
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Optimizing Tall-and-Skinny Matrix-Matrix Multiplication on GPUs

Permalink
https://escholarship.org/uc/item/8xq0h1f6

Author
Xiong, Nan

Publication Date
2018

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8xq0h1f6
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Optimizing Tall-and-Skinny Matrix-Matrix Multiplication on GPUs

A Thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science

in

Computer Science

by

Nan Xiong

December 2018

Thesis Committee:

Dr. Zizhong Chen, Chairperson
Dr. Tamar Shinar
Dr. Daniel Wong

Copyright by
Nan Xiong

2018

The Thesis of Nan Xiong is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I am grateful to my academic advisor, Dr. Chen, without whose help, I would not have

been here.

iv

To my parents for all the support.

v

ABSTRACT OF THE THESIS

Optimizing Tall-and-Skinny Matrix-Matrix Multiplication on GPUs

by

Nan Xiong

Master of Science, Graduate Program in Computer Science
University of California, Riverside, December 2018

Dr. Zizhong Chen, Chairperson

Linear algebra operations have been widely used in big data analytics and scientific compu-

tations. Many works have been done on optimizing linear algebra operations on GPUs with

regular-sized input. However, few works are focusing on how to fully utilize the underlying

GPU resources when the input size is not regular. Current optimizations lack of consider-

ing fully utilizing the memory bandwidth and computing power, therefore they could only

achieve sub-optimal performance. In this thesis, we propose a performant tall-and-skinny

matrix-matrix multiplication algorithm on GPUs – TSM2. It focuses on optimizing linear

algebra operation with none regular sized input. We implement the proposed algorithm

and test on three different Nvidia GPU micro-architectures: Kepler, Maxwell, and Pascal.

Experiments show that our TSM2 speedups the computation by 1.1x - 3x, improves memory

bandwidth utilization by 8% - 47.6%, and improves computing power utilization by 7% -

37.3% comparing to the current state-of-the-art works.

vi

Contents

List of Figures viii

1 Introduction 1

2 Backgrounds 5
2.0.1 Definition of tall-and-skinny input 5
2.0.2 cuBLAS . 6

3 Optimization design 7
3.0.1 Insight on tall-and-skinny input size 7
3.0.2 Algorithm design . 8
3.0.3 Efficient off-chip memory access . 11
3.0.4 Optimize use of shared memory . 14
3.0.5 Overlapping Computation and Memory Access Latency 16
3.0.6 Parameters Definition . 21

4 Experimental evaluation 32
4.0.1 Experiments setup . 32
4.0.2 Tests with different combinations of optimization 35
4.0.3 Memory throughput analysis . 37
4.0.4 Tests on different micro-architectures 38

5 Conclusions 39

Bibliography 40

vii

List of Figures

3.1 Comparing column-major (left) with row-major (right) storage for storing a
64× 2 tile of matrix B in shared memory. Blue and yellow squares represent
elements in the first and second column. When one warp of 32 threads
accessing 32 elements in one column (e.g. element 0 to 31 of the first column),
the column-major storage brings no bank conflict and row-major storage
brings 2-way bank conflict, which reduces throughput by half. 16

3.2 Example workload of one iteration of our optimized TSM2 with data prefetching 21
3.3 Matrix view of tall-and-skinny matrix matrix multiplication with data prefetch-

ing . 22

4.1 Speedup comparison for k = 2 on K40c. 33
4.2 Speedup comparison for k = 4 on K40c. 33
4.3 Speedup comparison for k = 4 on K40c. 34
4.4 Speedup comparison for k = 16 on K40c. 34
4.5 Memory throughput comparison for k = 2 on K40c. 35
4.6 Memory throughput comparison for k = 4 on K40c. 35
4.7 Memory throughput comparison for k = 8 on K40c. 36
4.8 Memory throughput comparison for k = 16 on K40c. 36
4.9 Comparing TSM2 with cuBLAS on M40. 37
4.10 Comparing TSM2 with cuBLAS on P100. 38

viii

Chapter 1

Introduction

Matrix-matrix multiplication (GEMM) has been one of the most extensively used

linear algebra operations in big data analytics and scientific computations. Due to many

factors (e.g., algorithms, input data, etc.) the size or shape of input matrices of GEMM

usually varies when it is used in different applications. For example, many modern highly

scalable scientific simulations packages in the field of fluid dynamics, such as Finite Element

Method (FEM) needs to compute many GEMM with small-sized input matrix. Artificial

neural networks (ANN) involve using GEMM with small to medium input matrices. Matrix

decompositions uses GEMM with large-sized input matrices. So, besides large-sized input,

which has already been extensively optimized during the past decades, GEMM with small

to medium sized input has also drawn a lot of attention to recent researchers. For example,

[11] proposed MAGMA-Batched, which aims to batch small input matrices into larger ones

to utilize the highly optimized implementations for large input size on GPUs. [14] proposed

to speed up GEMM with small input using instruction level optimization on CPUs.

1

Although previous works have focused on optimizing GEMM with different matrix

sizes, most of them only assume that the input matrix is regular-shaped. In another word, the

size they mentioned in their works usually refers to both dimensions of the input matrix. So,

for example, a small matrix means both its width and height are small and their magnitudes

are close each other. However, not much work has been done to optimizing GEMM for

non-regular shaped input. For example, there is one particular kind of non-regular shaped

input in which the magnitude of both dimensions has significant difference i.e., tall-and-

skinny. To the best of our knowledge, GEMM with tall-and-skinny input has not been

fully studied and optimized for. Tall-and-skinny input has been used in many applications.

For example, recent highly optimized K-means implementations [10, 1] use GEMM as their

core computation and input size is usually tall-and-skinny since the number of centroids

is usually far less than the number of input data points. Also, when GEMM is used for

encoding checksums for many ABFT applications [9, 15, 8, 17, 24, 23], the input usually

involves a tall-and-skinny checksum weight matrix.

Previous efforts made for optimizing GEMM with regular-shaped input may not

work for the non-regular shaped input. For instance, [9] shows that calculating GEMM with

tall-and-skinny input using vendor’s highly optimized linear algebra library (e.g., cuBLAS

[16]) is slower than disassembling the tall-and-skinny input matrix into several vectors and

then applying matrix-vector multiplications instead. However, it can be easily seen that

this workaround is not efficient, since elements in input matrices are accessed by GPU more

times than necessary.

2

Although the performance can be optimized by grouping many tall-and-skinny

input matrices into large ones similar to the approach proposed, there are cases where this

grouping approach is not feasible. For example, tall-and-skinny input matrices may be

generated one at a time from a producer process in user’s workflow. Grouping several of

them into a large matrix requires extended waiting time, which is not applicable for time-

sensitive applications. On the other hand, the memory space may limit the total number

matrices that can fit into the memory at the same time, if the input matrices are large (e.g.,

multiplication between regular-shaped large matrices and tall-and-skinny matrices).

In this work, we target on optimizing the computation of GEMM with tall-and-

skinny input on the GPU platform since many applications that use GEMM are deployed

on GPUs. So, our optimization could greatly benefit those applications. The insight of our

work is that when input matrices size is regular-shaped (e.g., an n × n matrix multiplies

an n × n matrix, each element in the input matrices loaded into GPU requires O(n) for

computation), the computation time is usually longer than memory access time (especially

for large matrices). Then the GEMM operation is compute-bound. However, when in-

put matrices size is tall-and-skinny (an n × n matrix multiplies an n × k matrix with k

much smaller than n, each element is only use for O(k) times on average for computation),

depending on k and the ratio between executing GPU’s peak computing power and peak

memory throughput, the GEMM computation can be either compute-bound or memory-

bound. As k gets smaller, it moves toward memory-bound; Otherwise, it moves toward

compute-bound.

3

To optimize GEMM with tall-and-skinny input, it is critical to design a computa-

tion algorithm that considers both compute-bound and memory-bound cases.

The main contributions of this paper include:

• We study the limitation of current state-of-the-art GEMM implementation with tall-

and-skinny input. With benchmarking, we find that the under-utilization of GPU

resources is the main reason that causes low performance when the input is tall-and-

skinny.

• We design a GEMM on GPU optimized for tall-and-skinny input with both double

and single floating point precisions. We call our optimized version as TSM2. By

leveraging the knowledge on the input size and hardware architecture characteristic,

we redesign computation algorithm to ensure high memory bandwidth utilization

in memory-bound cases and high computing performance for compute-bound cases.

Experiments show that our TSM2 can obtain 1.1x - 3x speedup comparing to state-

of-the-art cuBLAS library on modern GPU micro-architectures. We also replace the

original GEMM operations in K-means and ABFT applications with TSM2 and achieve

up to 1.89x and 1.90x overall speed up.

4

Chapter 2

Backgrounds

2.0.1 Definition of tall-and-skinny input

In this work, we restrict our scope to GEMM with tall-and-skinny input on GPUs.

The tall-and-skinny input size means that, for the two input matrices, at least one matrix

is tall-and-skinny (one dimension is significantly smaller than the other). For example,

input matrix A with size 20480 × 20480 and matrix B with size 20480 × 2 are considered

as tall-and-skinny input in our work. In this paper, we focus on optimizing GEMM with

one regular large input matrix and one tall-and-skinny input matrix. We refer matrix A as

the larger input matrix (n × n) and matrix B (n × k) as the tall-and-skinny input matrix

in this paper. We choose this input size and shape because we believe it can expose most

of the challenges in all kinds of tall-and-skinny input, so the design idea and optimization

techniques introduced in this paper can be easily applied to other cases with slight modifi-

cation. Also, we choose to let the larger matrix to be in squared-shape only for simplified

representation.

5

2.0.2 cuBLAS

One of the most commonly used standard linear algebra libraries optimized for

GPU is the cuBLAS library developed by Nvidia. The cuBLAS is the core computing

library of many big data and scientific computing applications. For example, it is the GPU

computing library for MAGMA heterogeneous linear algebra library [18, 19, 12], cuLA

library [5], and cuDNN deep learning library [4]. With deep optimization by Nvidia, the

cuBLAS library is able to provide state-of-the-art performance in many use cases. For

example, with large regular-shaped input matrix, their GEMM implementation is able to

achieve near peak performance of GPU [2].

However, we found that the GEMM subroutine is not fully optimized with certain

input matrix sizes [9]. For example, with tall-and-skinny input, the GEMM operation in

current best implementation (cuBLAS 9.0 running on NVIDIA Tesla K40c GPU) only uses

less than 10% of the theoretical peak memory bandwidth on average with k = 2 (Fig.

4.5). When k = 16, the same GEMM operation only uses less than 20% of the theoretical

peak memory bandwidth on average (Fig. 4.8). The resource utilization is even lower

with larger input dimensions. By comparing the two input sizes, it can be seen for input

with smaller k values, the computation utilizes higher memory bandwidth (close to memory

bound). On the other hand, for input with larger k values, the computation utilizes higher

computing power (close to compute bound). However, since we are not able to analyze the

implementation of GEMM in none open-sourced cuBLAS library, it is hard to tell the exact

characteristic of their computation.

6

Chapter 3

Optimization design

3.0.1 Insight on tall-and-skinny input size

For regular-shaped GEMM (n × n matrix multiplies n × n matrix), the input

matrices size is O(n2), while the computing time complexity is O(n3), so each element in

input matrices is used O(n) times within the entire computation process. Since loading data

from GPU off-chip DRAM (i.e., global memory) to GPU is expensive and to avoid extensive

data load operations, one common optimization for this kind of problem is minimizing the

number of times each element needs to be loaded into the GPU by using fast on-chip memory

(e.g., cache, registers) to enable data reuse. As the number of loads reduces, optimized

GEMM tends to be compute bound. For example, current GEMM implementation in

cuBLAS library can reach near bare-metal performance on GPUs [2].

However, unlike regular-shaped GEMM, when the input size is tall-and-skinny, the

input matrices size is still O(n2), however, the computing time complexity is O(n2k). So,

7

each element in the input matrices is used k times on average:

(n× n)× k times + (n× k)× n times

n× n + n× k
≈ k times

Depending on the size of k and target GPU peak computing power and memory throughput

ratio, the TSM2 can be either compute bound or memory bound. When k gets smaller, the

computation tends to be memory bound. Otherwise, the problem tends to be compute

bound. In either case, the problem is always near the boundary between memory bound

and compute bound, so it is critical to design an algorithm that is optimized for both two

cases.

3.0.2 Algorithm design

As the core of our optimization, algorithm design plays an important role. First,

we need to consider how to fit the workload of our TSM2 into the programming model

of CUDA (i.e., thread hierarchy). Although the workload can be easily decomposed into

many independent smaller workloads, careful consideration on workload distribution is still

necessary, since any unnecessary performance penalty can drastically cause GPU resource

underutilization. Several factors are considered in our design:

1. Total number of global memory accesses;

2. Efficiency on global memory throughput;

3. Utilization on global memory throughput;

4. Parallelism of overall workload;

8

5. On-chip memory utilization;

6. Streaming Multiprocessor (SM) utilization;

7. Optimization for both compute bound and memory bound cases.

To achieve good performance, there must exist enough number of active threads in each

SM of GPU to ensure proper instruction and memory access latency hiding. So, in our

algorithm we divide the workload by assigning n rows of matrix A to n different threads.

Each vector-matrix multiplication is assigned to one thread (i.e., (A[i, :]×B)). The benefit

is three-fold: First, this ensures high parallelism and high SM occupancy; Second, since the

number of elements of matrix A is much higher than matrix B, this kind of distribution

ensures minimum number of memory accesses in favor of matrix A; Third, it also enables

high memory access efficiency and throughput, since all memory accesses to matrix A are

naturally coalesced (assuming input matrices are stored in column-major by convention).

As for the vector-matrix multiplication assigned to each thread, to further reduce

the number of memory accesses to matrix A, we use outer-product style computation instead

of the regular inner-product style computation. As shown in Alg. 1, if we use inner-product,

each element of matrix A is repeatedly referenced k times. On the other hand, if we use

outer-product as shown in Alg. 2, each element of matrix A is referenced only once. (Please

note, as we will discuss in later sections, when k is larger than a certain threshold, elements

in matrix A still need to be referenced more than once due to the limited resources available

for each thread, but it is still far lower than using inner-product). For large matrix A, the

benefit is significant, since it greatly reduces the total number of global memory accesses

during the entire GEMM computation. Also, the outer-product style does not bring any

9

extra memory accesses to matrix B compared to inner-product style. The only cost for outer-

product is extra registers holding k intermediate results. However, with proper tuning, they

only bring little performance impact compared with extra memory accesses.

Algorithm 1 Workload of each thread with inner product

Require: input matrix A (n× n) and B (n× k)

Require: output matrix C (n× k)

1: for i = 1 to k do

2: for j = 1 to n do

3: C[thread id, i]+ = A[thread id, j]×B[j, i]

4: end for

5: end for

Algorithm 2 Workload of each thread with outer product

Require: input matrix A (n× n) and B (n× k)

Require: output matrix C (n× k)

1: Reg1← C[thread id, 1]

2: Reg2← C[thread id, 2]

3: ...

4: Regk ← C[thread id, k]

5: for i = 1 to n do

6: tmp← A[thread id, i]

7: Reg1+ = tmp×B[i, 1]

8: Reg2+ = tmp×B[i, 2]

9:

10: Regk+ = tmp×B[i, k]

10

11: end for

12: C[thread id, 1]← Reg1

13: C[thread id, 2]← Reg2

14: ...

15: C[thread id, k]← Regk

3.0.3 Efficient off-chip memory access

One key factor of optimizing memory intensive applications is ensuring high off-

chip memory access efficiency. Depending on the GPU model type or runtime configurations,

global memory (off-chip) accesses of threads within the same warp can to coalesced into

128 byte- or 32 byte-transactions [3] if their access addresses fall into the same 128 byte-

or 32 byte-segments in global memory, which enables efficient use of memory bandwidth.

Otherwise, the GPU still loads memory in 128 byte- or 32 byte-transactions, but it may

contain unrequested data that are stored in neighbor addresses, which causes inefficient

memory accesses.

Since each thread reads one row of matrix A and the matrix is stored in column-

major by convention, memory accesses are naturally coalesced when threads within the

same warp access elements on different rows but on the same column. So, 100% memory

access efficiency is achieved on matrix A. However, for matrix B, all threads access the

same element at the same time, which results a single memory transaction containing one

requested element and several unrequested neighbor elements. So, only 8 bytes
128 bytes = 6.25%

or 8 bytes
32 bytes = 25% memory access efficiency is achieved for accessing 64-bit double floating

point elements. Although the total number of elements in matrix B is small, given that

11

each element needs to be accessed n times, this inefficient access pattern can still greatly

impact the overall performance.

To improve the efficiency of memory accesses to matrix B, we utilize shared mem-

ory in GPU. Since it is located on-chip, shared memory gives us the speed of L1 cache and

it is fully programmable. Threads within one thread block can also use shared memory to

share data between them. So, one key advantage of shared memory is that it eliminates the

need for the consistency between patterns of data loading and data using pattern, which

enables us to load global memory in the most efficient way and keep the way we use data

as before.

By using shared memory for accessing matrix B, we can reduce the total number

of memory accesses and enable coalesced memory access. As shown in Alg. 3, for each

iteration, instead of letting threads request elements they need individually by themselves

inefficiently, we now let a block of threads work together to fetch a tile of matrix B into the

shared memory in a coalesce-compatible way (line 13-15). Then during computation, each

thread references elements in matrix B through the shared memory instead of loading each

one of them individually from global memory. This reduces the total number of accesses to

matrix B from global memory (from n to n/t1 per element). Also, threads in a same thread

block (also warp) fetch elements of matrix B column by column, which enables coalesced

memory access. This greatly improves memory access efficiency of matrix B to 100%.

In Alg. 3, we also introduce three parameters: t1, t2, and t3. These parameters

are used for adjusting the performance and will be discussed in later sections.

Algorithm 3 TSM2 with shared memory

Require: input matrix A (n× n) and B (n× k)

12

Require: output matrix C (n× k)

1: t1 ← tile size B, t2 ← tile size C, t3 ← tile size A

2: Register: A1, A2, ..., At3

3: Register: C1, C2, ..., Ct2

4: Shared Memory: currB with size t1 × t2

5: Threads per thread block ← t1

6: Total thread blocks ← n/t1

7: for p = 1 to k with step size = t2 do

8: C1 ← C[thread id, p]

9: C2 ← C[thread id, p + 1] ...

10: Ct2 ← C[thread id, p + t2 − 1]

11: for j = 0 to n with step size = t1 do

/* Load a tile of B into shared memory */ThreadsSynchronization()

currB[thread id, 1]← B[j+thread id, p] currB[thread id, 2]← B[j+thread id, p+

1] ... currB[thread id, t2]← B[j+thread id, p+t2−1] ThreadsSynchronization()

for l = j to j + t1 with step size = t3 do /* Load a tile of A into registers

*/

12:13:14:15:16:17:18: A1 ← A[thread id, l]

19: A2 ← A[thread id, l + 2] ...

20: At3 ← A[thread id, l + t3 − 1]

21: C1+ = A[1...t3] × currB[[l...l + t3], 1]

22: C2+ = A[1...t3] × currB[[l...l + t3], 2] ...

13

23: Ct2+ = A[1...t3] × currB[[l...l + t3], t2]

24: end for

25: end for

26: C[thread id, p]← C1

27: C[thread id, p + 1]← C2 ...

28: C[thread id, p + t2]← Ct2

29: end for

3.0.4 Optimize use of shared memory

Although fast, elements in shared memory still need to be loaded into registers

before using [6]. Its accessing speed can affect the overall performance. Shared memory is

divided into several same-sized memory banks for fast parallel accesses. Different threads

accessing different memory banks can be done simultaneously. So, total b memory banks

can speedup overall shared memory throughput by up to b times compared to the through-

put of one single memory bank. However, if x threads in the same warp access different

data from the same memory bank, x-way bank conflict would occur and each request is

processed sequentially, which dramatically reduces the accessing throughput to 1/x of the

peak throughput.

In our algorithm, threads in the same thread block load data from global memory

into shared memory column by column to enable fast coalesced global memory access. Then

threads access data from shared memory row by row during computation. How we store

elements in shared memory will affect how these elements are accessed from memory banks,

which affects the throughput of shared memory. We have two ways of storing a tile of matrix

14

B in shared memory: column-major storage and row-major storage. To choose between the

two ways, we need to analyze and compare which way brings the least overall bank conflict.

We assume the size of one tile of matrix B is t1 × t2 and t1 is the multiply of total number

of memory banks b for simplicity.

For column-major storage, elements (32-bit words or 64-bit words) in the same

column of one tile of matrix B are stored in successive memory banks. So, for shared

memory with b memory banks, every t1 elements of one column are stored in b different

successive memory banks with each bank stores at most t1
b elements and is accessed by

at most warp size
b threads at the same time, which may potentially cause bank conflict if

warp size
b is greater than one.

For row-major storage, elements in the same row of matrix B are stored in suc-

cessive memory banks. So, elements of the same column are stored in b
t2

different banks

with each bank stores t1×t2
b elements from one column. Since each bank has t2 times more

elements from one column, totally each bank has at most t2 times more thread accessing at

the same time: warp size
b × t2, which may also potentially cause bank conflict.

On modern Nvidia GPUs, the warp size is fixed to 32 and total number of banks

is also 32 [3], so column-major storage does not cause bank conflict, since each bank can

only have up to one thread accessing. Row-major storage can cause up to t2-way bank

conflict, which decreases overall shared memory throughput to 1
t2

of the peak throughput.

As shown in Fig. 3.1, we load a 64×2 matrix tile into shared memory using column-major

storage (left) and row-major storage (right). When using column-major storage, threads in

15

one warp all access different banks, so no bank conflict occurs. On the other hand, when

using row-major storage, 32 elements are stored in 16 banks causing 2-way bank conflict.

Bank 0

Bank 1

Bank 2

Bank 3

Bank 28

Bank 29

Bank 31

Bank 30

Bank 0

Bank 1

Bank 2

Bank 3

Bank 28

Bank 29

Bank 31

Bank 30

0

1

2

3

28

29

30

32

33

34

35

60

61

62

0

1

2

3

28

29

30

32

33

34

35

60

61

62

31 63 31 63

0

0

1

1

14

14

15

16

16

17

17

30

30

31

32

32

33

33

46

46

47

48

48

49

49

62

62

63

15 31 47 63

… …

No bank conflict 2-way bank conflict

Thread 0

Thread 1
Thread 2
Thread 3

Thread 28

Thread 29

Thread 30

Thread 31

Thread 0
Thread 16

Thread 1
Thread 17

Thread 14
Thread 30

Thread 15
Thread 31

Figure 3.1: Comparing column-major (left) with row-major (right) storage for storing
a 64×2 tile of matrix B in shared memory. Blue and yellow squares represent elements
in the first and second column. When one warp of 32 threads accessing 32 elements
in one column (e.g. element 0 to 31 of the first column), the column-major storage
brings no bank conflict and row-major storage brings 2-way bank conflict, which
reduces throughput by half.

When accessing elements in shared memory for computation, threads in a warp

(thread block) all access the same element at a time in our algorithm. Although multiple

threads are accessing one bank, they are accessing the same element, so one broadcast is

initiated, which does not cause bank conflict. It is the same for both storage styles. So,

we choose column-major storage as it brings no bank conflict and potentially brings the

highest shared memory throughput.

3.0.5 Overlapping Computation and Memory Access Latency

During execution, for each instruction issuing moment, each warp scheduler picks

an eligible warp and send it to the corresponding component for execution. A warp becomes

eligible only if all operands of its next instruction are ready. However, if a warp is loading

16

data from global memory, it would take several hundred cycles before it can be ready for

execution. To hide this long latency, we can either increase the number of threads reside

in each SM to ensure there always exist eligible warps [20] or put independent instructions

in between data loading and data consuming operations, so that warps are also eligible for

execution during memory loading time. The first approach requires us to adjust the on-

chip resource usage of each thread block. We will leave that discussion in the next section.

In this section, we aim to add independent instructions in between data loading and data

consuming operations.

A shown in Alg. 3, line 13-15 and 18-20 load data from global memory and

line 21-23 consume data once data is loaded. However, due to data dependency, there is no

independent instruction in between, so once each warp issues global memory access requests,

it must wait for the requested elements to be ready before it can proceed to computation.

So, to add independent instructions, we use data prefetching to mix the data

loading and consuming between neighbor iterations. Specifically, instead of letting each

iteration loads data that is going to be used for current iteration, we let the data needed

for current iteration to be loaded by the previous iteration, so that its calculation will not

be blocked by data loading (since the data are ready). When doing calculation, it also

loads data that is going to be used for the next iteration. By overlapping data loading

and computation, we can significantly improve memory bandwidth and SM utilization. We

apply data prefetching to both matrix A and B.

Algorithm 4 TSM2 with shared memory and data prefetching

Require: input matrix A (n× n) and B (n× k)

Require: output matrix C (n× k)

17

1: t1 ← tile size B, t2 ← tile size C, t3 ← tile size A

2: Register: currA1, currA2,...,currAt3

3: Register: nextA1, nextA2,...,nextAt3

4: Register: nextB1, nextB2,...,nextBt2

5: Register: C1, C2,...,Ct2

6: Shared Memory: currB with size t1 × t2

7: Threads per thread block ← t1

8: Total thread blocks ← n/t1

9: for p = 1 to k with step size = t2 do

10: C1 ← C[thread, p]

11: C2 ← C[thread, p + 1] ...

12: Ct2 ← C[thread, p + t2 − 1]

13: currB[thread id, 1]← B[thread id, p]

14: currB[thread id, 2]← B[thread id, p + 1] ...

15: currB[thread id, t2]← B[thread id, p + t2 − 1]

16: currA1 ← A[thread id, 1]

17: currA2 ← A[thread id, 2] ...

18: currAt3 ← A[thread id, t3]

19: for j = 0 to n with step size = t1 do

20: ThreadsSynchronization() /* prefetch the next tile of B into registers */

21: if j + t1 < n then

22: nextB1 ← B[j + t1 + thread id, p]

18

23: nextB2 ← B[j + t1 + thread id, p + 1] ...

24: nextBt2 ← B[j + t1 + thread id, p + t2 − 1]

25: end if

26: for l = j to j + t1 with step size = t3 do

/* prefetch the next tile of A into registers */if l + t3 < n then

27:28: nextA1 ← A[thread id, l + t3]

29: nextA2 ← A[thread id, l + t3 + 1] ...

30: nextAt3 ← A[thread id, l + t3 + t3 − 1]

31: end if

32: C1+ = currA[1...t3] × currB[[l...l + t3], 1]

33: C2+ = currA[1...t3] × currB[[l...l + t3], 2] ...

34: Ct2+ = currA[1...t3] × currB[[l...l + t3], t2]

35: currA1 ← nextA1

36: currA2 ← nextA2 ...

37: currAt3 ← nextAt3

38: end for

39: ThreadsSynchronization()

40: currB[thread id, 1]← nextB1

41: currB[thread id, 2]← nextB2 ...

42: currB[thread id, t2]← nextBt2

43: end for

44: C[thread, p]← C1

19

45: C[thread, p + 1]← C2 ...

46: C[thread, p + t2]← Ct2

47: end for

As shown in Alg. 4, we design our TSM2 with data prefetching. In line 4 and 5,

we allocate two sets of t3 registers for storing current tile of elements of matrix A and next

tile of element of matrix A for prefetching. In line 6 and 8, we allocate t2 registers for

data prefetching of elements in matrix B, and allocate t1 × t2 for storing currently loaded

tile of matrix B. Note that we cannot store current tile of matrix B in registers, because

elements in matrix B need to be shared between threads during computation.

Before the core computation iteration (line 20-40), we pre-load current tile of

matrix A and B into registers and shared memory (line 13-19), so that computation can

start immediately as soon as we enter the computation loop without being blocked by any

data dependency. The main computation resides in line 28-30. To overlap computation

with memory accesses, we initiate loading for the next tile before the computation (line

21-23 for matrix B and line 25-27 for matrix A). We use two loops for loading matrix A

and B, because we want to have the flexibility to adjust loading pace (tile size) differently

for the two matrices. We will discuss this in the next subsection. Fig. 3.2 and 3.3 show

one iteration of our optimized TSM2 with data prefetching. LD C and ST C represent loading

initial values from matrix C and storing final results back to matrix C. Each iteration we

show three sub-iterations for loading matrix B. As we can see, we load pre-load the next tile

of matrix B in concurrent with computation to improve memory bandwidth utilization. A

threads synchronization is inserted in the end of each iteration. For the inner most iteration,

we do the actual computation and pre-load elements from matrix A each time. Please

20

note that the length of each rectangle does not accurately represent the exact execution

time length and the ratio between number of LD nextA and LD nextB is not necessarily

two in actual computation. Also, we show one thread block with four threads only for

illustration proposes. As we will discuss in the next subsection that different parameter

values can affect the length of each part and the ratio between number of LD nextA and LD

nextB. Especially on the execution time of LD nextA and Compute, which will affect the

characteristic of computation (i.e. memory bound or compute bound). Also, for simplicity,

we ignore the part that moves data between next tile storage to current tile storage of each

iteration in this figure.

LD C

LD NextB

LD NextA

Compute

LD NextA

Compute

ST CThreads Sync.

LD NextB

LD NextA

Compute

LD NextA

Compute

Threads Sync.

LD NextB

LD NextA

Compute

LD NextA

Compute

Threads Sync.

Figure 3.2: Example workload of one iteration of our optimized TSM2 with data
prefetching

3.0.6 Parameters Definition

In Alg. 3 and Alg. 4, we introduced three adjustable parameters: t1, t2, and t3.

In this section, we first discuss how each parameter controls the computation of our TSM2.

Then, we introduce our performance model that estimates how certain performance metrics

change with these parameters. Finally, we explain our strategies of choosing values for

these parameters in order to achieve high GPU resources utilization and optimized overall

performance. Please note that the following discussions are all based on Alg. 4.

21

A

B

C

 Thread 0
 Thread 1
 Thread 2
 Thread 3

 Thread 0
 Thread 1
 Thread 2
 Thread 3

registers
holding
current
tile of A

shared mem.
holding current

tile of B

t1

t2

t3

prefetch next tile A
to registers

next tile becomes
current tile in next iteration

prefetch next
tile B to registers

load next tile to
shared mem.
before next

iteration.

{one
thread
block

{one
thread
block

calculation on
current tile

Figure 3.3: Matrix view of tall-and-skinny matrix matrix multiplication with data
prefetching

Behaviors of Parameters

First, we list the behaviors of each parameter as follows:

• t1 specifies the number of rows of one tile of matrix B. To maximize use of available

active threads and to avoid any inefficient thread execution caused by warp divergence,

we let all threads in each thread block participating in fetching elements of matrix B.

For fast coalesced global memory access, we let each thread fetch one row, so t1 is also

the total number of threads in each thread block. Also, since we let total n threads

working on the computation, the total number of thread blocks can be calculated as:

n/t1.

22

• t2 specifies the number of elements in matrix C that each thread is working on at

a time. It is used to divide the overall workload into several smaller workloads that

are processed iteratively by each thread. Smaller workload makes each thread’s SM

resource usage smaller, which allows us to keep higher SM occupancy. However,

dividing the workload means we need to load matrix A repeatedly for each small

workload. So, there is a trade-off. t2 also affects the ratio between total number

of memory fetches and computation operations in core part of our algorithm, which

allows us to adjust the computation to be compute or memory bound (will be discussed

later in detail).

• t3 specifies the number of elements in matrix A that each thread fetches at a time.

Since elements fetching are independent to each other, they can be initiated without

blocking each other, so t3 can be used to adjust the memory loading concurrency.

Performance Metrics Estimation

In this section, we introduce our parameters based performance model that is

used to estimate three important performance metrics: SM occupancy, memory bandwidth

utilization and computing power utilization. These estimations will be used for optimizing

the overall performance.

• Max SM occupancy estimation

Now, with these parameters, we can calculate the max occupancy of each SM, which

is defined as max number of active threads per SM. (Some works also use max number

of warps, which is similar to ours. We found that using max thread is more consistent

23

across our performance models. We also choose thread block size to be the dividend

of this value to ensure expected number of threads are active.) This occupancy is

mainly bound by the maximum hardware allowable number of threads (HW MAX)

and on-chip memory utilization per thread. We first calculate the total number of

registers utilized per thread. Since register utilization can potentially be optimized by

the nvcc compiler, we use maximum number of registers to estimate this value. First

of all, there is a relatively fix amount of registers uses for CUDA initial setup, and

we represent this amount as C. We get its amount through off-line profiling. Then,

we need two sets of t2 registers for storing elements of matrix B for both next tile

fetching and current tile calculation. Please note that although the current tile of

matrix B is stored in shared memory, it still needs to be transferred to registers for

calculation. Next, we need t2 registers for keeping intermediate results of matrix C.

Finally, we need two sets of t3 registers for storing elements of matrix A for both next

tile fetching and current tile calculation. So, the total number of registers is:

Rthread = (t2 × 3 + t3 × 2)× bytes per element

bytes per register
+ C

As for shared memory, through shared memory is allocated per thread block, we

calculate the average amount of shared memory that each thread uses for consistent

calculation here. Since the size of allocated shared memory per thread block is t1× t2,

and as we will discuss earlier that we set t1 = threads per threadblock, the amount

24

of shared memory allocated for each thread on average is:

Sthread = t2 × bytes per element

So, the max SM occupancy can be calculated as:

MaxOccupSM = min(HW MAX,
RSM

Rthread
,

SSM

Sthread
)

In this above calculation, RSM and SSM stand for the max available registers and

shared memory per SM.

• Max memory bandwidth utilization estimation

Next, we estimate the max memory bandwidth utilization of our algorithm when the

computation is memory bound. In this case, loading elements of matrix A dominates

the computation instead of floating point calculations in our algorithm. So, we can es-

timate max memory bandwidth utilization using the maximum number of concurrent

global memory accesses per SM. It can be calculated as:

Concurrentmem ≈MaxOccupSM × t3

Please note that, we only consider the memory accesses to matrix A here for sim-

plicity. Since the majority memory accesses are for matrix A, this only brings minor

inaccuracy. Then, similar to [20, 22] we calculate the least number of concurrent

memory accesses per SM needed to achieve max memory bandwidth utilization using

25

Little’s Law:

Throughputmax mem =
Peak Band.

of SM × core clock

Concurrentmax mem = latencymem × Throughputmax mem

The latencymem is the average global memory access latency, which is considered as

a constant in our model and is obtained through offline profiling. The estimated

memory bandwidth utilization is:

Utilmem =
Concurrentmem

Concurrentmax mem

• Max computing power utilization estimation

Next, we estimate the max computing power utilization of our algorithm when the

computation is compute bound. In this case, floating point calculation dominates the

computation instead of memory accesses in our algorithm. So, we can estimate max

computing power utilization using the maximum number of concurrent floating point

operations per SM. It can be calculated as:

Concurrentcomp = MaxOccupSM × t3 × t2

Then, also similar to [20] we calculate the least number of concurrent floating point

operations per SM needed to achieve max computing power utilization using Little’s

Law:

Throughputmax comp =
Peak Perf.

of SM × core clock

26

Concurrentmax comp = latencycomp × Throughputmax comp

The latencycomp is the average latency of floating point operations in our calculations,

which is considered as a constant in our model and is obtained through offline profiling.

So, the estimated computing power utilization is:

Utilmem =
Concurrentcomp

Concurrentmax comp

• Determine computing or memory bound

Given parameters and GPU specification, we can determine whether the current com-

putation is memory or compute bound. This is mainly determined by the inner most

loop (line 24 - 34) of Alg. 4. The memory loading instructions (line 25-27) are

overlapping with computation (line 28-30). Since line 31-33 depends on memory

loading results, it serves as an implicit synchronization point for memory load and

computation. The time takes for the two parts will determine whether the current

computation is compute bound or memory bound. So, we first estimate the time takes

for computation and memory access as follows:

timecomp =
t3 × t2

Peak Perf.×# of SM ×OccupancySM

timemem =
t3 × bytes per elem.

Peak Band.×# of SM ×OccupancySM

27

Then, by comparing the two time costs, we can determine whether the current com-

putation is compute bound or memory bound.

r =
timecomp

timemem
=

t2
bytes per elem.

× Peak Band.

Peak Perf.

As we can see, when r is greater than one, the computation is compute bound. On the

other hand, when r is less than one, the computation is memory bound. Also, since

we divide the original workload into several smaller workloads using t2, this ratio is

determined by t2. By adjusting t2, the actual computation can be shifted between

compute and memory bound. The boundary between the two cases can be calculated

by setting the ratio r = 1, so we get a threshold for t2:

tthreshold2 =
PeakPerf.

PeakBand.
× bytes per elem.

Similarly, we can also estimate computation characteristic of the original problem, in

which the workload is not divided into smaller workloads. In this case, t2 is always

fixed to k. So, by comparing k with tthreshold2 we can estimate the computation

characteristic. If k is greater than tthreshold2 , then the original problem is compute

bound. Otherwise, it is memory bound.

It can be easily seen, depending on the value of t2 and k, the computation character-

istic of the current problem and original problem can be different, which can affect

the overall performance. We discuss this in later part of this section.

28

Choosing parameters

When choosing parameters, the first thing we should determine is whether we

should optimize for computation or memory bandwidth. This is determined by whether the

given TSM2 computation on the given GPU should be compute or memory bound. In the

last section, we proposed to estimate this characteristic by comparing k and tthreshold2 , so

that we can adjust parameters to optimize the computation in the right direction.

In the case where original problem is memory bound (k ≤ tthreshold2), we need

to keep the actual computation to be memory bound also (let 1 ≤ t2 ≤ k) and optimize

for memory bandwidth utilization. On the other hand, if the original problem is compute

bound (k > tthreshold2), we first try to keep the actual computation to be compute bound too

(let tthreshold2 ≤ t2 ≤ k) and optimize of computing power utilization. However, in the case

where tthreshold2 is too high on the given GPU, we also try to optimize it for memory bound

(let 1 ≤ t2 ≤ tthreshold2) and output the result parameters that deliver better performance.

Algorithm 5 Parameter Optimization for TSM2

1: if k ≤ tthreshold2 then

2: Total memory ≈ n× n× k
t2
× bytes per elem.

3: Bandwidth = PeakBand.× Utilmem

4: Use Gradient Descent to Optimize (t2 and t3): Time = Total memory
Bandwidth with 1 ≤ t2 ≤ k

and 1 ≤ t3

5: Output: t2 and t3

6: else

7: Total flops = n× n× k × 2

8: Compute power = PeakPerf.× Utilcomp

29

9: Use Gradient Descent to Optimize (t2 and t3): Time1 = Total flops
Compute power with tthreshold2 ≤

t2 ≤ k and 1 ≤ t3

10: t2(time1) ← t2

11: t3(time1) ← t3

12: Total memory ≈ n× n× k
t2
× bytes per elem.

13: Bandwidth = PeakBand.× Utilmem

14: Use Gradient Descent to Optimize (t2 and t3) in Time2 = Total memory
Bandwidth with 1 ≤ t2 ≤

tthreshold2 and 1 ≤ t3

15: t2(time2) ← t2

16: t3(time2) ← t3

17: if Time1 < Time2 then

18: Output: t2(time1) and t3(time1)

19: else

20: Output: t2(time2) and t3(time2)

21: end if

22: end if

Alg. 5 shows the parameter optimization procedure for t2 and t3. We first

determine the computation characteristic in line 1. If it is memory bound, we optimize

for total time cost to access needed elements from global memory (line 4). Otherwise, we

optimize for either total computation time (line 9) or memory access time (line 14). Please

note that we only count the total amount of memory accesses to matrix A for simplicity,

since total accesses to matrix B is much less than matrix A, so this simplification only

brings minor inaccuracy. Also, considering the total accesses to matrix B would bring

30

one additional parameter (t1), which can be hard to optimize since t1 is also related to

threads organization that is hard for modeling-based estimation. The memory bandwidth

utilization term (Utilmem) and computing power utilization term (Utilcomp) is calculated

using the equation mentioned before. Since we have two parameters (t2 and t3) in our

optimization target, we use Gradient Descent (GD) to do the optimization. In GD, based

on our experience, we set initial value of both t2 and t3 to be 1, and step size to be 0.1. The

stop threshold is set to be 1e-4, since we do not need very accurate precision. The final t2

and t3 are rounded to the nearest integers.

To optimize t1, we found it only controls the number of threads in each thread

block. Since the total number of threads is fixed to n, t1 only determines how these threads

are organized into thread blocks. There is trade-off: if t1 is large, the total number of

accesses to elements of matrix B is reduced, however, large thread block means large number

of threads need to participate in the same synchronization, which may have impact on

performance. On the other hand, if t1 is small, the total number of accesses to elements of

matrix B higher, but the smaller thread block makes scheduling more flexible and efficient.

It is hard to determine the optimum value of t1 theoretically, so we use offline profiling to

choose the best value. Specifically, once t2 and t3 are determined, we benchmark different

t1 values that can divide MaxOccupSM as mentioned earlier and choose the t1 that deliver

the best performance. Although t1 seems to have direct effect on shared memory allocation

(or max SM occupancy), it actually has limited impact on it, since we fix the amount of

shared memory per thread (Sthread = t2 × bytes per element).

31

Chapter 4

Experimental evaluation

4.0.1 Experiments setup

We evaluate our optimized TSM2 on our heterogeneous testbed cluster: Darwin. We

run each test on a single GPU node with single GPU card. We conduct our tests on three

different commonly used modern Nvidia GPUs with three different micro-architectures:

Kepler, Maxwell, and Pascal. For Kepler GPU, we use Tesla K40c, which has 1430 GFLOPS

peak double floating point performance and 288 GB/s memory bandwidth. For Maxwell

GPU, we use Tesla M40, which has 213 GFLOPS peak double floating point performance

and 288 GB/s memory bandwidth. For Pascal GPU, we use Tesla P100, which has 4600

GFLOPS peak double floating point performance and 720 GB/s memory bandwidth.

We implemented our TSM2 using CUDA C for both single and double floating point

input. We disabled compiler auto unrolling for better control on register allocation. For

32

0.0

0.4

0.8

1.2

1.6

2.0

10240 15360 20480 25600 30720
Sp

ee
du

p
Matrix Size (n), k = 2

cuBLAS (baseline)
BLASX
TSM2 (naïve)
TSM2 (reduce_gld)
TSM2 (reduce_gld+shared_mem)
TSM2 (reduce_gld+shared_mem+prefectch)

(a) Single precision

0.0

0.4

0.8

1.2

1.6

10240 15360 20480 25600 30720

Sp
ee

du
p

Matrix Size (n), k = 2
cuBLAS (baseline)
BLASX
TSM2 (naïve)
TSM2 (reduce_gld)
TSM2 (reduce_gld+shared_mem)
TSM2 (reduce_gld+shared_mem+prefectch)

(b) Double precision

Figure 4.1: Speedup comparison for k = 2 on K40c.

0.0

0.4

0.8

1.2

1.6

2.0

10240 15360 20480 25600 30720

Sp
ee

du
p

Matrix Size (n), k = 4
cuBLAS (baseline)
BLASX
TSM2 (naïve)
TSM2 (reduce_gld)
TSM2 (reduce_gld+shared_mem)
TSM2 (reduce_gld+shared_mem+prefectch)

(a) Single precision

0.0

0.4

0.8

1.2

10240 15360 20480 25600 30720

Sp
ee

du
p

Matrix Size (n), k = 4
cuBLAS (baseline)
BLASX
TSM2 (naïve)
TSM2 (reduce_gld)
TSM2 (reduce_gld+shared_mem)
TSM2 (reduce_gld+shared_mem+prefectch)

(b) Double precision

Figure 4.2: Speedup comparison for k = 4 on K40c.

comparison, we compare our TSM2 with GEMM in the current latest cuBLAS 9.0 library and

latest BLASX library [21]. Also, we try to compare our work with KBLAS [7], however since

its GEMM kernel is based on cuBLAS, its performance is identical to cuBLAS, so we omit-

ted its results. Each test is repeated multiple times to reduce noise and timed using CUDA

Events API. We measure performance by calculating the performance of FAMD instructions.

We also measure the global memory throughput using nvprof on the command line with

--metrics gld throughput option. In addition, we use --metrics gld efficiency op-

tion to verify 100% global memory access efficiency is achieved in our optimization during

development (we omit the presentation of result for efficiency verification due to page limit).

33

0.0
0.4
0.8
1.2
1.6
2.0
2.4
2.8
3.2

10240 15360 20480 25600 30720

Sp
ee

du
p

Matrix Size (n), k = 8
cuBLAS (baseline)
BLASX
TSM2 (naïve)
TSM2 (reduce_gld)
TSM2 (reduce_gld+shared_mem)
TSM2 (reduce_gld+shared_mem+prefectch)

(a) Single precision

0.0

0.4

0.8

1.2

10240 15360 20480 25600 30720

Sp
ee

du
p

Matrix Size (n), k = 8
cuBLAS (baseline)
BLASX
TSM2 (naïve)
TSM2 (reduce_gld)
TSM2 (reduce_gld+shared_mem)
TSM2 (reduce_gld+shared_mem+prefectch)

(b) Double precision

Figure 4.3: Speedup comparison for k = 4 on K40c.

0.0
0.4
0.8
1.2
1.6
2.0
2.4

10240 15360 20480 25600 30720

Sp
ee

du
p

Matrix Size (n), k = 16
cuBLAS (baseline)
BLASX
TSM2 (naïve)
TSM2 (reduce_gld)
TSM2 (reduce_gld+shared_mem)
TSM2 (reduce_gld+shared_mem+prefectch)

(a) Single precision

0.0
0.4
0.8
1.2
1.6
2.0
2.4

10240 15360 20480 25600 30720

Sp
ee

du
p

Matrix Size (n), k = 16
cuBLAS (baseline)
BLASX
TSM2 (naïve)
TSM2 (reduce_gld)
TSM2 (reduce_gld+shared_mem)
TSM2 (reduce_gld+shared_mem+prefectch)

(b) Double precision

Figure 4.4: Speedup comparison for k = 16 on K40c.

Our input matrix is initialized with random floating point numbers (0 to 1). We

test the multiplication between a large square sized matrix multiplies a tall-and-skinny

matrix. The size of the large input matrix is from 10240 ∗ 10240 to 30720 ∗ 30720. The

tall-and-skinny input matrix has size ranges from 10240 ∗ k to 30730 ∗ k with k equals 2, 4,

8, and 16.

34

0%
20%
40%
60%
80%

100%

10
24

0
12

28
8

14
33

6
16

38
4

18
43

2
20

48
0

22
52

8
24

57
6

26
62

4
28

67
2

30
72

0

Matrix Size (n) with k = 2
BLASX cuBLAS TSM2 Peak

(a) Single precision

0%
20%
40%
60%
80%

100%

10
24

0
12

28
8

14
33

6
16

38
4

18
43

2
20

48
0

22
52

8
24

57
6

26
62

4
28

67
2

30
72

0

Matrix Size (n) with k = 2
BLASX cuBLAS TSM2 Peak

(b) Double precision

Figure 4.5: Memory throughput comparison for k = 2 on K40c.

0%
20%
40%
60%
80%

100%

10
24

0
12

28
8

14
33

6
16

38
4

18
43

2
20

48
0

22
52

8
24

57
6

26
62

4
28

67
2

30
72

0
Matrix Size (n) with k = 4

BLASX cuBLAS TSM2 Peak

(a) Single precision

0%
20%
40%
60%
80%

100%

10
24

0
12

28
8

14
33

6
16

38
4

18
43

2
20

48
0

22
52

8
24

57
6

26
62

4
28

67
2

30
72

0

Matrix Size (n) with k = 4
BLASX cuBLAS TSM2 Peak

(b) Double precision

Figure 4.6: Memory throughput comparison for k = 4 on K40c.

4.0.2 Tests with different combinations of optimization

We use the GEMM in cuBLAS 9.0 as comparison baseline. We apply different

combinations of optimization in TSM2 and compare them with GEMM in cuBLAS and

BLASX. We test totally four versions of TSM2:

• naive: the most straightforward inner product version as described in Alg. 1;

• reduce gld: the outer production version as in Alg. 2. This version reduces the

total number of global memory accesses from algorithm level;

• reduce gld + shared mem: based on outer production version as in Alg. 2, we add

the use of shared memory, which leads to more efficient global memory access to

matrix B;

35

0%
20%
40%
60%
80%

100%

10
24

0
12

28
8

14
33

6
16

38
4

18
43

2
20

48
0

22
52

8
24

57
6

26
62

4
28

67
2

30
72

0

Matrix Size (n) with k = 8
BLASX cuBLAS TSM2 Peak

(a) Single precision

0%
20%
40%
60%
80%

100%

10
24

0
12

28
8

14
33

6
16

38
4

18
43

2
20

48
0

22
52

8
24

57
6

26
62

4
28

67
2

30
72

0

Matrix Size (n) with k = 8
BLASX cuBLAS TSM2 Peak

(b) Double precision

Figure 4.7: Memory throughput comparison for k = 8 on K40c.

0%
20%
40%
60%
80%

100%

10
24

0
12

28
8

14
33

6
16

38
4

18
43

2
20

48
0

22
52

8
24

57
6

26
62

4
28

67
2

30
72

0

Matrix Size (n) with k = 16
BLASX cuBLAS TSM2 Peak

(a) Single precision

0%
20%
40%
60%
80%

100%

10
24

0
12

28
8

14
33

6
16

38
4

18
43

2
20

48
0

22
52

8
24

57
6

26
62

4
28

67
2

30
72

0

Matrix Size (n) with k = 16
cuBLAS BLASX TSM2 Peak

(b) Double precision

Figure 4.8: Memory throughput comparison for k = 16 on K40c.

• reduce gld + shared mem + prefetch: based on the outer production version as in

Alg. 2 and the use of shared memory, we add data prefetch. This is the best version

of our optimized implementation, which is described in Alg. 4.

Limited by the page space, we only show the result on K40c GPU. Our optimization

behaves similar on other GPUs. To evaluate our optimization, we need to determine by

which resource our program is bounded. Since, tthreshold2(k40c) ≈ 40, the computation is always

memory bound for the given k values. The optimized parameters are: t2 = k, t3 = 4,

and t1 = 128. The parameters are only applied to the last to versions of TSM2. Fig.

4.1, 4.2, 4.3, 4.4 show the speedup of different versions in single and double precision.

From the results, we can see that the naive version suffers from really poor performance

due to the requirement of much higher number of global memory accesses in the inner

product version. The reduce gld version, on the other hand, significantly improve the

36

performance compared to naive (2.2x - 4.7x faster), since it requires much lower number

of global memory accesses. reduce gld + shared mem further improves the efficiency of

global memory access to matrix B, which plays a vital role in the overall performance. In

addition, the shared memory shares tiles of matrix B between threads within a thread block

also reduced the total number of memory accesses to matrix B. This leads to additional

1.1x to 2.1x speedup. Finally, the data prefetch introduced in reduce gld + shared mem

+ prefetch version further mitigate the memory access bottleneck, which brings additional

1.3x - 3.5x speedup.

4.0.3 Memory throughput analysis

Fig. 4.5, 4.6, 4.7, 4.8 show the memory throughput of TSM2 (with all optimiza-

tions), cuBLAS and BLASX in both single and double precision on K40c GPU. Result show

that TSM2 brings 12.5% - 26.6% (avg. 17.6%) improvement on GPU memory bandwidth

utilization compare with cuBLAS and 20.1% - 38.8% (avg. 24.3%) improvement compare

with BLASX.

0

50

100

150

200

250

0

0.5

1

1.5

2

2.5

3

3.5

4

10
24

0
11

26
4

12
28

8
13

31
2

14
33

6
15

36
0

16
38

4
17

40
8

18
43

2
19

45
6

20
48

0
21

50
4

22
52

8
23

55
2

24
57

6
25

60
0

26
62

4
27

64
8

28
67

2
29

69
6

30
72

0

Pe
rfo

rm
an

ce
 (G

flo
ps

)

Ex
ec

ut
io

n
Ti

m
e

(s
)

Matrix Size (n) with k = 16
Execution Time (cuBLAS)
Execution Time (reduce_gld + shared_mem + prefectch)
Performance(cuBLAS)
Performance(reduce_gld + shared_mem + prefectch)
Peak Achievable Performance

Figure 4.9: Comparing TSM2 with cuBLAS on M40.

37

0

100

200

300

400

500

600

700

800

0

0.005

0.01

0.015

0.02

0.025

0.03

10
24

0
11

26
4

12
28

8
13

31
2

14
33

6
15

36
0

16
38

4
17

40
8

18
43

2
19

45
6

20
48

0
21

50
4

22
52

8
23

55
2

24
57

6
25

60
0

26
62

4
27

64
8

28
67

2
29

69
6

30
72

0

M
em

or
y

Th
ro

ug
hp

ut
 (G

B/
s)

Ex
ec

ut
io

n
Ti

m
e

(s
)

Matrix Size (n) with k = 16
Execution Time (cuBLAS)
Execution Time (reduce_gld + shared_mem + prefetch)
Memory Throughput (cuBLAS)
Memory Throughput (reduce_gld + shared_mem + prefetch)
Peak Achievable Memory Throughput

Figure 4.10: Comparing TSM2 with cuBLAS on P100.

4.0.4 Tests on different micro-architectures

In addition to Kepler micro-architecture, we also conduct test on newer Maxwell

and Pascal GPUs. Similar as with Kelper GPU, we get tthreshold2(m40) ≈ 6 and tthreshold2(p100) ≈ 50

Tesla M40 has slower computing power, so the computation with input with k = 16

is compute bound. Our parameter optimization procedure also output parameters in favor

of computing optimization: t2 = 8, t3 = 4, and t1 = 256. As shown in Fig. 4.9, our

optimized implementation achieves 1.1x -1.9x (avg. 1.47x) speedup on Tesla M40 with 7%

to 37.3% (avg. 20.5%) computing power utilization improvement compared to the GEMM

function in cuBLAS 9.0.

For P100 has much stronger computing power, as we can see the computation with

input with k = 16 is memory bound. Our parameter optimization procedure also output

parameters in favor of memory optimization: t2 = 4, t3 = 4, and t1 = 128. As shown in

Fig. 4.10, our optimized implementation achieves 1.1x - 3.0x (avg. 2.15x) speedup on

Tesla P100 with 17% to 47.6% (avg. 34.7%) memory bandwidth utilization improvement

compared to the GEMM function in cuBLAS.

38

Chapter 5

Conclusions

In this work, we first analyzed the performance of current GEMM in the latest

cuBLAS library. We identified that current implement lack of full utilization of computing

power or memory bandwidth when the input shape is tall-and-skinny. Then, we discovered

the potential challenges of optimizing tall-and-skinny GEMM since its workload can varies

between compute bound and memory bound. Next, we redesigned an optimized tall-and-

skinny GEMM with several optimization techniques focusing on GPU resource utilization.

Finally, experiment results that our optimized implementation can achieve 1.1x - 3x speedup

on three modern GPU micro-architectures.

39

Bibliography

[1] K-means by NVIDIA.

[2] cublas benchmark, 2018.

[3] cuda programming guide, 2018.

[4] cudnn, 2018.

[5] Cula, 2018.

[6] Ptx programming guide, 2018.

[7] Ahmad Abdelfattah, David Keyes, and Hatem Ltaief. Kblas: An optimized library
for dense matrix-vector multiplication on gpu accelerators. ACM Transactions on
Mathematical Software (TOMS), 42(3):18, 2016.

[8] Jieyang Chen, Sihuan Li, and Zizhong Chen. Gpu-abft: Optimizing algorithm-based
fault tolerance for heterogeneous systems with gpus. In Networking, Architecture and
Storage (NAS), 2016 IEEE International Conference on.

[9] Jieyang Chen, Xin Liang, and Zizhong Chen. Online algorithm-based fault tolerance
for cholesky decomposition on heterogeneous systems with gpus. In Parallel and Dis-
tributed Processing Symposium, 2016 IEEE International, 2016.

[10] Inderjit S Dhillon, Yuqiang Guan, and Brian Kulis. Kernel k-means: spectral clus-
tering and normalized cuts. In Proceedings of the tenth ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 551–556. ACM, 2004.

[11] Tingxing Dong, Azzam Haidar, Piotr Luszczek, Stanimire Tomov, Ahmad Abdelfat-
tah, and Jack Dongarra. Magma batched: A batched blas approach for small matrix
factorizations and applications on gpus. Technical report, Technical report, 2016.

[12] Jack Dongarra, Mark Gates, Azzam Haidar, Jakub Kurzak, Piotr Luszczek, Stanimire
Tomov, and Ichitaro Yamazaki. Accelerating numerical dense linear algebra calcula-
tions with gpus. Numerical Computations with GPUs, 2014.

40

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016.

[14] Alexander Heinecke, Greg Henry, Maxwell Hutchinson, and Hans Pabst. Libxsmm:
accelerating small matrix multiplications by runtime code generation. In High Perfor-
mance Computing, Networking, Storage and Analysis, SC16: International Conference
for, 2016.

[15] Kuang-Hua Huang, Jacob Abraham, et al. Algorithm-based fault tolerance for matrix
operations. Computers, IEEE Transactions on, 1984.

[16] CUDA NVIDIA. Basic linear algebra subroutines (cublas) library, 2017.

[17] Dingwen Tao, Shuaiwen Leon Song, Sriram Krishnamoorthy, Panruo Wu, Xin Liang,
Eddy Z. Zhang, Darren Kerbyson, and Zizhong Chen. New-sum: A novel online abft
scheme for general iterative methods. In Proceedings of the 25th ACM International
Symposium on High-Performance Parallel and Distributed Computing, 2016.

[18] Stanimire Tomov, Jack Dongarra, and Marc Baboulin. Towards dense linear algebra
for hybrid GPU accelerated manycore systems. Parallel Computing, 2010.

[19] Stanimire Tomov, Rajib Nath, Hatem Ltaief, and Jack Dongarra. Dense linear algebra
solvers for multicore with GPU accelerators. In Proc. of the IEEE IPDPS’10, Atlanta,
GA, 2010. IEEE Computer Society.

[20] Vasily Volkov. Understanding Latency Hiding on GPUs. PhD thesis, University of
California, Berkeley, 2016.

[21] Linnan Wang, Wei Wu, Zenglin Xu, Jianxiong Xiao, and Yi Yang. Blasx: A high
performance level-3 blas library for heterogeneous multi-gpu computing. In Proceedings
of the 2016 International Conference on Supercomputing, page 20. ACM, 2016.

[22] Henry Wong, Misel-Myrto Papadopoulou, Maryam Sadooghi-Alvandi, and Andreas
Moshovos. Demystifying gpu microarchitecture through microbenchmarking. In Per-
formance Analysis of Systems & Software (ISPASS), 2010 IEEE International Sympo-
sium on, 2010.

[23] Panruo Wu, Nathan DeBardeleben, Qiang Guan, Sean Blanchard, Jieyang Chen, Ding-
wen Tao, Xin Liang, Kaiming Ouyang, and Zizhong Chen. Silent data corruption re-
silient two-sided matrix factorizations. In Proceedings of the 22nd ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, 2017.

[24] Panruo Wu, Qiang Guan, Nathan DeBardeleben, Sean Blanchard, Dingwen Tao, Xin
Liang, Jieyang Chen, and Zizhong Chen. Towards practical algorithm based fault toler-
ance in dense linear algebra. In Proceedings of the 25th ACM International Symposium
on High-Performance Parallel and Distributed Computing, 2016.

41

