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Abstract

New approaches to robustness and learning in data-driven portfolio optimization

by

Gah-Yi Vahn
Doctor of Philosophy in Engineering – Industrial Engineering & Operations

Research

University of California, Berkeley

Associate Professor Andrew E.B. Lim, Chair

We develop two new approaches to robustness and learning in data-driven portfolio
optimization, a problem that is well-known for sensitivity to model assumptions and
data variability.

First, we consider the data-driven mean-CVaR problem. For this problem, we
introduce and investigate performance-based regularization (PBR), a generalization
of standard regularization techniques used in statistics and machine learning, and an
alternative to worst-case approaches to improving solution robustness. We assume the
available log-return data is iid, and detail the approach for two cases: nonparametric
and parametric (the log-return distribution belongs in the elliptical family). We derive
the asymptotic behavior of the nonparametric PBR solution, which leads to insight
into the effect of penalization, and justification of the parametric PBR method. We
also show via simulations that the PBR methods produce efficient frontiers that are,
on average, closer to the population efficient frontier than the empirical approach to
the mean-CVaR problem, with less variability.

Next, we consider portfolio optimization under parameter uncertainty, and pro-
pose optimizing a relative regret objective. Relative regret evaluates a portfolio by
comparing its return to a family of benchmarks, where the benchmarks are the wealths
of fictitious investors who invest optimally given knowledge of the model parameters,
and is a natural objective when there is concern about parameter uncertainty or
model ambiguity. We analyze this problem using convex duality, and show that it
is equivalent to a Bayesian problem, where the Lagrange multipliers play the role
of the prior distribution and the learning model involves Bayesian updating of these
Lagrange multipliers/prior. This Bayesian problem is unusual in that the prior dis-
tribution is endogenously chosen by solving the dual optimization problem for the
Lagrange multipliers, and the objective function involves the family of benchmarks
from the relative regret problem. These results show that regret is a natural means
by which robust decision making and learning can be combined.
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Chapter 1

Introduction

Portfolio optimization is one approach to allocating limited resources to a given
number of alternatives. In his classic paper, Markowitz [48] introduced mean-variance
portfolio optimization in a financial context. The paper proposes investing in secu-
rities in an efficient manner, that is, choosing a portfolio that maximizes expected
return subject to an upper bound on the variance, or equivalently, a portfolio that
minimizes the future variance subject to a lower bound on the expected return.

Many variations and extensions of the Markowitz problem have since been pro-
posed. One important line of enquiry is in relaxing the assumption in Markowitz’s
original work that the portfolio’s future expected return and variance are known.
This has introduced the use of data to estimate the unknown quantities in portfolio
optimization, and many empirical studies followed. A common consensus, however,
is that solutions to portfolio optimization with estimated return and risk have poor
out-of-sample performance because it is difficult to accurately forecast future return
or variance from historical data (see [51], [40] and [13], to name a few).

This brings about the central question of this thesis — how may we incorporate
data in a meaningful way in portfolio optimization? In particular, we seek methods
that are robust to data and model uncertainty that nevertheless incorporate learning.

In Chapter 2, we investigate data-driven mean-CVaR portfolio optimization. CVaR
(Conditional Value-at-Risk) has been of current interest as it is a risk measure that
accounts for large losses, in contrast to variance, which is a symmetric measure of risk.
However, as CVaR is a risk measure based on rare observations, mean-CVaR portfo-
lio optimization is also plagued by poor out-of-sample performance. To address this,
we propose performance-based regularization (PBR) to improve solution performance
in the return-risk space. This method is a generalization of standard regularization
techniques used in statistics and machine learning, and is an alternative to worst-case
approaches to improving solution robustness.

Specifically, we assume the available log-return data is iid, and detail the approach
for two cases: nonparametric and parametric (the log-return distribution belongs in
the elliptical family). The nonparametric PBR method penalizes portfolios with
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large variability in mean and CVaR estimations. The parametric PBR method solves
the empirical Markowitz problem instead of the empirical mean-CVaR problem, as
the solutions of the Markowitz and mean-CVaR problems are equivalent when the
log-return distribution is elliptical. We derive the asymptotic behavior of the non-
parametric PBR solution, which leads to insight into the effect of penalization, and
justification of the parametric PBR method. We also show via simulations that the
PBR methods produce efficient frontiers that are, on average, closer to the population
efficient frontier than the empirical approach to the mean-CVaR problem, with less
variability.

In Chapter 3, we consider portfolio optimization under parameter uncertainty.
We assume the asset log-returns are iid Gaussian, but with unknown mean and co-
variance. We propose dealing with parameter uncertainty by solving a relative regret
objective. Relative regret evaluates a decision by comparing its return to a family of
benchmarks, where the benchmarks are the wealth of fictitious investors who invest
optimally given knowledge of model parameters. The optimal relative regret portfolio
maximizes the worst-case relative performance to all the benchmarks, over the family
of possible parameters. Analysis of the problem using convex duality shows that it is
equivalent to a nonstandard Bayesian problem, where the prior distribution is endoge-
nously chosen by solving the dual optimization problem, with the resulting Lagrange
multipliers playing the role of the prior. The learning process involves Bayesian up-
dating of these Lagrange multipliers/prior. This approach is a genuine alternative
to standard Bayesian methods to model uncertainty, which can be sensitive to the
choice of the prior. It is also an alternative to maximizing the worst-case absolute
performance, which may lead to conservative solutions. Our investigation shows that
regret is a natural approach by which robust decision making and learning can be
combined.
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Chapter 2

Performance-based regularization
in mean-CVaR portfolio
optimization

2.1 Motivation

In recent years, there has been a growing interest in Conditional Value-at-Risk
(CVaR) as a financial risk measure. This interest is based on two key advantages of
CVaR over Value-at-Risk (VaR), the risk measure of choice in the financial industry
over the last twenty years. Firstly, CV aR(�), the conditional expectation of losses
in the top 100(1 − �)% (� = 0.95, 0.99 are typical values used in industry), is more
informative about the tail end of the loss distribution than V aR(�), which is only the
threshold for losses in the top 100(1− �)%. Secondly, [1] showed that CVaR satisfies
the four coherence axioms of [6], whereas VaR fails the subadditivity requirement.

Portfolio optimization with CVaR as a risk measure is first studied by [55], who
show that empirical CVaR minimization can be formulated as a linear program. Sub-
sequent works include CVaR optimization for a portfolio of credit instruments [4] and
derivatives [2], and portfolio optimization based on extensions of CVaR [47]. However,
most discussions of CVaR in portfolio optimization to date are concerned with formu-
lation and tractability of the problem, and assume full knowledge of the distribution
of the portfolio loss. In practice, one cannot ignore the fact that the loss distribution
is not known and must be estimated from historical data, constructed from expert
knowledge, or a combination of both. Naive estimation of the loss distribution can
pose serious problems — [42] demonstrates how fragile the solution to the empirical
mean-CVaR problem is, even in the ideal situation of having iid Gaussian log-return
data.

The issue of estimation errors in portfolio optimization is not, however, new knowl-
edge. The estimation issue for the classical Markowitz (mean-variance) problem has
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been raised as early as 1980 [39]. There have since been many suggestions for mitigat-
ing this issue for the Markowitz problem; two main approaches are robust optimiza-
tion [27] and what we call “standard regularization” ([18], [25], [38], [21]). The robust
optimization approach is to take the source of uncertainty (e.g. the asset log-returns,
or its distribution), specify an uncertainty set about the source, and minimize the
worst-case return-risk problem over this uncertainty set. The standard regulariza-
tion approach is to solve the empirical mean-variance problem, but with a constraint
on the size of the solution, as measured by L2 or a more generalized norm. The
term “regularization” is adopted from statistics and machine learning, where it refers
to controlling for the size of the decision variable for better out-of-sample perfor-
mance [35]. Both robust optimization and standard regularization approaches have
been studied for the mean-CVaR problem; [29] and [63] show implementations of the
robust optimization approach when the source of uncertainty is, respectively, the log-
return vector and the log-return distribution, and [30] demonstrates implementation
of standard regularization.

In this chapter, we propose performance-based regularization (PBR), a new ap-
proach to addressing estimation risk in data-driven optimization, and illustrate this
method for the mean-CVaR portfolio optimization problem. We demonstrate PBR for
two situations: the investor has nonparametric or parametric (specifically, the ellip-
tical family of distributions describe the log-returns) information on the log-returns.

The nonparametric PBR method penalizes portfolios with large variability in mean
and CVaR estimations. Specifically, we penalize the sample variances of the mean and
CVaR estimators. The resulting problem is a combinatorial optimization problem,
however we show that its convex relaxation, a quadratically-constrained quadratic
program, is tight. The problem can be interpreted as a chance-constrained program
that picks portfolios for which approximate probabilities of deviations of the mean
and CVaR estimations from their true values are constrained.

The parametric PBR method solves the empirical Markowitz problem instead of
the empirical mean-CVaR problem if the underlying log-return distribution is in the
elliptical family (which includes Gaussian and t distributions). This is based on the
observation that CVaR of a portfolio is a weighted sum of the portfolio mean and
the portfolio variance if the log-return distribution is in the elliptical family, resulting
in the equivalence of the population efficient frontiers1 of the Markowitz and mean-
CVaR problems. As we are striving to reach the population frontier with greater
stability, it makes intuitive sense to use the empirical Markowitz solution in lieu of
the empirical mean-CVaR solution for this model.

The PBR methods are anticipated to enhance the performance by yielding solu-
tions that are, on average, closer to achieving the original objective (minimize the
true CVaR subject to true return equal to some level). As such, the PBR approach is
fundamentally different from robust optimization, in that robust optimization deals

1By “population” we mean having a perfect market knowledge.
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with the source of uncertainty to minimize the worst-case performance, whereas PBR
deals with the performance uncertainty to increase the average performance. Com-
paring to the statistics/machine learning literature, PBR for the nonparametric case
can be seen as an extension of standard regularization, in that nonparametric PBR
also constrains the decision variable, however does so indirectly through penalizing
the variability of mean and CVaR estimations.

Details of the nonparametric PBR method can be found in Sec. 2.3.1 and the
parametric PBR method in Sec. 2.3.2. In Sec. 2.4, we provide theoretical results for
the PBR methods after deriving the Central Limit Theorem for the nonparametric
PBR solution. In Sec. 2.5, we evaluate the PBR methods against the straight-forward
approach of solving the empirical mean-CVaR problem for three different log-return
models via simulation experiments. We find that on average, the sample efficient
frontiers of the PBR solutions are closer to the population efficient frontier than
those of the straight-forward approach.

2.2 Mean-CVaR portfolio optimization

Notations. Throughout the chapter, we denote convergence in probability by
P→

and in distribution by ⇒. The notation X
d
= Y for two random variables X and Y

means they have the same distribution, and the symbol X ∼ D is used to indicate
that the random variable X follows some standard distribution D.

2.2.1 Setup

An investor is to choose a portfolio w ∈ ℝp on p different assets. Her wealth is
normalized to 1, so w⊤1p = 1, where 1p denotes p× 1 vector of ones. The log-returns
of the p assets is denoted by X , a p×1 random vector, which follows some absolutely
continuous distribution F with twice continuously differentiable pdf and finite mean
� and covariance Σ. The investor wants to pick a portfolio that minimizes the CVaR
of the portfolio loss at level 100(1 − �)%, for some � ∈ (0.5, 1), while reaching an
expected return R. That is, she wants to solve the following problem:

w0 = argmin
w

CV aR(−w⊤X ; �)

s.t. w⊤� = R
w⊤1p = 1,

(CVaR-pop)

where

CV aR(−w⊤X ; �) := min
�

�+
1

1− �
E(−w⊤X − �)+, (2.1)

as in [55].
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In reality, the investor does not know the distribution F . We assume the investor
observes n iid realizations of asset returns, X = [X1, . . . , Xn] ∈ ℝp×n. Then the most
straight-forward thing is to solve the following problem, where plugged-in estimators
replace the true CVaR and return values:

ŵn = argmin
w

ĈV aRn(−w⊤
X; �)

s.t. w⊤�̂n = R
w⊤1p = 1

(CVaR-emp)

where

ĈV aRn(−w⊤
X; �) := min

�∈ℝ
�+

1

n(1− �)

n∑

i=1

(−w⊤Xi − �)+, (2.2)

is a sample average estimator for CV aR(−w⊤X ; �) and �̂n = n−1
∑n

i=1Xi is the
sample mean of the observed asset log-returns.

2.2.2 Estimation risk of the empirical solution

Asymptotically, as the number of observations n goes to infinity (with p constant),
ŵn converges in probability to w0 [see Sec. 2.4.2 for details]. In practice, however,
the investor has a limited number of relevant observations. If, for example, there are
n = 250 iid daily observations, and the investor wishes to control the top 5% of the
losses, then there are only 250 × 0.05 = 12.5 points to estimate the portfolio CVaR
at level � = 0.95. For stock log-returns, n = 250 iid daily observations is rather
optimistic; there is ample empirical evidence that suggests daily log-returns are non-
stationary over this period of time [50]. Even for time scales with more evidence for
stationarity (e.g. bi-weekly/montly), the stationarity tends to last for no more than
5 years [50].

As a result, solving (CVaR-emp) using real data results in highly unreliable solu-
tions. Let us illustrate this point, assuming an ideal market scenario. There are p = 10
stocks, with daily returns following a Gaussian distribution2: X ∼ N (�sim,Σsim), and
the investor has n = 250 iid observations of X . In the following, we conduct an ex-
periment similar to those found in [42], to evaluate the performance and reliability of
solving (CVaR-emp) under this ideal scenario. Briefly, the experimental procedure is
as follows:

∙ Simulate 250 historical observations from N (�sim,Σsim).

∙ Solve (CVaR-emp) with � = 0.95 and some return level R to find an instance
of ŵn.

2the parameters are the sample mean and covariance matrix of data from 500 daily returns of 10
different US stocks from Jan 2009– Jan 2011
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Figure 2.1 Distribution of realized daily return (%) vs. daily risk (%) of empirical
solution ŵ. Green line represent the population frontier, i.e. the efficient frontier
corresponding to solving (CVaR-pop).

∙ Plot the realized return ŵ⊤
n � versus realized risk CV aR(−ŵ⊤

nX ; �); this corre-
sponds to one grey point in Fig. (2.1).

∙ Repeat for different values of R to obtain a sample efficient frontier.

∙ Repeat many times to get a distribution of the sample efficient frontier.

The result of the experiment is summarized in Fig. (2.1). The green curve cor-
responds to the population efficient frontier. Each of the grey dots corresponds to
a solution instance of (CVaR-emp). There are two noteworthy observations: the so-
lutions ŵn are sub-optimal, and they are highly variable. For instance, for a daily
return of 0.1%, the CVaR ranges from 1.3% to 4%.

In the following section, we introduce performance-based regularization (PBR) as
an approach to improve upon (CVaR-emp). The PBR approach is so-called because
its goal is to improve upon ŵn in terms of its performance, i.e. closeness to the
population efficient frontier, ideally with less variability. We describe PBR for two
cases: the investor has nonparametric or parametric knowledge of the market.

2.3 Performance-based regularization

2.3.1 Nonparametric case

In the nonparametric case, we assume the asset log-returns X follows some distri-
bution P with finite mean � and covariance Σ, and the investor has n iid observations:
X = [X1, . . . , Xn] ∈ ℝp×n. The nonparametric PBR approach to (CVaR-pop) is to
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solve the following problem:

min
w

ĈV aRn(−w⊤
X; �)

s.t. w⊤�̂n = R
w⊤1p = 1
P1(w) ≤ U1

P2(w) ≤ U2

(2.3)

where P1 and P2 are penalty functions that characterize the uncertainty associated

with w⊤�̂n and ĈV aRn(−w⊤
X; �) respectively. The idea is to penalize decisions w

for which the uncertainty about the true values w⊤� and CV aR(−w⊤X ; �) is large.
What, then, are appropriate penalty functions? Recall that we are trying to find

solutions that yield efficient frontiers that are closer to the population efficient frontier,

ideally with smaller variability. Thus the variances of w⊤�̂n and ĈV aRn(−w⊤
X; �)

make appropriate penalty functions, as they characterize the deviation from the re-
spective population values. The variance of w⊤�̂n is given by

V ar(w⊤�̂n) =
1

n2

n∑

i=1

V ar(w⊤Xi) =
1

n
w⊤Σw,

and the variance of ĈV aRn(−w⊤
X; �) is approximately equal to 
20/n(1 − �)2 =

V ar[max(−w⊤X − ��)], where

�� = inf{� : P (−w⊤X ≥ �) ≤ 1− �}
is the Value-at-Risk (VaR) of the portfolio w at level �, due to the following lemma.

Lemma 1. Suppose X = [X1, . . . , Xn]
iid∼ F , where F is absolutely continuous with

twice continuously differentiable pdf. Then
√
n(1− �)


0
(ĈV aRn(−w⊤

X; �)− CV aR(−w⊤X ; �)) ⇒ N (0, 1). (2.4)

Proof. See Appendix 2.6.1.

Of course, we do not know the true variances, so we contend with sample variances

of the estimators w⊤�̂n and ĈV aRn(−w⊤
X; �). That is, we consider the following

penalty functions:

P1(w) =
1

n
w⊤Σ̂nw, where Σ̂n = Cov(X),

P2(w) =
1

n(1− �)2
z⊤Ωnz, where

Ωn =
1

n− 1
[In − n−11n1

⊤
n ], In = n× n identity matrix, and

zi = max(0,−w⊤Xi − �) for i = 1, . . . , n.
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For the rest of this chapter, we investigate the nonparametric PBR method with
sample variance penalty functions. Of course, this is just one particular choice, and
it opens up the question of how different penalty functions affect the solution per-
formance, and whether there are such things as “optimal” penalty functions. These
are difficult questions worthy of further research, and we do not investigate them
in this chapter. Nevertheless, we derive the asymptotic behavior of the solution of
nonparametric PBR method in Sec. 2.4, which gives us some insight into i) how one
could compare the effects of different penalty functions and ii) the first-order effect
of many typical penalty functions.

The nonparametric PBR method with sample variance of return and CVaR esti-
mators as penalties is:

(�̂vn, ŵ
v
n, ẑ

v
n) = argmin

�,w,z
�+

1

n(1− �)

n∑

i=1

zi

s.t. w⊤�̂n = R
w⊤1p = 1

1

n
w⊤Σ̂nw ≤ U1

1

n(1− �)2
z⊤Ωnz ≤ U2

zi = max(0,−w⊤Xi − �), i = 1, . . . , n.

(CVaR-pen)

At first glance, (CVaR-pen) is a combinatorial optimization problem due to the
cutoff variables zi, i = 1, . . . , n. However, it turns out that the convex relaxation of
(CVaR-pen), a quadratically-constrained quadratic program (QCQP), is tight, thus
we can solve (CVaR-pen) efficiently. Before stating the result, let us first introduce
the convex relaxation of (CVaR-pen):

min
�,w,z

� +
1

n(1− �)

n∑

i=1

zi

s.t. w⊤�̂n = R (�1)
w⊤1p = 1 (�2)

1

n
w⊤Σ̂nw ≤ U1 (�1)

1

n(1− �)2
z⊤Ωnz ≤ U2 (�2)

zi ≥ 0 i = 1, . . . , n (�1)
zi ≥ −w⊤Xi − �, i = 1, . . . , n (�2)

(CVaR-relax)

and its dual (where the dual variables correspond to the primal constraints as indi-
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cated above):

max
�1,�2,�1,�2,�1,�2

g(�1, �2, �1, �2, �1, �2)

s.t. �⊤2 1n = 1
�1 ≥ 0, �2 ≥ 0
�1 ≥ 0, �2 ≥ 0

(CVaR-relax-d)

where

g(�1, �2, �1, �2, �1, �2)

= − n

2�1
(�1�̂n + �21p − X�2)

⊤Σ̂−1
n (�1�̂n + �21p − X�2)

− n(1− �)2

2�2
(�1 + �2)

⊤Ω†
n(�1 + �2) +R�1 + �2 − U1�1 − U2�2,

and Ω†
n is the Moore-Penrose pseudo inverse of the singular matrix Ωn.

We now show (CVaR-pen) can be solved efficiently by its convex relaxation:

Theorem 1. Let (�∗, w∗, z∗, �∗1, �
∗
2, �

∗
1, �

∗
2) be the primal-dual optimal point of (CVaR-

relax) and (CVaR-relax-d). If �∗2 ∕= 1n/n, then (�∗, w∗, z∗) is an optimal point of
(CVaR-pen). Otherwise, if �∗2 = 1n/n, we can find the optimal solution to (CVaR-
relax) by solving (CVaR-relax-d) with an additional constraint �⊤1 1n ≥ �, where � is
a constant 0 < � ≪ 1.

Proof. See Appendix 2.6.2.

Remark 1 – Bias introduced by penalty functions.
Note that if the penalties induce active constraints (i.e. U1, U2 are small enough), ŵvn
does not converge to w0 as n→ ∞, i.e. the penalty constraints introduce bias. This is
not a problem, however, because we are concerned with finite sample performance, not
asymptotic consistency. In Sec. 2.5, we see that the bias introduced by the penalized
solution is actually in the direction that improves performance in the return-risk
space.

Remark 2 – Interpretation as chance-programming.

Both w⊤�̂n and ĈV aRn(−w⊤
X; �) are asymptotically normally distributed, so con-

straining their variances results in the reduction of the corresponding confidence in-
tervals at some fixed level �. Hence penalizing their variances can be interpreted as
chance-programming [16]. Analytically, the chance constraint on ∣w⊤�̂n − w⊤�∣ can
be transformed to a penalty constraint in the following manner:

P
(
∣w⊤�̂n − w⊤�∣ ≤ t

)
≥ 1− �

≈ 2Φ

(
t√

w⊤Σw/n

)
− 1 ≥ 1− � for large n

⇐⇒ 1

n
w⊤Σw ≤

(
t

Φ−1(1− �/2)

)2

.
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That is, for a fixed level �, there is a one-to-one mapping between the parameter U1 of
the penalty constraint w⊤Σ̂nw/n ≤ U1 and the parameter t of the chance constraint.

The (asymptotic) variance penalty on ĈV aRn(−w⊤
X; �) has a similar interpretation

as a chance constraint.
However, the penalty method can be interpreted as chance programming only if we

choose the variance of the respective estimators as the penalty functions. Although
we focus on the sample variance penalty function in this chapter, we assert that the
penalty method need not be restricted to this particular choice.

2.3.2 Parametric case

In the parametric case, we assume the asset log-returns follow an elliptical dis-
tribution; i.e. the level sets of the distribution density function form ellipsoids. An
elliptical distribution has a stochastic representation as follows (see [3] or [52]):

X
d
= �+ Y Σ1/2U (2.5)

where � is the mean vector, U is a p× 1 random vector uniformly distributed on the

p-dimensional sphere of radius 1 (i.e. U
d
= Zp/∣∣Zp∣∣2, Zp ∼ N (0, Ip)), and Y is a non-

negative random variable independent of U . A special case is the Gaussian model:
choosing Y = �p, we get X ∼ N (�,Σ). The elliptical family of distributions can thus
be thought of as a generalization of the Gaussian family, and may be more reasonable
for financial modeling because the non-random mixing of covariances can capture
non-trivial tail dependence and heavier tails [50]. In particular, t-distributions also
belong in the elliptical family.

The parametric PBR method is to solve the empirical Markowitz problem instead
of (CVaR-emp) if X belongs in the elliptical family:

ŵMn = argmin
w

w⊤Σ̂nw

s.t. w⊤�̂n = R
w⊤1p = 1.

(Mark-emp)

The method is based on Lemma 2, which shows that the solutions of (CVaR-pop)
and the population Markowitz problem [which is the same as (Mark-emp) except with
(Σ, �) replacing (Σ̂n, �̂n)] are equivalent if X is elliptically distributed. Lemma 2 is an
extension of results mentioned elsewhere ([55], [20]) that show the equivalence of the
solutions of (CVaR-pop) and the population Markowitz problem when X is Gaussian.
However, to our knowledge, the implication that we can solve (Mark-emp) in lieu of
(CVaR-emp) to obtain a better-performing solution has not been asserted.

Lemma 2. Suppose X ∼ Ellip(�,Σ, Y ) as in (2.5) and Y > 0. Then the solution
of the population mean-CVaR problem (CVaR-pop) and the population Markowitz
problem are equivalent.



12

Proof. The proof is straightforward: we show CV aR(−w⊤X ; �) is a weighted sum of

the portfolio mean w⊤� and portfolio std
√
w⊤Σw.

First, the portfolio loss is:

L(w) := −w⊤X
d
= −w⊤�+ Y v⊤U

√
w⊤Σw,

where v⊤ = w⊤Σ1/2/
√
w⊤Σw, with ∣∣v∣∣2 = 1. Before we compute CV aR(−w⊤X ; �) =

CV aR(L(w); �), we need to compute ��, the VaR of L(w) at level � [equivalently,
the (1 − �)-quantile of L(w)]. Since L(w) is a continuous random variable, �� =
F−1
L(w)(1− �), where F−1

L(w) is the inverse cdf of L(w). Now

FL(w)(x) = P (L(w) ≤ x) = P

(
Y v⊤U ≥ −x− w⊤�√

w⊤Σw

)
,

so to compute ��, we need the distribution of Y v⊤U . Since v has norm 1, v⊤Zp
d
= Z1,

where Z1 ∼ N (0, 1), and since U
d
= Zp/∣∣Zp∣∣2,

v⊤U
d
=

Z1√
Z2

1 + �2
p−1

,

where �2
p−1 is independent of Z1. Thus (v⊤U)2 ∼ Beta(1/2, (p − 1)/2), and by the

symmetry of the normal, we have

P (Y v⊤U ≥ x) = P (Y I(1/2)
√
B ≥ x) ,

where B ∼ Beta(1/2, (p − 1)/2) and I(1/2) ∼ Bernoulli(1/2), independent of the
rest. This quantity clearly does not depend on our choice of w, hence the solution to
the equation

FL(w)(x) = 1− �

is given by
�� = −w⊤�+ q(1− �; Y I(1/2)

√
B)

√
w⊤Σw,

where q is a function that does not depend on w, and is unique since L(w) is a
continuous random variable.

Thus CVaR at level � is given by

CV aR(L(w); �) =
1

1− �
E[L(w)I(L(w) ≥ ��)]

= −w⊤�+G(1− �; Y I(1/2)
√
B)

√
w⊤Σw, (2.6)

where G does not depend on w. Hence minimizing CV aR(L(w); �) subject to w⊤� =
R and w⊤1p = 1 is equivalent to minimizing w⊤Σw subject to the same constraints,
which is precisely the population Markowitz problem.



13

2.4 Theory

We have thus far introduced nonparametric and parametric PBR methods to
improve upon the empirical mean-CVaR problem (CVaR-emp). While we evaluate
these methods in Sec. 2.5 via simulation experiments, it is still desirable to obtain
some theoretical understanding of ŵn, ŵ

v
n and ŵMn .

The solution to the empirical Markowitz problem ŵMn has an explicit form and
its asymptotic behavior has been studied elsewhere (for X ∼ N (�,Σ), see [39], and
for X ∼ Elliptical, see [23]). So we focus on deriving the asymptotic behavior of ŵn
and ŵvn — specifically, we show that they follow the Central Limit Theorem (CLT).
Application of the delta method from classical statistics (see for example, Chapter 3
of [61]) then allows us to conclude that the corresponding sample efficient frontiers
also follow the CLT. From these results, we can get some insight into the effect of
the penalty functions in the nonparametric PBR method, and (indirectly) justify the
parametric PBR method when the log-returns are Gaussian.

Notations. In this section, we make use of stochastic little-o and big-O notations:
for a given sequence of random variables Rn, Xn = oP (Rn) means Xn = YnRn where

Yn
P→ 0, and Xn = OP (Rn) means Xn = YnRn where Yn = OP (1), i.e. for every " > 0

there exists a constant M such that sup
n

P (∣Yn∣ > M) < ".

Measurability Issues. We also encounter quantities that may not be measurable
(e.g. supremum over uncountable families of measurable functions). We note that
whenever the “probability” of such quantities are written down, we actually mean
the outer probability. For further details, see Appendix C of [54].

2.4.1 Preliminaries

The quantities ŵn and ŵvn are solutions to non-trivial optimization problems so
they cannot be written down analytically, and it seems characterizing their asymptotic
distributions would be difficult. However, we are not at a complete loss. In statistics,
an M-estimator3 is an estimator that minimizes an empirical function of the type

� 7→Mn(�) :=
1

n

n∑

i=1

m�(Xi), (2.7)

where X1, . . . , Xn are iid observations, over some parameter space Θ. The solution �̂n
is then a reasonable estimator of the minimizer �0 of the true meanM(�) = E[m�(X1)].
It is well-known that �̂n obeys the Central Limit Theorem (i.e. is asymptotically
normally distributed) under some regularity conditions. Intuitively, assuming � is

3“M” stands for Minimization (or Maximization). For readers unfamiliar with M-estimation,
maximum likelihood estimation falls in this category.
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one-dimensional and Mn is sufficiently smooth, the CLT result is based on Taylor
expansion of the first-order condition dMn(�̂n)/d� = 0 about �0:

0 =
dMn(�̂n)

d�
=
dMn(�0)

d�
+ (�̂n − �0)

d2Mn(�0)

d�2
+OP (∣�̂n − �0∣2).

Under reasonable assumptions that d2Mn(�0)/d�
2 obeys the Weak Law of Large Num-

bers and �̂n is a consistent estimator of �0 (i.e. ∣�̂n − �0∣ P→ 0), we have

√
n(�̂n − �0) = − 1

E[d
2Mn(�0)
d�2

]

1√
n

n∑

i=1

dm�0(Xi)

d�
+ oP (1),

with the latter expression obeying the standard CLT as it is a normalized sum of iid
random variables.

So we ask, can we transform (CVaR-emp) and (CVaR-pen) to a problem for which
we can use the M-estimation results?

The first step towards transforming (CVaR-emp) and (CVaR-pen) is to make
them into constraint-free optimization problems. This is achievable, albeit with some
thoughts, and we defer the details to Sec. 2.4.2. Next, we need to show ŵn and ŵ

v
n are

consistent, i.e. they converge in probability to the corresponding population solutions.
The proof of consistency is also provided in Sec. 2.4.2.

Once (CVaR-emp) is transformed to a global optimization problem, it is equivalent
to an M-estimation problem in that the objective is a sample average of iid random
variables of the form Eq. (2.7). Thus we conclude ŵn is asymptotically normally
distributed with mean w0 and covariance matrix Σw0

, which we can compute.
However, (CVaR-pen) after transformation into a global problem is not quite an

M-estimation problem, because, after some algebra, the objective is of the form (see
Sec. 2.4.2 for details):

� 7→ Mn(�) =
1

n(n− 1)

∑

i ∕=j
mU
� (Xi, Xj), (2.8)

where mU(⋅, ⋅) is a permutation-symmetric function, and the sum is over all possible
pairs (i, j) for 1 ≤ i, j ≤ n, resulting in a sample average of identically distributed
but non-independent terms.

For fixed �, statistics of the form Eq. (2.8) are known as U-statistics, and we
believe the solution ŵvn is still well-behaved because U-statistics can be decomposed
into a term of the form M1

n(�) =
∑n

i=1m
1
�(Xi) (known as its Hajék projection or first

term in its Hoeffding decomposition; see [37]) and a remainder which converges to
zero in probability at rate

√
n. Thus we intuit that the asymptotic behavior of ŵvn is

equivalent to the minimizer of M1
n(�), the latter for which we can apply the standard

M-estimation result. We make this intuition rigorous in Sec. 2.4.3. In Sec. 2.4.4, we
provide details of the asymptotic distributions of ŵn and ŵvn when X ∼ N (�,Σ), and
provide a justification of the parametric PBR method.
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2.4.2 Consistency of ŵn and ŵv
n

In this subsection we show consistency of ŵvn = ŵvn(�1, �2). The result goes through
for ŵn by setting �1 = �2 = 0.

Transformation into global optimization

The penalized CVaR portfolio optimization problem with dualized mean and sam-
ple/asymptotic variance penalty constraints is

min
(�,w)∈ℝ×ℝp

Mn(�,w;�1, �2)

s.t. w⊤1p = 1,
(CVaR-dual)

where

Mn(�;�1, �2) =
1

n

n∑

i=1

m�(Xi) +
�1
n
w⊤Σ̂nw +

�2
n− 1

n∑

i=1

(
z�(Xi)−

1

n

n∑

j=1

z�(Xj)

)2

,

(2.9)

m�(x) = �+
1

1− �
z�(x)− �0w

⊤x, (2.10)

and �0 > 0, �1, �2 ≥ 0 are pre-determined constants.
We dualize the mean constraint w′�̂n = R because it makes the analysis of the

corresponding solution much easier. While dualizing the mean constraint adds a
sample average of iid terms to the objective, leaving it as a constraint results in a
solution that has a non-trivial dependence on the underlying randomness.

Now eliminating the non-random constraint w⊤1p = 1 is straight-forward; one pos-
sible way is to re-parameterize w as w = w1 +Lv, where L = [0(p−1)×1, I(p−1)×(p−1)]

⊤,
v = [w2, . . . , wp]

⊤ and w1 = [1−v⊤1(p−1), 01×(p−1)]
⊤. The transformed problem is thus

min
�∈ℝp

Mn(�;�1, �2), (2.11)

where � = (�, v) ∈ ℝ×ℝp−1 is free of constraints, and the corresponding population
problem is

min
�∈ℝp

M(�;�1, �2) = E[Mn(�;�1, �2)]. (2.12)

In what follows, we assume M(�;�1, �2) has a unique minimizer �0(�1, �2). We
also let �̂n(�1, �2) be a near-minimizer of Mn(�;�1, �2), i.e.

Mn(�̂n;�1, �2) < inf
�∈ℝp

Mn(�;�1, �2) + oP (1). (2.13)
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Transformation of the objective to a U-statistic

Let � = (�, v) ∈ ℝ×ℝp−1 and z�(x) := (−x⊤(w1+Lv)−�)+.With simple algebra,
we can re-write the objective Eq. (2.9) as a U-statistic:

Mn(�;�1, �2) =
1(
n
2

)
∑

1≤i,j≤n
i ∕=j

mU
(�;�1,�2)(Xi, Xj), (2.14)

where

mU
(�;�1,�2)

(xi, xj) :=
1

2
[m�(xi) +m�(xj)] +

�1
2
[(w1 + Lv)⊤(xi − xj)]

2

+
�2
2
(z�(xi)− z�(xj))

2. (2.15)

Consistency of �̂n(�1, �2)

Let us now prove consistency of �̂n(�1, �2) for fixed �1, �2 ≥ 0. The intuition
behind the proof is as follows: if M(�;�1, �2) is well-behaved such that for every
" > 0 there exists � > 0 such that ∣∣�̂n(�1, �2)−�0(�1, �2)∣∣2 > " =⇒ M(�̂n;�1, �2)−
M(�0;�1, �2) > �, then consistency follows from showing that the probability of the
event {M(�̂n;�1, �2)−M(�0;�1, �2) > �} goes to zero for all " > 0. In the proof, we
show that 0 ≤ M(�̂n;�1, �2) −M(�0;�1, �2) ≤ −(Mn(�̂n;�1, �2) −M(�̂n;�1, �2)) +
oP (1), hence the result follows by proving Uniform Law of Large Numbers (ULLN)
for Mn(�;�1, �2):

sup
�∈ℝp

∣Mn(�;�1, �2)−M(�;�1, �2)∣ P→ 0. (2.16)

ULLN has been extensively studied in the statistics and empirical processes lit-
erature and one of the standard approaches to showing ULLN is through bracketing
numbers. Given two functions l, u, the bracket [l, u] is the set of all functions g with
l ≤ g ≤ u. An "-bracket in Lr(P ) is a bracket [l, u] with EP (u − l)r < "r, and the
bracketing number N[ ](",ℱ , Lr(P )) is the minimum number of "-brackets needed to
cover ℱ . Having a finite bracketing number N[ ](",ℱ , Lr(P )) < ∞ for every " > 0
means one can find a finite approximation to ℱ with "-accuracy for all " > 0, and
ULLN holds for such ℱ (Theorem 19.4 [61]).

There are certainly known sufficient conditions for finite bracketing numbers. For
our problem, if we can replace ℝp with a compact set, we can show F is a Lipschitz
class of functions (defined in the next paragraph), which is known to have finite
N[ ](",ℱ , Lr(P )) for every " > 0. Now for all practical purposes, we need only
consider a compact subset of Θ, [−K,K]p where K is appropriately large enough,
because the elements of � = (�, v) are only meaningful if bounded in size (� is the
Value-at-Risk of the portfolio w = w1 + Lv). Hence for the rest of this section we
assume a K exists such that �̂n ∈ [−K,K]p for all n and �0 ∈ [−K,K]p.
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Definition 1 (Lipschitz class). Consider a class of measurable functions ℱ = {f� :
� ∈ Θ}, f� : X → ℝ, under some probability measure P . We say ℱ is a Lipschitz
class about �0 ∈ Θ if � 7→ f�(x) is differentiable at �0 for P-almost every x with
derivative ḟ�0(x) and such that, for every �1 and �2 in a neighborhood of �0, there
exists a measurable function ḟ with E[ḟ 2(X1)] <∞ such that

∣f�1(x)− f�2(x)∣ ≤ ḟ(x)∣∣�1 − �2∣∣2.
Example 19.7 of [61] shows that if ℱ = {f� : � ∈ Θ} is a class of measurable

functions with bounded Θ ⊂ ℝd and ℱ is Lipschitz about �0 ∈ Θ then for every
0 < " < diam(Θ), there exists C such that

N[ ]("

√
E(∣ḟ(X)∣2),ℱ , L2(P )) ≤ C

(
diam(Θ)

"

)d
, (2.17)

i.e. has a finite bracketing number for all " > 0. This result is needed in proving
consistency in the following.

Theorem 2. For fixed �1, �2 ≥ 0, let �̂n(�1, �2) be a near-minimizer of Mn(�;�1, �2)
as in Eq. (2.13), and let �0(�1, �2) be the unique minimizer of M(�;�1, �2). Also let

ℱ1 = {m� : � ∈ [−K,K]p}, ℱ2 = {mU
(�;�1,�2) : � ∈ [−K,K]p},

where m� and m
U
(�;�1,�2)

are defined in Eqs. (2.10) and (2.15). Suppose the following:

Assumption 1. � 7→ M(�;�1, �2) is continuous and lim inf ∣�∣→±∞M(�;�1, �2) >
M(�0;�1, �2).

Assumption 2. X1, . . . , Xn are iid continuous random vectors with finite fourth
moment.
Then

∣∣�̂n(�1, �2)− �0(�1, �2)∣∣2 P→ 0.

Proof. See Appendix 2.4.5.

2.4.3 Central Limit Theorem for �̂n(�1, �2)

We are now ready to show the CLT for �̂n(�1, �2). The CLT for �̂n(0, 0) is a
straightforward application of known M-estimation results for Lipschitz class of ob-
jective functions (e.g. Theorem 5.23 of [61]).

The CLT for �̂n(�1, �2) when �1, �2 are not both zero does not follow straight-
forwardly from M-estimation results because Mn(�;�1, �2) is a sample average of
identically distributed but non-independent terms. However, statistics of the form
Mn(�;�1, �2) are known as U-statistics, and we can decompose them into a sum of
iid random variables and a component which is oP (1/

√
n) [37]:

Mn(�;�1, �2) =
1

n

n∑

i=1

m1
(�;�1,�2)

(Xi) + En(�;�1, �2), (2.18)
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where

m1
(�;�1,�2)

(Xi) = 2EXj
[mU

(�;�1,�2)
(Xi, Xj)]− EX1,X2

[mU
(�;�1,�2)

(X1, X2)]

and En(�;�1, �2) is oP (1/
√
n). Hence we suspect ∣RU

n (�̂n;�1, �2)∣
P→ 0, where

RU
n (�;�1, �2) =

√
n(� − �0)− [∇2

�0
Em1

(�;�1,�2)
(Xi)]

−1 1√
n

n∑

i=1

m1
(�;�1,�2)

(Xi).

Now �̂n changes with every n so we need uniform probabilistic convergence of
RU
n (�;�1, �2), and implicitly of En(�;�1, �2). For this we need to show convergence

of particular stochastic processes; an empirical process and a U-process.

Definition 2. Let X1, . . . , Xn be iid random vectors from X . For a measurable func-
tion f : X → ℝ, the empirical process at f is

Gnf :=
1√
n

n∑

i=1

[f(Xi)− Ef(X1)],

and for a measurable function g : X ×X → ℝ, the U-process at g is

Ung :=

√
n(
n
2

)
∑

i ∕=j
[g(Xi, Xj)− EX1,X2

g(X1, X2)].

To show convergence of quantities such as supt∈T ∣Xn(t)∣ for some stochastic pro-
cess {Xn(t) : t ∈ T}, we need to introduce the notion of weak convergence of stochastic
processes. If Xn(⋅, !) is a bounded function for every ! ∈ Ω, then we can consider
Xn(⋅, !) to be a point in the function space ℓ∞(T ), the space of bounded functions on
T which is equipped with the supremum norm. Hence, showing the convergence of
supt∈T ∣Xn(t)∣ is equivalent to showing weak convergence of Xn in this function space.

Definition 3 (Weak convergence of a stochastic process). A sequence of Xn :
Ωn 7→ ℓ∞(T ) converges weakly to a tight random element 4 X iff both of the following
conditions hold:

1. Finite approximation: the sequence (Xn(t1), . . . , Xn(tk)) converges in distribu-
tion in ℝk for every finite set of points t1, . . . , tk in T .

2. Maximal inequality: for every ", � > 0 there exists a partition of T into finitely
many sets T1, . . . , Tk such that

lim sup
n→∞

P

[
sup
i

sup
s,t∈Ti

∣Xn(s)−Xn(t)∣ ≥ "

]
≤ �.

4A random element is a generalization of a random variable. Let (Ω,G, P ) be a probability space
and D a metric space. Then the G-measurable map X : Ω 7→ D is called a random element.
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The point at the end of this is, as taking the supremum is a continuous map in
the topology of ℓ∞(T ), weak convergence of Xn(⋅) to X(⋅) would allow us to conclude
supt∈T ∣Xn(t)∣ → supt∈T ∣X(t)∣.

Regarding empirical processes, we say a class of measurable functions ℱ is P-
Donsker if {Gnf : f ∈ ℱ} converges weakly to a tight random element in ℓ∞(ℱ).
This property is related to the bracketing numbers introduced in Sec. 2.4.2: a class
ℱ is P-Donsker if " log[N[ ](",ℱ , L2(P ))] → 0 as "→ 0 (due to Donsker; see Theorem
19.5 of [61]). Many sufficient conditions for the weak convergence of {Unf : f ∈ ℱ}
are provided in [5], and we make use of one in our proof of CLT for �̂n(�1, �2) below.

Theorem 3. Fix �1, �2 ≥ 0, �1, �2 not both zero and assume the same setting as
Theorem 2. Also let

ṁU
(�0;�1,�2)(x) = ∇�m

U
(�0;�1,�2)(x)∣�=�0(�1,�2), for x ∈ ℝp,

and further assume
Assumption 3. EX1,X2

[mU
(�0;�1,�2)

(X1, X2)
2] <∞.

Assumption 4. � 7→ M(�;�1, �2) admits a second-order Taylor expansion at its
point of minimum �0(�1, �2) with nonsingular symmetric second derivative matrix
V�0(�1,�2).
Then

√
n(�̂n(�1, �2)− �0(�1, �2)) = −V −1

�0(�1,�2)

1√
n

n∑

i=1

ṁ1
(�0;�1,�2)

(Xi) + op(1)

where

ṁ1
(�;�1,�2)(Xi) = 2EX2

[ṁU
(�;�1,�2)(X1, X2)]− EX1,X2

[ṁU
(�;;�1,�2)(X1, X2)]

is the first-order term in the Hoeffding decomposition of Mn(�;�1, �2).

Remark – Implication on the choice of penalty functions.
We have just shown that asymptotically, the sample variance penalty functions affect
the solution performance only through its Hajék projection. This observation can
generalize to many typical penalty functions (e.g. different statistics of mean and
CVaR estimators), and as such, the implication is that of all possible penalty functions
to consider, one may focus on a subclass of functions that can be expressed as a sample
average of iid terms.

Corollary 1. Assume the same setting as Theorem 3. Then

√
n(�̂n(�1, �2)− �0(�1, �2)) ⇒ N (0,Σ�0(�1, �2)) , (2.19)
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where Σ�0(�1, �2) = A−1BA−1,

A = A�0(�1, �2) = ∇2
� E[m1

(�;�1,�2)(X1)]

∣∣∣∣
�=�0

= ∇2
� [

1

1− �
Ez�(X1) + �1w

⊤Σw + �2V ar(z�(X1))]

∣∣∣∣
�=�0

B = B�0(�1, �2) = E[∇�0m
1
(�;�1,�2)

(X1)∇�0m
1
(�;�1,�2)

(X1)
⊤]

where

∇� m
1
(�;�1,�2)

(x)

=

[
1− 1

1−� I

− 1
1−�L

⊤XI− �0L
⊤X

]

+

[
2�2E[(z�(X)− Ez�(X))(−I+ EI)]

2�1L
⊤(X − �)(X − �)⊤w + 2�2E[(z�(X)− Ez�(X))(−L⊤XI+ EL⊤XI)]

]
,

and I = I(z�(X) ≥ 0).

Remarks.

1. For asymptotics of ŵn(�1, �2) we have
√
n(ŵn(�1, �2)− w0(�1, �2)) ⇒ N (0,Σw0

(�1, �2)) , (2.20)

where Σw0
(�1, �2) = (0p L)Σ�0(�1, �2)(0p L)

⊤.

2. Setting �1, �2 = 0, we get back the unpenalized mean-CVaR problem.

3. Asymptotic distribution of the efficient frontier.
With Eq. (2.20), we can state the distribution of the true efficient frontier —
that is, the distribution of ŵn(�1, �2)

⊤� and

g(ŵn(�1, �2)) := CV aR(−ŵn(�1, �2)⊤Xn+1; �),

where Xn+1 ∼ F , independent of X1 . . . , Xn. For the portfolio mean, we have
√
n(ŵn(�1, �2)

⊤�− w0(�1, �2)
⊤�) ⇒ N (0, �⊤Σw0

((�1, �2))�)

and for the true CVaR, by the delta Method
√
n(g(ŵn(�1, �2))− g(w0(�1, �2)))

⇒ N
{
0, g′(w0(�1, �2))

⊤Σw0
(�1, �2)g

′(w0(�1, �2))
}
. (2.21)

The asymptotic distribution of g(ŵn(�1, �2)) clearly depends on the distribution
of the assets X . In the case when X ∼ Ellip(�,Σ, Y ), g(w) = −w⊤� +

G
√
w⊤Σw according to our previous calculations in Eq. (2.6). Hence

√
n(g(ŵn)−g(w0)) ⇒ N

{
0,

(
−�+G

Σw0√
w0Σw0

)⊤
Σw0

(
−�+G

Σw0√
w0Σw0

)}
.

(2.22)



21

2.4.4 Example. Asymptotic analysis when X ∼ N (�,Σ)

In the following, we provide the detailed computation of Σ�0(0, 0) for the unpe-
nalized solution �̂n(0, 0) when X ∼ N (�,Σ).

Lemma 3. Suppose X ∼ N (�,Σ). Then

z�0(X) = −w⊤
0 X − �0 ∼ �0N (−Φ−1(�), 1), and

p0 = f−w⊤

0
X(0) =

1√
2��0

exp

{
− 1

2�2
0

(Φ−1(�))2
}
,

where �0 =
√
w⊤

0 Σw0. Then Σ�0(0, 0) = A−1
0 B0A

−1
0 , where A0, B0 are symmetric

matrices with

A0(1, 1) =
p0

1− �

A0(j, l) =
p0

(1− �)
E[L⊤

j XL
⊤
l X∣z�0(X) = 0] for 2 ≤ j, l ≤ p

A0(1, j) = − p0
(1− �)

E[L⊤
j X∣z�0(X) = 0] for 2 ≤ j ≤ p,

where Lj is the j-th column of L, and

B0(1, 1) =
�

1− �

B0(j, l) =
1

(1− �)

(
1

1− �
+ 2�0

)
E[L⊤

j XL
⊤
l XI(z�0(X) ≥ 0)]

+�20(L
⊤
j ΣLl + L⊤

j �L
⊤
l �) for 2 ≤ j, l ≤ p

B0(1, j) = 0 for 2 ≤ j ≤ p.

Proof. This is a straight-forward application of Corollary 1 for the case X ∼ N (�,Σ).

Let us now compare the asymptotic results derived above with simulations with
finite number of observations. Consider 5 assets, a range of observations (n =
250, 500, 1000, 2000) and X ∼ N (�sim,Σsim), where the model parameters are the
same as the model parameters of the first five assets used in Sec. 2.2.2. For simula-
tions, we solve the mean-CVaR problem with dualized mean constraint:

min
w

ĈV aRn(−w⊤
X; �)− �0w

⊤�̂n

s.t. w⊤1p = 1,

and follow steps similar to Sec. 2.2.2.
In Fig. 2.2, we summarize the empirical frontiers by plotting their averages and

indicating ±1/2 standard deviation error bars, in both true mean (vertical) and true
risk estimations (horizontal) in grey. The population frontier is also plotted, and
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Figure 2.2 Comparison of theoretical (red) and simulated (grey) distributions of the
empirical efficient frontier when X ∼ N (�sim,Σsim) for increasing number of obser-
vations n = [250, 500, 1000, 2000]. The error bars indicate ±1/2 std variabilities in
the mean and CVaR. Green is the population efficient frontier, and blue indicates
the portion that corresponds to the return range considered for the simulations. Ob-
serve that the asymptotic variance calculated theoretically (red bars) approach the
simulated variance (grey bars) with increasing n.
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is shown in green, and the theoretical ±1/2 standard deviations of mean and risk
estimations are juxtaposed with the empirical error bars in red. We make a couple
of observations:

1. With increasing n, the theoretical error bars approach the simulated ones, as
expected.

2. The theory seems to better predict the mean estimation error (vertical) better
than the risk estimation error (horizontal). With finite n, the mean estimation
error, which is computed using Eq. (2.21), depends only on one approximate
quantity Σw0

(0, 0), whereas the risk estimation error, computed using Eq. (2.22),
depends on Σw0

(0, 0) and w0. Although ŵn is a consistent estimator of w0

asymptotically, with finite n the difference does play a role, as shown by the
relative inaccuracy of the horizontal error bars compared to the vertical ones.
The finite sample bias also explains the gap in the positions of the population
and simulated efficient frontiers.

Let us now derive asymptotic properties of the penalized solution �̂n(�1, �2),
�1, �2 ≥ 0, when X ∼ N (�,Σ). First, we show that when X ∼ N (�,Σ), penal-
izing variance of CVaR estimation is redundant if one penalizes the sample variance
of the mean.

Lemma 4. Suppose X ∼ N (�,Σ) and let z�(X) = −� − w⊤X. Then z�(X) ∼
N (�1, �

2
1) where �1 = −�1Φ−1(�), �2

1 = w⊤Σw, and

V ar[max(z�(X), 0)] = C(�)�2
1,

where C(�) is a constant that only depends on �. Thus penalizing the sample variance

of CVaR via P2(w) = V̂ arn[z�(w)(X), 0)] ≤ U2 is redundant if one penalizes the sample

variance of the mean via P1(w) = w⊤Σ̂nw = �̂2
1,n ≤ U1.

Proof. Straight-forward calculations show

V ar[max(z�(X), 0)] =
{
([Φ−1(�)]2 + 1)(1− �)− 3Φ−1(�)fZ0

[Φ−1(�)]
}
�2
1 ,

where fZ0
is the pdf of the standard normal random variable Z0.

The implication now is that when X ∼ N (�,Σ), we need only consider �1 ≥
0, �2 = 0 to characterize the asymptotic properties of the penalized solution, which
we describe below.

Lemma 5. Suppose X ∼ N (�,Σ). Then

Σ�0(�1, 0) = A−1
1 B1A

−1
1 ,
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where A1, B1 are symmetric matrices with

A1(1, 1) = A0(1, 1)
A1(j, l) = A0(j, l) + �1L

⊤
j ΣLl for 2 ≤ j, l ≤ p

A1(1, j) = A0(1, j) for 2 ≤ j ≤ p

where Lj is the j-th column of L, and

B1(1, 1) = B0(1, 1)
B1(j, l) = B0(j, l) + �1E[b0,jb1,l + b0,lb1,j + �1b1,jb1,l] for 2 ≤ j, l ≤ p
B1(1, j) = B0(1, j) + �1E[b0,1b1,j ] for 2 ≤ j ≤ p

where for 2 ≤ j, l ≤ p,

E[b0,jb1,l] = − 2

1− �
E[L⊤

j XL
⊤
l (X − �)w⊤(X − �)I(z�0(X) ≥ 0)]− 2�0L

⊤
j �L

⊤
l Σw

E[b1,jb1,l] = 4E[L⊤
j (X − �)(X − �)⊤Llw

⊤(X − �)(X − �)⊤w]

E[b0,1b1,l] = 2LlΣw − 2

1− �
E[L⊤

l (X − �)w⊤(X − �)I(z�0(X) ≥ 0)].

Proof. This is a straight-forward application of Corollary 1 for the case X ∼ N (�,Σ).

Remark – Justification of the parametric PBR method.
The nonparametric PBR method with only a penalty on the mean estimation is a
linear combination of the empirical mean-CVaR problem (CVaR-emp) and the em-
pirical Markowitz problem (Mark-emp) because the penalty is precisely the portfo-
lio variance estimate w⊤Σ̂nw. In particular, this single-penalty problem approaches
(Mark-emp) with increasing �1. In Figure 2.3, we plot 1 std of wvn(�1, 0)

⊤� and
CV aR(−wvn(�1, 0)⊤X ; �) for the single-penalty problem as �1 is increased, for differ-
ent values of �0, computed using Lemma 5. Observe that the asymptotic standard
deviations for both portfolio mean and CVaR decrease with increasing �1, uniformly
in �0. Given that both solutions to (CVaR-emp) and (Mark-emp) converge to the
population solution w0, the asymptotic theory deems the empirical Markowitz solu-
tion superior.

2.4.5 Proof of Theorem 2

Proof. By uniqueness of �0(�1, �2) and Assumption 1 (and compactness arguments),
for every " > 0, there exists � > 0 such that

∣∣�̂n(�1, �2)− �0(�1, �2)∣∣2 > " =⇒ M(�̂n;�1, �2)−M(�0;�1, �2) > �.

Thus if we can show the probability of the event {M(�̂n;�1, �2)−M(�0;�1, �2) > �}
goes to zero for every " > 0, then we have consistency.
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Figure 2.3 1 asymptotic std of the portfolio mean and CVaR for the single-penalty
problem as �1 is increased when X ∼ N (�,Σ), for different values of �0.

We also have

Mn(�̂n;�1, �2) ≤Mn(�0;�1, �2) + oP (1) =M(�0;�1, �2) + oP (1), (★)

the first inequality because �̂n(�1, �2) is a near-minimizer of Mn, and the second
equality by the Weak Law of Large Numbers (WLLN) on Mn(�0;�1, �2).

Thus

0 ≤ M(�̂n;�1, �2)−M(�0;�1, �2)

= [M(�̂n;�1, �2)−Mn(�̂n;�1, �2)] + [Mn(�̂n;�1, �2)−Mn(�0;�1, �2)]

+[Mn(�0;�1, �2)−M(�0;�1, �2)]

≤ M(�̂n;�1, �2)−Mn(�̂n;�1, �2) + oP (1),

because the second term in [ ] is oP (1) by (★), and the last term in [ ] is oP (1) by

WLLN. We are left to prove ∣Mn(�̂n;�1, �2)−M(�̂n;�1, �2)∣ P→ 0. At first glance, one
may consider invoking the WLLN again. However, as �̂n(�1, �2) is a random sequence
of vectors that changes for every n, we cannot apply the WLLN which is a pointwise
result (i.e. for each fixed � ∈ Θ), and we need to appeal to the stronger ULLN.

Case I: �1 = �2 = 0. To show ULLN for the original objective, we show that
ℱ1 is a Lipschitz class of functions, hence N[ ](",ℱ1, Lr(P )) for every " > 0. Now

� 7→ m�(x) = � + (1 − �)−1(−� − w
⊤

0 x − v⊤L
⊤

x)+ is clearly differentiable at �0 for
all x ∈ ℝp. Furthermore,

∇�m�(x) =

[
−1

−L⊤x

]
I(x),
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where I(x) := I(−�− w
⊤

0 x− v⊤L
⊤

x ≥ 0), hence

ṁ(x) := max(1, ∣∣L⊤x∣∣∞) (2.23)

is an upper bound on ∣∣∇�m�(x)∣∣∞ and is independent of �. Thus ∣m�1(x)−m�2(x)∣ ≤
ṁ(x)∣∣�1 − �2∣∣2 for all �1, �2 ∈ [−K,K]1+p, and together with Assumption 2 (here a
weaker assumption that X has finite second moment suffices), ℱ1 is a Lipschitz class.

Case II: �1 ≥ 0, �2 ≥ 0, �1, �2 not both zero. Corollary 3.5 in [5] says that ULLN
also holds for the penalized objective if N[ ](",ℱ2, L2(P × P )) < ∞ for every " > 0.
Let us now show that ℱ2 is also a Lipschitz class of functions. Again, it is clear that

� 7→ mU
(�;�1,�2)(x1, x2)

=
1

2
[m�(x1) +m�(x2)] +

�1
2
[(w1 + Lv)⊤(x1 − x2)]

2 +
�2
2
(z�(x1)− z�(x2))

2

is differentiable at �0 for all (x1, x2) ∈ ℝp × ℝp. Also for all � ∈ [−K,K]1+p,

∇�
�1
2
[(w1 + Lv)⊤(x1 − x2)]

2 = �1(x1 − x2)(x1 − x2)
⊤(w1 + Lv)

=⇒ ∣∣∇�
�1
2
[(w1 + Lv)⊤(x1 − x2)]

2∣∣∞ ≤ �1∣∣x1 − x2∣∣2∞∣∣w1 + Lv∣∣∞
≤ �1C(K)∣∣x1 − x2∣∣2∞,

for some constant C(K) dependent on K. Also,

∇�
�2
2
(z�(x1)− z�(x2))

2 = �2(z�(x1)− z�(x2))

[
−I(x1) + I(x2)

−L⊤x1I(x1) + L⊤x2I(x2)

]

and

∣z�(x1)∣ = ∣ − (�− w⊤
0 x1 − v⊤L⊤x1)

+∣ ≤ ∣�− w⊤
0 x1 − v⊤L⊤x1∣

≤ K + ∣w⊤
0 x1∣+K∣e⊤x1∣

implies

∣∣∇�
�2
2
(z�(x1)− z�(x2))

2∣∣∞ ≤ �2∣z�(x1)− z�(x2)∣(ṁ(x1) + ṁ(x2))

ṁ as defined in Eq. (2.23)

≤ �2C
′(K)(∣∣x1∣∣∞ + ∣∣x2∣∣∞)(ṁ(x1) + ṁ(x2)),

for some constant C ′(K) dependent on K. Hence

ṁU
(�1,�2)

(x1, x2) :=
1

2
[ṁ(x1) + ṁ(x2)] + �1C(K)∣∣x1 − x2∣∣2∞

+�2C
′(K)(∣∣x1∣∣∞ + ∣∣x2∣∣∞)(ṁ(x1) + ṁ(x2)) (2.24)

is an upper bound on ∣∣∇�m
U
(�;�1,�2)

(x1, x2)∣∣∞ that is independent of �. Thus

∣mU
(�1;�1,�2)(x1, x2)−mU

(�2;�1,�2)(x1, x2)∣ ≤ ṁU
(�1,�2)(x1, x2)∣∣�1 − �2∣∣2,

and together with Assumption 2, ℱ2 is a Lipschitz class.
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2.4.6 Proof of Theorem 3

In what follows, we suppress the dependence on �1, �2 for notational convenience.

Proof. The proof parallels the proof of Theorem 5.23 of [61]. Let us assume for now
that

1. For every given random sequence ℎn that is bounded in probability,

Un[
√
n(mU

�0+ℎn/
√
n −mU

�0)− ℎ⊤n ṁ
U
�0 ]

P→ 0, (*)

and

2.
√
n(�̂n − �0) = OP (1).

Since � 7→ M(�) is twice-differentiable, and ∇�M(�)∣�=�0 = 0 by first-order con-
dition, we can rewrite Eq. (*) to get

n

(
n

2

)−1∑

i ∕=j
[mU

�0+ℎn/
√
n(Xi, Xj)−mU

�0
(Xi, Xj)] =

1

2
ℎ⊤nV�0ℎn + ℎ⊤nUn[ṁ

U
�0
] + op(1)

=
1

2
ℎ⊤nV�0ℎn + ℎ⊤nGn[ṁ

1
�0 ] + op(1),

where we use the fact, from Hoeffding decomposition,

Un[ṁ
U
�0 ] =

√
n(
n
2

)
∑

i ∕=j

[
ṁU
�0(Xi, Xj)− EX1,X2

[ṁU
�0(X1, X2)]

]

=
1√
n

n∑

i=1

[ṁ1
�0
(Xi)− Eṁ1

�0
(X1)] + op(1) = Gn[ṁ

1
�0
] + op(1),

with ṁ1
� as in the statement of the theorem.

The above statement is valid for both ℎ̂n =
√
n(�̂n−�0) and for ℎ̃n = −V −1

�0
Gnṁ

1
�0
.

Upon substitution, we obtain

n

(
n

2

)−1∑

i ∕=j
[mU

�0+ℎ̂n/
√
n
(Xi, Xj)−mU

�0(Xi, Xj)] =
1

2
ℎ̂⊤nV�0 ℎ̂n + ℎ̂⊤nGn[ṁ

1
�0 ] + op(1)

≤ n

(
n

2

)−1∑

i ∕=j
[mU

�0+ℎ̃n/
√
n
(Xi, Xj)−mU

�0
(Xi, Xj)] = −1

2
Gn[ṁ

1
�0
]⊤V −1

�0
Gn[ṁ

1
�0
] + op(1)

where the inequality is from the definition of �̂n = �0 + ℎ̂n/
√
n as a near-minimizer.

Taking the difference and completing the square, we get

1

2
(ℎ̂n + V −1

�0
Gnṁ

1
�0
)⊤V�0(ℎ̂n + V −1

�0
Gnṁ

1
�0
) + op(1) ≤ 0,
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and because V�0 is nonsingular, the quadratic form on the left must converge to zero
in probability. The same must be true for ∣∣ℎ̂n + V −1

�0
Gnṁ

1
�0
∣∣2.

To complete the proof, we need to show (*) and
√
n(�̂n − �0) = OP (1) hold.

Proof of (*).
Let fℎ :=

√
n(mU

�0+ℎ/
√
n
− mU

�0
) − ℎ⊤ṁU

�0
. As we are considering only sequences ℎn

that are bounded in probability, it suffices to show supℎ:∣∣ℎ∣∣2≤1 ∣Un[fℎ]∣ goes to zero
in probability. Again by Hoeffding decomposition, for any given random sequence ℎn
that is bounded in probability, Un[fℎn ] = Gn[f

1
ℎn
]+En(ℎn), where f

1
ℎ is the first term

in the Hoeffding decomposition of Un[fℎ] given by

f 1
ℎ =

√
n(m1

�0+ℎ/
√
n −m1

�0)− ℎ⊤ṁ1
�0 ,

m1
�(x1) = 2EX2

[mU
� (x1, X2)]− EX1,X2

[mU
� (X1, X2)],

and ṁ1
� as defined in the statement of the theorem. According to Lemma 19.31 in

[61], if ℱ ′
2 := {m1

� : � ∈ [−K,K]1+p} is a Lipschitz class of functions,

sup
ℎ:∣∣ℎ∣∣2≤1

∣Gn[f
1
ℎn ]∣

P→ 0.

Now by Assumption 2 that Xi’s are iid continuous random vectors with finite fourth
moment, � 7→ m1

�(x) is differentiable at �0 for all x ∈ ℝ. Further, by triangle inequal-
ity,

∣m1
�1(x)−m1

�2(x)∣
≤ 2EX2

∣mU
�1(x,X2)−mU

�2(x,X2)∣+ EX1,X2
∣mU

� (X1, X2)−mU
� (X1, X2)∣

≤ m1(x)∣∣�1 − �2∣∣2,

where m1(x) = (2EX2
∣ṁU(x,X2)∣+ EX1,X2

∣ṁU(X1, X2)∣), ṁU as in Eq. (2.24). Since
Xi’s have finite fourth moment, E[m1(X1)

2] <∞ and thus ℱ ′
2 is a Lipschitz class.

Now we are left to show supℎ:∣∣ℎ∣∣2≤1∣En(ℎ)∣
P→ 0. Let ℱℎ := {fℎ : ∣∣ℎ∣∣2 ≤ 1}.

According to Theorem 4.6 of [5], supℎ:∣∣ℎ∣∣2≤1∣En(ℎ)∣
P→ 0 if ℱℎ has a finite, integrable

envelope function and both ℱℎ and ℱ ′
ℎ := {f 1

ℎ : ∣∣ℎ∣∣2 ≤ 1} are Lipschitz classes
about ℎ = 0. ℱℎ has a finite, integrable envelope function F (x1, x2) = ṁU(x1, x2) +
∣∣ṁ�0(x1, x2)∣∣2 <∞ due to Assumption 2 and the Lipschitz property of mU

� :

∣fℎ∣ ≤ ∣√n(mU
�0+ℎ/

√
n −mU

�0)− ℎ⊤ṁ�0 ∣
≤ (ṁU + ∣∣ṁ�0∣∣2)∣∣ℎ∣∣2.

It is now straight-forward to check that ℱℎ is a Lipschitz class about ℎ = 0, and ℱ ′
ℎ

also, because it inherits the key properties from ℱℎ.
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Proof of
√
n(�̂n − �0) = OP (1).

The proof of
√
n(�̂n(0, 0) − �0(0, 0)) = Op(1) can be found in Theorem 5.52 and

Corollary 5.53 of [61], and is a standard M-estimation result. In essence, Theorem
5.52 shows that, under some regularity conditions, P (

√
n∣∣�̂n(0, 0) − �0(0, 0)∣∣2 > �)

can be bounded by P (∣Gn[m�]∣ > �′) = P (
√
n∣Mn(�)−M(�)∣ > �′), which is shown

to go to zero via some maximal inequalities. Corollary 5.53 shows that the Lipschitz
condition on {m� : � ∈ [−K,K]1+p} is sufficient to satisfy the regularity conditions
of the theorem.

We can extend Theorem 5.52 to show
√
n(�̂n(�1, �2)− �0(�1, �2)), �1, �2 ≥ 0 not

both zero, by bounding P (
√
n∣∣�̂n(�1, �2)− �0(�1, �2)∣∣2 > �) by

P (∣Un[m
U
� ]∣ > �′) ≤ P (∣Gn[m

1
�]∣+ ∣E ′

n(�)∣ > �′),

where E ′
n is the remainder term after first-order projection of the U-process Un[m

U
� ].

It remains to show that for every sufficiently small � > 0,

sup
�:∣∣�−�0∣∣2<�

∣E ′
n(�)∣

P→ 0, (2.25)

which can be proven using the same reasoning for sup
ℎ:∣∣ℎ∣∣2≤1

∣En(ℎ)∣ P→ 0 in the proof of

(*).

2.4.7 Computation of key statistics

Given the distribution for X , both A0 = A�0(0, 0) and B0 = B�0(0, 0) are com-
putable. The lemma below computes the key quantities that constitute A0 and B0

when X ∼ N (�,Σ).

Lemma 6. Suppose X ∼ N (�,Σ), and z�(X) = −� − w⊤X ∼ N (�1, �
2
1), where

�1 = −�1Φ−1(�) and �2
1 = w⊤Σw. Then

p0 = P (z�(X) = 0) =
1√
2��1

exp

(
−1

2
Φ−1(�)2

)
(2.26)

E[max(z�(X), 0)] =
�1√
2�

exp

(
−1

2
Φ−1(�)2

)
− �1(1− �)Φ−1(�) (2.27)
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E[L⊤
j XI(Z1 ≥ 0)] = (1− �)(L⊤

j �− Φ−1(�)
L⊤
j Σw

�1
)− L⊤

j Σw

�2
1

E[max(z�(X), 0)]

(2.28)

E[L⊤
j X∣Z1 = 0] = L⊤

j �− Φ−1(�)
L⊤
j Σw

�1
(2.29)

E[L⊤
j XL

⊤
l XI(Z1 ≥ 0)] =

1

4
(g(�1, (Lj + Ll)

⊤�, �1, �2,−(Lj + Ll)
⊤Σw1)

−g(�1, (Lj − Ll)
⊤�, �1, �2,−(Lj − Ll)

⊤Σw1)) (2.30)

E[L⊤
j XL

⊤
l X∣Z1 = 0] =

1

4
(ℎ(�1, (Lj + Ll)

⊤�, �1, �2,−(Lj + Ll)
⊤Σw1)

−ℎ(�1, (Lj − Ll)
⊤�, �1, �2,−(Lj − Ll)

⊤Σw1)) (2.31)

where

g(�1, �2, �1, �2, �12) = (1− �)
[
�2
2 + �2

2

]
+ p0�12

[
−Φ−1(�)

�12
�1

+ 2�2

]

ℎ(�1, �2, �1, �2, �12) = = (�2 +
�12
�1

Φ−1(�))2 + �2
2 −

�2
12

�2
1

.

Proof. Equations (2.26) and (2.27) are straight-forward, for Eqs. (2.28)–(2.31) we use
the fact that if Z1 ∼ N (�1, �1) and Z2 ∼ N (�2, �2),

Z2∣Z1 = N (�2 + �12/�
2
1(Z1 − �1), �

2
2 − �2

12/�
2
1), (2.32)

where �12 = Cov(Z1, Z2).
∙ Terms involving only L⊤

j X.
Note that from (2.32), E[Z2∣Z1 = 0] = �2 − �12

�2
1

�1. Let Z2 = L⊤
j X , and recall that

E(L⊤
j X) = L⊤

j � and E(Z1) = −�1Φ−1(�). Also, note that �12 = −L⊤
j Σw. After some

algebra, we get (2.29).
Since we know the distribution of Z2∣Z1, we have

E[Z2I(Z1 ≥ 0)] = E[I(Z1 ≥ 0)(�2 +
�12
�2
1

(Z1 − �1))]

= (1− �)(�2 −
�12
�2
1

�1) +
�12
�2
1

E[Z1I(Z1 ≥ 0)]

= (1− �)(L⊤
j �− Φ−1(�)

L⊤
j Σw

�1
)− L⊤

j Σw

�2
1

E[max(Z1, 0)]

∙ Terms involving L⊤
j XL

⊤
l X.

To compute E[L⊤
j XL

⊤
l XI(Z1 ≥ 0)] and E[L⊤

j XL
⊤
l X∣Z1 = 0], first note that

E[L⊤
j XL

⊤
l XI(Z1 ≥ 0)] =

1

4
E
[
[(L⊤

j X + L⊤
l X)2 − (L⊤

j X − L⊤
l X)2]I(Z1 ≥ 0)

]
.



31

and similarly

E[L⊤
j XL

⊤
l X∣Z1 = 0] =

1

4
E[
[
(L⊤

j X + L⊤
l X)2 − (L⊤

j X − L⊤
l X)2

]
∣Z1 = 0] .

Hence it is sufficient to first find expressions for E[Z2
2 I(Z1 ≥ 0)] and E[Z2

2 ∣Z1 = 0] for
some normal Z2, then apply the resulting formulae to Z2 = (Lj±Ll)⊤X . This results
in �2 = (Lj ± Ll)

⊤�, �12 = −(Lj ± Ll)
⊤Σw and �2

2 = (Lj ± Ll)
⊤Σ(Lj ± Ll).

From tower property and the conditional distribution of Z2∣Z1,

E[Z2
2 I(Z1 ≥ 0)] = E[I(Z1 ≥ 0)

[
(�2 +

�12
�2
1

(Z1 − �1))
2 + �2

2 −
�2
12

�2
1

]
] .

By simple computations,

E[(Z1 − �1)IZ1≥0] =
�1√
2�

exp(−�2
1/(2�

2
1)) = �2

1fZ1
(0) = �2

1p0 , and

E[(Z1 − �1)
2IZ1≥0] = �2

1(�1p0 + (1− �)) .

Now �1/�1 = −Φ−1(�), and

E[Z2
2 IZ1≥0] = (1− �)

[
�2
2 + �2

2

]
+ p0

[
�1
�2
12

�2
1

+ 2�12�2

]

= (1− �)
[
�2
2 + �2

2

]
+ p0�12

[
−Φ−1(�)

�12
�1

+ 2�2

]

:= g(�1, �2, �1, �2, �12)

Similarly,

E[Z2
2 ∣Z1 = 0] = (�2 −

�12
�2
1

�1)
2 + �2

2 −
�2
12

�2
1

= (�2 +
�12
�1

Φ−1(�))2 + �2
2 −

�2
12

�2
1

:= ℎ(�1, �2, �1, �2, �12)

2.5 Numerical results

In this section, we present simulation results to evaluate the nonparametric and
parametric PBR methods presented in Sec. 2.3 against the straight-forward approach
(CVaR-emp). We consider p = 10 assets and three distributional models for the
asset log-returns: X is multivariate Gaussian, elliptical and mixture of multivariate
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Gaussian and negative exponential. For each model, we follow the procedure outlined
in Section 2 to construct sample efficient frontiers corresponding to (CVaR-emp),
(CVaR-pen) and (Mark-emp).

One question that arises while solving (CVaR-pen) is how one chooses the penalty
terms U1 and U2 in the constraints

1

n
w⊤Σ̂nw ≤ U1

1

n(1− �)2
z⊤Ωnz ≤ U2.

If U1, U2 are too small, the problem becomes infeasible, whereas if they are too large,
the penalization does not have any effect. It is sensible to choose U1, U2 as a pro-
portion of ŵ⊤

n Σ̂nŵn/n and ẑ⊤n Ωnẑn/(n(1 − �)2) respectively, where (ŵn, ẑn) is the
solution to the unpenalized problem (CVaR-emp). We denote the proportions r1
and r2 respectively. In practice, one would perform cross-validation to find values of
(r1, r2) ∈ [0, 1]× [0, 1] that maximize out-of-sample performance.

2.5.1 Gaussian/elliptical models

Here we consider
X ∼ �sim + �N (0,Σsim)

where � is as in (2.5), with � = 1 for a Gaussian model and � ∼ Γ(3, 0.5) for
an elliptical model. The parameters �sim and Σsim are the same as those used in
Sec. 2.2.2. We plot the histograms for 100, 000 sample returns for an equally-weighted
portfolio w = 1p/p under the Gaussian and elliptical models in Fig. (2.4).

We summarize the simulation results in Fig. (2.5), where (r1, r2) = (0.92, 1) for
both the Gaussian and elliptical models (recall that the second penalty is redundant
due to Lemma 2). Notice that for both models, the empirical Markowitz efficient
frontier dominates the penalized efficient frontier which in turn dominates the em-
pirical mean-CVaR efficient frontier, in both position of the average of the simulated
frontiers and variability, as indicated by the vertical and horizontal error bars.

For the Gaussian case, r1 = 0.92 was just feasible in that further reduction in
this value led to most instances of the problem being infeasible. From Fig. (2.5b),
we can see that this is because the penalized solutions are approaching the empirical
Markowitz solutions with this choice of r1 as the average simulated efficient fron-
tiers of penalized (grey) and empirical Markowitz (blue) solutions are close. For the
elliptical model, r1 = 0.92 could be further reduced with the resulting penalized ef-
ficient frontier approaching the empirical Markowitz efficient frontier. In summary,
the empirical Markowitz solutions perform uniformly better than both the original
and penalized mean-CVaR solutions, with the penalized efficient frontier nearing the
empirical Markowitz efficient frontier with decreasing r1.
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Figure 2.4 Distribution of equally weighted portfolio under (a) Gaussian and (b)
elliptical model

2.5.2 Mixture model

Let us now consider returns being driven by a mixture of multivariate normal
and negative exponential distributions, such that with a small probability, all assets
undergo a perfectly correlated exponential-tail loss. Formally,

X ∼ (1− I(q))N(�sim,Σsim) + I(q)(Y 1p + f), (2.33)

where (�sim,Σsim) are parameters with the same value as in the Gaussian/elliptical
models, I(q) ∼ Bernoulli(q), and f = [f1, . . . , fp]

⊤ is a p× 1 vector of constants, and
Y is a negative exponential random variable with density

P (Y = y) =

{
�e�y, if y ≤ 0

0 otherwise.

In our simulations, we consider q = 0.05, fi = �i −
√
Σii for i = 1, . . . , p and � = 1.

The histogram for 100, 000 sample returns of an equally-weighted portfolio under this
mixture model is shown in Fig. (4a).

We summarize the simulation results in Fig. (4b), where (r1, r2) = (0.5, 0.5). In
this case, the penalized efficient frontiers perform better on average than the efficient
frontiers generated by the other two methods. The empirical Markowitz efficient
frontiers do not seem to perform any better than the original efficient frontiers on
average, which is not surprising because the empirical Markowitz solution is only
intended for X having an elliptical distribution.
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Figure 2.5 Average of population risk vs return for solutions to (CVaR-emp) in grey,
(CVaR-pen) in red and (Mark-emp) in blue under (a) Gaussian model and (b) el-
liptical model. Green curve denotes the population efficient frontier. Horizontal and
vertical lines show ±1/2 std error.

−10 −5 0 5 10
0

0.5

1

1.5

2

2.5

3
x 10

4 (a) Mixture Model − Histogram

2 2.5 3 3.5
0

0.05

0.1

0.15

CVaR (%/day)

R
el

. R
et

ur
n 

(%
/d

ay
)

(b) Mixture Model − Frontiers 

 

 

Population
Original
Regularized
Markowitz

Figure 2.6 (a) Distribution of returns for an equally weighted portfolio under the
mixture model. (b) Average of population risk vs return for solutions to (CVaR-emp)
in grey, (CVaR-pen) in red and (Mark-emp) in blue under the mixture model. Green
curve denotes the population efficient frontier. Horizontal and vertical lines show
±1/2 std error.
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2.6 Appendix

2.6.1 Asymptotics of the CVaR estimator

Setting. Let L = [L1, . . . , Ln] be n iid observations (of portfolio losses) from a
distribution F which is absolutely continuous, has a twice continuously differentiable
pdf and a finite second moment.

In this section, we prove the asymptotic distribution of the estimator ĈV aRn(L; �)
introduced in Eq. (2.2) of Sec. 2.1. First, we define a closely related CVaR estimator:

Definition 4 (Type 1 CVaR estimator.). For � ∈ (0.5, 1), we define Type 1 CVaR
estimator to be

ĈV 1n(L; �) := min
�∈ℝ

(1− "n)�+
1

n− ⌈n�⌉ + 1

n∑

i=1

(Li − �)+,

where "n is some constant satisfying 0 < "n < (n− ⌈n�⌉ + 1)−1,
√
n"n

P→ 0.

Now consider the following CVaR estimator, expressed without the minimization:

Definition 5 (Type 2 CVaR estimator.). For � ∈ (0.5, 1), we define Type 2 CVaR
estimator to be

ĈV 2n(L; �) :=
1

n− ⌈n�⌉+ 1

n∑

i=1

Li1(Li ≥ �̂n(�)),

where �̂n(�) := L(⌈n�⌉), the ⌈n�⌉-th order statistic of the sample L1, . . . , Ln.

Type 2 CVaR estimator is asymptotically normally distributed [17]. In the re-

mainder of this section, we show that ĈV 2n(L; �) is asymptotically equivalent to

ĈV 1n(L; �), which is in turn asymptotically equivalent to ĈV aRn(L; �). We then

conclude ĈV aRn(L; �) is also asymptotically normal, converging to the same asymp-

totic distribution as ĈV 2n(L; �).

Proposition 1. The solution �∗ = L(⌈n�⌉) is unique to the one-dimensional optimiza-
tion problem

min
�∈ℝ

{
Gn(�) := (1− "n)� +

1

n− ⌈n�⌉+ 1

n∑

i=1

(Li − �)+

}
,

where "n is some constant satisfying 0 < "n < (n− ⌈n�⌉ + 1)−1.
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Proof. The expression to be minimized is a piecewise linear convex function with
nodes at L1, . . . , Ln. We show that Gn(�) has gradients of opposite signs about a
single point, L(⌈n�⌉), hence this point must be the unique optimal solution. Now
consider, for m ∈ {−⌈n�⌉ + 1, . . . , n− ⌈n�⌉}:

Δ(m) = Gn(L(⌈n�⌉+m+1))−Gn(L(⌈n�⌉+m))

= (1− "n)(L(⌈n�⌉+m+1) − L(⌈n�⌉+m))−
1

n− ⌈n�⌉+ 1
A,

where

A =
n∑

i=1

[
(Li − L(⌈n�⌉+m+1))

+ − (Li − L(⌈n�⌉+m))
+
]

= (n− ⌈n�⌉ −m)(L(⌈n�⌉+m+1) − L(⌈n�⌉+m)).

Thus

Δ(m) =
(
L(⌈n�⌉+m+1) − L(⌈n�⌉+m)

)(
(1− "n)−

n− ⌈n�⌉ −m

n− ⌈n�⌉ + 1

)
.

Now Δ(0) > 0 since (L(⌈n�⌉+1)−L(⌈n�⌉)) > 0 and (1−"n) > (n−⌈n�⌉)(n−⌈n�⌉+1)−1

by the restriction on "n, and Δ(−1) < 0 since (L(⌈n�⌉)−L(⌈n�⌉−1)) > 0 and (1−"n) < 1
again by the choice of "n. Thus Gn(�) has a unique minimum at �∗ = L(⌈n�⌉).

Remark. Note if "n = 0, then multiple solutions occur because Δ(−1) = 0.

Corollary 2. Type 1 and Type 2 CVaR estimators are related by

ĈV 2n(L; �) = ĈV 1n(L; �) + "nL(⌈n�⌉).

Proof. Rewriting Type 2 CVaR estimator:

ĈV 2n(L; �) =
1

n− ⌈n�⌉ + 1

n∑

i=1

Li1(Li ≥ L(⌈n�⌉))

= L(⌈n�⌉) +
1

n− ⌈n�⌉+ 1

n∑

i=1

(Li − L(⌈n�⌉))1(Li ≥ L(⌈n�⌉))

= ĈV 1n(L; �) + "nL(⌈n�⌉),

where the final equality is due to Proposition 1.

We now show asymptotic normality of ĈV 1n(L; �).

Lemma 7. Type 1 CVaR estimator is asymptotically normal as follows:
√
n(1− �)


0

(
ĈV 1n(L; �)− CV aR(L1; �)

)
⇒ N (0, 1), (2.34)

where 
20 = V ariance[(L1 − ��)1(L1 ≥ ��)], and �� = inf{� : P (L1 ≥ �) ≤ 1 − �},
Value-at-Risk of the random loss L1 at level �.
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Proof. Asymptotic normality for Type 2 CVaR estimator is proven in [17], and the
result is immediate from invoking Slutsky’s lemma on Corollary 2 and the assumption√
n"n → 0.

Proof of Lemma 1

Proof. The asymptotic distribution of ĈV aRn(L; �) is the same as ĈV 1n(L; �) be-
cause √

n∣ĈV aRn(L; �)− ĈV 1n(L; �)∣ = oP (1).

2.6.2 Proof of Theorem 1

Lemma 8. Consider the optimization problem

min
z∈ℝn

z⊤1n

s.t. zi ≥ 0 ∀ i
zi ≥ ci ∀ i

z⊤Ωnz ≤ f

(2.35)

where ci > 0 ∀ i, f > 0, Ωn = (n − 1)−1(In − n−11n1
⊤
n ), the sample covariance

operator. Suppose (2.35) is feasible with an optimal solution (x∗, z∗). Let S1(z) :=
{1 ≤ i ≤ n : zi = 0}, S2(z) := {1 ≤ i ≤ n : zi = ci} and V (z) := Sc1 ∩ Sc2 (i.e. V (z)
is the set of indices for which zi > max(0, ci)). Then the optimal solution z∗ falls into
one of two cases: either S1(z

∗) ∕= ∅ and V (z∗) = ∅, or S1(z
∗) = ∅ and V (z∗) ∕= ∅.

Proof. The problem (2.35) is a convex optimization problem because Ωn is a positive
semidefinite matrix. The problem is also strictly feasible, since z0 = 2maxi{ci}1n is
a strictly feasible point: clearly, z0,i > max{0, ci} ∀ i and z⊤0 Ωnz0 = 0 < f as 1n is
orthogonal to Ωn. Thus Slater’s condition for strong duality holds, and we can derive
properties of the optimal solution by examining KKT conditions.

The Lagrangian is

ℒ(z, �1, �2, �) = �z⊤Ωnz + (1n − �1 − �2)
⊤z + �⊤2 c− �f

The KKT conditions are

∙ Primal feasibility

∙ Dual feasibility: �∗1, �
∗
2 ≥ 0 component-wise and �∗ ≥ 0

∙ Complementary slackness:

z∗i �
∗
1,i = 0 ∀ i, (z∗i − ci)�

∗
2,i = 0 ∀ i and �∗[(z∗)⊤Ωnz∗ − f ] = 0
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∙ First Order Condition:

∇z∗ℒ = 2�Ωnz
∗ + (1n − �∗1 − �∗2) = 0 (2.36a)

By substituting for Ωn, (2.36a) can be written as

2�

n− 1

(
z∗ − 1

n
(1⊤n z

∗)1n

)
= −1n + �∗1 + �∗2. (2.37)

Suppose S1(z
∗) ∕= ∅ at the optimal primal-dual point (z∗, �∗1, �

∗
2, �

∗). Then ∃ i0 ∈
S1(z

∗) such that z∗i0 = 0. The i0-th component of (2.37) gives

− 2�∗

n(n− 1)
(1⊤n z

∗) = −1 + �∗1,i0 + �∗2,i0 . (2.38)

Now suppose V (z∗) ∕= ∅ at the optimal primal-dual point (z∗, �∗1, �
∗
2, �

∗). Then
∃ j0 ∈ V (z∗) such that z∗j0 > max(0, ci), �

∗
1,j0

= 0 and �∗2,j0 = 0. The j0-th component
of (2.37) gives

2�∗

n− 1

(
z∗j0 −

1

n
(1⊤n z

∗)

)
= −1, (2.39)

which also implies �∗ > 0.
Now suppose S1(z

∗) and V (z∗) are both nonempty. Combining (2.38) and (2.39),
we arrive at the necessary condition

2�∗

n− 1
z∗j0 = −�∗1,i0 − �∗2,i0 .

which is clearly a contradiction since LHS > 0 whereas RHS ≤ 0. Hence S1(z
∗) and

V (z∗) cannot both be nonempty.

Proof of Theorem 1

Proof. Clearly, (CVaR-relax) is a relaxation of (CVaR-pen): the components of the
variable z in (CVaR-relax) are relaxations of max(0,−w⊤Xi−�). Thus the two prob-
lem formulations are equivalent if at optimum, zi = max(0,−w⊤Xi−�) ∀ i = 1, . . . , n
for (CVaR-relax).

Let (�∗, w∗, z∗, �∗1 , �
∗
2 , �

∗
1, �

∗
2, �

∗
1, �

∗
2) be the primal-dual optimal point for (CVaR-relax)

and (CVaR-relax-d). Our aim is to show that V (z∗), the set of indices for which
z∗i > max(0,−w⊤Xi − �), is empty. Suppose the contrary. Then by Lemma 8,
S1(z

∗), the set of indices for which z∗i = 0, is empty. This means z∗i > 0 ∀ i and
�∗1,i = 0 ∀ i by complementary slackness.
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Now consider the sub-problem for a fixed �2 in the dual problem (CVaR-relax-d):

max
�1:�1≥0

− (�1 + �2)Ω
†
n(�1 + �2). (2.40)

As 1n is orthogonal to Ω†
n, and Ω†

n is positive semidefinite, the optimal solution is
of the form �1 = a1n − �2, where a is any constant such that a ≥ maxi(�2,i), with
a corresponding optimal objective 0. Hence, bearing in mind the constraints �2 ≥ 0
and �⊤2 1n = 1 in (CVaR-relax-d), �1 = 0 is one of the optimal solutions iff �∗2 = 1n/n.
Thus if �∗2 ∕= 1n/n, we get a contradiction. Otherwise, we can force the dual problem
to find a solution with �1 ∕= 0 by introducing an additional constraint �⊤1 1n ≥ � for
some constant 0 < � ≪ 1.
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Chapter 3

Relative regret optimization in
portfolio choice under parameter
uncertainty

3.1 Introduction

Consider an investor living in a world where there are risky assets and a risk-free
money market account. Log-returns for the risky assets are iid normal but the mean
and variance are not known to the investor (though they are constant over the data
window which may be small). We consider a single period portfolio choice problem
where the agent is endowed with a finite sample of historical returns data and makes a
one shot allocation decision after observing the last data point. Parameter estimation
is possible since data is generated iid from a known class of models with constant but
unknown parameters, while concern for robustness is legitimate since the data window
may be small and convergence of the learning model may be slow. We would like to
understand how parameter estimation/learning and robust decision making can be
combined in this setting.

Portfolio selection with parameter uncertainty is commonly formulated in a Baye-
sian framework where the investor makes an exogenous specification of the prior and
maximizes expected utility of terminal wealth. One challenge with the Bayesian
approach, which has substantial normative implications, is that the solution can be
very sensitive to the specification of the prior1. In particular, “relatively small”
changes in the mean of the prior (for the expected return of a log-normal distribution)
can translate into a large deterioration in performance if the prior variance is small
or even moderate, while a uniform prior (the “obvious” choice when the investor has
no prior information) gives the solution of the classical Merton/Markowitz problem

1Of course, this is a desirable feature if the investor has strong prior views that he wishes to
incorporate in the optimization problem.
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with the sample mean of realized returns plugged-in for the true expected return,
and it is well known that this strategy performs badly [12, 56]. More generally, the
posterior distribution for the mean return converges to the truth at the same rate as
the sample mean, so a poor choice takes a long time to correct itself.

In this chapter, we address the problem of portfolio choice with parameter un-
certainty by adopting a relative regret objective. The essential feature of relative
regret is that an investor’s allocation is assessed by comparing his/her wealth to
a family of benchmarks, where benchmarks are wealth of fictitious investors who
behave optimally given knowledge of the parameter value, and the goal is to maxi-
mize the worst case relative performance with respect to this family of benchmarks.
Early results on this notion can be found in [11, 32, 57] while more recent analysis
of problems with this objective include [7, 43, 44, 53]. Also related is the work on
universal portfolios ([19]), though its focus is the asymptotic regret of certain online
policies, as opposed to finite horizon results which is the focus of this chapter (see
also [9, 15, 24]). More generally, though portfolio choice with parameter uncertainty
and model ambiguity has attracted substantial attention in recent years (see for ex-
ample [26, 28, 31, 46, 58, 60]), most of this literature adopts an absolute worst case,
as opposed to a relative performance/regret, objective. One exception is [43] which
we discuss in more detail below.

A second feature of our model is that a finite sample of historical returns (assumed
iid normal but with unknown mean and variance) is available to the investor when
he/she makes a decision. Historical data has value because it can be used to learn
model parameters, and our regret optimizing investor being endowed with a moderate
amount of data lives somewhere between the highly non-stationary data-absent world
in which decisions need to be made with robustness being a primary concern, at the
one extreme, and the stationary data abundant world in which parameters can be
learned with little statistical uncertainty, at the other. The analysis of his/her problem
is interesting to us because it gives insight into the tradeoff between robust decision
making, data driven optimization and learning for the world “in between”. Our model
puts no restrictions on how the investor uses the data, and one contribution of this
chapter is to characterize both the investment decision and update rule for learning
parameters that are optimal in this setting.

We analyze our regret problem using convex duality, and show that the optimal
learning model involves Bayesian updating of the Lagrange multiplier that solves the
dual problem, which plays the role of the prior. We also show that the optimal port-
folio is the solution of an interesting (though non-standard) Bayesian portfolio choice
problem where objective involves the family of benchmarks associated with the rela-
tive regret problem. In particular, the investor’s decision is evaluated by comparing
his/her wealth to that of each of the benchmark investors and averaging over the
posterior. Roughly speaking, investors are rewarded for performing well relative to
benchmarks that look plausible given the posterior; if the posterior is relatively flat
(so all models are still plausible) then the investor seeks to do well relative to all
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the benchmarks. On the other hand, the investor will narrow his/her attention to a
smaller set of benchmarks/models as the posterior becomes more concentrated. We
mention here that probabilistic interpretations of Lagrange multipliers in the context
of regret are also made in [53] and [43], though neither considers learning or updat-
ing because the decision maker has no data or has already incorporated it in the
uncertainty set ([53]) or lives in a highly non-stationary world in which even recent
data has no value ([43]). The problem of combining robustness with learning is also
discussed in [33, 34] and [41] though from a worst case perspective.

Our relative regret objective can be interpreted as a loss function that evaluates
an estimator in the context of the application and the associated decision making
goals. The idea that inference and decision making should go hand in hand goes back
at least to [62] who states

The question as to how the form of the weight (i.e. loss) function W (�, !)
should be determined, is not a mathematical or statistical one. The statis-
tician who wants to test certain hypotheses must first determine the rel-
ative importance of all possible errors, which will entirely depend on the
special purpose of his investigation

(see also [49]). Crudely stated, a poor estimator (according to some loss function)
may be perfectly acceptable if it can be combined with an investment decision that
consistently delivers large profits, while an “optimal” estimator is of little value if
decisions using the resulting estimates consistently perform poorly.

The outline of our chapter is as follows. We formulate the single period market
model in Section 3.2, and introduce two relative regret objectives in Section 3.3. The
first of these is more standard while the second (which is the major focus of this
chapter) is original and can be interpreted as an objective-based loss function. We
establish connections between our relative regret model and Bayesian problems in
Section 3.4 using convex duality. In particular, we show that Lagrange multipliers
in this duality relationship play the role of the prior in the Bayesian problem, and
that the solution of the regret problem involves Bayesian updating of the Lagrange
multiplier/prior characterized as the solution of the associated dual problem. Com-
putational studies are provided in Section 3.5.

The single period model in this chapter can be extended to dynamic trading,
which will be discussed elsewhere. An interesting feature of this extension is that the
learning model involves a posterior that is tilted using the family of benchmarks.
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3.2 Model

3.2.1 Market, model and investor

Financial market

Assume that there is a risk free asset S0(t) and n risky assets S1(t), ⋅ ⋅ ⋅ , Sn(t).
The risk free asset has a continuously compounded interest rate of r and its price is
given by S0(t) = ert. We assume that the interest rate is known to the investor. The
prices of the n risky assets evolve as a geometric Brownian motion with constant drift
and volatility, as in the classical Black-Scholes model of stock prices [10]. Specifically,

Si(t) = Si(0) exp
{
�it + �′

iW (t)
}
, i = 1, 2, ⋅ ⋅ ⋅ , n, (3.1)

where W (t) is an n-dimensional standard Brownian motion, the scalar �i is the (con-
stant) rate of return for stock i, and the n-dimensional row vector

�i = [�i1, �i2, ⋅ ⋅ ⋅ , �in] ∈ ℝ1×n

is the (constant) volatility of this stock. The column vector

� = [�1, �2, ⋅ ⋅ ⋅ , �n]′ ∈ ℝn×1

is the vector of returns for all the risky assets and the n× n matrix

� =

⎡
⎢⎣
�1
...
�n

⎤
⎥⎦ ∈ ℝn×n

is the volatility. We assume, as is standard, that the non-degeneracy assumption

Q = ��′ ≥ �I

holds for some constant � > 0. The column vector of stock prices is denoted by

S(t) =
[
S1(t), S2(t), ⋅ ⋅ ⋅ , Sn(t)

]′
.

Investor’s observations/data

We assume in this chapter that the parameters H = (��′, �) for the stock price
model (3.1) are constant, that the investor knows the model family (3.1) but does
not know the parameter values beyond the fact that they belong to some uncertainty
set ℋ. The only assumption about the uncertainty set ℋ is that it is compact. (For
example, ℋ might be a “confidence interval/region” associated with statistical point
estimates of the parameters, subjective uncertainty regions specified by the investor
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around forecasted means, or a finite set of models that the investor wishes to consider,
etc). We also assume that the investor does not observe the stock prices continuously
but samples the process at discrete times t� for t = 0, 1, 2, ⋅ ⋅ ⋅ , T (i.e. t indexes the
number of sample points that have been seen by the investor, while � > 0 is the time
interval between each observation). Equivalently, the investor is seeing a sequence of
log-returns ℛ(1), ℛ(2), ⋅ ⋅ ⋅ , ℛ(T ) where

ℛ(t + 1) =

⎡
⎢⎣

ℛ1(t+ 1)
...

ℛn(t + 1)

⎤
⎥⎦ , t = 0, 1, 2, ⋅ ⋅ ⋅ , T,

is an n-dimensional random vector with entries being the log-returns for the individual
stocks over time period [t�, (t+ 1)�):

ℛj(t+ 1) ≜ ln
Sj((t+ 1)�)

Sj(t�)

= �i� + �i[W ((t+ 1)�)−W (t�)]
ℒ
= �i� +

√
��iZ(t+ 1),

where

Z(t+ 1) ≜
W ((t+ 1)�)−W (t�)√

�
.

Observe that Z(1), Z(2), ⋅ ⋅ ⋅ , Z(T ) is a sequence of n-dimensional iid standard nor-
mal random variables. Clearly, ℛ(t + 1) is multivariate normal

ℛ(t + 1) ∼ N(��, �Q) (3.2)

with mean �� and covariance matrix �Q.

Investment decision

Consider an investor with wealth x. The investor (correctly) assumes that prices
evolve in continuous time according to a model of the form (3.1), but does not know
the parameter values (�, �). Instead, the investor has observed T historical returns
over time periods of size �, ℛ(1), ℛ(2), ⋅ ⋅ ⋅ , ℛ(T ) (or equivalently, has seen stock
prices S(0), S(�), ⋅ ⋅ ⋅ , S(T�)) and wishes to make an investment decision over the
time interval [T�, (T + 1)�) following the realization of the last observation. The
investor can use knowledge of the T historical returns to make his/her decision. More
formally, let

GT ≜ �{ℛ(1), ℛ(2), ⋅ ⋅ ⋅ , ℛ(T )} = �{S(0), S(�), ⋅ ⋅ ⋅ , S(T�)} = �{S(t�)}
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denote the �-algebra generated by relative returns ℛ(1), ℛ(2), ⋅ ⋅ ⋅ , ℛ(T ) (equiv-
alently, stock prices S(0), S(�), S(2�), ⋅ ⋅ ⋅ , S(T�)). The investor’s decision � =
[�1, �2, ⋅ ⋅ ⋅ , �n]′ for the interval [T�, (T + 1)�) is a GT -measurable random vector.
We use �i to denote the proportion of wealth invested in stock i and assume the rest
1 − �′1 is invested in the risk free asset. Under this assumption it follows that the
investor’s wealth at time (T + 1)� (after the realization of return ℛ(T + 1)) is given
by

xH� (T + 1) =
n∑

i=1

x�ie
ℛi(T+1) + x

(
1−

n∑

i=1

�i

)
er�

= x
{ n∑

i=1

�ie
��i+

√
��iZ(T+1) +

(
1−

n∑

i=1

�i

)
er�
}
. (3.3)

Assuming � is small relative to r, ∣∣�∣∣1 and ∣∣Q∣∣1, one can show via Taylor expansions

xH� (T + 1) ≃ x exp
{
�
[
r + b′� − 1

2
�′Q�

]
+
√
��′�Z(T + 1)

}

where b = [b1, b2, ⋅ ⋅ ⋅ , bn]′ is an n-dimensional vector of real numbers bi ≜ �i +
(1/2)�i�

′
i − r and Z(T + 1) is a standard n-dimensional normal random variable

which is independent of returns ℛ(1), ℛ(2), ⋅ ⋅ ⋅ , ℛ(T ) (or equivalently, of realized
stock prices S(0), S(�), ⋅ ⋅ ⋅ , S(T�))2. With this in mind, we shall assume that the
investor’s wealth is defined by

xH� (T + 1) = x exp
{
�
[
r + b′� − 1

2
�′Q�

]
+
√
��′�Z(T + 1)

}
(3.4)

for the remainder of the chapter. Alternatively, (3.4) is the wealth at T + 1 if there
is continuous rebalancing (by a computer, say) between times T and T + 1 so as to
maintain the proportions � of wealth in each stock, with the understanding that the
investor does not change � between T� and (T +1)� once it has been specified at T�.

Finally, since we will be dealing directly with the wealth equation (3.4) rather than
the log-returns model (3.2), it is more convenient for us to talk about uncertainty
in H = (Q, b) instead of uncertainty in (Q, �). In particular, we assume that the
investor does not know (Q, b) beyond the fact that it lies in some compact uncertainty
set ℋ.

3.2.2 Prior distributions in Bayesian models

When there is parameter uncertainty, it is common to adopt a Bayesian framework.
In this section, we present an example which shows that the solution of the Bayesian

2This follows from the so-called log-linear approximation of the wealth equation (3.3), which
becomes exact when � ↓ 0 (see [14] for more details).
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Investor 1 Investor 2 Investor 3
prior mean m 0.15 0.2 0.25

prior precision � 25 25 25

Figure 3.1 Summary of priors for Bayesian investors

problem is sensitive to the prior distribution. Sensitivity to the prior can be of concern
if specification of the prior distribution is difficult (e.g. it is often difficult to translate
a particular qualitative prior view into a joint distribution, particularly if there are
many uncertain variables).

Suppose there is a single stock with iid log-normal returns described by (3.2) and
parameters � = 20% and � = 20%. We assume that � is known to all investors but
� is not. Consider three Bayesian investors. We assume that each investor knows
� = 20%, but has a different (normal) prior on the unknown mean �. These are
summarized in Figure 3.1. Observe that each of the priors has a different mean m
but the same precision � (recall that precision � = (variance)−1). A precision of 25
is the same as a standard deviation of 20%. Observe that the mean of Investor 2’s
prior m = 0.2 equals the mean � of the distribution generating the returns.

We simulated data consisting of n = 10 years of annual returns ℛ(1), ⋅ ⋅ ⋅ , ℛ(10)
using the “true model” (�, �) = (0.2, 0.2), and updated the priors of each of the
investors using Bayes’ rule. It is well known that posteriors are normal with mean
and precision

m′ =
�m+ (n/�2)�̄n

� + n/�2
, � ′ = � +

n

�2

where �̄n = [ℛ(1) + ⋅ ⋅ ⋅+ℛ(n)]/n is the sample mean of the historical returns (see,
for example, [8]). Each Bayesian investor then solved the following single period asset
allocation problem

�∗
B =

⎧
⎨
⎩

argmax
�

1


E [x(1)
]

Subject to:

x(1) = x(0) exp
{[
r + (�− r)� − 1

2
�2�2

]
+ ��Z(T + 1)

}

x(0) = 1,
prior on � ∼ N(m′, � ′)

using their updated parameters. It can be shown that

� =
[
1− 


(
1 +

1

�2� ′

)]−1m′ − r

�2

is the optimal portfolio for the Bayesian investors (with (m′, � ′) as above). For the
historical returns we generated, we obtained

�∗
B,1 = 22.95, �∗

B,2 = 23.62, �∗
B,3 = 24.30
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for Investors 1, 2 and 3. It is interesting to compare this to the optimal portfolio
 ∗ = 1

1−
 (� − r)/�2 of a fictitious investor with Constant Relative Risk Aversion

(CRRA) utility who knows the model parameters (�, �) and who solves

 ∗ =

⎧
⎨
⎩

argmax
 

1


E [y(1)
]

Subject to:

y(1) = y(0) exp
{[
r + (�− r) − 1

2
 2�2

]
+  �Z(T + 1)

}

y(0) = 1.

For our model parameters,  ∗ = 23.4.
Observe that if prior precision � is set to 0, the commonly accepted default when

the investor has no information about �,

� =
[
1− 


(
1 +

1

n

)]−1 �̄n − r

�2

which is essentially the portfolio  with the sample mean �̄n substituted in place of
the unknown mean � and a small correction to the risk-aversion parameter. It is
well known, however, that this plug-in approach does not perform well out of sample
[12, 56].

Consider now the following experiment. We generated 1, 000, 000 samples of an-
nual returns using the model (�, �) = (20%, 20%). For each sample we recorded
the end-of-year wealth xi(1) of each of the Bayesian investors �∗

B,i (i = 1, 2, 3) as
well as the wealth y(1) of the “knowledgeable” investor who invests according to  ∗.
Figures 3.2–3.4 are histograms of log relative wealth, i.e. log[xi(1)/y(1)], for each of
the Bayesian investor’s. The most striking observation is the large difference between
these three histograms given that the difference in prior specification is relatively
small3.

3Figures 3.2-3.4 may be puzzling to some in that investor 1 outperforms investors 2 and 3 relative
to the benchmark, even though the mean of the prior chosen by investor 2 coincides with the
mean of the data generating process (i.e. � = 0.2). This is because Figures 3.2-3.4 show relative
performance conditional on a particular realization of 10 years of data and by chance, this realization
was such that investor 1’s portfolio outperformed those of the other two investors. For other data
samples, the ordering will differ. The main point of this example is not that one particular investor
outperforms the others, but rather, that relatively small differences in the prior can substantially
affect performance.
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Figure 3.2 Histogram of log relative wealth of investor 1 relative to the knowledgeable
investor.
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Figure 3.3 Histogram of log relative wealth of investor 2 relative to the knowledgeable
investor.

3.2.3 Worst case model

Worst case models are commonly proposed when there is model uncertainty. A
typical formulation of this problem is

⎧
⎨
⎩

max
�∈GT

min
H∈ℋ

EH
[1


xH� (�)



]

subject to:

xH� ((�)) = x exp
{
�
[
r + b′� − 1

2
�′Q�

]
+
√
��′�Z(T + 1)

}
,

(3.5)
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Figure 3.4 Histogram of log relative wealth for investor 3 relative to the knowledgeable
investor.

for which the solution is4

�∗ =
1

1− 

[Q∗]−1b∗ (3.6)

H∗ = (Q∗, b∗) = arg min
�≥0, �(ℋ)=1

E�[b
′Q−1b] = arg min

(Q, b)∈ℋ
b′Q−1b. (3.7)

The solution can be described as follows: (i) Find the model (Q∗, b∗) in ℋ with the
smallest Sharpe ratio (i.e. equation (3.7)), and (ii) solve a standard Bayesian problem
with a prior that puts all its mass on (Q∗, b∗) (i.e. equation (3.6)).

The solution (3.6)-(3.7) is problematic on several grounds. Firstly, investing ac-
cording to a prior that puts all its mass on the model with the smallest Sharpe ratio
seems overly pessimistic and is sensitive to the choice of uncertainty set. This feature
is a consequence of the worst case objective which is only concerned about perfor-
mance for the worst-case model (Q∗, b∗), but is unconcerned about under-performing
when “better” models (e.g. the one with the largest Sharpe ratio) apply. Secondly,
since the worst case prior (3.7) is degenerate, then so too is the posterior. That is, the
“worst case” equilibrium portfolio (3.6) resolutely sticks to the “worst case” model
(Q∗, b∗) and ignores the data ℛ(1), ℛ(2), ⋅ ⋅ ⋅ , ℛ(T ), even if it strongly suggests that
returns are not being generated by (Q∗, b∗) but by some other model. In other words,
learning does not occur, even when it is possible.

In the remainder of the chapter, we consider relative regret as a framework for
formulating portfolio selection problems with parameter uncertainty. In contrast to

4In writing the equality in (3.7) we mean that the solution of the first optimization problem (over
probability measures with support ℋ) is degenerate with mass 1 on the solution (Q∗, b∗) ∈ ℋ of the
second.
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the standard worst case approach, relative regret favors decisions that perform well in
both pessimistic (low Sharpe ratio) and optimistic (large Sharpe ratio) scenarios and
will use (rather than ignore) data to infer the model parameters so as to increase the
likelihood that it performs reasonably well in all cases. That being said, one feature
of our model is that there is no prior specification and the update rule is not imposed.
Rather, we are interested in understanding the learning model that comes up as part
of the optimal solution.

3.3 Relative regret

In this section, we formulate two portfolio optimization problems within the setup
described in Section 3.2 and analyze the solution of these problems. Both problems
involve relative regret objectives. The first of these is the classical relative regret (see
for example [59]) while the second is our own. A key feature of both problems is that
the investor, though ignorant of the model parameters, has the opportunity to learn.
As such a major focus of our work in subsequent sections (particularly Section 3.4)
is the characterization of the learning model associated with the optimal solution of
the problems formulated in this section. We refer the reader to [43] for a version of
this chapter where learning is not possible.

3.3.1 Relative regret I: standard model

Consider the problem

max
�∈GT

min
H∈ℋ

EHU(x
H
� (�))

max
 

EHU(y
H
 (�))

. (3.8)

This objective can be understood as follows:

∙ The investor begins by proposing a decision rule � ∈ GT , or equivalently,
a measurable function f : ℝT+1 → ℝ which maps the T observed returns
ℛ(1), ⋅ ⋅ ⋅ , ℛ(T ) to an investment position � ≡ f(ℛ(1), ⋅ ⋅ ⋅ , ℛ(T )). Note
that every GT -measurable r.v. can be represented as a measurable function
of ℛ(1), ⋅ ⋅ ⋅ , ℛ(T ). We emphasize that � (equivalently, f) cannot depend ex-
plicitly on the parameters (Q, b) since they are not known to the investor.

∙ Once this decision rule � ∈ GT has been revealed, nature chooses a parameter
H = (Q, b) from the set ℋ.

∙ For the chosen policy � ∈ GT and model H ∈ ℋ, the investor’s wealth at
time (T + 1)� is given by (3.4), and the expected utility EHU(x

H
� (�)) in the
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numerator of (3.8) can be computed. In addition, the denominator is calculated
by optimizing over  given knowledge of the model H chosen by nature:

⎧
⎨
⎩

EHU(y
H(�)) = max

 
EHU(y

H
 (�))

subject to:

yH (�) = y(0) exp
{
�
[
r + b′� − 1

2
 ′Q 

]
+
√
� ′�Z(T + 1)

}
.

(3.9)

The ratio of these two quantities is precisely the relative regret objective (3.8).

∙ The investor chooses the policy � ≡ f(⋅) and nature the model H to satisfy the
equilibrium condition (3.8).

An axiomatic justification for this objective is given in [59]; see also [36].

CRRA utility function: U(x) = 1
�
x�, � < 1

A more explicit computation can be done for the model (3.8) if the utility function
is assumed to be CRRA. More specifically, observing that y(�) is a log-normal random
variable given by (3.9), it follows that

1

�
EH
(
yH� (�)

)�

=
1

�
y(0)�EH exp

{
��
[
r + b′� − 1

2
 ′Q 

]
+ �

√
� ′�Z(T + 1)

}

=
1

�
y(0)� exp

{
��
[
r + b′ − 1− �

2
 ′Q 

]}

=
1

�
y(0)� exp

{
��
[
r − 1− �

2

(
 − Q−1b

1− �

)′
Q
(
 − Q−1b

1− �

)
+

1

2(1− �)
b′Q−1b

]}
,

(3.10)

(where the first equality is just the moment generating function of a normal r.v.).
It now follows that the benchmark investor’s optimal portfolio (the solution of (3.9)
using (3.10)) is given by

 H = argmax
 

1

�
EHU(y

H
� (�)) =

1

1− �
Q−1b (3.11)

when the model is H = (Q, b). Substituting  H into the wealth equation in (3.9) it
follows that the benchmark investor’s optimal wealth is given by

yH(�) = y(0) exp
{
�
[
r +

1− 2�

2(1− �)2
b′Q−1b

]
+

√
�

1− �
b′Q−1�Z(T + 1)

}
(3.12)
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and the denominator of (3.8) (from substituting (3.11) into (3.10)) is

EHU(y
H(�)) =

1

�
y(0)� exp

{
��
[
r +

1

2(1− �)
b′Q−1b

]}
. (3.13)

On the other hand, for the portfolio � ∈ GT and model H = (Q, b) ∈ ℋ, the
investor’s utility function (the numerator of (3.8)) satisfies

EHU(x
H
� (�)) = EH

[
EH
{
U(xH� (�))∣GT

}]
.

Observing that (conditional on GT ) the exponent of

U(xH� (�)) =
x(0)�

�
e��[r+b

′�− 1

2
�′Q�]+�

√
��′�Z(T+1)

is a standard normal r.v. with mean ��(r + b′� − 1
2
�′Q�) and variance ��2�′Q�, it

follows from the formula for the moment generating function of a normal r.v. that

EH [U(x
H
� (�))∣GT ] =

1

�
x(0)� exp

{
��
[
r + b′� − 1− �

2
�′Q�

]}

and hence

EHU(x
H
� (�)) =

1

�
x(0)�EH exp

{
��
[
r + b′� − 1− �

2
�′Q�

]}
. (3.14)

Substituting (3.13) and (3.14) into the relative regret objective in (3.8), we obtain

EHU(x
H
� (�))

max
 

EHU(y
H
 (�))

=
EHU(x

H
� (�))

EHU(yH(�))
= EH exp

{
��
[
b′� − 1− �

2
�′Q� − 1

2

b′Q−1b

1− �

]}

and it follows that (3.8) is equivalent to

max
�∈GT

min
H∈ℋ

EHU(x
H
� (�))

max
 

EHU(yH (�))

= max
�∈GT

min
H∈ℋ

EH exp
{
��
[
b′� − 1− �

2
�′Q� − 1

2

b′Q−1b

1− �

]}
. (3.15)

It does not appear that an explicit expression for the equilibrium solution of (3.15)
is possible. However, we show in Section 3.4 that an approximate solution, which
becomes exact when � ↓ 0, can be obtained.

3.3.2 Relative regret II: objective based loss function

In this section we introduce an alternative relative regret problem. We adopt the
same (approximate) wealth equation (3.4) for the investor and the same definition
(3.9) of the benchmark yH(�). The essential difference comes in the way that the
investor’s wealth xH� (�) is compared to that of the benchmark investor yH(�).
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Benchmark investor

As in (3.9), the benchmark investor solves a portfolio selection problem with full
knowledge of the model parameters H = (Q, b). More specifically, suppose that the
benchmark investor has utility function UB(y) and that he/she solves the portfolio
selection problem

⎧
⎨
⎩

EHU
B(yH(�)) ≡ max

 
EHU

B(yH (�))

subject to:

yH (�) = y(0) exp
{
�
[
r + b′ − 1

2
 ′Q 

]
+
√
� ′�Z(T + 1)

}
.

(3.16)

Relative regret problem

Consider the following relative regret problem
⎧
⎨
⎩

max
�∈GT

min
H∈ℋ

EH

[
U
(
xH� (�)
yH (�)

)]

subject to:
xH� (�) is given by (3.4)
yH(�) is defined via (3.16).

(3.17)

The key difference between (3.17) and the relative regret problem (3.8) is the way
that xH� (�) and yH(�) are compared. In this regard, it is worth noting that the
“comparison function” U(z) in the objective and the utility function UB(y) need not
be the same.

The model (3.17) can be described as follows.

∙ The investor begins by declaring a policy � ∈ GT (or equivalently, by specifying
some measurable function f : ℝT+1 → ℝ). Nature, endowed with knowledge of
this policy � (equivalently, function f), follows up by choosing a model H ∈ ℋ.
Asset returns ℛ(1), ⋅ ⋅ ⋅ , ℛ(T ) are then generated under nature’s model H .

At time T , the investor adopts the position � = f(ℛ(1), ⋅ ⋅ ⋅ , ℛ(T )) (after seeing
all the returns) while nature invests according to  H (the optimal solution of
(3.16) corresponding to H).

∙ Once the positions � and  H have been taken, one more return realization
ℛ(T + 1) is generated under nature’s model H and the wealth of the investor
xH� (�) (given by (3.4)) and the benchmark yH(�) (given by (3.16)) are realized.
Conditional on � = f(ℛ(1), ℛ(2), ⋅ ⋅ ⋅ , ℛ(T )) and H , the distribution of the
ratio xH� (�)/y

H(�) is fully characterized, and we can calculate

EHU
(xH� (�)
yH(�)

)
.

We use this objective to compare xH� (�) and y
H(�).
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∙ The investor and nature choose � and H to satisfy the equilibrium condition
associated with (3.17).

We reiterate that the essential difference between the models (3.8) and (3.17) is the
way that xH� (�) and y

H(�) are compared. In (3.8) they are compared by evaluating
the ratio of their expected utilities while in (3.17) we compute the expectation of the

comparison function U(z) applied to the ratio xH� (�)
yH (�)

.

Several additional comments are worth making. Firstly, unlike the objective (3.8),
we are not aware of an axiomatic foundation for (3.17) though we believe that this is
an issue worth pursuing. On the other hand, it will be shown that the solution of (3.8)
is a limiting case of (3.17) when the utility/comparison functions are CRRA/power
type. Another advantage of (3.17) is that it gives us some degree of control over the
“risk aversion” of the benchmark investor (through the choice of UB(y)) as well as
the distance measure between xH� (�) and y

H(�) through the choice of U(z). Finally,
there is a natural extension of (3.17) to multi-period problems that is relatively easy
to analyze (this will be done elsewhere). The same cannot be said about (3.8).

Objective based loss function: Suppose we have a set of models

ℳ(ℋ) = {M(H), H ∈ ℋ},

parameterized by H ∈ ℋ and data (ℛ1, ⋅ ⋅ ⋅ , ℛT ) generated from one of the models
M(H∗) in this family. A classical problem in statistics is to estimate the unknown
parameter H∗. The quality of an estimator ĤT = g(ℛ1, ⋅ ⋅ ⋅ , ℛT ) of H

∗ is evaluated
using a loss function ℒ(g(ℛ1, ⋅ ⋅ ⋅ , ℛT ), H) and some criterion; for example, the min-
max criterion is

min
g

max
H∈ℋ

EH [ℒ(g(ℛ1, ⋅ ⋅ ⋅ , ℛT ), H)]. (3.18)

The objective in (3.17) can be interpreted as a min-max criterion for an ob-

jective based loss function U(xH� (�), y
H(�)) ≡ U(x

H
� (�)
yH (�)

) which we now describe. A
fundamental difference is that our primary concern is performance of a decision
� = f(ℛ1, ⋅ ⋅ ⋅ , ℛT ), that may involve an estimate of the parameters somewhere
in its definition, rather than the quality of the estimator itself (though of course,
both issues are related).

The components of our model have analogs with (3.18) as follows:

∙ The optimal (random) wealth yH(�) for every given parameter value in (3.17) is
analogous to the parameter value H in the loss function ℒ(g(ℛ1, ⋅ ⋅ ⋅ , ℛT ), H).
The benchmark in the parameter estimation problem (3.18) is H whereas our
benchmark is the optimal wealth for the data generating parameter;

∙ Investment decisions � = f(ℛ1, ⋅ ⋅ ⋅ , ℛT ) are analogous to the estimator Ĥ =
g(ℛ1, ⋅ ⋅ ⋅ , ℛT ) in (3.18);
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∙ While the objective in (3.18) compares the closeness of an estimator
g(ℛ1, ⋅ ⋅ ⋅ , ℛT ) to the parameter H , we compare the performance xH� (�) of
the mapping � = f(ℛ1, ⋅ ⋅ ⋅ , ℛT ) to the optimal performance yH(�) for each
parameter.

∙ We are concerned with the distribution of the investor performance xH� (�) rela-
tive to yH(�), represented by the comparison function U(x, y) = 1



(x/y)
, which

is analogous to concern about the distribution of g(ℛ1, ⋅ ⋅ ⋅ , ℛT ) as expressed
through the choice of loss function in (3.18). In this regard, classical regret (3.8)
is different as it compares average performance instead of performance for each
realization.

Power utility and comparison functions: UB(y) = 1
�
y� and U(z) = 1



z


Let us now consider the relative regret problem (3.17) under the assumption that
the benchmark investor’s utility function as well as the comparison function are of
power-type: UB(y) = 1

�
y� (� < 1) and U(z) = 1



z
 (
 < 1). As shown in (3.11)-

(3.12), the benchmark investor’s problem (3.16) with a CRRA utility has an explicit
solution

 H =
1

1− �
Q−1b (3.19)

and

yH(�) = y(0) exp
{
�
[
r +

1− 2�

2(1− �)2
b′Q−1b

]
+

√
�

1− �
b′Q−1�Z(T + 1)

}
(3.20)

is the associated benchmark investor’s wealth. It now follows that the normalized
wealth process zH� (�) satisfies

zH� (�) =
xH� (�)

yH(�)
=

x(0)

y(0)
exp

{
�
[
b′� − 1

2
�′Q� − 1− 2�

2(1− �)2
b′Q−1b

]

+
√
�
[
� − 1

1− �
Q−1b

]′
�Z(T + 1)

}

so the relative regret problem (3.17) becomes

⎧
⎨
⎩

max
�∈GT

min
H∈ℋ

EH [U(z
H
� (�))]

subject to:

zH� (�) = z(0) exp
{
�
[
b′� − 1

2
�′Q� − 1−2�

2(1−�)2 b
′Q−1b

]

+
√
�
[
� − 1

1−�Q
−1b
]′
�Z(T + 1)

}
(3.21)



56

where we have substituted zH� (�) for
xH� (�)
yH (�)

. Choosing U(z) = 1


z
 as the comparison

function in (3.21), it follows from the log-normality of zH� (�) (conditional on GT and
H) that the conditional expectation

EH
[
U(zH� (�))

∣∣ GT ]

=
1



EH
[
zH� (�)



∣∣ GT ]

=
z(0)




EH

[
exp

{
�

[
b′� − 1

2
�′Q� − 1− 2�

2(1− �)2
b′Q−1b

]

+ 

√
�
[
� − 1

1− �
Q−1b

]′
�Z(T + 1)

} ∣∣∣GT
]

=
z(0)




exp

{
�

[1− � − 


1− �
b′� − 1− 


2
�′Q� − 1− 2� − 


2(1− �)2
b′Q−1b

]}
.

It now follows that (3.21) is equivalent to

max
�∈GT

min
H∈ℋ

z(0)




EH

{
exp

[
�

(1− � − 


1− �
b′� − 1− 


2
�′Q� − 1− 2� − 


2(1− �)2
b′Q−1b

)]}
.

(3.22)

It is interesting to note the similarity between (3.15) and (3.22). We shall expand
further on this in later sections.

3.4 Optimal portfolio and learning model

We characterize the learning model and optimal portfolio for the relative regret
problem with power-type utility and comparison functions. We also derive an approx-
imate solution which is exact in the limit � ↓ 0 that shows the explicit dependence of
the optimal portfolio on data.

3.4.1 Convex duality and robust learning

We begin by characterizing the learning model and optimal portfolio using results
from convex analysis. For the purposes of accessibility, we derive our results for
the case that the uncertainty set ℋ = {H1, ⋅ ⋅ ⋅ , Hm} = {(b1, Q1), ⋅ ⋅ ⋅ , (bm, Qm)} is
finite, and for simplicity, assume that the comparison and utility functions are power-
type (i.e. U(z) = 1



z
 and UB(y) = 1

�
y�). The case of compact and uncountable

uncertainty set ℋ is handled using similar ideas but requires some heavier machinery
and is proven in the Appendix.
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Observe firstly that when ℋ = {H1, ⋅ ⋅ ⋅ , Hm} = {(b1, Q1), ⋅ ⋅ ⋅ , (bm, Qm)} and
utility and comparison functions are power-type, that (3.17) is equivalent to

⎧
⎨
⎩

�∗ = max
�, �

�

subject to:

EHi

[
1



(
x
Hi
� (�)

yHi (�)

)
]
≥ �, i = 1, ⋅ ⋅ ⋅ , m.

(3.23)

For every model, (3.22) gives

EHi

[1



(xHi
� (�)

yHi(�)

)
]

=
z(0)




EHi

{
exp

[
�

(1− � − 


1− �
b′i� − 1− 


2
�′Qi� − 1− 2� − 


2(1− �)2
b′iQ

−1
i bi

)]}
.

(3.24)

Observe that EHi
[ 1


(x

Hi
� (�)

yHi(�)
)
] is concave in � whenever 
 < 0, and (3.23) is a convex

optimization problem in (�, �) when this condition holds.
Let �i ≥ 0 denote the Lagrange multiplier for the itℎ constraint in (3.23). Clearly,

if (�, �) is feasible for (3.23) and �i ≥ 0 for i = 1, ⋅ ⋅ ⋅ , m, then

L(�, �, �) = � +
m∑

i=1

�i

{
EHi

[1



(xHi
� (�)

yHi(�)

)
]
− �
}

= �
(
1−

m∑

i=1

�i

)
+

m∑

i=1

�iEHi

[1



(xHi
� (�)

yHi(�)

)
]

≥ �∗

Define the dual objective function

 (�) = max
�∈GT , �

L(�, �, �)

= max
�∈GT , �

{
�
(
1−

m∑

i=1

�i

)
+

m∑

i=1

�iEHi

[1



(xHi
� (�)

yHi(�)

)
]}
.

Clearly,  (�) is finite if and only if
∑m

i=1 �i = 1, under which it follows that

 (�) = max
�∈GT

m∑

i=1

�iEHi

[1



(xHi
� (�)

yHi(�)

)
]
.

Observing that the Lagrange multipliers � = [�1, ⋅ ⋅ ⋅ , �m]′ are all non-negative and
sum to 1, it follows that � can be interpreted as a probability measure on the class of
modelsℋ = {H1, ⋅ ⋅ ⋅ Hm}, and that the summation in the dual function is nothing but
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an expectation where the Lagrange multiplier � plays the role of a prior distribution.
Particularly

 (�) = max
�∈GT

E�

[1



(x(�)
y(�)

)
]
, (3.25)

which is nothing but a Bayesian problem with prior �.
All that remains is to relate the dual function  (�) to the original optimization

problem (3.23). The following result is an immediate consequence of Lagrangian
duality (see Theorem 1 on pp. 224 of [45]). The general proof of this result (which
extends the analysis to the case when ℋ is possibly uncountable though compact)
can be found in the Appendix.

Proposition 2. Suppose that ℋ is compact, that 
 < 0 and � < 1. Let �∗ denote the
optimal value of the relative regret problem (3.17) (or (3.23)), and  (�) be the value
function (dual function) for the Bayesian problem (3.25) when the prior (Lagrange
multiplier) is �. Then dual optimization problem

 (�∗) = min
�≥0, �(ℋ)=1

 (�) (3.26)

has a solution �∗ and the optimal regret objective value satisfies �∗ =  (�∗). The
optimal portfolio for the relative regret problem is the maximizer in (3.25) under �∗,
namely

�∗ = argmax
�∈GT

E�∗
[1



(x(�)
y(�)

)
]
(3.27)

Proposition 2 tells us that the solution of the relative regret problem is also the
solution of a Bayesian problem (3.27) where the optimal Lagrange multiplier �∗ char-
acterized by (3.26) also plays the role of a prior distribution on the set of models
ℋ.

This result allows us to see the dependence of the optimal portfolio �∗ on the ob-
servations ℛT = {ℛ(1), ⋅ ⋅ ⋅ , ℛ(T )}, and hence to characterize the optimal learning
model. Specifically, if �∗ is the optimal prior/Lagrange multiplier from (3.26), and
�∗
T = [�∗

T (1), ⋅ ⋅ ⋅ , �∗
T (m)] is the posterior obtained from Bayesian updating condi-

tional on data ℛT , then the objective function can be written as

E�∗
[1



(x(�)
y(�)

)
]
= E�∗

[
E�∗
{(1




x(�)

y(�)

)
 ∣∣∣ ℛT

}]
= E�∗

{
E�∗

T

[1



(x(�)
y(�)

)
]}
,

where

E�∗
T

[1



(x(�)
y(�)

)
]
=

⎧
⎨
⎩

m∑

i=1

�∗
T (i)EHi

[1



(xHi(�)

yHi(�)

)
]
, ℋ is finite,

∫

ℋ
EH

[1



(xH� (�)
yH(�)

)
]
�∗
T (dH), ℋ is uncountable and compact.
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This means that

 (�∗) = max
�∈GT

E�∗
[1



(x(�)
y(�)

)
]
= E�∗

{
max
�∈GT

E�∗
T

[1



(x(�)
y(�)

)
]}
,

where the second equality follows from the GT -measurability of �. The dependence
of the optimal portfolio �∗ on the data can now be summarized as follows.

Proposition 3. Suppose that ℋ is compact, that 
 < 0 and � < 1, and that the
Lagrange multiplier/prior distribution �∗ on ℋ is the solution of the dual problem
(3.26). Let �∗

T = [�∗
T (1), ⋅ ⋅ ⋅ , �∗

T (m)] denote the posterior distribution on ℋ obtained
from Bayesian updating of �∗ given the observations ℛT = {ℛ(1), ⋅ ⋅ ⋅ , ℛ(T )}. Then

�∗ = argmax
�∈GT

E�∗
T

[1



(x(�)
y(�)

)
]
(3.28)

is optimal for the relative regret problem (3.17).

We mention here that probabilistic interpretations of Lagrange multipliers in the
context of regret are also made in [53] and [43], though neither considers learning or
parameter estimation because the decision maker has no data or has already incor-
porated it in the uncertainty set ([53]) or lives in a highly non-stationary world in
which even recent data has no value ([43]).

3.4.2 Optimal portfolio: approximate solution

Although we have characterized the optimal portfolio (3.28) and optimal dual
variable/prior (3.26), both appear difficult to compute. In this section we derive an
approximate characterization of the optimal portfolio �∗ and the associated Lagrange
multiplier/prior �∗, which becomes exact as � → 0. The basic idea is to approximate
the RHS of (3.28) so that the maximization over � can be solved explicitly and a
closed form expression for the dual function  (�) can be obtained. The resulting
dual problem is easier to solve than (3.26) while the expression for �∗ shows us the
explicit dependence of the (approximately) optimal solution on the posterior �∗

T .
As a start, recall that

EH

[1



(xH� (�)
yH(�)

)
]
=

1



EH

[
exp

{
�

[1− � − 


1− �
b′� − 1− 


2
�′Q� − 1− 2� − 


2(1− �)2
b′Q−1b

]}]
.

A Taylor expansion of exp{⋅ ⋅ ⋅ } in orders of � gives

1



EH exp{⋅ ⋅ ⋅ }

=
1



EH

[
1 + �


{1− � − 


1− �
b′� − 1− 


2
�′Q� − 1− 2� − 


2(1− �)2
b′Q−1b

}
+ o(�)

]

= EH

[1


+ �

1− 


2

{
2

1− � − 


(1− �)(1− 
)
b′� − �′Q� − 1− 2� − 


(1− �)2(1− 
)
b′Q−1b

}
+ o(�)

]
.
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The dual function (3.25) can now be written as

 (�) = E�

{
max
�∈GT

E�T

[1



(x(�)
y(�)

)
]}

= �
1− 


2
E�

{
max
�∈GT

E�T

[
2

1− � − 


(1− �)(1− 
)
b′� − �′Q� − 1− 2� − 


(1− �)2(1− 
)
b′Q−1b

]}

+
1



+ o(�).

With this in mind, define

 ̄(�) = E�

[
max
�∈GT

E�T

{
2

1− � − 


(1− �)(1− 
)
b′� − �′Q� − 1− 2� − 


(1− �)2(1− 
)
b′Q−1b

}]

= E�

{
max
�∈GT

[
2

1− � − 


(1− �)(1− 
)
E�T (b)

′� − �′E�T (Q)�
]}

− 1− 2� − 


(1− �)2(1− 
)
E�(b

′Q−1b)

where

E�T (Q) ≡
∫

ℋ
Q�T (dH), E�T (b) ≡

∫

ℋ
b�T (dH)

and

E�(b
′Q−1b) = E�[E�T (b

′Q−1b)].

By completing the square, the above is equivalent to

 ̄(�) = −E�

{
min
�∈GT

[
� − C1 [E�T (Q)]

−1
E�T (b)

]′
E�T (Q)

[
� − C1 [E�T (Q)]

−1
E�T (b)

]}

+ C2
1 E�

{
E�T (b)

′[E�T (Q)]
−1E�T (b)

}
− C2E�(b

′Q−1b)

where C1 =
1−
−�

(1−
)(1−�) and C2 =
1−2�−


(1−�)2(1−
) . Clearly,

�̄� ≜ C1[E�T (Q)]
−1E�T (b) (3.29)

is the optimal portfolio, from which it follows that

 ̄(�) = C2
1 E�

{
E�T (b)

′[E�T (Q)]
−1E�T (b)

}
− C2E�(b

′Q−1b). (3.30)

Recalling that

 (�) =
1



+ �

1− 


2
 ̄(�) + o(�)
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(and noting that the coefficient of  ̄(�) is positive) it follows that an approximate
solution �̄∗ of the dual problem (3.26) can be obtained by solving

�̄∗ = arg min
�≥0, �(ℋ)=1

 ̄(�) (3.31)

while

�̄∗ = C1[E�̄∗
T
(Q)]−1E�̄∗

T
(b) (3.32)

is an approximate solution for the regret problem.
A similar calculation/approximation can be carried out for (3.15). In this case,

the (approximate) dual problem is again given by (3.31) where

 ̄(�) = E�

{
E�T (b)

′[E�T (Q)]
−1E�T (b)

}
− E�(b

′Q−1b).

The (approximate) optimal policy is given by

�̄∗ =
1

1− �
[E�∗

T
(Q)]−1E�∗

T
(b).

Interestingly, this is the extreme case of 
 → −∞ in (3.30) and (3.32), which coincides
with a large aversion to missing the benchmark.

3.5 Example

In this section, we plot the approximate dual function (3.30) and solve for the
approximate optimal prior and portfolio (3.31)-(3.32) for a simple example. We il-
lustrate the effect of the number of data points on the dual function and the optimal
prior.

For simplicity, we consider 2 assets and 3 models, and assume the covariance
matrix is known. Thus our uncertainty set is ℋ = {(b1, Q), . . . , (b3, Q)}, and we
choose the following models for annualized mean returns

b1 =

(
0.055
0.020

)
, b2 =

(
0.035
0.010

)
, b3 =

(
0.015
0.035

)

and the following annualized covariance matrix:

Q =

(
0.0087 0.0037
0.0037 0.0063

)
.

We also set � = −3, 
 = −5, r = 0.03 and observation frequency � = 1/12, which cor-
responds to monthly observations. T denotes the number of monthly return samples
in the investor’s data set.
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To begin, observe that the approximate dual function (3.30) can be written as

 ̄(�) = C2
1 E�

{
E�T (b)

′[E�T (Q)]
−1E�T (b)

}
− C2E�(b

′Q−1b)

= C2
1 E�

{(
3∑

i=1

�T (i)bi

)′

Q−1

(
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i=1

�T (i)bi

)}
− C2
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i=1

�i(b
′
iQ

−1bi)

= C2
1
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i=1
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j=1

b′iQ
−1bjE� [�T (i)�T (j)]− C2

3∑

i=1

�i(b
′
iQ

−1bi)

= C2
1

3∑

i=1

3∑

j=1

3∑

k=1

b′iQ
−1bj�kE� [�T (i)�T (j)∣Hk is true]− C2

3∑

i=1

�i(b
′
iQ

−1bi)

(3.33)

where �T (i) is the posterior probability that the model Hi is correct after T observa-
tions of log-returns {ℛ(1), . . . ,ℛ(T )}:

�T (i) := p(Hi is true∣ℛ(1), . . . ,ℛ(T ))

=
�i p(ℛ(1), . . . ,ℛ(T )∣Hi is true)∑m
l=1 �l p(ℛ(1), . . . ,ℛ(T )∣Hl is true)

=
�i
∏T

t=1 p(ℛ(t)∣Hi is true)∑m
l=1 �l

∏T
t=1 p(ℛ(t)∣Hl is true)

=
�i exp

{
−1

2

∑T
t=1(ℛ(t)− ��i)

′(�Q)−1(ℛ(t)− ��i)
}

∑m
l=1 �l exp

{
−1

2

∑T
t=1(ℛ(t)− ��l)′(�Q)−1(ℛ(t)− ��l)

}

Now for a given �, computing the second expression of  ̄(�) in (3.33) is easy; for the
first term we employ Monte Carlo integration — see Fig. (3.5) for the algorithm. We
find the optimal prior by initially computing  ̄(�) over the whole domain

∑3
i=1 �i =

1, �i ≥ 0, i = 1, 2, 3 coarsely discretized, and zooming in on the region of interest with
higher degree of accuracy in both domain discretization and Monte Carlo integration.

We plot the approximate dual function surfaces in Fig. (3.7) for T = 24, 36, 48
and 60 observations, corresponding to 2− 5 years of monthly observations. Observe
that the dual function surface becomes flatter with increasing number of observations.
This makes sense intuitively; when the number of observations is small, the impact of
learning is not significant and robustness concerns dominate. It may be worthwhile
to focus on doing well relative to some models while ignoring others. However, with
an increasing number of observations, learning takes over and it eventually becomes
worthwhile to consider all models; for a large number of data points, any prior that
weighs all the models performs reasonably well, hence the flatter surface. For this
example, robustness means focusing on models 1 and 2 when there are only 24 data
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Initialize Nsim, Nint, V alue = Nsim× 1 zero vector
for csim = 1 to Nsim do
for cint = 1 to Nint do
Generate R = {ℛ(1), . . . ,ℛ(T )} under model Hk

V alue(csim) = V alue(csim) + �T (i;R)�T (j;R)
end for

V alue(csim) =
1

Nint
V alue(csim)

end for
return sample mean(V alue), sample std(V alue)

Figure 3.5 Algorithm for computing E� [�T (i)�T (j)∣Hk is true] for given � and i, j, k.

points (see Fig. 3.6). When there are ≥ 36 data points, learning becomes significant
enough that the prior puts weight on all models. Hence for a substantial number of
data points, the optimal prior still weights all models but the flatness of the dual
function means that any prior that weights all of the models performs reasonably
well.

In this regard, we compare the performance of the approximate optimal portfolio
(3.32) corresponding to the approximate optimal prior �̄∗ with the portfolio that
corresponds to using a uniform prior �unif = [1/3, 1/3, 1/3]. For the comparison, we
simulate annualized portfolio log-return 12 × log(xH� (�)/x(0)) using (3.4) under the
three different models. We plot the mean log-returns with 1 std error bars in Fig. (3.8).
The mean log-returns of the approximate solution performs better than or equal to
the uniform prior across all three models and for all time periods. In addition, the
mean log-return gap decreases with increasing learning periods T , which is consistent
with the flattening of the dual function surface — that the performance of �unif
increases over time.

For the final reported values, we discretize the domain by increments of 0.05
and use Nsim = 100 and Nint = 5000 for Monte Carlo integration. To examine
the validity of the approximate solution, we also report objective values �̄∗ for the
(primal) relative regret problem (3.23) where � = �̄∗ is the approximately optimal
prior given by the solution of (3.32). Clearly, �̄∗ is a lower bound to the true optimal
regret value of (3.23). We note that the gap between �̄∗ and the approximate dual
function  ̄(⋅) evaluated at the optimal solution �̄∗ of the approximate dual problem
is always within 0.4% of the value of �̄∗ which suggests that (3.31)-(3.32) is a good
approximation of the exact problem (3.23).
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T �̄∗  (�̄∗) �̄∗ Duality Gap at �̄∗

mean (std.) mean (std.) (% of  (�̄∗))
24 (0.421, 0.053, 0.526)′ -0.2018 (0.0002) -0.2024 (0.0003) 0.0006 (0.3%)
36 (0.368, 0.158, 0.474)′ -0.2016 (0.0002) -0.2022 (0.0003) 0.0006 (0.3%)
48 (0.316, 0.211, 0.474)′ -0.2014 (0.0002) -0.2020 (0.0002) 0.0006 (0.3%)
60 (0.208, 0.313, 0.480)′ -0.2012 (0.0002) -0.2018 (0.0002) 0.0006 (0.3%)

Figure 3.6 Optimal prior computation for the approximate dual problem.
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Figure 3.7 Dual function surfaces to first order � for different values of T . The
minimum value is shown by a filled black circle.
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(c) Model 3

Figure 3.8 Annualized portfolio mean log-returns of the approximate optimal prior
(blue) and the uniform prior (red) for the three different models. Error bars indicate
1 std error. The mean log-returns of the approximate solution performs no worse
than the uniform prior for all time periods. In addition, the mean log-return gap
decreases with increasing learning periods T , which is consistent with the observation
of flattening dual function surface in the previous paragraph.

3.6 Appendix

Proof of Proposition 2 The problem (3.17) is equivalent to

⎧
⎨
⎩

max�∈GT , � �
subject to:

EH

(
1


xH� (�)
yH (�)

)

≥ �, ∀H ∈ ℋ,

(3.34)

which is a convex optimization problem in (�, �) for all values of 
 < 0 and � < 1.
We will analyze this problem using convex duality, for which the following definitions
are required. For more details, the reader should consult [45].

Let C(ℋ) denote the space of real-valued continuous functionals on ℋ with sup-
norm

∥g∥ ≜ sup
(Q, b)∈ℋ

∣g(Q, b)∣, ∀ g ∈ C(ℋ).

The linear space C(ℋ) with this norm is a Banach space [22]. Let

P ≜ {g ∈ C(ℋ) ∣ g(Q, b) ≥ 0, ∀ (Q, b) ∈ ℋ}

define the positive cone in C(ℋ). It is easy to see that P has non-empty interior5.
We say that f ≥ g for f, g ∈ C(ℋ) if f −g ∈ P and g ≤ 0 if −g ∈ P. We write g > 0

5This is needed for certain strong duality results.
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if g(Q, b) > 0 for every (Q, b) ∈ ℋ. Next, let ℬ(ℋ) denote the set of Borel sets of ℋ.
The dual (or conjugate) space C∗(ℋ) is (isomorphic to) the set of measures defined
on ℬ(ℋ) with bounded total variation:

C∗(ℋ) =
{
�
∣∣∣
∫

ℋ
∣�(dH)∣ <∞

}
;

see for example Section IV.6.3 in Dunford and Schwartz [22]. Observe that ele-
ments of C∗(ℋ) are signed measures. The dual cone of P is defined by P∗ ≜ {� ∈
C∗(ℋ) ∣

∫
ℋ fd� ≥ 0, ∀ f ∈ P} (see [45]) and is equal to the subset of C∗(ℋ) consisting

of positive measures:

P∗ = {� ∈ C∗(ℋ) ∣�(A) ≥ 0, ∀A ∈ ℬ(ℋ)}. (3.35)

We write � ≥ 0 when � ∈ P∗.
Let � ∈ P∗ be arbitrary and (�, �) be feasible for (3.34). It is clear that

L(�, �, �) ≜ �+

∫

H∈ℋ

[
EH

(1



xH� (�)

yH(�)

)

− �
]
�(dH)

= �(1− �(ℋ)) +

∫

H∈ℋ
EH

(1



xH� (�)

yH(�)

)

�(dH)

≥ �∗. (3.36)

Define the dual function  (�) as

 (�) ≜ max
�∈ℝ, �∈GT

L(�, �, �)

= max
�∈ℝ, �∈GT

�(1− �(ℋ)) +

∫

H∈ℋ
EH

(1



xH� (�)

yH(�)

)

�(dH).

From our construction of L(�, �, �),  (�) is an upper bound on �∗ for every � ∈ P∗.
This upper bound is finite if and only if �(ℋ) = 1 (i.e. a probability measure on ℋ)
from which it follows that

 (�) = max
�∈GT

∫

H∈ℋ
EH

(1



xH� (�)

yH(�)

)

�(dH).

Observing that the integral is nothing but an expectation with respect to a probability
distribution �, we adopt the notation

E�

[1



(x(�)
y(�)

)
]
≡
∫

H∈ℋ
EH

[1



(xH� (�)
yH(�)

)
]
�(dH)

and we can write

 (�) = max
�∈GT

E�

{1



(x(�)
y(�)

)
}
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which is precisely the dual function (3.25). It now follows from Theorem 1 on pg.
224 of [45] that the optimal relative regret objective value �∗ and the dual objective
value  (�) are related by

�∗ =  (�∗) = min
�≥0, �(ℋ)=1

 (�)

and that the optimal solution ��
∗

of (3.27) with prior �∗ is also the optimal solution
of the relative regret problem (3.34).
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Chapter 4

Conclusion

In this thesis, we develop two new approaches to robustness and learning in data-
driven portfolio optimization.

In Chapter 2, we investigate performance-based regularization (PBR) to reduce
estimation risk in empirical mean-CVaR portfolio optimization. The nonparametric
PBR method solves the empirical mean-CVaR problem with penalties on the uncer-
tainties in mean and CVaR estimations. The parametric PBR method solves the em-
pirical Markowitz problem instead if the underlying model is elliptically distributed.
Both theoretical analysis and simulation experiments show the PBR methods improve
upon the naive approach to data-driven mean-CVaR portfolio optimization.

In Chapter 3, we combine learning and robust portfolio allocation via solving a
relative regret objective. We show using convex duality that the optimal learning
model is Bayesian where the prior is endogenously specified and corresponds to the
Lagrange multipliers that solve the dual problem. The optimal investment portfolio
is the solution of a non-standard Bayesian problem where the posterior is obtained by
Bayesian updating of the optimal dual variables/prior using Bayes’ rule. The problem
of minimizing relative regret can be interpreted as one of minimizing a loss function
in which estimators are evaluated, not by the associated statistical errors, but by the
performance of investment policies that use these estimators relative to a benchmark.
Our results can be interpreted as a characterization of the optimal estimator for this
loss function.

From a larger perspective, both PBR and relative regret optimization are new and
promising methods of dealing with estimation risk and model uncertainty while learn-
ing from data. While this thesis has focused on the portfolio optimization problem,
both methods can be adapted to other problems that involve data-driven optimization
with large uncertainty. We leave this exploration for future work.
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