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A Bayesian Confirmatory Factor Model for Multivariate 
Observations in the Form of Two-Way Tables of Data

Qiaolin Chena,*, Catherine A. Sugara, and Robert E. Weissa

aDepartment of Biostatistics, UCLA School of Public Health, Los Angeles, California 90095-1772, 
USA

Abstract

Researchers collected multiple measurements on schizophrenia (SZ) patients and their relatives, as 

well as control subjects and their relatives, to study vulnerability factors for schizophrenics and 

their near relatives. Observations across individuals from the same family are correlated, and also 

the multiple outcome measures on the same individuals are correlated. Traditional data analyses 

model outcomes separately and thus do not provide information about the interrelationships 

among outcomes. We propose a novel Bayesian Family Factor Model (BFFM), which extends the 

classical confirmatory factor analysis (CFA) model to explain the correlations among observed 

variables using a combination of family-member factors and outcome factors. Traditional methods 

for fitting CFA models, such as full information maximum likelihood (FIML) estimation using 

quasi-Newton optimization (QNO) can have convergence problems and Heywood cases (lack-of-

convergence) caused by empirical under-identification. In contrast, modern Bayesian Markov 

chain Monte Carlo handles these inference problems easily. Simulations compare the BFFM to 

FIML-QNO in settings where the true covariance matrix is identified, close to not identified and 

not identified. For these settings, FIML-QNO fails to fit the data in 13%, 57% and 85% of the 

cases, respectively, while MCMC provides stable estimates. When both methods successfully fit 

the data, estimates from the BFFM have smaller variances and comparable mean squared errors. 

We illustrate the BFFM by analyzing data on data from schizophrenics and their family members.

Keywords

Confirmatory factor analysis; Multivariate observations; Full information maximum likelihood; 
Multitrait-multimethod; Schizophrenia; Structural Equation Modeling

1. Introduction

The UCLA NeuroCognitive Study (NCS) [1–3] is a cross-sectional case-controlled study. 

Multiple cognitive measures were collected on schizophrenia patients and also on their first-

degree relatives, as well as on healthy controls and their relatives. Thus the data is essentially 

a two-way table of correlated observations collected on schizophrenic families, or their 

matched controls. This two-way table forms the basic data unit that we wish to analyze, with 
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correlations across rows induced by different measures assessed on an individual, and 

correlations also down columns induced by the same measure assessed on different 

individuals. The direct product or product-normal covariance model is often used to model 

two-way tables of correlated data. However, in our experience, it does not accurately model 

the covariances in two-way tables of data. Thus our goal is to develop an alternative 

covariance model for two-way table data that better models our data.

The NCS study aimed to identify the outcomes which distinguish schizophrenia patients and 

their relatives from healthy controls and their relatives, and by examining how these 

outcomes are differentially expressed among the relatives. Our goal here is to develop a 

novel covariance model which can help us to compare the degree of abnormality between 

schizophrenia families and control families, model correlations among multiple 

measurements from relatives and handle covariates and missing data.

Modeling data such as that from the NCS requires a complex covariance structure. A 

proband, a schizophrenic or matched control in this case, is an individual who triggers study 

of other members of the family. Suppose there are K outcome measures for each of J 
members in a total of N families, so that the observed data for each family, yi, is a JK vector. 

In a typical family, there might be J = 4 family members: proband, father, mother and 

sibling. Families with more or fewer than J members or with no siblings can also be handled 

as described later in the text. It is easier to discuss concepts as if all families have the same 

family structure however but the algorithms and models can handle families with different 

structures.

Both the J family member types and the K outcome types contribute to the variation in yi, 

which is summarized by a JK × JK covariance matrix. We assume that the covariances are 

explained by K unobserved family member factors and J unobserved outcome factors, which 

induce correlations on the observed measures, both across-family-member within-measure 

and across-measure within-family-member. As the measurements on individuals from the 

same family are related due to both genetic effects and unobserved environmental effects, 

the J family member factors are allowed to be correlated with an unstructured variance 

covariance matrix. Similarly, the K outcome factors are also assumed correlated because 

outcome measurements within subjects are correlated.

The relationships among the JK observed variables and J + K factors can be described using 

a path diagram [4, 5]. Figure 1 shows an example of a path diagram for our two-way table of 

data with J = 4 family members and K = 5 outcomes drawn using AMOS [6], an add-on to 

IBM SPSS for structural equation modeling.

In the figure, the observed variables Yijk labeled Yjk omitting the i (rectangles in the 

middle), are assumed to be caused by two sets of factors, the correlated family member 

factors (Schizophrenic, Sibling, Father and Mother) and correlated outcome factors 

(Outcome1, …, Outcome5), along with residuals identified as err_jk, which are unique to 

each observed variable on each family member, for j = 1, …, 4 and k = 1, …, 5, controlled 

by variances unique to each observed variable, psi1, …, psi5.
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Standard analyses of these sorts of studies usually model outcomes separately, which is 

potentially less efficient and does not provide information about the relationships among 

outcomes [2,7]. Approaches for joint analysis of multivariate data include linear mixed 

models [8, 9], structural equation modeling (SEM) [4, 10, 11] and factor analysis [12, 13, 

23]. Classical analysis techniques for multiple outcomes are not designed to take into 

account associations among family members, which is equivalent to omitting the family 

member factors in Figure 1 and only considering the right half of the diagram.

Direct product models [14–18] assume var(yi) = ∑member ⊗ ∑outcome, where Σmember and 

Σoutcome are J × J and K × K covariance matrices for the two groups of effects, respectively. 

However, these models are too rigid for most two-way table data as they assume all 

outcomes have identical correlation matrices across family members and similarly family 

members have identical correlation matrices across outcomes. Additionally, variance ratios 

of one family member to the next are the same for all outcomes and this assumption is 

usually not met by typical data.

Factor analysis (FA) models correlate observed variables using a smaller number of 

unobservable variables, called latent factors [19]. If some factors are assumed to be 

independent, the corresponding factor covariances are fixed to zero [13]. Confirmatory 

factor analysis (CFA) is used to test hypothesized relationships between observed variables 

and factors [20]. Researchers specify the number of factors beforehand and make a priori 
assumptions about which observed variables are related to which factors based on past 

evidence and theory. The factor loadings specify the pattern of relationships between the 

observed variables and the factors. Only loadings corresponding to hypothesized 

relationships between specific observed variables and factors are allowed to be nonzero. All 

the others, called cross-loadings, are fixed to zero. The scale of the factors can be defined by 

fixing factor variances to 1, or by setting the scale of a factor to be the same as one of the 

observed variables to which it contributes. For standard CFA, parameters are typically 

estimated using maximum likelihood, EM maximum likelihood or the method of moments 

[21–23].

The structure of data on a set of relatives with multiple outcomes is similar to that of the 

multitrait-multimethod (MTMM) data used for studying construct validity: the ability of 

psychological tests to actually measure the concept being studied [24–26]. For MTMM 

analysis, a certain number of traits (J) are each assessed by several methods (K) for each of 

N subjects, resulting in a JK × JK correlation matrix. The path diagram for an MTMM 

model is similar to Figure 1, replacing family members with methods and outcomes with 

traits. Despite the similarity in data structure, the focus of MTMM analyses is quite different 

from analyses of two-way multivariate data from related family members. MTMM analyses 

only model the correlation matrix not the mean structure, and mainly focus on estimation 

and tests of parameters with specific meanings for construct validity. In contrast, in two-way 

multivariate family data analysis, mean structures may depend on covariates and hypotheses 

about regression coefficients are of interest. Incomplete data is a significant issue in data 

collected on family members, as a family may not have all J member types and individual 

measures can be missing for a particular subject.
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The most popular technique for fitting an MTMM model is confirmatory factor analysis 

(CFA) using the correlated-trait correlated-method (CTCM) structure, which assumes the 

inter-related trait factors are independent of the inter-related method factors [27, 28]. This 

model requires a total of at least J + K ≥ 6 trait and method factors with at least J ≥ 2 method 

factors and K ≥ 2 trait factors to be identified, and it is not empirically identified when the 

loading matrix has deficient column rank [29], or when all trait or method factor correlations 

are equal [31]. Wothke [30], Brannick, et. al. [31] and Lance et. al. [32] analyzed 21, 14 and 

19 published MTMM matrices, and reported that in 100%, 94% and 100% of the cases, 

respectively, the algorithm for CFA model failed to converge or gave invalid solutions, such 

as negative variances or non-positive definite covariance matrices, which are called 

Heywood cases [29]. The algorithm for fitting CFA models to two-way multivariate family 

data can have the same identification problems, resulting in non-convergence, fits with 

invalid solutions, improper estimates such as negative loadings, or unstable estimates with 

extreme standard errors.

Bayesian factor analysis (BFA) [33–37] can help to mitigate the identification problem by 

incorporating available knowledge about parameters in the form of prior distributions based 

on either expert opinions or previous experiments not to mention that typical constraints on 

variances mean that zero estimates do not occur. Markov chain Monte Carlo (MCMC) 

methodology has been applied previously in BFA to sample from posterior distributions 

[38–42]. Bayesian inference using inverse-gamma priors for unique error variances and 

inverse-Wishart priors for the covariance matrices avoid the problem of Heywood cases 

(negative variances and non-positive definite covariance matrices) that occur with maximum 

likelihood approaches. Bayesian methods have not been previously applied to CFA for 

analyzing familial data with multiple outcomes or for fitting the MTMM models. Bayesian 

techniques make it possible to solve most problems with standard CFA.

The rest of the paper proceeds as follows: Section 2 describes the proposed Bayesian Family 

Factor Model (BFFM), including the basic model structure, prior specification, a Gibbs 

algorithm to sample from posterior distributions, and methods for missing data imputation 

and hypothesis testing. Section 3 discusses simulation studies comparing the BFFM with the 

full information likelihood estimation of CFA model using quasi-Newton optimization by 

the lavaan [43] package in R. In Section 4 we fit the BFFM to the motivating UCLA 

Neurocognitive Family Study data. Implications and possible extensions are discussed in 

Section 5.

2. A Bayesian Family Factor Model

To model correlations among these multivariate observations in the form of two-way tables 

of data, classical CFA model using a combination of family-member factors and outcome 

factors can be used, but may have convergence problem and Heywood cases (lack-of-

convergence) caused by empirical under-identification. To handle these inference problems, 

we propose a novel Bayesian Family Factor Model (BFFM) using informative priors, which 

has the advantages of being able to handle missing data, incorporating mean structure and 

test hypotheses easily. The basic structure for a BFFM is described below.
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Suppose K normally distributed outcomes are collected on each of J members in N families. 

Let i, j and k index family, member type and outcome, respectively, with i = 1, …, N, j = 1, 

…, J and k = 1, …, K. Then yijk is the kth outcome for the jth member in the ith family, and yi 

= (yi11, …, yi1K, …, yiJ1, …, yiJK)T is the JK × 1 vector of observations for all J members in 

the ith family. The relationships among the JK observed variables are characterized by a 

factor analysis model

yi = Xiβ + ΛA f Ai + ΛB f Bi + εi, (1)

where Xi(JK × P) is a matrix of known covariates for family i; βP × 1 = (β1
T, …, βP

T)T is a vector 

of regression coefficients; fAi(J × 1) = (fAi1, …, fAiJ)T and fBi(K × 1) = (fBi1, …, fBiK)T are a 

priori independent vectors of family member factors and outcome factors, respectively, with 

corresponding unstructured variance-covariance matrices ΦA(J×J) and ΦB(K×K)

f Ai ∼iid 𝒩(0, ΦA),

f Bi ∼iid 𝒩(0, ΦB);

ΛA(JK×J) = [Ajk] is a family member factor loading matrix with Ajj = αj= (1, aj2, …, ajK)T 

and Ajk = 0(K × 1) when j ≠ k; and ΛB(JK×K) = [B1, B2, …, BK]T is an outcome factor loading 

matrix, where B1 = IK, Bj = diag(bj1, …, bjK), for j = 2, …, J. Here αj is a vector of non-zero 

family factor loadings for the jth family member specific effects and ΛBj is a diagonal matrix 

of outcome factor loadings for the jth family member. Furthermore, εi is a JK × 1 vector of 

unique errors independent of fAi and fBi

εi ∼iid 𝒩(0, Ψ),

with diagonal error variance matrix Ψ(JK×JK) = diag(ψ1, …, ψK, …, ψ1, …, ψK), as we 

assume that unique variances for the same outcome are equal across family members.

The variance-covariance matrix of the outcomes, yi, unconditional on the factors is

∑ = var(yi|β) = ΛAΦAΛA
T + ΛBΦBΛB

T + Ψ,

with diagonal element

var(yijk|β) = a jk
2 ϕAjj + b jk

2 ϕBkk + ψk, (2)
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where ϕAjj is the jth diagonal element of ΦA and ϕBkk is the kth diagonal element of ΦB, ajk 

is the kth element of αj and bjk is the kth diagonal element of Bj.

For the 1st outcome, as bj1 = 1, the overall variance var(yij1|β) is

var(yi j1|β) = 1ϕAjj + b j1
2 ϕBkk + ψk, (3)

which indicates that family factor variances, ϕAjj, must be smaller than the overall variances 

of the first outcome, var(yij1). Therefore, it is better to scale observed variables to make 

var(yij1) similar to other overall variances, so that ϕAjj will not be forced to be small, which 

can cause precision problems in computing when very small values are rounded to 0. Eqn 3 

will help in setting priors for factor loadings and for the factor covariance matrix.

Next, we set size or scale for factors and factor loadings. The scales of all family member 

factors, fAij, for j = 1, …, J, are set to be the same as the first outcome, yij1, by fixing the first 

nonzero loading in each column of ΛA to 1, aj1 = 1. The unit of a family member factor 

loading, ajk, is the ratio of the units of the kth outcome to that of the first outcome, for k = 2, 

…, K. Factor loading ajk is the amount of change in yijk associated with a 1 unit increase in 

fAij all else held constant. In addition, because ajk/aj1 = ajk/1 = ajk, loading ajk is also the 

ratio of the effect of fAij on yijk to the effect of fAij on yij1.

Similarly, the scale for an outcome factor, fBik, is specified to be the same as that of outcome 

yi1k, the first family member (proband), by fixing the first nonzero loading in each column 

of ΛB to 1, b1k = 1. Therefore, the scale of the kth outcome is passed on to the kth outcome 

factor, fBik. Similarly, outcome loading bjk is the amount of change in yijk associated with a 

1 unit increase in fBik and as bjk/b1k = bjk for j = 2, …, J, bjk is also the ratio of the effect of 

fBik on yijk to that on yi1k.

The total number of free hyper-parameters in the model is (2JK + J2/2 + K2/2 − J/2 + K/2 + 

P), as there are P regression coefficients, J(K − 1) family member factor loadings, (J − 1)K 
outcome factor loadings, J(J + 1)/2 unique parameters in the family factor variance matrix, 

K(K + 1)/2 unique parameters in the outcome factor variance matrix, and K unique error 

variance parameters. Similar to the CFA model for MTMM data, this model requires at least 

a total J + K ≥ 6 family member and outcome factors with at least J ≥ 2 family member and 

K ≥ 2 outcome factors to be identified. It is not empirically identified when the loading 

matrix has deficient column rank [29], or when all family member or outcome factor 

correlations are equal [31].

There is a one-to-one correspondence between model parameters and lines on the path 

diagram in Figure 1. Unstructured factor variances matrices, ΦA and ΦB, correspond to 

bidirectional arrows among the J = 4 family member factors on the left and among the K = 5 

outcome factors on the right, respectively. The non-zero elements of ΛA, namely α1, …, αJ, 

correspond to unidirectional arrows from family member factors on the left to the JK 
observed variables, yi. The non-zero elements of ΛB, namely diagonal elements of Bj, 

correspond to unidirectional arrows from family member factors on the right to yi.
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2.1. Prior Distributions for the Bayesian Family Factor Model

In the absence of strong theoretical or empirical beliefs to the contrary, we specify 

conditionally conjugate priors for all parameters. The prior distributions for the regression 

coefficients, β = (β1, …, β p)T, and free elements ajk and bjk in the factor loading matrices, 

ΛA and ΛB, are independent normal

βp ∼iid 𝒩(β0p, σβ0p
2 ), for p = 1, …, P,

a jk ∼iid 𝒩(μajk, σajk
2 ), for j = 1, …, J, k = 2, …, K,

b jk ∼iid 𝒩(μbjk, σbjk
2 ), for j = 2, …, J, k = 1, …, K

The factor variance matrices, ΦA and ΦB, follow independent inverse Wishart distributions

ΦA ∼ ℐ𝒲(WA, vA),

ΦB ∼ ℐ𝒲(WB, vB),

where vA and vB are the degrees of freedom parameters, WA(J×J) = (vA – J − 1)DACADA and 

WB(K×K) = (vB – K − 1)DBCBDB are location parameters, CA(J×J) and CB(K×K) are prior 

factor correlation matrices, and DA(J×J) = diag(dA1, …, dAJ) and DB(K×K) = diag(dB1, …, 

dBK) are matrices with factor standard deviations dAj and dBk as diagonal elements to be 

specified shortly. Independent inverse-gamma priors are specified for the K distinct diagonal 

elements of Ψ

ψk ∼ind ℐ𝒢
𝒳ψk

2 ,
ϑψk

2 ,

for k = 1, …, K.

2.2. Specification of Prior Hyper-parameters

We specify prior hyper-parameters based on model interpretation and subject matter 

knowledge. The basic assumptions are that the variances of the K outcomes are distinct due 

to scale differences and that the variances across family members of the kth outcome are 

similar. The first step is to obtain estimated values for the overall variances of the K 
outcomes, var(y..1), …, var(y..k), either from the literature, from previous studies or from 

expert opinion. When no other information is available, 1/4 of the range of the kth outcome 

variable in the data set under study is a plausible value of var(y..k)1/2.
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To specify priors for factor variance matrices, we use Equation (3), which implies the 

minimum of var(y..1), …, var(y..k) can be used as an upper bound for the prior mean dA1
2  of 

ϕA11, and we set dA1
2 = pϕa1 min var(y..1), …, var(y..k)) for 0 < pϕa1 ≤ 1, a scaling constant to 

be specified later. Furthermore,

var(yi11) = ϕA11 + ϕB11 + ψ1 (4)

implies var(y..1) can be used as an upper bound for the prior mean of ϕB11, 

dB1
2 = pϕb1var(y..1), again for a scaling constant 0 < pϕb1 ≤ 1 to be specified later. As the 

scale of the kth outcome is passed on to the kth outcome factor, fBik, the prior means of 

outcome factor variances, ϕBkk, are set to be proportional to the estimated overall variances,

dB1
2

var y..1 = …
dBK

2

var y..K = pϕb1

As the scale of the first outcome is passed on to all family member factors, fAij, the prior 

means of the factor variances are set to be equal, dA1
2 = … = dAJ

2 .

Information on correlations within outcome across family members and among outcomes 

within subjects can help to specific CA and CB, the prior factor correlation matrices. Some 

information about theoretical associations among family members are available. For 

example, the genetic correlations between father and mother, between parent and child and 

between siblings are 0, 0.5 and 0.5, respectively. In addition, some outcome measures are 

known to be more closely related than others. For example, correlations among sub-scales 

from the same test will be similar and higher than correlations coming from sub-scales of 

different tests, which can be reflected in the prior factor correlation matrix CB.

Prior means of factor loadings are elicited as follows. For a particular outcome, effects of the 

different family member factors on the observed variables are likely to be similar, so we 

assume that the prior means of loadings for the same outcome are equal across members,

μa1k = μa2k = …μaJk,

for k = 2, …, K. As the scale of ajk is the ratio of the scale of the kth outcome to the scale of 

the first outcome. we set prior means of the loadings proportional to the square root of the 

estimated overall variances

1
var y..1 1/2 =

μa j2
var y..2 1/2 = … =

μajk

var y..K 1/2 ,
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for j = 1, …, J. For outcome factor loadings, because effects of the same outcome factor on 

observed variables are likely to be similar across family members, and b11 = … = b1K = 1, 

we set prior means of all outcome factor loadings to 1

μbjk ≡ 1,

for j = 2, …, J and k = 1, …, K. To specify prior means for the unique error variance, ψk, for 

k = 1, …, K, var(y..k) can also be used as an upper bound, 

E(ψk) = ϑψk /(𝒳ψk − 2) = pψvar(y..k), for some scaling constant pψ. From Equation (4), we 

can decompose the estimate of var(yi11) into 3 parts by setting pϕa1 + pϕb1 + pψ = 1. When 

data from a previous study are available, these scaling constants can be further estimated 

using the proportions of variances explained by unique variances, outcome factors and/or 

family factors in standard CFA models.

To specify the priors for regression coefficients, it is necessary to identify plausible values 

for the covariate effects on each outcome from previous studies or expert opinion. For the 

special case where covariates are indicators of diagnostic or treatment groups, the estimated 

means of outcomes in the general population or in patients from earlier studies are useful 

guides for choosing prior means.

2.3. Gibbs Sampling from the Posterior Distribution

We use conditionally conjugate priors so that simulation of the posterior distribution 

proceeds via a Gibbs sampling algorithm [44, 45]. To reduce autocorrelation and improve 

efficiency, we use a blocked Gibbs sampler to sample the regression coefficients, β and the 

factor scores, fi from their joint conditional distributions, respectively.

Missing yijk are imputed at each iteration of the MCMC algorithm with a data augmentation 

(DA) algorithm [46]. This approach has the advantage of using BFFM for both imputation 

and data analysis. Because the missing and observed data are jointly normal given 

parameters, the conditional distribution of the missing data given the observed data and the 

unknown parameters is also normal. Thus missing outcome data or families without certain 

members are not a problem for our method. We implement [47]’s sweep operator algorithm 

for imputation of multivariate normal data. Full details of the Gibbs sampler are given in 

Web Appendix A.

2.4. Hypothesis Testing using Bayes Factors (BF)

Besides estimating model parameters, it is of interest to test various hypotheses about these 

parameters. In Bayesian inference, testing a null hypothesis against an alternative can be 

regarded as comparing two corresponding models, ℳ0 and ℳ1. A Bayes factor [48–50] is a 

summary of evidence provided by the data in favor of ℳ0 as opposed to ℳ1

B01 =
p(Y|ℳ0)
p(Y|ℳ1) (5)
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where p(Y|ℳ𝓁) = ∫ p(y|Θ𝓁)p(Θ𝓁)dΘ𝓁 for 𝓁 = 0, 1 is the marginal likelihood of the data Y 

given model ℳ𝓁.

Let ℳ1 denote a general model indexed by Θ = (ωT, ϒT)T, where ω denotes the vector of 

parameters of interest, ϒ denotes the vector of all the remaining “nuisance parameters”, 

p(Θ|ℳ1) denotes the prior density under ℳ1 and p(Y|Θ, ℳ1) denote the sampling density 

under ℳ1. A nested model, denoted ℳ0, is constructed by setting ω = ω0, while leaving ϒ

unconstrained. The marginal likelihood of Y under ℳ0 is p(Y|ℳ0) = p(Y|ω = ω0, ℳ1). The 

prior density under ℳ0 satisfies p(ϒ|ℳ0) = p(ϒ|ω = ω0, ℳ1) and the sampling density under 

ℳ0 is p(Y|ϒ, ℳ0). From Bayes Theorem,

p(Y|ω = ω0, ℳ1) =
p(ω = ω0|Y, ℳ1)p(Y|ℳ1)

p(ω = ω0|ℳ1) , (6)

so the Bayes factor can be expressed as the Savage-Dickey density ratio [51–53]

B01 =
p(Y|ℳ0)
p(Y|ℳ1) =

p(Y|ω = ω0, ℳ1)
p(Y|ℳ1) =

p(ω = ω0|Y, ℳ1)
p(ω = ω0|ℳ1) . (7)

The marginal prior density p(ω = ω0|ℳ1) can be easily calculated from the prior. The 

marginal posterior, p(ω = ω0|Y, ℳ1), can be estimated using MCMC outputs from the 

unrestricted model, which provide draws from the marginal posterior p(ω|Y, ℳ1). Different 

methods to calculate the marginal posteriors include the usual normal approximation, and 

conditional marginal density estimation (CMDE) [53].

In the UCLA Family Study, hypotheses of interest include whether group means are equal 

(1) between schizophrenia and control families and (2) across family member types within 

schizophrenia families. Both scenarios are equivalent to testing whether particular linear 

combinations of the regression coefficients are simultaneously equal to zero

ω(l × 1) = L(l × P)β(P × 1) = 0(l × 1),

where L is a full rank matrix. Let M denote any (P − l) × P full rank matrix so that rank([LT, 

MT]) = P and let ω⊥ = Mβ. Let ℳ1 denote a general model where β is freely estimated, 

which has parameters Θ = (β, ΛA, ΛB, ΦA, ΦB, fA1, …, fAN, fB1,, …, fBN, Ψ) and let 

ϒ = (ω⊥, ΛA, ΛB, ΦA, ΦB, f A1, …, f AN, f B1, …, f BN, Ψ). Then Θ can be reparametrized as 

Θ∗ = (ω, ϒ). The nested null model, ℳ0, is constructed by setting ω = Lβ = 0.
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As a priori β 𝒩(μβ0, ∑β0), the prior distribution of ω = Lβ is

ω|ℳ1 𝒩(Lμβ0, L∑β0LT),

so we can obtain the denominator of the Savage-Dickey density ratio, p(ω |ℳ1)|
ω

= 0.

Let μ̂β and ∑̂β denote the posterior mean and variance of β estimated from the MCMC 

output. The marginal posterior distribution can be approximated as

ω|Y, ℳ1
approx.𝒩(Lμ̂β, L∑̂βLT),

which gives an approximation to p(ω|ℳ1)| ω = 0.

The conditional marginal density estimator (CMDE) approximates p(ω|Y, ℳ1)|ω = 0 using an 

average of the full conditional posterior density of ω evaluated at ω = 0 over all T MCMC 

iterations

p(ω = 0|Y, ℳ1) ≈ 1
T ∑

t = 1

T
p(ω|ϒ, Y)|

ω = 0, ϒ = ϒ(t), (8)

where ϒ(t) is value of ϒ from the tth MCMC sample. The full conditional posterior density of 

ω is

p(ω|ϒ, Y) = p(ω|Mβ, ∑, Y),

where ∑ = var(yi|β) = ΛAΦAΛA
T + ΛBΦBΛB

T + Ψ is the variance of yi given β.

3. Analysis of Simulated Data

To assess the performance of the Bayesian Family Factor Model (BFFM) in different 

scenarios, simulation studies are used to compare BFFM with CFA estimated by full 

information maximum likelihood (FIML) using quasi-Newton optimization (QNO), on the 

basis of ability to fit the data, as well as examining mean squared errors (MSE), squared 

biases and variances of parameters estimated by the two methods.

Grayson et. al. [29] proved that a CFA model is not identified when the true factor loading 

matrix, Λ, is not full rank. One sufficient condition for deficient column rank is 

Λ = [C ⊗ a0|d ⊗ B0], where C(J×J) and B0(K×K) are diagonal full rank matrices, and a0 and d 

are K × 1 and J × 1 vectors, respectively [29]. We generate data under three scenarios where 

the true covariance matrix is identified, close to not identified and not identified, by 

Chen et al. Page 11

Stat Med. Author manuscript; available in PMC 2019 May 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



specifying different true factor loading matrices, [ΛA|ΛB], which were far from equal to, 

almost equal to, and equal to [C ⊗ a0|d ⊗ B0].

Two hundred data sets were simulated for each scenario. Each data set has N = 200 families, 

K = 5 outcomes and J = 4 members: proband, sibling, father and mother. True regression 

coefficients β and true unique error variances Ψ are the same for the three scenarios,

Xi(JK × 2JK) = diIJK (1 − di)IJK ,

where di = 0, 1 for control and SZ families respectively, and IJK is a JK × JK identity matrix. 

The corresponding β(2JK×1) is (β1,β2)T, where β1 and β2 are JK × 1 vectors of means of all 

K outcomes on the J family members in the control and SZ families. For J = 4 and K = 5, the 

total number of parameters is 101. The observations are set to be missing completely at 

random with probability p = 0.15 and the missingness pattern is the same across all 200 data 

sets for each scenario. True values for all parameters are given in Web Appendix B.

Standard non-Bayesian CFA models are fit to the simulated data using the lavaan package in 

R [43], which uses full information maximum likelihood (FIML) estimation to handle 

missing data and uses a quasi-Newton optimization algorithm to estimate parameters. Full 

information maximum likelihood estimation with quasi-Newton optimization (FIML-QNO) 

is defined as successful in fitting the data if the algorithm converges and provides a valid 

solution, e.g. having positive-definite covariance matrices and positive variances. In many 

cases, FIML-QNO fails to find a fit to the data due to empirical under-identification. The 

percentages of data sets for which FIML-QNO was successful in fitting in the 3 scenarios 

are 87%, 43% and 15%, respectively. When CFA model using FIML-QNO was fit to the 

same simulated data but with no missing observation, the percentages increase slightly to 

92.5%, 50.5% and 21%, respectively, suggesting that the missing data was not the major 

cause of the failure of FIML-QNO.

Next, a BFFM is fit to the same 200 data sets in each scenario, with 10, 000 iterations after 

an initial burn-in of 1000 iterations. Priors are chosen to be partially informative and 

centered at true values with large dispersions. Trace plots, density plots and autocorrelation 

plots show no obvious evidence of bad mixing, non-convergence or high autocorrelations. 

BFFM successfully fit all 600 data sets and the resulting posterior means were always valid 

solutions (i.e. positive variances and positive definite covariance matrices).

We compare the performance characteristics of BFFM and FIML-QNO, when FIML-QNO 

was successful in fitting the data sets. The mean squared error (MSE) of an estimator θ  for a 

parameter θ , MSE(θ ) = E(θ − θ)2, measures the average squared distance between the 

estimator θ  and the true parameter value θ. The MSE(θ ) is the sum of the variance of the 

estimator, Var(θ ) and the squared bias, [E(θ ) − θ]2. Denote θ l as the posterior mean of θ from 

the MCMC outputs of the lth data set, for l = 1, …, 200, then the variance of θ  is estimated 

by
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var(θ ) = 1
200 ∑

l = 1

200
θl − 200−1 ∑

l = 1

200
θl

2
.

We compare methods on the relative MSE, relative variance and relative squared bias 

defined as MSE(θ )/θ2, var(θ )/θ2 and [E(θ ) − θ]2/θ2, respectively.

In the scenario where the true covariance matrix is close to not identified, we compare 

relative mean squared errors (RMSE), relative variances and relative squared biases of all 

parameters estimated by fitting BFFM and FIML-QNO to the 43% of the data sets which 

FIML-QNO was successful in fitting (Web Appendix C). Overall, parameter estimates from 

BFFM and FIML-QNO are similar and are close to the true values. Figure 2(a) plots on a 

log-log scale the relative MSEs of parameters estimated by BFFM against relative MSEs of 

parameters estimated by FIML-QNO. There are 101 dots representing all parameters. 

Different symbols represent different groups of parameters (factor loadings, factor variance-

covariance parameters, regression coefficients and unique error variances). For a given 

parameter, if RMSEs estimated by two models are the same, the dot will lie on a diagonal 

line with slope 1, which is drawn in every plot; when the RMSE estimated by BFFM is 

smaller, the dot will lie above the diagonal line; and when the RMSE estimated by FIML-

QNO is smaller, the dot will lie below the diagonal line. For more than 60% of the 

parameters, the RMSEs estimated by BFFM are smaller. For most parameters, the RMSEs 

estimated by both methods are small (RMSE < 0.1, dots in the lower left corner). However, 

for some factor loadings and factor variance-covariances, the RMSEs estimated by FIML-

QNO are much larger than those estimated by BFFM (dots in the upper half).

Figure 2(b) plots relative variances of parameters estimated by BFFM against those 

estimated by FIML-QNO. Almost all dots lie above the diagonal line, where BFFM has 

smaller relative variances for almost all parameters. Similarly, Figure 2(c) plots the relative 

squared biases ([E(θ ) − θ]2/θ2) of parameters estimate by BFFM and FIML-QNO. For most 

parameters, relative squared biases are small (< 0.1) using both methods. For about 40% of 

the parameters, the relative squared biases estimated by BFFM are smaller, but the FIML-

QNO has smaller relative squared biases when both methods perform well (relative squared 

biases < 0.1). However, as with the relative MSEs, for some factor variance-covariances and 

factor loadings, the squared biases estimated by FIML-QNO are larger than those estimated 

by BFFM.

It is important to check whether BFFM performs worse when FIML-QNO failed as 

compared to when FIML-QNO succeeded.

The plot of the relative MSEs in Figure 2(d) indicates that BFFM works equally well for 

both kinds of data sets where FIML-QNO did or did not converge, because almost all dots 

are close to the diagonal line with slope 1. The plots of relative squared biases and relative 

variances are similar. Plots comparing the BFFM and FIML-QNO in the scenarios where the 

true covariance matrix is identified or not identified are presented in Web Appendix C, and 

show similar patterns.
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4. Application to the UCLA Family Study Data

We fit the BFFM to the UCLA NFS data. The J = 4 family member types, proband, sibling, 

father and mother are indexed by j = 1, …, 4, respectively. The K = 5 cognitive outcome 

measures, MANIPA, CPTDSD, CPT37D, SPAN10 and logTRLB, corresponding to k = 1, 

…, 5, are scaled and transformed as described in Table 1 to make the scales similar and all 

correlations positive. The sample consists of 625 subjects and N = 206 families, about half 

of which are schizophrenia families. The covariate is an indicator of being in a schizophrenia 

or control family, as in the simulation study. For families with two or more siblings, data on 

one sibling are randomly chosen to use in this analysis.

To fit BFFM, partially informative priors are specified using the approach described in 

Section 2.1. In particular, estimates of overall means and variances for the five outcome 

measures are obtained from Phase 1 data of the UCLA NFS [2, 3], which collected four of 

the five outcomes in the current study, and from some previous literature reporting these 

outcome measures [54–56]. The estimates of overall means and standard deviations from all 

those various sources are summarized in Table 1. Hyper-parameters for variances or 

dispersion are set to produce large variances so that the prior is uninformative. As the raw 

correlations of four outcomes from the phase 1 data ignoring the family structure were 

between 0.3 and 0.5, the prior correlation means among all 5 outcomes are set to be 0.3. 

Based on the phase 1 data correlations and the theoretical correlations among the family 

members, the prior means of correlations among family members are set to be 0.15 between 

father and mother and 0.2 otherwise.

When the classic CFA model using full information likelihood estimation and the full 

information maximum likelihood estimation using quasi-Newton optimization (FIML-QNO) 

is fit to the UCLA NFS data using the lavaan package in R, the algorithm fails to converge. 

The AMOS add-on in SPSS failed to fit the data because it can not handle missing data, 

while the CALIS procedure in SAS failed to converged.

The BFFM estimation procedure using a Gibbs sampling algorithm is implemented in R, 

with a total of 100, 000 iterations after excluding 10, 000 initial burn-in iterations. Trace 

plots, density plots and autocorrelation plots show no obvious evidence of bad mixing, non-

convergence or high autocorrelation.

Tables 1, 2 and 3 in web Appendix A4 present summaries of the posterior distributions for 

all 101 parameter estimates, including means, standard deviations (SD), and posterior 

probabilities p(θ < 0|Y). Table 2 presents posterior means of factor variances, factor 

correlations and factor loadings for family member and outcome factors. The posterior 

means of all family member factor correlations are positive and vary from a low of 0.034 

between mother and sibling to a high of 0.390 between proband and sibling. Similarly, the 

posterior means of all outcome factor correlations are positive and range from 0.29 to 0.61. 

The posterior means of all factor loadings are also all positive. Thus the observed variables 

are positively associated with the factors they load on.

Table 3 lists the 2JK = 40 posterior means of regression coefficients, βpjk (top) and posterior 

means of the differences in group means, control minus SZ, β1jk – β2jk (bottom). SZ 
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probands performed worse than the control probands for all five outcomes, while the sign of 

the differences in mean outcomes between siblings of the two groups are not well 

determined by looking at the posterior probabilities p(θ < 0|Y). Parents of schizophrenia 

probands did worse in span of apprehension and trails B than control parents.

Figure 3 plots the posterior distribution of group means of CPT37D for probands, siblings, 

fathers and mothers in the control and SZ families (left) and the differences between two 

groups. These plots show that the means of CPT37D for SZ probands are much smaller than 

those for control probands, while there are no obvious differences in means between the two 

groups for fathers and siblings. Mothers in the control families have larger means CPT37D 

than all others, including the SZ mothers. Additional plots of posterior distributions for 

group means and factor loadings are provided in Tables 11, 12 and 13 and Figures 6, 7 and 8 

in Web Appendix A4. By comparing posterior means of five outcomes plotted in Appendix 

A4 Figure 6, psychologists can identify CPT37D as the cognitive deficit which differs most 

between relatives of schizophrenics and relatives of control probands. Furthermore, for some 

cognitive impairments such as SPAN10 and logTRLBA, parents of schizophrenics seem to 

perform worse than parents of control probands, while differences between control and SZ 

siblings are not obvious. These results suggest different patterns of neurocognitive deficits 

aggregation in relatives of schizophrenics and motivate further research to investigate 

potential heritable vulnerability factors for schizophrenia.

4.1. Hypothesis Testing

For the UCLA NFS, researchers are interested in differences in cognitive measurements both 

between the control and SZ families and among different members in the SZ family. First we 

test whether the means of all outcomes for SZ and control probands are equal (the number of 

contraints, NC = K = 5). The linear combination of interest is

L1(K × 2JK) = IK × K 0K × K 0K × K 0K × K − IK × K 0K × K 0K × K 0K × K ,

where 0K×K is a K × K matrix of 0’s. Next, we test whether the means of SZ probands are 

equal to the means of the average of siblings, fathers and mothers of SZ probands (NC = K = 

5). The linear combination of interest is

L2(K × 2JK) = 0K × K 0K × K 0K × K 0K × K IK − 1
3 IK − 1

3 IK − 1
3 IK ,

where 0K×K is a K × K matrix of 0’s. Third, we test whether for a particular variable, say 

CPT37D (k = 3), the means of SZ and control family members are equal (NC = J = 4). Let d 
= (0, 0, 1, 0, 0) be a 1 × 5 row vector, then the linear combination of interest is

L3 = IJ ⊗ d − IJ ⊗ d

Similar Bayes factors (BF) are obtained using the three methods, (the normal approximation, 

KDE and CMDE). The results using the normal approximation from multiple MCMC runs 
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are summarized here and in Figure 9 of Appendix A4 using boxplots. The Bayes factor 

estimated for L1 (mean = 6.1, s.d.= 1.4) suggests the 5 × 1 vectors of means of the probands 

between the two groups are not different, though the support in the data for this hypothesis is 

“barely worth a mention” [50]. For L2 (NC= 5), the mean Bayes factor is 0.00009 (s.d. = 

0.00004), suggesting that the means of SZ probands are quite different from the average of 

their relatives. As for L3 (NC= 4), the mean of Bayes factor is 0.0014 (s.d. = 0.0008), 

suggesting strong evidence against equality in means of CPT37D between SZ and control 

families, which is consistent with the 1-sided posterior probability, p(β113 − β213 > 0|Y) for 

testing the difference in means between the two groups.

5. Discussion

BFFM is a novel covariance model using 2JK + (J2 + K2 − J + K)/2 parameters to model a 

JK × JK covariance matrix. Factor analysis is not the primary goal of this example, but 

rather used as a convenient way to model dependencies. We take a Baysian approach to 

facilitate this modeling through the use of informative priors and consistent ability to fit the 

model to any data set. An interesting path for future research is to expand the analysis to 

include more than one factor per outcome and/or more than one factor per family member.

This model is not limited to small nuclear family (J=4) or balanced family structure with 

exactly J members. It can be extended for families of different sizes wit h different types of 

members. (1) If one or more members do not exist in a family, we treat the data as missing 

and impute them as described in Section 2.3. (2) If there is more than one sibling, we can 

include more than one family member factors for different siblings and specify the family 

member factor variance matrix ΦA as: (i) Factor variances are equal across siblings; (ii) 

Factor covariances between siblings are all equal and (iii) Factor covariances between a 

sibling and another family members are equal across siblings. Instead of Gibbs sampling 

from a Wishart distribution for ΦA, other method will be used to sample ΦA.

This model does not have scalability problem and can be extend to model data with larger 

family sizes and larger numbers of outcomes. Due to the flexibility of allowing one factor 

per family member and one factor per outcome, this is a general model not limited to 

familial data and can be easily applied to any two-way table data with similar correlation 

structure, such as MTMM data to study construct validity.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
A path diagram for the Bayesian Family Factor Model (BFFM). Responses variables Yijk 

labeled Yjk omitting the i (rectangles in the middle), for j = 1, …, 4 and k = 1, …, 5, are 

caused by two sets of factors, family member specific factors (circles on the left) and 

outcome specific factors (ovals on the right), along with a residual error, err_jk, which is 

unique to each item. Rectangles represent measured variables. Circles and ovals represent 

latent variables and residual errors. Covariances are represented by bidirectional arrows. 

Causal effects are represented by single-headed arrows in the path diagram. Means and 
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variance parameters are labeled on the rectangles and ovals/circles, before and after commas, 

respectively.
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Figure 2. 
Plots of relative mean squared errors (RMSE, a), relative variances (b) and relative squared 

biases (c) for parameters estimated by BFFM against those estimated by FIML-QNO, and 

plot of the relative mean squared errors by BFFM for the 43% of the data sets which FIML-

QN failed vs for the 57% of the data sets which FIML-QN was successful (d), in the 

scenario where the true covariance matrix is close to not identified, on a log-log scale.
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Figure 3. 
(a) Posterior density of means of CPT37D for probands, siblings, fathers and mothers in the 

control (black) and SZ (grey) families. The 8 1-dimensional density plots at the bottom 

represent locations of posterior samples for probands, siblings, fathers and mothers in 

control and SZ families, from top to bottom. (b) Posterior densities for differences in means 

of CPT37D between two groups, control minus SZ. The 4 1-dimensional density plots at the 

bottom represent locations of posterior samples for probands, siblings, fathers and mothers, 

from top to bottom.
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