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RNA-seq analysis of single bovine blastocysts
James L Chitwood1, Gonzalo Rincon1, German G Kaiser2, Juan F Medrano1 and Pablo J Ross1*
Abstract

Background: Use of RNA-Seq presents unique benefits in terms of gene expression analysis because of its wide
dynamic range and ability to identify functional sequence variants. This technology provides the opportunity to
assay the developing embryo, but the paucity of biological material available from individual embryos has made
this a challenging prospect.

Results: We report here the first application of RNA-Seq for the analysis of individual blastocyst gene expression,
SNP detection, and characterization of allele specific expression (ASE). RNA was extracted from single bovine
blastocysts (n = 5), amplified, and analyzed using high-throughput sequencing. Approximately 38 million
sequencing reads were generated per embryo and 9,489 known bovine genes were found to be expressed, with
a high correlation of expression levels between samples (r > 0.97). Transcriptomic data was analyzed to identify SNP
in expressed genes, and individual SNP were examined to characterize allele specific expression. Expressed biallelic
SNP variants with allelic imbalances were observed in 473 SNP, where one allele represented between 65-95% of
a variant’s transcripts.

Conclusions: This study represents the first application of RNA-seq technology in single bovine embryos allowing
a representation of the embryonic transcriptome and the analysis of transcript sequence variation to describe
specific allele expression.

Keywords: RNA-seq, Bovine, Embryo, Blastocyst, SNP, ASE
Background
Transcriptome sequencing describes global trends in
gene expression while also detailing alterations to bio-
logical pathways at the gene-specific level [1-3]. High-
throughput sequencing of RNA (RNA-seq) quantifies
transcripts expressed from known genes with an enor-
mous dynamic range and discovers transcriptional units
that are biologically novel yet previously unannotated, or
not fully characterized in available databases or gene
expression arrays [4,5]. The localization of transcript se-
quence to different areas of a gene (exon, intron, UTR’s)
at base-pair resolution can detect instances of alternative
splicing and transcript isoforms while sequencing of mul-
tiple RNA species allows for detection of many genetic
regulatory elements of biological significance [6-8]. These
advantages make RNA-seq a suitable tool for examining
the biology of preimplantation embryos. While single cell
transcriptome sequencing is becoming more common,
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reproduction in any medium, provided the or
sequencing of individual embryos is not typically
performed due to a scarcity of biological material neces-
sary for sequencing library preparation. This limitation
has previously been overcome by pooling of embryos,
which precludes important aspects of genome biology
from being examined; namely analysis of an individual
sample’s genetic variation and identification of allele-
specific expression (ASE). The ability to ascertain expres-
sion of known and novel SNP and to detect imbalanced
allelic expression, in addition to discrete quantification of
genome-wide transcript abundance, give RNA-seq of indi-
vidual embryos enormous utility in studying early deve-
lopmental processes.
Detection and categorization of SNP within production

animal systems has been performed extensively [9]. Use of
these variants as markers and predictors of performance
in a large variety of traits (i.e. fertility, milk production,
calving ease, etc.) is common [10-12]. In the context of
early development, classifying SNP between samples of
varying viability, sex, or breed allows for discovery of novel
markers of fertility and characterization of critical regu-
latory mechanisms of embryonic development, such as
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epigenetic reprogramming or embryonic genome activa-
tion. Use of transcript sequence for variant detection has
been performed with various assays [13], but also recently
in cattle using RNA sequencing data [14]. While identifi-
cation of sequence variation identity at nucleotide
resolution and position is valuable, determination
of allelic imbalances (AI), defined as a shift from a
50:50 expressed ratio, require transcript sequencing
of single samples. Expression imbalances have been
associated with variation in performance traits and
disease processes [13,15], and could be relevant to
embryonic development [16]. AI provides another
means of genetic regulation and is a characteristic of
imprinted genes, although detection of these with
transcript sequencing remains controversial [17,18].
To examine the feasibility of transcript sequencing of

single embryos we performed RNA-seq of bovine IVF-
derived blastocysts. Particular importance was placed on
the analysis options available for this type of data and
consideration was given to sequence read processing,
bovine genome assemblies available for alignment, and
mapping strategy. Transcriptome profiling of replicates
was found to be highly reproducible and genes and path-
ways associated with embryonic samples were highly
expressed or enriched. Variant analysis was also performed
with in silico validation of detected SNP to define criteria
for discerning true variation from sequencing artifacts.
Similarly, statistical tests and skew thresholds were defined
for classification of AI. The ability to locate genetic varia-
tion on a global scale and also quantify the expression of al-
lelic variants demonstrates the unique advantages afforded
by sequencing of individual pre-implantation embryos.

Results and discussion
Sequencing library preparation
The initial obstacle to performing RNA-seq from a single
blastocyst is obtaining sufficient amounts of high quality
RNA for use in sequencing library preparation. To accom-
plish this we used a standard column-based method of
total RNA isolation, including a DNAse treatment, and
eluted the RNA into a small volume to achieve a concen-
tration suitable for amplification and library preparation.
We obtained between 1.3 and 2.1 ng of total RNA per
embryo (Figure 1). These amounts correspond closely to
other reports using an identical methodology [19] and the
same RNA extraction kit [20,21] used presently. Exami-
nation of the 18S and 28S rRNA fractions by micro-
electrophoresis showed profiles similar to those previously
observed in total RNA derived from bovine blastocysts
[19,20] and possessing high RQI quality scores (>9). The
amount of RNA harvested from a single embryo is not
sufficient for preparation of sequencing libraries using
standard methods and necessitates amplification following
cDNA synthesis. Methods for RNA amplification have
been developed including PCR, in vitro transcription
(IVT), and Ribo-SPIA (single primer isothermal amplifica-
tion)-based amplification methods. We chose the latter
approach given that it is recommended for the levels of
RNA input we obtained from blastocysts and requires only
one round of amplification to produce sufficient amounts
of material for downstream library preparation.The Ribo-
SPIA amplification method is based on an isothermic re-
action where transcription initiation sites are primed with
random and oligo-dT primers and synthesis of single-
stranded cDNA occurs via degradation of RNA in a DNA:
RNA primer hybrid to create a template permitting mul-
tiple instances of transcription [22,23]. This method has
been extensively validated in microarray [24], large-scale
RT-PCR [25], and recently RNA-seq [26] studies.
After RNA amplification starting from ~1 ng of total

RNA, we obtained on average 6 μg of cDNA. Amplifica-
tion produced cDNA fragments with an average size
range of 200 to 300 bp, therefore physical or enzymatic
fragmentation and size exclusion by gel electrophoresis
was not necessary. No difference in transcript coverage
was observed when libraries were prepared from sheared
or non-sheared cDNA from the Ovation system in other
studies [26]. The cDNA output from the Ovation Ampli-
fication kit was then used for sequencing library prepa-
ration, at which point sequencing adapters are ligated to
cDNA fragments. Electropherograms obtained from
amplified cDNA and sequencing libraries indicated that
high quality libraries were obtained (Figure 1). Previous
attempts to generate RNA-seq libraries from single bovine
embryos were unsuccessful [27], this probably resulted
from the lower output of amplified material generated by
the IVT-based approach, even when two rounds of amplifi-
cation were performed. Conversely, the SPIA approach has
been shown to produce higher outputs while maintaining a
linear amplification pattern [28].
Normally, the high proportion of ribosomal RNA (rRNA)

compared to mRNA represents a problem for RNA-seq
studies, requiring steps aimed at eliminating the rRNA frac-
tion before library construction and sequencing. However,
human and mouse samples prepared using the Ovation
amplification system contain low percentages of rRNA frag-
ments (NuGen, personal communication; [26]). Alignment
of unmapped reads to a non-coding RNA database (RFAM)
resulted in a 0.2% alignment rate, confirming that the
bovine embryo libraries prepared using the Ovation V1
system did not contain large proportions of rRNA fractions.
While the exact mechanism by which rRNA are not ampli-
fied is currently unknown, it is speculated that the secon-
dary structure of rRNA is likely responsible for inefficient
primer binding resulting in low cDNA conversion efficiency
and minimization of rRNA amplification.
It is also important to note that this amplification

methodology excludes small RNA populations below 50



Figure 1 Workflow of bovine blastocyst sequencing preparation. RNA from Day 7 blastocysts was extracted, converted to cDNA and
amplified before being processed with the Nugen Encore Library System. Electropherograms on right depict quality controls performed at each
of the steps.
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bp in size, such as microRNAs, meaning that a variety of
small non-coding RNAs with potential significance to
the blastocyst are not included in the sequencing data.
As a confirmation of this, miRNA transcripts were not
detected in any of our samples. Overall, RNA extraction
from samples with typically restrictive amounts of RNA
using a column-based extraction and amplification with
Ribo-SPIA allowed for the preparation of high quality
sequencing libraries from single bovine blastocysts.

Sequence read processing
On average, 38 ± 1.1 million single reads of 40 bp were
generated per embryo with an Illumina GAIIx sequencer.
Initial mapping of unprocessed reads to the bovine genome
(BTAU4.0) allowing for two mismatches resulted in only
69.1% of total reads mapping. Allowing for the possibility of
low quality reads at the ends of sequences, we evaluated
read quality using Galaxy (Figure 2). No evidence of low
quality reads based on Illumina’s scoring was observed
spanning the 40 bp of sequence (Figure 2). However, base
sequence content across the reads indicated that the 5′
ends had a higher proportion of G and C nucleotides that
deviated from the rest of the read. This abnormal pattern
spanned the first 9 bases sequenced. A potential source of
this problem could be that the Ovation RNA amplification
system uses 9mers to perform the RT and are likely to have
high GC content. Also, since amplified reads are not
shared, and the sequencing primer is ligated to one end of
a read, it would be expected by chance that half of the se-
quences generated begin sequencing at the 9mer annealing
site. Moreover, it is possible that 9mer primer binding is
not 100% efficient and thus could incorporate mistakes to
the sequence. Thus, we hypothesized that removing the
first 9 bp of the reads would improve mapping by removing
bad sequence.
We tested if removing nucleotides at both or either end,

and especially nine bp from the 5′ end, would enhance
the proportion of reads mapping to the genome (Table 1).
Trimming 2 nucleotides at each end of the reads signifi-
cantly improved the % of read alignment from 70 to 82%.
This was not the result of just removing 4 bp from the
reads, since trimming 4 bp at the 3′ end results in a lower



Figure 2 Galaxy QC outputs for a representative sample. Read quality across the sequence was acceptable on average but G/C content was
abnormally high at the first 9 bp of the 5′ end (lower left box). Trimming of sequences (two boxes on right) removed this bias.
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read alignment of 71%. Similarly, removing 9 bp from
the 3′ end resulted in a low alignment percent (73.27%),
although this was higher than untrimmed read mapping
probably as a result of the reduced mapping specificity
of shortened reads. Trimming 4 bp and 9 bp from 5′ end
Table 1 Effect of end trimming on read alignment to
genome

5′
Trim
(bp)

3′
Trim
(bp)

% reads mapped to bovine genome (BTAU4.0)

BL 1 BL 2 BL 3 BL 4 BL 5 Mean ± SEM

0 0 67.9 70.1 70.0 67.7 70.0 69.1 ± 0.5

2 2 80.7 82.8 82.5 81.7 82.5 82.0 ± 0.4

0 4 69.7 72.6 71.9 69.7 72.0 71.2 ± 0.6

0 9 72.0 74.6 73.9 71.8 74.0 73.3 ± 0.6

4 0 83.4 84.2 85.0 84.3 84.9 84.4 ± 0.3

9 0 88.0 89.4 89.6 88.7 89.3 89.0 ± 0.3
resulted in a larger improvement in alignment percentages
(84 and 89%, respectively), which is likely the result of
removing low quality information from the reads. Based
on these results, we performed all other analyses with
reads trimmed 9 bp at the 5′ end.
Processing of reads prior to alignment by removal of

this priming sequence not only significantly improved
the fidelity of read alignment, but also the accuracy of
SNP analyses (data not shown). Since the time of these
experiments, Nugen has incorporated a cDNA fragmen-
tation step after amplification, minimizing the chance
that a fragment will be sequenced at the primer binding
site and thus this trimming may not be necessary in
future libraries. However, our experience indicates that
quality control of reads is important and removing
affected nucleotide positions, although reducing the
amount of total sequence, can greatly enhance the accu-
racy of the results.
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Mapping of reads to different genome annotations
Multiple assemblies and annotations of the bovine genome
exist from different sources (e.g. Ensembl, NCBI, UCSC,
UMD). Since these annotations contain different numbers
of genes and transcripts we compared general mapping
statistics after mapping trimmed reads of each embryo to
the annotated assemblies using the RNA-seq algorithm of
CLC Genomics allowing for 2 mismatches (Table 2). The
differences in total reads aligned varied by as much as 6
million (or 16%) when comparing NCBI-Btau 4.2 and
Ensembl-UMD3.1 (61 vs. 77% total mapped reads, res-
pectively). The difference in the proportion of uniquely
aligned reads was even greater between NCBI-Btau 4.2 and
Ensembl-UMD3.1 (48 vs. 68%, respectively). These large
differences were observed even though both annotations
contained a similar number of genes. Also, differences were
observed when comparing different annotations of the
same genome assembly (NCBI-UMD3.1 vs. Ensembl-
UMD3.1). The Ensembl annotation of UMD3.1 resulted in
higher proportion of reads mapping even though this anno-
tation contained fewer genes than the NCBI annotation.
These mapping read statistics indicate Ensembl-UMD3.1 is
a more comprehensive genome annotation, not only in
terms of identifying actual genes, but through its increased
ability to uniquely localize reads. It is possible that these
annotations contain different proportions of embryonically
expressed genes and thus alternative annotations may be
better for different tissues. Increased alignment to anno-
tated genes improves the robustness of RNA-seq results,
thus we selected the Ensembl-UMD3.1 annotation for
further analysis.

RNA-seq mapping statistics
Of the total reads, an average of 76.9% (approximately 29
million reads per sample) mapped to annotated portions of
the Ensembl-UMD3.1 genome. Among these, 81.9% of the
reads mapped to protein coding genes, 17.6% to mitochon-
drial rRNA and the other 0.2% was distributed between
miscellaneous RNAs, pseudogenes, retrotransposed ele-
ments, and mitochondrial tRNAs (Figure 3). The presence
of high levels of mitochondrial rRNA and tRNA was in
Table 2 Number and proportion of reads mapped to differen

N

Number of genes in annotation

Number of transcripts in annotation

Mean number of reads processed per embryo (Million reads ± SEM)

Total number of reads mapped to annotated genes (Million reads ± SEM)

% total reads mapped

Number of uniquely mapped reads (Million reads ± SEM)

% reads uniquely mapped
agreement with the high level of expression of mitochon-
drial protein coding genes. Out of the 13 protein coding
genes present in the mitochondrial DNA, 9 were the most
highly expressed genes among all protein coding genes and
the other 4 ranked at positions 15, 16, 19 and 57, among a
total of 19,994 protein coding genes. This indicates that a
large number of blastocysts transcripts are coded by the
mitochondrial genome. Also, it is not clear why mitochon-
drial, but not nuclear, rRNA is detected by the methodology
used. It could be that the three dimensional structure of
mitochondrial rRNA does not prevent random primer
binding and is amplified. On the other hand, the amount of
mitochondrial rRNA detected does not interfere with ana-
lysis of protein coding RNAs, since as indicated above,
most reads mapped to protein coding genes.
Among reads mapping uniquely to protein coding

genes (~20 million reads per embryo), 60% were located
to exons, including 6% to exon-exon boundaries. 39%
were located to introns and 0.4% to exon-intron boun-
daries (Figure 3). The relatively high proportion of reads
assigned to introns is not uncommon when the sequencing
library preparation includes random priming of the mRNA
[26]. This is not often seen when the RT reaction is
performed using oligo-dT primers and only amplifying
polyadenylated transcripts. Whether these intron sequences
belong to un-processed transcripts or un-annotated exons
is not clear and deserves further investigation. Towards the
latter possibility, CLC Genomics identifies and quantifies
the presence of putative exons and we identified an average
of 9,684 putative exons per sample. Analysis of the location
and identity of these potentially novel coding sequences
goes beyond the scope of this manuscript but warrants
additional attention.
Of the 19,994 protein coding genes in UMD3.1, 9,155 ±

107 (46%) were expressed per embryo with at least 0.4
RPKM, a value slightly more conservative than the 0.3
RPKM threshold suggested to represent above background
expression levels [29]. The maximum RPKM value was
37,015, indicating a dynamic range of expression spanning
6 orders of magnitude. The correlation of RPKM values
considering all genes evaluated was high among individual
t genome annotations and different genome builds

Annotation source and genome build

CBI Btau 4.2 NCBI UMD 3.1 Ensembl Btau 4.0 Ensembl UMD 3.1

24,359 25,577 25,670 24,616

19,757 20,681 26,977 22,118

37.6 ± 1.1 37.6 ± 1.1 37.6 ± 1.1 37.6 ± 1.1

22.9 ± 0.6 24.6 ± 0.6 27.0 ± 0.7 28.9 ± 0.8

60.9% 65.6% 71.9% 76.9%

18.0 ± 0.5 18.2 ± 0.6 23.8 ± 0.7 25.5 ± 0.7

48.1% 48.4% 63.2% 67.7%
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Figure 3 Distribution of mapped reads to different transcript types and gene regions. Top graph indicates the proportion of transcripts
belonging to different RNA species. Numbers within pie chart indicate number of reads while numbers in parenthesis indicate number of
transcripts. Bottom graph shows the read distribution within protein coding genes.
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blastocysts (r > 0.97), indicating the consistency of this
methodology (Figure 4). Milk somatic cell samples analyzed
with a similar approach (same RNA amplification, library
preparation and data analysis) had a high correlation
among the replicates (r = 0.99). On the other hand, the cor-
relation between embryos and somatic cells was extremely
low (r < 0.21). These results indicate a high correlation
between biological replicates but not between samples of
different origin, suggesting that discrimination between
samples is possible based on whole transcriptome analysis.
The number of genes detected in our study could be con-

sidered low when contrasted to those from other bovine
blastocysts studies (17,634 [27] and 22,170 [30]). One im-
portant consideration is that our analysis results in number
of genes expressed while other publications usually report
number of transcripts. Given that multiple transcripts can
results from the single gene, the comparison of number of
expressed genes to number of expressed transcripts should
be made cautiously. Also, it is important to note that the
threshold used for considering a gene detected can have
large implications in the number of detected genes. We
selected an RPKM > 0.4 as a conservative approach to the
recommended 0.3 [29]. Reducing the RPKM threshold
results in detection of 16,150 genes, which is in line with
what is reported elsewhere [27,30].
We compared our RNA-seq results from single embryos

to those generated by Huang and Khatib using pools of 20
normal bovine blastocysts (GEO accession GSE25082).
Raw data was downloaded and processed according to our
bioinformatics pipeline. At RPKM > 0.4 a total of 11,501
genes were detected in the pooled blastocysts dataset, a
similar number of genes (11,039) was also detected in our
dataset, when considering it expressed in at least one
embryo. Among these, 7,247 genes were commonly
expressed in all datasets. When we considered genes con-
sistently expressed in all 5 unique embryo samples, 7,526
transcripts were detected, out of which 7,247 (96%) were
also present in the Huang and Khatib dataset. Also, princi-
pal component analysis (PCA) and hierarchical clustering
of all RPKM values indicated that pooled and single
blastocysts clustered together and apart from milk somatic
cell samples (Additional file 1: Figure S1). These results



Figure 4 The heat map shows the segregation of samples by gene expression. Blastocyst (BL1 to BL5) and milk somatic cell (SC1 and SC2)
transcriptomes are distinguished clearly from one another while grouping highly within their own sample types. Average correlation of RPKM for
all annotated genes reflected this within BL (r > 0.97) and between sample groups (r < .21) and plotting of log-transformed RPKM values showed
a much less linear relationship between milk somatic cells and blastocyst samples.
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indicate a highly similar representation of blastocyst tran-
scripts between the studies; in spite of different embryo
production, RNA extraction, amplification, and library
preparation methodologies. Furthermore, the similarity in
results highlights the robustness of RNA-seq analysis.
The average median coverage of annotated exons with

aligned reads was 5.43X. This coverage corresponds closely
to a depth necessary to detect 73% of moderately abundant
transcripts (15–30 RPKM) and identify gene isoforms and
novel splice junctions [8]. Gene isoforms derived from
alternative splicing are a significant contributor to extra-
genomic variation [31] and exon-exon junctions have been
used to identify instances of alternative splicing [32,33].
Exon-exon junctions contributed on average 11.4% of the
total aligned exon reads and intron-exon reads, potentially
representing pre-mRNAs, constituted a very low propor-
tion (0.4%) of reads. This subset of possible regulatory
isoforms could lead to discovery of developmentally-
related forms of gene regulation unrecognized in non-
embryonic tissues and examination of these isoforms
between embryonic developmental stages is needed to
determine their significance.

Functional annotation of blastocyst expressed genes
We performed functional annotation of genes based on
level of expression. Genes expressed in all 5 blastocysts
were sorted by average RPKM into 1) High; 2) Medium
High; 3) Medium; 4) Medium Low; and 5) Low expres-
sion level groups. Functional categories enriched in each
group compared to the genome (P < 0.01) are shown in
Table 3. Enrichment of constitutive cellular elements
such as the cytoskeleton, ribosomes and mitochondria
was prevalent in higher expression groups, indicating
that the blastocysts are rapidly synthesizing proteins to
sustain a high rate of cell division and growth. Also, all
proteins required for oxidative phosphorylation were in
the high expression level clusters, suggesting this mech-
anism of energy production is very active in blastocysts.



Table 3 Summary of GO enriched clusters in groups of genes sorted by expression level in blastocysts

Cluster
#

Expression level

High Medium high Medium Medium low Low

1 Ribosome Lumen Lumen Lumen DNA repair/Stress
response

2 Oxidative
Phosphorylation

Cytoskeleton Chromosome structure Zinc finger PHD Zinc/ion binding

3 Ubiquitination Protein catabolism Protein complexes Transcriptional regulation Protein catabolism

4 Spliceosome Chromosome structure Mitochondrial subunits Mitochondrial matrix Protein transport

5 RNA binding Nucleic acid binding Nucleic acid binding/Phospho-
rylation

Ankyrin repeats tRNA aminoacylation

6 Electron transport Ubiquitination Endoplasmic reticulum Protein/nucleotide
interactions

Zinc finger CH2

7 Protein localization Protein complex
synthesis

Cell cycle Microtubules Cell death

8 Protein biosynthesis Cell cycle Cellular membranes Mitochondrial membranes DNA repair/Polymerase

9 Ribosomal subunits Mitochondrial
components

Ankyrin repeats Phosphorylation Suppression of
differentiation

10 Protein folding RNA splicing tRNA Zinc finger CH2 Nucleic acid binding
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High and Medium High brackets mostly related to cell
structure and basic cellular biology functions, respectively.
In Medium expressing groups, transcription and related
processes (DNA binding, zinc fingers) were prominent,
while in the lower expression brackets, more nuanced as-
pects of transcription/translation regulation were found to
be enriched (tRNA and zinc finger proteins). Processes of
the lower expression brackets were more varied and func-
tionally specific as evidenced by the presence of specific
DNA repair mechanisms and regulators of cell death,
reflecting the greater variety of cellular functions repre-
sented outside of the constitutive structural functions
found in the Medium and High expression level groups.
To identify overexpressed genes in embryos the

transcriptomes of blastocysts and milk somatic cells
(data from [34]) were compared. The choice of milk
somatic cell as a reference for comparison was made
based on the availability of the data and its expected
dissimilarity in global gene expression. As expected, we
identified large differences between these samples
(Figure 4) with a total of 4,952 genes differentially
expressed at an adjusted P value < 0.001. Among these
genes, 621 were overexpressed in the blastocyst samples
by at least a 10 fold-change difference. This group of
blastocyst-overexpressed genes was subjected to gene
ontology classification and functional analysis using
DAVID. The top overrepresented biological processes
corresponded to embryonic development, including blasto-
cyst development (Table 4). The blastocyst stage embryo is
composed of inner cell mass (ICM) and trophectoderm
(TE) cell lineages. The ICM is a pluripotent cell lineage that
gives rise to all the tissues in the embryo proper, and from
which embryonic stem cells are derived. As such, stem cell
maintenance was among the top overrepresented cat-
egories. The TE differentiates into placental tissues, and
placental development was another one of the top over-
represented biological processes. Interplay between the
ICM and TE ensures that these tissues are correctly
specified.
Specific transcription factors need to be expressed to

differentiate embryonic cells into these specific tissues,
and transcription factor activity was the most overrepre-
sented molecular function. Among them, OCT4, NANOG
and SOX2 are well known transcription factors associated
with pluripotency and were all expressed in embryos, but
not in milk somatic cells. SALL4, a gene known to regulate
OCT4 expression in mice was detected. CDX2 a transcrip-
tion factor required for TE development was highly
expressed in embryos. Also, GATA2, a known regulator of
trophoblast lineage transcription was present in all five
samples, as well its upstream regulator TEAD4. IFNtau,
the factor responsible for pregnancy recognition in cows,
was also present. GRB2 is a known suppressor of NANOG
in the primitive endoderm (PE) of the inner cell mass
(ICM), and homozygous mutants of GRB2 are believed to
arrest shortly after implantation [35]. GRB2 and GATA6
were expressed in all samples, which suggest that primitive
endoderm differentiation may already be active in day 7
embryos. GATA3, TEAD4, and GRB2 suppress expression
of NANOG and OCT4 and are thought to diminish pluri-
potent gene expression to create and maintain extra em-
bryonic lineages [36,37]. Establishment of new embryonic
cell fates requires epigenetic changes, and de novo DNA
methylation genes (DNMT1A and DNMT1B) were highly
expressed in embryos. Also, post-transcriptional regula-
tory mechanisms are important for regulating cell fate



Table 4 GO biological process representative of top ten overrepresented functional annotation clusters among genes
overexpressed in embryos versus somatic cells at P < 0.001 and 10 FC

Biological process Gene
count

P
value

Genes

Chordate embryonic
development

27 4.6E-6 HNF1B, CDX2, PTK7, CITED1, ZIC2, GATA2, DAB2, POU5F1, RSPO3, TDGF1, KRT8, HOXC5, AXIN2, GINS1, GSC,
TBX3, ESRRB, NASP, GJB5, SLC34A2, CCNB1, HOXB4, GCM1, SALL4, PDGFRA, HOXB9, MYH10

Blastocyst development 6 0.007 GINS1, HNF1B, CDX2, ESRRB, POU5F1, NASP

Pattern specification
process

16 0.002 NANOG, HNF1B, GSC, CDX2, TBX3, OTX2, ZIC3, TCF7L1, HOXB4, LHX2, FOXG1, HOXC5, TDGF1, HOXB9, HHIP,
AXIN2

Negative regulation of
gene expression

21 0.001 DNMT3A, NANOG, GSC, CDX2, TBX3, RCOR2, SOX2, MLXIPL, MAEL, CENPF, TNP1, LIN28A, PKIA, LIN28B,
TCF7L1, HOXB4, SALL4, POU5F1, SOX15, DNMT3B, TDRD1

Placenta development 9 8.5E-4 GATA2, CDX2, GCM1, ESRRB, RSPO3, KRT8, GJB3, GJB5, CITED1

Cellular component
morphogenesis

23 2.1E-5 CCDC99, ACTC1, NDN, ESRRB, PDPN, MYBPC3, KIF5C, PTK7, MAEL, SLITRK2, LAMA1, DAB2, BDNF, LAMB2,
PRDM14, FAT1, LHX2, FOXG1, KRT8, SLITRK5, NEFL, MYH10, GFRA3

Stem cell maintenance 5 0.001 NANOG, CDX2, ESRRB, POU5F1, SOX2

Cell adhesion 24 0.005 TYRO3, CADM3, MPZL2, ATP1B2, CLSTN3, PDPN, CLDN6, MYBPC3, FERMT2, PTK7, BCAM, AMIGO2, LAMA1,
LAMB2, DSG2, SORBS1, DSG3, PKP2, FAT1, FREM1, PECAM1, COL12A1, CNTNAP1, ESAM

Establishment of organelle
localization

5 0.007 CCDC99, NPM1, CENPF, CDCA5, MYH10

Regulation of glucose
metabolic process

4 0.003 HNF4A, SORBS1, MLXIPL, GNMT
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changes, and LIN28, a factor required for embryonic stem
cell differentiation through regulation of miRNA activity,
was highly expressed in blastocysts.
To create the blastocoel cavity the trophectoderm cells

form a polarized epithelium and transport ions across
them, generating osmotic pressure that moves water into
the blastocoel. Cell-cell junction related genes were highly
expressed, including genes associated with GAP junctions
and desmosomes. Also, ATPase activity mostly associated
with ion pumps such as the Na+/K + (ATP1B2, ATP1B3)
and H + (ATP6V0A4, ATP6V1G3) ATPases were among
the top overrepresented molecular functions in blastocyst
genes (Table 5).

Sex-specific gene expression profiles
Differences in gene expression have been detected between
blastocysts of different gender. In an attempt to determine
the sex of the embryos we analyzed expression of candidate
Table 5 GO molecular functions representative of top five ov
genes overexpressed in embryos versus somatic cells at P < 0

Molecular process Gene
count

P
value

Transcription factor activity 33 0.002 HNF1B, CDX2, SOX2, D
PITX1, KLF5, NANOG,
GCM1, HNF4A, LASS3

ATPase activity, coupled 14 0.003 RECQL4, ATP1B3, ATP1
ABCC5, ATP7B, MYH10

Transmembrane receptor protein
tyrosine kinase activity

7 0.002 IGSF10, TYRO3, FGFR4

Folic acid binding 3 0.028 FOLR1, SLC19A3, GNM

Helicase activity 8 0.037 RECQL4, DDX28, PIF1,
sex-specific genes. SRY, the gene responsible for sex deter-
mination, was not detected in any embryo. On the other
hand, other genes associated to the Y chromosome, such as
EIF1AY and DDX3Y, were expressed in all embryos except
blastocyst 3. Furthermore, XIST, a gene involved in X-
chromosome inactivation in female cells, was expressed at
high levels only in blastocyst 3. This suggests that blasto-
cyst 3 is a female embryo while the others are male. The
high male to female ratio could be explained by the ten-
dency of male embryos to grow faster under in vitro culture
conditions and it is possible that selecting for more
advanced embryos at the time of collection resulted in a
male bias.
We also noticed that the clustering of samples based

on all genes analyzed discriminated blastocyst 3 from
the other embryos, suggesting that global levels of gene
expression can discriminate embryo gender. In support
of this, one third of expressed genes were previously
errepresented functional annotation clusters among
.001 and 10 FC

Genes

MRTA2, TCF7L1, CITED1, MSX2, GATA2, POU5F1, LHX2, HOXC5, SPIC, LHX8,
GSC, TBX3, RCOR2, ESRRB, OTX2, ESRRG, TEAD3, FOXR1, MYCN, HOXB4,
, FOXG1, DLX4, HEYL, HOXB9

B2, DDX4, DDX28, DDX3Y, ABCC4, ATP6V1G3, ABCC2, ATP6V0A4, KATNAL2,

, FGFR3, PTK7, PDGFRA, KIT

T

TDRD9, DDX3Y, MCM4, RAD54L, DDX4
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found to be differentially regulated when comparing male
and female embryos using microarray analysis of bovine
blastocysts produced with sexed semen [38].
We thus performed a statistical analysis comparing

blastocyst 3 to the rest. A total of 168 genes were differen-
tially expressed between the males and female blastocyst at
an adjusted P-value of < 0.05 and 2 fold change. Of these,
144 were overexpressed in the female embryo. Among
them, 47 genes (33%) were located to the X chromosome, a
proportion much higher than expected by chance since the
X chromosome only contains 4.6% of annotated genes.
Moreover, of the overexpressed genes in males, 5 of the 24
genes (21%) were homologous to Y-linked genes (ZRSR2Y,
DDX3Y, OFD1Y, EIF2S3Y, and UTY). This is consistent
with results from a microarray study comparing male and
female bovine embryos where differentially expressed genes
were enriched to the sex chromosomes [38]. Interestingly,
the microarray study found most differences to be lower
than 2 fold-changes, whereas our study indicated fold-
changes ranging from 2.25 to > 589. These discrepancies
are probably associated with the larger dynamic range of
RNA-seq versus microarrays and suggest that further ana-
lysis using RNA-seq in female and male embryos would be
informative. We also compared our results to the list of
differentially expressed genes reported by Bermejo-Alvarez
et al. [38] (Additional file 2: Figure S2). For genes reported
overexpressed in female embryos, we found that among the
66 genes with a common identity to ours, 54 (82%) had a
fold change > 1.5 in our data. Similarly, all matching genes
reported upregulated in males by Bermejo-Alvarez et al.
were also higher in our male samples compared to the
female one. Finally, among transcripts validated by qPCR in
the aforementioned study, all the matching genes (n = 13)
differed in the same direction in our data, with 10 of them
having a P-value < 0.05. The similarities in the results of
these two studies reinforce the notion that global gene
expression analysis can differentiate between embryos of
different sexes.
No functional categories were enriched in the group

of genes overexpressed in male embryos. Among fe-
male overexpressed genes, no GO molecular process
was significantly overexpressed while cell adhesion
(HAPLN4, PGM5, PCDHB6, CLSTN3, CTGF, ICAM5,
and IZUMO1), glucose metabolism (PPP1R3C, LDHA,
PGM5, and PGK1) and cell motility (CTGF, ARID5B,
ATP1A3, TNP1, and PRKG1) were overrepresented
categories among biological functions (P < 0.05).

SNP identification in single embryo transcriptomes
Next generation transcriptome sequencing allows for
identification and discovery of genetic variants located
in transcribed regions of the genome. Genetic variation
in gene coding sequences has a higher potential to affect
phenotypic characteristics. To investigate the usefulness
of single embryo transcriptome data for detecting known
and novel genetic variation we used CLC Genomic Work-
bench SNP identification tool. Reads were mapped to the
UMD3.1 reference genome, and nucleotides within reads
that differed from the reference were identified as SNP. An
SNP was considered homozygous in the sample if only a
variant allele was present. SNP were considered heterozy-
gous if both a variant and the reference nucleotide were
detected at a given position. SNP validation was performed
in-silico by matching putative SNP positions to known
bovine dbSNP entries (Ensembl Bovine GVF release 67).
SNP were considered validated when a corresponding
dbSNP entry was found and the variant nucleotide iden-
tities coincided exactly with our data. The random chance
of exact variant matching is only 12.5% for heterozygous
SNP and 33% for homozygous SNP. Initially, variants were
called if the SNP was covered by more than 10 reads and,
in the case of heterozygous SNP, if the lower expressed
allele was present in at least 4 reads. Roughly, half of the
SNP that were identified matched a dbSNP variant
position, and out of these more than 99% shared the same
nucleotide alleles between our samples and the reference
database. When performing the validation it was noticed
that a higher proportion of homozygous SNPs corres-
ponded to already known SNP compared to heterozygous
SNP. However, when an SNP was found in both our data
and dbSNP, the allelic variants coincided in > 99% of the
cases for both homozygous and heterozygous SNP. We
interpreted these findings as a suggestion that the rate of
false SNP discovery is higher in heterozygous SNP (fewer
proportion of detected SNP is already known). This could
be attributed to a lower threshold required to call the lower
variant in a heterozygous SNP, since only 4 reads are
required for the lower allele to be identified as a SNP
versus 10 reads for homozygous SNP. We therefore exam-
ined how SNP coverage related to validation rate in order
to estimate the minimum sequencing depth to accurately
call new SNP. The proportion of SNP matching dbSNP
across a spectrum of coverage levels was calculated and
found to increase appreciably from 4 to 14 reads and then
plateau afterwards through 30 reads per variant (Additional
file 3: Figure S3). Therefore, 14 reads was selected as the
minimum coverage level for novel SNP (not found in
current database). Increasing the threshold for SNP disco-
very resulted in fewer sequencing errors being determined
as SNP. It is still possible however that certain genes with
high expression levels could accumulate a sufficient num-
ber of errors to reach the minimum threshold for SNP
identification.
To investigate this possibility, SNP detected in mito-

chondrial genes were examined, because these genes
were highly expressed and because the mitochondrial
genome is assumed to be homozygous [39]. We assumed
that the presence of heterozygosity in the mitochondrial
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Figure 5 Allelic expression analysis in single bovine embryos.
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total number of SNP detected. Right bar, represents the number of
SNP that matched dbSNP variants by position. More than 99% of
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heterozygous SNP expression. Number of SNP expressed at different
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with statistically significant imbalance (FDR < 0.01 by X2 test) is
indicated within their respective group (shaded area). The 85-95%
frequency only includes validated SNPs.
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genome is the result of sequencing errors and therefore
represents false SNP discovery. When heterozygous SNP in
mitochondrial genes were evaluated, a total of 392 unique
SNP with an average of 109 per sample were observed. The
frequency of the minor allele averaged 2.3 ± 0.2%, and was
consistent for each of the embryos. More than 95% of the
SNP in mitochondrial genes consisted of SNP with the
minor allele representing less than 15% of the reads. Based
on this, 15% was chosen as the lower limit cutoff for minor
alleles to limit the probability (< 5%) that sequencing errors
in highly expressed genes influence heterozygous SNP
discovery and allele specific expression analysis. Thus,
coverage thresholds used should be carefully considered in
order to minimize calling of sequencing artifacts in the
interest of maximizing variation coverage. It should also be
noted that the potential for heteroplasmy in mtDNA
[40,41] makes the lower threshold for SNP detection very
conservative.
The optimized parameters were only used for identifica-

tion of de-novo SNPs, while SNP detected with the less
stringent set of parameters that matched dbSNPs were
considered valid. Using these criteria, a total of 10,734
unique SNP were identified, 2,525 (23.50%), of which were
heterozygous in at least one sample (Figure 5). A large
proportion of detected SNP (55.7%) were present in the
dbSNP database. This suggests that SNP identified from
the transcriptome sequencing of single embryos are highly
reliable and can be used to discover novel SNP at genome
coding sequences and for analysis of allele specific
expression.

Allele specific expression analysis
Analysis of allele specific expression requires the presence
of heterozygous SNP in the transcribed portions of a gene.
Among the 2,524 heterozygous unique SNP that were
identified, 1,018 known genes were represented. Allelic
imbalance (AI) was determined for these SNP when the
proportion of reads assigned to one allele was higher than
65%. We found that forty percent of expressed heterozy-
gous SNP demonstrated an allelic imbalance (Figure 5a).
A similar proportion was observed for novel SNP,
although in this category the highest allowed ratio was
85%. The statistical significance of these imbalances was
assessed in order to diminish the presence of false posi-
tives. Statistical significance of expressed AI bias was
determined if the read distribution was significantly diffe-
rent than a theoretical 50:50 distribution, as determined
by a Chi2 test adjusted for FDR (adjusted p < 0.01). Statis-
tical thresholds reduced the number of SNP with AI to
473 (19% of all heterozygous SNP detected) within 176
unique genes (Figure 5b). The stringency of the criteria
used to assess these significant biases, while minimizing
false positives, restricts the ability to create a comprehen-
sive list of SNP given that only those with high coverage
provided sufficient information for statistical analysis.
Indeed, 82% of genes with significant AI were among the
top 20th percentile of expression levels, demonstrating the
necessity of sufficient read depth for ASE detection. In-
creased sequencing depth would likely allow discrimin-
ation of AI in more genes and also provide more statistical
power to determine the significance of low level AI.
In order to estimate the number of genes in blastocysts

that could possibly express AI, we determined the propor-
tion of expressed AI with statistical significance within a
subset of high coverage genes. Of 478 genes containing
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SNP with high coverage (>62 reads per SNP), 160 were
found to also have SNP expressing significant AI (317).
We estimate that with sufficient sequencing depth, ~33%
of expressed genes in bovine blastocyst genes could have
AI with a major allele frequency > 65%. Differences in epi-
genetic reprogramming of maternal and paternal genomes
during preimplantation development could result in allelic
skewing of embryonic gene expression. AI dependent on
parental origin and cellular lineage may also be important
for embryonic development [42,43]. However, it is not
known at this time if the preferentially expressed alleles
have a common parental origin. GO enrichment analysis
of genes containing SNP with statistically significant AI
identified major cellular constitutive elements as overre-
presented categories. These included GO terms such
as cytoskeleton, basolateral membrane, focal adhesion,
non-membrane-bounded organelles, organelle lumen and
macromolecular complex organization, among others. The
enrichment of genes to these specific cellular elements is
not surprising given that they are highly expressed cellular
components and, as stated above, detection of imbalance is
greatly aided by high coverage or expression.
Imprinting is one phenomenon that leads to allelic

expression imbalance, with typically only one specific
parental allele being expressed. The approach used to
detect imbalances is based on the expressed genes without
knowledge of the individual embryo genotype, and
therefore in cases of monoallelic expression it would be
expected that no heterozygous alleles would be identified.
Among 37 genes known to be imprinted in cattle, human
and/or mouse, 17 were expressed in bovine blastocysts at
RPKM > 0.3 [44,45]. Expressed heterozygous SNP were
found in 9 of these genes (17 SNP in total; Table 6). Lack
of heterozygous SNP in other imprinted genes could indi-
cate mono-allelic expression. Allelic biases (>65% reads
corresponding to one allele) were observed in 16 out of
the 17 detected heterozygous SNP (Table 6). Because of
low imprinted gene expression and low coverage of the
SNP, only 6 candidate imprinted SNP from 4 genes (ASB4,
Table 6 List of known imprinted genes with expressed SNP

Gene name Species in which imprinted Bovine gene Ensembl ID #

NNAT Bovine ENSBTAG00000003212

NAP1L5 Bovine ENSBTAG00000010128

NNAT Bovine ENSBTAG00000045928

UBE3A Murine ENSBTAG00000002487

NAT15 Murine ENSBTAG00000004875

GAB1 Human ENSBTAG00000002813

BLCAP Human ENSBTAG00000003209

COPG2 Human ENSBTAG00000017245

ASB4 Human ENSBTAG00000018185

* Chi-squared p < 0.01 difference from 50:50 expression of both alleles.
BLCAP, NNAT, and NAT15) had AI with statistical signifi-
cance (Chi2 adjusted p < 0.01). Identification of imbal-
anced alleles in most of the known imprinted genes within
our dataset further corroborates the utility of RNA-seq in
characterization of AI.

Conclusions
This study reports the analysis of individual bovine embryo
transcriptome sequencing, providing details for amplifica-
tion procedures of low RNA input samples and an analysis
pipeline that examines differences in gene expression pro-
files, identifies novel SNP and determines instances of
allelic imbalance. RNA-seq analysis in single embryos
allows for discrimination of embryo gender and provided
the opportunity to characterize individual variability in gene
expression. SNP analysis of individual samples demon-
strates the use of RNA-seq to identify embryo-specific
variation for association studies and ASE that could
represent novel layers of developmental regulation subject
to influence by AI. Our data suggests that AI is prevalent
in bovine blastocysts. RNA-seq analysis of the individual
embryonic transcriptome is feasible and presents valuable
insights into gene expression, variation and regulation of
the early developmental transcriptome.

Methods
Sample preparation and RNA extraction
Bovine oocytes from Holstein animals were obtained from
commercial suppliers and matured overnight in a portable
incubator. Matured oocytes were used for in vitro
fertilization (IVF) with semen from a Holstein bull, as
previously reported [46]. IVF embryos were cultured for a
period of 7 days in KSOMaa medium supplemented with
BSA (4 mg/mL), and 5% fetal bovine serum added after 3
days in culture. Blastocyst stage embryos were collected,
treated for 2 minutes with pronase (1 mg/mL) to remove
the zona pellucida (ZP) and any contaminating cumulus
cells and individually stored in 20 μL of Extraction Buffer
from the PicoPure RNA Isolation kit (Applied Biosystems,
Heterozygous SNP identified Frequency of major allelic variant (%)

3 82, 89*, 86*

1 59

1 82

1 69

1 91*

5 64, 71, 75, 78, 67

2 89*, 86*

2 67, 68

1 84*
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Carlsbad, CA) at −80°C. RNA was extracted using the
PicoPure RNA Isolation Kit, including DNAse treatment,
following manufacturer’s instructions but with a modified
RNA elution step. In order to achieve a high concentration
of RNA, elution was performed using 7 μL of DEPC-
treated water and the eluate was run through the column
one more time after the initial elution. RNA quantification
and quality control were performed using a High-
Sensitivity RNA Chip with the Experion microfluidic gel
system (Bio-Rad, Hercules, CA). RNA quality was evalu-
ated by examining the 18 and 28S ribosomal subunits,
quantity, and RNA quality indicator (RQI) score.

RNA amplification and sequencing library preparation
Total RNA was used as input for the Ovation RNA-seq V1
kit (NuGen, San Carlos, CA). cDNA output was analyzed
for correct size distribution with an Experion Standard
Sensitivity RNA chip and quantified using a Qubit
Fluorometer (Invitrogen, Carlsbad, CA). Amplified cDNA
with a size distribution of ~200-500 bp was considered
acceptable. Then, 200 ng of cDNA from each sample were
used with the NuGen Encore NGS Library I kit to produce
sequencing libraries sized between 200–400 bp and lacking
primer dimer peaks. Libraries were sequenced at the UC
Davis Genome Center Sequencing Core with an Illumina
Genome Analyzer IIx as 40 bp single reads (software
version RTA 1.8). Quality control of reads was performed
using the Fastqc module from Galaxy (http://main.g2.bx.
psu.edu/) [47-49].

Read alignment and gene expression analysis
Reads were mapped to bovine genome assemblies using
CLC Genomics Workbench 4.7 software (CLC bio, Aarhus,
Denmark). To quantify gene expression, the RNA-seq
Analysis tool was used as previously described [14] allowing
for no more than 2 mismatches per read. Annotations were
downloaded from NCBI or ENSEMBL for bovine genome
builds Btau4.0, Btau4.2 and UMD3.1. The non-coding
RNA database RFAM 10.1 [50] was used for diagnostic
alignments of rRNA species.

Functional annotation of transcripts
Expressed transcripts were sorted by average RPKM
(reads per kilobase of exon model per million mapped
reads) and divided into equally-proportioned groups.
Genes with RPKM lower than 0.4 were not included in
this analysis, leaving a total of 9,490 genes for functional
annotation and divided into 5 groups. Ensembl Gene
IDs from each group were uploaded to the DAVID
Functional Annotation Tool (http://david.abcc.ncifcrf.
gov/; Version 6.7) and analyzed for enrichment using
Functional Annotation Clustering [51,52]. The classifica-
tion stringency was set to Medium and other settings
were default parameters. Cluster analysis outputs from
the 5 groups were ranked by Enrichment Score and the
top 10 clusters summarized based on general cellular
components related to their respective functions.

SNP and ASE analysis
SNP were identified using the SNP Detection tool from
CLC Genomics Workbench on reads aligned to the
UMD3.1 bovine genome assembly. Stringency parameters
for the analysis were set as previously described [14]. An
SNP was considered homozygous in the sample if a
nucleotide was different from the one in the same position
in the reference genome (UMD3.1). A heterozygous SNP
was that in which the two alleles were present in the
sample. Identified SNP were compared with those in the
ENSEMBL bovine SNP database based on genomic pos-
ition and allelic variants. SNP not present in the database
were considered novel. For allele specific expression (ASE)
analysis the proportion and ratio of uniquely mapped reads,
excluding duplicated reads, containing each allelic variant
in a heterozygous SNP were calculated. Allelic imbalance
(AI) was defined as a statistically significant deviation
from the expected 50:50 ratio (Chi-square P < 0.01) and a
frequency of the most abundant allele greater than 65%.

Availability of supporting data
The data sets supporting the results of this article are
available in the GEO repository, under accession
GSE44023.

Additional files

Additional file 1: Figure S1. Principal component analysis (PCA) of
RPKM levels in single IVF blastocysts, pool of blastocysts from Huang and
Khatib (2010) data, and milk somatic cells. Single and pool blastocyst
datasets clustered close together while the somatic cells were further
apart. This result supports the validity of single embryo RNA-seq analysis.

Additional file 2: Figure S2. Comparison of male vs. female embryo
differential gene expression between RNA-seq and microarray results
reported by Bermejo-Alvarez et al. 2010.

Additional file 3: Figure S3. The proportion of SNP validated by
dbSNP as a proportion of the total detected was compared across
coverage levels ranging from 4 to 30. Proportion validated increased
moderately (approximately 7%) from 4 to 10, but this trend reached
saturation at coverage of 14 (>55% validation). Minimum coverage for
analysis was based on this saturation threshold.
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