less than 1 hr (0.5 min±6 min), rapid rate of 

concentration change (8520±36780 cm-3 min-1), and concentrations exceeding 1000 cm-3. After 

SLCE (spikes) were removed, the 24-hr running median concentration was interpreted to be the 

natural background CN, for reasons discussed in Section 3.   
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Figure 3.2:  Concentrations of: (a) measured CN, (b) SLCE-removed CN and measured CCN, 
and (c) ratio of CCN to SLCE-removed CN. 
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Figure 3.3:  Map of Ross Island with McMurdo Station and penguin colonies ( penguin 
numbers from Lyver et al., (2014) ) marked on the map. Windrose of CN concentration at the 
Cosray site is shown on the map. 

 

 Submicron aerosol particle samples were collected on pre-scanned Teflon filters (Teflon, 

Pall Life Science Inc., 37 mm diameter, 1.0 𝜇m pore size) behind a PM1 sharp-cut cyclone 

(SCC2.229 PM1, BGI Inc.). One sample filter and one background filter were collected each 

week. Samples were frozen and transported to the UCSD laboratory for FTIR spectroscopy. A 
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Bruker Tensor 27 FTIR spectrometer with a deuterated triglycine sulfate (DTGS) detector 

(Bruker, Waltham, MA) was used to scan the filters both before and after sampling. An 

automated algorithm was applied to quantify the mass of the organic functional groups [L. M. 

Russell et al., 2009; Takahama et al., 2013]. Four groups (alkane, amine, hydroxyl and 

carboxylic acid) were quantified by the area of absorption peaks and the sum of the mass of the 

five functional groups. Other groups (organonitrate, organosulfate and non-acid carbonyl) were 

fit but all samples were below detection limit. The detection limit and error for each functional 

group is the larger of twice the standard deviation of the absorption values associated with blank 

filters and the visual determination of the minimum peak size that could be distinguished from 

spectral noise [Maria et al., 2002]. The detection limit of OM was 0.09 µg based on the sum of 

the detection limits of the three largest functional groups during the project (alkane, hydroxyl 

and amine). For the weekly air sampling volume of 80 m3 used in this study, this loading 

corresponds to a concentration of 0.001 µg m-3. OM is calculated as the sum of all functional 

groups measured above detection, based on the assumptions of Russell [2003]. Subsequent 

evaluations and intercomparisons [Maria et al., 2002; L. M. Russell et al., 2009; Takahama et al., 

2013]have shown that errors associated with functional groups that are not quantified because of 

Teflon interference and semivolatile properties are accounted for within the stated ±20% 

uncertainty for ambient particle compositions. The ammonium mass is not quantified by FTIR of 

Teflon filter samples because ammonium nitrate is semi-volatile. The location of absorption by 

sulfate in FTIR coincides with the location of Teflon absorption. Since the absorption by the 

Teflon filter far exceeds that of the sulfate particles, sulfate cannot be measured on this substrate. 

Sulfur was measured by XRF and is expected to be largely ammonium sulfate, since 

organosulfate and bisulfate were below the limit of quantification. Pure (>99%) uric acid 
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(Sigma-Aldrich) and urea (Fisher Scientific) were dissolved in water, atomized and collected on 

triplicate Teflon filters to provide FTIR reference spectra for comparison of the amide group 

region. FTIR spectra were baselined by subtracting a combination of piecewise linear and 

polynomial regressions from the spectrum using an automated algorithm [Takahama et al., 2013] 

 Positive Matrix Factorization (PMF) was applied to the baselined FTIR spectra for the 

PM1 samples collected in 2016 at McMurdo Station with PMF2 V4.2 [Paatero, 1997; Paatero 

and Tapper, 1994]. Six-factor solution spaces (1~6) were considered.  Fpeak values from -2 to 2 

at 0.5 increments were considered. Seeds of 1, 10 and 100 were used at each Fpeak and factor 

number to examine the robustness of each solution. There was little change in solutions with 

rotations for all solutions. Q/Qexpected decreases as factor number increases for all solutions 

(Table 3.2). The two-factor solution is considered robust because the spectra are almost identical 

for all rotations and seeding conditions (Figure 3.4). The solution leaves an average of 23% of 

the OM as residual. The two factors are not correlated in time and do not have similar spectra 

(Table 3.2). The new factor identified from the 3-factor solutions is either degenerate or very 

similar (cosine similarity =0.99) to one of the first two factors. Similarly for 4 or more factor 

solutions two or more degenerate or duplicate factors are found. This makes the two-factor 

solution with Fpeak of 0 optimal for the AWARE data set. The small number of factors 

identified compared to other regions [Russell et al., 2011]is the result of both the low aerosol 

concentrations and limited personnel access at AWARE, which reduced the time resolution of 

FTIR samples to one week each and yielded only 54 samples in one year. The low variability 

during the study also meant that PMF was unable to separate more than two factors.  
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Figure 3.4:  FTIR PMF factors in 2 to 5 factor and -2 to 2 fpeak spaces 
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Table 3.2: Parameters for FTIR PMF factor and K-means clustering evaluation. 

               Number of Factors 

Criteria 
2 3 4 5 6 

Q/Qexp 7.06 6.02 4.75 3.90 3.25 

Absolute residual 23.6% 21.7% 17.4% 14.2% 12.0% 

Temporal correlation factor 

strength (r>0.8) 
None None None None None 

Number of similar factor spectra 

(Cosine similarity>0.8) 
None 1 pair 1 pair 

2 

pairs 
4 pairs 

Factors with less than 10% OM None None None 1 1 

Number of similar cluster 

centroids (Cosine 

similarity>0.95) 

None 1 pair 3 pairs 
4 

pairs 
6 pairs 

  

 In addition, K-means clustering (Hartigan and Wong, 1979) was applied to the baselined 

FTIR spectra (Takahama et al., 2013). Solutions with 1 to 10 clusters were evaluated. The 2-

cluster solution was chosen because solutions with 3 or more clusters included at least one pair 

of clusters with centroids with cosine similarity higher than 0.95 (Table 3.2), making those 

clusters effectively overlapping. The two clusters and two PMF factors were identified as 

associated with Fossil Fuel Combustion (FFC) and Marine and Seabird (M&S) sources, as 

described below. Factorization techniques like PMF are applied to separate each individual 

composition measurement into the independent factors that contribute to its composition, where 
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these factors may represent different sources as well as different formation processes. On the 

other hand, clustering algorithms are used to sort similar measurements into categories, each of 

which may contain a mixture of different sources and formation processes and is characterized 

by the centroid to which all measurements in that category are most similar. The similarity of the 

k-means centroids and PMF factors (cosine similarity > 0.97) indicates that both separations are 

robust. Since the PMF residual is the fraction of OM that could not be assigned to either factor, 

the ratio of the residual to the factor OM provides a measure of the uncertainty of the PMF 

separation – namely the fraction of OM that could be missing from the factor. The ratio of the 

PMF residual to the FFC OM varies from 29% in winter to 63% in summer, making this result 

more likely to represent all of the FFC OM in winter when FFC OM is a larger relative fraction 

of OM. Similarly, the PMF residual is 33% of M&S OM in summer, indicating the source 

separation could be missing a third of M&S OM.  In contrast, the PMF residual is 9 times larger 

than the M&S OM in winter (Table 3.3), making the quantification of M&S OM in winter very 

uncertain. 

 Half of the filters (25) were selected for X-ray fluorescence (XRF) (Chester Labnet, OR) 

quantification of major elements above 23 amu. The elements Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, 

V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Rb, Sr, Zr, Ag, Pb and Ba had mass above detection limit (3 

times the uncertainty) for 95% of the samples and are used here. The mass of dust was calculated 

from XRF metal concentrations, assuming dust consists of MgCO3, Al2O3, SiO2, K2O, CaCO3, 

TiO2, Fe2O3, MnO and BaO [Usher et al., 2003] after excluding mass associated with sea salt. 

Sea salt particle mass components were calculated from XRF-measured Na and Cl concentration 

[Frossard et al., 2014b; Modini et al., 2015]. 
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The CPC measured particles with diameters larger than 10 nm and operated continuously, except 

from 29 March to 7 April 2016 when a malfunction occurred (Figure 3.2). The CCN Counter 

measured the particle concentration activated at supersaturations of 0.1%, 0.2%, 0.5%, 0.8%, and 

1.0% during AWARE, with only short time periods of missing data (Figure 3.2). HTDMA 

provided humidified aerosol size distributions for five dry particle sizes at specified relative 

humidity (RH = 90%) for two periods during the campaign: 23 November to 20 December 2015 

and 16 to 31 January 2016. Aerosol particle growth factors (GFi) from the HTDMA 

measurements were calculated as the ratio of humidified particle diameter of size i to the selected 

dry diameter. Mean growth factors (GF) and hygroscopicity parameters (κ) [Petters and 

Kreidenweis, 2007; Su et al., 2010] were calculated from Equation. 3.1 and Equation 3.2: 

𝐺𝐹 =
!"!(

!"
!"#$!!

)!!

( !"
!"#$!!

)!!
         (3.1) 

𝜅 = (!"!!!)(!!!!)
!!

          (3.2)   

where N is the measured number concentration and aw is water activity [Rickards et al., 2013]. 

 Meteorological variables (temperature, humidity, wind speed and wind direction) were 

measured with a Vaisala model WXT-520 (Helsinki, Finland). The Surface Energy Balance 

System (SEBS) included upwelling and downwelling solar and infrared radiometers at the 

measurement site at McMurdo Station from 4 February to 29 December 2016. Aerosol 

absorption was measured at three wavelengths (470, 522 and 660 nm) by a Particle Soot 

Absorption Photometer (PSAP; Radiance Research, Seattle, WA). The PSAP absorption at 660 

nm was used as a proxy for black carbon (BC) because it is expected to have the least 

interference from brown carbon [Olson et al., 2015]. 
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3.3 CN, CCN, Hygroscopicity, and Inorganic Particle Measurements 

19% of the 1-Hz CN measurements recorded during the project were identified as SLCE, 

and the average of the concentrations for those times contributed 55% of the project-average CN 

concentrations. The distribution of SLCE duration and timing (Figure 3.5) shows that SLCE 

events were approximately two times more frequent during local daytime than nighttime. This 

short duration and largely daytime timing of SLCE suggests that site maintenance and nearby 

road traffic are likely responsible for many of the high CN events. 

	

Figure 3.5:  Frequency distribution of SLCE with (a) Time of day, and (b) Duration. 

There are two reasons why the CN concentrations that remain after SLCE (spikes) are 

removed are considered representative of the natural background rather than local pollution from 

McMurdo Station activities: First, the SLCE CN concentration is correlated weakly to BC 

(r=0.48), but the background CN is correlated negatively to BC absorption (r=-0.4). Second, the 

two indicators of combustion-related pollution (BC absorption and the FFC factor) were 
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approximately two times higher in summer than winter (Table 3.3), which is similar to the two-

fold increase in SLCE CN in summer compared to winter but not enough to account for the 

seven-fold increase in the background (SLCE-removed) CN in summer compared to winter. 

Consequently, this larger summertime difference in background CN is likely associated with the 

higher productivity of natural sources in summer. More specifically, the CN concentration 

associated with natural sources was very low (~60 cm-3) in winter during low phytoplankton 

activity but as high as 2000 cm-3 in summer (Figure 3.2), indicating a significant increase in 

biogenic (sulfate or organic) CN. 
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Table 3.3: Mean concentrations and ratios with standard deviations during 2016 at 
McMurdo. 

Season Spring Summer Fall Winter 

CCN Number 
Concentration cm-3 

(CCN/SLCE-Removed 
CN) 

0.1 % SS 

11.2±13.3 40.1±34.2 9.7±6.6 7.1±8.5 
 

(0.07±0.0
6) 

(0.08±0.0
6) 

 
(0.06±0.0

5) 

 
(0.1±0.09

) 

0.2 % SS 

37.9±36.4 131±80.2 48.2±29.3 18.6±20.5 
 

(0.19±0.1
1) 

 
(0.26±0.1

2) 

 
(0.29±0.1

1) 

 
(0.26±0.1

4) 

0.5 % SS 

72.1±48.5 276.4±14
7.9 104±60.7 33.3±25.3 

 
(0.37±0.2

0) 

 
(0.56±0.2

4) 

 
(0.63±0.2

0) 

(0.49±0.2
6) 

0.8  % 
SS 

99.7±73.9 348±203 124±72.3 42.9±39.6 
 

(0.5±0.23
) 

 
(0.68±0.2

5) 

(0.75±0.2
3) 

 
(0.57±0.2

9) 

1 % SS 

117±110 371±234 132±77.5 48.5±50.2 
 

(0.55±0.2
4) 

(0.73±0.2
6) 

 
(0.8±0.23

) 

(0.6±0.30
) 

CN cm-3 

CN 
SLCE-

Remove
d 

161±94 400±228 141±88 65±77 

CN 376±571 740±693 241±187 237±502 
Absorption mM-1   0.2±0.47 0.34±0.66 0.16±0.66 0.2±0.50 

Measured FTIR OM    
0.06±0.04 0.27±0.16 0.07±0.06 0.04±0.02 

 µg m-3   

PMF of FTIR OM  

FFC OM  
0.03±0.01 0.06±0.05 0.03±0.02 0.03±0.02 

 µg m-3 
M&S 
OM  0.018±0.0

28 
0.155±0.1

21 
0.026±0.0

46 
0.001±0.0

01  µg m-3 
Residual/

FFC 0.40±0.72 0.63±0.84 0.36±0.49 0.28±0.52 

Residual/
M&S 1.12±097 0.33±0.46 1.03±0.63 9.22±7.74 
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SLCE had nearly no contribution to CCN, which is consistent with SLCE particles being 

extremely low hygroscopicity and freshly emitted from fuel combustion [Wex et al., 2010] 

(Figure 3.2).  The CCN measurements did not have short-term spikes even at the highest 

supersaturation level (1%), at which only 0.1% of the measurements were 5% higher than the 

background CN. The absence of the SLCE in the CCN measurements is likely the result of the 

local pollution being both too small and too low hygroscopicity to serve as CCN at 1% or below. 

The CCN concentration correlated moderately or strongly to background CN (r=0.80, 0.83, 0.87 

and 0.88 for 0.2%, 0.5%, 0.8% and 1% SS, respectively). CCN and CN were 5 to 7 times higher 

during summer, but the ratio of CCN/CN changed less than 30% throughout the year (Table 3.3). 

CCN/CN was largely constant at all five supersaturations during most of 2016, but from late 

September to early October the ratio of CCN/CN decreased to 0.5 at 1% supersaturation (Figure 

3.2). This decrease of the ratio of CCN to background (spike-removed) CN during the winter-

spring transition could be caused by changes in particle size and composition.  One such cause 

would be additional CN that are too small to contribute to CCN. Previous observations at a site 

10 km from McMurdo Station showed an increase in the fraction of CN smaller than 250 nm at 

polar sunrise (September-October), although a specific cause was not clear (Giordano et al., 

2017). The higher CCN/CN ratio in the summer (Table 3.3) is consistent with both the higher 

biogenic sulfate contributions during the highest productivity season (summer) and the slightly 

larger diameter of the accumulation mode particles observed in previous summers (Kim et al., 

2017). 

The growth factors and hygroscopicity parameters were both nearly constant during the 

two measurement periods (Figure 3.6), with values of 1.5±0.3 for growth factors and 0.4±0.1 

for hygroscopicity parameters. These numbers were constant across the measured size range of 
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50 nm to 250 nm diameter and are comparable to other observations in the Antarctic region 

[Asmi et al., 2010; Kim et al., 2017; Wex et al., 2010]. The particles that had too low 

hygroscopicity to grow measurably may be those that were emitted by local anthropogenic 

emissions. The moderate correlation of BC absorption to the fraction of particles that did not 

grow at increased relative humidity in the HTDMA (R=0.52, Figure 3.7 (a)) indicates that the 

BC-containing particles could be the particles that have low hygroscopicity. In addition, BC 

absorption correlated moderately to the non-activated CN particles (1-CCN/CN) (R=0.34 for 1% 

supersaturation, Figure 3.7 (b)).  Since BC-containing particles, such as those freshly emitted 

from combustion sources, have been shown to have low hygroscopicity (Peng et al., 2017; Vu et 

al., 2017), these correlations are consistent with the particles that did not take up water being 

those that were emitted by local combustion activities. 
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Figure 3.6:  Distribution of growth factor and hygroscopcity parameter 𝜅  in the two 
measurement periods from HTDMA. 5th, 25th, 50th, 75th and 90th percentiles are shown by the 
boxes and whiskers. Means are shown by the markers. 
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Figure 3.7: (top) Scatter and box-whisker plot of PSAP 660 nm absorption and: (a) HTDMA 
no growth fration (r=0.52); (b) Non-activated CCN fraction (1-CCN/SLCE-removed CN) for 1% 
supersatuartion (r=0.34).  The boxes show the 25th, 50th and 75th percentile values; the 
Whiskers show the minimum and maximum values. 

XRF measurements of elemental concentrations of S, P, K, Ca, Si, Mn, Al, Ag, Fe, and V 

were 2 to 15 times higher in summer than in winter  (Figure 3.8). Submicron dust mass 

concentration was 7 times higher in summer, consistent with the lack of exposed soil in winter 

(Figure 3.1). Sea salt particle mass concentration (Figure 3.1) was 3 times higher in winter than 

in summer, consistent with the higher circumpolar wind speed providing more sea spray in 
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winter than summer [Bintanja et al., 2014].  The measured Cl-/Na+ of 2 represents a large 

sodium deficiency in wintertime submicron particles (Figure 3.1). The depletion of Na+ relative 

to Cl- in winter indicates a likely contribution to the aerosol submicron mass from wind-blown 

frost flowers (Alvarez‐Aviles et al., 2008; Thomas and Dieckmann, 2003; Stein and MacDonald, 

2004; Papadimitriou et al., 2007; Giannelli et al., 2001; Belzile et al., 2002; Shaw et al., 2010). 

This sodium depletion is the result of Na2SO4 precipitating out from sea ice brine before frost 

flowers wick up the remaining salt solution. Blowing snow could also contribute to submicron 

particles [Domine et al., 2004], but this source has not been associated with a substantial sodium 

deficiency in submicron particle composition [Gordon and Taylor, 2009].  
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Figure 3.8:  Elemental mass concentration from XRF. 

 

If either frost flowers or blowing snow were generated near the site, we would expect a 

correlation of concentrations to wind speed at higher wind speeds, since both sources have been 

characterized as requiring wind speed thresholds of approximately 7 m s-1 for lofting of particles 

[Schmidt, 1981; Shaw et al., 2010].  During AWARE, 1-min wind speed only exceeded this 

threshold by 1 m s-1 for 24% of the time, and the weekly average wind speed was never higher 

than 7 m s-1. Wind speed had no correlation to CN concentration for the campaign (r=-0.32) or 
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for winter (r=-0.31). In addition, there was no correlation (R=-0.15) of submicron CN number 

with wind speed (>8m s-1), as would be expected for blowing snow generated locally [Yang et 

al., 2008]. The M&S factor concentration also showed no correlation (r=0.1) to the fraction of 

time with high wind speed (>8 m s-1). While these relationships do not support the attribution of 

the wintertime salt mass to either frost flowers or blowing snow, they do not rule it out since the 

particles may have been lofted upwind and transported to McMurdo Station. 

A recent model simulation (Huang and Jaegle, 2017) predicted that blowing snow has 

significantly higher contributions to submicron particle mass than frost flowers in Antarctica and 

the Arctic, but also showed that the region at the north edge of the Ross Ice Shelf (including 

Ross Island) had both higher emissions (>0.6 10-6 kg m-2 d-1) and concentration (>1.5 µg m-3) 

from frost flowers than the emissions (<0.4 10-6 kg m-2 d-1) and concentration (<1.0 µg m-3) from 

blowing snow, consistent with the finding that wintertime OM at McMurdo Station were more 

likely from frost flowers than blowing snow. 

3.4 Organic Mass and Composition 

The measured organic functional group mass concentrations are shown in Figure 3.9(c). 

The average OM is 0.13 𝜇g m-3 for AWARE, with hydroxyl groups having the highest mass 

fraction (41%), followed by alkane (39%), amine (13%) and carboxylic acid (7%) groups.  

Similar to CN concentrations, OM was highest in summer (0.27 µg m-3) and lowest in winter 

(0.04 µg m-3). Arctic OM at Barrow and Alert showed a very different seasonal pattern with low 

concentrations in Arctic summer (0.03 µg m-3 and <0.5 µg m-3 in Alert and Barrow, respectively) 

and high concentrations in winter and spring (0.3 µg m-3 and 1 µg m-3 in Alert and Barrow, 

respectively) [Frossard et al., 2011; Leaitch et al., 2017]. Consistent with OM, CN 
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concentrations at these two Arctic sites, with particle size range of 80-500 nm at Alert and >100 

nm at Barrow, were also low in Arctic summer (<50 cm-3 and 100-300 cm-3 at Alert and Barrow, 

respectively) and high in winter and spring (>100 cm-3 and 400-1000 cm-3 at Alert and Barrow, 

respectively) [Croft et al., 2016a; Polissar et al., 1999]. The springtime high concentrations in 

the Arctic result from long-range transport from mid latitudes after the breakup of the vortex.  

The lack of substantial pollution sources at southern mid-latitudes (compared to those at northern 

mid-latitudes) means the Antarctic does not have an equivalent haze in spring [L.M. Russell and 

Shaw, 2015; Stohl, 2006; Stohl and Sodemann, 2010]. The higher summer OM in Antarctica is 

likely produced by the specific local conditions of the three polar sites, namely Ross Island has 

higher marine and seabird activity compared to Barrow and Alert. 
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Figure 3.9: (a) Mass fraction of PMF factors in four seasons.  Time series of (b) PMF factor 
OM fractions, (c) OM concentration with functional groups and (d) M&S OM concentration with 
functional groups. 

	

The FFC cluster and factor are similar to each other (cosine similarity=0.97) and are both 

named because of the similarity of the spectra to factors identified as FFC previously [Guzman-

Morales et al., 2014; Price et al., 2017; Saliba et al., 2017]. The FFC Factor has two narrow 

peaks at 2865 and 2934 cm-1 that are characteristic of long-chain hydrocarbons and a cosine 

similiarity greater than 0.8 with factor spectra identified previously as urban combustion 

emissions [Guzman-Morales et al., 2014] and fresh ship engine emissions  [Price et al., 2017]. 

The FFC factor has alkane and amine groups that account for 80% OM (Figure 3.10), which is 

consistent with urban combustion emissions and vehicle engine tests [Guzman-Morales et al., 
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2014; Saliba et al., 2017]. The FFC factor was 73% OM in winter but only 23% in summer 

(Figure 3.9 (a) and (b)).  The FFC factor concentration is weakly or moderately correlated to Ca, 

P, Fe, Cu, Cr, Mn and Zn (r=0.3~0.5), which have been identified as tracers of vehicle emissions 

[Cheung et al., 2010; Lin et al., 2015]. 

	

Figure 3.10: Normalized spectra from k-means clustering centroids and PMF factors. 
Functional group fractions of PMF factors are shown in the pie charts   
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The primary amine peak (1620 cm-1) is present in both FFC and M&S factors at 

McMurdo Station (Figure 3.11), consistent with previous studies [Guzman-Morales et al., 2014; 

Leaitch et al., 2017; Price et al., 2017; Shaw et al., 2010]. The difference between the FFC and 

M&S spectra is that FFC has double sharp alkane group peaks at 3000 cm-1 but M&S has a broad 

hydroxyl group absorption at 3400 cm-1 (Figure 3.10). Ammonium has peaks at 3050 and 3200 

cm-1 and contributes to both FFC and M&S spectra (Figure 3.10). 

	

Figure 3.11: Normalized spectra at 1500 to 1800 cm-1 wavenumber region from (a) K-means 
clustering centroid and spectra in the clusters; (b) PMF factors from this study and two previous 
arctic studies, and chemical standards: urea and uric acid. Locations of primary amine and 
carbonyl group are marked on the figure. 

The M&S Factor is identified as “marine” because of its high hydroxyl group fraction, 

which is similar to past marine sea spray factors (Russell et al., 2010), and as “seabird” because 
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of absorption from ammonium and an organic nitrogen peak that is likely associated with coastal 

penguin emissions. The high hydroxyl group that accounted for 55% OM in the M&S factor 

makes this factor overall similar to the marine factors identified in measurements at Barrow and 

Alert (cosine similarity=0.53-0.57) [Leaitch et al., 2017; Shaw et al., 2010] (Figure 3.9 and 

Figure 3.10). The M&S hydroxyl group fraction is lower than the Arctic marine factors that have 

80% hydroxyl group [Leaitch et al., 2017; Shaw et al., 2010].  

Barrow and Alert had higher marine OM concentrations in winter than in summer. Likely 

this is because these two Arctic sites did not have the large seabird contributions that contributed 

to the M&S factor on Ross Island during summer [Lyver et al., 2014].  The smaller seabird 

populations near the Arctic sites also meant that Barrow and Alert OM had only very small 

amide contributions (Figure 3.11). The M&S factor has higher alkane (38%) and amine (8%) 

group mass compared to two marine factors in Arctic regions that had only 6% alkane and 6% 

amine group mass [Leaitch et al., 2017; Shaw et al., 2010]. This factor contributed a substantial 

fraction of organic mass in summer (58%) but very little in winter (5%) (Figure 3.9 (b)). The 

M&S organic mass concentration was only 0.001 𝜇g m-3 during winter and was 0.15 𝜇g m-3 

during summer (Figure 3.9 (d)). The low winter and high summer M&S OM means that salt was 

not correlated to the M&S Factor organic mass, indicating the high summertime concentrations 

of natural OM could not be explained by primary marine aerosol contributions alone. Marine 

OM contributions could be high in winter relative to summer because of the higher regional wind 

speeds, but their absolute concentration was too low to separate and identify in this set of 54 one-

week samples.  Specifically, the small number of long-duration samples resulted in PMF 

residuals that were more than 9 times higher than the M&S factor in winter, so that the marine 

fraction in winter is very uncertain. 
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The FTIR spectra for summer samples show an absorption peak at 1680 cm-1 that is not 

present in winter (Figure 3.1). The M&S factor FTIR absorption peak (Figure 3.11) was located 

at a wavenumber that was both too high (>1630 cm-1) to be primary amine bending and too low 

(<1714 cm-1) to be carbonyl bending (Figure 3.11) [Takahama et al., 2013]. Seabirds excrete 

urea that degrades to uric acid, and the amide groups found in both urea and uric acid could 

explain the 1680 cm-1 peak in the summer FTIR spectra (Figure 3.11).  The ammonium peaks 

(Figure 3.10) associated with the M&S factor are also consistent with ammonia emissions from 

guano [Legrand et al., 1998], which is taken up on particles as ammonium. 

More than 155,000 breeding pairs reside in the ice-free areas on Ross Island [Attwood et 

al., 2014] from October to March [Davis et al., 2001]. The three penguin habitats on Ross Island 

are all less than 100 km from McMurdo Station (Figure 3.3) [Lyver et al., 2014]. Previous 

studies have also attributed aerosol emissions and properties to penguin activities, including 

ammonia-enhanced new particle formation [Weber et al., 1998]and oxalate-enriched particles 

and organonitrogen-containing fragments from urea breakdown products [Legrand et al., 2012; 

Schmale et al., 2013].  The finding here of amide groups would be consistent both with particle 

formation and with substantial organonitrogen components. Since McMurdo Station is most 

frequently downwind from Cape Crozier (which is located to the northeast of the sampling site), 

its estimated ~300,000 penguins are a likely source of this organic and ammonium contribution 

to particles [Lyver et al., 2014].  

This 1680 cm-1 amide peak was present in very small amounts in multi-year Arctic FTIR 

measurements [Leaitch et al., 2017; Shaw et al., 2010] (Figure 3.11), but their low 

concentrations did not support further investigation. The 1680 cm-1 peak has not been observed 

in open ocean marine factors [Frossard et al., 2014a; L. M. Russell et al., 2010], suggesting that 



	

163 

	

an open ocean marine source is not likely.  An alternative explanation of the amide group is 

emissions from seasonal ice microbiota [Dall'Osto et al., 2017]. Given the proximity and 

abundance of seabirds at McMurdo Station, seabirds are the more likely source than are sea ice 

algae or other phytoplankton during AWARE. There are four reasons that the M&S factor are 

likely associated with marine and seabird emissions: The 1680 cm-1 signal has been found at two 

coastal Arctic sites (in small amounts) but not on open ocean marine studies [Frossard et al., 

2011; Hawkins and Russell, 2010; Leaitch et al., 2017; Shaw et al., 2010]. This difference 

suggests that the amide group is likely associated with seabirds, since they are found in coastal 

marine areas but generally not in open ocean marine areas. The higher concentrations of the 

M&S OM factor coincided with the summer breeding period of a large penguin colony at Cape 

Crozier, which was upwind during most of the summer. Other possible contributions, such as 

from algal blooms during ice melting in spring, are not consistent with the northeasterly winds, 

the amide group, or the seasonality of the M&S OM. HYSPLIT back trajectories [Draxier and 

Hess, 1998] did not add useful information because the day-to-day variability exceeded the 

differences among weekly averages. Weekly-average wind direction was always northeasterly 

(±45 degrees), so there was insufficient variation to identify sources in different directions. The 

emissions from seabirds have significant regional implications in polar areas because of their 

large population and wide distribution [Croft et al., 2016b; Riddick et al., 2012]. Chemical 

transport model simulations suggest that emissions of reduced nitrogen from seabirds in the 

Arctic could significantly increase aerosol particle formation, and in turn cloud droplet number 

concentration and cloud albedo, yielding as much as -0.5 W m-2 radiative forcing averaged over 

the 14,000,000 km2 of the Arctic Ocean [Croft et al., 2016b]. 
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The measured acid group concentration is likely to be a secondary aerosol contribution 

since photochemical oxidation has been shown to form highly oxidized molecules including 

carboxylic acids by photochemical reactions [Alfarra et al., 2006; Alves and Pio, 2005; Barbaro 

et al., 2017; Charbouillot et al., 2012; Claeys et al., 2007; Kawamura and Gagosian, 1987; Sax 

et al., 2005; Stephanou and Stratigakis, 1993; Xu et al., 2013]. Acids are also present in trace 

amounts in seawater [Gagosian and Stuermer, 1977; Kawamura and Gagosian, 1987], but the 

higher concentrations measured here are likely to only be explained by secondary processes.  

The carboxylic acid group mass concentration that was associated with the M&S factor was 

correlated moderately to downwelling shortwave irradiance (r=0.75, Figure 3.12), supporting the 

idea that the carboxylic acid group mass was from photochemical reactions. 
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Figure 3.12: Scatter plot of (a) M&S carboxylic acid group and shortwave downwelling 
radiation (r=0.75) and (b) carboxylic acid group in FFC and shortwave downwelling radiation 
(r=0.09) 

 

Carboxylic acid group mass fractions have also been identified as secondary 

photochemical products based on their correlation to solar radiation in clean, open-ocean 

conditions [Frossard et al., 2014a]. However, since the seabird emissions were only high in 

summer when radiation was also generally high, the correlation to radiation does not provide 

evidence of photochemical contributions in this case. Interestingly, the carboxylic acid group 

associated with the FFC factor had no correlation (r= 0.09) to downwelling shortwave irradiance. 
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This difference may be because the local emissions from McMurdo Station facilities reached the 

Cosray site in less than 5 min (since McMurdo Station was 2 km away and wind speeds were 6 

m s-1 on average) making them essentially “fresh” primary particles, whereas those from the 

large upwind penguin colony took 6 hr (since Cape Crozier was 100 km away and wind speeds 

were 6 m s-1 on average) to reach the site giving them approximately 50 times more time for 

photochemical reactions leading to SOA production. It is also possible that the anthropogenic 

gas-phase precursor emissions had lower SOA acid yields but there is little evidence to support 

this [McNeill, 2015; Rickard et al., 2010; Wyche et al., 2009]. The source of the vapor-phase 

organic precursors of the summer seabird acid groups is not known, but given their substantial 

contribution to mass is worthy of further investigation. 

3.5 Conclusions 

The first year-long organic functional group measurements in Antarctica show the 

seasonal trend of higher summer concentrations in most of the aerosol measurements. Short-

lived contamination events (SLCE) of typically less than 1 hr (Figure 3.5) from local sources 

were separated from the CN time series to investigate the more regionally-representative or 

“background” concentrations. With SLCE removed, average CN concentrations were 65 cm-3 in 

winter but 400 cm-3 in summer. 

The ratio of CCN to background (spike-removed) CN was largely constant for most of 

the measured seasons. Growth factors (1.5±0.3) and hygroscopicity parameters 𝜅 (0.4±0.1) were 

measured in two one-month periods during the 2015-2016 summer and are comparable to marine 

aerosols reported near Antarctica [Asmi et al., 2010; Kim et al., 2017; Wex et al., 2010]. 
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Both natural dust and biogenic as well as anthropogenic concentrations were more 

abundant in the summer months due to both the higher sunlight for productivity and the higher 

site accessibility. The mean summer OM concentration was 0.27 𝜇g m-3, which was 7 times 

higher than winter OM. Hydroxyl and alkane groups were found to be the most abundant and 

accounted for 80% of OM. Two factors were identified by PMF with an average residual of 

23%: the M&S factor was associated with natural marine sea spray and coastal seabird sources, 

and the FFC was associated with local combustion emissions.  The M&S factor mass 

concentration was 150 times higher in summer than winter; the FFC factor had a higher 

concentration than M&S in winter but the concentrations were so low that the quantification of 

the M&S factor in winter is very uncertain. 

In addition to the primary amine peak present in past marine sea spray measurements, an 

FTIR absorption peak at 1680 cm-1 was associated with the M&S factor in summer. The likely 

source of this peak as well as the coincident ammonium concentrations was seabird-related 

emissions from penguin colonies at Cape Crozier. The carboxylic acid group mass in the M&S 

factor was high in summer and was likely from secondary products of photochemical reactions.  
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Conclusions 

BSOA identified at field observations in the southeastern U.S. and Antarctica was 

investigated to understand the processes that contributed to their formation. The first chapter 

focuses on the heterogeneous reactions of sulfate on isoprene-related bSOA [Liu et al., 2017]. 

The second chapter focused on the role of NOx on bSOA formation using both AMS and FTIR 

measurements during the SOAS campaign [Liu et al., Submitted.]. The third chapter identifies 

sources and seasonal differences in biogenic OM in Antarctica [Liu et al., In discussion.]. The 

objective of each of these studies is to identify the aerosol processes that affect bSOA formation. 

The motivation for these studies is to provide constraints that can be used to improve the 

simulation of bSOA formation in models. 

The first chapter used measurements during the 2013 Southern Oxidant and Aerosol 

Study. Aerosol mass spectrometer measurements of submicron mass and single-particles were 

taken at Look Rock, Tennessee. Their concentrations increased during multi-day stagnation 

events characterized by low wind, little rain, and increased daytime isoprene emissions.  Organic 

mass (OM) sources were apportioned as 42% "vehicle-related" and 54% biogenic secondary 

organic aerosol (bSOA), with the latter including “sulfate-related bSOA” that correlated to 

sulfate (r=0.72) and “nitrate-related bSOA” that correlated to nitrate (r=0.65). Single-particle 

mass spectra showed three composition types that corresponded to the mass-based factors with 

spectra cosine similarity of 0.93 and time series correlations of r>0.4. The vehicle-related OM 

with m/z 44 was correlated to black carbon, “sulfate-related bSOA” was on particles with high 
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sulfate, and “nitrate-related bSOA” was on all particles. The similarity of the m/z spectra (cosine 

similarity=0.97) and the time series correlation (r=0.80) of the “sulfate-related bSOA” to the 

sulfate-containing single-particle type provide evidence for particle composition contributing to 

selective uptake of isoprene oxidation products onto particles that contain sulfate from power 

plants [Liu et al., 2017]. 

The second chapter utilized measurements during the 2013 Southern Oxidant and 

Aerosol Study. Fourier Transform Infrared Spectroscopy (FTIR) and Aerosol Mass Spectrometer 

(AMS) measurements of submicron mass were collected at Look Rock (LRK), Tennessee, and 

Centreville (CTR), Alabama. Carbon monoxide and submicron sulfate and organic mass 

concentrations were 15-60% higher at CTR than at LRK but their time series had moderate 

correlations (r~0.5). However, NOx had no correlation (r=0.08) between the two sites with 

nighttime-to-early-morning peaks 3~10 times higher at CTR than at LRK. Organic mass (OM) 

maximum concentrations occurred in the afternoon at both sites but also at night at CTR. OM 

sources identified by FTIR Positive Matrix Factorization (PMF) had three very similar factors at 

both sites: Fossil Fuel Combustion (FFC) related organic aerosols, Mixed Organic Aerosols 

(MOA), and Biogenic Organic Aerosols (BOA). The BOA spectrum from FTIR is similar 

(cosine similarity > 0.6) to that of lab-generated particle mass from the photochemical oxidation 

of both isoprene and monoterpenes under high NOx conditions from chamber experiments. The 

BOA mass fraction was highest during the night at CTR but in the afternoon at LRK. AMS PMF 

resulted in two similar pairs of factors at both sites and a third nighttime NOx-related factor (33% 

of OM) at CTR but a daytime nitrate-related factor (28% of OM) at LRK. NOx was correlated 

with BOA, LO-OOA and Factor91 for NOx concentrations higher than 1 ppb at both sites, 
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producing 0.5 to 1 µg m-3 additional biogenic OM for each 1 ppb increase of NOx [Liu et al., 

Submitted.].  

The third chapter used observations from the ARM West Antarctic Radiation Experiment 

(AWARE) from November 2015 to December 2016 with measured submicron aerosol properties 

near McMurdo Station at the southern tip of the Ross Island.  Submicron organic mass (OM), 

particle number, and cloud condensation nuclei concentrations were higher in summer than other 

seasons. The measurements included a range of compositions and concentrations that likely 

reflected both local anthropogenic emissions and natural background sources. We isolated the 

natural organic components by separating a natural factor and a local combustion factor. The 

natural OM was 150 times higher in summer than in winter. The local anthropogenic emissions 

were not hygroscopic and had little contribution to the CCN concentrations. Natural sources that 

included marine sea spray and seabird emissions contributed 56 % of OM in the austral summer 

but only 3 % in the austral winter. The natural OM had high hydroxyl group fraction (55%), 6% 

alkane, and 6% amine group mass, consistent with marine organic composition. In addition, the 

Fourier transform infrared (FTIR) spectra showed the natural sources of organic aerosol were 

characterized by amide group absorption, which may be from seabird populations. Carboxylic 

acid group contributions from natural sources were correlated to incoming solar radiation, 

indicating secondary pathways [Liu et al., In discussion.].  

The measurements presented in this dissertation contribute to a better characterization of 

the contribution of biogenic and anthropogenic emissions to the composition and concentration 

of organic aerosol particles in the southeastern U.S. and coastal Antarctica. This work provides 

insights on specific anthropogenic-related processes that influence bSOA formation and will help 
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better constrain the model simulation of bSOA in the southeastern U.S. The characterization and 

source apportionment of organic aerosols at coastal Antarctica can contribute to determining the 

overall climate influence of these very remote aerosol particles.  

Future work should explore more detailed chemical mechanisms that governing the 

reactions that lead to bSOA formation and better quantify the influences. Additional work could 

expand on the measurements presented here to sites with similar and different bVOC emissions 

and climates. The composition of natural aerosol organic functional group presented here could 

be used to quantify natural sources in other regions as well as to identify the impacts of the 

biogenic aerosols on current and future climate. The organic and inorganic composition and the 

hygroscopicity of aerosol particles in costal Antarctica can be used in climate models to 

parameterize the contribution of natural sources to the CCN and thus help us to understand the 

rapidly warming climate in the region.  
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