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ABSTRACT OF THE DISSERTATION

Beyond the Random-Phase Approximation: Theory, Efficient Implementations, and
Applications to Rare-Earth and Actinide Chemistry

By

Guo Chen

Doctor of Philosophy in Chemistry

University of California, Irvine, 2019

Professor Filipp Furche, Chair

The random-phase approximation (RPA) incorporates many appealing features absent in

semilocal density functional theory (DFT) without excessively increasing computational

cost. The first half of this thesis addresses the question: Can one achieve a similar balance

between accuracy and speed for beyond-RPA corrections? To this end, low-scaling algo-

rithms are developed for the most common perturbative corrections to RPA, including the

bare second-order exchange (SOX), second-order screened exchange (SOSEX), and approx-

imate exchange kernel (AXK) methods. The implementations are based on the resolution-

of-the-identity (RI) approximation, Clenshaw–Curtis numerical frequency quadrature, and

optionally, integral prescreening. These implementations afford benchmark calculations on

medium- and large-size molecules with size-independent accuracy. The benchmark results

show that the AXK method systematically improves RPA and surpasses SOX and SO-

SEX for reaction barrier heights, reaction energies, and noncovalent interaction energies of

main-group compounds, confirming conclusions drawn from previous small-molecule calcu-

lations. The superior accuracy of AXK compared with SOX and SOSEX suggests that the

strong screening of bare SOX in AXK is important. Nevertheless, benchmark calculations on

3d transition metal compounds show that RPA and its perturbative corrections eventually

break down for systems with strong static correlation, such as metal dimers. The reliability

xiv



of RPA methods can be estimated using an effective coupling strength ᾱ proposed herein.

The second half of the thesis demonstrates the use of electronic structure methods for the

identification and characterization of {Sc[N(SiMe3)2]3}−, {[(R2N)3Sc]2[µ-η1:η1-N2]}2−, and

{Pu[C5H3(SiMe3)2]3}−: DFT and time-dependent DFT calculations played an important

role in characterizing the electron configurations, bonding, and UV-visible spectroscopy of

these unconventional rare-earth and actinide compounds. The applicability of RPA and

AXK to these compounds is assessed, using the Pu2+ complex as an example.

xv



Chapter 1

Background and Theory

This chapter contains verbatim excerpts, reprinted with permission, from G. P. Chen, V. K.

Voora, M. M. Agee, S. G. Balasubramani, and F. Furche, Annu. Rev. Phys. Chem. 68,

421–445, 2017. Copyright 2017 Annual Reviews. Section 1.5 also contains verbatim excerpts,

reprinted with permission, from G. P. Chen, M. M. Agee, and F. Furche, J. Chem. Theory

Comput. 14, 5701–5714, 2018. Copyright 2018 American Chemical Society. This material

is based upon work supported by the National Science Foundation under CHE-1213382,

CHE-1464828, and CHE-1800431.
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1.1 Introduction

Density functional theory (DFT) with semilocal and hybrid approximations is the most

broadly applied electronic structure method to date, owing to its semiquantitative accuracy

and modest computational cost [1–3]. The reliability of semilocal approximations partially

depends on the cancellation of error between their exchange and correlation parts [4, 5].

However, this cancellation breaks down for systems with significant static correlation such as

dissociating closed-shell molecules [6]. Moreover, due to the exponential decay of the density,

semilocal functionals cannot account for long-range dispersion interactions, which decays

polynomially. Empirical corrections developed by Grimme and co-workers [7, 8] provide a

remedy to this problem, but the system under consideration is artificially partitioned into

atoms.

Modern random-phase approximation (RPA) in the context of DFT [9–12] provides an

alternative to semilocal approximations. Formulated within the framework of adiabatic-

connection fluctuation–dissipation theorem [13, 14], the RPA correlation energy functional

is compatible with the exact exchange. RPA is robust for small- and zero-gap systems and is

accurate for the uniform electron gas in the high-density or weak-coupling limit [15, 16]. It

even partially accounts for static correlation within the spin-restricted formalism [6, 17, 18].

The RPA correlation energy also captures the leading contributions to mid- and long-range

dispersion interactions without ad hoc partitioning the system [19, 20]. RPA has received

increasing attention recently, largely due to the advent of fast and robust implementations

[21, 22]. From a correlated wavefunction theory perspective, these implementations afford

low-scaling computation of a simplified coupled-cluster doubles (CCD) correlation energy

without explicitly computing the amplitudes [23, 24]. Using the RPA implementation in

Turbomole [25], molecules with well over 100 atoms and large basis sets can be routinely

computed on a single workstation computer (see, e.g., [26]). Benchmark calculations for

molecules of various sizes are thus possible [10, 26, 27]. RPA has shown good performance
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for energetics such as noncovalent interaction energies, reaction barrier heights, and energies

of reactions that conserve the numbers of electron pairs [10, 28], gaining popularity in both

method development and applications.

RPA was first developed by Bohm and Pines in the early 1950s for the uniform electron

gas as an approximation to decouple long-range plasma oscillations and screened quasi-

electrons [29–32]. In 1957, Gell-Mann and Brueckner computed the correlation energy of the

uniform electron gas by summing over the most divergent terms in each order of the many-

body perturbation theory [15]. The two approaches are equivalent in the high-density limit,

so the Gell-Mann–Brueckner method became synonymous with RPA and was generalized

to nonuniform systems. RPA may also be derived from the quasi-boson approximation

[16, 33], Green’s function or propagator methods [34–36], and the equation-of-motion method

[37], yet most modern implementations of RPA follows the formalism within adiabatic-

connection DFT introduced by Langreth and Perdew in the 1970s [13, 14]. The multifaceted

origin of RPA offers different conceptual understandings thereof, which in turn may inspire

improvements from various perspectives.

The description of electron correlation from RPA is not accurate across all interaction ranges.

Particularly, RPA suffers from self-correlation and unphysical pair density at short electron

separations [38], which lead to overestimation of the magnitudes of correlation energies and

poor performance for energetics of processes where short-range electron–electron interactions

change significantly, e.g., ionization and atomization [10]. The leading correction to RPA

is the bare second-order exchange (SOX), which was included in Gell-Mann and Brueck-

ner’s calculation for the uniform electron gas [15]. However, as a perturbative correction

with respect to the Kohn–Sham (KS) noninteracting system, SOX is sensitive to the KS

HOMO-LUMO gap and tends to overcorrect RPA. Renormalized perturbative corrections

such as second-order screened exchange (SOSEX) [23, 39–41] and approximate exchange ker-

nel (AXK) [42] methods correctly recover SOX and also contain higher-order corrections due

3



to screening. Particularly, benchmark calculations show that AXK systematically corrects

RPA for small molecules [42]. Nevertheless, the absence of fast and robust implementations

has hindered further assessment of AXK and the other perturbative RPA correction methods

for larger molecules in the past.

The purpose of this thesis is twofold: The first is to develop efficient and robust imple-

mentations of beyond-RPA perturbative corrections, including the SOX, SOSEX, and AXK

methods, and to assess their accuracies using benchmarks containing medium- and large-size

molecules. The second is to show the role of electronic structure calculations in the discov-

eries of unconventional rare-earth and actinide complexes and to suggest the usefulness of

RPA methods for these systems.

The thesis is organized as follows. Chapter 1 introduces the necessary theoretical background

for RPA methods, with an emphasis on the theoretical framework, the physical picture, and

approximation methods for low-scaling implementations. Chapter 2 focuses on algorithmic

development and implementations of fast computations of beyond-RPA perturbative correc-

tions. Detailed error analyses and benchmark results are reported, showing the systematic

improvement of AXK over RPA independent of system size. Cases where RPA and its

perturbative corrections fail are identified, and an effective coupling strength is proposed

to indicate reliability of RPA and AXK results. Chapter 3 presents three discoveries of

non-traditional rare-earth and actinide compounds from a computational perspective: The

first isolable Sc2+ and Pu2+ complexes, and the end-on bridging dinitrogen complex of Sc3+.

Remarks on the validity of RPA and AXK for these systems are provided.
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1.2 Theory

1.2.1 Adiabatic Connection

The adiabatic connection (AC) uses a single coupling strength parameter α to switch contin-

uously from the noninteracting KS system [43] (α = 0) to the physical many-electron system

of interest (α = 1). A key aspect of the AC that distinguishes it from other deformations of

the physical system is the constraint that the ground-state density be equal to the physical

ground-state density ρ for all α. The AC Hamiltonian is thus [13, 44]

Ĥα[ρ] = T̂ + V̂α[ρ] + αV̂ee, (1.1)

where T̂ is the electron kinetic energy operator, V̂α[ρ] is the sum over electron indices of

the one-electron local potential operator v̂α[ρ] uniquely determined (up to a constant, if

existence is established) by the density constraint [45], and V̂ee is the operator of the electron–

electron Coulomb interaction. Atomic (Hartree) units are used throughout this thesis, i.e.,

the electron mass, the elementary charge, and reduced Planck’s constant are set to unity.

By construction, v̂α[ρ] turns into the external potential for α = 1 and into the KS potential

for α = 0. Moreover, the ground-state wavefunction Ψα becomes the KS determinant Φ at

zero coupling strength.

The energy of the physical ground state E is the sum of the energy expectation value of the

KS determinant and the correlation energy,

E = 〈Φ|Ĥ|Φ〉+ EC. (1.2)

This definition of the correlation energy is appropriate in a density functional context,

whereas the traditional definition in wavefunction theory uses the HF determinant [46].
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Using the density constraint, the AC correlation energy may be recast as a coupling strength

integral [13, 44]:

EC[ρ] =

∫ 1

0

dα
(
〈Ψα[ρ] | V̂ee |Ψα[ρ]〉 − 〈Φ[ρ] | V̂ee |Φ[ρ]〉

)
. (1.3)

Equation (1.3) expresses the correlation energy entirely as an expectation value of the

electron–electron Coulomb repulsion V̂ee; the coupling strength integration accounts for the

kinetic correlation energy.

1.2.2 Fluctuation–Dissipation Theorem

The zero-temperature fluctuation–dissipation theorem (FDT) relates ground-state fluctua-

tions to dissipation in the linear response regime [47]. Because electron correlation is related

to ground-state density fluctuations [10], the FDT may be used to express the correlation

energy as [13, 14]

EC[ρ] = − 1

2π

∫ 1

0

dα=
∫ ∞
0

dω

∫
dx dx′

χα(ω, x, x′)− χ0(ω, x, x
′)

|r− r′|
, (1.4)

where ω denotes frequency and x = (r, σ) space–spin coordinates; χα is the frequency-

dependent linear density–density response function at coupling strength α,

χα(ω, x, x′) =
δρ(ω, x)

δv(ω, x′)

∣∣∣∣
v(ω,·)=vα[ρ]

(1.5)

A striking feature of Equation (1.4) is that the correlation energy is expressed in terms of one-

electron linear response properties, which are accessible from time-dependent perturbation

theory and have been well studied because of their importance, e.g., for spectroscopy.
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1.2.3 Time-Dependent Density Functional Theory

Computing the ground-state correlation energy from the FDT still requires knowledge of the

density–density response function at each coupling strength 0 6 α 6 1. TDDFT [48, 49]

provides a conceptually and computationally simple avenue: χα may be obtained from the

time-dependent KS (TDKS) system instead of the interacting system because their time-

dependent densities are the same by construction. Thus, χα(ω, x1, x2) is the diagonal of the

TDKS density-matrix–density-matrix response function Πs
α(ω, x1, x

′
1, x2, x

′
2) in real space,

χα(ω, x1, x2) = Πs
α(ω, x1, x1, x2, x2), (1.6)

just as the interacting time-dependent density is the diagonal of the TDKS (one-electron)

density matrix.

The TDKS density-matrix–density-matrix response function, or retarded polarization prop-

agator, may be represented by a supermatrix Πs
α(ω) of dimension 2NhNp × 2NhNp, where

Nh and Np denote the numbers of occupied (hole) and virtual (particle) orbitals, respectively

[50]. The physical picture is clear for the bare KS polarization propagator Π0, which equals

Πs
α at zero coupling strength: A perturbation at the frequency of a pole of Π0 excites an

electron from a KS occupied orbital φi to a virtual orbital φa. In the particle–hole pic-

ture, the electron is excited from the KS reference state, or Fermi vacuum, leaving behind

a positively charged hole below the Fermi level and creating a negatively charged electron

or particle above the Fermi level. The resulting KS particle–hole pair is described by the

orbital product φi(x)φa(x
′), whose diagonal, known as the zeroth-order transition density,

integrates to zero because the excitation conserves the total electron number. Through-

out this thesis, indices i, j, . . . denote occupied (hole), a, b, . . . virtual (particle), and p, q, . . .

general KS molecular orbitals. All orbitals are assumed to be real.

Density-matrix response theory yields an expression for the TDKS polarization propagator
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familiar from time-dependent Hartree–Fock theory [51–53]:

Πs
α(ω) = −

[(
Aα(ω) Bα(ω)

Bα(ω) Aα(ω)

)
− (ω + iη)

(
1 0

0 −1

)]−1
. (1.7)

The iη contour distortion makes Πs
α analytic in the upper half of the complex frequency

plane and thus guarantees causality [54]; the limit η → 0+ is taken after a possible frequency

integration. Aα(ω) and Bα(ω) are the TDKS orbital rotation Hessians,

(Aα +Bα)iajb(ω) = Diajb + 2αBH
iajb + 2BXC

αiajb(ω), (1.8)

(Aα −Bα)iajb(ω) = Diajb, (1.9)

where D is a NhNp × NhNp diagonal supermatrix whose diagonal elements are KS orbital

energy differences,

Diajb = (εa − εi)δijδab; (1.10)

BH and BXC
α are NhNp × NhNp supermatrices that describe the coupling between bare

particle–hole pairs, where

BH
iajb = (ia|jb) =

∫
dx1 dx2 φi(x1)φa(x1)

1

|r1 − r2|
φj(x2)φb(x2) (1.11)

is a four-center electron repulsion integral (ERI) in Mulliken notation, and

BXC
αiajb(ω) =

∫
dx1 dx2 φi(x1)φa(x1)f

XC
α (ω, x1, x2)φj(x2)φb(x2) (1.12)

is a frequency-dependent matrix element of the exchange–correlation (XC) kernel at coupling

strength α; fXC
α is the exchange–correlation kernel in real-space representation.
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Equation (1.7) may be written in different forms emphasizing different physical aspects.

Defining the supermatrices of the bare Coulomb or Hartree interaction and of the XC kernel,

respectively, as

V =

(
BH BH

BH BH

)
, FXC

α (ω) =

(
BXC
α (ω) BXC

α (ω)

BXC
α (ω) BXC

α (ω)

)
, (1.13)

we arrive at the Bethe–Salpeter equation (BSE) for Πs
α [36, 55, 56]:

Πs
α(ω) =

(
Π0(ω)−1 − αV − FXC

α (ω)
)−1

, (1.14)

or formally equivalently,

Πs
α(ω) = Π0(ω) + Π0(ω)

(
αV + FXC

α (ω)
)
Πs
α(ω). (1.15)

This form emphasizes the screening of Π0 resulting from Hartree and XC interactions. Al-

ternatively, one may focus on the poles of Πs
α, which occur at excitation energies of the

α-coupled interacting system. At these excitation energies, the inverse of Πs
α becomes sin-

gular, leading to the TDKS eigenvalue problem:

[(
Aα(Ωαn) Bα(Ωαn)

Bα(Ωαn) Aα(Ωαn)

)
−Ωαn

(
1 0

0 −1

)](
Xαn

Yαn

)
= 0, XT

αnXαn−YT
αnYαn = 1. (1.16)

For α = 1, the eigenvalues equal electronic excitation energies of the physical system, and

the eigenvectors yield the corresponding transition densities,

ρ0n(x) =
∑
ia

(Xn + Yn)iaφi(x)φa(x), (1.17)

which is key for TDDFT applications to electronic spectroscopy [49].
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Finally, the correlation energy may be expressed in terms of Πs
α,

EC = − 1

2π

∫ 1

0

dα=
∫ ∞
0

dω
〈
V
(
Πs
α(ω)−Π0(ω)

)〉
, (1.18)

where angle brackets denote the trace operation. However, computation of Πs
α requires

knowledge of the XC kernel. As explained below, Equation (1.18) is more than a complicated

reformulation of the problem that shifts the difficulty from the XC energy to the kernel; even

the simplest approximation to Πs
α captures important physics of the system at coupling

strength α.

1.3 Random-Phase Approximation

1.3.1 Time-Dependent Density Functional Theory Perspective

Within RPA, the XC kernel in Equation (1.15) is set to zero; this is equivalent to the time-

dependent Hartree approximation. Thus, Πs
α is approximated by

ΠRPA
α (ω) = Π0(ω) + αΠ0(ω)VΠRPA

α (ω). (1.19)

Defining the dimensionless generalized dielectric function [54] within RPA as

κRPA
α (ω) = 1− αΠ0(ω)V, (1.20)

the BSE for ΠRPA
α (Equation (1.19)) becomes

ΠRPA
α (ω) =

(
κRPA
α (ω)

)−1
Π0(ω). (1.21)
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This affords an appealing physical interpretation: κRPA
α (ω) accounts for screening of bare KS

particle–hole pairs resulting from other induced particle–hole pairs, i.e., polarization, through

the Hartree interaction. In other words, ΠRPA
α is dressed or renormalized by the interaction

between particle–hole pairs. Alternatively, the effect of screening may be illustrated by

defining the RPA effective interaction

VRPA
α (ω) = V + αVΠ0(ω)VRPA

α (ω) = V
(
κRPA
α (ω)

)−1
. (1.22)

Without screening, κRPA
0 = 0, and VRPA

α (ω) reduces to the Hartree interaction, which is

instantaneous. However, for finite α, VRPA
α (ω) acquires frequency dependence because of

screening by induced particle–hole pairs.

To avoid the poles of the polarization propagators near the real axis, we may perform the

frequency integration in Equation (1.18) along the imaginary axis using Cauchy’s integral

theorem [57]. Analytically integrating over the coupling strength then yields an expression

for the RPA correlation energy solely in terms of the KS polarization propagator and the

Hartree interaction [14]:

EC RPA =
1

2π

∫ ∞
0

dω
〈
ln
(
1−Π0(iω)V

)
+ Π0(iω)V

〉
. (1.23)

For closed-shell systems at large separation, Equation (1.23) correctly reproduces the leading-

order dispersion energy, thereby providing a generalization of dispersion interactions for

systems of finite size (see References [19, 20]).
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1.3.2 Plasmon Perspective

A particularly simple representation of the RPA correlation energy results from performing

both the frequency and coupling strength integrations in Equation (1.18) analytically [58],

EC RPA =
1

2

∑
n

(
ΩRPA
n − ΩRPA1

n

)
; (1.24)

here ΩRPA
n and ΩRPA1

n are the RPA electronic excitation energies and those up to first order

in α, respectively, and the summation runs over all excitations. In the spirit of Bohm and

Pines’s work, the plasmon formula (Equation (1.24)) states that the RPA correlation energy

is the difference between the zero-point energies of electronic excitations at full coupling and

those up to first order in the electron interaction. In this picture, each excitation represents

one harmonic degree of freedom. The sum in Equation (1.24) is dominated by excitations

whose energies change most as the interaction is turned on; this is a key characteristic of

plasmons [59]. Plasmons are long-wavelength oscillations of an electron gas and are highly

collective, i.e., they involve oscillations of the entire electron gas and cannot be described by

single KS particle–hole pairs or single-electron excitations.

The connection between the RPA correlation energy and collective excitations becomes espe-

cially clear by introducing the plasmonic Hessian Wp and further rewriting Equation (1.24)

as

EC RPA = −1

2
〈Wp〉 = −1

2

∑
n

Ωp
n, (1.25)
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where Ωp
n are the eigenvalues of Wp, and

Wp = −
(

(MRPA)1/2 −D−T
)
, (1.26)

MRPA = MRPA
α

∣∣
α=1

, (1.27)

MRPA
α = (ARPA

α −BRPA
α )1/2 (ARPA

α + BRPA
α )(ARPA

α −BRPA
α )1/2. (1.28)

ARPA
α and BRPA

α are the RPA orbital rotation Hessians; see Equations (1.8) and (1.9). D

and T are, respectively, the zeroth- and first-order terms of (MRPA
α )1/2 with respect to α. It

is shown in Appendix A that

Tiajb =
2(εa − εi)1/2BH

iajb(εb − εj)1/2

εa − εi + εb − εj
(1.29)

and Wp is positive definite. Typically, a few large eigenvalues of Wp dominate the RPA

correlation energy, and the corresponding eigenvectors may be interpreted as plasmonic

modes describing collective excitations of the electrons that give rise to large zero-point

energies.

We illustrate the plasmonic mode analysis of the RPA correlation energy for the tetrahedral

Ag20 cluster [60] in Table 1.1 and Figure 1.1. The modes with the largest 10 eigenvalues

make up over 90% of the total RPA correlation energy in a split valence plus polarization

(SVP) atomic orbital (AO) basis (Table 1.1). Visualization of the modes (Figure 1.1) shows

that those with the largest contributions to the correlation energy are highly collective, i.e.,

they involve oscillations of the entire electron cloud of the cluster. These collective modes

have few nodes, in accord with the notion that plasmons are low-wavelength excitations.

The plasmonic modes are poorly described by either KS single-orbital or RPA excitations,

but they provide an efficient representation of the RPA correlation energy.
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Table 1.1: Plasmonic modes of Ag20 with the 10 largest eigenvalues (in hartree) and their
percentage contribution to EC RPA. def2-SVP basis set [61] along with scalar relativistic
small-core pseudopotentials [62] were used; orbitals were generated using the TPSS functional
[63] and quadrature grids of size m5 [64].

Mode Eigenvalue % of EC RPA

1A1 0.2070 11.5
2A1 0.1836 10.2
3A1 0.1612 8.9
4A1 0.1118 6.6
1E 0.1702 9.4
1T1 0.1658 9.2
1T2 0.1728 9.6
2T2 0.1666 9.2
3T2 0.1338 9.1
4T2 0.1467 8.1

1.3.3 Diagrammatic Perspective

An alternative approach to the density–density response function χα uses the interacting

polarization propagator Πα [50]. Although both Πα and the TDKS polarization propagator

Πs
α yield the same density–density response function and thus the same correlation energy

through the FDT, the two are not equal [65]. Πα satisfies its own BSE [66],

Πα(ω) = Π0(ω) + Π0(ω)
(
αV + Kα(ω)

)
Πα(ω), (1.30)

where Kα is a frequency-dependent kernel accessible, e.g., through many-body perturbation

theory and Green’s function methods [36, 54]. In this many-body theory approach, RPA

amounts to neglecting Kα.

In keeping with the Feynman–Dyson diagrammatic approach [67, 68], polarization propa-

gators and the Hartree interaction are represented by pairs of arrowed lines and horizontal

wiggly lines, respectively (Figure 1.2a), and the BSE within RPA takes the form shown in

Figure 1.2b. The RPA correlation energy can be represented by the bubble diagrams in Fig-
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Figure 1.1: Contour plots of the 10 dominant plasmonic modes of Ag20. Contour values of
0.001 (red) and −0.001 (blue) were used; only one column is shown for degenerate modes.
For further details, see Table 1.1.

ure 1.2c, again suggesting a physical picture of vacuum fluctuations giving rise to correlation.

Substituting Figure 1.2b into Figure 1.2c and integrating over coupling strength produces

the series of ring diagrams first identified by Gell-Mann and Brueckner [15] (Figure 1.2d).

1.4 Kernel Corrections

The RPA is equivalent to the Hartree approximation for the TDDFT and BSE kernels, and

thus lacks any second- or higher-order exchange. As a result, same-spin particle–hole pairs

do not experience Pauli repulsion and are screened as much as opposite-spin particle–hole

pairs. This makes the RPA on-top correlation hole too negative and leads to overcorrelation

of electrons at short interelectron distances [38]. In other words, RPA contains spurious

self-correlation error, which underlies, e.g., its failure to correctly dissociate odd-electron

systems such as H2
+ [42, 70]. The unphysical short-range behavior of RPA also explains its

relatively poor performance for nonisogyric processes, such as atomization, ionization, and

spin-flip processes, which break up electron pairs and lead to large changes in the short-range
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Figure 1.2: Feynman diagrams for (a) noninteracting and interacting polarization propaga-
tors and the bare Coulomb interaction, (b) the BSE for ΠRPA

α , and (c,d) the RPA correlation
energy before (c) and after (d) coupling strength integration. All closed-loop diagrams are
Feynman instead of Goldstone [69] diagrams; because vertices in Feynman diagrams are not
time-ordered, each Feynman diagram may correspond to several Goldstone diagrams with
different time ordering [54]. For illustrative purposes, we use blue and black double lines to
indicate RPA and exact renormalization, respectively; a pair of disconnected double lines
should not be understood as a product of single-particle quantities.
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Figure 1.3: Feynman diagrams for (a) bare second-order exchange energy, (b) AC-SOSEX
beyond-RPA correlation energy, (c) AXK beyond-RPA correlation energy, and (d) RPA-
renormalized BSE.

correlation energy [10].

The second-order screened exchange (SOSEX) method by Freeman [23] and Grüneis et

al. [39] completely eliminates self-correlation error for one-electron systems. AC-SOSEX

beyond-RPA correlation energy [40, 41] is

∆EC AC-SOSEX = − 1

2π

∫ 1

0

dα
(
α=

∫ ∞
0

dω
〈
VΠRPA

α (ω)KΠ0(ω)
〉)
, (1.31)

where

K =

(
BX BX

BX BX

)
(1.32)

is an approximation to the first-order exchange kernel and BX
iajb = −(ib|ja) is the corre-

sponding particle–hole exchange integral. SOSEX partially screens the second-order ex-

change (Figure 1.3b), and is thus useful for small-gap systems and even metals, as opposed

to unscreened perturbation theory [39, 71]. However, SOSEX does not consistently improve

RPA atomization energies, and it worsens the description of reaction barriers and systems

with strong static correlation compared with RPA [42].
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Systematic improvement is possible by RPA-renormalized many-body perturbation theory

[42]. The key idea is to expand the exact polarization propagator in terms of the RPA

polarization propagator

Πα(ω) = ΠRPA
α (ω) + ΠRPA

α (ω)Kα(ω)Πα(ω), (1.33)

diagrammatically represented in Figure 1.3d. Because RPA is well-behaved for small-gap sys-

tems, this expansion avoids the instabilities of conventional many-body perturbation theory

by RPA-renormalizing all particle–hole pairs. Using a frequency-independent approximate

exchange kernel (AXK), KAXK
α = αK, and truncating the series expansion of Πα with re-

spect to KAXK
α at first order, we obtain the AXK (second-order) beyond-RPA correlation

energy (Figure 1.3c):

∆EC AXK = − 1

2π

∫ 1

0

dα
(
α=

∫ ∞
0

dω
〈
VΠRPA

α (ω)KΠRPA
α (ω)

〉)
. (1.34)

Although AXK still contains some self-correlation error, it dissociates covalent bonds cor-

rectly and consistently improves upon RPA [42].

1.5 Implementation of Random-Phase Approximation

Correlation Energy

Brute-force computation of the RPA correlation energy using the plasmon formula (Equa-

tion (1.24)) requires diagonalization of the NhNp ×NhNp supermatrix MRPA [17]. Because

both Nh and Np increase linearly with the system size N in a finite basis set, the operation

count of this approach scales as O(N6) and quickly becomes prohibitive. Alternatively, the

RPA correlation energy may be obtained by retaining only ring contractions in a CCD im-

plementation [24], which scales as O(N6) in each CCD iteration. RPA correlation energy
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calculations using Equation (1.23) also scales as O(N6) for each frequency point.

The key to lowering the computational complexity of the RPA correlation energy is to employ

low-rank approximations for the ERIs, i.e.,

BH = SST. (1.35)

This form of decomposition is permitted by the positive definiteness and Hermiticity of BH.

Before discussing specific approximations, we first assume the decomposition is full-rank for

analysis purposes. We may now write

V = ηηT, (1.36)

where

η =

S

S

 . (1.37)

Using the Sherman–Morrison–Woodbury formula [72, 73], the RPA polarization propagator

(Equation (1.19)) can then be written as

ΠRPA
α (iω) =

(
Π0(iω)−1 − αV

)−1
(1.38)

= Π0(iω) + αΠ0(iω)W1,α(iω)Π0(iω), (1.39)

where

W1,α(iω) = η
(
1 + Q(ω)

)−1
ηT, (1.40)

Q(ω) = −ηTΠ0(iω)η = 2STG(ω)S, (1.41)

G(ω) = D(D2 + ω21)−1. (1.42)
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1 + αQ(ω) is the Hermitian version of the generalized dielectric function κRPA
α (iω) defined

in Equation (1.20), i.e., Q may be interpreted as a generalized susceptibility accounting for

screening due to induced particle–hole pairs. W1,α is the RPA effective interaction VRPA
α

(Equation (1.22)) in Hermitian form.

Defining QRPA
α = −ηTΠRPA

α (iω)η, Equation (1.39) implies

QRPA
α = (1 + αQ)−1Q. (1.43)

Therefore,

EC RPA = − 1

2π

∫ 1

0

dα

∫ ∞
0

dω
〈
V
(
ΠRPA
α (iω)−Π0(iω)

)〉
(1.44)

=
1

2π

∫ 1

0

dα

∫ ∞
0

dω
〈
QRPA
α (ω)−Q(ω)

〉
(1.45)

=
1

2π

∫ ∞
0

dω〈ln(1 + Q(ω))−Q(ω)〉, (1.46)

where we have used Equation (1.36) and the cyclic invariance of the trace operation; ana-

lytic integration over α has been performed. The frequency integration may be performed

numerically using a Clenshaw–Curtis quadrature [74]. If a system-independent energy error

is desired, e.g., for reaction energy calculations, finer quadratures are required for larger sys-

tems; the number of quadrature points scales as O(lnN) due to its exponential convergence

[75]. In practice, however, a quadrature of ≤100 points is adequate for most small- and

medium-size molecules.

A low-rank approximation of BH is provided by the resolution-of-the-identity (RI) approxi-

mation [76, 77]. This is achieved by introducing an auxiliary basis set of Naux atom-centered

Gaussian functions labeled by P,Q, . . . and setting SiaP =
∑

Q(ia|Q)[L−1]QP in Equa-

tion (1.35), where (ia|Q) is a three-index Coulomb integral and L is the Cholesky factor

of the Naux × Naux matrix of two-index Coulomb integrals (P |Q). Here and henceforth, S
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with the RI approximation is employed unless stated otherwise. An important property of

RI-RPA is that the RI-RPA correlation energy is variationally bounded from below by the

RPA correlation energy obtained without RI. This was first shown in [21] under the assump-

tion that the RI error in the direct ring-CCD amplitudes is negligible. A more rigorous proof

free from this assumption is provided in [78] and is detailed in Appendix B. Owing to this

property, RI-RPA calculations can be highly accurate with auxiliary basis sets of ∼3–5 times

the size of the corresponding AO basis sets. Auxiliary basis sets optimized for RI-MP2 ener-

gies [79] lead to errors on the order of 10 microhartree per atom in RPA calculations, which

is below the inherent method error in typical applications [21]. The variational boundedness

also allows for optimizing auxiliary basis sets specifically for RI-RPA. Historically, the RI

approximation is referred to as density fitting in the Coulomb metric, which is equivalent

to least-squares fitting of electrostatic fields generated by particle–hole pairs [77]. While

density fitting methods in local metrics may lead to more favorable scaling [80–82], their

lack of variational boundedness can give rise to larger errors [77, 81, 82]. Schemes to recover

[83] or partially recover [84] variational boundedness for density fitting in local metrics are

still under active development.

Since the number of auxiliary basis functions Naux scales linearly with the system size N , the

computation of Q at a specific frequency point scales as O(N4), resulting in a O(N4 lnN)

RI-RPA implementation using Equation (1.46) with system-independent quadrature error.

Further lowering of the computational complexity has been achieved by decomposing Π0

using Laplace transform [85, 86] and frequency-domain [87] techniques with density fitting

in the least-squares (or overlap) metric [80] or tensor hypercontraction [88], and by local

domain coupled-cluster methods [89]. These algorithms scale favorably for large systems

with small basis sets, but come at the cost of larger prefactors compared with higher-scaling

approaches and, in some cases, additional parameters. Thus, the quartic scaling algorithm

may be more efficient than lower-scaling alternatives up to well above 100 atoms in typical

applications. Timing results for the S12L benchmark set is provided in Reference [12],
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where an effective scaling of N3.49 is observed for the O(N4 lnN) RI-RPA implementation

in Turbomole 7.0.
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Chapter 2

Perturbative Corrections to

Random-Phase Approximation

Energies

This chapter contains verbatim excerpts, reprinted with permission, from G. P. Chen, M.

M. Agee, and F. Furche, J. Chem. Theory Comput. 14, 5701–5714, 2018. Copyright 2018

American Chemical Society. The material in this chapter is based upon work supported by

the National Science Foundation under CHE-1464828 and CHE-1800431.
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2.1 Introduction

Electronic structure methods based on the random phase approximation (RPA) [9–12] yield

consistent accuracy at reasonable computational cost for a wide range of applications in

quantum chemistry and solid-state physics. Compared with finite-order perturbation meth-

ods, such as second-order Møller–Plesset (MP2) theory [90], RPA is relatively insensitive to

the gap size and free of the divergence problem for metallic systems [91]. RPA captures long-

range correlation effects and “seamlessly” accounts for dispersion interactions [27, 92, 93].

While RPA takes into account some of the strong correlation arising in dissociating elec-

tron pair bonds [6, 17], it has long been recognized that RPA is qualitatively deficient at

higher electron coupling strengths and short interaction range [23, 38], as reflected in its

poor performance for ionization and atomization energies [10].

The formal and computational appeal of RPA has triggered a search for simple remedies

to these deficiencies. Corrections based on ground-state density functional theory (DFT)

[94, 95], including range-separated RPA methods [96–99], incorporate semilocal density func-

tionals to correct RPA [100, 101]. “Local-field corrections” to RPA were pioneered by Singwi,

Tosi, Land, and Sjölander (STLS) in the 1960s [38] and may be viewed as an early, physi-

cally inspired attempt to devise approximate exchange–correlation (XC) kernels accounting

for short-range correlations beyond RPA. Further developments along these lines include

the inhomogeneous STLS method [102], semilocal kernels [103], local [104] and nonlocal

[105, 106] energy-optimized kernels, as well as model kernels derived from the uniform elec-

tron gas by momentum space cutoff [107, 108], frequency-dependent effective interaction

models [109], and jellium-with-gap models [110]. While these corrections can be designed to

deliver high accuracy for certain applications, uniform improvement upon RPA for a wide

range of systems and properties at moderate computational cost has been difficult to achieve.

The notion of “beyond-RPA corrections” is based on the implicit assumption that beyond-
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RPA correlation is, in some sense, small compared with correlation effects captured by RPA.

For the uniform electron gas, conventional many-body perturbation theory diverges in every

order due to the long range of the bare electron-electron Coulomb interaction [15]. On

the other hand, the effective interaction accounting for beyond-RPA correlation is shorter

ranged, at least for high to intermediate densities [32], suggesting that perturbation theory

may be an effective means to derive beyond-RPA corrections. This led to the development

of second-order perturbative corrections to RPA, starting with the second-order screened

exchange (SOSEX) method [23, 39–41]. Unlike RPA, SOSEX is one-electron self-correlation-

free [18], but it incorrectly dissociates covalent bonds within spin-restricted formalism [18]

and produces less accurate reaction barrier heights than RPA [22, 28, 42]. RPA-renormalized

many-body perturbation theory is based on a perturbative expansion of the Bethe-Salpeter

equation (BSE) [36, 66] starting from RPA as zero-order solution [42]. The second-order

RPA-renormalized perturbation method using the approximate exchange kernel (AXK)—

hereafter referred to as the AXK method—yielded more accurate energetics than RPA for

small molecules, consistently improving upon RPA for ionization and atomization energies

[42]. These results also suggested that AXK preserves the accuracy of RPA and outperforms

SOSEX for reaction barrier heights. Nevertheless, the lack of efficient implementations has

hampered a thorough assessment of AXK in the past.

In this chapter, we present two AXK algorithms that scale as O(N5 lnN) and O(N4 lnN)

with the system size N . These algorithms also enable efficient SOSEX and bare second-order

exchange (SOX) calculations. Low-scaling SOSEX and AXK algorithms have been proposed

in References [21, 22, 42, 111–114] and a SOSEX implementation with sub-cubic effective

scaling for linear alkanes has been recently reported in Reference [114]. Our primary aim is to

enable efficient calculations for moderately large molecular systems with constant, predeter-

mined accuracy independent of system size. This enables a critical assessment of second-order

beyond-RPA corrections using diverse benchmark sets for reaction barrier heights, reaction

energies, and noncovalent interaction energies. We also present tests on dissociation energies
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of charged dimers where RPA self-correlation error is pronounced, and of transition-metal

compounds that feature diverse bondings. Finally, we discuss whether, and under what

circumstances, perturbative corrections to RPA are worthwhile.

2.2 Theory

As introduced in Section 1.4, the AXK beyond-RPA correlation energy

∆EC AXK = − 1

2π

∫ 1

0

dα
(
α

∫ ∞
0

dω
〈
VΠRPA

α (iω)KΠRPA
α (iω)

〉)
(2.1)

correctly recovers the second-order exchange (SOX) energy ∆EC SOX but also contains higher-

order terms that amount to screening at higher coupling strength. Using the Equation (1.39)

and the cyclic invariance of the trace operation, we may write

〈VΠRPA
α (iω)KΠRPA

α (iω)〉 = 〈ηTΠRPA
α (iω)KΠRPA

α (iω)η〉

= 〈
(
1 + αQ(ω)

)−1
ηTΠ0(iω)KΠ0(iω)η

(
1 + αQ(ω)

)−1〉
= 〈η

(
1 + αQ(ω)

)−2
ηTΠ0(iω)KΠ0(iω)〉,

and therefore obtain

∆EC AXK = − 1

2π

∫ 1

0

dα

∫ ∞
0

dω
〈
αW2,α(iω)Π0(iω)KΠ0(iω)

〉
(2.2)

= − 1

2π

∫ ∞
0

dω
〈
W̄2(iω)Π0(iω)KΠ0(iω)

〉
, (2.3)

where the effective interaction W2,α(iω) = η
(
1 + αQ(ω)

)−2
ηT is more strongly screened

than the RPA effective interaction W1,α(iω) defined in Equation (1.40). W̄2, the coupling-

26



strength average of αW2,α, can be integrated analytically [42, 105, 114]:

W̄2(iω) =

∫ 1

0

dα
(
αW2,α(iω)

)
= ηf2(Q(ω))ηT, (2.4)

where the function f2 is defined on [0,∞) according to Table 2.1. We may rearrange Equa-

tion (2.3) and write

∆EC AXK = − 1

2π

∫ ∞
0

dω
〈
P2(ω)BX

〉
, (2.5)

where

P2(ω) = 4G(ω)Sf2(Q(ω))STG(ω), (2.6)

P2(ω) is positive semidefinite due to the positive semidefiniteness of Q(ω) and the positivity

of the function f2. As a result, ∆EC AXK is always positive, mitigating the overcorrelation

problem of RPA. − 1
π

∫∞
0

dωP2(ω) is an exchange-type correction to the coupling-strength-

averaged two-electron reduced density matrix (2RDM); it diminishes the 2RDM, and there-

fore the pair density, when particle–hole pairs interact through exchange. As a result, self-

correlation of same-spin electrons is removed exactly to second order, and approximately to

higher orders in the correlation energy [42].

Similarly, the SOX and SOSEX beyond-RPA correlation energies within the ACFD theorem

can be cast into the forms of Equations (2.2), (2.3), and (2.5) [22], with altered effective

interactions labeled by subscripts 0 and 1, respectively. Analytic coupling strength integra-

tion can also be performed [21, 111]. The corresponding Wα and f are defined in Table 2.1.

The f functions are plotted in Figure 2.1. It is readily shown that the AXK beyond-RPA

correlation correction is always lower than the SOSEX correction, which is in turn lower

than the SOX correction.
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Table 2.1: Definitions of the effective interaction Wα and the function f for different second-
order beyond-RPA methods

Method Subscript Wα(iω) f(x)

SOX 0 V = ηηT 1/2

SOSEX 1 η
(
1 + αQ(ω)

)−1
ηT −x−2 ln(1 + x) + x−1

AXK 2 η
(
1 + αQ(ω)

)−2
ηT x−2 ln(1 + x)− x−1(1 + x)−1

0.0 0.5 1.0 1.5 2.0 2.5 3.0

x

0.0

0.1

0.2

0.3

0.4

0.5

f(x
)

SOX
SOSEX
AXK

Figure 2.1: The function specifying the coupling-strength-averaged effective interaction for
a beyond-RPA exchange correction method (see Table 2.1). Reprinted with permission from
Reference [78], Copyright 2018 American Chemical Society.

For each method, f is a function of Q(ω) and characterizes the coupling-strength-averaged

effective interaction due to screening. As shown in Figure 2.1, the AXK f2 function decays

more rapidly than its SOSEX and SOX counterparts. Since the SOSEX effective interaction

W1,α(iω) is identical to that of RPA, the AXK screening is stronger than the RPA screening

particularly for large eigenvalues of Q(ω). For the uniform electron gas with high density,

large eigenvalues of Q(ω) originate from small momentum transfers [115, 116], which cor-

respond to long-range inter-electron distances; therefore, the AXK correction to the pair

density in the long-range region is strongly attenuated, and its main effects are in the short-

range region. This is consistent with the observation that beyond-RPA correlation in the

uniform electron gas is short ranged at high and intermediate densities [14, 116, 117].
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2.3 Implementations

2.3.1 Molecular Orbital Based AXK Algorithm

A straightforward evaluation of the integrand of Equation (2.5) scales as O(N6) since all the

matrices therein are of NhNp ×NhNp dimension. The scaling is reduced to O(N5) with the

RI approximation since ∆EC AXK may be expressed in terms of matrices that either scale as

N2 or N3 or may be computed on the fly.

With RI, the dimension of the Q(ω) matrix defined in Equation (1.41) is Naux × Naux and

scales quadratically with N . An eigen decomposition of Q(ω) can be readily performed with

O(N3) operations, yielding

Q(ω) = X(ω)q(ω)XT(ω). (2.7)

A symmetric decomposition P2(ω) = R(ω)RT(ω) thereby follows, where

R(ω) = 2G(ω)SX(ω)(f2(q(ω)))1/2 (2.8)

is a NhNp × Naux matrix. For a given ω, R(ω) and P2(ω) can be constructed with O(N4)

and O(N5) operations, respectively. We drop the subscript 2 in the following, since the same

algorithm can also be applied to SOX and SOSEX.

The frequency integration can be performed using the same Clenshaw–Curtis quadrature

as in the RI-RPA algorithm [21] with quadrature points and weights denoted as {ωI} and

{wI}, respectively, where I = 1, . . . , Ng. Since the integration is mapped to an equidistant

quadrature on the interval [0, π/2], a nested quadrature rule can be designed. The error of

the Clenshaw–Curtis quadrature decreases exponentially with Ng [74]. Therefore, an extra
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O(lnN) scaling factor arises if size-independent accuracy is desired.

Algorithm 1: MO based RI-AXK algorithm. Index loops are implied if not explicitly

shown. ωI and wI are the frequency quadrature points and weights. For simplicity, the

ωI dependence of various quantities are not explicitly indicated.

Compute S (1)

for ωI do

Compute and decompose Q (2)

for I block do

for i ∈ I do

RiaP ← 2GiaSiaQXQPf
1/2(qP ) (3)

end

for j ≥ min I do

RjbP ← 2GjbSjbQXQPf
1/2(qP ) (4)

for I 3 i ≤ j do

Piajb ← RiaPRjbP (5)

(ja|ib)← SjaPSibP (6)

∆EC AXK ← wIPiajb(ja|ib)/π (7)

end

end

end

end

Straightforward application of the RI approximation to BX leads to O(N5 lnN) scaling, as

outlined in Algorithm 1. The three-index array S is precomputed and stored on disk. It

is read in asynchronously per block I of occupied orbitals and per j index in the inner

occupied-orbital loop. All other quantities are computed in memory. This algorithm is

easily parallelized using shared-memory parallel basic linear algebra subprograms (BLAS)

[118]. The frequency integration loop is kept outermost to facilitate future implementations

of hierarchical distributed-memory parallelism. The higher asymptotic scaling of this algo-

rithm compared with that of RI-RPA reflects the well-known result that RI methods are

significantly less efficient for exchange-type contractions than for direct-type contractions.
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2.3.2 Atomic Orbital Based AXK Algorithm

The scaling of evaluating ∆EC AXK can be further reduced if the exchange-type contraction

in Equation (2.5) is computed using integral-direct techniques [119]. This requires transfor-

mation of R(ω), and therefore P(ω), to the atomic orbital (AO) basis according to

RλµP (ω) =
∑
ia

CλiCµaRiaP (ω), (2.9)

where C is the orbital coefficient matrix; Greek indices denote AO basis functions. We use

the same symbol for quantities in the molecule orbital (MO) and AO representations; they

can be distinguished by the set of indices being used. The AXK correction is obtained by

contracting the AO exchange integrals with the transformed P, i.e.,

∆EC AXK =
1

2π

∫ ∞
0

dω
∑
κλµν

Pλµνκ(ω)(κλ|µν) (2.10)

Both P and the integrals are prescreened using the Cauchy–Schwarz inequality [120]. How-

ever, the screening is mainly due to the sparsity of the integrals; the sparsity of P is not

prominent, as opposed to constructing the exchange part of the Fock matrix, in which spar-

sity is enhanced by the difference density matrix technique [120]. As a result, the scaling

of integral computation is O(N2), and the construction of R(ω) and P(ω) requires O(N4)

and O(N3) operations, respectively, for a given ω. As a trade off between repeated I/O and

increasing disk storage requirement, half-transformed R(ω) indexed by iµP is precomputed

and asynchronously read in inside the inner loops. As outlined in Algorithm 2, the computa-

tional complexity scales as O(N4 lnN) after numerical frequency integration. The algorithm

is parallelized over the κ and λ loops using OpenMP [121]. Again, the numerical frequency

integration loop is outermost to enable further parallelism over distributed quadrature points
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and to facilitate more effective screening for each frequency point.

Algorithm 2: AO based RI-AXK algorithm. Index loops are implied if not explicitly

shown. The screening of µ, ν, κ, λ quadruples on every level of the nested loops is

performed.

Compute S (1)

for ωI do

Compute and decompose Q (2)

for I block do

for i ∈ I do

RiaP ← 2GiaSiaQXQPf
1/2(qP ) (3)

RiµP ← CµaRiaP (4)

end

end

for K block do

for κ ∈ K do

RνκP ← CνiRiκP (5)

end

for µ ≥ minK do

RλµP ← CλiRiµP (6)

for K 3 κ ≤ µ do

for λ do

for N block do

for ν ∈ N do

Compute (κλ|µν) (7)

end

Pλµνκ ← RλµPRνκP (8)

∆EC AXK ← wIPλµνκ(κλ|µν)/π (9)

end

end

end

end

end

end
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2.4 Computational Details

Both the MO and AO based AXK algorithms were implemented in the rirpa module of

the Turbomole quantum chemistry program package [25] and are scheduled for a future

public release. The SOX and SOSEX beyond-RPA methods were implemented similarly ac-

cording to Section 2.2. All reference KS calculations were performed in C1 point-group

symmetry using the Tao–Perdew–Staroverov–Scuseria (TPSS) meta-generalized-gradient-

approximation (meta-GGA) functional [63], which has been shown to yield uniform ac-

curacy even for transition-metal compounds [122, 123]. For the KS calculations, density

matrix and energy convergence criteria were set to 10−7 or tighter, and fine density grids of

at least m5 quality [64] were used. Core electrons were kept frozen in RPA-type calculations.

Coupling-strength-dependent AXK and SOSEX calculations without the RI approximation

were performed using the mpgrad module in Turbomole 7.2 [42].

Karlsruhe def2-series basis sets of double-ζ (SVP), triple-ζ (TZVP), and quadruple-ζ (QZVPP)

quality were used [61, 124]. The corresponding auxiliary basis sets optimized for RI-MP2

[125, 126] were used for the RI approximation in the RPA and beyond-RPA calculations.

For validation, complete basis set (CBS) limit of the correlation energy EC(∞) is estimated

using the two-point extrapolation scheme [127, 128]

EC(X) = EC(∞) + A/X3, (2.11)

where X is the cardinal number of the basis set and A is a coefficient to be determined.

The correlation consistent basis sets aug-cc-pVXZ (AVXZ; X = T, Q, 5) [129–131] and

corresponding auxiliary basis sets [126, 132, 133] were used for the basis set extrapolation

calculations. For all the correlation energy calculations using the AVXZ basis sets, the KS

energy expectation values were computed using the QZVPP basis set, which yields small

basis set superposition errors [124].
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2.5 Results

In this section, we first validate our implementations by estimating the errors due to integral

prescreening, the RI approximation, and numerical frequency integration. Timings of the

algorithms are measured using large mesityl substituted porphyrin molecules[134] as well

as benchmark sets from the GMTKN55 database for diverse reaction barrier heights (BH-

DIV10), Diels–Alder reaction energies (DARC), and interaction energies of n-alkane dimers

(ADIM6) [135, 136]. We then test the accuracy of the AXK methods using these benchmarks

as well as a benchmark set for assessing self-interaction error (SIE4x4) [135, 136] and a 3d

transition-metal reference set proposed in Reference [123]. These benchmark systems con-

tain diverse types of molecules and bonding situations featuring weak to moderately strong

correlations.

2.5.1 Integral Prescreening

In the AO based algorithm, the integral prescreening is performed according to

1

2π
wI (Pλµλµ(ωI)Pνκνκ(ωI)(κλ|κλ)(µν|µν))1/2 ≤ ε

Ng

√
Nbf

(2.12)

for a shell quadruple κ, λ, µ, ν at a frequency point ωI . Here ε is the screening threshold, and

Nbf is the number of basis functions. The 1/Ng factor guarantees that the screening error

does not increase with the number of quadrature points. The 1/
√
Nbf factor is included to

make the screening error size-independent, assuming that entries screened by Equation (2.12)

are independent and mean zero [137]. This is opposed to the recent low-scaling SOSEX im-

plementation [114], where a constant screening threshold was used for all systems. Table 2.2

summarizes the integral screening errors with various screening thresholds for ∆EC AXK of

molecules in the DARC benchmark set. ε = 10−7 is chosen for all the following AO based
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beyond-RPA calculations.

Table 2.2: Mean errors (ME) and maximum absolute errors (MXE) of ∆EC AXK (in Eh) due
to integral screening for compounds in the DARC benchmark set [138, 139] relative to values
obtained with ε = 10−10. The TZVP basis set was used.

ε 10−6 10−7 10−8 10−9

ME −2.9× 10−4 −2.4× 10−5 −1.6× 10−6 −8.5× 10−8

MXE 5.0× 10−4 4.2× 10−5 2.9× 10−6 1.6× 10−7

2.5.2 Accuracy of the RI Approximation

Two kinds of RI approximation errors arise in the present implementations. The first orig-

inates from the RI approximation of the Hartree kernel in RPA. This kind of RI error is

assumed to be similar to that in the RI-RPA algorithm, where the error is bounded thanks

to the variational boundedness of Q(ω) within the RI approximation (see Appendix B). Here

we assess the second kind of RI error, which only exists in the MO based algorithm and is

due to the RI approximation of BX. It is readily shown that this kind of RI approximation is

variational and errors are always negative. Table 2.3 summarizes the RI errors of the second

kind for molecules in the BHDIV10, DARC, and ADIM6 benchmark sets [135]. The errors

are on the order of 100 µEh for all these systems.

Table 2.3: Mean errors (ME) and maximum absolute errors (MXE) of ∆EC AXK (in Eh)
due to the RI approximation of the exchange integrals. Calculations were performed for all
the species in the BHDIV10, DARC, and ADIM6 benchmark sets [135] using the SVP and
TZVP basis sets.

BHDIV10 DARC ADIM6

SVP TZVP SVP TZVP SVP TZVP

ME −3.6× 10−4 −1.9× 10−4 −5.2× 10−4 −2.6× 10−4 −4.0× 10−4 −2.2× 10−4

MXE 6.7× 10−4 3.5× 10−4 8.3× 10−4 4.3× 10−4 8.4× 10−4 4.6× 10−4
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Figure 2.2: Mean absolute errors (MAE) and maximum absolute errors (MXE) of ∆EC AXK

due to the numerical frequency integration with varying number of quadrature points Ng

for the transition-metal reference set (TM refset)[123] and the Diels–Alder reaction energy
(DARC) benchmark set, [138, 139] using the QZVPP, AVQZ, and AV5Z basis sets. Reference
values were obtained from calculations with fine quadratures of Ng = 400. Reprinted with
permission from Reference [78], Copyright 2018 American Chemical Society.

2.5.3 Accuracy of the Quadrature

Figure 2.2 shows the numerical integration errors in AXK beyond-RPA correlation energies

for molecules in the DARC benchmark set [138, 139] and the 3d transition-metal reference

set [123]. The transition-metal reference set contains small-gap open-shell species, which

demand large numbers of quadrature points [21]. These results were obtained using the MO

based algorithm. For both sets of molecules, the errors decrease rapidly with increasing

number of quadrature points. Particularly, the exponential decay of the error is observed for

the DARC benchmark set with the QZVPP basis set. Moreover, the numerical integration

errors for ∆EC AXK are almost always positive, whereas the numerical integration errors for

EC RPA are almost always negative. The errors in the total correlation energies are on the

same order as the errors in ∆EC AXK. Generally, a quadrature with 100 points leads to sub-

mEh error due to numerical integration. For energy differences, smaller quadratures may

be used because of error cancellation. A nested Clenshaw–Curtis rule doubling Ng until a
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predetermined precision is achieved was also implemented. For benchmark purposes, very

fine frequency quadratures with 400 points were used unless otherwise stated.

2.5.4 Performance

We assess the performance of our implementations using all the molecules in the BHDIV10,

DARC, and ADIM6 benchmarks from the GMTKN55 database [135] using different basis

sets. We also carried out AXK calculations for mesityl substituted porphyrin monomer and

dimer [134] with 113 and 224 atoms, respectively, using the SVP basis set. The timing results

are shown in Figure 2.3, wherein the effective scalings are also listed. Clearly, the asymptotic

quintic and quartic scalings do not show up for these test calculations yet. Although the AO

based algorithm scales more favorably, it is less efficient for most of the small- and medium-

size molecules due to a large scaling prefactor. The AO based algorithm eventually becomes

faster than the MO based algorithm for the large mesityl substituted porphyrin dimer with

the SVP basis set, see Table 2.4. However, for calculations with quadruple-ζ basis sets,

the AO based algorithm is impractical since the prefactor becomes larger due to inefficient

integral screening.

As we shall see in the following benchmark calculations, basis sets of at least triple-ζ quality

need to be used for accurate AXK energetics. For this reason, the following benchmark

calculations were performed using the MO based algorithm.

Table 2.4: Timing results (wall time in hours) for the mesityl substituted porphyrin monomer
(NiC56H52N4) and dimer (Ni2C112H100N10). [134] The calculations were performed on a 20-
core Intel Xeon E5-2680 2.80 GHz workstation using a maximum of 80 GiB of memory.

System Nbf tMO tAO

NiC56H52N4 1196 8.53 21.20
Ni2C112H100N10 2402 212.45 200.04
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Figure 2.3: Timing results for AXK total energy calculations on molecules in the BHDIV10,
DARC, and ADIM6 benchmark sets [135] as well as mesityl substituted porphyrins [134]
(SVP only) using the SVP, TZVP, and QZVPP basis sets. The effective scalings are listed
next to the fitted lines. The timings were done for calculations with Ng = 50. All calculations
were performed on a 20-core Intel Xeon E5-2680 2.80 GHz workstation using a maximum of
80 GiB of memory. Reprinted with permission from Reference [78], Copyright 2018 American
Chemical Society.

2.5.5 Benchmarks

Reaction Barrier Heights

Accurate prediction of reaction barrier heights requires a balanced treatment of static cor-

relation and self-interaction [140, 141]. Semilocal DFT generally underestimates barrier

heights [2], whereas single-reference perturbation methods are prone to overestimation [142,

143]. Here we present benchmark calculations for the BHDIV10 set, [135] which contains

10 reactions of medium-size molecules and features diverse barrier heights ranging from
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Table 2.5: Errors of calculated reaction barrier heights in kcal/mol using the QZVPP basis
set for the BHDIV10 benchmark set relative to explicitly correlated coupled-cluster results
in Reference [135]. The structures of the reactants and transition states are provided in
Reference [136].

Reaction Ref. TPSS TPSS-D3 RPA AXK SOSEX SOX

1 25.65 −10.11 −10.37 −2.33 −0.75 1.69 10.05
2 56.90 1.37 0.94 −1.40 0.84 4.27 14.38
3 36.53 −7.82 −7.21 −1.32 −0.43 1.13 5.54
4 96.17 −6.64 −7.51 −1.24 0.64 3.61 13.47
5 15.94 −7.00 −7.23 0.52 0.92 1.22 2.46
6 13.64 −4.39 −4.84 1.79 2.21 2.09 1.74
7 27.49 −2.73 −3.16 −0.18 0.91 1.71 3.77
8 50.24 −10.12 −10.29 2.88 3.38 3.59 3.88
9 65.84 −7.17 −7.19 −1.49 −0.40 1.11 5.12
10 64.93 −3.41 −3.37 −3.29 −2.50 −1.90 −3.32

ME −5.80 −6.02 −0.61 0.48 1.85 5.71
MAE 6.08 6.21 1.64 1.30 2.23 6.37
MXE 10.12 10.37 3.29 3.38 4.27 14.38

13.64 kcal/mol to 96.17 kcal/mol. Results obtained using the QZVPP basis set are shown

in Table 2.5.

As expected, the TPSS meta-GGA functional underestimates the BHDIV10 barrier heights,

except for Reaction 2, which is the isomerization from 1,4-azaborine to B-N Dewar benzene.

Adding the D3 dispersion correction [7] does not improve the results, indicating that the

dispersion interaction energy does not change much from the reactants to the transition

states. The RPA barrier heights are significantly more accurate, yet they are still statistically

slightly lower than the reference values. Compared with RPA, AXK systematically increases

the calculated barrier heights and further reduces the mean absolute error (MAE) from

1.64 kcal/mol to 1.30 kcal/mol. SOSEX yields even larger barrier heights and overcorrects

RPA, especially for reactions that break π bonds (Reactions 2, 4, and 8). These results are

consistent with previous tests on small-molecule reactions [42]. The barrier heights from the

bare SOX correction are too high, as expected from the reduced KS gaps of transition states

relative to those of the reactants. The poor accuracy of bare SOX reflects the fact that the
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SOX coupling-strength integrand is linear in α (see Equation (2.2) and Table 2.1); thus, bare

SOX only works for very weakly correlated systems such as the uniform electron gas in the

high-density limit or weak interactions of closed-shell systems at large separation, but falls

short even for the slightly stronger correlations present in the transition states in our test

calculations.

More extensive tests using different basis sets are summarized in Table S1 in the Supporting

information of Reference [78]. The basis set convergence for RPA and AXK is significantly

slower than that for semilocal DFT; as a result, basis sets of at least triple-ζ quality are

required to make an AXK calculation of energy differences worthwhile.

Diels–Alder Reaction Energies

A Diels–Alder (DA) reaction is an example of pericyclic reaction and involves concertedly

breaking and forming π and σ bonds. Semilocal DFT predicts DA reaction energies that

are less exothermic than those of explicitly correlated coupled-cluster calculations at CBS

limit [135, 138]. It has been suggested that the errors are due to self-interaction [138] and

intramolecular dispersion interactions[144]. RPA has been shown to be quite accurate for

DA reaction energies; however, the RPA+ short-range semilocal correction method[95] and

SOSEX lead to systematic over- and underestimation, respectively [144].

In Table 2.6, we present reaction energy calculations on a set of 14 DA reactions (the DARC

benchmark) [138, 139]. We note in passing that basis sets of at least triple-ζ quality are

necessary for RPA-type calculations, as shown in Table S2 in the Supporting Information of

Reference [78]. As with the results in Reference [138], semilocal DFT calculations with the

TPSS functional overestimate the DA reaction energies. The description of dispersion inter-

actions is indeed important as indicated by the TPSS calculations with the D3 dispersion

correction. The RPA reaction energies are within chemical accuracy, reflecting that RPA
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Table 2.6: Errors of calculated reaction energies in kcal/mol using the QZVPP basis set for
the DARC benchmark set [138, 139] relative to explicitly correlated coupled-cluster results
from Reference [135].

Ref. TPSS TPSS-D3 RPA AXK SOSEX SOX

1 −45.4 9.23 6.22 0.91 0.31 −4.83 −22.07
2 −60.8 4.66 2.88 1.06 0.05 −4.88 −22.32
3 −29.9 9.49 5.96 −0.24 0.33 −3.12 −15.24
4 −33.6 5.00 2.69 −0.73 −0.03 −2.51 −12.23
5 −37.6 10.64 6.55 0.30 0.42 −3.78 −18.12
6 −49.0 5.90 3.07 0.35 0.07 −3.85 −17.74
7 −14.0 14.36 8.98 −0.96 0.52 −1.58 −10.53
8 −15.9 14.32 9.28 −0.79 0.47 −1.82 −11.25
9 −16.8 14.47 8.97 −0.78 0.56 −1.87 −12.06
10 −18.9 14.28 9.11 −0.53 0.60 −1.99 −12.58
11 −31.7 14.40 8.52 −0.92 0.01 −3.52 −16.77
12 −32.2 14.05 8.26 −0.70 0.18 −3.35 −16.53
13 −34.2 14.47 8.46 −0.65 0.13 −3.72 −18.23
14 −34.6 14.10 8.22 −0.42 0.30 −3.56 −17.99

ME 11.38 6.94 −0.29 0.28 −3.17 −15.98
MAE 11.38 6.94 0.67 0.29 3.17 15.98
MXE 14.47 9.28 1.06 0.60 4.88 22.32

adequately accounts for dispersion interactions and reduces self-interaction error through

the exact first-order exchange. Nevertheless, RPA slightly underestimates energies of the

reactions that yield bicyclic and tricyclic products with close-lying bridgehead carbons (Re-

actions 3, 4, 7-14) while overestimating the others. AXK almost uniformly improves upon

RPA, reducing the MAE from 0.67 kcal/mol of RPA to 0.29 kcal/mol. The AXK errors

are positive except for Reaction 4, for which the AXK error is almost zero. SOSEX, on the

other hand, worsens the RPA reaction energies, leading to appreciable negative errors. The

SOSEX results are in line with Reference [144], wherein only the first four reactions in the

DARC benchmark set were investigated. Bare SOX dramatically underestimates the reac-

tion energies, thus providing another example of the inadequacy of low-order perturbation

theory for pericyclic reactions [145]. The trends of SOSEX and SOX errors are similar. This

suggests that the screening in SOSEX is too weak to sufficiently correct bare SOX, which

becomes unphysical for higher coupling strengths.
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Noncovalent Interaction Energies

The accurate prediction of noncovalent interactions is important for, e.g., diastereoselective

reactions [146]. Accuracy within a fraction of kcal/mol is often desired for these weak inter-

actions, posing a challenging requirement for electronic structure methods. Here we test our

implementations on n-alkane dimers in the ADIM6 benchmark set [7]. Basis set extrapola-

tions using the Dunning basis sets were performed to investigate basis set convergence since

RPA noncovalent interaction energies have been shown to be strongly affected by basis set

incompleteness [147].

Table 2.7: Errors of calculated noncovalent interaction energies in kcal/mol using the QZVPP
basis set and 3-4 extrapolated complete basis set (CBS) limit for n-alkane dimers in the
ADIM6 benchmark set [7] relative to explicitly correlated coupled-cluster results in Refer-
ence [135].

Dimer Ref. TPSS TPSS-D3 RPA AXK SOSEX SOX

QZVPP
(C2H6)2 1.34 −1.76 0.22 −0.31 −0.27 −0.29 −0.38
(C3H8)2 1.99 −2.71 0.27 −0.37 −0.33 −0.36 −0.51
(C4H10)2 2.89 −4.03 0.38 −0.50 −0.46 −0.50 −0.72
(C5H12)2 3.78 −5.32 0.41 −0.63 −0.57 −0.63 −0.91
(C6H14)2 4.60 −6.59 0.56 −0.68 −0.62 −0.69 −1.05
(C7H16)2 5.55 −8.05 0.40 −0.80 −0.73 −0.80 −1.21

ME −4.75 0.37 −0.55 −0.50 −0.54 −0.79
MAE 4.75 0.37 0.55 0.50 0.54 0.79
MXE 8.05 0.56 0.80 0.73 0.80 1.21

3-4 CBS limit
(C2H6)2 1.34 −0.33 −0.28 −0.28
(C3H8)2 1.99 −0.51 −0.42 −0.43
(C4H10)2 2.89 −0.73 −0.61 −0.62
(C5H12)2 3.78 −0.95 −0.79 −0.79
(C6H14)2 4.60 −1.11 −0.92 −0.92
(C7H16)2 5.55 −1.34 −1.10 −1.09

ME −0.83 −0.69 −0.69
MAE 0.83 0.69 0.69
MXE 1.34 1.10 1.09

As shown in Tables 2.7, RPA, AXK, and SOSEX give similar results, with the AXK and
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SOSEX results being slightly more accurate than those of RPA. For all the three methods,

the AVTZ basis set overbinds the dimers and yields larger errors for larger systems, while the

AVQZ basis set fortuitously gives consistently small errors for all systems (Results of AVTZ

and AVQZ calculations are provided in Table S3 in the Supporting Information of Reference

[78]). In the 3-4 extrapolated CBS limit, the MAEs are below 62%, 51%, and 51% of the

smallest interaction energy within the benchmark set for RPA, AXK, and SOSEX, respec-

tively. Table 2.7 also lists the results using the QZVPP basis set. Similar to the RPA case

[147], the Karlsruhe quadruple-ζ basis sets provide a good balance between computational

cost and accuracy for most practical calculations.

Charged Dimer Dissociation Energies

To assess the magnitude of self-correlation error in RPA and beyond-RPA methods, dissoci-

ation energies of radical cations of symmetric dimers contained in the SIE4x4 benchmark set

[135] were computed at various inter-monomeric distances, see Table 2.8. In these radical

cations, the positive charge is excessively delocalized in semilocal DFT, producing overbind-

ing and artificial barriers along the potential energy surface [148]. The errors are particularly

large for stretched dimers, reflecting incorrect fractional charges [149] in the semilocal DFT

picture. RPA removes self-interaction to the first order due to exact first-order exchange,

but the missing higher-order terms in the RPA correlation energy still cause significant

self-correlation error. The AXK results are consistently more accurate than the semilocal

DFT and RPA ones. In particular, AXK remains fairly accurate close to the equilibrium

structures. SOSEX is constructed to be one-electron self-correlation-free. Indeed, SOSEX is

nearly exact for H+
2 ; the small errors result from the use of TPSS densities to evaluate the

energy. The SOSEX dissociation energies are also more accurate at large dimer separations.

Nevertheless, SOSEX is less accurate than RPA and AXK for the dissociations of (NH3)
+
2 and

(H2O)+2 close to the equilibrium inter-monomeric distances. This illustrates that freedom
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Table 2.8: Errors of calculated dissociation energies in kcal/mol using the QZVPP basis set
for positively charged dimers in the SIE4x4 benchmark set [135]. The reference is explicitly
correlated coupled cluster theory [135]. For each dimer, calculations were performed at four
different inter-monomeric distances dMM measured by the ratio dMM/d

0
MM, where d0MM is the

equilibrium distance.

dMM/d
0
MM Ref. TPSS TPSS-D3 RPA AXK SOSEX SOX

(H· · ·H)+

1.00 64.4 4.82 4.82 3.42 0.83 −0.48 −2.56
1.25 58.9 7.81 7.81 4.99 1.75 −0.92 −5.60
1.50 48.7 11.23 11.24 8.22 3.71 −1.48 −12.08
1.75 38.3 14.91 14.95 15.75 9.11 −2.25 −33.41

(He· · ·He)+

1.00 56.9 25.53 25.53 14.49 5.70 −3.30 −21.99
1.25 46.9 32.40 32.41 26.39 13.96 −6.64 −66.59
1.50 31.3 40.39 40.45 41.83 27.94 −9.91 −181.69
1.75 19.1 48.28 48.42 58.36 45.54 −12.47 −460.35

(H3N· · ·NH3)
+

1.00 35.9 7.75 9.01 4.30 −0.59 −6.81 −25.22
1.25 25.9 14.29 15.25 11.49 4.24 −11.57 −78.69
1.50 13.4 20.42 20.98 20.83 13.09 −16.28 −232.54
1.75 4.9 25.81 26.08 30.49 23.95 −19.75 −658.38

(H2O· · ·OH2)
+

1.00 39.7 14.19 15.15 7.46 0.17 −11.73 −54.22
1.25 29.1 22.48 23.37 18.43 8.88 −18.80 −178.55
1.50 16.9 29.72 30.27 30.55 21.59 −24.35 −530.66
1.75 9.3 35.32 35.59 41.33 34.38 −27.90 −1462.47

ME 22.21 22.58 21.15 13.39 −10.91 −250.31
MAE 22.21 22.58 21.15 13.46 10.91 250.31
MXE 48.28 48.42 58.36 45.54 27.90 1462.47

from one-electron self-interaction does not necessarily translate to many-electron systems

[150, 151].

Radical cations at stretched inter-monomeric distances are highly challenging for beyond-

RPA perturbative methods, as reflected by the AXK and SOSEX MAEs being greater than

10 kcal/mol for the SIE4x4 benchmark. The catastrophic failure of bare SOX for these

systems also suggests that perturbative corrections are inadequate here, and points to a
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need for self-consistent approaches [152].

Transition-Metal Compound Dissociation Energies

Finally, we assess the implemented methods using a set of 3d transition-metal dissociation

reactions proposed in Reference [123]. This benchmark contains dissociation reactions of

22 transition-metal compounds that represent diverse types of transition-metal bonding.

Many species involved in these reactions are small-gap open-shell systems, which provide a

demanding test for electronic structure methods. The reference values are based on high-

quality experimental data and are corrected for zero-point and thermal vibrational energies

and scalar-relativistic effects.

All calculations were performed using TPSS structures reported in Reference [123] except

for Fe2Cl4 and CoCl3, for which D2h and D3h structures, respectively, were found to yield

lower ground-state energies [153]. As summarized in Table 2.9, the accuracy of each method

varies considerably with different types of compounds. The TPSS results confirm that the

errors from meta-GGA calculations are around 10 kcal/mol per bond [123]. In general, RPA

reduces the errors, but there exist cases where RPA gives less accurate results than TPSS,

e.g., metal dimers. The AXK MAE is slightly higher than that of RPA, yet this deterioration

is due to only a few types of molecules, as will be discussed below. In general, AXK performs

well if the corresponding RPA error is already small. SOSEX and SOX are generally less

accurate than AXK.

For RPA and the beyond-RPA methods, the metal dimers give rise to the largest errors in

the predicted dissociation energies. These dimers, Sc2, V2, and Ni2, exhibit strong static

correlation due to the left-right effect and the near degeneracy of the 4s and 3d subshells.

[154] For these systems, semilocal functionals such as TPSS give relatively accurate results

in comparison with hybrid functionals[123] and RPA. This trend is related to the XC hole
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being short ranged for systems with strong static correlation[155]. The deficiency of RPA

in accounting for strong static correlation renders it a poor starting point for perturbative

corrections. Consequently, the AXK corrections are in the wrong direction, and both SOSEX

and SOX give qualitatively wrong results.

Another type of molecules where the AXK error is significantly larger than that of RPA

is the monoxides, particularly MnO. Again, SOSEX and SOX errors are even larger. This

trend is consistent with previous calculations on metal monoxides with structures optimized

using each respective method. Nevertheless, Reference [42] points out that although AXK

worsens RPA for dissociation energies, the former leads to smaller errors in bond lengths

and frequencies.

Somewhat surprisingly, for CoH dissociation, bare SOX is more accurate than AXK and

SOSEX; A similar trend is observed for the homolytic dissociation of ferrocene, 1/2FeCp2 →

1/2Fe + Cp. The good accuracy of bare SOX in these cases might result from fortuitous

cancellation of higher-order corrections which is incompletely captured by AXK and SOSEX.

To further understand this result, we consider the heterolytic dissociation energy of ferrocene,

i.e. 1/2FeCp2 → 1/2Fe2+ + Cp−, where the experimental value after correcting for scalar-

relativistic, zero-point vibrational, and thermal energies is 318 kcal/mol [156]. With the

QZVPP basis set, RPA overestimates the homolytic dissociation energy by 6.8 kcal/mol,

while AXK and SOSEX underestimate by 4.4 kcal/mol and 13.8 kcal/mol, respectively.

Unlike the homolytic ferrocene dissociation, the heterolytic dissociation energy is severely

underestimated by bare SOX, which yields an error of -64.2 kcal/mol. The magnitude of

the SOX error is comparable to that of the MP2 CBS calculation in the literature, which is

59 kcal/mol too high. [157] The large negative SOX error suggests that ferrocene is relatively

strongly correlated, and thus confirms the error cancellation in the SOX calculation for the

homolytic ferrocene dissociation.
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Table 2.9: Errors of calculated dissociation energies in kcal/mol for the 3d transition-metal
reference set relative to back-corrected experimental values from Reference [123].

Reaction Ref. TPSS TPSS-D3 RPA AXK SOSEX SOX

QZVPP
Sc2 →2Sc 39.8 −7.51 −7.47 −19.70 −32.43 −48.16 −158.78
V2 →2V 64.6 −0.12 −0.12 −15.97 −34.60 −60.93 −293.63

Ni2 →2Ni 49.7 8.31 8.34 −11.80 −33.72 −84.57 −803.58
CrH→Cr+H 45.7 11.72 11.72 6.75 6.06 2.41 −8.65

MnH→Mn+H 32.3 20.04 20.07 3.19 1.77 2.06 3.43
CoH→Co+H 46.6 17.87 17.88 14.41 16.47 13.87 2.91
TiO→Ti+O 158.8 17.37 17.37 0.40 −3.28 −9.85 −49.01

MnO→Mn+O 91.1 29.21 29.21 −6.01 −20.00 −35.52 −107.22
CuO→Cu+O 63.7 9.49 9.49 −0.90 −5.91 −17.75 −71.73
ScF→Sc+F 143.0 8.44 8.44 −6.00 −5.65 −7.20 −20.11
CrF→Cr+F 105.1 12.82 12.83 1.71 1.72 −0.84 −15.39
CuF→Cu+F 102.5 −2.91 −2.90 −11.73 −10.02 −12.23 −27.84

Fe2Cl4 →2FeCl2 35.0 −8.29 −6.42 −3.79 −1.86 −0.07 4.09
CoCl3 → 1

2
Cl2+CoCl2 16.7 9.48 10.50 1.71 −9.78 −21.24 −90.46

Fe(CO)5 →Fe(CO)4+CO 42.2 4.31 6.00 −3.07 −2.73 1.50 15.97
Ni(CO)4 →Ni(CO)3+CO 24.9 3.95 5.17 −0.36 −2.75 −2.71 −14.08

1
2
CrBz2 → 1

2
Cr+Bz 31.8 6.90 10.06 8.75 3.13 −2.72 −37.84

1
2
FeCp2 → 1

2
Fe+Cp 80.1 14.67 18.61 11.88 8.25 8.62 6.65

ME 8.65 9.38 −1.70 −6.96 −15.30 −92.51
MAE 10.75 11.26 7.12 11.12 18.46 96.19
MXE 29.21 29.21 19.70 34.60 84.57 803.58

3-4 CBS limit
Sc2 →2Sc 39.8 −20.52 −32.57 −48.04
V2 →2V 64.6 −16.88 −28.71 −55.50

Ni2 →2Ni 49.7 −11.42 −32.15 −82.81
CrH→Cr+H 45.7 4.01 5.46 2.18

MnH→Mn+H 32.3 3.23 1.45 1.76
CoH→Co+H 46.6 15.54 18.52 13.23
TiO→Ti+O 158.8 2.51 −0.62 −7.01

MnO→Mn+O 91.1 −3.63 −16.73 −32.16
CuO→Cu+O 63.7 −2.09 −5.80 −17.46
ScF→Sc+F 143.0 −5.33 −4.68 −6.09
CrF→Cr+F 105.1 0.56 2.27 0.05
CuF→Cu+F 102.5 −11.36 −9.25 −11.35

Fe2Cl4 →2FeCl2 35.0 −1.94 0.13 1.47
CoCl3 → 1

2
Cl2+CoCl2 16.7 0.67 −10.39 −21.75

Fe(CO)5 →Fe(CO)4+CO 42.2 −4.37 −3.54 0.81
Ni(CO)4 →Ni(CO)3+CO 24.9 −4.56 −5.64 −5.37

1
2
CrBz2 → 1

2
Cr+Bz 31.8 0.32 −0.66 −5.70

1
2
FeCp2 → 1

2
Fe+Cp 80.1 8.53 6.82 7.41

ME −2.60 −6.45 −14.80
MAE 6.53 10.30 17.79
MXE 20.52 32.57 48.04
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2.6 Discussion
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Figure 2.4: Correlation between the absolute error of AXK and the ᾱ value for all the QZVPP
energy difference calculations for the BHDIV10, DARC, ADIM6, and SIE4x4 benchmark sets
[135] as well as the 3d transition-metal reference set [123]. Reprinted with permission from
Reference [78], Copyright 2018 American Chemical Society.

The above results suggest a simple explanation for when and why perturbative corrections

to RPA break down: At higher coupling strength, any low-order corrections and RPA itself

eventually become unphysical. A qualitative measure of correlation strength is the relative

difference between the AXK and SOX beyond-RPA correlation energies,

ᾱ =
∆EC SOX −∆EC AXK

∆EC SOX
. (2.13)

ᾱ is non-negative and goes to zero as AXK approaches SOX for small coupling. With increas-

ing coupling strength, AXK but not SOX is screened, giving rise to more positive ᾱ values.

ᾱ may be understood as an effective average coupling strength for beyond-RPA correlation.

This concept may be extended to energy differences by defining ᾱ as the maximum of the

individual ᾱ values of all involved species.

Figure 2.4 shows that ᾱ is positively correlated with the absolute error of AXK. When ᾱ
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Figure 2.5: Coupling-strength dependence of ∆UC AXK
α , ∆UC SOSEX

α , and ∆UC SOX
α for Ni2.

The area under each curve is the beyond-RPA correlation energy of the corresponding
method. The AXK and SOSEX calculations were performed with a 7-point Gauss–Legendre
coupling-strength quadrature using the QZVPP basis set. The effective coupling strength ᾱ
equals the relative difference of the area under the SOX and AXK curves. Reprinted with
permission from Reference [78], Copyright 2018 American Chemical Society.

is greater than 0.5, the SOX beyond-RPA correlation energy is more than twice of that of

AXK. For such systems, AXK typically does not deliver acceptable accuracy. This suggests

that ᾱ may be used as a diagnostic for the reliability of AXK.

Large ᾱ values, however, do not always imply incorrect results: For the first CO dissociation

of Fe(CO)5 and the homolytic dissociation of ferrocene, the ᾱ values are 0.51 and 0.58, but

the AXK errors are −2.71 kcal/mol and 8.62 kcal/mol, respectively. This unexpectedly good

accuracy of AXK for these two reactions may be attributed to error cancellation between

the reactants and the products.

Ni2 exhibits an ᾱ value of 0.79, the largest among all species in the 3d transition-metal

reference set. (Even higher ᾱ values are observed for charged dimers in the SIE4x4 benchmark

set, but not at equilibrium distances.) The coupling-strength integrands ∆UC
α of the beyond-

RPA correlation energy of Ni2 for SOX, SOSEX, and AXK are plotted in Figure 2.5; the
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total beyond-RPA correlation energy is the coupling strength average [13, 158]

∆EC =

∫ 1

0

dα∆UC
α . (2.14)

Although the ∆UC AXK
α curve tends to the linear SOX integrand at α = 0, it is rapidly

screened at larger coupling strength, which is reflected in the high value of ᾱ. Figure 2.5

also reveals a simple geometrical meaning of ᾱ: It measures the relative difference of the

area under the SOX and AXK coupling strength integrands. For Ni2, even the strong AXK

screening is insufficient, as reflected in the large AXK error of the Ni2 binding energy.

2.7 Conclusions

Two efficient and robust implementations of the AXK methods using the RI approximation

and numerical frequency integration were presented: The AO based O(N4 lnN) algorithm

is fast for molecules of over 200 atoms with small basis sets, while the MO based O(N5 lnN)

algorithm enables calculations on a single workstation computer for molecules of around

100 atoms with triple- and quadruple-ζ basis sets, which are necessary for accurate energy

difference predictions. The bare SOX and SOSEX beyond-RPA correlation energies can

also be computed using these algorithms, facilitating comparison of these methods for large

systems.

The AXK method yields improved accuracy for ground-state energy differences of systems

with relatively weak correlation: Systematic improvement over RPA is observed for reac-

tion barrier heights, reaction energies, and noncovalent interaction energies of main-group

compounds. In these benchmarks, AXK reduces RPA errors by 25-50% and outperforms SO-

SEX. In particular, for the DARC benchmark, the AXK errors are less than half of the RPA

errors on average and are an order of magnitude lower than those of SOSEX. These systems
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are characterized by relatively small average coupling strengths ᾱ, and thus perturbative

corrections are viable. For these weakly correlated systems, including higher-order terms in

the geometric series expansion of Equation (1.33), along the lines recently proposed by Bates

and co-workers [158], is likely to yield further accuracy gains. The increased computational

effort of AXK compared with bare RPA may be particularly worthwhile for systems with

small but non-negligible ᾱ values, where bare perturbation theory such as MP2 is insufficient

and coupled cluster methods are too costly.

For systems with strong correlation, indicated by effective coupling strength values of 0.5 or

above, perturbative beyond-RPA corrections break down, because the underlying assumption

that “XC kernel corrections” are small is no longer justified. Indeed, RPA itself relies on

this assumption, and becomes an increasingly unphysical reference with increasing coupling

strength. Such strongly correlated systems include transition metal compounds exhibiting

strong static correlations or metallic systems at low electron density.

An additional source of errors independent of the effective coupling strength is inaccuracies

in the KS input orbitals, or “density-driven errors” [159]. These types of errors are addressed

by variational self-consistent approaches such as generalized KS RPA [152].

51



Chapter 3

Computational Studies of Rare-Earth

and Actinide Complexes with

Unconventional Oxidation States

This chapter contains verbatim excerpts from several published works. Sections 3.1 and 3.4

contain excerpts, reprinted with permission, from C. J. Windorff, G. P. Chen, J. N. Cross,

W. J. Evans, F. Furche, A. J. Gaunt, M. T. Janicke, S. A. Kozimor, and B. L. Scott, J. Am.

Chem. Soc. 139, 3970–3973, 2017. Copyright 2017 American Chemical Society. Section 3.2

consists of excerpts, reprinted with permission, from D. H. Woen, G. P. Chen, J. W. Ziller,

T. J. Boyle, F. Furche, and W. J. Evans, Angew. Chem. Int. Ed. 56, 2050–2053, 2017.

Copyright 2017 John Wiley & Sons, Inc. Section 3.3 consists of excerpts, reprinted with

permission, from D. H. Woen, G. P. Chen, J. W. Ziller, T. J. Boyle, F. Furche, and W. J.

Evans, J. Am. Chem. Soc. 139, 14861–14864, 2017. Copyright 2017 American Chemical

Society. The material in this chapter is based upon work supported by the National Science

Foundation under CHE-1464828.
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3.1 Introduction

One critical step in characterizing the chemical behavior of any element involves establishing

its range of accessible oxidation states. Such understanding provides crucial information for

predicting chemical behavior and physical properties. Oxidation state diversity is central

to the chemistry and physics of an element. Studies defining accessible oxidation states

have been pursued for over 100 years. Indeed, the boundaries of oxidation states are often

presumed to be established, and new oxidation states are not expected.

Lanthanide (Ln) elements typically occur in the +3 oxidation state with 4fn electron con-

figurations [160]. The compact and low-lying 4f orbitals in the Ln3+ ions are only weakly

perturbed by the chemical environment, leading to mostly ionic bonding [161]. This tradi-

tional view of lanthanides was overturned by Lappert and co-workers [162] and by Evans

and co-workers [163, 164], as Ln2+ complexes were discovered for the entire lanthanide series,

excluding promethium. Unlike the previously known Ln2+ ions with 4fn+1 configurations,

the newly discovered Ln2+ ions, La2+, Ce2+, Pr2+, Gd2+, Tb2+, Ho2+, Er2+, Lu2+, are stabi-

lized by the occupation of a 5dz2 orbital in tris(cyclopentadienyl) coordination environment

[162–166]. Consequently, these new Ln2+ ions are more transition-metal-like and exhibit

unique physical and chemical properties [167].

The discovery of the non-traditional lanthanide +2 ions has raised interest in the search of

new oxidation states of other metals. This chapter presents two new ions, Sc2+ and Pu2+,

with a focus on the role electronic structure calculations played in their identification. In Sec-

tion 3.2, the first crystallographically characterized Sc2+ complex, [Sc(NR2)3]
– (R = SiMe3),

is introduced. Consistent with the experimental EPR spectrum, DFT calculations indicate

a 3d1 ground state, which is analogous to the Ln2+ complexes with 4fn5d1 metal valence

configurations. The [Sc(NR2)3]
– complex exhibits unusual chemical reactivity, e.g., the re-

duction of N2 to form an end-on (N=N)2− complex of Sc3+, {[(R2N)3Sc]2[µ-η1:η1-N2]}2−, as
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shown in Section 3.3. Section 3.4 presents the first crystallographically characterized Pu2+

complex, [PuCp”3]
−, Cp” = C5H3(SiMe3)2. Evidence provided by DFT calculations is im-

portant for the identification of the formal +2 oxidation state of Pu. This discovery, along

with the more recent discovery of Np2+ [168], expands the examples of actinide (An) analogs

of the new Ln2+ complexes. Theoretical calculations indicate more variable 6d occupations

in these An2+ complexes [168–172], providing opportunities for richer redox chemistry. The

applicability of RPA and beyond-RPA methods is discussed in Section 3.5. Concluding

remarks are given in Section 3.6.

3.2 A Tris(amide) {Sc[N(SiMe3)2]3}− Complex of Non-

traditional +2 Scandium Ion

3.2.1 Introduction

Scandium is attractive for theoretical studies since it has the lowest atomic number of any

transition metal. However, the understanding of scandium chemistry often lags behind

the other transition metals due to the experimental difficulty of working with this small

electropositive element [173–184]. The +3 oxidation state is predominant for Sc in molecular

complexes in solution with only six examples reported in other oxidation states: one Sc0

complex, Sc(η6-C6H3
tBu3)2 [179, 180], three Sc+ complexes, [{(η5-P3C2

tBu2)Sc}2(µ-η6:η6-

P3C3
tBu3)] [181], [Sc(η5-P3C2

tBu2)(µ-η2:η5-P3C2
tBu2)Sc(η5-P3C2

tBu2)] [182], and

(LMgBr)2ScBr (L = Et2NCH2CH2NC(Me)CHC(Me)NCH2CH2NEt2) [183], and two Sc2+

complexes, Sc(η6-C6H3
tBu3)[η

6,η1-tBu2(CMe2CH2)C6H3]H [179], and Sc(η5-P2C3
tBu3)2 [184],

both of which were obtained via electron beam vaporization of Sc0 into cryogenic matrices.

Structural characterization was only possible on the Sc0 and Sc+ complexes; no Sc2+ com-

plexes characterized by X-ray diffraction are in the literature.
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Recently, the +2 oxidation state has been successfully identified in molecular complexes

of all the other rare earth metals, that is, Y and the lanthanides (except radioactive Pm)

[162, 164–167]. This has been accomplished by LnA3/M reactions (Ln = rare earth metal;

A = anionic ligand; M = alkali metal) involving reductions of tris(silylcyclopentadienyl)

complexes, that is, A=C5H4SiMe3 and C5H3(SiMe3)2, as shown in Figure 3.1.

Figure 3.1: Synthesis of tris(silylcyclopentadienyl) complexes of Ln2+.

It was of interest to extend the series of structurally characterized complexes of these

new Ln2+ ions to the one remaining rare earth metal ion which had not yet been iden-

tified crystallographically, Sc2+. However, accessing the analogous “Sc(C5H4SiMe3)3” and

“Sc[C5H3(SiMe3)2]3” precursors could be problematic since the ionic radius of Sc3+ is 0.107 Å

shorter than that of Lu3+ [185] and the preparation of Lu(C5H4SiMe3)3 is already chal-

lenging due to steric crowding [186]. Moreover, the structure of the tris(cyclopentadienyl)

Sc3+ complex, [(η5-C5H5)2Sc(µ-η1:η1-C5H5)]n [187], suggests that “Sc(C5H4SiMe3)3” and

“Sc[C5H3(SiMe3)2]3” may not form the same trigonal coordination environment of all the

examples in Figure 3.1.

The bis(trimethylsilyl)amide complex, Sc(NR2)3 (R=SiMe3) [188], was not initially consid-

ered as a precursor to Sc2+ since previous LnA3/M reactions with A=NR2 did not allow

isolation of Ln2+ complexes. Instead, these Ln(NR2)3 reduction reactions generated reduced

dinitrogen complexes containing (N––N)2– , Figure 3.2, and N2
3– moieties [166, 167, 189–192].

Although DFT studies of Y(NR2)3 showed that both the LUMO of the trivalent complex,
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Figure 3.2: Generation of side-on (N=N)2− complexes of Ln3+.

Y(NR2)3, and the HOMO of the reduced species, [Y(NR2)3]
– , have primarily dz2 char-

acter [193], only EPR data were obtainable on a transient Y2+ species [194]. The re-

duction of the Sc analog, Sc(NR2)3, on the other hand, yielded X-ray quality crystals of

[K(crypt)][Sc(NR2)3], [K(18-c-6)][Sc(NR2)3], and [Cs(crypt)][Sc(NR2)3]. The reactions are

summarized in Figure 3.3. The synthesis and experimental characterization of [Sc(NR2)3]
–

are detailed in Reference [195]. This section focuses on the computational characterization

of [Sc(NR2)3]
– .

Figure 3.3: Reduction reactions of Sc(NR2)3.

3.2.2 Computational Details

DFT calculations were performed using the hybrid meta-GGA functional TPSSh [122] with

Grimme’s D3 dispersion correction [7] and basis sets of triple-zeta plus polarization (def2-

TZVP) quality [61]. Fine numerical grids of size m4 [64] were used. The Sc(NR2)3 and

[Sc(NR2)3]
– structures were optimized in C1 and D3 symmetry, respectively. The maximum

norm of the Cartesian coordinate gradient was converged to ≤ 10−4 a.u. Vibrational normal

mode analyses using numerical second derivatives were carried out to confirm that the op-
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timized structures are minima on the ground-state potential energy surface. The electronic

ground state of Sc(NR2)3 is closed-shell. For the spin-unrestricted calculation on the 2A1

ground state of [Sc(NR2)3]
– , the expectation value of Ŝ2 is 0.752, indicating negligible spin

contamination. Solvent effects were included by the continuum solvation model (COSMO)

[196] with dielectric constant 7.52 [197] and index of refraction 1.4050 [198] of THF. All

calculations were performed using Turbomole 7.0 and 7.1 [25].

The UV-visible spectrum of [Sc(NR2)3]
– was simulated using TDDFT with the latest im-

plementation of nonorthonormal Krylov subspace methods [199]. The gauge-invariant im-

plementation of the TPSSh functional was employed [200]. def2-TZVP basis sets were used

without diffuse functions because test calculations showed that a diffuse p function on Sc

produced spurious unoccupied a2 orbitals extending outside the COSMO cavity. def2-TZVP

has been shown to provide accurate excitation energies in previous benchmark calculations

[201]. Very fine numerical grid of size 5 [64] was used in the TDDFT calculations. The

absorption spectrum was simulated by superimposing Gaussian functions with a standard

deviation of 0.34 eV (Figure 3.5).

3.2.3 Results and Discussions

Table 3.1: Comparison of structural parameters for Sc(NR2)3 and [Sc(NR2)3]
– (in Å). 1a and

1b are single crystals of Sc(NR2)3 grown by slow evaporation of the Et2O solution at room
temperature overnight and by sublimation at 80 ◦C under 10−3 torr over 2 days, respectively.
2-K(crypt) is the [K(crypt)][Sc(NR2)3] single crystal. The Sc–plane distance is the distance
between the Sc atom and the plane of the three N atoms.

Complex Structure Average Sc–N distance Sc–plane distance

Sc(NR2)3

1a 2.049 0.520
1b 2.052 0.487

DFT 2.047 0.482

[Sc(NR2)3]
– 2-K(crypt) 2.134 0.014

DFT 2.135 0.000
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Figure 3.4: (a) LUMO of Sc(NR2)3 and (b) HOMO of [Sc(NR2)3]
– with a contour value of

0.045. Hydrogen atoms are omitted for clarity.

Figure 3.5: Experimental (solid) and simulated (dash) UV-visible spectra of
[K(crypt)][Sc(NR2)3] in ∼3 mM THF solution at room temperature. TDDFT excitations
are shown as vertical lines.

DFT geometry optimizations were performed on Sc(NR2)3 and [Sc(NR2)3]
– and the calcu-

lated structural parameters match the pyramidal structure for Sc(NR2)3 and the planar D3

structure for [Sc(NR2)3]
– (Table 3.1). The frontier molecular orbitals are similar to those of

the Y analogs [193]: the LUMO of the Sc3+ precursor and the HOMO of the reduced Sc2+
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product both have dz2 character (Figure 3.4). The (3dz2)
1 ground state for [Sc(NR2)3]

– is

consistent with the experimental EPR data (see Reference [195]). The UV-visible spectra of

each variant of [Sc(NR2)3]
– exhibit an intense absorption at 516 nm with ε = 4000 M−1cm−1

similar to the spectra of the Ln2+ complexes shown in Figure 3.1. TDDFT calculations

on [Sc(NR2)3]
– with D3 symmetry gave a nearly quantitative reproduction of the experi-

mental spectrum with the observed absorption band attributed to electronic excitations at

499 nm, 478 nm, and 633 nm, in descending order of oscillator strength (Figure 3.5). These

excitations correspond to transitions from the Sc-based HOMO (27a1 α) to low-lying un-

occupied orbitals of a2 and e irreducible representations (Table 3.2). The weak transition

at 633 nm is predominantly d→d while the more intense ones at 499 nm and 478 nm have

significant d→ligand character (Figure 3.6). This assignment is consistent with previous

studies on [(C5H4SiMe3)3Ln]– [164, 165] showing strong absorptions due to transitions from

the metal-based HOMO to ligand-based orbitals.

Figure 3.6: (a) 25a2 α and (b)(c) 49e α unoccupied orbitals of [Sc(NR2)3]
– with a contour

value of 0.045. Hydrogen atoms are omitted for clarity.

Table 3.2: Lowest electronic excitations of [Sc(NR2)3]
– computed using TPSSh functional

and def2-TZVP basis sets. Oscillator strengths are in length representation.

State
Wavelength Oscillator Strength Dominant contributions

Assignment
(nm) (10−2 a.u.) occupied unoccupied contribution

12E 1221 0.005 27a1 α 48e α 93.4% 3d→3d
22E 633 0.75 27a1 α 50e α 91.9% 3d→3d
12A2 499 9.59 27a1 α 25a2 α 98.9% 3d→ligand/4p
32E 478 3.17 27a1 α 49e α 98.8% 3d→ligand
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3.3 End-On Bridging Dinitrogen Complex of Scandium

3.3.1 Introduction

The activation of small molecules such as N2, CO2, CO, NO, and H2 is a crucial component

of many biological, atmospheric, and industrial processes and is an active area of research for

sustainable energy. The coordination chemistry of these substrates has been heavily studied

in efforts to define the initial steps in the mechanisms of activation. Historically, dinitrogen

activation typically involved end-on coordination of N2 to metals in either monometallic or

bimetallic complexes [202–211]. Side-on bridging was known in a few bimetallic complexes

with a nonplanar butterfly geometry that allowed each metal to interact with one of the

two perpendicular multiple bonds of N2 [212–214]. In 1988, the first example of planar side-

on bridging of dinitrogen was reported in the rare-earth metal complex, [(C5Me5)2Sm]2[µ-

η2:η2-N2] [215]. This unusual planar side-on structure became a hallmark of rare-earth

metal dinitrogen chemistry with over 40 complexes reported in the Cambridge Structural

Database (CSD) [178, 216–220]. Subsequently, the M2(µ-η2:η2-N2) motif was found in over

35 transition metal complexes [211] and three uranium complexes [221–223], but the end-

on mode still remains more common. The relationship between reactivity and end-on vs

side-on bonding of dinitrogen has been examined in several systems [203, 208, 224, 225]

but not with rare-earth metals since no examples of end-on bridging dinitrogen complexes

of these metals were in the literature. This section presents the first example of end-on

dinitrogen coordination with a rare-earth metal and its surprising photochemistry to form a

rare example of a Sc2+ complex. The structure and photoreactivity of the end-on dinitrogen

complex are explained by DFT and TDDFT calculations. Experimental details are reported

in Reference [226].
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3.3.2 Computational Details

Ground-state DFT calculations were carried out using the TPSS [63] meta-generalized-

gradient-approximation (meta-GGA) functional with Grimme’s D3 dispersion correction

[7, 227]. Two different basis sets (def2-SV(P) [228] and def2-TZVP [61]) were used for

{[(R2N)3Sc]2[µ-η1:η1-N2]}2−; The differences in the optimized bond distances are within

0.01 Å. Density grids of m4 or larger [64] were employed. The structure of {[(R2N)3Sc]2[µ-

η1:η1-N2]}2− was optimized in D3 symmetry with convergence criterion for maximum norm

of Cartesian energy gradient set to 10−4 a.u. Spin-unrestricted calculations suggest a triplet

(3A2) ground state with a squared total spin expectation value of 2.003, which indicates neg-

ligible spin contamination. For comparison, hypothetical side-on complexes {[(R2N)3Sc]2[µ-

η2:η2-N2]}2− and {[(R2N)2Sc(THF)]2[µ-η2:η2-N2]} were optimized in C2 and Ci symmetries,

respectively, using def2-SV(P) basis set. For the anionic complexes, the COSMO continuum

solvation model [196] was employed to account for the THF solvent using dielectric constant

of 7.52 [197] and refractive index of 1.4050 [198]. The COSMO cavity was constructed using

atomic radii of 1.300 Å, 2.000 Å, 1.830 Å, 2.200 Å, and 2.223 Å for H, C, N, Si, and Sc,

respectively, and solvent radius of 3.18 Å. Structure optimization of the neutral complex

{[(R2N)2Sc(THF)]2[µ-η2:η2-N2]} was performed in gas phase due to numerical instability of

optimization with COMSO. Vibrational normal mode analyses were performed to confirm

that the optimized structures are minima on the respective ground-state potential energy

surfaces. Hessians were determined numerically for COSMO calculations and analytically

[229] for gas-phase calculations. The computed vibrational frequencies were scaled by 0.98 to

account for anharmonicity [230]. The ground-state energy difference between {[(R2N)3Sc]2[µ-

η1:η1-N2]}2− and {[(R2N)3Sc]2[µ-η2:η2-N2]}2− was obtained from single-point calculations

using the def2-TZVP basis set based on structures optimized using the def2-SV(P) basis set.

The UV-visible spectrum of {[(R2N)3Sc]2[µ-η1:η1-N2]}2− was simulated using TDDFT and

nonorthonormal Krylov subspace method [199] with 25 and 40 exited states in A1 and E
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irreducible representations, respectively. The calculation was performed using PBE0 func-

tional [155, 231] and def2-SVPD basis set [232] based on the structure optimized using the

def2-TZVP basis set. The simulated spectrum was obtained by superimposing Gaussian

functions with an RMS width of 0.25 eV (Figure 3.8). All calculations were performed using

Turbomole 7.0 and 7.1 [25].

3.3.3 Results and Discussions

Figure 3.7: HOMO, LUMO+5, and LUMO+13 of {[(R2N)3Sc]2[µ-η1:η1-N2]}2− with a con-
tour value of 0.035. Hydrogen atoms are omitted for clarity. Reprinted with permission from
Reference [226], Copyright 2017 American Chemical Society.

DFT calculations on the dianion {[(R2N)3Sc]2[µ-η1:η1-N2]}2− reproduced the experimentally

observed structure of {K(crypt)}2{[(R2N)3Sc]2[µ-η1:η1-N2]} with an N–N distance of 1.202
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Table 3.3: (Average) bond distances (in Å) and N–N stretching frequencies (in cm−1) of
bridging dinitrogen complexes of Sc.

Compound Method N–N Sc–N(N2) Sc–N(NR2) freq.

{[(R2N)3Sc]2[µ-η1:η1-N2]}2−
Expt. 1.221 2.031 2.150 1644

TPSS/def2-SV(P) 1.207 2.044 2.160 1724
TPSS/def2-TZVP 1.202 2.045 2.160 1676

{[(R2N)3Sc]2[µ-η2:η2-N2]}2− TPSS/def2-SV(P) 1.240 2.229 2.195 1542

{[(R2N)2Sc(THF)]2[µ-η2:η2-N2]} TPSS/def2-SV(P) 1.245 2.182 2.079 1520

Å (Table 3.3). The calculations indicate a triplet (3A2) ground state in D3 symmetry with

two unpaired electrons in the HOMOs consisting of two degenerate orbitals that are mainly

N2 π
∗ in character, but have Sc–N2–Sc π bonding components, Figure 3.7.

The UV-visible spectrum of {K(crypt)}2{[(R2N)3Sc]2[µ-η1:η1-N2]} exhibits an intense ab-

sorption at 406 nm (ε = 14000 M−1cm−1), Figure 3.8. TDDFT calculations attribute this

absorption to electronic excitations at 364 and 408 nm, Figure 3.8. Both of these contain

large contributions due to transitions from the degenerate Sc–N2–Sc π bonding orbitals (96e

α, HOMO) to the Sc–N2–Sc π antibonding orbitals (99e α, LUMO+5) and two degenerate

orbitals that are of Sc d character (104e α, LUMO+13).

Brief exposure of {K(crypt)}2{[(R2N)3Sc]2[µ-η1:η1-N2]} to UV light (365 nm), even at−78 °C,

results in the loss of N2 to form the previously reported dark maroon 3d1 Sc2+ complex,

[K(crypt)][Sc(NR2)3] [195]. his is not commonly observed in rare-earth metal dinitrogen

chemistry: with the exception of Sm3+ dinitrogen complexes [189, 190, 202–211], once an

(N=N)2− complex of a Ln3+ ion is formed, it does not revert to Ln2+ and N2. This photocon-

version is consistent with the TDDFT calculations, which show that the transitions populate

Sc–N2–Sc antibonding orbitals and Sc 3d orbitals. The fact that {K(crypt)}2[(R2N)3Sc]2[µ-

η1:η1-N2]} can easily revert to [K(crypt)][Sc(NR2)3] under light explains why dinitrogen re-

duction reactivity was not initially observed during the reduction of Sc(NR2)3 [195]. In con-

trast, [(C5Me4H)2Sc]2[µ-η2:η2-N2] [178], synthesized by the reduction of (C5Me4H)2Sc(µ-η1-
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Figure 3.8: Experimental (green solid-line) and TDDFT calculated (blue dashed-line) UV-
visible spectra of {K(crypt)}2{[(R2N)3Sc]2[µ-η1:η1-N2]} collected from a ca. 1 mM THF
solution. Reprinted with permission from Reference [226], Copyright 2017 American Chem-
ical Society.

Ph)BPh3 under dinitrogen, has only weak absorptions in its UV-visible spectrum at 592 nm

(ε = 60 M−1cm−1) and 447 nm (ε = 200 M−1cm−1) and does not form a Sc2+ complex

photochemically. Complexes [(Ar[tBu]N)3Mo]2(µ-η1:η1-N2) [233] and (LMeFe)2(µ-η1:η1-N2)

(LMe = β-diketiminate) [234] also extrude dinitrogen upon photolysis [233, 234].

Table 3.4: Electronic excitations of {[(R2N)3Sc]2[µ-η1:η1-N2]}2− with significant intensity.
Oscillator strengths are in length representation. All listed excitations are from the 96e α
HOMO. Transitions with contributions larger than 10% are listed.

State
Wavelength Oscillator Strength Dominant contributions

Assignment
(nm) (10−2 a.u.) unoccupied contribution

13A1 406 0.203
99e α 53.4% Sc–N2–Sc π→Sc–N2–Sc π∗

104e α 11.1% Sc–N2–Sc π→Sc d

43A1 364 0.404
99e α 35.7% Sc–N2–Sc π→Sc–N2–Sc π∗

104e α 28.0% Sc–N2–Sc π→Sc d
103e α 19.9% Sc–N2–Sc π→Sc d

The light sensitivity of {K(crypt)}2[(R2N)3Sc]2[µ-η1:η1-N2]} was also observed during Raman
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measurements. A Raman spectrum of {K(crypt)}2[(R2N)3Sc]2[µ-η1:η1-N2]} could not be ob-

tained due to sample decomposition using the 532 nm laser previously used to analyze over 20

other rare-earth metal dinitrogen complexes [220]. However, the use of a lower-energy 785 nm

laser provided a Raman scattering signal at 1644 cm−1 for {K(crypt)}2[(R2N)3Sc]2[µ-η1:η1-

N2]}. The DFT calculated value of 1676 cm−1 (Table 3.3) matches the experimental value at

the level previously observed for rare-earth metal dinitrogen complexes [220]. This stretch-

ing frequency is noticeably higher than the 1413–1473 cm−1 range observed for the side-on

dinitrogen bridged complexes of rare-earth metals, which indicates a lower degree of dinitro-

gen activation. DFT calculations were also carried out on the hypothetical neutral side-on

bound dinitrogen complex with two amide ligands per metal, i.e., {[(R2N)2Sc(THF)]2[µ-

η2:η2-N2]} and {[(R2N)3Sc]2[µ-η2:η2-N2]}2−, the dianionic side-on analog of {[(R2N)3Sc]2[µ-

η1:η1-N2]}2−. The calculations suggest that the N–N stretching frequencies should be below

1550 cm−1 for these side-on complexes (Table 3.3).

These calculations also reveal that the hypothetical {[(R2N)3Sc]2[µ-η2:η2-N2]}2− is 12 kcal/mol

higher in energy than {[(R2N)3Sc]2[µ-η1:η1-N2]}2− The preference for the end-on binding

motif is likely caused by the steric constraint of the three ancillary ligands. The influ-

ence of ancillary ligand size on the binding mode of (N=N)2− has previously been ob-

served with cyclopentadienyl Ti and Zr complexes. The pair [(C5Me4H)2Ti]2[µ-η1:η1-N2]

[235] and [(C5Me3H2)2Ti]2[µ-η2:η2-N2] [236, 237] as well as [(C5Me5)2Zr(N2)]2[µ-η1:η1-N2]

[238] and [(C5Me4H)2Zr]2[µ-η2:η2-N2] [239] illustrate this point. The small size and high

Lewis acidity of Sc3+ could be responsible for the retainment of all three ancillary anionic

amide ligands per metal. This ligand environment is sterically more crowded than the

bis(amide)(THF) coordination in {[(R2N)2Ln(THF)]2[µ-η2:η2-N2]} and an end-on structure

results in {K(crypt)}2[(R2N)3Sc]2[µ-η1:η1-N2]}.
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3.4 {Pu[C5H3(SiMe3)2]3}−: The First Isolable Pu2+ Com-

plex

3.4.1 Introduction

Since Seaborg, McMillan, Kennedy, and Wahl’s discovery of plutonium in 1940 [240, 241] Pu

has emerged as one of the most high-profile elements in the periodic table. The recognition

that Pu chemistry is pivotal in a wide range of long-term global challenges is reflected in a re-

cent renaissance in actinide chemistry. Motivated by this realization, international efforts are

underway to provide fundamental understanding that underlies actinide processing and ap-

plications [242–246]. Unfortunately, advances in uncovering new properties for Pu have been

slow compared with the 4f elements, Th, and U. The slower progress stems from the high

specific radioactivity and limited accessibility of Pu. Consequently, chemical research with

Pu needs to be conducted in specialized radiological facilities. Usually, synthetic chemistry

with Pu is performed on a small scale (milligrams) for reasons of both safety and security

[242, 247]. These constraints render synthetic work and characterization methods technically

challenging, especially when targeting molecules that are reactive toward air/moisture. In

fact, it is rare to find laboratories equipped with modern structural tools for fundamental

air- and moisture-sensitive Pu chemistry. To date there are less than 25 structural records in

the Cambridge Structural Database (CSD) that contain anhydrous molecular Pu compounds

prepared under inert atmospheres [248]. No records with full structural details contain Pu–C

bonds.

Recent advances in lanthanide chemistry resulted in a new series of complexes that con-

tained all of the 4f elements (excluding Pm) in the formal +2 oxidation state [162, 167].

Among this series, eight elements (La, Ce, Pr, Gd, Tb, Ho, Er, and Lu) were reported

to have unusual 4fn5d1 ground-state electron configurations, as opposed to the typical
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4fn+15d0 configuration. It was proposed that in these unusual compounds, the C3-symmetric

tris(cyclopentadienyl) environment stabilized population of the 5d orbitals (over the 4f or-

bitals). On the basis of these results, efforts to use the same ligand system to stabilize

actinide(II) compounds through population of analogous 6d orbitals was investigated. In-

deed, the first U2+ and Th2+ complexes were prepared [169, 170] and shown to exhibit the

rare 5f 36d1 (U2+) and 5f 06d2 (Th2+) electron configurations. Inspired by these founda-

tional compounds, we set out to explore (1) whether a formal +2 oxidation state is stable

and isolable for transuranic elements (specifically for Pu) and (2) whether the stable 5fn6d1

(as opposed to 5fn+16d0) configurations would continue across the actinide series.

The new Ln2+, U2+, and Th2+ compounds were discovered by reduction of organometallic

complexes containing metals in the +3 oxidation state. Success in preparing these compounds

appeared to rely on encapsulation of the potassium cation with 2.2.2-cryptand (crypt) and

f -element ligation by three sterically bulky cyclopentadienyl rings, namely the trimethylsilyl-

substituted rings C5H4SiMe3 (Cp’) or C5H3(SiMe3)2-1,3 (Cp”). The successful identification

of U2+ and Th2+ sparked a renewed interest in organometallic transuranic chemistry. Plu-

tonium in the formal +2 oxidation state was reported in PuH2 and PuE (E = S, Se, Te),

and Pu2+ compounds were identified in molten salts or the gas phase [249–251]. However,

the identities of these Pu2+ compounds were not substantiated through single-crystal X-ray

diffraction. This section presents the computational characterization of the first isolable and

crystallographically identified Pu2+ complex, namely [K(crypt)][PuCp”3]. The synthesis,

isolation, and experimental characterization of this Pu2+ complex are detailed in Refer-

ence [172].
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3.4.2 Computational Details

Structures of [AnCp”3]
− and AnCp”3 (An = Th–Cm) were optimized in C1 symmetry us-

ing DFT. The non-empirical meta-GGA functional, TPSS [63], were used in all geometry

optimizations, while its global hybrid version, TPSSh [122], were used for [PuCp”3]
− to

further validate the results. The performance of these functionals for low-valent lanthanide

and actinide compounds is well documented [163–165, 170]. Basis sets of valence triple-zeta

plus polarization quality (def2-TZVP) were used for light atoms [61], and Stuttgart-Cologne

scalar-relativistic effective core potentials (ECPs) [252] and the corresponding valence ba-

sis set [253] with 3 additional g polarization functions were used for actinide atoms. Fine

density grids of at least m4 quality were employed for numerical integration [64]. Solvent

effects were included by the COSMO continuum solvation model [196] using the dielectric

constant of THF, 7.52 [197]. The maximum norm of the Cartesian coordinate gradient was

converged to ≤ 10−4 a.u. in all geometry optimizations. Numerical vibrational normal mode

analyses were performed for optimized structures except for the TPSSh optimizations and

the TPSS optimization for the 5f 56d1 [PuCp”3]
− . Energy minima were confirmed for the

analyzed structures except for AnCp”3 (An = Pa, Np, Am) and [AmCp”3]
−. For the neutral

complexes AnCp”3 (An = Pa, Np, Am), we performed a new two-step optimization: we

first optimized the structures in gas phase and confirmed that they were local minima on

the gas-phase potential energy surface using analytic second-order derivatives; subsequent

optimizations were performed with COSMO and without additional normal mode analyses.

For [AmCp”3]
−, numerical normal mode analysis showed a small imaginary frequency of

16i cm−1, which can be ascribed to numerical inaccuracy of the COSMO implementation

and the structure can still be considered as being at an approximate energy minimum.

High-spin states were confirmed to be the ground states of [AnCp”3]
− and AnCp”3 (An =

Pa – Cm) [170, 254], while the ground state of [ThCp”3]
− was confirmed to be a singlet

spin state [169]. The relative stability of the electronic states of 5f 66d0 versus 5f 56d1 Pu2+
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configurations in [PuCp”3]
− was assessed by ∆SCF calculations at optimized geometries

using TPSS and TPSSh. The calculations showed that the 5f 66d0 state is favorable by 6.0

kcal/mol using TPSS and 4.4 kcal/mol using TPSSh.

The UV-visible spectra of [PuCp”3]
−, PuCp”3, and [HPuCp”3]

− were simulated using TDDFT

[53]. Property-optimized basis sets, def2-SVPD [232] were used for light atoms, and the

Stuttgart-Cologne ECPs and corresponding valence basis sets were used for Pu. Gauge-

invariant implementations of TPSS and TPSSh were employed. COSMO were used to model

the solvent effects in THF solution. All calculations were performed using Turbomole 6.6,

7.0, and 7.1 [25].

3.4.3 Results and Discussions

Geometry optimizations using DFT predicted trigonal-planar structures for both PuCp”3

and the [PuCp”3]
− anion. The computational results are in good agreement with the crys-

tallographic data, e.g., the calculated metal-(ring centroid) average distance for [PuCp”3]
−

is within 0.01 Å of the X-ray result. The calculated 0.05 Å difference in metal-(ring cen-

troid) distance between PuCp”3 and [K(crypt)][PuCp”3] is larger than that observed between

ThCp”3/UCp’3 and [ThCp”3]
−/[UCp’3]

− (∼0.02 Å) but less than the anticipated ∼0.1 Å

change in ionic radius from Pu3+ to Pu2+. Mulliken population analysis suggests that the

HOMO of [PuCp”3]
− (Figure 3.9a) is predominantly a Pu–Cp” nonbonding fz3 orbital. How-

ever, the HOMO also possesses appreciable (7%) dz2 character. The mixing of 5f and 6d

Table 3.5: Computed metal-(ring centroid) distances (in Å) of [AnIICp”3]
− and AnIIICp”3

(An = Th–Cm) using TPSS functional and def2-TZVP basis sets.

Th Pa U Np Pu Am Cm

[AnIICp”3]
− 2.529 2.481 2.519 2.505 2.531 2.615 2.541

AnIIICp”3 2.540 2.475 2.501 2.496 2.480 2.493 2.507
Difference −0.011 0.009 0.019 0.009 0.051 0.122 0.034
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Figure 3.9: (a) HOMO, (b) LUMO, (c) HOMO-3, and (d) HOMO-4 of [PuCp”3]
− with a

contour value of 0.035. Hydrogen atoms are omitted for clarity. Reprinted with permission
from Reference [172], Copyright 2017 American Chemical Society.

orbitals is consistent with the slight C3h→C3 pseudo-Jahn–Teller distortion of the complex

due to the near degeneracy of the Pu2+ 5f 56d1 and 5f 66d0 configurations. Thus, the calcu-

lations suggest that [PuCp”3]
− is a borderline case between the traditional 4fn+15d0 Ln2+

compounds and the new Ln2+, U2+, and Th2+ compounds which manifest d occupation. Our

calculations on [AnCp”3]
− (An = Th–Cm; Figure 3.10 and Table 3.5) and earlier results on

[AnCp’3]
− (An = Th–Am) [254] also suggest that the 5fn6d1 to 5fn+16d0 crossover occurs

near Pu.

70



Figure 3.10: Frontier orbital level diagram of [AnCp”3]
− (An = Th–Cm) using α orbitals

energies of semilocal DFT (TPSS) calculations. Doubly occupied ligand π2-based orbitals are
labeled using pseudo-C3h symmetry. The e’, e”, fπ, fδ orbitals are doubly degenerate. The
Fermi levels (average of HOMO and LUMO energies) are denoted by dashed lines. Reprinted
with permission from Reference [172], Copyright 2017 American Chemical Society.

The UV/vis/NIR absorption spectrum of PuCp”3 in hexane contains a broad and intense

band around 17153 cm−1 (∼600 M−1cm−1), which is not typical in the visible spectra of com-

plexes containing Pu3+ ions [241, 242, 255]. Our TDDFT calculations suggest that this band

predominantly originates from a 5f → 6d transition. The band is observable in the visible re-

gion because of the strong stabilization of the 6dz2 orbital in the trigonal-planar ligand field.

Numerous weak absorptions between 20000 and 7700 cm−1 are assigned to Laporte-forbidden

5f → 5f transitions characteristic of Pu3+ [241]. Reduction of PuCp”3 to [PuCp”3]
− imparts

substantial changes in the UV/vis/NIR spectrum. The 5f → 5f transitions characteristic

of PuCp”3 are detected as an impurity only in the solution-phase UV/vis/NIR spectrum of

[K(crypt)][PuCp”3] and were not detected in the solid-state spectrum. Both the solution

(Figure 3.11) and solid-state spectra of [K(crypt)][PuCp”3] are dominated by very broad
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bands with maxima at ∼21300 cm−1 and extending past 12500 cm−1. With an approximate

molar absorptivity of 2700 M−1cm−1, this band is considerably more intense than 5f → 5f

transitions typically observed in this region.

Figure 3.11: Solution-phase (in THF) UV/vis/NIR experimental data for [PuCp”3]
− (black

trace). The orange bars represent the energies and oscillator strengths in the TDDFT-
calculated UV/vis/NIR spectrum (orange dashed trace). Reprinted with permission from
Reference [172], Copyright 2017 American Chemical Society.

TDDFT calculations on [PuCp”3]
− attribute these strong absorptions to metal-to-ligand

charge transfer (MLCT) excitations originating from Pu 5f orbitals (See the Supporting

Information in Reference [172]). The unusually high intensity of these transitions compared

with that in PuCp”3 may be rationalized by an increase in 5f orbital energy and radial

extent, likely caused by increased electron repulsion in the 5f 6 configuration in [PuCp”3]
−

compared with the 5f 5 Pu3+ configuration. These factors red-shift the MLCT transitions into

the visible region and lead to larger transition dipole moments involving coupling between 5f

and ligand orbitals, ultimately providing a mechanism to increase the absorption intensities.

In contrast, the 4f orbitals in traditional Ln2+ compounds with 4fn+15d0 configurations, such
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as [SmCp’3]
− are considerably lower in energy and more contracted than the 5f orbitals

in [K(crypt)][PuCp”3]. Hence, these compounds do not exhibit strong MLCT transitions

in the visible spectrum [162, 167]. The calculations also suggest that the high energy of

the 5f orbitals and stabilized 6dz2 orbital results in low-energy 5f → 6d transitions in

[PuCp”3]
− The calculated energy of this transition is near 2600 cm−1, outside the range of

the conventional UV/vis/NIR spectrum provided in Figure 3.11. While some of the intensity

of the visible transitions in [K(crypt)][PuCp”3] may be attributable to configuration mixing

in the ground state and/or thermal population of the low-lying 5f 56d1 excited state, more

sophisticated measurements and computations are needed for verification.

3.5 Discussions

Due to their large sizes, small HOMO-LUMO gaps, and multiconfigurational nature, rare-

earth and actinide complexes are challenging for present-day electronic structure methods.

Bulky ligands are commonly used to impose steric constraints or to “trap” electrons at the

metal center, stabilizing charged species [256]. Computationally, the presence of bulky lig-

ands requires proper treatment of not only covalent but also noncovalent interactions such

as dispersion. The near-degeneracy of the 4f manifold and low-lying 5d orbitals in specific

ligand fields leads to small HOMO-LUMO gaps and multiconfigurational character of lan-

thanide complexes. A similar situation is encountered in actinides, where near degeneracy

amongst 5f and 6d subshells is observed [245, 257–261]. Single-reference many-body per-

turbation theory such as MP2 is incapable of even qualitatively describing these systems,

while multireference calculations are typically attempted for model systems only (see, e.g.,

Reference [168]). Moreover, the demand for geometry optimizations and vibrational nor-

mal mode analyses renders routine multireference calculations impractical. Consequently,

semilocal and hybrid DFT is still the method of choice for most rare-earth and actinide
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applications [262]. This is supported by the success of DFT in predicting and character-

izing unconventional rare-earth and actinide complexes presented herein. However, density

functional approximations sometimes lead to different qualitative results (see, e.g., Reference

[168]), which severely limits the predictive power of DFT calculations.

Exploratory RPA calculations on lanthanide and actinide complexes [263, 264] suggested

that RPA and its perturbative corrections may be used to improve or validate semilocal

DFT results. Nevertheless, one may wonder whether the static correlation in rare-earth and

actinide complexes are too strong, as in the case of metal dimers presented in Section 2.5.5.

The [PuCp”3]
− complex is a good test case for the RPA methods because of its multiconfigu-

rational character indicated by the existence of low-lying excited states. Using the MO based

RI implementation discussed in Chapter 2, the AXK and SOX beyond-RPA correlation ener-

gies for [PuCp”3]
− were computed with def2-TZVP basis and 50 frequency points. Following

Section 2.6, we obtained an ᾱ value of 0.41, indicating moderately strong correlation, which

is within the applicable range of RPA and AXK. This result suggests that RPA with AXK

correction could be a useful computational method for rare-earth and actinide chemistry

despite its failure on metal dimers. More thorough benchmark calculations still need to be

carried out before a conclusive statement is made, and the success of routine applications

also relies on the development of basis sets, analytic gradients [265], and approximations for

relativistic effects [266].

3.6 Conclusions

The first examples of isolable Sc2+ and Pu2+ complexes have been identified. The experi-

mental characterization of these unconventional complexes were aided by DFT and TDDFT

calculations. These calculations predicted observables, such as structural parameters, vibra-

tional frequencies, and UV-visible spectra, which were directly compared with experimental
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measurements. They also provided analytical tools such as molecular orbitals and transition

density matrices, which shed light on the electronic structures, reactivities, and spectroscopic

properties of these compounds.

The new [Sc(NR2)3]
– and [PuCp”3]

− complexes share similarities with their yttrium and lan-

thanide tris(silylcyclopentadienyl) analogs, such as the trigonal planar geometry and strong

absorptions in the visible spectrum. But they also show their own uniqueness, possibly due

to the small size of scandium and the larger radial extent of Pu 5f orbitals versus Ln 4f

orbitals. The recent discovery of [Ln(NR2)3]
– complexes [267] provides a new series of Ln2+

ions that can be directly compared with the Sc2+ ion in [Sc(NR2)3]
– . Experimental and the-

oretical investigations of this series may further reveal similarities and differences between

these metals.

The computational results presented in this chapter also suggest that modern semilocal

and hybrid density functional approximations are semiquantitative for d- and f -block metal

complexes. Preliminary calculations show that the RPA methods, particularly the AXK

method, may be suitable for these systems. The balanced treatment of long-range and

short-range interactions provided by the AXK method may offer improvements upon and

validations of DFT calculations.
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Appendix A

Analysis of the Plasmonic Hessian

A.1 Definition of T

As stated in Section 1.3.2, T is defined as the first-order term of (MRPA
α )1/2 with respect to

α,

T =
d(MRPA

α )1/2

dα

∣∣∣∣
α=0

. (A.1)

To derive the expression of T, it is convenient to introduce a few notations.

Definition A.1.

F : R→ CNhNp×NhNp

α 7→MRPA
α .
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Definition A.2. The matrix square root function,

g : CNhNp×NhNp → CNhNp×NhNp

X 7→ X1/2.

Therefore, g ◦ F : α 7→ (MRPA
α )1/2. We use the symbol D to denote derivatives or Fréchet

derivatives in the case of matrix functions, i.e.,

DF =
dF

dα
,

and

Dg : CNhNp×NhNp → L(CNhNp×NhNp ,CNhNp×NhNp)

X 7→ Dg(X),

where L(U, V ) denotes the set of linear mappings from U to V .

By the properties of the Fréchet derivative of the matrix square root function (see, e.g.,

Reference [268]), it is readily shown that

X1/2Dg(X)(E) +Dg(X)(E)X1/2 = E, (A.2)

where E ∈ CNhNp×NhNp . Moreover, by the chain rule,

d(MRPA
α )1/2

dα

∣∣∣∣
α=0

= D(g ◦ F)(0) = Dg(F(0))(DF(0)). (A.3)

By definition,

F(0) = MRPA
α

∣∣
α=0

= D2, (A.4)
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and

DF(0) = 2D1/2BHD1/2. (A.5)

Combining Equations (A.1)–(A.5), we have

DT + TD = 2D1/2BHD1/2. (A.6)

Given that D is diagonal, we arrive at the following expression of T,

Tiajb =
2D

1/2
iaiaB

H
iajbD

1/2
jbjb

Diaia +Djbjb

(A.7)

A.2 Positive Definiteness of the Plasmonic Hessian

MRPA, D, T and the plasmonic Hessian Wp are matrices defined in Section 1.3.2. For

Hermitian matrices X and Y, we use X > Y to denote that X−Y is positive definite.

Theorem A.1. if X > Y > 0, then X1/2 > Y1/2

Proof. This is a corollary of the Löwner–Heinz inequality [269]. See also Section V.1 in

Reference [270].

Theorem A.2. (D + T)2 > MRPA > 0.

Proof. It is readily shown that MRPA, D, and T are all positive definite. By Equation (A.6)

and the definition of MRPA, we have

(D + T)2 = D2 + DT + TD + T2 = MRPA + T2. (A.8)

Since T is Hermitian, T2 > 0. Therefore, (D + T)2 > MRPA.
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Theorem A.3. The plasmonic Hessian Wp is positive definite.

Proof. By Theorems A.1 and A.2,

D + T > (MRPA)1/2. (A.9)

Thus, Wp = D + T− (MRPA)1/2 > 0.
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Appendix B

Variational Boundedness of RI-RPA

Correlation Energy

In this appendix, we prove without neglecting the RI error in the direct ring-CCD amplitude

that the RI-RPA correlation energy ẼC RPA is an upper bound of the exact RPA correlation

energy EC RPA. Throughout the proof, tildes denote quantities with the RI approximation,

while quantities without tildes are associated with the full-rank representation.

The RI counterpart of Equation (1.35) can be written as

B̃H = S̃S̃T, (B.1)

where

S̃iaP = (ia|P̄ ) =
∑
Q

(ia|Q)[L−1]QP . (B.2)

P,Q, . . . denote auxiliary basis functions of dimension Naux; the bar notation denotes or-

thogonalized vectors in the space with an inner product defined by the Coulomb integrals.
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S̃ is related to the full-rank S defined in Equation (1.35) through a matrix U:

S̃ = SU. (B.3)

Using the singular value decomposition of S, it is readily shown that

UTU = S̃T(BH)−1S̃. (B.4)

Defining

|īa) =
∑
jb

|jb)[S−1]jbia, (B.5)

we see that

[UTU]PQ =
∑
ia

(P̄ |īa)(īa|Q̄). (B.6)

Lemma B.1. For any Naux-dimensional unit vector v,

vTUTUv ≤ 1. (B.7)

Proof. Since the {|P̄ )} are orthonormal,

vTUTUv =
∑
PQ

∑
ia

vP (P̄ |īa)(īa|Q̄)vQ (B.8)

≤
∑
PQ

vP (P̄ |Q̄)vQ (B.9)

=
∑
P

vPvP (B.10)

= 1 (B.11)
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Theorem B.2. Let q1(ω) ≤ · · · ≤ qNhNp(ω) and q̃1(ω) ≤ · · · ≤ q̃Naux(ω) be the eigenvalues

of Q(ω) and Q̃(ω), respectively. They satisfy

0 ≤ q̃P (ω) ≤ qNhNp−Naux+P (ω) (B.12)

for 1 ≤ P ≤ Naux.

Proof. By definition, Equation (1.41), Q̃(ω) is related to Q(ω) through

Q̃(ω) = UTQ(ω)U. (B.13)

Denote the eigenvectors of Q̃(ω) corresponding to {q̃P (ω)}1≤P≤Naux as {ṽP}1≤P≤Naux , which

are orthonormal. Define ṼP = span{ṽP , . . . , ṽNaux}. By the Courant–Fischer min-max

theorem (see, e.g. Reference [271]), for 1 ≤ P ≤ Naux,

qNhNp−Naux+P (ω) = max
V

{
min
v

{
vTQ(ω)v

vTv

∣∣∣∣v 6= 0, v ∈ V
}∣∣∣∣dimV = Naux − P + 1

}
≥ min

ṽ

{
(Uṽ)TQ(ω)(Uṽ)

(Uṽ)T(Uṽ)

∣∣∣∣ṽ 6= 0, ṽ ∈ ṼP
}

≥ min
ṽ

{
ṽTUTQ(ω)Uṽ

∣∣∣ṽ 6= 0, ṽ ∈ ṼP
}

= min
ṽ

{
ṽTQ̃(ω)ṽ

∣∣∣ṽ 6= 0, ṽ ∈ ṼP
}

= q̃P (ω)

Moreover, since Q̃(ω) is positive semidefinite, q̃P (ω) ≥ 0 for 1 ≤ P ≤ Naux.

Theorem B.3. EC RPA ≤ ẼC RPA.
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Proof. The RPA correlation energy, Equation (1.46), may be rewritten as

EC RPA =
1

2π

∫ ∞
0

dω

NhNp∑
P=1

g(qP (ω)), (B.14)

where g is defined on [0,∞) by g(x) = ln(1+x)−x. Since g is non-positive and monotonically

decreasing, we see that

EC RPA ≤ 1

2π

∫ ∞
0

dω
Naux∑
P=1

g(qNhNp−Naux+P (ω)) (B.15)

≤ 1

2π

∫ ∞
0

dω
Naux∑
P=1

g(q̃P (ω)) (B.16)

= ẼC RPA. (B.17)
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