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ABSTRACT
We examine heritability estimation of an ordinal trait for osteoarthritis, using a
population of pig-tailed macaques from the Washington National Primate Research
Center (WaNPRC). This estimation is non-trivial, as the data consist of ordinal
measurements on 16 intervertebral spaces throughout each macaque’s spinal cord,
with many missing values. We examine the resulting heritability estimates from
different model choices, and also perform a simulation study to compare the perfor-
mance of heritability estimation with these different models under specific known
parameter values. Under both the real data analysis and the simulation study, we
find that heritability estimates from an assumption of normality of the trait differ
greatly from those of ordered probit regression, which considers the ordinality of the
trait. This finding indicates that some caution should be observed regarding model
selection when estimating heritability of an ordinal quantity. Furthermore, we find
evidence that our real data have little information for valid heritability estimation
under ordered probit regression. We thus conclude with an exploration of sample size
requirements for heritability estimation under this model. For an ordinal trait, an
incorrect assumption of normality can lead to severely biased heritability estimation.
Sample size requirements for heritability estimation of an ordinal trait under the
threshold model depends on the pedigree structure, trait distribution and the degree
of relatedness between each phenotyped individual. Our sample of 173 monkeys
did not have enough information from which to estimate heritability, but estimable
heritability can be obtained with as few as 180 related individuals under certain
scenarios examined here.

Subjects Genetics, Orthopedics, Statistics
Keywords Heritability, Bayesian probit/liability model, Statistical genetics, Sample size, Pedigree,
MCMC

INTRODUCTION
Osteoarthritis is a condition that is characterized by the breakdown of cartilage in

joints between bones, and can occur in any joint in the body. Those who suffer from

osteoarthritis may experience pain and soreness in the affected area, and even a lack
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of mobility, particularly in spinal osteoarthritis. Thus, spinal osteoarthritis is a serious

worldwide public health concern, and a better understanding of this disease can lead

to better treatment and care of patients who suffer from it (Hadjipavlou et al., 1999).

This disease is characterized by several radiological features, including narrowing of the

intervertebral disk space, bone spurs along the spinal cord (osteophytosis), and vertebral

end-plate sclerosis (Lawrence, 1969). The conglomeration of these features is generally

referred to as degenerative disk disease, or DDD (Vernon-Roberts & Pirie, 1977), although

this term is also used to indicate the presence of a single one of these features (Cohn et al.,

1997; Lawrence, 1969).

Specific aspects of DDD in humans have been well-characterized throughout the

literature. For example, evidence for associations between DDD and various factors

have been demonstrated, including age (Frymoyer et al., 1984; Riihimaki et al., 1990),

body mass (Riihimaki et al., 1990), trauma (Kerttula et al., 2000), type and level of

activity (Caplan, Freedman & Connelly, 1966; Riihimaki et al., 1990; Videman, Nurminen

& Troup, 1990; Videman & Battie, 1999), and gender (Jones, Pais & Omiya, 1988; Miller,

Schmatz & Schultz, 1988). Research in other mammals has corroborated the contribution

of biomechanical stress to the development of DDD (DeRousseau, 1985; Schultz, 1969).

Indeed, the bipedality and erect posture of humans has been assumed to be one of the

primary causes of DDD in our species (Bridges, 1994; Jurmain & Kilgore, 1995; Knusel,

Goggel & Lucy, 1997; Schultz, 1969; Shore, 1935).

Nevertheless, much is still unknown about the etiology of DDD. In particular, the extent

to which genetics plays a role in DDD development has not yet been uncovered. Since

there are safety concerns posed by radiography, the macaque monkey is often used as an

animal model for humans in the study of bone diseases, due to its close genetic relatedness

to humans (Duncan, Colman & Kramer, 2011; Duncan, Colman & Kramer, 2012). One

may question its appropriateness for DDD as macaque monkeys are not bipedal, but this

concern was addressed by Kramer, Newell-Morris & Simkin (2002), who explored DDD

specifically in the macaque species known as pig-tailed macaques (Macaca nemestrina),

and concluded that they are indeed an appropriate animal model for DDD in humans.

Here, we use a population of captive pig-tailed macaques to explore the question of

whether there is a genetic component to DDD. To this end, we examine whether DDD is

heritable. Heritability is a statistically defined quantity that describes the degree to which a

trait is determined by genetics. Heuristically, if a trait has high heritability, then individuals

who are more related to each other would appear more similar to each other than average,

with regard to this trait. While genotyping in humans is now cheap and ubiquitous,

heritability estimation in primates is still often performed to determine whether a trait

warrants genotyping in the animal model, with the goal of mapping genes that control the

trait.

Methodologically, we are interested in a model for the trait that would allow for a

transparent heritability estimation. A common assumption is that the trait follows a

normal distribution. This is generally justified by the polygenic model, which postulates

that complex traits are under control by several additive, independent loci, with similar
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variances (Fisher, 1918). However, this assumption may be drastically violated in some real

data problems. In particular, if the trait is ordinal with only a few categories, it is clear that

the trait would not follow any distribution resembling normality. Likewise, normality may

be violated even if there are many categories, but one category is severely over-represented.

Such is the case with our trait distribution in the pig-tailed macaques.

Heritability estimation with discrete data was first demonstrated for the binary case

by Dempster & Lerner (1950), and extended to multiple ordered categories by Gianola

(1979), using transformations of a continuous trait. However, some intrinsic difficulties

to these tasks quickly presented themselves. First, unlike continuous traits, the variance of

a binary trait is closely tied to the mean or prevalence of the trait, and thus provides no

useful information about the inherent biological variability of interest (Burton, Bowden

& Tobin, 2007). Furthermore, the observed scale of an ordinal trait may not be additive

(e.g., an observation of “4” may not be equal to twice the value of an observation of “2”),

thus leading to biases in parameter estimates (Gianola, 1982; Höschele, 1986). Thus, some

authors have completely abandoned transforming/thresholding continuous models and

has attempted to estimate heritability of discrete traits directly under Poisson and negative

binomial mixed models (Foulley, Gianola & Im, 1987). However, these models have their

own drawbacks as well, including the issue of whether heritability is even well-defined in

these contexts (Matos et al., 1997).

Here, we consider the threshold model for ordinal data (Wright, 1934). This model

makes the assumption that the value of the ordinal trait is dictated by an unobserved

latent variable with a normal distribution, referred to by Wright (1934) as the liability.

For example, with a binary variable that has observed states of 0 and 1, the value for any

given individual would be determined by whether that individual’s value of the liability is

above or below some threshold. We choose this model primarily because of its biological

justifiability, through applying the polygenic model to the liability. That is, regardless of the

distribution of the observed trait, if the phenotype is determined by many genetic loci, then

it is plausible that an underlying normally distributed liability would exist.

A comprehensive Bayesian framework for heritability estimation under the threshold

model was formulated by Sorensen et al. (1995). Further work was done through the

next 10 years, e.g., improving the MCMC convergence (Cowles, 1996), and extending the

framework to a censored normal outcome variable (Sorensen, Gianola & Korsgaard, 1998).

There was, however, no widely available and actively maintained open-source software to

perform such analyses until the recent appearance of the MCMCglmm package in R (Hadfield,

2010). Thus, the time has come when biologists with ordinal data wishing to estimate

heritability using the threshold model can begin to do so more easily than before.

Of course, ordinal data will not necessarily follow the threshold model, and although we

obviously cannot “know” what the true distribution of any real data trait is, it is still useful

to examine the statistical properties of heritability estimates under various scenarios and

models, to reveal the consequences of misspecifying the distribution of the trait. That is, if

the trait follows the threshold model with a liability trait that follows a normal distribution,

but we incorrectly assume that the trait itself follows a normal distribution, how is the
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estimation of heritability affected by this incorrect assumption? We examine this under

a variety of scenarios and number of categories. We then examine heritability estimation

on our actual dataset under these different models, which illuminates the concern of how

much data are needed to obtain estimable heritability under this model. Thus, we conclude

with an exploration of sample size requirements, which will be useful in guiding future

studies.

METHODS
Heritability
When estimation of heritability is performed with pedigree data, the structure of these data

allows for the identifiability of the quantities that define heritability. The kinship coefficient

Φ and coefficient of identity κ2, also commonly referred to as Δ7 (Wright, 1922; Jacquard,

1966), are two quantities well established by classical population genetics. Here, we have

a matrix Φ whose components Φij are defined as the probability at a given locus that two

gene copies chosen at random from two individuals i and j are Identical-By-Descent (IBD),

and κ2 is also a matrix whose components κ2ij are defined as the probability at a given

locus that two individuals i and j share two gene copies IBD. Then, for any trait vector Y of

measurements taken on individuals within the pedigree, the polygenic model (Fisher, 1918)

posits that Y will have a multivariate normal distribution with covariance matrix

Σ = 2σ 2
AΦ + σ 2

Dκ2 + σ 2
E I, (1)

where σ 2
A is the variance of the additive genetic effect, σ 2

D is the variance of the dominant

genetic effect, σ 2
E is the variance of the environmental effect, and σ 2

A +σ 2
D +σ 2

E = σ 2
Y if there

are no other effects to consider (such as household or maternal), and there is no interaction

or correlation between effects (Lange, 2002). Heritability of the trait Y is then defined as the

ratio of the additive genetic variance to the total variance of the trait: h2
= σ 2

A/σ 2
Y .

Estimation under normality
The framework of the polygenic model then leads us to consider a multivariate normal

model for the vector of trait values from the whole sample. Under this model, the

partitioning of the covariance matrix in (1) allows for estimation of these variance

components through maximum likelihood. Furthermore, in this framework it is easy

to adjust for covariates, as we can state that Y ∼ N(Xβ,Σ), where X is an (n × p) matrix for

n individuals and p covariates of interest (e.g., age, weight, gender), and then β is a (p × 1)

column vector of mean components. The βs are nuisance parameters since our object of

interest is still just the variance components, but incorporating them into the model allows

for control over confounders. Thus, we can write the usual multivariate normal likelihood:

L(β,σ 2
A,σ 2

D,σ 2
E ) = (2π)−

n
2 |Σ|

−
1
2 exp(−0.5(Y − Xβ)TΣ−1(Y − Xβ)) where Σ is explicitly

partitioned into our variance components of interest; thus we have a tractable likelihood

that we can attempt to maximize with respect to our parameters. Computational issues in

solving for the roots of the likelihood equations for variance components estimation were

addressed by Lange, Westlake & Spence (1976) and implemented in the MENDEL software
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package (Lange et al., 2001). One could also proceed using restricted maximum likelihood

for fitting linear mixed models, available in software packages such as ASReml (Gilmour,

Thompson & Cullis, 1995); however, we do not consider this here.

Threshold model: ordered probit regression
For ordinal data, a more realistic assumption than normality of the trait may be to assume

that this trait is dictated by an underlying normally distributed latent variable. Then, an

individual’s value of the liability trait would determine which category that individual falls

into for the observed trait. Formally, we consider the following model:

U = Xβ + a + ε; P(Yi = j) = P(tj−1 < Ui ≤ tj), (2)

where U = (U1,...,Un)
′ is the vector of unobserved liabilities for each individual,

and a is a random vector representing the breeding values for each individual, with

a|σ 2
A ∼ N(0,2Φσ 2

A). Then, with ε ∼ N(0,σ 2
E I), the latent variable vector U has the

same covariance structure given by Σ in (1) above, assuming here that σ 2
D = 0. Finally,

t ≡ (t0,...,tC) are the true but unknown cutpoints on the distribution of the latent

variable, which, along with the values of each Ui, determine the values of each Yi, where

Y is the observed categorical outcome vector. This forms the basis for Ordered Probit

Regression (OPR).

Heritability estimation under this model could be performed through either Maximum

Likelihood or Bayesian approaches. Since open-source implementation for Bayesian ap-

proaches to heritability estimation under this framework are readily available, we proceed

in that manner. Namely, we use the R package MCMCglmm (Hadfield, 2010). Ideally, we

would like to approximate the posterior distribution of σ 2
A and σ 2

E so that we can estimate

heritability. Here, this is done along with concurrent estimation of U, β, and t, given the

data Y that we observed and the pedigree. We impose inverse gamma prior distributions

on σ 2
A and σ 2

E , with shape and scale parameters (αA, γA and αE, γE, respectively) of 0.01.

We note here that these distributions on the individual variance components impose a

Beta(0.01, 0.01) prior distribution on h2, which will be discussed later.

To facilitate the Gibbs sampling, data augmentation of the unobserved liability U is

included as a latent variable, which we have already assumed to have a normal distribution,

given β (Tanner & Wong, 1987; Albert & Chib, 1993). Then, the joint posterior distribution

of the parameters and latent variables is given by:

p(β,U,t,σ 2
A,σ 2

E |Y) ∝ p(β)p(t)p(U|β,σ 2
A,σ 2

E ) × p(σ 2
A|αA,γA)p(σ 2

E |αE,γE)p(Y|U,t), (3)

where most of these distributions have already been mentioned above, but the prior p(β)

follows a normal distribution with a variance of 1010 and appropriate dimensions for

the number of fixed effects (e.g., age, weight), the prior p(t) for the thresholds is flat and

improper, and p(Y|U,t) is simply a vector of indicator functions of whether each Yi falls

into the category corresponding to the true value of Ui and t. To improve convergence, a

Metropolis–Hastings-within-Gibbs strategy is implemented in MCMCglmm, where U and t

are updated jointly using a Metropolis–Hastings step at each iteration, β is sampled jointly
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from the entire vector’s full conditional distribution, and σ 2
E and σ 2

A are each sampled

independently from their individual full conditional distributions (Cowles, 1996; Hadfield,

2011).

Identifiability of variance components and heritability
In latent models with an ordinal response variable, individual variance components many

not be identifiable (Harville & Mee, 1984; Mizstal, Gianola & Foulley, 1989; Luo et al.,

2001; Stock, Distl & Hoeschele, 2007; Ødegård et al., 2010). A common solution to this

problem is to fix one of the variance components to a known constant c (e.g., σ 2
E = 1). This

solution is viable, because even when individual variance components are not identifiable,

heritability—the main object of interest—may still be (Stock, Distl & Hoeschele, 2007;

Ødegård et al., 2010). In our case, fixing σ 2
E = c allows us to re-parameterize our model

in terms of heritability instead of variance components, yielding the following posterior

distribution:

p(β,U,t,h2
|Y) ∝ p(Y|U,t)p


U|β,σ 2

A =
h2c

1 − h2
,σ 2

E = c


p(h2), (4)

where p(h2) is density of the Beta distribution, as discussed in the previous section.

Although the outlined approach to solving the identifiability problem is theoretically

valid, in practice, fixing one of the variance components results in severe mixing problems

of MCMC algorithms designed to approximate the posterior (4) (Ødegård et al., 2010).

An alternative solution is to use MCMC to sample from the posterior of the unidentifiable

model (3), but draw inferences based on only the posterior of heritability parameter,

h2. This latter approach can be viewed as MCMC with auxiliary variable augmentation

of the state space, where σ 2
E plays the role of an auxiliary variable. Using simulated

data, we demonstrate that the auxiliary MCMC approach is superior in practice to the

MCMC targeting the posterior (4), at least when using MCMCglmm package. Figure 1

shows traceplots of variance component(s) and heritability under both MCMC sampling

schemes, using two different pedigree structures. For the first pedigree, fixing σ 2
E = 1

results in such slow mixing that the Markov chain does not reach stationarity, while the

auxiliary MCMC mixes very well, settling on the true value of heritability, which we set to

0.6 for both pedigrees. Using the second pedigree and fixing σ 2
E = 1, we observe possible

stationary behavior of the heritability traceplot, but still very slow mixing with 1000

MCMC iterations corresponding to an effective sample size of 15. The auxiliary MCMC

mixes much faster with 1000 MCMC iterations corresponding to an effective sample size

of 615. These two examples and results of our extensive simulation study, outlined below,

demonstrate that the auxiliary MCMC, even though unconventional, appears to work well

in practice.

Data
Simulations
We simulate several datasets under a variety of conditions. The simplest scenario is that

of a three generation pedigree shown in Fig. 2, where trait data are simulated over 40
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Figure 1 Variance components and heritability traceplots. Four scenarios are shown here, with traceplots of h2
= σ 2

A/(σ 2
A + σ 2

E ) on top, and
traceplots of the individual variance components on the bottom. The first scenario (column A) is the three generation pedigree. While the MCMC
samples of each individual variance component clearly do not show convergence (bottom), we observe that when we examine the corresponding
values of h2, this does appear to be stable (top). Conversely, when we fix σ 2

E = 1, this does not appear to stabilize the MCMC samples of σ 2
A here, and

h2
→ 1 as shown in the top and bottom panels of column B. With the WaNPRC pedigree (C and D), we again observe that without fixing σ 2

E = 1,

the MCMC samples of h2 does indicate convergence despite the fact that those for σ 2
A and σ 2

E individually do not. On the other hand, when fixing

σ 2
E = 1, we observe that σ 2

A does not “blow up” like it did in the three generation pedigree case, but mixing appears to be poorer with regard to the

traceplot of h2. Indeed, in these 1000 MCMC samples, our effective sample size is 15, compared to 615 when σ 2
E is not fixed to 1.

such distinct extended families, each of eight individuals: two unrelated founders with

two children, each with an unrelated spouse and one child of their own. The trait data are

simulated according to a multivariate normal distribution with mean vector determined

by an additional covariate (e.g., age), and covariance structure dictated by the relationship

matrix determined by this pedigree: that is, using the model in (2), X is a vector of ages

which are in agreement with the real data when available, or simulated at random when

unavailable, and β was set to a value of 1.5 to indicate a positive relationship between age

and OST. Also, in concordance with (1), the unrelated parents have 0 covariance, each

parent–offspring pair has a covariance of 0.5σ 2
A; and the extended relationship pairs have

covariances determined similarly.
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Figure 2 Three generation pedigree. The simpler scenario used for some simulations. Our simulated
data consist of 40 repeated independent iterations of this pedigree structure, for a total sample size of
320.

Figure 3 Simulating a zero-inflated trait. On the left-hand side is one simulated realization of a normally
distributed liability trait, with cut-points shown for the transformation to the observed zero-inflated
ordinal trait.

Using this same pedigree, we also simulate data according to the threshold model. First,

a latent variable is simulated according to a multivariate normal distribution with the same

mean and covariance structure as described above. This is followed by discretization of

the latent variable into categories. While we explore inference with various numbers of

categories, our primary interest is in a discretization into 10 categories, to mimic the actual

data that we observed in the pig-tailed macaques. Specifically, the discretization is done in

such a way to reflect the zero-inflated nature of our data. A graphical representation of this

is shown in Fig. 3.

We also consider the pedigree of our actual data of 542 pig-tailed macaques, with

multivariate normal trait data simulated with covariance structure dictated by this

pedigree structure. Again, we consider simulation of both a normally distributed trait,

and a zero-inflated ordinal trait dictated by a normally distributed latent variable as

per the threshold model (again represented by Fig. 3). Under each scenario, four “true”

heritabilities are considered: h2
= 0.4,0.6,0.75,0.90. The number of simulated datasets for

each value of heritability is 200.

WaNPRC pig-tailed macaques
The study population consists of six generations of pedigree data for 542 pig-tailed

macaques at the University of Washington National Primate Research Center (WaNPRC).
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Phenotypic data are available for 189 female monkeys present at the center in 2002,

between the ages of 4.7 and 29.2 years at that time with a mean of 10.11 years old. Younger

monkeys are over-represented (with n = 45 for monkeys between the ages of 4.7 and

6 years), and older monkeys are under-represented (with n = 12 for monkeys between the

ages of 17 and 29.2 years).

As a proxy for DDD, we measured osteophytosis (OST), also known as bone spurs.

OST trait values for each monkey were determined through radiography at each of a

total possible 16 intervertebral spaces through each monkey’s spinal cord, and each space

was recorded as 0, 1, 2, or 3 for unaffected, slight, moderate or severe bone changes,

respectively. Details of the data collection and primate facility can be found in the study

by Kramer, Newell-Morris & Simkin (2002).

From these raw data, there are a number of possible ways to summarize them into

one number per monkey to use as the putative outcome trait. Perhaps the most obvious

choice, the simple sum of the values from all intervertebral spaces, was removed from

consideration because each monkey had data from a different number of the 16 total

intervertebral spaces recorded; thus, there would be an upward bias in this value

corresponding to the monkeys which had more spaces recorded. Therefore, we choose to

focus on a subsample of the intervertebral spaces for which a large majority of the monkeys

had complete data. Specifically, with the seven intervertebral spaces from location L5 to

T10, there are a total of 173 of the 189 monkeys with complete data on these spaces. We

then combined adjacent categories that had less than three monkeys, to give a phenotype

which has a total of 10 ordered categories.

RESULTS AND DISCUSSION
Simulations: comparison of methods
The simulations were performed to assess both the consequences of assuming a normal

distribution on an ordinal trait with normal liability, and also the performance of

threshold model estimation under extreme discretization (e.g., our zero-inflated data).

Under both pedigree structures, we first simulate a trait under multivariate normality with

covariance structure dictated by the respective pedigree, and then perform heritability

estimation of that trait under both maximum likelihood and Bayesian methods with a

normality assumption. Results for the simulations under normality are shown on the left

half of each panel in Fig. 4. Next, we simulate a latent trait under multivariate normality

again with covariance structure dictated by the respective pedigree, and then discretize

the latent trait as described earlier. We then perform heritability estimation under both

maximum likelihood and Bayesian methods, but now the Bayesian method assumes the

threshold model via OPR, while maximum likelihood still assumes normality. The aim of

this experiment is to illustrate the potential consequences of incorrectly assuming a normal

distribution, when the trait actually follows the threshold model. Results are shown on

the right half of each panel in Fig. 4. Also, trace plots for chains initialized using different

starting points are shown in Fig. 5 for one representative simulation scenario (WaNPRC

pedigree with h2
= 0.60), showing no sign of nonstationarity in each case. The starting
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Figure 4 Comparison between maximum likelihood and Bayesian methods. Data were simulated
both under normality (left half of each panel) and the threshold model (right half of each panel).
Under normality, both maximum likelihood and Bayesian methods correctly assume normality. Under
the threshold model, maximum likelihood still (incorrectly) assumes normality, whereas the Bayesian
method correctly assumes the threshold model.

Figure 5 Trace plots of heritability. Chains for various starting values, for the scenario with h2
= 0.60 using the WaNPRC pedigree. The values of

σ 2
E and σ 2

A above each panel represent the starting values for the MCMC chain. Iterations were thinned at every 1000.

values for σ 2
E varied from (0.1,1,1000,100000), and the starting values for σ 2

A varied from

(0.1,1,10) as indicated on the plots. Starting values for β, t and U are obtained heuristically

as described in Hadfield (2010).

Under the scenarios with a normally distributed trait, maximum likelihood and

Bayesian estimations both show estimates that are centered around the true values of

heritability. In the scenarios with an ordinal trait, maximum likelihood gives estimates

that are quite far from the true values of heritability, tending to underestimate it severely.
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Table 1 Descriptive statistics. The mean, median, minimum, maximum, and standard deviation of each
variable in the dataset are shown here.

Mean Median Min Max sd

OST 1.64 0 0 9 2.79

Age (years) 9.83 7.40 4.70 29.20 5.08

Body mass (kg) 7.06 6.92 4.53 12.35 1.40

Parity (#) 2.13 1 0 15 3.03

Table 2 Heritability estimates. Adjusted for age, mass and parity.

Trait Model σ̂ 2
A σ̂ 2

E h2 95% CI

Average OST ML normal 0.0394 0.0781 0.335 (−0.089, 0.760)

Average OST Bayes normal 0.0400 0.0815 0.326 (0.0364, 0.717)

Binary OST Bayes OPR 6.45 · 108 8.31 · 108 0.430 (1.70 · 10−12, 1)

Ordinal OST Bayes OPR 1.06 · 1010 4.53 · 109 0.700 (5.56 · 10−11, 1)

Notes.
For maximum likelihood, CI, Confidence Interval; for Bayesian, CI, Credible Interval.

The Bayesian OPR performs much better under these scenarios, showing estimates that

are closer to the true values. This is as expected, as the OPR in fact assumes the “correct”

model under these simulations. In most of the scenarios, the medians of the heritability

estimates from OPR are within roughly 5% of the true value used for the simulations. We

do note that under the scenario with true h2
= 0.90, the estimates are centered above the

true value, close to 1. Examination of some trace plots showed that the chain for σ 2
E tended

to be equal to exactly 0 for a substantial portion of the iterations, thus leading to sampled

values of h2
= 1 (not shown). It is thus possible that under such a high value of h2, MCMC

has a hard time approximating the posterior distribution of h2.

Data analysis: WaNPRC pig-tailed macaques
Descriptive statistics for the study population of pig-tailed macaques are shown in Table 1.

Skewness in OST, age and parity are evident, as the mean is less than the center of the range

in each case. For age, those between 5 and 6 years old are over-represented (n = 40), and

those between 18 and 29 are under-represented (n = 11). For parity, 86 of the 173 monkeys

had a value of 0.

The OST trait distribution is shown as the darkest bars in Fig. 6 (the left-most of each

value). All analyses were adjusted for age, mass and parity, according to results from a

previous study indicating that these may be potential confounders of the association

between genetic factors and OST (Kramer, Newell-Morris & Simkin, 2002). The first two

rows of Table 2 show maximum likelihood and Bayesian results from naively using the

average OST value and assuming normality. The third row shows the result from using

Bayesian ordered probit regresion on the ordinal phenotype described above.

Maximum likelihood and Bayesian heritability estimates under the normality assump-

tion are comparable (0.335 and 0.326 respectively). The Bayesian OPR on the ordinal
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Figure 6 Distributions of the real and simulated OST phenotype, with age shifts.

trait shows a heritability estimate that is greater (0.700), but what is remarkable is that the

estimated variance components are very large (σ̂ 2
A = 1.06 · 1010 and σ̂ 2

E = 4.53 · 109). An

examination of the trace plots over MCMC generations suggested that the total variance

may be unidentifiable (Fig. 1). However, this also seemed to be the case in the ordinal

simulations with both the three generation pedigree and WaNPRC pedigree, where the

quantity of heritability was recovered successfully (as estimates tended to be centered

near the true values, as shown in Fig. 4). While this is of some technical concern, it thus

seems more important for our current purposes to examine the posterior distribution

of heritability as estimated from the MCMC. In our real data, we find that the posterior

distribution simply reflects the information provided by the prior; that is, our estimation

procedure was not able to extract substantial information from the data. This is shown in

panels A and A.1 in Fig. 7. A similar posterior distribution of heritability was observed in

the binary case (not shown). Also, results using different prior distributions are shown in

subsequent rows of Fig. 7. We observe that with n = 173 in either the real data or simulated

case, the estimated posterior distributions tend to reflect the prior distributions. In some

cases, mixing appears to be good, in the sense that the MCMC chain travels between 0

and 1 with no discernible pattern, such as with the Beta(0.01, 0.01) or Beta(0.1, 0.1) priors

using the WaNPRC data. In other cases, mixing appears to be poor, such as with a Beta(0.2,

0.2) prior using the WaNPRC data, or the Beta(0.01, 0.01) prior using the simulated dataset

with n = 173; in these cases, the posterior distribution reflects one of the two modes

of the prior distribution. These cases do raise uncertainty as to whether the posterior

distribution is simply hard to estimate here, or if the posterior distribution truly contains

no information about h2. However, with increased sample size such in the three panels

with n = 542, we obtain much stronger indications of stationarity of the MCMC chain

in all cases, and unimodal posterior distributions of h2, thus leading us to hypothesize

that the true posterior distribution of h2 contains more information about h2 with larger

sample sizes. The dataset and R code are provided in the Supplemental Information.
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Figure 7 Distributions of heritability. Three scenarios with different prior distributions are shown
consecutively, with two rows of panels for each scenario. (A–C) show empirical realizations within each
scenario of the prior distributions of heritability, according to inverse-gamma prior distributions on each
of the individual variance components. (A.1, B.1, C.1) show the posterior distributions of heritability
from the real data analysis. (A.2, B.2, C.2) show the posterior distributions of heritability from 173
simulated monkeys, and A.3, B.3 and C.3 show the posterior distributions of heritability from 542
simulated monkeys. A.4–A.6, B.4–B.6, and C.4–C.6 show trace plots of heritability corresponding to each
scenario, thinned to 1000. Simulated heritability was 0.60 in each case.
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Sample size exploration
Since we were not able to extract any conclusive information from our data, we explored

simulations to determine how much data would be necessary for heritability estimation

under the threshold model. First, we simulate two extreme cases: 173 monkeys (identical

to that of our real data), and the full 542 monkeys in the entire WaNPRC pedigree. In each

case, a zero-inflated trait is simulated under the threshold model. Again, we focus on the

posterior distributions of heritability, which are shown in A.2–A.3, B.2–B.3 and C.2–C.3 of

Fig. 7.

As shown, with 173 monkeys, threshold model heritability estimation typically

produces estimated posterior distributions that mimic the prior distribution, even

when the data are simulated according to the same threshold model that we are using

for estimation. In contrast, with the full pedigree of 542 monkeys, threshold model

heritability estimation succeeds in producing a spread of MCMC samples around our

truth of h2
= 0.60. We next aimed to determine the minimal number of monkeys required

to estimate heritability under simulation.

Our criteria for labeling a particular sample size as having estimable heritability follows

from our observations with the sets of 173 and 542 monkeys. That is, we examined the

resulting estimated posterior distributions of h2 at each sample size. Specifically, we

checked the proportions of the estimated posterior distribution that fell into each of the

10 bins of size 0.1, from 0 to 1. Then, if the bins of 0–0.1 and 0.9–1.0 had the smallest

proportion of mass from the estimated posterior distributions, we determined that the

sample size had estimable heritability. In each such case, we also observed a unimodal

posterior distribution with its mode near the simulated true h2, so while our criteria only

depends strictly on the decreasing tails of the posterior distribution, the result is that a

sensible posterior distribution of h2 indicates that h2 is estimable.

To this end, we created subsets of the full WaNPRC pedigree, proceeding by starting

with the original 173 monkeys and adding the most related monkeys to that set, based

on cumulative pairwise kinship coefficient. That is, the candidate monkey who is the

“most related” to the current set would be the one who has the greatest sum of kinship

coefficients with each monkey in the set, and is not currently in the set itself. Also, 28 of

the 173 monkeys actually are not related to any of the others in this set, so these were first

removed. We then added monkeys based on the maximum kinship criteria to create larger

subsets of monkeys (e.g., n = 200, n = 210, etc.), and proceed with our simulations as if

these were the monkeys for which we had data. We note that with sample sizes for which

h2 appeared to be estimable, stationarity of the MCMC was typically observed within

roughly 1 million iterations, at which point the above criteria for estimable heritability

was always satisfied. For sample sizes in which the posterior distribution did not satisfy

our criteria for estimable heritability, the trace plot for h2 would typically appear similar

to the prior distribution of h2, with trace plots showing no sign of nonstationary behavior

by the MCMC chain, as it bounces back and forth between 0 and 1 (such as in select

panels of Fig. 7). Additionally, when we ran certain scenarios with insufficient sample

sizes for up to 200 million iterations, the trace plots for h2 appeared the same as at 1
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million iterations, adding further evidence that the chain’s repeated jumping from 0 to

1 exhibits its stationary behavior. This suggests that our MCMC appears to be providing

a good approximation of the true posterior in both cases when the sample sizes lead to

estimable h2, and when sample sizes are low, with the true posterior not containing much

information about h2.

Additionally, we wanted to explore the effect of attenuation on the degree of zero-

inflatedness in our trait distribution, and whether a less extreme distribution may lend

itself to better heritability estimation. This has direct relevance to our real OST phenotype,

as it is a trait which manifests itself gradually over the lifespan of monkeys: in an older

sample of monkeys we expect to see a less zero-inflated trait distribution. By simply

increaing the value of our age covariate in our simulations by five years for each monkey,

we obtain this effect. An illustration of the trait distribution resulting from the five-year age

increase is shown in Fig. 6, with empirical averages from 100 datasets for the simulated

cases. Based on the posterior distribution histograms of heritability (not shown, but

similar to A.2–A.3, B.2–B.3 and C.2–C.3 of Fig. 7), we determine whether there was enough

information in the simulated data for each case.

Alternatively, we also examine phenotype data from another population of monkeys,

in the Wisconsin National Primate Research Center. These monkeys are older than our

WaNPRC center monkeys, with a mean age of 21.55 years old. Therefore, almost all of the

monkeys have exhibited some degree of the OST trait and there is no zero-inflatedness. We

perform simulations with a trait distribution that mimics this, to again determine what

sample size is required for estimable heritability.

Although it has less relevance to our primary WaNPRC data, we also explore whether

having phenotype data on a different subset of monkeys than the original 173 may be

more optimal, with regards to heritability estimation. That is, thus far we have merely

added additional monkeys to the original set in which our real dataset has phenotype data.

However, these original monkeys are not all highly related to each other, which provides

less information for heritability estimation than if they were all highly related. Thus, it

is also of interest to know whether a smaller sample size would be necessary to obtain

estimable heritability under a more related set of monkeys. We therefore sample monkeys

based on maximum cumulative kinship coefficient starting from the single monkey which

is the most related to all other monkeys under this criteria, and add monkeys as before. We

simulate data under both the original trait distribution, and that of the Wisconsin dataset.

Finally, we explore sample size requirements under the more simple three-generation

pedigree, i.e., the same one as in our previous simulations shown in Fig. 4. These previous

simulations were performed with a sample size of 40 families, or 320 individuals. We

find that we can reduce the sample size to 20 families, or 160 individuals, and still

obtain reasonable heritability estimation through the threshold model. Also, with a trait

distribution that is less zero-inflated (again as through an increased age by 5 years), not

much improvement is obtained; we can further reduce the sample size by just one family,

to 19 families or 152 individuals. A summary is shown in Table 3, and R code for one

simulation scenario is provided in the Supplemental Information.
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Table 3 Minimum sample size required for estimability of heritability under the threshold model.

Pedigree Phenotyped Trait distribution Min. sample size

WaNPRC Original Original 250

WaNPRC Original Age + 5 years 230

WaNPRC Original Wisconsin 250

WaNPRC Optimal Original 190

WaNPRC Optimal Wisconsin 180

Three generation All Original 160

Three generation All Age + 5 years 152

Discussion
Here, we examine heritability estimation of an ordinal trait. Our ultimate aim is to

determine whether osteoarthritis is heritable, and we explored a number of modeling

considerations that take account of the ordinal nature of the data that were collected. We

discovered that heritability estimates can vary greatly based on the choice of model, from

both our simulation study and our real data analysis. In our WaNPRC macaques, under

the naive assumption of normality of the average OST value, we observed an estimate that

indicates a slight-to-moderate amount of heritability (0.335 under maximum likelihood

estimation). This is also observed in the Bayesian estimate, under the same model (and

with non-informative priors).

However, our simulations illustrate the degree to which inference can be biased, if

normality is assumed when the data actually follow the threshold model. Ordered Probit

Regression was able to obtain heritability estimates that were centered closer to the true

value in each case than maximum likelihood estimates under the normality assumption.

While it is no surprise that Ordered Probit Regression was able to obtain good estimates

from these datasets since they were simulated under the exact model that the Ordered

Probit Regression assumes, it is more to the point that using a standard maximum

likelihood approach with an assumption of normality yielded estimates that were quite

far from the true values, even when the number of categories was large (e.g., 10 in two of

the scenarios).

These scenarios were also designed to mimic a plausible imitation of our real data, in the

fact that most of the monkeys (115 out of 173) were “normal” with respect to the second

OST trait. We simulated the liability trait and then put the bulk of the data into the first

category in order to attain a similar distribution of the observed trait. Whether or not

this model exactly reflects the biological mechanism of the OST trait, these simulations

nevertheless illustrate that incorrectly assuming normality of an ordinal trait invites the

risk of producing misleading heritability estimates, while Ordered Probit Regression has

a better chance of producing estimates that are closer to the truth. Furthermore, while

it is true that we do not know whether our actual data follow the threshold model, this

assertion could be justified by applying the polygenic model to the liability; that is, even if

what we observe is ordinal with a very non-normal distribution, it is defensible to assume
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that, if the trait is determined by many loci, there may be an underlying latent variable

which does have an approximately normal distribution.

Thus, it is interesting that our heritability estimate rises to 0.700 under estimation with

the threshold model. However, there are several alarming aspects to this: (1) the estimates

of the individual variance components are very large; (2) the 95% Credible Interval spans

essentially the entire range of (0, 1); (3) the posterior samples of heritability almost exactly

mimic its prior distribution. These observations suggest that the information content of

our data is not high, which may be surprising given that we do have 173 monkeys with trait

data. However, as our regression setting here is a non-standard one, we find it useful to

perform simulations to explore how much is required to obtain estimable heritability.

For the sake of its direct relevance to our real data, we first examine the effect of

increasing the sample size on our actual WaNPRC pedigree. Our original sample of

phenotyped monkeys was a convenience sample that was not specifically intended for

heritability estimation, and many of the monkeys which were not originally phenotyped

are still alive and could still be obtained. Obtaining these data from another 80+ monkeys,

however, is non-trivial, and we are still investigating this possibility.

It is somewhat surprising that we do not gain much improvement in sample size

reduction with a more balanced trait distribution that was induced by shifting the age

distribution. It is possible that there are nuances in our simulated trait distributions

which are causing difficulties that we do not understand, particularly because all of our

threshold locations were placed in an ad hoc manner, simply to create trait distributions

that appeared reasonable. On the other hand, it is also possible that the threshold model

does not inherently struggle with zero-inflated data (at least when such data truly arose

from the threshold model itself), and so an improvement is not to be expected with less

zero-inflated data. This possibility is corroborated by the fact that, using the Wisconsin

trait distribution, we also see limited and/or no improvement to sample size requirements,

depending on the set which was phenotyped. It is thus interesting to note that the actual

trait distribution seems to be far less of a factor than the set of monkeys for which

phenotype data are available, in terms of obtaining estimable heritability.

Of the previously mentioned alarming aspects to our heritability estimate on our real

data, the one that our simulations does not address is that of the extremely high estimates

of the individual variance components. In fact, this seems to be a recurring observation

even when the posterior distribution of heritability appears to be well-behaved. While we

are reasonably satisfied to simply obtain sensible posterior distributions of heritability

from this implementation of the threshold model, this suggests that the individual variance

components in fact are not identifiable in our scenarios. A resolution to this concern is a

possibility for further study.

CONCLUSIONS
Although it is no surprise that model misspecification can result in biased estimates, the

extent to which this may be true with heritability estimation of an ordinal trait has not

been demonstrated in the literature, to our knowledge. Thus, we illustrate the severe biases
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that may result when a normality assumption is made on data which follow the threshold

model.

Next, we perform a real data analysis to estimate heritability of osteoarthritis in

pig-tailed macaques. Unfortunately, we determine that our dataset does not have enough

monkeys in order to obtain reliable estimates of heritability, despite a seemingly adequate

sample size of n = 173.

Thus, we conclude with an examination of sample size requirements in this setting, via

simulation. We do this under a variety of scenarios, using both our real data WaNPRC

pedigree and also a simpler pedigree structure with three generations and eight individuals

(Fig. 1). Under the WaNPRC pedigree, we find that somewhere between roughly 180

and 275 monkeys are required to obtain estimable heritability, depending on the trait

distribution and relatedness of the phenotyped monkeys. Under the three generation

pedigree, we find that roughly 160 monkeys (20 independent families) are required to

obtain estimable heritability. These results should prove to be useful to biologists and other

researchers who are planning to study the heritability of an ordinal trait.
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