
UCLA
UCLA Previously Published Works

Title
A step towards the Alekseevskii conjecture

Permalink
https://escholarship.org/uc/item/8z52h32j

Journal
Mathematische Annalen, 368(1-2)

ISSN
0025-5831

Authors
Jablonski, Michael
Petersen, Peter

Publication Date
2017-06-01

DOI
10.1007/s00208-016-1429-7
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8z52h32j
https://escholarship.org
http://www.cdlib.org/


Math. Ann. (2017) 368:197–212
DOI 10.1007/s00208-016-1429-7 Mathematische Annalen

A step towards the Alekseevskii conjecture

Michael Jablonski1 · Peter Petersen2

Received: 31 December 2014 / Revised: 10 April 2016 / Published online: 15 June 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract We refine existing structure results for non-compact, homogeneous, Ein-
stein manifolds and provide a reduction in the classification problem of such spaces.
Using this work, we verify the (Generalized) Alekseevskii conjecture for a large class
of homogeneous spaces.

Mathematics Subject Classification 53C25 · 53C30

A longstanding open question in the study of Riemannian homogeneous spaces is
the classification of non-compact, Einstein spaces. In the 1970s, it was conjectured
by D. Alekseevskii that any (non-compact) homogeneous Einstein space of negative
scalar curvature is diffeomorphic to R

n . Equivalently, this conjecture can be phrased
as follows:

Classical Alekseevskii conjecture: Given a homogeneous Einstein space G/K
with negative scalar curvature, K must be a maximal compact subgroup of G.

Part of the motivation for this conjecture comes from the conclusion holding true in
the special cases of simply-connectedRicci flat homogeneous spaces [2], non-compact
symmetric spaces, and, more generally, homogeneous (Einstein) spaces of negative
sectional curvature [1,6]. It is notable that in all these cases the manifolds are so-called
solvmanifolds, i.e. they admit a transitive solvable group of isometries.

Since the posing of this conjecture, an enormous effort has been put into the clas-
sification of non-compact, homogeneous Einstein spaces. Among simply-connected
solvable Lie groups with left-invariant metrics, much is known about existence and
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198 M. Jablonski, P. Petersen

uniqueness of Einstein metrics, see [13,21] and references therein. Further, it follows
from [3] that in the case of Einstein solvmanifolds with negative scalar curvature, one
can reduce to the simply-connected case; see [17] for more in this direction.

In contrast to the progress made on solvmanifolds, there is work that suggests the
conjecture might not be true. In [23] it is shown that SL(n, R) admits metrics of
negative Ricci curvature for n ≥ 3; although, in those examples the eigenvalues of
Ric appear to be so widely spread that Einstein metrics might not exist. The case of
transitive, unimodular groups of isometries was further investigated in [9] where it was
shown that for such a space with negative Ricci curvature there must exist a transitive
semi-simple group of isometries. For more in this direction, see [27] and Proposition
1.2 below.

The conjecture is known to hold in dimensions 4 and 5 and, in fact, all such spaces
in these low dimensions are solvmanifolds, see [18,28]. In dimension 6, very recently
it was shown that the conjecture holds in the presence of a transitive, non-unimodular
group of isometries, see [5] or Sect. 4 of this work. Again, all such 6-dimensional
spaces turn out to be solvmanifolds.

In the general setting, very little was known about the structure of homogeneous
Einstein metrics until the recent work [20]. The work presented here builds on the
structure results obtained there.

Refining the conjecture.We refine the question of which G and K are possible when
G/K admits aG-invariant Einsteinmetric of negative scalar curvature.More precisely,
assume G is simply-connected and consider a Levi decomposition

G = G1 � G2

where G1 is semi-simple and G2 is the (solvable) radical. Further, decompose G1 into
compact and non-compact factors, i.e.

G1 = GcGnc

whereGc is the product of compact, simple subgroups andGnc the product of the non-
compact, simple subgroups. The intersection Gc ∩ Gnc is trivial since we assumed
G to be simply-connected. Let Knc be a choice of connected subgroup whose Lie
algebra is a maximal compact subalgebra of gnc (equivalently, Ad(Knc) is a maximal
compact subgroup of Ad(Gnc)). The subgroup Knc is closed, although not necessarily
compact.

Strong Alekseevskii conjecture: Let G/K be endowed with a G-invariant Ein-
stein metric with negative scalar curvature. Then, up to conjugation of K in G,
Gc < K and Knc < K .

Observe that this is a stronger conjecture than the Alekseevskii conjecture as the
above implies that such an Einstein manifold has a transitive solvable group of isome-
tries. We note that all known examples of homogeneous Einstein spaces with negative
scalar curvature are isometric to solvable Lie groups with left-invariant metrics and
it is believed by some that such spaces exhaust the class of non-compact, homoge-
neous, Einstein spaces. Further, the above conjecture holds for any transitive group of
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A step towards the Alekseevskii conjecture 199

isometries of an Einstein solvmanifold, see [17]. We take a step towards resolving the
above conjecture.

Theorem 0.1 Let G/K be a homogeneous space endowedwith aG-invariant Einstein
metric of negative scalar curvature, then Gc < K (up to conjugation).

This result is established by applying the recent structural results of [20] together
with the Bochner technique and tools from Geometric Invariant Theory. Building on
that work and the above theorem, we have the following reduction in the classification
problem.

Theorem 0.2 Let G/K be a simply-connected, homogeneous, Einstein space of neg-
ative scalar curvature. The transitive group G can be chosen to satisfy the following

(i) G1 = Gnc has no compact, normal subgroups,
(ii) K < G1, and
(iii) The radical decomposes as G2 = AN, where the nilradical N (with the induced

left-invariant metric) is nilsoliton, A is an abelian group, and ad a acts by sym-
metric endomorphisms relative to the nilsoliton metric on n.

We note that in the special case that G is solvable, (iii) above was already proven
by Lauret in [22].

Remark 0.3 Applying [16] togetherwith either of [12] or [20], the above two theorems
can be seen to apply more generally to homogeneous Ricci solitons.

As an application of Theorem 0.2, we obtain a short proof of the recent result
of Arroyo-Lafuente which verifies the Generalized Alekseevskii conjecture in low
dimensions, see Sect. 4.

1 The maximum principle

To motivate our new results, we begin by recalling the following well-known fact due
to Bochner [8].

Theorem 1.1 (Bochner) Let M be a compact Riemannian manifold with negative
Ricci curvature, then the isometry group of M is discrete.

One consequence of this result is that a homogeneous space with negative Ricci
curvature is necessarily non-compact. If such a space admits a transitive unimodular
group of isometries, then it is known to admit a transitive semi-simple group of isome-
tries [9]. However, little else is known about these spaces in general, save some very
interesting cases worked out by Nikonorov [27]

We follow Bochner’s approach to glean even more about the geometry of homoge-
neous spaces with negative Ricci curvature.

Proposition 1.2 Let G be a semi-simple group and assume that G/K is a homoge-
neous space of negative Ricci curvature. If G acts almost effectively on G/K, then G
is of non-compact type, i.e. G has no (non-discrete) compact, normal subgroups.
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200 M. Jablonski, P. Petersen

Corollary 1.3 Let G be a semi-simple group and G/K a homogeneous space of
negative Ricci curvature on which G acts effectively. Then the connected isometry
group of G/K is simply G and G is of non-compact type.

Corollary 1.3 follows immediately from Proposition 1.2 together with a general
result of Gordon on the isometry group of homogeneous spaces where there exists a
transitive semi-simple group of non-compact type, see [10]. We note that Corollary
1.3 generalizes [9, Corollary 3]. This gives some hope that the Alekseevskii conjecture
is indeed true as one would expect an Einstein space to have more symmetries than
other metrics and there are metrics on G/K whose symmetry groups are as large as
G × K . This philosophy of Einstein spaces having a large amount of symmetry is
reinforced by a recent result of the first author and Gordon [11].

In the special case of semi-simple Lie groups with left-invariant metrics, the above
gives new information. In the compact case, it is well-known that all semi-simple
groups admit Einstein metrics, often more than one [19]. In the non-compact case,
one can quickly see by brute force that SL2R does not admit a left-invariant Einstein
metric. Until now, this was the only non-compact, semi-simple group for which the
existence question had been answered.

Corollary 1.4 Let G be a non-compact, semi-simple Lie group. If G has a (non-
discrete) compact, normal subgroup, then G does not admit a left-invariant Einstein
metric.

To prove the proposition above, we appeal to a slightly more general setting that
will be needed later. We begin with a general lemma which is well-known and apply
it to the homogeneous setting.

Lemma 1.5 Let X be a Killing field on a Riemannian manifold M and consider the
function f = 1

2 |X |2. Then

� f = |∇X |2 − ric(X).

Furthermore, let f (p) be amaximumof f and assume that X p is tangent to a subspace
of TpM along which the Ricci tensor is negative. By the maximum principle, we have
X = 0.

We apply this lemma in the special case that M = G/K . Let G = G1G2 be a
Levi-decomposition of G and consider the representation θ : g → Der(g2) defined
by

θ(X) = ad(X)|g2 .

Let Ker θ = {X ∈ g | ad(X)|g2 = 0}. As g = g1 � g2 is a Levi decomposition of
g, we see that θ(g1) � θ(g2) is a Levi decomposition of θ(g) and so θ(g1) ∩ θ(g2) is
trivial. This yields

Ker θ = (Ker θ ∩ g1) + (Ker θ ∩ g2).
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A step towards the Alekseevskii conjecture 201

Note that the subalgebra Ker θ ∩ g1 is an ideal of g1.
As above, wemay decompose g1 = gc+gnc into a sumof ideals where gc is the sum

of the compact, simple ideals and gnc is the sum of the non-compact, simple ideals. The
ideal Ker θ ∩g1 decomposes further into Ker θ ∩g1 = (Ker θ ∩gc)+ (Ker θ ∩gnc).
Our interest is in the connected (normal) subgroup C of G with Lie algebra

Lie C = (Ker θ ∩ gc) + z(g),

where z(g) denotes the center of g. Note that Lie C ⊂ Ker θ .
Observe that G may be described as a product

G = CD,

where D is a subgroup ofG which commutes withC and such thatC∩D = Z(G). To
see this, one builds D from G2 and the normal subgroups of G1 which do not appear
in C . Note, in the case G is semi-simple, i.e. G2 is trivial, we have g = g1 = Ker θ .

Lemma 1.6 There exists no G-invariant metric on G/K whose Ricci curvature is
negative in the directions tangent to the orbit CK = C · eK ⊂ G/K.

Remark 1.7 If G/K were endowed with a metric whose Ricci curvature was negative
along the orbit C · eK ⊂ G/K (as long as the orbit were non-trivial), then we’d
necessarily have thatC < K and so theorbitwould indeedbe trivial for these examples.
Notice, this proves Theorem 0.1 in the special case that G is semi-simple. Further, if
G were acting almost effectively, then C must be the trivial group.

Before proving this lemma, we state a corollary which has not appeared in the
literature, but is known to some experts.

Corollary 1.8 Let G/K be a homogeneous space where G acts almost effectively. In
directions tangent to the orbit of Z(G), the center of G, the Ricci curvature is non-
negative. Furthermore, if G/K is endowed with a metric of negative Ricci curvature,
then Z(G) is discrete.

In the special case of left-invariant metrics on Lie groups, this result is well-known
[24]. In the general homogeneous case, one can deduce an alternate proof to the
corollary above using the techniques in [9]. Additionally, Jorge Lauret has shown us
a different proof which uses the relationship between Ric and the moment map; Yurii
Nikonorov has pointed out to us that the corollary also follows from [7, Theorem 4].

Proof (Proof of Lemma 1.6) Assume that C · eK ⊂ G/K is non-trivial and G/K is
endowed with a metric such that the Ricci curvature is negative in directions tangent
to the orbit C · eK ⊂ G/K .

The proof of this lemma follows quickly from Lemma 1.5. To apply that result, we
take X ∈ Lie C and consider the Killing field [X ] generated by X ; i.e.

[X ]p = d

dt

∣
∣
∣
∣
t=0

exp(t X) · p.
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202 M. Jablonski, P. Petersen

As p = gK for some g ∈ G, and g = cd for c ∈ C and d ∈ D, we see that

|[X ]gK | = |Ad(g−1)X | = |Ad(c−1)X |.

Using that the group C is Ad-compact, we see that the function f = 1
2 |[X ]|2 does

achieve a maximum. Further, by replacing X with Ad(c−1)X ∈ Lie C , we may
assume that this maximum occurs at the point eK .

By hypothesis, the Ricci curvature is negative along the orbit C · eK and
ric(Ad(c−1)X) < 0, unless [X ] = 0. Applying Lemma 1.5, we see that [X ] = 0.
Thus C < K , which is a contradiction. In the case that G acts effectively, [X ] = 0
implies X = 0, and thus C must be trivial as it is connected. �	
We apply the results above in the special case of Einstein metrics to obtain our main
results. First, we introduce our next tool, the moment map.

2 The moment map

Let G be a real reductive Lie group acting linearly on a real vector space V . Denoting
the G-action on V by ρ, we assume that V is endowed with an inner product 〈·, ·〉
with the property

ρ(g)t ∈ ρ(G) for all g ∈ G,

where ·t denotes the transpose relative to 〈·, ·〉. Such inner products always exist for
semi-simpleG and, more generally, whenever ρ(G) ⊂ Aut (V ) is algebraically closed
and fully-reducible, see [25]. In this setting, we say G is self-adjoint with respect to
〈·, ·〉. We may endow g = Lie G with an inner product 〈〈·, ·〉〉 such that Ad(G) is
self-adjoint relative to 〈〈·, ·〉〉. Using these choices of inner products, and inspired by
moment maps from symplectic and complex geometry [26], we define the moment
map m : V → g of the G action on V by

〈〈m(v), X〉〉 = 〈ρ(X)v, v〉

for all X ∈ g and v ∈ V . We note that we have abused notation and written the induced
Lie algebra representation of g = Lie G by the same symbol. Our definition of the
moment map given above for a real reductive Lie group is fairly standard, although
some authors would differ in that m would take values in the dual space g∗.

Remark 2.1 In the sequel, we suppress ρ and denote ρ(g)v by g · v.

Definition 2.2 A point where the moment map vanishes is called a minimal point.

Theorem 2.3 [29, Theorem 4.3] Let G be a reductive group acting linearly on V , as
above, and p be a minimal point. The orbit G · p is closed and the stabilizer subgroup
G p is self-adjoint, i.e. closed under transpose. Furthermore, if q ∈ G · p is another
minimal point, then q ∈ K · p, where K = G ∩ O(V ) and O(V ) is the orthogonal
group relative to the inner product on V .
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A step towards the Alekseevskii conjecture 203

We note that in the work of Richardson and Slodowy [29], they do not define the
moment map. However, their definition of minimal point coincides with ours. Our
interest in the tools above comes from looking at the change of basis action on the
space of representations of a Lie algebra.

2.1 The space of representations

Given a Lie algebra n and vector space h, we consider the vector space V =
Hom(h,Der(n)). If h were a Lie algebra acting by derivations on n, we could think
of this representation of h as an element of the vector space V = Hom(h,Der(n)). In
the sequel, h will not be a Lie algebra itself, but a special subspace of a Lie algebra.

The group GL(n) acts in the natural way on V . For θ ∈ V and g ∈ GL(n) we
define g · θ by

(g · θ)(Y ) = gθ(Y )g−1,

for Y ∈ h. To define a moment map, we consider the most natural inner products on
V and gl(n).

On gl(n), we use the usual inner product 〈〈A, B〉〉 = tr ABt . To define an inner
product on V , we first assume that n and h are endowed with inner products. Now take
θ, λ ∈ V and {Yi } an orthonormal basis of h and define

〈θ, λ〉 =
∑

i

tr θ(Yi )λ(Yi )
t ,

where the transpose is being taken with respect to the inner product on n. To be able
to define a moment map, we must first observe that indeed gl(n) is self-adjoint.

Remark 2.4 If we denote this representation of GL(n) on V by ρ, then we have

ρ(gt ) = ρ(g)t ,

where the first transpose is taken in GL(n) relative to the inner product on n and the
second is taken in GL(V ) relative to our natural choice of inner product on V =
Hom(h,Der(n)). In this way, the action of GL(n) on V is self-adjoint.

One quickly sees that the moment map m : V → gl(n) of the GL(n) action on V
is given by

m(θ) =
∑

i

[θ(Yi ), θ(Yi )
t ].

This is also computed in the appendix of [5] written by Jorge Lauret.
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204 M. Jablonski, P. Petersen

3 Einstein metrics on G/K

Our main structure results on non-compact, homogeneous Einstein spaces build on
those recently obtained in [20].We begin by recalling the details from that work which
we will use. In this section G will be a Lie group, not necessarily reductive.

Let G/K be endowed with an Einstein metric of negative scalar curvature. The
Lie algebra g = Lie G admits a decomposition which is akin to an ‘algebraic Levi
decomposition’. Namely, g = u � n, where u is reductive and n is the nilradical. In
terms of the above notation, we have

g1 = [u, u] and g2 = z(u) � n,

where z(u) denotes the center of u and n is the nilradical of g. Furthermore, k ⊂ u and
there exists an Ad K -stable complement h of k in u. Naturally, we identify h⊕ n with
TeKG/K and we have that h ⊥ n. These properties are very special to the Einstein
setting and do not happen in general, see [20] for more details.

Remark 3.1 The inner product on h extends naturally to an inner product on u such that
h ⊥ k with Ad(K ) acting orthogonally. As u is reductive, we have u = [u, u] + z(u)
(vector space direct sum). Recently, Arroyo and Lafuente proved that this direct sum
is orthogonal using Lemma 3.6 (i) below, see [4].

The following comes from [20,Theorem4.6]. In the sequel,G is a simply-connected
Lie group, K is connected, and so G/K is simply-connected.

Theorem 3.2 [Lafuente-Lauret] Let G/K be a homogeneous space endowed with an
Einstein metric of negative scalar curvature. Then G = U � N, where U is reductive,
N is nilpotent, and K < U. Furthermore,

(i) The induced left-invariant metric on N is nilsoliton.
(ii) Denote the adjoint action of u on n by θ : u → Der(n). The induced metric on

U/K satisfies RicU/K = cId +Cθ , where Cθ is the symmetric operator defined
by

〈Cθ (Y ),Y 〉 = 1

4
tr(S(θ(Y ))2.

Here S(A) denotes the symmetric part of the endomorphism A : n → n relative
to the soliton metric on N.

(iii) The adjoint action of u on n satisfies the compatibility condition

∑

i

[θ(Yi ), θ(Yi )
t ] = 0

where {Yi } is an orthonormal basis of h ⊂ u and transpose is being taken with
respect to the nilsoliton metric on n.

Using this theorem and the following technical lemma, to be proven later, we prove
Theorem 0.1.
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A step towards the Alekseevskii conjecture 205

Lemma 3.3 Let G = U � N act transitively on an Einstein space of negative scalar
curvature. Let g1 = [u, u] and write g1 = gc + gnc as a sum of its compact and
non-compact ideals. Then θ(gc) consists of skew-symmetric endomorphims acting on
n.

Proof (Proof of Theorem 0.1)Wefirst note that it suffices to prove the claim in the case
that G/K is simply-connected. This follows from the fact that the simply-connected
cover G̃ of G acts on the simply-connected cover of G/K , that G̃c covers Gc, and K̃
covers K . So if G̃c < K̃ , then Gc < K . From the above theorem, we have

RicU/K = cId + Cθ

where〈Cθ (Y ),Y 〉 = 1
4 tr(S(θ(Y ))2. The lemma above shows that Cθ vanishes on gc

and so in the direction of any non-vanishing Killing field Y ∈ gc, we see that

RicU/K (Y ) < 0.

Applying Lemma 1.6 to U/K , we see that this is not possible and so Gc < K , as
desired. This proves Theorem 0.1. �	

3.1 Refining the structure of G and θ

To prove Lemma 3.3 and construct a transitive group with the properties given in
Theorem 0.2, we first refine the structure of the U action on n.

Remark 3.4 Throughout, we consider the adjoint representation of U on n. We abuse
notation and denote this by θ : U → Aut(n). This choice of notation is natural as
the corresponding Lie algebra representation of u is precisely the one denoted by
θ : u → Der(n) above.

We may restrict θ to be a map θ : h → Der(n). Now the compatibility con-
dition above says precisely that θ is a minimal point of the GL(n) action on
V = Hom(h,Der(n)).

Remark 3.5 Observe that by extending the inner product on h⊕ n to an inner product
on g = u ⊕ n, as described above, we have that ad k acts skew-symmetrically and so
θ : u → Der(n) is a minimal point of the GL(n) action on V = Hom(u,Der(n)). We
adopt this view in the sequel.

Lemma 3.6 The abelian algebra θ(z(u)) consists of normal operators such that
θ(z(u))t commutes with all of θ(u).

Proof This is simply an application of more general GIT results [29, Theorem 4.3]
(Theorem 2.3 above). To apply that work, we compute the stabilizer of the GL(n)-
action at θ which is

GL(n)θ = {g ∈ GL(n) | g · θ = θ} = {g ∈ GL(n) | gθ(Y )g−1

= θ(Y ) for all Y ∈ u},
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206 M. Jablonski, P. Petersen

that is, g ∈ GL(n)θ must commute with all θ(Y ). Now take u ∈ Z(U ) and consider
g = θ(u). Clearly θ(u) ∈ (GL(n))θ and so, by the theorem above, we have the same
for (θ(u))t . Upon differentiating, we obtain the lemma. �	
We now extend the group G to a larger, transitive group G of isometries whose
structure is somewhat cleaner. For u ∈ Z(U ), we consider θ(u)t and φ(u) =
θ(u)(θ(u)t )−1 ∈ Aut(N ). From the above, we know that φ(u) acts orthogonally
and commutes with θ(U ). Thus we may realize φ(u) ∈ Aut(G) and consider the
group

G = φ(Z(U )) � G

which acts naturally on G/K by isometries and with stabilizer K = φ(Z(U ))K .

Remark 3.7 By construction, G = U � N , where U = Uφ(Z(U )), G1 = [U,U ] =
[U ,U ], and Z(U ) = Z(U )φ(Z(U )). From Lemma 3.6, we have that θ(Z(U )) is
closed under transpose and we will see below that U is the smallest group containing
U such that θ(U ) is self-adjoint.

Remark 3.8 Denote the Lie algebra of U by u. As φ(z(u)) acts skew-symmetrically
on n and trivially on u, we may extend the inner product on g to one on g so that
φ(z(u)) acts skew-symmetrically on g. In doing so, the extension of θ to all of u is a
minimal point in Hom(u,Der(n)).

Proposition 3.9 Let θ be a minimal point of the GL(n)-action on V = Hom(u,
Der(n)), as above. Then

(i) θ(u) is self-adjoint,
(ii) θ(g1) is self-adjoint, and
(iii) θ(gc) acts skew-symmetrically on n.

Before proving (i), we use it to quickly justify the last two claims. To see that θ(g1)
is self-adjoint, observe that this subalgebra is precisely the commutator subalgebra of
θ(u) and the commutator subalgebra of a self-adjoint algebra is always self-adjoint.
This proves (ii).

To see (iii), note that θ(g1) ∩ so(n) is a maximal compact subalgebra of θ(g1)
as θ(g1) is self-adjoint. Recall that the maximal compact subalgebras of θ(g1) are all
conjugate. As g1 = gc+gnc, we see that θ(gc) is contained in every maximal compact
subalgebra and so we have that θ(gc) is contained in so(n). Note, (iii) above is the
statement in Lemma 3.3.

Remark 3.10 It seems noteworthy to point out one consequence of the proposition
above. If G/K admits a G-invariant, Einstein metric of negative scalar curvature, then
from Theorem 3.2 the induced geometry on U/K will be such that the most negative
eigenvalue of Ric occurs along the orbit of a maximal compact subgroup of G1. No
known examples of this kind exist. There are examples of non-compact semi-simple
Lie groups G1 with left-invariant metrics with negative Ricci curvature, but in these
examples the eigenvalues in the direction of themaximal compact ofG1 are the closest
to being zero, not the most negative.
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A step towards the Alekseevskii conjecture 207

To prove part (i) of the proposition, we first establish some preliminary results.

Lemma 3.11 There exists g ∈ GL(n) such that (g · θ)(u) is self-adjoint.

The above is equivalent to saying that there exists some inner product relative to
which θ(u) is self-adjoint. The existence of such an inner product is a classical result
of Mostow [25]. To apply that work, observe that θ(u) = θ([u, u]) + θ(z(u)), the Lie
algebra θ([u, u]) is semi-simple and hence fully reducible and algebraic, and θ(z(u))
was shown to be self-adjoint above, Lemma 3.6.

Lemma 3.12 Let θ0 ∈ Hom(u,Der(n)) be such that θ0(u) is self-adjoint. Let θt be
the trajectory of the negative gradient flow of ||m||2, where m is the moment map for
the GL(n) action on Hom(u,Der(n)). Then θt (u) = θ0(u) is self-adjoint.

Proof Take g ∈ θ0(U ) ⊂ GL(n) and consider the value of the moment map at g · θ0.
Applying the formula for the moment map at the end of Sect. 2, we have the following

m(g · θ0) =
∑

i

[(g · θ0)(Yi ), (g · θ0)(Yi )
t ]

=
∑

i

[(gθ0(Yi )g−1, (g−1)tθ0(Yi )
t gt ]

where {Yi } is an orthonormal basis of u. As θ0(u) is self-adjoint and U is connected,
we see that θ0(U ) is self-adjoint and so m(g · θ0) ∈ θ0(u).

As the gradient of ||m||2 at p ∈ V is given by m(p) · p, using standard ODE
arguments, we see that the orbit θ0(U ) · θ0 is a submanifold in V = Hom(u,Der(n))
which is stable under the negative gradient flow of ||m||2 and the result follows. �	

We now finish the proof of Proposition 3.9. The representation θ is a minimal point
of the GL(n) action on V = Hom(u,Der(n)) and from Lemma 3.11 we know there
exists g ∈ GL(n) such that θ0 = g · θ is self-adjoint. Recall, the orbit GL(n) · θ is
closed (Theorem 2.3) and so the negative gradient flow of ||m||2 (starting in the orbit)
will converge to a point in the orbit which is a minimal point, see either [15, Theorem
5.2] or [14, Sect. 7]. (Note, these works are stated over projective space, but one easily
passes back from the result in projective space to the vector space V .)

Thus, the trajectory θt of the negative gradient flow of ||m||2 starting at θ0 limits
to a minimal point λ ∈ GL(n) · θ . Although the representation θt is changing, by the
above lemma the image of u is not and we see that

λ(u) = θt (u) = θ0(u)

is self-adjoint.
Now, as λ and our original θ are both minimal points in the same GL(n)-orbit, we

know there exists k ∈ O(n) such that θ = k ·λ (Theorem 2.3). Thus, θ(u) = kλ(u)k−1

is self-adjoint. This completes the proof of Proposition 3.9.
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3.2 Constructing a special transitive group of isometries

Here we complete the proof of Theorem 0.2.

Lemma 3.13 Let G/K beahomogeneousEinstein space of negative scalar curvature.
Write G = (G1Z(U )) � N and g = (g1 + z(u)) � n, as above. Then

(i) K = K1K2, where K1 = K ∩ G1 and K2 = K ∩ Z(U ).

Furthermore, for X ∈ z(u), we have

(ii) θ(X) is non-zero and
(iii) if θ(X) is skew-symmetric, then X ∈ k = Lie K .

Proof We prove (ii) and (iii) first. If θ(X) were zero, then X would be central in g and
hence contained in the nilradical n. But n∩ u = ∅ and so θ(Z) is non-zero. The proof
of (iii) is the same as in the case X ∈ gc. See the proof of Theorem 0.1 which is just
after Lemma 3.3.

We prove (i). As K is connected, it suffices to prove the statement at the Lie algebra
level, i.e. that k = k1 + k2, where k1 = k∩ g1 and k2 = k∩ z(u). Take X ∈ k and write
it as

X = X1 + X2, where X1 ∈ g1 and X2 ∈ z(u).

Recall from the construction of u above, we have X2 ∈ z(u) ⊂ z(u). As θ(g1) and
θ(z(u)) are self-adjoint, disjoint, and θ(X) is skew-symmetric, we see that both θ(X1)

and θ(X2) are skew-symmetric. Thus, X2 ∈ k by (iii) and so X1 = X − X2 ∈ k. �	
One consequence of (ii) above is that θ restricted to z(u) is non-singular. Now

consider the group G constructed above, see Remark 3.7. The center z(u) is self-
adjoint under θ and can be written as

θ(z(u)) = (θ(z(u)) ∩ so(n)) + (θ(z(u)) ∩ symm(n)),

where symm(n) denotes the symmetric matrices relative to the inner product on n. As
θ restricted to z(u) is non-singular, we have a decomposition

z(u) = kz + a,

where θ(kz) consists of skew-symmetric matrices and θ(a) consists of symmetric
matrices. We are now in a position to prove Theorem 0.2. The group H below fulfills
all the desired conditions.

Proposition 3.14 Let H be the connected subgroup of G whose Lie algebra is
given by h = (gnc + a) � n. Then

(i) H acts transitively on G/K = G/K,
(ii) the Levi factor for H is H1 = Gnc and so Hc is trivial,
(iii) the radical of H is H2 = AN,
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(iv) the adjoint action of a on n is by symmetric endomorphisms, and
(v) the stabilizer H ∩ K of the H-action on G/K is contained in H1.

Proof We prove (i). Observe that we have the following equalities

h + k = gnc + a + n + k = gnc + gc + kz + a + n + k = g + k,

since gc and kz are contained in k. As such, the H -orbit of eK inG/K = G/K is open.
As this orbit is a Riemannian homogeneous space, it is an open complete submanifold
of the complete, connected Riemannian manifold G/K and hence equals G/K . Thus,
H acts transitively.

Statement (ii) is immediate from the construction of h as the Levi factor is the max-
imal semi-simple subalgebra/subgroup. Again, statement (iii) is immediate from the
construction of h as the radical is the maximal solvable ideal of h. By the construction
of a, θ(a) consists of symmetric endomorphisms of n; this is precisely statement (iv).
Finally, to see (v), we apply Lemma 3.13 by observing that no element of θ(a) is
skew-symmetric and hence A ∩ K is trivial. �	
Remark 3.15 It seems interesting to note that arguments above can be used to show
that for any transitive group of isometries G acting on a homogeneous, Einstein space
G/K of negative scalar curvature that G = G1 � G2 and G2 decomposes as K2S2
where K2 ⊂ K , S2 ∩ K is trivial, and G1S2 acts transitively on G/K . Furthermore,
the induced geometry on S2 can be shown to be Einstein.

4 The generalized Alekseevskii conjecture in dimension 5

We apply the work above to show that any 5-dimensional, homogeneous Ricci soliton
with negative cosmological constant is isometric to a simply-connected solvable Lie
group with left-invariant metric. This verifies the Generalized Alekseevskii conjecture
in dimension 5. This result was recently obtained in [5] and we give an alternative
proof.

We begin by restricting our attention to those Ricci solitons which are not Einstein
as the Einstein case was previously established in [28]. Further, we are able to restrict
ourselves to the case that G/K is simply-connected as we will show that the spaces of
interest are solvmanifolds. See [17] for this reduction to the simply-connected case.

From [16] together with either [12] or [20], we know that there exists G ′ > G such
that G is codimension 1 in G ′ and G ′/K is Einstein with non-trivial mean curvature
vector H which satisfies

〈H, X〉 = tr (ad X) for all X ∈ g.

Lemma 4.1 If G ′/K is a solvmanifold, then G/K is also a solvmanifold.

To see this, observe thatG ′/K being a solvmanifold and Einstein implies the isometry
group of G ′/K is linear [17], so G1 is linear and K1 = K ∩G1 is a maximal compact
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subgroup of G1. Let S1 be the Iwasawa subgroup of G1. Recall, S1 is solvable and
G1 = S1K1. From here we see that S1 � G2 acts on G/K with an open orbit and so
acts transitively, i.e. G/K is a solvmanifold.

Remark 4.2 From the lemma above, to obtain the desired result on 5-dimensional
Ricci solitons, it suffices to prove the result for 6-dimensional, homogeneous Einstein
spaces of negative scalar curvature with non-trivial mean curvature vector. This is the
result we will show; in the sequel G/K will denote such a 6-dimensional space.

From Theorem 0.2 we have the decomposition

g = (g1 + z(u)) � n

where u = g1 + z(u) is reductive, g1 is semi-simple with no compact ideals, and
k ⊂ g1. Further, we have that the mean curvature vector is central in u, i.e. H ∈ z(u)
(see Eqn. 2.1 of [16]).

Remark 4.3 To show that G/K is a solvmanifold, it suffices to show that G1/K is a
solvmanifold.

The nilradical n cannot be trivial as otherwise we would have an Einstein metric on
U/K whenU has non-trivial center (cf. Corollary 1.8). Nowwe see that dimG1/K ≤
4.
Case dim n = 1. In this case, we have Der(n) � R is spanned by the mean curvature
vector H and so θ(g1) = 0. If dimG1/K = 4, then from Lafuente-Lauret’s structure
theorem (Theorem 3.2) we see that G1/K is Einstein and so our result is true as all 4-
dimensional non-compact, homogeneous Einstein spaces are solvmanifolds. (See [18]
for the classification of 4-dimensional, non-compact, homogeneous Einstein spaces.)

Now assume that dimG1/K = 3. In this case, as dim z(u) = 2, we consider the
codimension 1 subgroup G of G with Lie algebra

g = g1 + R(X), where X ∈ z(u) and X ⊥ H.

As tr (ad X) = 0 (from the definition of the mean curvature vector H ), we see that
θ(X) = 0. Further, we have that

RicG/K < 0

To see this, one applies [20, Lemma 4.2] together with Lafuente-Lauret’s structure
theorem (Theorem 3.2) and the observation that G/K = G/K × R is a Riemannian
product, where R is the Lie group whose algebra contains the mean curvature vector
H . However, the group G has center and this violates Corollary 1.8.

Case dim n = 2. Here dimG1/K = 3 and the only case in whichG1/K is not already
a solvmanifold is when g1 = sl2R with k trivial. We demonstrate that this case is not
a possibility.
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By Proposition 3.9, we know that θ(sl(2, R)) must be self-adjoint. As such, there
exists X ∈ sl(2, R) such that θ(X) is skew-symmetric and so the smallest eigenvalue
of

Ric
˜SL(2,R)

(v, v) = RicU/K (v, v) = c|v|2 + tr(S(θ(v)))2

occurs in the direction of X which is tangent to a maximal compact subalgebra of
sl(2, R). Note that ad X has purely imaginary eigenvalues.

One can see that no suchmetric exists on ˜SL(2, R) byapplying [24]. From thatwork,

we know that for any left-invariant metric on ˜SL(2, R) there exists an orthonormal
basis {e1, e2, e3} such that

[e2, e3] = λ1e1 [e3, e1] = λ2e2 [e1, e2] = λ3e3

with λ1 < 0 < λ2 ≤ λ3. Furthermore, the given basis diagonalizes Ric
˜SL(2,R)

.

For any left-invariant metric on ˜SL(2, R), we claim that the smallest eigenvalue of
Ric

˜SL(2,R)
occurs in either the e2 or e3 direction. This follows quickly from [24] by

using that either two of the eigenvalues of Ric
˜SL(2,R)

are zero and one negative, or

two are negative and one positive. In the first case, one can show that the eigenvalues
are ric(e1) = ric(e3) = 0 and ric(e2) = 2λ3λ1 < 0. In the case that all eigenvalues
of Ric

˜SL(2,R)
are non-zero, these eigenvalues are given by ric(ei ) = 2μi+1μi+2 with

μi = 1
2 (−λi +λi+1 +λi+2). (Here the formulas are written using the convention that

our indices are taken mod 3.) By inspection, one is able to see that ric(e1) cannot be
the smallest such eigenvalue.

Finally, ad e2 and ad e3 have real eigenvalues. Together with the above work we
see that ad X above must have only zero eigenvalues and so X is central in sl(2, R).
This is a contradiction as semi-simple Lie algebras have no center.
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