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Increasing sensitivity of dryland vegetation
greenness to precipitation due to rising
atmospheric CO2

Yao Zhang 1,2,3 , Pierre Gentine 4, Xiangzhong Luo 5, Xu Lian 1,4,
Yanlan Liu 6, Sha Zhou 7, Anna M. Michalak8, Wu Sun 8, Joshua B. Fisher9,
Shilong Piao 1,10 & Trevor F. Keenan 2,3

Water availability plays a critical role in shaping terrestrial ecosystems,
particularly in low- and mid-latitude regions. The sensitivity of vegetation
growth to precipitation strongly regulates global vegetation dynamics and
their responses to drought, yet sensitivity changes in response to climate
change remain poorly understood. Here we use long-term satellite obser-
vations combined with a dynamic statistical learning approach to examine
changes in the sensitivity of vegetation greenness to precipitation over the
past four decades. We observe a robust increase in precipitation sensitivity
(0.624% yr−1) for drylands, and a decrease (−0.618% yr−1) for wet regions.
Using model simulations, we show that the contrasting trends between dry
and wet regions are caused by elevated atmospheric CO2 (eCO2). eCO2

universally decreases the precipitation sensitivity by reducing leaf-level
transpiration, particularly in wet regions. However, in drylands, this leaf-
level transpiration reduction is overridden at the canopy scale by a large
proportional increase in leaf area. The increased sensitivity for global
drylands implies a potential decrease in ecosystem stability and greater
impacts of droughts in these vulnerable ecosystems under continued glo-
bal change.

Recent warming has led to large increases in atmospheric water
demand and vegetation water consumption in various regions1–3,
potentially causing declines in surface soilmoisture and increases in
drought severity4,5. Vegetation plays a critical role in regulating
water fluxes between soil and the atmosphere and is itself also
directly affected by the amount of available water in the soil6. In low

and mid-latitude regions, water is considered as the primary
environmental factor that determines vegetation distribution,
species composition and ecosystem functioning, even in tropical
forests which is often not considered water-limited7. Large varia-
tions of vegetation greenness and radial growth of trees have been
attributed to precipitation trends and anomalies8–10. The sensitivity
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of vegetation greenness to precipitation is thus of critical impor-
tance, not only to understand ecosystem responses to drought and
post-drought recovery, but also for predicting the dynamics of
vegetation under a changing climate and the resulting impacts on
the global carbon cycle11,12.

Spatially, the sensitivity of vegetation productivity to precipita-
tion variation has been reported to decrease as mean precipitation
increases13,14, though the relationship is influenced by other factors
that regulate the ecosystem water availability, including environ-
mental factors such as precipitation variability15, mean temperature16,
soil texture17 and ecosystem characteristics such as plant water use
strategy18 and rooting depth19. Temporally, in addition to the changes
in hydroclimate and consequent plant acclimation20, shifts in species
composition21, factors that lead to changes in plantwater useefficiency
and the coupling strength between vegetation and precipitation can
also alter the sensitivity of vegetation greenness to precipitation. For
example, nitrogen deposition and CO2 fertilization22, both of which
increase leaf-level water use efficiency, also increase vegetation sen-
sitivity to precipitation13. These effects, however, are further compli-
cated by their interactions and the human-environment nexus16,23. The
temporal changes in sensitivity of vegetation greenness to precipita-
tion, as well as the underlying mechanism are still less known at a
global scale. Considering the major role that vegetation plays in reg-
ulating the feedbacks between the atmosphere and the biosphere24,
this knowledge gap constitutes a large source of uncertainty in pro-
jection of future climate change.

Here we use a dynamic statistical learning approach, combined
with remotely sensed normalized difference vegetation index (NDVI)
and an ensemble of land-surface models, to quantify the sensitivity of
vegetation canopy greenness to precipitation, and examine and attri-
bute its temporal changes over 1981–2015. The approach is based on a
dynamic linear model (DLM), which can estimate the time-varying
relationship between environmental factors (e.g., precipitation, tem-
perature, radiation) and NDVI remotely sensed from GIMMS (Meth-
ods), allowing us to derive a robust estimate of precipitation
sensitivity. We then evaluate the trend of this precipitation sensitivity
along a dryness gradient and use a parsimonious ecohydrological
model to understand what drives its changes over time. Our results
show that the precipitation sensitivity has continuously increased for
the drylands and decreased for the wet regions during the past four

decades, and eCO2 is the major driving factor to explain these con-
trasting trends.

Results
Temporal changes of vegetation sensitivity to precipitation
The mean sensitivity of vegetation canopy greenness to precipita-
tion (θprec) calculated from the DLM using satellite observed NDVI is
found to be the highest in arid regions (Fig. 1a), and this sensitivity
decreases for regions that are more humid, as indicated by a higher
aridity index (Fig. 1c). Aridity index is an indicator of the degree of
dryness calculated as the ratio between long-term precipitation and
potential evapotranspiration25. Here we use a static map of aridity
index provided by CGAIR (Supplementary Fig. 1). Previous studies
using field observations also found decreased rain use efficiency
with increasing wetness, corroborating our remote sensing-based
analysis13.

Importantly, we find that θprec increases over time in many dry-
lands (aridity index < 0.65, Supplementary Fig. 1), e.g., western US,
Australia, central Asia and northwest China (Fig. 1b). Negative trends
are mostly found in non-drylands (aridity index > 0.65), e.g., pan tro-
pics or southern China. Exceptions exist in regions of Africa (e.g., the
Sahel, Horn of Africa), where strong decreases happen in relatively dry
regions. This is likely due to the significant increase of precipitation in
these regions after 198026 (Supplementary Fig. 2). Collectively, the
trend in θprec shifts frompositive to negative across a wetness gradient
(Fig. 1d), suggesting that vegetation greenness in drylands becomes
overall more sensitive to precipitation variations, while greenness in
non-drylands becomes less sensitive. This pattern is consistent when
θprec is estimated using either a univariate DLM (including only the
autocorrelation and precipitation terms) or a multivariate DLM
(additional terms including cloud fraction and temperature) (Fig. 1).
These results are robust regardless of the vegetation and precipitation
datasets, or the sensitivity estimating method being used (Supple-
mentary Discussion, Supplementary Figs. 3–11).

The increase of θprec in drylands suggests a potential increase of
vegetation greenness variability. To test this, we analyze the trends in
NDVI variability caused by precipitation variations (σNDVIprec) using
results from the DLM (Fig. 2a). The spatial pattern of σNDVIprec trends
are more similar to the θprec trend than the precipitation variability
trend (r = 0.42 vs 0.10, P <0.001, Supplementary Fig. 12), indicating
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Fig. 1 | Spatial patterns of precipitation sensitivity (θprec).Mean (a) and trend (b)
of precipitation sensitivity during 1981–2015 obtained from amultivariate dynamic
linear model (DLM). The inset in b shows the probability density of the precipita-
tion sensitivity for dryland (red) and non-dryland (blue). The response of the (c)

mean and (d) trend of precipitation sensitivity along the aridity index, where red
indicates results from univariate model that only considers precipitation, and blue
indicates results from the multivariate DLM. Shades indicate the 95% confidence
interval calculated in each aridity bin through bootstrapping (n = 5000).
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that changes in θprec drive the different trend in NDVI variability
between the drylands and non-drylands (unpaired one-sided t-test,
P <0.001). We also compare the trajectories of σNDVIprec changes
through time, together with the changes in precipitation variability
(Fig. 2b). σNDVIprec shows a decrease for both drylands and non-dry-
lands, with a greater decline for the latter. This decreasing trend for
both regions is caused by a decrease in precipitation variability during
the sameperiod. By comparing the normalized trend of σNDVIprec and
precipitation variability for both dryland and non-dryland ecosystems,
we find that for drylands, precipitation variability reduces at a rate of
−0.73% yr−1 as compared to a much smaller reduction for σNDVIprec
(−0.17% yr−1) (Fig. 2c). This suggests that the increase in θprec partially
offsets the impact of reduction in precipitation variability
on σNDVIprec.

CO2 as the major contributor for the contrasting trends in pre-
cipitation sensitivity
A number of factors can cause changes in precipitation sensitivity
(θprec). For example, the θprec trend shows a strong dependence on the
trend of water availability. Regions with decreasing annual precipita-
tion and root-zone soil moisture tend to show positive θprec trend

27

(Supplementary Fig. 13a, c). This can be explained by an increase of
rain use efficiency, which amplifies vegetation responses to pre-
cipitation, during drought years13. However, because precipitation
trends are not significant in both drylands and non-drylands, pre-
cipitation change alone cannot explain the contrasting trends in θprec
(Supplementary Fig. 2c). Changes in potential evapotranspiration and
its components (e.g., radiation, temperature) can also affect the water
availability, but these factors show veryweak relationships with θprec in
termsof their trends (Supplementary Fig. 14). Additionally,wefind that
the θprec trend within each biome shows a similar pattern along the
aridity index as that from the entire study regions (Supplementary
Fig. 15), suggesting that biome-specific characteristics are not the
major cause for the contrasting trends.

To better understand the cause of the divergent changes in θprec
between drylands and non-drylands, we usemodel-simulated leaf area
index (LAI) from four scenarios in the Multi-scale Synthesis and Ter-
restrial Model Intercomparison Project (MsTMIP)28 and calculate θprec
in a similar manner (Methods). The simulated LAI is used in this causal
attribution as it is comparable to NDVI — both represent canopy
structural changes. The multi-model ensemble mean (MMEM) of θprec
estimated from the historical forcings exhibits large uncertainty but
generally reproduces the contrasting θprec trends, i.e., positive in dry-
lands and negative in non-drylands, with similar magnitudes compar-
able to those derived from remote sensing observations (Fig. 3). Using
a combination of factorial simulation scenarios (Supplementary
Table 1), we analyze the contribution of four factors (climate change,
elevated atmospheric CO2, land use change and nitrogen deposition)
to the θprec trend, for drylands and non-drylands separately.

We find that changes in climate forcing contribute positively to
θprec for both drylands and non-drylands (Fig. 3), possibly due to global
warming and the resulting drying trend of the atmosphere2. Given θprec
increases with climate dryness (Fig. 1c), such a drying trend likely leads
to increasing θprec globally. Nitrogen deposition, though only repre-
sented in four out of tenmodels, also shows a positive contribution to
θprec, especially for drylands. However, as nitrogen dynamics are still

a Trend in NDVI variability related to precipitation

N
D

V
I d

ec
−1

−0.01

−0.005

0

0.005

0.01

N
D

V
I v

ar
ia

bi
lit

y

P
re

c.
 v

ar
ia

bi
lit

y
(m

m
 m

on
th

−1
)

b

0

10

20

30

40

50

1985 1990 1995 2000 2005 2010
0.000

0.002

0.004

0.006

0.008

0.010

NDVI (dryland)
NDVI (non−dryland)
Prec. (dryland)
Prec. (non−dryland)

5−year window
9−year window

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

N
DV

I
Pr

ec
.

N
DV

I
Pr

ec
.

R
el

at
iv

e 
tr

en
d

(%
 y

ea
r−1

)

c

dryland non−dryland

Fig. 2 | Change in vegetationvariability causedbyprecipitation. aTrend inNDVI
variability caused by precipitation (σNDVIprec). σNDVIprec is calculated as the
standard deviation of the NDVI anomalies contributed by precipitation (θprec ×
precipitation anomaly) within each 60-month window. b Time series of σNDVIprec

and precipitation variability for drylands and non-drylands. Dashed and solid lines
indicate time series estimated from amoving window of 108 and 60months (9 and
5 years), respectively. c Normalized trend in σNDVIprec (NDVI) and precipitation
variability (Prec.) for dryland and non-dryland.

−2

−1

0

1

2

Tr
en

d 
in

 s
en

si
tiv

ity
 (

%
 y

r− 1
)

Observation MMEM Dryland Non dryland

Climate
Land use
CO2
N Deposition

Fig. 3 | Contrasting trends in precipitation sensitivity for drylands and non-
drylands. Comparison between the observed and modeled precipitation sensitiv-
ity trend as a percentage of themulti-year average. For observations and themulti-
model ensemble mean (MMEM), red and blue indicate dryland and non-dryland
regions, respectively. MMEM and attribution are obtained from MsTMIP model
scenario simulations. For observations, bars represent themedian trends and error
bars indicate the 95% confidence interval of spatial variation through boot-
strapping. Formodels, the bars and error bars indicate themean and standarderror
of the mean (SEM) of median trend across models, respectively. Semi-transparent
dots represent the median trend from each model. Since not all models provide
simulations for all four scenarios, to delineate the contribution for each driving
factor, different models may be used (Methods). The sample sizes for each factor
are: Observation 17601 and 14095 (for dryland and non-dryland, respectively);
MMEM 4 and 4; Climate 10 and 10; Land use 9 and 9; CO2 9 and 9; N Deposition
3 and 3.

Article https://doi.org/10.1038/s41467-022-32631-3

Nature Communications |         (2022) 13:4875 3



poorly represented in these models, such estimate should be con-
sidered to be relatively uncertain. Land use change plays a relatively
small role on θprec changes in both drylands and non-drylands. The
largest difference between drylands and non-drylands, however,
comes from the impact of elevated atmospheric CO2, which increases
θprec in drylands, but decreases θprec in non-drylands. We also test the
robustness of this attribution method by using only the models that
have simulations for all four scenarios. The sign of the contributions
remains unchanged for the selected ensemble, while the magnitudes
vary (Supplementary Fig. 16).

Given the large effect of CO2 in explaining the difference between
drylands and non-drylands, we further quantify its impact on disen-
tangled components controlling θprec by levering the model outputs.
Here, θprec, approximated by LAI sensitivity to precipitation, can be
further decomposed to three components with well-defined ecohy-
drological meaning (the inverse of transpiration per leaf area, tran-
spiration over evapotranspiration, and evapotranspiration ratio in
their partial derivative form):

θprec≈
∂LAI
∂P

=
∂LAI
∂ET

∂ET

∂E
∂E
∂P

ð1Þ

The results show that elevated CO2 in the atmosphere (eCO2)
increases the sensitivity of LAI to transpiration (∂LAI∂ET

) for both drylands
and non-drylands, while the effect on transpiration (ET) sensitivity to
evapotranspiration (∂ET

∂E ) is positive for drylands and negative for non-
drylands. The largest difference comes from evapotranspiration (E)
sensitivity to precipitation (∂E∂P), which explains most of the contrasting
trends for drylands and non-drylands (Supplementary Fig. 17).

Mechanistic explanation for the CO2 effect on precipitation
sensitivity
For a mechanistic understanding of how eCO2 leads to contrasting
trends of vegetation sensitivity in drylands and non-dryland regions,
we use a minimalistic hydrological model29 and evaluate the change of
precipitation sensitivity under different CO2 levels. Thismodel is based
on a water balance equation and is designed to analytically derive the
relationship between evapotranspiration and precipitation, similar to
the Budyko curve. The modified version by Good et al.30 can further
partition evapotranspiration into interception, transpiration and soil
evaporation based on the characteristics of climate, soil and vegeta-
tion.We improve themodel so that it can account for the CO2 effect on
stomatal conductance and on LAI (Methods). With different combi-
nations of the parameter settings, including rooting depths, soil types
and rainfall depths, themodel is used to calculate the partial derivative
of LAI over precipitation as a proxy of θprec (see Methods).

The predicted LAI sensitivity to precipitation exhibits amaximum
in semiarid regions, consistent with a maximum fraction of biological
water use to precipitation in mesic environments30 (Fig. 4a). This
sensitivity pattern is also similar to what we derived using satellite
observed LAI (Supplementary Fig. 6). Using this simple model, we can
decompose the sensitivity changes into three different CO2 effects,
and understand what mechanism drives the contrasting trends
between dryland and non-dryland. The first effect is that eCO2 can
reduce the aperture of the stomata (reduction in stomatal con-
ductance), so that the amount of water needed by plants decreases,
and thus so does the sensitivity of transpiration to precipitation (∂ET

∂P )
(Fig. 4b). The second effect is that eCO2 can stimulates vegetation
cover, the relative increase of LAI is suggested to be strongest in dry-
lands and diminishes quickly as it gets wetter31. This effect overrides
the decline of ∂ET

∂P in dry regions, creating a contrasting trend for dry-
lands and non-drylands. The third effect is also due to the eCO2-
induced stomatal conductance reduction, which on the other hand,
reduces transpiration per leaf area. This is equivalent to a universal
increase of water use efficiency and ∂LAI

∂ET
. The combination of these

effects can broadly capture the contrasting trend of θprec for drylands
and non-drylands. Although previous studies suggest that CO2 may
also decrease potential evapotranspiration and change aridity32,33, we
find its contribution is one order of magnitude smaller than the direct
and indirect CO2 effect on stomata and leaf area (5.6% and 13.4% for
drylands and non-drylands, respectively, Supplementary Fig. 18). We
note that taking the differences between C3 or C4 photosynthesis
pathways or different levels of interception fractions into considera-
tion may alter the contribution of each component, but the general
patterns remain unchanged (Supplementary Fig. 18). It is worth noting
that this simple model does not account for the variations in plant
hydraulic traits and inter-species competition for water, which may
both affect the vegetation sensitivity to precipitation18,34, but their
effects on the trend of sensitivity are still uncertain.

Discussion
The eCO2 has both direct and indirect effects on plant-water rela-
tionships. The direct effect increases the partial pressure of inter-
cellular CO2 and water use efficiency35, which can lead to increases of
leaf-level photosynthesis and decreases of transpiration36. However,
these leaf-level responses may be different at the ecosystem level,
especially when the competition between individuals is taken into
account34. For example, water saved by one plant may be used by
another. The effect of competition on individual plant growth may
depend on the hydraulic diversity, species characteristics and local
environment37,38. Invariably however, increased leaf-level water use
efficiency leads to increases of the ecosystem LAI, especially in water-
limited regions, and increases in available soil moisture in energy-
limited regions. Both are often considered as indirect effects of
CO2

25,39–41. Previous modeling studies suggest that indirect effects play
a much more important role in arid regions than in humid regions42.
These effects can also be amplified due to the difference between C3

0.05 0.1 0.5 1 22

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Aridity index

LA
I s

en
si

. t
o 

P
re

c.
(∂

LA
I/∂

P
)

a
sand
sandy loam
loam
clay

0.05 0.1 0.5 1 22

−0.10

−0.05

0.00

0.05

0.10

Aridity index

C
ha

ng
e 

in
 L

A
I s

en
si

. t
o 

P
re

c.
(Δ

(∂
LA

I/∂
P

))

b

gs on ∂ET/∂P
gs+LAI on ∂ET/∂P
gs+LAI on ∂ET/∂P+gs on ∂LAI/∂ET

Fig. 4 | Predicted responses of vegetation sensitivity by the minimalistic
hydrological model. a predicted responses along the aridity index. Different line
colors represent different soil types, with thicker lines indicating the estimates
based on global land mean values for rooting depth and rainfall depth. Thin lines
indicate estimates using other possible value combinations (Supplementary
Table 3).bpredicted changes of sensitivity due to elevated atmospheric CO2. Three
types of CO2 effect are considered, with each line represents a stepwise combina-
tion of them (seeMethods). The solid lineswith shaded areas indicate the ensemble
mean and standard deviation of all soil and climate combinations. The results are
obtained assuming all vegetation are C3.

Article https://doi.org/10.1038/s41467-022-32631-3

Nature Communications |         (2022) 13:4875 4



and C4 plants, whose distribution follows the gradient of aridity in low
latitude regions. C4 plants benefit much less from the direct eCO2-
induced photosynthesis increase, but show a stronger decline in sto-
matal conductance and thus indirect water savings, allowing greater
increases of vegetation cover in the drylands43,44. The strong increases
in leaf area, in turn, lead to an increase inwater demand andwater loss
through cuticular conductance and stomatal leakiness45, offsetting the
CO2 water saving effect due to reduced stomatal aperture31,42.
Increased vegetation covers in drylands can also lead to increased
infiltration and reduced runoff46,47, creating a positive feedback, fur-
ther enhancing the vegetation sensitivity to precipitation.

On the other hand, in wet regions, although photosynthesis
increases under eCO2 due to the direct effect, this does not necessarily
lead to a proportional increase in leaf area and canopy conductance
considering the high LAI baseline48. In these regions, leaf biomass
increase is limited by light and nutrient availability, sink strength (i.e.,
the capacity of enzymes to assimilate carbon), as well as the capability
of plants to use and allocate excess carbon to other organs43,49. The
direct water saving effect together with a non-significant increase in
leaf area, reduces the total water consumption42, and leads to
increased runoff globally50,51. Excess water further decouples tran-
spiration and precipitation, and therefore decreases the vegetation
sensitivity to precipitation and increases the safety margin to climate
variations. The diverging responses of vegetation sensitivity along
dryness gradients are caused by the different strength of the indirect
water saving effect, in particular whether it can stimulate leaf area
increases. The minimalistic model we employ offers a similar expla-
nation from a hydrological perspective: water savings in dry regions
allow for a higher vegetation cover and a greater fraction of pre-
cipitation to be transpired by vegetation, while for wetter regions
where ecosystems aremostly energy limited, water savings essentially
decrease the transpiration fraction and hence the sensitivity of tran-
spiration to precipitation. This contrasting response is also supported
by the observed divergent trends in global runoff for drylands and
non-drylands52,53. Other factors including soil texture, rooting depth,
water tabledepth, precipitation seasonality, and stomatal sensitivity to
drought also affect ecosystem water availability and precipitation
sensitivity, and their interactions with CO2 needs to be further
explored. It should also be noted that although trends in precipitation
and potential evapotranspiration do not likely explain this contrasting
trend of θprec at a global scale, they may play an important role in
regulating the local water availability and thus contribute to the var-
iation of θprec at local scale.

Our analysis based on satellite vegetation greenness observations
should not be interpreted as long-term changes in the sensitivity of
photosynthesis to precipitation. This is primarily due to the fact that
vegetation greenness as indicated by NDVI does not reflect the direct
CO2 physiological effect that stimulates plant photosynthesis54, which
plays a critical role in assessing the long-term trend55. The strong CO2

induced-increase in light use efficiency may override the declining
trend of precipitation sensitivity in wet regions. This is also supported
by our MsTMIP analysis using gross primary production (GPP) instead
of LAI (Supplementary Fig. 19). GPP sensitivity to precipitation
increases for both dryland and non-dryland regions, and the eCO2-
induced negative trend in non-dryland regions also shifts to positive
values when we use GPP instead of LAI, although its magnitude is still
smaller than the drylands.

The large increase in sensitivity of vegetation greenness to pre-
cipitation for drylands indicates that under rising CO2, the same
amount of precipitation would translate to an increased vegetation
greenness. This will lead to greater biomass, increased infiltration and
soil moisture47, and greater carbon uptake. On the other hand, due to
the increased vegetation sensitivity to precipitation, precipitation
variability would also lead to greater variability of vegetation green-
ness in drylands. For example, stronger drought impacts can be

expected when precipitation is anomalously low. This effect can be
exacerbated by the excessive growth of vegetation in the previous
period, which depletes soil moisture and increases drought stress, a
phenomenonknownas structural overshoot56,57. A greater variability in
global agricultural productivity may also be anticipated considering
the large area of rained croplands and pastures in drylands. As semi-
arid regions have a large contribution to interannual variability in the
global carbon sink9,58, the increase in precipitation sensitivity, together
with more frequent and more severe climate extremes, could further
amplify the relative importance of drylands in the terrestrial carbon
cycle. A “greening but drying” trend may thus be more prevalent in
drylands in the future25,41, potentially increasing drought risk.

Methods
Datasets
We used GIMMS 3 g v1 normalized difference vegetation index (NDVI)
as an indicator of vegetation activity59. This dataset uses reflectance
measurement from a series of Advanced Very High Resolution Radio-
meter (AVHRR) sensor onboard the NOAA polar orbiting satellites
spanning from 1981 to 2015. We used this datasets as the primary data
since previous studies have found that GIMMS3g showed best tem-
poral consistency in comparison with other long-term NDVI dataset
such as LTDR4 (long-term data record version 4), VIP3 (vegetation
index and phenology version 3)60. Although drifts in satellite orbits
may change the sun-sensor geometry and affect the surface reflec-
tance, this effect is minimized through the normalization of NDVI
calculation. We also filtered out NDVI values when air temperature is
below zero to eliminate potential snow effects. It should be noted that
although NDVI is often used as a proxy of vegetation photosynthetic
capacity, it does not reflect the direct CO2 fertilization effect through
increases in carboxylation rate54, and therefore cannot be directly
compared with the response of gross primary production (GPP) to
CO2. This does not mean, however, that we cannot use NDVI to
understand the CO2 effect on vegetation, since the increases in carbon
fixation will ultimately be used and allocated to biomass. This effect is
considered as the indirect effect of CO2 and has been suggested to be
the major contributor to the increase of global LAI61.

In addition to this NDVI dataset, we also used a long-term GIMMS
LAI 3g dataset (1982–2015). This dataset is developed based on a
machine learning algorithm that links GIMMS NDVI 3g dataset to
MODIS LAI during the period of 2000–2009. Although the resulting
GIMMSLAI 3g dataset strongly dependson the performanceofGIMMS
NDVI 3g and MODIS LAI, it compared well against field observations
and partially alleviates the saturation effect of NDVI in densely vege-
tated regions62. Both datasets were aggregated to 0.5° × 0.5° spatial
resolution and monthly temporal resolution to match the climate
datasets.

We used climate variables from CRU TS 4.04 to calculate the
precipitation sensitivity63. The CRU dataset is generated from
weather stations using spatial interpolation methods. Since pre-
cipitation is crucial to the calculation of vegetation sensitivity to
precipitation, we also tested another observational-based dataset
from the Global Precipitation Climatology Centre (GPCC)64, which
uses a larger number of weather stations. The results show similar
spatial patterns, further supporting the robustness of our analysis
(Supplementary Fig. 8).

Aridity index reflects the ecosystem hydrological balance
between water supply (precipitation, P) and demand (potential eva-
potranspiration, EP). We follow the conventional definition of aridity
index (P=EP) and use the aridity index dataset provided by CGIAR
Consortium for Spatial Information (Supplementary Fig. 1). It should
be noted that aridity index is a measure of long-term climatic dryness
conditions and different potential evapotranspiration definitions and
calculations can yielddifferent potential evapotranspiration trends,we
ignored aridity changes during the study period for simplicity.
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Precipitation sensitivity of vegetation
The vegetation sensitivity to precipitation investigated in this study is a
proxy of the response of vegetation greenness to a perturbation in
precipitation. Since the response to the total and to perturbation may
be different, we estimated this sensitivity using de-seasonalized and
detrended anomalies (δ) of NDVI and climate variables. Taking the
legacy effect from the previousmonth into consideration, the anomaly
of current month NDVI (δNDVIt) can be expressed using a lag-1
autocorrelation model:

δNDVIt =θNDVIδNDVIt�1 +θprecδPrect�1
+θtempδTempt + θcloudδCloudt + ε

ð2Þ

whereδNDVIt , δPrect�1, δTempt and δCloudt represent anomalies for
NDVI, precipitation, temperature, and cloud fraction, respectively,
with subscripts indicate whether the anomaly is calculated from the
current month (t) or the previous month (t � 1). ε is the error term for
the model. The coefficient for δPrect�1 (θprec) is the precipitation
sensitivity on which our analysis is based. Since precipitation from
previous months may also contribute to the water supply and affect
the vegetation growth, we also considered five other lengths to cal-
culate precipitation anomalies (current month, current and previous
1 month, current and previous 2 months, current and previous
3 months, previous 1–2 months). We found that for most dry regions,
models using the previous month’s precipitation anomaly have the
best performance (Supplementary Fig. 20). We therefore used the
previous month in the dynamic linear model analysis (see below). For
the multivariate linear regression analysis, precipitation anomalies
fromall lengthswereused and for eachpixel, θprec from the bestmodel
is selected.

We also built anothermodel that only considers previousmonth’s
precipitation (univariate model) and autocorrelation to test the
robustness of our results:

δNDVIt = θNDVIδNDVIt�1 +θprecδPrect�1 + ε ð3Þ

The sensitivity obtained from this univariate model is similar to
that from the multivariate model (Fig. 1 and Supplementary Fig. 3).

We used both dynamic linear model (DLM) and multivariate lin-
ear regression to calculate the sensitivity. DLM is a statistical
approach to model time-series signals by considering various con-
tributing factors65,66. It was originally developed for solving economic
problems and recently introduced to the Earth and environmental
sciences57,67. For each pixel, we built a DLMwhich considers the trend,
seasonal variation of NDVI, and contributions from climate variables
and lag-1 autocorrelation factors to predict the de-seasonalized
detrended anomalies. TheDLM is basedon theBayesianTheoremand
predicts a time-vary relationship at each timestep (one month)
between the input variables and target variable. This allows us to
characterize the temporal changes of vegetation sensitivity to pre-
cipitation, and precipitation contribution to the NDVI anomalies
(sensitivity × precipitation anomalies). In addition to theDLM,we also
used a multivariate regression model to calculate the precipitation
sensitivity and its trend using Eqs. (2) and (3). The detailed descrip-
tion of DLM and multivariate regression method can be found in
Supplementary Text 1 and 2. The DLM modeling was carried out
under Python 3.7 environment.

Terrestrial biosphere model analysis
We used a suite of terrestrial biosphere models from the MsTMIP
model intercomparison project to understand the causes of the trend
in precipitation sensitivity of vegetation. The models that participated
in MsTMIP conduct simulations under different scenarios, which can
be used to decompose the observed trend in vegetation precipitation
sensitivity into different driving factors. In practice, we used a

combination of four scenario simulations from MsTMIP (Supplemen-
tary Table 1), with results from SG1 representing sensitivity changes
due to climate factors; differences in SG2-SG1, SG3-SG2, and BG1-SG3
representing sensitivity changes due to land use change, CO2, and
nitrogen deposition, respectively. For each model-scenario combina-
tion, we used leaf area index (LAI) simulations together with the tem-
perature, precipitation and downward shortwave radiation data from
CRU-NCEP V6. CRU-NCEP V6 data was used here instead of the CRUTS
dataset because it is the climate forcing for MsTMIP. The precipitation
sensitivity was calculated using multivariate linear regression at
monthly scale for each decade during 1980–2010, from which
we calculated the mean and trend. To make the modeling outputs
comparable with the results we obtained from NDVI, the trend
of θprec calculated from LAI is normalized by the mean θprec to get a
relative trend for each pixel. We then calculated the median value for
drylands and non-dryland regions separately, for each driving factor
using the scenario combinationsmentioned above. Formodels that do
not provide simulations for specific scenarios, we only calculated
those that are available (Supplementary Table 2).

To further understand the CO2 effect on θprec, we used additional
model outputs, including transpiration (“Veg”, ET), evapotranspiration
(“Evap”, E) and calculated ∂LAI

∂ET
, ∂ET

∂E ,
∂E
∂P for the SG3 and SG2 scenario for

eachmodel. The differences between these two scenarios can be used
to understand the responses of these θprec components to CO2. Only
eight models that have both SG3 and SG2 simulation scenarios and
predictions of LAI, ET, and E were used for this analysis (Supplemen-
tary Fig. 14).

Analytical derivation of vegetation sensitivity to precipitation
We conducted a theoretical analysis to demonstrate how CO2 affects
the vegetation sensitivity to precipitation (θprec) differently in dryland
and non-dryland. This is based on a minimalistic hydrological model
which represents simplified ecohydrological processes so that the
relationship between vegetation and precipitation can be analytically
derived. In this study, we modified the model and incorporated the
direct and indirectCO2 effects. This allowed us to understand howCO2

affects drylands andnon-drylanddifferently. The vegetation sensitivity
to precipitation (θprec) can be calculated as:

θprec =
∂NDVI
∂P

≈
∂LAI
∂ET

∂ET

∂P
ð4Þ

where LAI, ET and P indicate the vegetation leaf area index, canopy
transpiration and precipitation, respectively. LAI and ET are linked
through average transpiration per leaf area (EL):

ET = LAI � EL ð5Þ

The partial derivative of LAI to ET can be simplified to:

∂LAI
∂ET

=
1
EL

ð6Þ

EL is expected to have limited variations across aridity
gradient but would show a universal decrease due to the CO2 effect
on stomatal closure over time. This CO2 effect is quantified
analytically below.

To understand the response of ∂ET
∂P , we used the minimalistic

ecohydrological model originally developed by Porporato et al.29, and
recently modified by Good et al.30. This modification further separates
the contribution of transpiration (ET), evaporation (ES) and intercep-
tion (EI) to evapotranspiration, which is essential to understand the
response of ET sensitivity to P. Thismodel is based on awell-developed
ecohydrological soil water balance theory which calculates soil water
dynamic with precipitation water input and water losses from leakage,
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interception, transpiration and soil evaporation. Soil moisture
dynamics and ecosystem aridity determines the partitioning of pre-
cipitation to these components. Specifically, fraction of plants’ tran-
spiration to precipitation can be calculated as:

ET

P
= f �xϕ0ρ ð7Þ

where f is the fraction of transpiration (ET) to evaporation and tran-
spiration (ES + ET ),whichdependson the soilmoisture. �x is the average
effective soil moisture, ϕ0 is the aridity index adjusted for interception
and ρ is the throughfall fraction. The latter three controls the fraction
of ES + ET to precipitation. The probability distribution of soil moist-
ure, which determines f and �x, is calculated based on precipitation
frequency, intensity, and soil traits (see detailed derivation in Sup-
plementary Method 3).

The original model does not consider effect of CO2 on tran-
spiration, here we modified the model by taking CO2 effect into
account. CO2 affects ET through both direct effect of reducing
stomatal conductance (gs) and indirect effect of increasing LAI. To
consider these two effects in the minimalistic model, we used a
scaling factor κ to represent the fraction of stomatal closure due to
CO2 and a scaling factor ζ to represent the proportional LAI
increase due to CO2. Factor κ can be calculated using a stomatal
conductance model68 and factor ζ can be expressed as a function
of aridity index based on a synthesis of multiple FACE
experiments31 (see details in Supplementary Method 3). κ is also
used to estimate CO2 effect on EL. The modified minimalistic
model is expressed as:

ET

P
= f �xϕ0ρκζ ð8Þ

Since each component on the right-hand-side of Eq. (8) is a con-
stant or can be expressed as a function of aridity index, we can ana-
lytically derive the partial derivative of transpiration to precipitation
(∂ET
∂P ), which is required to calculate the vegetation sensitivity to pre-

cipitation (θprec) using Eq. (4).
We also considered the effect of CO2on EP and consequently onϕ.

We predicted EP using a revised Penman–Monteith model33, in which
CO2 is expected to reduce canopy conductance and affect potential
evapotranspiration.

EP =
0:4084R*

n + γpc
900

T + 273 uD

4+ γpcf1 + u½0:34+2:4× 10�4 CO2

� �� 300
� ��g

ð9Þ

where Δ is the rate of change of saturation vapor pressure with
temperature (Pa K−1), R*

n is the net radiation adjust for ground heat flux
(W m−2), γpc is the psychrometric constant (≈66 Pa K−1), u is the wind
speed at 2m (m s−1). D is the vapor pressure deficit of the air (Pa). The
term 2:4× 10�4 CO2

� �� 300
� �

is used to account for the effect of CO2

on surface resistance. We used fixed climate variable values and cal-
culated the EP under CO2 at 354 ppm and 384 ppm. The changes of EP
directly affect the dryness and further changes the vegetation sensi-
tivity to precipitation.

To understand the CO2 effect on the precipitation sensitivity
through different pathways, we evaluated the change of precipitation
sensitivity between high CO2 and low CO2, with four CO2 effect taken
into account, i.e., (1) direct CO2 effect on

∂ET
∂P through change of gs; (2)

indirect CO2 effect on
∂ET
∂P through change of LAI; (3) direct CO2 effect

on ∂LAI
∂ET

through change of gs; and (4) indirect effect of CO2 on PET
through changeof ecosystemconductance. It should be noted that the
fourth effect should have been a result of the first effect and here we
only evaluated its magnitude for comparison. The numerical simula-
tion was conducted under R 3.5.2.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The GIMMS NDVI 3g v1 dataset is available at http://poles.tpdc.ac.cn/
en/data/9775f2b4-7370-4e5e-a537-3482c9a83d88/, the CRU climate
dataset is available at https://crudata.uea.ac.uk/cru/data/hrg/, the
GPCC precipitation data is available at https://www.dwd.de/EN/
ourservices/gpcc/gpcc.html, the MsTMIP model outputs are avail-
able at https://doi.org/10.3334/ORNLDAAC/1225, the CRU-NCEP V6
dataset is available through https://doi.org/10.3334/ORNLDAAC/1220,
The aridity index data is available at https://doi.org/10.6084/m9.
figshare.7504448.v3.

Code availability
The codes for the analyses are available atGitHub (https://github.com/
zhangyaonju/prec_sensitivity/) and have been archived on Zenodo
(https://doi.org/10.5281/zenodo.6936321).
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