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ABSTRACT OF THE DISSERTATION

Language-Based Music: Cognition and Computation

By

Jordan Alexander Ackerman

Doctor of Philosophy in Cognitive and Information Sciences

University of California, Merced, 2022

David C. Noelle, Chair

Repeated sound sequences in language occur all the time, but we reliably notice

them in popular poetic devices like alliteration, assonance, and rhyme. We leverage

their sound structures in acquiring our vocabularies as children, and in our most

prized literary works. Verbal sound patterns can even serve to scaffold music-like

structure within language. Indeed, humans seem to find music-like verbal patterns

compelling and productive enough to spend effort including them in rhetoric, poetry,

lyrics, and advertisements throughout history. Yet, understandings of their forms

and dynamics are still quite limited. In particular, rap rhymes often sport dense

phonological patterns whose complexity has been shown to increase over time [11],

yet commensurate analysis has not followed. Lyrical data from rap will therefore serve

as the target of much of the current investigation. Much like producin‘g language or

music, producing complex phonologically patterned speech is a skill that, in and of

itself, is worthy of investigation. I will introduce visualization and computational

tools to explore various exemplar data and their sound structures, framing many of

the findings in terms of cognition.



Chapter 1

Introduction

1.1 Language-Based Music

“Spontaneity is a meticulously prepared art.” -Oscar Wilde

“It should be noted that the broader problem of measuring the information
connected with creative human endeavor is of the utmost significance.”
[12] -Kolmogorov

Music and language exhibit many evident similarities. For example, they both display
organized structure, involving sound pattern production and recognition. They can
also demonstrably borrow from each other. In a practice that has gained deserved
attention, referred to as musical surrogate languages [13, 14, 15], meaningful mes-
sages are communicated through sound patterns played on musical instruments, like
drums or flutes. This enables linguistic communication, but using the tools of mu-
sic (rhythms, sequence of notes). This is linguistic communication, but in a musical
form, which may called music-based language.

It has recently been suggested that the reverse phenomenon also exists, that is, music,
but within a linguistic form. McPherson calls this phenomenon language-based music,
or ‘musical genres that involve the adaptation of linguistic form to musical settings’
[15]. She points to two main exemplars of this phenomenon, rhyme and text-setting to
metrical grids. Language-based music may also comprehend a range of other rhythmic
and sound patterns (e.g. imperfect rhyme, assonance, alliteration). This dissertation
focuses on the phonological patterns of language, from normal speech and literature
to language-based music across domains like poetry and lyrics. I utilize tools from

1
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NLP and computation to ask cognitive and linguistic questions about language-based
music phenomena.

The ultimate goal of this work is to broaden the scope of investigation into language-
based music and make steps towards informing pedagogical and AI applications in
language learning. For instance, anyone seriously attempting to rap improvisation-
ally (myself included) quickly learns that there is no codified understanding of the
elements involved, nor is there pedagogy to facilitate learning this popular and elusive
skill. Indeed, only a few dozen rappers in the world might be reasonably considered
‘fluent’ in improvised rhyme. Despite the fact that phonological complexity in rap
has grown over time [11] this has not spurred commensurate formal analysis or cur-
ricula that incorporate insights obtained from research. What is necessary is a more
formal understanding of this complex skill, like one that has already been established
for Jazz music. But unlike in music, where notation systems, analysis, and pedagogy
are abundant, in the creative language arts, there are no comprehensive frameworks
for describing and learning complex structures. Consequently, an interdisciplinary
approach is needed to address this gap and make the educational and creative ben-
efits of improvised rhyming more accessible. Inspired by the richness of musical
formalizations and language learning pedagogy, I combine elements from computa-
tional linguistics, complexity science, and quantitative and experimental methods in
cognitive science, to build a solid foundation for identifying (universal) patterns of
sound organization in creative language use that is reflective of learning dynamics
and human culture.

In this dissertation, I will show how, in both size and complexity, the forms and us-
ages of phonological patterning have outgrown the traditional vocabulary of poetic
devices normally used to describe them. Scientists across fields have graduated from
studying only relatively simple or toy examples, to examining more ecologically valid
data from the wild, in order to identify the nature of their complexity. In much the
same way, I will look in between and across the conventional poetic or lexical classi-
fications to capture the dynamics of the under-explored and complex phenomenon of
repeated verbal sounds. This dissertation will introduce visualization techniques and
use methods from natural language processing and complexity science to describe re-
peated verbal sounds, not only from poetic literature, but across language genres (e.g.
speeches, conversations, confusable phrases). Throughout, I will also discuss why it
is important to integrate what is known about cognition and language in order to
achieve a better understanding of verbal sound patterning and language-based music.

1.2 Rhyme

In this section, I briefly review the perspectives from which rhyme has been inves-
tigated. Given the interdisciplinary nature of language-based music, it is important
to begin by highlighting the breadth of academic fields that may be relevant for a
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comprehensive description of this phenomenon. A more detailed discussion of these
topics can be found in Chapter 3.

In the literature, scholars have explored rhyme (and even rap) from various disciplines
including, poetics, music, culture, linguistics, and computation.

In poetics, efforts range from focuses on structure, utility, and aesthetics [16, 17, 18],
to individual case studies (such as a Pharoahe Monch hip-hop album) [19], to cognitive
poetics [20, 21]. For example, neuropsychological studies have begun to confirm
suggestions from early cognitive poetics that popular constraints, such as meter and
rhyme, do impact our aesthetic and emotional perception of poetry [21]. This work
largely represents an effort to understand the composition and aesthetics of poetic
materials.

In music, rhyme is examined in songs from antiquity [22] to modern genres like rap
[23]. In this domain, efforts focus on rhyme and its relation to meter, rhythm, and flow
[24], pattern placement, and syntactic units [25]. Studies on the syntax of improvised
scatt vocalization (jazz) are also relevant to the mechanics of verbal sound patterning
[26]. Generally, this manifests as an integrated approach where sound patterns, and
their connected linguistic elements, are considered in relation to musical dynamics.

In socio-cultural analysis, two broad areas of investigation have emerged. First there
are efforts to understand popular rhymes in terms of sociology [27], cognitive psy-
chology [28] and education [29, 30, 31, 32]. Forms such as rap also command special
attention in domains like African-American studies [33]. Second, the cultural evolu-
tion of verbal sound patterning has been touched on at many scales. Covered topics
range from the debate over the origins of language and music (e.g. “Which came
first?”) [34, 35, 36], to observations about the commonality of phonological pattern-
ing in rhetoric among tribal leaders [37], to iterated learning models of sounds from
which syllabic templates emerge [38].

In linguistics, there has been a particular focus on the named forms of rhyme [39].
Some have suggested that rhyme should be rigidly defined [40, 41], while others are
more integrationist [42], ‘viewing rhyme itself as in constant interplay with other
sound patterning’ [43]. An important line of research on imperfect rhyme has also
developed, which explores variation and similarity in rhymes that are perceptually
acceptable, yet not ‘perfect’ segmental matches. These efforts span from rock [44] to
hip-hop [45], and often focus on perception and similarity [46, 47, 48, 44, 49, 50, 51]

Finally, in computation, verbal sounds have been used in stylometrics [52, 53, 54,
55, 56, 57, 58], rhyme identification [9, 59, 60, 61], and lyric generation [62, 63, 64,
65, 66, 67]. Recently, a corpus analysis on rap lyrics demonstrated effects such as
increases in rap rhyme complexity between 1980 and 2000 [11], as well as general
tendency for more variability between individual songs than between artists [68].
Even as far back as 1965, it was noted that while English characters (at the time)
had an estimated source entropy of 1.9 bits per character, it is likely that works from



4

artistic disciplines, such as sonnets, would have more constraints (predictability) and
therefore, an entropy closer to 1.0-1.2 [12].

1.3 An Interdisciplinary Approach

Given the universality of creative phonological patterns in language, it is natural that
this domain has been explored from so many disparate fields, and it is my belief that
all of them are needed to inform a more holistic picture of this popular human process
and form.

But there are significant gaps in the literature. There is a striking dearth of theory,
tagged corpora, corpus studies, and cognitive studies on rhyme. Most efforts in neu-
roscience or behavioral psychology, while insightful, employ rhyme peripherally and
as a proxy for phonological processing, in contrast to syntactic or semantic process-
ing. Unlike music, creative verbal sound patterning has an underdeveloped notation
system (outside of phonetics), and almost no pedagogy or robust formalizations of
the sequences of elements involved. Consider that musical culture provides not just
formalizations of the elements or notes (pitches) to its community, but also scales,
chords, progressions, melodies, and various other complex forms for which there are
no explicit analogies in the (phonological) language arts. The absence of discriminat-
ing tools does not necessarily mean these patterns are absent in language, but rather,
that they may not be noticed or labeled; interesting phonological patterns can often
be obscured by the other salient layers of information and complexity humans pack
into language.

Broadly following Jakobson’s integrationist view of rhyme, I explore sound patterns of
language-based music that transcend boundaries of rigid poetic classifications in order
to begin uncovering the true complexities of language-based music. For this purpose,
I use NLP, machine learning, complexity science, and interactive visualizations to
discover patterns in primary sources that are hard to see using conventional methods.
This is an early step towards a more dynamic view of 1) the landscape of language-
based music, 2) the structure of repeated verbal sounds, and 3) the learned skill that
these patterns reflect.

1.4 What has Rhyme Become?

Although the target of this investigation has much broader scope than any definition
of rhyme can capture, it is instructive to point out the growing influence and scope
of the term. In this section I will introduce a few common definitions of rhyme, the
range of the cultural phenomenon, and the learned skill that it represents.
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First, rhyme, or rime, is a phonological unit within the syllable, Encompassing the
nucleus and coda. Second, rhyme has become a catch-all term to refer to many classes
of similarity between words. There are hundreds of specific forms that are referred
to as rhyme. Some are narrow, some are positional, some are overlapping and under-
specified. And third, rhyme is often the term used to refer to the cognitive process
of perceiving, producing, and learning these forms. The second and third definitions
are intimately connected; cognitive mechanisms constrain the way humans produce
repeated sound patterns like rhyme, and the rhyming artifacts that other humans
produce are the objects that our cognitive systems perceive. These different types of
rhyme are illustrated in Figure 1.1.

Figure 1.1: 3 Definitions of Rhyme

I will sometimes refer to the first definition, and will always indicate this usage with
the spelling rime. I identify these other broader definitions of ‘rhyme’ (Defs. 2 &
3) in order to highlight two high-level senses of the word that I will be focusing on
in this project. Admittedly, these are both under-specified and imprecise umbrella
terms and I will attempt to disambiguate these notions by framing them as either
form (recorded cultural output) or process (learned skill, cognition).

1.4.1 A Cultural Phenomenon

Prehistory

Whether humans developed musical or verbal patterning first is an open question that
has motivated much debate [69, 35, 36]. Indeed, it seems plausible that group selection
and culture niches may explain the diversity seen in music [70]. And, in Chapter 3,
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I will explore a related question; what cognitive mechanisms are responsible for the
common human practice of verbal sound patterning?

It has long been assumed that music is a human universal [71], and this claim was
recently verified across many different known cultures [72]. Is rhyme also a human
universal? Thus far, it is unclear. However, rhyme is certainly a prominent feature
of verbal art practices all around the world. It is possible that it exists in all known
languages, but its relative frequency and use likely depends on the variety of cultural,
grammatical, lexical, and phonological attributes of any given language. Determining
the universality of rhyme is a question for future cross-linguistic analyses.

Although evidence of musical instruments only dates back 40,000 years [73], it is
believed that the phenomenon of music is much older. Indeed, evidence of the music-
related elements of perception and production far predates this period. On the one
hand, it is suspected that human voice boxes developed into their modern form some
530,000 years ago, which suggests that early humans (and neanderthals) could have
had the physical ability to speak and even sing [74]. The evolutionary development of
rhythmic capabilities, particularly those specific to human musical and linguistic do-
mains, is still debated [75], but the literature suggests that many of the basic elements
needed for the perception and production of musical and verbal forms, namely, the
appropriate anatomical parts and cognitive abilities, have been around for thousands
of years.

Early History

The earliest written evidence of rhyming comes from a set of Chinese works called the
Book of Songs, collected between 1200-600 B.C.E. [76, 77]. As the title suggests, this
work contains the rhyming lyrics of songs, but it also contains verse that is believed
to be independent of music (i.e. poetry). Across cultures, rhyme has developed in
various ways. In western culture, many poetic forms, like iambic pentameter and
end-rhyme, were made popular during the renaissance. In the Persian tradition, the
science of rhyme has been discussed since at least the 14th century [78].

Anthropological studies have also begun to reveal early cross-cultural pressures for
“unusual linguistic knowledge and rhetorical skill in individuals,” particularly in ‘big-
men’ or tribal leaders. These rhetorical devices have been present for thousands of
years in many traditions. They often rely on “subtle uses of alliteration, rhyme, and
consonance, and the development of a kind of sprung rhythm after an initially regular
metrical form”. These skills are commonly displayed by men in public settings, or
in exhibitions such as verbal duels, which pit individuals against each other, armed
with insults, humor, and various types of evidence for cleverness. Social displays like
this are believed to reward proficient competitors with “enhanced dominance and new
opportunities for sex” [37].
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A more recent ritual also follows in this tradition. The Dozens (a.k.a Dirty Dozens),
a game of rhyming insults, was often played by African-American men in the early
20th century [79, 80].

In most cases, the primary use and focus of rhyme has been on end-rhyme: rhyme
that occurs at the very end of a line. This type of structure can be captured by the
1-dimensional representation scheme traditionally used to annotate rhyme patterns.
This notation works well whether the lines are successive (AABB, AABBA, etc.) or
alternating, as in common in sonnets and limericks (ABAB...). This kind of repre-
sentation well-represents the single syllable patterns that typified rhyme for much of
recorded history. Even subcultures like hip-hop, which are now known for their multi-
syllabic rhymes, were dominated 1-syllable end-rhymes early in their development.

These historical considerations point towards a clear human capacity for musical and
verbal art. But, while many reviews have been conducted on musical forms and their
underlying cognitive mechanisms, intentional phonological patterning in rhetoric and
art have yet to draw such scholarly attention. This gap is only highlighted by the
fact that humans seem to use creative or intentional sound patterning in nearly all
contexts that involve language (e.g. prose, verse, humor, conversation, advertising,
journalism, marketing). This is anecdotally demonstrated in Figure 1.2 which shows
that the frequency of alliteration, assonance, and rhyme used in 2020 Economist
article titles was higher than the base rates for those devices collected from random
3 and 4 word phrases from the Brown Corpus of sentences.

Figure 1.2: Poetic Device Usage in Magazine Article Titles. Article titles represent
all 2020 issues of The Economist
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Modern History

It may seem natural that rhyme has not motivated as much research as music. After
all, rhyme schemes and related devices are often perceived to be much less complex
than musical forms. In addition, language involves more than just sound patterns.
The usual use of language is constrained at various layers, including semantics, syntax,
compositionality, etc. But as newer forms of verbal expression, like hip-hop and
improvisational rapping, have become increasingly popular, the sound patterns they
produce, improvisationally and in writing, have also grown in size and complexity (e.g.
2-10+ syllable imperfect patterns, often repeated dozens of times). As mentioned
earlier, this trend of increasing rhyme complexity in hip-hop has been demonstrated
in the period from 1980 to 2000 [11]. Hip-hop continues to display enormous growth
in popularity [81].

Rappers often use clever punchlines and sound patterning as marks of achievement or
demonstrations of skill in the hip-hop community. In general, as the 1990’s progressed,
it became much more common to hear 2-syllable and 3+ syllable rhymes in songs.
But hip-hop rhyme did not develop within the context of music alone.

In 1993, a style of competitive rapping, battle rap, began to be formalized in a yearly
competition called the Rap Olympics. Before that, battle rap had existed largely
as an informal activity or display where people would try to impress onlookers by
insulting each other with clever rhyming verse. This is reminiscent of the ‘big-men’
and ’the dirty dozens’, mentioned earlier. This competitive verbal performance also
has roots in the early hip-hop tradition of DJ battles, where DJs would set up across
from each other (e.g. on either end of a basketball court) and try to attract the
largest crowd with their record selections and mixing strategies.

Battle rap is an arena where rappers can sharpen their lyric writing abilities, espe-
cially with regards to crowd response, clever punchlines, and rhyming. Battle rap is
fundamentally a turn-taking activity which began in the context of improvised rap-
ping to a beat (hip-hop music or beat boxing). This sets up two important constraints.
First, pattern complexity – it is difficult to make lyrics phonologically complex when
they are improvised, as a great deal of online cognitive effort must go towards making
sense and attending to grammaticality. Second, battle rap lyrics were originally gen-
erated and delivered simultaneously with music, which creates its own set of rhythmic
constraints and time pressure. The largest of these organizations, such as The Rap
Olympics or Scribble Jam, are no longer in operation, but their many of their videos
can be found on YouTube.

A notable progression in the development of battle rap was to avoid the constraints
that a beat imposes by transitioning to a cappella (but still improvised) rap battles
(e.g. World Rap Championships, 2004-2007). This allowed rappers to focus entirely
on the lyrics, but it also led to a lot more ‘sneaking in’ of pre-prepared written con-
tent (punchlines, rhymes, insults). In any event, only a handful of rappers were good
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enough at improvisation to sustain the growing demand for this sort of entertain-
ment. Outside the elite performers, the requirement for improvisation seemed to
result in a reliably lower quality of content. Around 2006, battle rap leagues like
Elements League and Grind Time Now embraced an a cappella and written format,
which allowed for more impressive content in battles. Permitting lyrics to be openly
premeditated, rather than improvised, also led to much larger and complex phono-
logical patterns (e.g. rhyme, stress, and alliteration schemes). These changes in the
constraints and cognitive affordances of battle rap may also have played a role in the
increased usage of multi-syllable rhyming. Today, although all these formats still ex-
ist, written a cappella performances dominate this growing subculture (90%+), which
boasts almost 800 different leagues, and over 23,000 rappers [82].

It should also be noted that various forms of rhyme have relied on perfect agreement,
that is, a matching of the vowel and all consonants following it i.e., the rime, at the
end of a word. Rap, in particular, has pushed the boundaries of perfect matching
and flexibility.

1.4.2 A Skill

Although there are currently no comprehensive notation systems for, or theories of,
language-based music, it is a domain where humans are able to develop skill, even
fluency. From language acquisition to rhetoric to literature to poetics, humans learn to
manipulate both the overt and subtle elements of sounds patterning and organization
in language. While almost all humans are familiar with rudimentary perception and
production of rhyme, we are capable of much more expertise and complexity, not only
in terms of the premeditated production common in canonized lyrics and poetry, but
also in improvisation. Some singular individuals even make it clear that rhyming is
a deep skill, like playing music, which can be acquired at a high level of expertise.

If you were presented with the words, “blue sky”, “Denver”, and “Cream”, how
might you work them into rap lyrics? How long would it take you? Harry Mack,
an improvisational rapper from L.A., observes stimuli and creates improvised raps
concurrently. At the same time as he is reading words that his fans write into a
YouTube live-stream chat, he is integrating them into brand new improvised lyrics
over music – as thousands of people watch live. He does this for hours at a time [83].

The ability to improvise this way is a highly honed skill. Although he is talented
as both a drummer and rapper, Harry Mack has learned to produce language in this
way through almost 20 years of intentional practice. He teaches improv rap in private
lessons, but the sciences of cognition, learning, and language that might explain his
acquisition of this skill have yet to be developed. In Chapter 3, I review the cognitive
mechanisms that enable both traditional and improvised uses of rhyme. Then, in
Chapter 6, I conduct case studies on different forms of improvised rhyming practices
(including Harry Mack).
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1.5 Getting Started

In English, there are over 200+ specific named forms of rhyme (e.g. Masculine,
Feminine, Syllabic rhyme). A perfect masculine rhyme occurs if a pair of words share
the same final vowel (nucleus) and coda (the consonants after the vowel in a syllable)
— also their syllables must have primary stress. Anything that meets that definition
is a masculine rhyme (e.g. can-ran), anything that does not meet that definition is
not (e.g. ran-ram). Almost all of the terminology used to classify poetic devices relies
on this notion of perfect or exact matching of some conditions.

But not all rhymes are perfect. From the limited work on imperfect rhyme [84, 44, 85,
86] it is known that there are important regularities in the ways humans bend or break
these conventional perfect matching rules while still maintaining the illusion of rhyme.
Data of this type are usually referred to with the catch-all term ‘imperfect rhyme’,
though they come in a rich variety of alternative forms. Even in a context where
perfect rhyming is the dominant form, there are regular and imbalanced amounts of
matching in the elements of rhyming syllables.

For example, 83% of disagreement in imperfect rhymes by British poets are explained
by changes in fricative voicing (e.g. love-cuff) [85], whereas in the rock music genre,
49% of disagreement in imperfect rhyme is due to changes in nasal place (e.g. ran-
ram) [44]. What drives this difference? Phonological properties of a language or
dialect? Cultural conventions or Individual differences? Perceptual biases?

Additionally, multi-syllable rhyming patterns are extremely popular in rap lyrics,
which opens up opportunities for variation to occur in many different (consonant)
locations (Rollecoaster / Nova Scotia / Coca Cola), not just the final coda (ram/man).
And in fact, it is not just the consonant sounds that form imperfect patterns. There
are surprising structures and imperfections within the stress and vowel patterns of
multi-syllable patterns in language.

So, what are the underlying linguistic constraints on patterns like this? And how can
the ways in which cognition shapes those constraints be understood? Many factors
likely play a role, but there is not yet a broad or deep enough understanding of the
phenomenon of imperfect verbal sound patterning to identify specifically what they
are. Ideally, such a research program would be able to concretely answer questions
such as the following:

• How does an individual or a culture’s use of repeated sounds change over time?

• In what ways, and how much, do the sound patterns used in language change
under different cognitive or task constraints?

• What is the role of similarity (perceptual, phonological, acoustic) in constraining
these patterns?
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• What are the dynamics of sound patterning in rap lyrics (across subcultures),
where imperfect rhyming is the norm?

• How can creative verbal sound patterning be better formalized to enable thriving
scientific and pedagogical communities (as exists in music)?

I will address these questions, answering some in Chapters 4, 5, 6, and considering
others in Chapter 7.

There are at least two fundamental lines of research that must be expanded on in
order to address these questions. First, it is important to document sound patterns
in relevant data from the wild to capture the true diversity of human language pro-
duction. Second, these descriptive analyses can be used to drive various perceptual
and behavioral studies, testing hypotheses about the role cognition plays in this phe-
nomenon (e.g. similarity, category membership, confusability, learning, expertise,
phonological processes).

I focus on the first issue, which is largely an exploratory and descriptive endeavor,
framing much of the discussion in terms of the second issue. Specifically, I present
a framework for analyzing repeated patterns in speech sounds and discussing their
cognitive implications.

There is a need to document sound patterns in the wild to capture the true diversity of
human language production. I take both bottom-up and top-down approaches to this
problem. From a top-down perspective, I represent all the sounds of language, not
just overt devices, in three formats, bag of words, serialized, and as grids (matrices),
each capturing different structural assumptions of repeated patterns. I describe these
data with computational linguistics and complexity science to quantify their patterns.
Finally, I use both supervised and unsupervised machine learning to cluster and
classify them. From a bottom-up perspective, I leverage human annotated (overt)
data, using linguistic and complexity tools to characterize underlying sound patterns
in sets of annotated utterances (e.g. rhyme sets, confusable phrases). These two
approaches are outlined below.

1.6 Problem 1 (Top-Down)

How can the repeated sounds of language be measured without first labeling all the
patterns?

Conventional or static definitions of poetic devices have been somewhat productive in
the linguistic framing and discussion of poetic language. This approach follows in the
tradition of Aristotle, who contended that category membership is decided from lists
of defining features [87]. But, one problem with this approach is that humans have



12

biases — we only label things that are noticeable or accessible to label. Sometimes
patterns are perceptually confusing, complex, or we don’t have terminology for them,
and they can slip by unnoticed.

Let’s look at an example and try to identify the largest poetic sound structures in
this poem.

A Flea

A flea and a fly in a flue
Were imprisoned, so what could they do?
Said the fly, ”let us flee!”
”Let us fly!” said the flea.
So they flew through a flaw in the flue.

Ogden Nash

You likely noticed two patterns, repeated use of the /f/ + /l/ sound for alliteration,
and an AABBA end-rhyme pattern, but did you find a third? The vowels of line 3
and line 4 are identical, a form of assonance. How do we so easily miss large patterns
like this? The point is, humans don’t always notice repeated sounds in language, even
if the patterns are large and in a context that is being actively examined.

Figure 1.3: Color-coded and right-aligned vowels the poem A Flea

With this in mind, it is important to capture these patterns without having to rely on
humans to first decide on where the patterns are. To do this a visualization such as
that provided in Figure 1.4, allows us to examine the sound patterns more holistically.
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Of all the verbal sound patterns in language, humans consciously attend to some, label
a subset of those (e.g. rhyme, alliteration, assonance), and leave the rest unaccounted
for. This spectrum, from the natural sound patterns of language, to the surplus
sound patterns of poetic and other language, is filled with both undocumented and
unclassified phenomena. In this dissertation, I explore samples of language across this
space and present methods for quantifying and comparing the underlying structure
of their sound patterns.

For this purpose I use natural language processing, machine learning, and interac-
tive visualizations to uncover patterns in primary sources (big and small data) that
are otherwise undetectable using conventional methods. A focus on repeated verbal
sounds may seem like the study of only poetic devices, but most of the speech humans
hear contains sound patterns that are not actively attended to. Indeed, most conven-
tional speech contains repeated sound patterns that the speaker may have, or may
not have, been conscious of producing. Many of these patterns are built into phonol-
ogy (sound systems in language), morphology (system for relating different forms of
words), and syntax (a system for clausal organization of words), and it should be ex-
pected that most speakers produce speech containing sound patterns consistent with
the regularities of a given language. But, if an amount of patterning exceeds some
baseline, one might surmise that energy has been exerted to further structure those
sounds.

1.7 Problem 2 (Bottom-Up)

How can the sound patterns within overt annotated sets of utterances be measured?

Sometimes it is known where poetic devices occur within a sample because humans
(or AI) have identified them. Within the space of identified patterns (e.g. rhyme,
alliteration, assonance), there are yet more imperfections, systematic structures, and
variations that listeners are unaware of, or cannot describe well (or at all). More-
over, they do not fit neatly into the simple categorical definitions of poetic devices
enumerated previously.

Let’s take a look at three example sets of phrases. What sound similarities are
noticeable?

Sets 1 and 2 do not rhyme, while Set 3 presents some kind of imperfect multi-syllable
rhymes where many of the vowels, consonants, and stress are similar. Indeed, Set 1
is a pseudo-random collection of phrases.

If you have a suspicion that Set 2 is a bit less random than Set 1, you are not wrong.
A cursory look at the underlying metrical patterns of these sets is revealing. Just
like the rhymes in Set 3, all the phrases in Set 2 follow a very similar stress sequence
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Figure 1.4: 3 sets of phrases with some phonological similarity. Can you notice their
internal sound similarities?

profile while set 1 phrases do not (seen through the vertical alignment of stressed
vs unstressed syllables). This helps account for the sense of rhythmic or metrical
similarity within Sets 2 and 3, but it is not the end of the story.

Figure 1.5: The underlying vowel patterns of phrases from word sets 1, 2, and 3
(above). Black represents a syllable with primary stress, teal is unstressed, and
purple is secondary stress.

While Set 1 is composed of random phrases, Set 2 contains phrases from a recent
viral meme which leverages perceptual confusability. For full context, its confusability
arises while listening to a noisy British pub chant on repeat. Each time you hear the
chant while reading any phrase from Set 2, it sounds like the recording has changed to
whichever phrase you are currently reading (when really it is always the same - hear
for yourself [88]). The amazing thing is that, despite their demonstrated confusability,
the phrases from Set 2 still seem quite different on the surface. Can metrical stress
alone really explain this much confusability?

Just like in the poem above (A Flea), one can observe just how similar the sounds
of these phrases are by looking at their underlying vowels. Importantly, the vowels
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are color-coded such that more-similar vowels are represented by more-similar colors
(more on this in Chapter 2). As might be expected, there is little visible structure in
Set 1 and quite a lot of structure in the rhyming phrases of Set 3. The big surprise,
however, is just how similar and well-aligned the vowel sounds of set 2 are. So, not
only is Set 2 self-similar in terms of stress (as seen above), but also in its vowel
sequence profile. This begins to demystify that the confusability of this viral meme’s
phrases are not some accident or magical effect, but rather, seem to be directly related
to underlying phonological similarities.

Figure 1.6: Note that the colors used to represent vowels are intended to provide
useful intuitions about vowel similarity so that more similar vowels are represented
by more similar colors (More on this in Chapter 2). For example, even though all the
sounds in the leftmost column of set 2 are not identical, they do come from the same
(darker) region in the color spectrum, which means the vowel sounds they represent
also have more similarities with each other.

Making these patterns visible, as in Figure 6, reveals important intuitions about
what kind of data are under consideration. One might expect that something about
the vowels in Set 3 is bound to be similar; after all, those words are collected from
a rhyming game. But visualizing the vowels is a different matter. Seeing them
immediately makes clear that some vowel positions or columns are more stable, some
can vary (Col 3 & 4), and some can alternate (right-most Col.). One of the issues I
address is this: how can tools from computation, linguistics, and cognitive science be
used to better describe the variety of structures found within sets of utterances like
these?

I will discuss these examples in more detail in Chapter 6 & 7, but notice, for exam-
ple, that none of these sequences (rows) of vowels in any of these sets repeat exactly.
It would be difficult (perhaps impossible) to reasonably capture the structure and
systematic variation present in the vowels of Sets 2 & 3 by using only the tradi-
tional static definitions of poetic devices. For instance, using a static way to define
category membership (e.g. a condition where sequences must have identical vowels)
one would find zero matches in any of these sets, which would not do justice to how
plainly similar some of them are. Yes, their vowel sequences are unique, but still
self-similar enough to be perceived as confusable (as in Set 2), or as rhymes (as in
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Set 3). These visualizations make it clear that the vowels in Sets 2 & 3, respectively,
form larger structures. Despite internal differences, their phrases seem to adhere to
similar constraints, functionally becoming members of the same category.

So, if conventional poetic categories cannot capture these patterns well, how should
these artifacts of lyrical language be treated? Ludwig Wittgenstein argued against
Aristotle’s suggestion that category membership is determined by static definitions.
Wittgenstein suggested that some things, like games or music, do not have a static
definition, or set of definitions, that can fully describe them. Instead, he claimed that
category membership is captured by family resemblance [89]. He specifically discussed
”language games”, something that has been explored in terms of ”semantical games”
[90], but has yet to be explored in terms of ”phonological games”. Eleanor Rosch
describes family resemblance as the ability for something to be more or less a category
member, rather than the Aristotelian “all or none” options [91, 89]. In other words,
category membership can be fuzzy (e.g. does this rhyme?), and members of the same
category may have dramatic or subtle surface level differences.

Embracing fuzzy category boundaries in this space leads to many productive lines of
inquiry that were not possible with only static and categorical definitions of poetic
forms. Fuzzy category boundaries can be discovered by examining sets of phrases that
humans have already grouped together due to (perceptual or phonological) similarity.
Instead of being stymied because data from the wild does not match the current
terminology, the rich and imperfect data that comes from rhyme sets can be used to
reveal phonological structures, perceptual boundaries, and artistic style.

1.7.1 Rhyme Sets & More

In a seminal, but neglected paper from 1974 it was noted that some poets not only uti-
lize rhyming couplets, but also use as many as 30 rhymes in a single pattern [92]. Shaw
calls these structures large rhyme sets where each member (rhyme) is a rhyme part-
ner with all other members. He presents linguistic methods for distinguishing nearby
rhyme sets (in Russian) and argues for the validity of rhyme sets as a structure - even
suggesting that ”accepting these large rhyme groups as sets can aid in understanding
and appreciating ... poems.” Indeed, This generic structure allows rhyming data to
be easily treated as systems with fuzzy categories rather than merely as collections
of pairwise similarity relations, as is traditionally done. Pairwise similarity relations
(e.g. identity, graded similarity) are important to observe, but they focus only on the
local relations and do not consider broader category membership and changes over
time. In contrast, a more systems level approach, enabled by rhyme sets, allows for
describing the underlying structure and dynamics of these data.

In order to uncover sound structure in sets of utterances like rhymes, the basic idea
of large rhyme sets introduced by Shaw [92] can be further developed. Whereas Shaw
focused on large rhyme sets composed primarily of single syllable end-rhyme (mostly
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masculine and feminine), modern rhyme sets (especially in hip-hop) are not only
repeated many times, but also span many syllables. Instead of representing rhymes
in simple 1-dimensional space (ABABAB), which only captures that rhymes occurred,
these data can be represented in 2 dimensions to examine where and which variations
occur. For example, to make computation straight-forward, their underlying sounds
can be vertically syllable aligned, much as was done above in Figure 1.5 and 1.6.

Rhyme sets, once identified, provide a powerful way to discover important positional
and featural variation within perceived category members. That is, rhyme sets can
be used to reveal reliable, shared, and changing sound structures. They allow us to
assume a ’family resemblance’ type of category membership (based on human attes-
tations) and then systematically explore variation within these category members.
Collecting and analyzing rhyme sets can serve an important role in understanding
complex poetic structures themselves, as well as for investigations into phonology,
perception, categorization, and language-based-music. Moreover, rhyme sets need
not be narrowly ’rhyme’ specific, but rather may be comprised of words that have
alliterative, assonance, consonance, or confusability relations. These sets may be
refereed to as alliterative sets, assonance sets, consonance sets or confusable sets –
and they are similar to rhyme sets in that they provide a structure to investigate
imperfection and family resemblance within poetic devices or other language.

Rhyme sets can be ordered or unordered. When ordered, rhyme sets are collected from
naturalistic settings, such as lyrics. Their specific sequencing also permits them to be
interpreted as time series data and represented dynamical systems where transitions
between elements and clusters of elements, within and across rhyming words, can be
used to describe their repeated sound patterns.

For example, Set 1 in Figure 1.4 represents random phrases, and since the ordering
of these utterances is unimportant (though it might be important in some contexts),
I will refer to this type as an unordered random set. Similarly, Set 2 in Figure 1.4
represents confusable phrases from a meme, and since order does not seem relevant to
the effect (though it might be), it is treated as an unordered confusable set. Finally,
Set 3 in Figure 1.4 represents ordered rhyming utterances from a turn-taking game.
Since the ordering of these utterances is important, I will refer to it as an ordered
rhyme set.

Within the rhyme scheme of any work, there many be more than 2 words associated
with a letter representation (ABABAB). In Figure 1.7 Annotated Rhymes there are
3 As and 3 Bs. All the As together are considered a rhyme set, as are all the Bs.

Rhyme sets can be collected in various ways and may have additional properties
discussed in more detail in section 3 of Chapter 4, as well as in Chapter 6 Section 1.

One can also generate unordered rhyme (or other) sets such that any given com-
ponents can be artificially held constant (e.g. set of all words with vowel pattern
/i/-/i/; set of all words with stress pattern 1010, all perfect masculine rhymes with
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Figure 1.7: Example annotated rhymes (ABABAB) and related ordered and un-
ordered rhyme sets.

’bins’). This enables exploring variation across all segments not held constant as
well as properties of words in the set (part of speech, meaning, etc..). Unordered
rhyme sets of this kind can be comprehensively generated using corpora and phonetic
transcriptions. I also provide a simple related tool for automatically generating sets
within a software toolkit called ’phonesse’. It is discussed further in Chapter 2.

1.8 Phonological Vocabulary

There is a foundational question about how to frame the variety of phonological
structures and forms that I will highlight in this dissertation. Larger, long range
sound patterns (rhyme, etc..) are composed of smaller patterns, and so it is important
that any framing is coherent across scales (e.g. segments, syllables, multi-syllable
rhyme). In addition, a focus on the cognitive underpinnings of these forms may be
enriched by a framing that is easily interpretable in terms of learning. Here, I use the
term ”phonological vocabulary” to refer to the body of sound patterns (sound-sound
relations) used in a particular sphere, either by a language or an individual. Below is
a graphic that highlights the difference between a conventional (lexical) vocabulary
and a phonological vocabulary, as defined. Figure 1.8 also includes applications of
that definition within the domains of both language and language-based music.

But what is the scope of the sound patterns included in a phonological vocabulary?

Objects of the phonological vocabulary can be identified and documented at various
scales, along with their frequency of use. These structures may correspond to lexical
objects, but may also exist above or below that scale. Indeed, as shown in Figure
1.9, elements of the phonological vocabulary may include objects across at least three
scales (e.g. segments, syllables, rhyming). Much as the orthographic elements of
words (e.g. letters), or the combinations of words (e.g. collocations, phrases) can be
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Figure 1.8: Definition of vocabulary and phonological vocabulary - applied to both
language and language-based music contexts.

informative for the study of lexical vocabulary, in the same way segments, syllables,
and higher-order poetic structures like rhyme are instructive for shedding light on the
phonological organization within a language or individual. Framing these elements
as a hierarchical system of vocabulary objects allows for productively documenting
and grounding their interrelations within the phonological system.

The term ”phonological vocabulary” has been used in a previous 2006 paper [93]
to refer to the phonological knowledge, compared to the orthographic knowledge,
of second language learners. They probed for what they called ”phonological vo-
cabulary” by implementing vocabulary tests where word stimuli were heard rather
than seen. The hypothesis was that tests of orthographic knowledge may not well
capture ’phonological’ (i.e. aural) knowledge of words. Furthermore, orthographic
based tests may be differentially inaccurate for second-language learners of different
backgrounds. For instance, orthographic tests of Arabic speakers learning English
(two languages that use very different orthographic systems) may underestimate the
learner’s phonological (aural) knowledge of English words. Since then, this literature
has shifted its terminology from comparing ”phonological and orthographic vocabu-
lary” to ”aural and written vocabulary”, terms which seem more appropriate given
the methodological focus on heard verses seen lexical items.

Although the informing idea of ”phonological vocabulary” from Milton & Hopkins
as representative of phonological knowledge is consistent what what I propose here,
I broaden its scope significantly. The notion of phonological vocabulary I develop
includes interaction with lexical items, but is by no means limited to that domain.
Figure 1.9 highlights the objects and relations of phonological vocabulary. At the
smaller level, phonemes and suprasegmentals interact and combine (at short range)
to form larger elements such as syllables, consonant clusters and vowel sequences
– phonotactic arrangements that are known to be influenced by speech production.
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Figure 1.9: Examples of the Objects and Relations of Phonological Vocabulary.

In turn, syllables, consonant clusters, and vowel sequences interact and combine (at
longer range) to form larger objects like rhyme, consonant, or assonance – forms that
are influenced by the rules of language-based music.

While the phonotactics of language are well-studied, the dynamics of rhyme and
language-based music, more generally, are much less well-understood. Some named
forms of rhyme and meter have been the focus of various studies in poetics and
linguistics, but have not been studied comprehensively or at scale. Other forms have
scarcely been documented (e.g. imperfect multi-syllabic or covert).

An additional and relevant definition of the word ’vocabulary’ also applies here, ”a
range of artistic or stylistic forms, techniques, or movements” [94], like those com-
monly found across creative domains, from music to dance to sports. In addition
to treating various sound sequences as part of the vocabulary, emergent components
of the phonological vocabulary (e.g. rhyme, alliteration) can themselves be seen as
stylistic or artistic forms or techniques.

It is important to stress that the phonological vocabulary, as I have proposed here,
is not meant to be a cognitive or linguistic explanation of any phenomenon. Rather,
much like any vocabulary, it is meant to provide practical objects of study that
can be used in order to develop future claims or hypotheses in linguistics, poetics,
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psychology, or cognitive science. The more formal identification of vocabulary items
(language or individual) may ultimately be used to better understand the learnability
of phonological sequences and distributions [95].

Intuitions for Exploring Phonological Vocabulary

In this dissertation, I investigate elements of the phonological vocabulary of language-
based music in various ways, but largely focus on computational studies that explore
a range of structures and trends from orthographic data. However, there are many
other ways to approach and uncover the elements, features, and usage of phonological
vocabulary.

As a toy example, imagine that all vowel sequences generated by an individual, up
to 10 vowels (an arbitrary cutoff), are recorded as a (vowel) vocabulary. This limited
data would seem to capture many important aspects of their phonological vowel
vocabulary, though identifying the regular or salient patterns within these data (1-
10 ngrams of vowels) is a different matter. If this individual’s vowel n-grams were
grouped by the register that was used to produce it (speech, writing, song lyrics,
rap lyrics), one may expect to see differences in the distributions of vowel sequences
across these domains. These observed differences in phonological (vowel) vocabulary
can then be hypothesized about in terms of cognitive or linguistic explanations.

Of course, many phonological patterns are overt, and so a focus on the phonological
vocabulary used within an individual’s (or a language’s) overt patterns (e.g. words,
rhymes, syllables) in comparison to their covert pattern is also revealing of the under-
lying phonological vocabulary, and ultimately, the underlying phonological system.

One could also take a more behavioral approach to understanding the phonological
system by targeting the perception or production of phonological vocabulary.

For instance, In a simple speech production task, subjects can be tasked with produc-
ing words consecutively for X minutes where the only condition is that each next word
have at least one phoneme (sound) in common with the previous one. One would ex-
pect to see explore-exploit patterns of rhyme, alliteration, assonance, and consonance
that differ across individuals. These differences would seem to be related to both
the lexical and phonological networks of individuals (or languages). Documenting
the phonological vocabulary or vocabulary properties from studies like this can also
enable efforts at reconstructing the phonological network from the vocabulary (as is
often done in lexical or semantic space).

On the other hand, perceptual tasks can also be used to uncover differences in the
size or complexity of an individual’s phonological vocabulary. For example, subjects
can be given various language samples (e.g. poetry, rap, lyrics, etc..) and then be
tasked to annotate all of the sound patterns (or poetic devices) they notice within a
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given duration of time (instructions may vary). It may be expected that differences
in the count or complexity of identified patterns across individuals correlate strongly
with their recorded phonological vocabulary at multiple scales. One might also expect
that those with learned phonological skills (e.g. writers, poets, lyricists, rappers) and
larger phonological vocabularies may attest to more or bigger or different phonological
structures. Not only would this tell us whether phonological vocabulary is productive
in predicting the perception of phonological patterns, but also, it could highlight the
perceptual differences across certain kinds of phonological expertise, much like has
been done in music with the study of musical expertise.

Throughout this dissertation, I frame the study of phonological vocabulary in language-
based music at various levels:

• Landscape of possible perfect poetic devices (in dictionary)

• Components of overt perfect rhyme (in poetry)

• Predictability of overt multi-syllable rhyme sets (in rap)

• Predictability of phonemes sequences (in music)

• Usage of phonemes (in LBM and non-LBM genres)

• Usage of phonemes and rhyme sets (in rap)

• Changes in predictability (over time) of vowel and word sequences (in rap)

1.8.1 Chapter Summaries

The organization of my inquiry is as follows:

In Chapter 1, I introduced language-based music and gave intuitions for understand-
ing this space. I began with a brief review of repeated verbal sound patterns in human
culture and science. Then, I outlined an interdisciplinary approach to investigating
this phenomenon, and why we should care about both computational and cognitive
framings of it.

In Chapter 2, I introduce data and a suite of tools for manipulating and visualizing
sounds drawn from orthographic data. Then. I develop an approach to sound visu-
alization that pulls from sound symbolism and color research. These resources can
be used to replicate the results found in this dissertation, or for other efforts in the
language sciences.

Chapter 3 presents a literature review to motivate intuitions about the cognition
and computation of language-based music. Here, I elaborate on the cognitive mech-
anisms that support verbal sound patterning, and why they are important to take
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into account when dealing with related data. Then, I review the computational and
linguistic approaches used so far in characterizing rhyme and sound patterning in
creative language.

In Chapter 4, I focus on data that are identified to belong to poetic devices. First, in
order to better understand the landscape, I document all possible instances of perfect
poetic devices across all dictionary words. Then, I transition to considering imperfect
rhymes across 500 years of poetry in English. Finally, I turn my focus to more formal
analysis, examining overt multi-syllable rhyme sets, something that has not yet been
seriously considered in the literature.

In Chapter 5, I quantify phoneme frequencies across disparate corpora to explore
cognitive and task effects on phonological production. Like much text data, these are
untagged corpora where the location of poetic devices is not known. I characterize the
distribution of phonemes across genres and compare samples from different creative
genres and speakers against baseline samples drawn from conventional language. I
begin by documenting phoneme n-gram frequencies across corpora. Then, I use these
frequencies as features in supervised and unsupervised machine learning models to
classify texts based on genre.

In Chapter 6, I develop case studies of improvised rhyming (rapping) samples using
methods from both Chapters 4 and 5. First, I introduce and analyze data from a
rhyming game tournament (Bar Pong). Then, I consider the phonological differences
between written and improvised verses in a rap cipher. Finally, I look at samples of
improvised rappers, using longitudinal data to uncover changes in phonological and
lexical vocabulary, as well as in semantic similarity.

In Chapter 7, I summarize the main contributions of this dissertation and what they
tell us about language-based music. I also discuss prospective applications for this
line of research, including relations to literacy programs, pedagogy, and artificial
intelligence.



Chapter 2

Tools & Data

In this chapter, I both introduce and review core elements of language sound. First,
I briefly discuss how verbal sounds are associable with real world qualia such as
color. Then, I discuss how sound symbolism can be operationalized intuitively to
visualize sound patterns in language. Finally, I introduce relevant tools and data I
have developed to investigate language-based music, and how they can be used to
understand this phenomenon at scale.

Questions Covered:

• (Section 2.1) What are the elements of language-based music?

• (Section 2.2) How can language sounds be explored at scale?

• (Section 2.3) How can language sounds be visualized?

2.1 The Elements

Speech sounds are a continuous signal that can be represented by amplitude over time,
where oscillating changes in amplitude are captured by frequency (or frequencies).
Some particular portions of sound signals appear to be identifiable as discrete units,
like musical notes, animal cries, or spoken sounds. When deciding how to represent
many phenomena, including language, humans often represent complex concepts in
simple and discrete terms. Representations of natural language utterances can be
orthographic, phonological, acoustic, etc (Figure 2.1). Here, I will be focusing on
phonemic representations, which can be analyzed in terms of natural classes and
distinctive features.

This sort of simplification can be convenient, but it may sacrifice some important

24
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Figure 2.1: 4 Levels of Representation of a Syllable.

dimensions of resolution. For example, there is important variability in the continuous
signals that make up spoken sound across languages, dialects, genders, and speakers
[96, 97], even if the written words used to represent them are the same. However,
humans typically sacrifice fine discriminations and the details of raw frequency and
amplitude, in order to refer to sections of the signal in practical ways e.g. sentences,
words, letters, phonemes, segments. These units and their differences have provided
important insights, though some of the categorical distinctions in linguistic analysis
may be further enriched by understanding more about continuous representations.

There is a long standing debate over the psychological reality of categorical sound
distinctions like syllables, phonemes, and sound segments. Beginning in the early
twentieth century it was suggested that phonemes and sound segments are not sim-
ply a unit of descriptive and theoretical analysis for linguistics, but that they may
have some kind of psychological status [98, 99, 100]. In contrast, there have been re-
searchers who are suspicious of imputing psychological status to linguistic constructs
[101], asserting that categories like phonemes or segments are merely “convenient fic-
tions” [102, 103]. Although discussion continues concerning the psychological ground-
ing of categorical boundaries in language, there is some evidence that phonemes may
exist in our minds, though we lack awareness of them without certain abilities like
alphabetic literacy [99, 104, 105].

Nevertheless, categories of sound (syllables, segments, phonemes, natural classes, dis-
tinctive features) can be perceptually and analytically useful. The present investiga-
tion mainly utilizes the representations of sound patterns built on categorical compo-
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Figure 2.2: Chart of relevant linguistic categorical units related to sound.

nents of syllables, their vowel and consonant segments, and the distinctive features
that comprise those segments. Figure 2.2 shows an example subset of the discretized
segments of spoken language (and their representations).

The pronunciations are represented using the International Phonetic Alphabet (IPA).
The IPA is a universal alphabet for representing phoneme segments. Sound segments
fall into two large categories, vowels and consonants. In either case, the segments
above can be decomposed into smaller components and uniquely differentiated from
each other by means of a set of attributes called distinctive features. Figure 2.4 on
the left, shows the canonical vowel chart (modeled after the shape of the human
mouth), which plots vowels in terms of their highness and backness dimensions. On
the right, Figure 2.4 displays the distinctive features of English vowels, providing a
way to understand and operationalize the dimensions by which each vowel sound is
categorically similar to the others.

While these are merely descriptive tools, there are attempts to provide theoretical
accounts for how and why sound elements can get organized in this way. For ex-
ample, studies of the Brownian dynamics of vowel change (random change due to
environmental conditions) over generations suggest that dispersion in vowel systems
leads to maximized contrasts between sounds. On the other hand, quantal theory
suggests that there are non-linear relations between articulatory and acoustic com-
ponents [106].

Categories such as phonemes in language are often explained as cultural attractors,
systematic biases in a population that describe how instances can become part of



27

Figure 2.3: A chart of International Phonetic Alphabet symbols for sounds, their
ARPAbet encodings, words that use those sounds, and those words encoded in IPA
or ARPABET representations. This graphic focuses on a subset of vowel sounds [1]

a group, and that influence how the learning environment. While there have been
many efforts to describe the impact cultural attractors on language development
(vowel categories in this case), attractors are usually asserted, rather than emergent.
Recent work [107] presents a computational model that demonstrates how attractors
themselves may have emerged (phoneme categories). Regardless of their complex and
evolutionary trajectory, the simple categories shown above are the standard elements
used in most analysis of language sounds.

As mentioned, discrete representations of sound items in language are useful, but are
problematic for a number of reasons beyond their simplification of the underlying
continuous signals. In 2001, George Miller noted that the ambiguity of the dictio-
nary meanings of words creates a combinatorial semantic explosion which makes the
human ability to interpret meaning in language quite remarkable. In particular, in-
dividual words have many meanings, and even within Standard American English,
orthographic representations leave us with too many possibilities to be certain of the
‘true’ or intended representation. Miller’s approach shown in Figure 2.5 is used to
calculate how many distinct possible semantic interpretations there are of a given
sentence when using simple (categorical) lookup dictionaries [108]. This ambiguity
also applies to the representation of pronunciation.

I have conservatively conducted the same exercise with all possible pronunciations
of these same words from the CMU pronouncing dictionary of Standard American
English to identify 72 possible and distinct pronunciations of this sentence. This
highlights the need to acknowledge uncertainty in the faithfulness of discrete rep-
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Figure 2.4: A vowel chart (left) [2, 3], and a chart of the distinctive features of vowel
sounds (right). Although roundness and tense are not displayed in 6A (left image)
they are critical to uniquely identifying vowel sounds, and so must be included in any
complete distinctive feature chart (as on the right) [4]

Figure 2.5: Miller multiplies the number of possible meanings of each word in a sen-
tence. 11x3x16. . . x6 resulting in 3.6 trillion possible meanings of the above sentence.

resentations of sounds, even in simple or obvious-seeming utterances. The level of
ambiguity in pronunciation is not as great as that of meaning, but it does still ex-
ist. This is not even taking into account differences in pronunciations of dialects or
individual speakers. Here, uncertainty is an issue that is ever present, particularly
when conducting analyses not based on (or grounded by) audio recordings of speak-
ers. Most analyses of rhymes, the present study included, fall victim to this problem,
as they are derived from orthographic representations alone. Despite this, as we will
see, a great deal of progress can still be made by studying sound patterns extracted
from the orthographic representations of words.

2.2 Tools

2.2.1 Phonesse

Given the approach of transcribing orthographic text into IPA representations, a
convenient and reliable way to process and handle both individual samples as well
as a large corpora of orthographic text is needed. Phonesse is a python package I
developed for this purpose. It is built around the CMU Pronouncing Dictionary and
offers some convenient features for encoding and manipulating phonemic information.
Some of its basic utilities are discussed below.
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Popular pronunciation lookup dictionaries like CMUdict or Celex offer a starting point
for encoding the sounds of language from orthographic text. They provide simple
lookup tables where individual words are paired with their IPA representation, often
in ARPABET (computer friendly) format. A word like ‘begin’ can be represented in
IPA as /bigIn/ and in a more computer friendly format called ARPABET (‘B IY0 G
IH1 N’). These symbols serially encode the consonants, vowels, and stress pattern of
the word ‘begin’. They are written in a structured way, and so these elements can
be reliably parsed and separated from each other, but that is usually done by each
researcher individually.

It would be useful to be able to ask for different subsets of these serialized constituent
segments, for example, only the vowel or only the stress elements, entire syllables, or
just the rime elements. Accordingly, I present a brief introduction to the Phonesse
package which provides a simple API for collecting, manipulating, and visualizing
sound elements from strings of orthographic text. Some examples are shown below,
while full documentation can be found at jordanmasters.github.io/phonomials/

Figure 2.6: Phonesse User Documentation: jordanmasters.github.io/phonomials/

Pronunciations

In both speech and lookup dictionaries, words may have alternate pronunciations.
Once a phonesse object is encoded it likewise provides possible pronunciations for
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each word.

Because of uncertainty about which pronunciation is actually uttered, the first (most
common) pronunciation for each word is used, though this can introduce error. These
encodings can be manually adjusted to more accurately reflect the specific spoken
utterance.

There are also many words that are not included in a lookup dictionary like CMUdict,
or that are misspelled, or have alternate spellings. In order to include words that or-
thographic lookup-tables fail to represent, I incorporate a grapheme-2-phoneme neural
network model [109] into Phonesse. This way, when requesting the IPA encoding of
some unusual or malformed English, a reasonable representation of the underlying
sounds will be returned. This is particularly relevant for hip-hop where fast changing
slang and abbreviations are often not present in static dictionaries.

As I have mentioned, transcribing from orthography introduces some error to the
encoding. In order to circumvent this, the use of either human annotators or ma-
chine learning (to extract phonemes from audio) can be employed. Both of these ap-
proaches also can introduce some error, but are more closely grounded to the actual
phone uttered. In many cases, these more stringent validations of the data encodings
should ultimately be used to verify that the conclusions of work based on automatic
orthography-¿text encodings are not spurious (present work included). However, for
the current investigation I will proceed with automatic transcriptions as described.

Finally, Phonesse provides various other functions that facilitate processing related
to natural class, distinctive features, n-grams, sound pattern search interface, and
visualization.

Natural Classes

Show all phonemes that belong to a given natural class. Show all natural classes
associated with a given phoneme.

N-grams

Extract all phoneme sequences & their frequencies, up to a given n-gram size.

Search Widget

Create a sound pattern and retrieve all words that contain that pattern. This is
useful as a tool to explore sound patterns in the lexicon, and as a way to design
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lexical stimuli with particular phonological properties.

Specify a number of syllables for the phonesse ‘search app’ and it will generate an
interface with appropriate vowel and consonant positions. Then populate each inter-
active position with a sound segment. Finally, click ‘Search’ to get words that match
the created pattern.

2.3 Visualizations

Encoding relevant data is the first step, but it is also useful to sanity check and
visualize what has just been encoded. Dan Levitin has suggested that “music can be
thought of as a type of perceptual illusion in which our brain imposes structure and
order on a sequence of sounds” [110]. Sometimes we can even see this larger structure
in musical notation or in other popular visualization tools like MIDI. Verbal sound
patterning may leverage a similar type of perceptual illusion, but built on top of, and
often, smuggled into language. This is much like singing, but using the phonemes of
language, rather than pitch, to create patterns. It can be hard to notice verbal sound
patterns when phonology is an aspect of language that is often taken for granted
(always heard, but rarely consciously attended to). Listeners only hear one sound at
a time and don’t get to see the bigger picture. Unlike in music, where notation systems
and representations make appreciating, digesting, and engineering, in the language
arts many patterns go unnoticed. Visualizing language sounds in perceptually valid
colors and spatial configurations, as I have begun to demonstrate above, can help our
brains impose more structure and order on a sequence of sounds, serving as a starting
point for more rigorous investigation. As it turns out, the same representations (e.g.
lists, grids, matrices) that are useful for visualizing sounds and sequences, are also
amenable to computational and linguistic analysis.

Together, these tools enable more scalable and accessible processing of language
sounds from orthographic samples.

2.3.1 Phonemes-2-Colors

Although the descriptive tools of linguistics are integral to this work, there are ways to
visually represent sounds that are more psychologically and perceptually grounded.
Language sounds can be associated with physical properties in the world (weight,
shape, size, color, etc.). The study of this phenomenon is known as sound symbolism.
In addition, the study of color associations and categorization is an independent and
growing field in psychology. In order to enhance the interpretability of verbal sound
visualization, these two domains can be joined to create a perceptually driven vowel-
2-color map.
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Figure 2.7: Left: Assuming the finding from Cuskley, a color scale can be superim-
posed on the 2-dimenional vowel grid to give a simplified instinct for the problem
space. Right: Example mapping between colors and vowel sounds

Work by Cuskley et al. (2019) [111] shows that humans seem to reliably associate
certain high-front vowels with lighter, yellower, greener colors than low-back vowels.
Given this as a starting point, a representation of vowels, such as the vowel chart be-
low, can be related to a popular color scale, like Viridis, that adheres to the theorized
light-yellow to dark spectrum. This graphic gives an intuitive way to imagine how
one might associate vowel and color information.

Vowels are not 1 or even 2-dimensional, so in order to obtain robust associations,
more sophisticated methods should be used.

In collaboration with Karen B. Schloss at the University of Wisconsin, I have devel-
oped a vowel-to-color map with cognitively intuitive colors, where more similar colors
represent more similar vowels. In this ongoing research, we conducted a pilot study
among students from University of Wisconsin Michigan. All combinations of vowels
pairs are presented to subjects who make judgements about their perceived position
on a color scale. Specifically, for each each trial, a pair of audio clips is played and then
the subject is tasked with deciding which vowel sound seemed ’higher’ on the color
scale. In this case, the color scale was presented vertically, higher was lighter yellow-
green, lower was darker purple (e.g. ‘Which sound is higher on this color scale?’).
In the results below, the color scale is presented horizontally for convenience. Each
subject (n=18) is exposed to all combinations of vowels. These pairwise judgments
are then used to identify a discrete ordering of vowels in relation to the considered
color scale. Additionally, subjects were checked for color-blindness with a vision test
known as the Ishihara Test. 3 subjects were removed because they got 2 or more
of the 11 Ishihara test questions wrong. The final number of subjects for this pilot
study was 18.
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Figure 2.8: Proportion of times each vowel was judged as higher on the color scale.
Top: Across all pairs of (9) monophthongs vowels. Bottom: Across all pairs of (15)
vowels from CMU pronouncing dictionary .

For instance, the proportion of times each monophthong vowel is rated higher than
all other vowels is shown in Figure 2.8 below. Each bar represents a single vowel
phoneme, along with its corresponding front, high, low, or back relation.

This vowel set is similar to the one used in Cuskley et al. and it is clear that the Front
and Front / High vowels are proportionally rated higher than Low or Back vowels.
Generally this seems to correspond to the Cuskley et al. results. The congruence
with previous literature gives more justification for extending this core set of vowels
to a broader set for more practical use. For instance, the phoneme encoding used
across much of this dissertation are based on the CMU pronouncing dictionary which
contains 15 vowels, 9 monophthongs, 5 diphthongs, and a rhotic vowel (one with an
’r’ sound in the nucleus). There are likely to be many viable mappings between sets
of speech sounds and color, and these are only early steps in the process of developing
more rich and practical cross-domain perceptual tools.

Phonesse uses the results from this work to provide vowel-2-color maps as a resource,
and employs them when plotting various phoneme visualizations.

Robust vowel-2-color mappings may be useful for enhancing the interpretability of
structure in language data. On the one hand, representations like the vowel grids
used here can make some sound structures transparently obvious. On the other
hand, vowel-color mappings may facilitate localized tracking of patterns or even a
more global sense of structural complexity. Planned follow-up studies will compare
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entropic measures of sound complexity with user judgments of vowel grid complexity
as the vowel-2-color mapping is varied. The related hypothesis is that psychologically
based color-2-vowel maps will facilitate more accurate user judgements of structural
complexity in sound grids. Experimentally driven color-2-vowel maps can be com-
pared with inverse or random mappings in order to check whether these mappings
offer benefits to holistic complexity judgements.

In addition, these maps may be utilized in color-coding vowel sounds from ortho-
graphic texts for language learning or literacy applications. This may be especially
effective in languages where the mapping between orthography and pronunciation is
not a simple one-2-one relation (e.g. Spelling-Pronunciation mappings in Spanish are
largely one-2-one – this is not so for English). For instance the English letters ’oo’
in ’boot’ might be coded as one color, while the same ’oo’ letters in ’book’ might be
coded as a darker color - reflecting the different underlying phoneme. This may aid
in intuitively disambiguating pronunciations for learners by making clear that (and
when) the same orthographic representations represent distinct pronunciations.

2.3.2 Phonemes-2-MIDI

Briefly expanding on the music analogy, MIDI outputs are common in digital music.
Like the one below, they display notes over time for each pitch (row), resulting in a
visualization of the chords, and melodies. These kinds of representations read like
digital sheet music, where the x-axis is time, and each row (y-axis) is a specific musical
pitch.

Figure 2.9: A traditional MIDI representation of pitch in music on the right paired
with the pitches on the left (from a piano). [5]

We can also use MIDI representations to display the sounds of language. I again
focus on vowels alone for representation as it is similar to the musical case (notes)



35

for many reasons. First, there are a similar number of vowels in English and notes
(pitches) in the western musical tradition (1̃5). Second, vowels are the most sonorant
sounds and can exhibit rhythmic (stress) patterns much like those in music. Third,
vowels are shown to be correlated with melody in musical lyrics, whereas consonants
are not [112]. For these practical reasons, I only focus on encoding vowels in MIDI
format, although other constituents can be encoded this way.

In the figure below, I combine these MIDI and color representations of vowels to
visualize sounds from orthographic data. The chief difference from the musical case
is that instead of rows representing unique notes or pitches, in a vowel MIDI, each row
represents a unique vowel. Ordered from left to right, as I encode the vowels of any
text, I print out a block for each next time-step (column) in the row that corresponds
to the next vowel.

Figure 2.10: Colored MIDI representations of vowel phonemes from 2 short examples.

Figure 2.10 demonstrate this visualization concept on toy examples. Figure 2.11
show larger samples, one of which contains language-based music (Eminem’s Lose
Yourself).

Figure 2.11: Colored MIDI representations of vowel phonemes from 2 longer examples.

As one might expect, the natural language of Obama’s Inaugural does not look ob-
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viously patterned, though there is some structure. These data display clear trends,
likely related to the frequency and phonotactics of sounds and their transitions in
spoken English. This is largely meant as a baseline for comparison.

On the other hand, Eminem’s Lose Yourself shows enormous amounts of periodicity
and structure that are so regular they could easily be mistaken for beat or melody.
Additionally, the patterns change, and even relations between patterns seem to have
structure. This kind of complexity underlies a great deal of rhyming verse, however,
humans do not ordinarily notice it in such a holistic way.

This approach can be used in many ways, but for current purposes, it is meant as an
illustrative tool. Here, using MIDI visualization of vowels is a way to reveal the shape
of the data under consideration, and to draw practical analogies to musical patterns.

But MIDI representations are not always the most revealing. This same rap verse
can alternatively be plotted in a grid format using Phonesse (Figure 2.12).

Figure 2.12: Right-aligned lyrics and color-coded vowels from Eminem ’Lose Yourself’
verse.

Notice how much easier it is to orient ourselves to large-scale vowel patterns when
viewing Eminem’s Lose Yourself verse in this way compared to MIDI (or orthography
for that matter).

2.3.3 Phonemes-2-Grids

Even coded by color, some patterns can be quite difficult to see or interpret. As
I just mentioned, another way to visualize the sounds of language is to assume a
bit more structure and display our color-coded sounds in a grid. Text, IPA, and
MIDI representations by default assume serialized data (1-dimensional). A grid, on
the other hand, represents 2 spatial dimensions, a horizontal one, and a vertical one.
Each row in the grid may represent their own meaningful unit of sound sequences (e.g.
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sentences, lines, rhymes). These rows can then be right or left-aligned, according to
the data in question.

Figure 2.13 displays examples of left-aligned and right-aligned vowels in color-coded
grids.

Figure 2.13: Vowel Grid Alignment, left and right

Use of such grounded and colored representations allows us to immediately observe
certain qualitative differences between samples, qualitative differences that the pre-
sented tools also make much easier to quantify.

In Figures 2.14 and 2.15, I show the underlying vowels from a variety of contexts across
the history. Many of the vowel structures you will see reflect imperfect rhymes. This
is an enormous class that is not well understood. Here, I again focus on the vowel
representation of syllables since they provide a reliable point of comparison over many
types of rhyme and contexts. This is particularly relevant for imperfect rhymes, which
tend to have a lot of variation in consonant positions, but are relatively more stable
in their vowels (as will be seen in Chapter 4.3).

Seeing the patterns in comparison can make it clear how complex rhymes and rhyme
schemes have become. In the next figure I again display only the vowels of four works,
but break them down in a 2x2 display to give a sense of the different constraints and
cognitive processes that can produce these forms.

Note that in 2.15 A and C, the sound patterns are predetermined, but the content
(e.g. words, phrases, punchlines) are not. However, in 2.15 A, word matches for the
predetermined sound pattern (ABAB...) are written (premeditated), while in C they
are improvised in the moment during the context of a game. C represents the vowels
of 42 4-syllable phrases that rhyme with the phrase, ‘Level 3 Vest’. In both B and
D, the rhyme schemes are open-ended, but D was created improvisationally, while B
was premeditated.

These structures demand attention as linguistic phenomena, but also rely on different
cognitive processes. In Chapter 3, I synthesize the current literature on the aesthetics,
learnability, and neuroscience of rhyme in order to build a foundation upon which the
cognitive mechanisms of both simple, and eventually, more complex multi-syllabic
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Figure 2.14: Examples of the underlying vowels (right-aligned) in four categories.
Each row represents the vowels of a given line of text. Notice the expected lack of
macroscopic patterning in the vowel sounds of Obama’s inaugural address compared
to the poetic forms. Finally, notice the 7-8 syllable rhyme pattern in D (the right-
most columns)

patterns (like the ones shown above) can be better understood. Specifically, I highlight
the cognitive processes that support the perception, production, and learnability of
rhyme.

Although rhyme and poetic devices have been a subject of interest for a long time,
some of these examples, Figures 2.14D, 2.15B, 2.15C, and 2.15D, illustrate a dramatic
increase in complexity and size of these structures in recent years. One of the goals of
this project is to begin closing the gap between the traditional single syllable perfect
end-rhyme assumptions and these increasingly common and complex structures. Since
many modern and complex forms of rhyme have not yet been thoroughly documented
or studied, this effort constitutes an early step towards that goal.
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Figure 2.15: 2-by-2 display showing the vowels (in grids) of improvised vs open-ended
lyrical patterns. In C, only the vowels from overt rhyme locations are selected and
displayed (some 60 4-syllable rhymes with the phrase ‘Level Three Vest’)

2.3.4 Rhymable.com

Rhymable.com is an accompanying interface that incorporates some of these tools
(Figure 2.16). It enables real-time interactive encoding and visualization of small
samples of text (e.g. up to 1000 syllables).

This front-end tool is meant for analyzing individual samples and gaining intuition
about their underlying sound structures. For corpus studies, I recommend using the
python Phonesse package directly.

2.3.5 Data

In order to investigate questions about repeated sound patterns, I utilize data at
two scales. At the larger scale, I employ data across the spectrum of human language
production including fiction, non-fiction, speech, musical lyrics, and poetry, often with
an eye towards zooming in and further exploring notable trends. At the smaller scale,
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Figure 2.16: Screenshot of the Phonesse Demo User Interface

I target yet under-examined data from exemplary subcultures within hip-hop (Battle
Rap, Improvised Rap, Bar Pong Rhyming Game). Below are short descriptions of
these data.

5-Genre Corpus

In some domains (Lyrics, Poetry), sound patterns are employed explicitly and liberally
(e.g. poetic devices). In other domains (Non-fiction, Fiction, Speech), phonological
patterns are omnipresent, but may be subtle or simply reflective of the phonology of
natural language.

This Dataset represents 60+ corpora across a diverse range of language data (non-
fiction, fiction, speech, musical lyrics, poetry) and serves as a test-bed for exploring
a variety of effects related to language, cognition, and creativity. An important
distinction between Poetry and Lyric categories here is that they reflect non-musical
and musical samples respectively. More details on the dataset can be found below.

Many of these corpora are stitched together from existing datasets. I also personally
collected data including an A Capella Battle Rap corpus and an Improvised Rap
corpus (Harry Mack Omegle Bars). A capella Battle Rap is included in the Poetry
category and Improvised Rap is included in the Lyrics category (improvised over
music).

Battle Rap

As I dicussed in an earlier section, although Battle Rap began as improvised lyricism
over music, over the years, its transition to a cappella in format has coincided with
common use of multi-syllable rhymes. For this reason it is one of the target domains
for this project.
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It should also be noted that improvised battles do exist, even ones where turn-taking
is every 2 or 4 lines (measures). There are also those who improvise rhyme in a
cappella format. Both battles and improvisation come in a variety of forms. I do
not cover them all here, but rather select representative examples from their most
common incarnations.

Improvised Rap

Improvised rap, sometimes called freestyle rap is another domain of particular interest.
Freestyle is a term commonly used to generally refer to rap lyrics outside the context
of song. Improvised rap is a difficult and complex skill to learn, and is often associated
with simple one-syllable end-rhymes. But some individuals have broken through the
simple “end-rhyming” structures of improvised rap, and have begun to utilize various
and complex multi-syllable patterns in improvisation. In music, as in lyrics, cultural
output can reflect the different cognitive mechanisms used to produce it, and can
help us better understand the artistic form itself. In the same way that people study
both the written symphonies of Beethoven and the improvised productions of Duke
Elington, Miles Davis, here, I will review a selection of improvised rappers.

I have collected two small corpora of improvised rap lyrics. First, in order to compare
improvised and written lyrics, I transcribed a rap cipher where 7 rappers take turns
rapping in a circle – they each take three turns. Crucially, in the first two go-arounds
the artists improvise, and in the third round they rap pre-written verses. This gives
a relatively controlled dataset that allows for comparison of improvised and written
sound patterns. These rappers are all prolific in the battle rapping scene, and par-
ticipated in this cipher during the height of the transition from mainly improvised
battles to written battles, and so are expert in both. Finally, in order to capture the
arc of learning that improvised rapping represents, I also analyze longitudinal data
from Harry Mack and one of his students, Ikaanic, who recently began the journey of
learning to rap improvisationally. Both of these individuals document many of their
training sessions as live streams on YouTube.

Finally, I collect 8 large rhyme sets from a rhyming game called Bar Pong (discussed
more in Chapter 4.3). All rhyme sets are 3 or 4-syllable patterns and contains between
20 and 115 rhymes .

In some cases, I will also use data prepared by other researchers and will introduce
it when relevant.
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Figure 2.17: Brief Summary of Diverse Creative English Texts (DCET) data set.



Chapter 3

Cognition & Computation

The present chapter provides a literature review to motivate intuitions about the
cognition and computation of language-based music. I elaborate on the cognitive
mechanisms that support verbal sound patterning, rhyme in particular, and why
they are important to take into account. Then, I review the computational and
linguistic approaches conventionally used so far in characterizing rhyme and other
sound patterns in creative language.

Questions Covered:

• (Section 3.1) What cognitive mechanisms support learning to rhyme?

– Topics include, memory, language change, phonology, becoming literate,
educational applications, and expertise

• (Section 3.2) What cognitive mechanisms underlie rhyme perception and pro-
duction?

– Topics include rhythm, similarity, rhyme acceptability, orthography, prim-
ing, words, and improvisation

• (Section 3.3) How has rhyme been formally investigated?

– Topics include, stress, sound sequences, poetry, rap, and lyric generation

3.1 Learning

• What cognitive mechanisms support learning to rhyme?

43
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The cognitive mechanisms that underlie rhyme (and other forms) are related to both
music and language. Rhyming is an ability English speaking children learn at a young
age, and as adults they reliably know how to produce and perceive simple rhymes.
Because the learnability of multisyllabic rhyme has not generally been explored, I do
not focus on it in this review, although that is the ultimate target of this course of
investigation. Instead, I break down rhyme into its relevant components and contexts
in order to begin building a more cohesive picture of rhyme and its elements: from its
basic cognitive processes and mechanisms, to the complex and expert manifestations
of rhyme as they are found in the wild.

3.1.1 Memory

Memory is crucial for learning and can be broadly construed as the process of acquir-
ing, storing, and retrieving information. Repetition and similarity, taken together,
gives the functional elements required to begin addressing the well known effect and
benefit of rhyme on memory. Some have noted, both in personal reflection and scien-
tific study, that if sentences are encoded in a rhyming fashion, humans are more likely
to remember them [113, 28]. But how does this translate to the cognitive mechanisms
that are theorized to exist in the minds of individuals? And how do these memories
get passed from one person to another or one generation to the next?

The Phonological Loop

Memory is critical in guiding behavior as humans process and apply temporal informa-
tion from the world [114]. At this point I should distinguish between more short term
processing and long term memory. The preeminent theory of short term memory, also
referred to as working memory, breaks down various aspects of mental processing into
a few specialized components. This theory, for the most part, stands up to scrutiny
[115, 116]. Here, I briefly describe the Baddeley model of working memory in order
to motivate the context for more theoretical interpretations of various rhyme related
studies.

The Baddeley Working Memory model (Figure ??) consists of 4 components, a central
executive module and 3 ‘slave’ modules: the phonological loop, the visuo-spacial
sketchpad, and the episodic buffer. The basic idea is that the central executive module
allows coordination of the other 3 systems, as well as various other ‘executive control’
mechanisms like task switching, attention, updating, and encoding information.

The episodic buffer is the most recent addition to this theory of working memory
[117], which is believed to participate in the integration of verbal, visual, and spa-
tial information and their organization in terms of chronological sequencing [118].
It is also suspected that this buffer interacts with long-term memory and seman-
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Figure 3.1: Baddeley’s Working Memory Model [6]

tic stores [117]. The visuo-spatial sketchpad, as one might suspect, is a short term
memory buffer that supports visual (color, form, etc.) or spatial (position, orienta-
tion, movement) information. These visual and spatial components are considered
to be somewhat independent of each other [119, 120], and interestingly, are almost
entirely independent from the last ‘slave’ system, the phonological loop [121]. There
is evidence suggesting that not only do the phonological loop and the visual-spatial
sketchpad operate independently, but also they can be utilized in parallel [119]. This
may help explain the cognitive mechanisms underlying how it is that Harry Mack is
able to fluently read, make semantic associations, and produce rhyming lyrics at the
same time.

The phonological loop is the main target of interest here because it is thought to
process sound and rhythmic (stress) information, both of which are fundamental to
the phenomenon of rhyme. Once perceived, spoken language is presumed to be auto-
matically encoded into the phonological loop’s memory store, whereas written (and
read) language makes its way into the phonological store by ‘silent’ or ‘mental’ artic-
ulation. There are a number of lines of research that attempt to isolate and explain
the workings of the phonological loop. Here, I will discuss a few research projects
that are relevant for understanding the lower level workings of rhyme processing in
the brain.

As previously discussed, from at least the age of 3 [122], humans seem to be better
at remembering semantically related lists of words than phonetically related ones
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[123]. Indeed, one of the main effects associated with the phonological loop is that
phonologically similar lists of words are harder to recall than semantically similar lists
of words. The assumption is that in both cases, words are being encoded into the
phonological store, but that in the case of similar sounding words, the memory traces
of each next word are so similar that they overwrite previous word traces [123, 124].
Indeed, this effect of overwriting memory traces in the phonological store can also be
seen when subjects are asked to produce additional distractor words out loud (words
in between the words of interest). These distractor words are believed to introduce
interference into articulatory rehearsal, encouraging the decay of memory traces in
the phonological store [125].

The mode of presentation of stimuli is also impactful (e.g. word lists). A related
recency effect in memory has been observed when hearing versus reading a list of
words, where more recent auditory signals are remembered relatively better than
recent visual signals, implying that memory interacts with auditory and visual signals
in different ways which are consistent with the phonological loop proposition [126].

The phonological loop, and related phonological interference effects associated with
the cognitive processes of working memory, could play an important role in the per-
ception of complex rhymes. Together with working memory capacity, they could
potentially affect the complexity of the rhymes that can be discerned or produced.
Furthermore, for people producing improvised rhymes from stimuli, their alternating
between perception and production, or intentional and automatic action, would seem
to depend heavily on the central executive module. Specifically, shifting focus from
reading stimuli, to thinking of semantically (and phonologically) associated words and
concepts, and then producing coherent and rhythmic language includes involvement
from task switching, attention, and updating or encoding information processes.

Crystallization

Despite a natural tendency of language to mutate, change, and evolve over time,
rhyme seem to facilitate crystallization (fixing or cementing) of language content
against these normal forces of language change, in some contexts.

Although accounts of the phonological loop help illuminate this phenomenon in terms
of short term memory, it largely leaves out long-term memory and crystallization.
As noted above, there are suspected connections between short term and long term
memory stores (episodic buffer, etc.), but the issue of memory crystallization, both
at the individual and the societal level, are a different phenomenon altogether.

One of the most significant contributions to the cognitive understanding of rhyme
and societal memory is ”Memory in Oral Traditions: The Cognitive Psychology of
Epic, Ballads, and Counting-out Rhymes” [28]. It investigates observable changes
in various components of oral traditions as they are maintained and passed down
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through generations. Over time, short poems like ”Eenie meenie minie moe”, which
belong to the the most common genre explored in the book (counting-out rhymes),
remain so stable that only two words have changed in over 100 years, and neither were
part of the rhyming structure. This may feel intuitive, given how compelling, stable,
and memorable works like ”Eenie, meenie, minie, moe” seem to us, but it points at
an important difference between this kind of language art and natural language: a
strong tendency for crystallization.

Of course not all language arts crystallize in this way. For example, in epic poetry the
length and content demands are so great that specific words, and associated rhymes,
are extremely prone to change as they are passed down orally through the generations.
However, other components are crystallized, largely preserving the plot, the rhythm,
the characters, and many other genre/style features. In the case of ballads, which
are considered medium length, the crystallization looks much more like those of epic
poetry, though the words change more slowly [28].

There are a variety of other memory effects that could be relevant for rhyme. For
example, the integration effect shows that “recognition of the melody (or text) of a
song is better in the presence of the text (or melody) with which it had been heard
originally than in the presence of a different text (or melody)”. It is still unclear if
this effect may be due to the physical interaction hypothesis (song components exert
subtle but memorable physical changes on the other components) or the association-
by-contiguity hypothesis (any two events in proximity act as cues for each other).
Both factors seem to be at play to some degree [127].

3.1.2 Language Change

In addition to the forces that help codify or cement the patterns of language in our
minds, there are also forces that push language towards change over time. In some
cases it is due to neutral drift (and other large scale environmental factors), as has
been shown to impact biology and language [128, 129, 130, 131]. But there are mech-
anisms in communication that seem to operate at even shorter time scales. This isn’t
surprising in light of the well-known “telephone game” effect [132], where messages
tend to dramatically change as they are passed from agent to agent, often changing
in directions that reflect cultural common ground or that facilitate communication.
Moreover, change over time that is observed within these behavioral and simulated
communication experiments, happens in both linguistic and non-linguistic contexts
[133, 134, 135, 136].

Iterated learning (derived from the telephone game) is often touted as a paradigm that
demonstrates the emergence of compositionality and systemiticity in communication,
meaning that certain elements come to have stability or meaning, and then are used in
combination with other elements to create novel combinations or messages. However,
in experiments with children and adults, the emergence of compositionality was only
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found in adults, whereas systematicity was found in both groups [137]. This indicates
that certain cognitive processes or linguistic abilities are not available to children
(or must be developed or learned). This, among other factors, points to age as an
important factor for the cognitive mechanisms of language acquisition.

How is this relevant to the world of rhyme? On the one hand, rhymes and rhyming
patterns are likely subject to iterated change across individuals and generations. In
fact, when the messages being passed are sounds, iterated learning experiments have
recently been shown to produce “verse templates” of syllabic patterns [38]. On the
other hand, the larger rhyming patterns become, the more relevant it is to ask ques-
tions about not only the systematicity of multi-syllable sound patterns, but also their
internal structures and combinations. For instance, is a given 5-syllable rhyming pat-
tern just that? Or is it composed of two smaller 2-syllable and 3-syllable structures?
Or perhaps a 4-syllable and a 1-syllable pattern? Direct investigation of the struc-
ture of multi-syllabic rhymes, in individuals and across genres, help help determine
how multi-syllabic rhyming patterns emerge. Much like previous iterated learning
studies, artificial language learning paradigms can be used to test how computational
and behavioral iterated learning studies compare to the phonological structures of
multi-syllabic rhymes found in the wild.

3.1.3 Phonology

How are phonological items and patterns learned in the first place? The most notable
line of research on this topic stems from the statistical learning literature, which
broadly suggests that learning happens as agents extract statistical regularities from
their environment. Here, I explore the phenomena of segmentation and statistical
learning.

Learning to Segment

In order to notice the frequencies of items and co-occurrence patterns one must be
able to distinguish between elements in a speech stream in the first place. This skill
is relevant for identifying the rhyming/matching components of pairs of words, but
also for distinguishing between words (or sounds) themselves. This is a difficult task
as there are not clear markers of boundaries between sounds or words in spoken lan-
guage. It should be noted that there is evidence to suggest that segmentation between
syllables may not operate specifically on a mechanism for identifying boundaries, but
rather, based on recognition of certain statistical regularities and properties within
syllables (onset & coda), including sonority [138]. Furthermore, speakers seem to use
sequential probabilities of sound items as cues for segmentation. This is the case, par-
ticularly for sound sequences within words, and notably, these regularities are most
reliable for sequences in the onset position of the syllable [139].
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A number of both computational [140, 141] and experimental models [142, 143] at-
tempt to account for the task of word segmentation in auditory streams of speech.
It seems that segmentation cues, which include lexical, segmental (phonemes), and
prosodic (stress) features, influence segmentation learning in a hierarchical fashion
(lexical = strongest, prosodic = weakest). A complex of these features contribute to
successful segmentation, and understanding how these levels are integrated is critical
to painting a full picture of the task of segmentation [144]. Although the suite of fea-
tures contributing to segmentation ability is often considered within native languages,
their relative weights can change in second language learners, particularly in relation
to the statistical distributions of the speaker’s first language [145]. Furthermore,
a hypothesis that word segmentation is based on the statistical regularities of lan-
guage, irrespective of perceive attention, is not well supported. Indeed, some evidence
suggests that segmentation performance is dramatically impaired when attention is
interfered with, suggesting attention is critical for segmentation [146].

In terms of rhythm specifically, by 9 months of age, infants are sensitive to rhythmic
structure in ‘head-turning’ based segmentation tasks [147]. Not only that, 7.5 month
olds seem to have the ability to segment two syllable words with particular rhyth-
mic structures, specifically the common stress form (in English) of strong-weak, or
stressed-unstressed. Infants of the same age are also able to segment 3-syllable words
from fluent speech, as long as the word begins with a stressed syllable [148].

As adult English speakers, there is a general “heuristic ... that strong syllables
(containing full vowels) are most likely to be the initial syllables of lexical words,
whereas weak syllables (containing central, or reduced, vowels) are nonword-initial,
or, if word-initial, are grammatical words.” This heuristic is supported by experi-
mental segmentation evidence [149]. Although this is specific to English, one would
suspect the particular phonological distributions of each given language will have an
impact on the statistical regularities leveraged in learning and segmentation. Finally,
it has been demonstrated in longitudinal studies that groups with 2 years of musical
training show marked improvement in word segmentation over groups without mu-
sical training. This suggests that the cognitive processes underpinning rhythm and
rhythmic training, even in a musical context, can facilitate verbal word segmentation
[150].

Statistical Learning

As I just discussed, humans are able to differentiate and segment components of
continuous streams of speech, explainable through generalized statistical learning
mechanisms. Can extracting statistical regularities from the environment also shed
light on the cognitive processes behind the ability to perceive and produce rhyming
patterns?

Form-meaning relations are fundamental to the grounding of various phenomena. As
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mentioned above, word segmentation is critical to the processing of perceiving and
interpreting language. Some of the earliest evidence for statistical learning comes
from infants who demonstrate a sensitivity to transitional probabilities of sounds in
language that facilitate language acquisition [151]. Again, this is not wholly surprising
given that the ability to mentally map the distribution of sound structures in language
facilitates the mapping of sounds to meaning in the learning of words [152].

Effects of sensitivity to the distribution of sound structures in language learning are
evident across age groups. Children of 7, 9, and 11, as well as adults, were better
able to recognize high-frequency words that had low neighborhood density (i.e. few
words that sound similar) than high densities. The effect is reversed for low frequency
words. This suggests not only that is there awareness of the sound distribution of
vocabulary of a lexicon, but also, that there is competition in the heads of subjects
that leverages statistically learned neighborhood density information to facilitate (or
delay) the recognition of words [153]. This cognitive mechanism of competition would
also seem to impact the ability to recognize rhyming words (or sound patterns) from
high versus low neighborhood environments.

3.1.4 Becoming Literate

Rhyming, and manipulating other poetic devices, may represent special cases of
phonological awareness, i.e. the ability to remember, discern, and manipulate sounds
at different linguistic levels (words, phrases, syllables, phonemes, etc.). Early theories
of literacy suggested that “phonological awareness was a result of the experience of
learning to read”, however, some have contested that it is, in fact, the reverse, and
that phonological awareness facilitates literacy [154]. A follow-up to this has shown
that, in educational settings, it is effective to take a balanced approach using corre-
spondences between letters, phonemes, rimes, and their sequences, to best facilitate
learning [155]. Cognitive neuroscience is also beginning to be applied to the field of
educational psychology and literacy [156, 157], but much more progress is required
before definitive recommendations can be made [158]. As mentioned earlier, a growing
body of recent work has shown that there is not only a positive correlation between
rhythm and literacy [155, 159], but also that phonological awareness is causally linked
to reading and spelling skills, especially in children [160, 161].

Additionally, approaches to learning can be either implicit or explicit. Explicit learn-
ing produces knowledge that is able to be recalled consciously, whereas implicit learn-
ing produces knowledge that has some impact on cognition, yet the learner is unaware
of [162]. Much of language learning is done without explicit instruction, especially for
children (grammar, morphology, etc.), and yet, native speakers become fluent. Perti-
nent to the discussion of rhyme, sound patterns can also be learned implicitly [163].
Implicit learning can even provide some advantages over explicit learning [164], and
this implicit learning can happen after only one exposure to a sound pattern [143].
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However, components of certain processes, like reading, do rely on some amount of
explicit learning, spelling, phonological awareness, etc.. It is important to be aware of
this dynamic between implicit and explicit learning. Rhyme is a kind of phonological
pattern, and humans clearly have an aptitude for absorbing knowledge in this domain
implicitly. Simply focusing on delivering explicit knowledge related to rhyme may not
necessarily be the most effective teaching approach. Effective learning of rhyme pat-
terns will likely follow paths of learning in other areas of both language and music
that rely on a balance between implicit and explicit acquisition of knowledge.

3.1.5 Educational Applications

It is well known that rhyming language [165] can be easier to remember than non-
rhyming verse [28, 166]. Moreover, phonological awareness [160] and rhythm [161]
are strongly linked to the ability to read and spell. For these core reasons, rhyme
has been used to promote literacy and language learning from preschool [167] through
higher education [168, 169]. It has also been used in the classroom in order to promote
the learning of specific content areas [2] and to create more engaging and memorable
learning experiences [170, 171]. More recently, rhyme has been utilized as a scaffolding
to promote English learning in second language learning environments [172, 173].

While rhyme can be applied in a number of ways for learning both content and lit-
eracy, it is also possible to consider rhyme as a skill and an art form, in and of
itself. This is particularly so in the context of producing content with high densities
of rhymes or in improvisation. In these contexts, rhyme becomes more than just a
delivery mechanism for other purposes (content-areas, literacy development). Rhyme
matching, search, expertise, and the ability to improvise or express oneself in high den-
sity rhyme, while still maintaining grammaticality and semantic themes or narrative
structure, highlights rich domain of learning. In the previous subsection, I reviewed
some of the basic guidelines and insights educators currently employ with regard to
rhyme and learning, but here, I note the absence of insights/methods/curricula for
learning and progressing in the realm of fluent and dense rhyme environments.

The current approach frames learning to rap improvisationally as a form of language
skill acquisition, a productive and creative kind of expertise that seems to be learnable
in any language. Learning technology has even been shown to “generate new linguistic
habits” in rappers [174], so both beginner and veteran rappers are likely to benefit
from more formal pedagogical resources.

In order to facilitate the learning of more complex rhyming abilities, one might in-
tegrate a number of representations, skills, and tools, combined with insights from
those few who have achieved expert rhyme fluency. First, understanding the space
of phonological patterns and poetic devices, particularly multi-syllabic ones, is a fun-
damental step in allowing for the development of this discipline. Second, search and
visualization tools (RhymeGenie; Rhymezone.com; WordSurge.com, Rhymable etc.)
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are necessary for identifying and navigating these patterns, and their connection to
the more familiar aspects of language. They can be used for both individual in-
vestigation as well as pedagogical curricula design and development. Applications
like RhymeGenie and RhymeZone allow people to find words that rhyme given some
initial word.

Rhyme (or sound pattern) search is an obvious application, but only the first step
for computational tools in this arena. Search interfaces like WordSurge.com [175] ex-
tend this approach by providing networked connections between rhyme, consonance,
and other semantic categories from WordNet (definition, synonyms, antonyms, hy-
per/hyponyms, etc.). Finally, the description of rhyme, both within overt schemes,
and within their larger poetic contexts (poems, lyrics, speech), is critical to visualize
and document the complexity of sound patterns in language.

Many other resources would be similarly useful. For example, a resource containing all
multi-syllabic stress and vowel patterns (e.g., up to 8 syllables), their frequencies, and
word/phrases that match them could be employed to develop teachable knowledge
of the elements and networks of phonological patterns that underlie multi-syllabic
rhyme. These could then be used as elemental building blocks for a number of other
applications. The development of programs for learning the art and science of rhyme
could facilitate not only the techniques and styles of rhyme, but also the pedagogical
paradigms that leverage rhyme as a delivery mechanism for content, literacy, memory,
or expression.

All of these tools for explicit instruction and learning raise a question. When is explicit
instruction the best technique, and when might educators utilize implicit learning
approaches? Explicit learning produces knowledge that can be recalled consciously,
whereas implicit learning produces knowledge that has an impact on cognition, yet
the learner is unaware of it [162]. A lot of language learning is done without ex-
plicit instruction, especially for children (grammar, morphology, etc.), and yet, native
speakers become fluent. More specifically, sound patterns can be learned implicitly
[163]. On the other hand, components of certain processes, like reading, rely on some
amount of explicit learning, spelling, phonological awareness, etc.. When considering
the appropriate tools and applications for educational contexts, it is important to be
aware of and balance the dynamic between implicit and explicit learning. Rhyme is
a kind of phonological pattern, and since humans clearly have aptitude for absorbing
knowledge in this domain implicitly, simply force feeding learners vast amounts of
explicit knowledge related to rhyme is not necessarily the most effective approach.

In the space of music and language more generally, tools for explicit learning have had
a long time to develop, and a balance between implicit and explicit components of
learning has matured to be sufficient for facilitating advanced learning while reducing
learning times. These frameworks are even more needed when learning improvisa-
tional rhyme, where exploring, identifying, remembering, and utilizing underlying
phonological patterns can be dramatically more inaccessible. At this time, the use of
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tools, technology, and curricula that target the learning of phonological patterns are
almost non-existent. However, it has been shown that technology can “generate new
linguistic habits” in rappers [174]. It seems reasonable that technology and pedagogy
may be useful across the development in language-based music skill.

3.1.6 Expertise (Perception)

Discussion of the generation of improv performance will be addressed in the next
section. Here, I review work that focuses on the perception of improvised performance.

As I noted earlier, musicians can identify details in music that the untrained ear can-
not. So it would not be surprising if both experience and a range of features underly-
ing language, like stress (rhythm) and sequence size or complexity (syllables), impact
the discernment of rhyming in the relevant perceptual, atriculatory, and phonological
domains, although no work has been done yet to investigate this question.

There are a variety of contexts and forms in which rhyme can be found. Although
the eventual targets of interest are multisyllabic and improvised rhyme, contexts with
large multi-syllabic rhyming schemes have only just become prevalent, and as such,
there are no studies of this phenomenon. Similarly, improvisational rhyme has only
recently become the subject of a few academic works which I review below in relation
to similar studies on jazz improvisation.

To begin with, as seen in Figure 3.2, the neural patterns measured in musicians vs
non-musicians who were listening to music are quite different. Whereas non-musicians
primarily demonstrate activity in the delta bands (attention tasks), musicians primar-
ily showed activation in the gamma bands (memory matching). In other words, the
brain activity, and likely the associated perception of music, is different when the
listener is also an expert in the form in question [7]. More specifically, musicians are
associating what they hear with past experience (memory matching) and relying less
heavily on attention mechanisms than non-musicians.

Unlike pre-meditated performances, improvised performances have a character of
spontaneity which distinguishes them, but can humans perceive this difference? When
22 jazz musicians were asked to judge piano melodies as improvised or imitated, they
only performed slightly above chance (mean 55%; range 44–65%). “Amygdala ac-
tivation was stronger for improvisation than imitations”, implicating it in detection
of the relative uncertainty associated with improvisation [176]. In a related effort,
another group tried to computationally classify improv vs not-improv by examining
the EEG signals of 14 improvising jazz guitar players as they listen to alternating
improvisations and musical scales. Machine learning techniques were able to attain
an accuracy of 75% in differentiating between them, higher than human performance
[177], suggesting that there are additional cues available in the signal that human
subjects may not be integrating in their judgements.
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Figure 3.2: Demonstration of the different brain regions activated across musicians
and non-musicians when presented with various kinds of stimuli. EEG of mean dif-
ferences of phase synchrony in frequency bands [7].

Anecdotally, many individuals who have been introduced to the growing world of
rhyme have commented that there is a noticeable learning curve in their ability to
recognize and appreciate complex phonological patterns when listening to lyrics (i.e.
multisyllabic rhyme, alliteration, or assonance). At first, accounts often reflect hear-
ing just one-to-two syllable end-rhymes, and only many listens or many months later
do they realize these same rhymes are in fact nested within much larger structures (e.g
3-10 syllables). Empirical studies could be conducted to identify if, and where, possi-
ble learning effects are related to perception of multi-syllable phonological patterns,
rhyme expertise, or musical experience.

It should also be noted that there is constant confusion in the rhyming world over
the classification of rhyming performances as improvised or not. Part of this is due
to the term “freestyle” which, at its base, simply means ‘rhymes outside the context
of a song’, but is often confused for (and can sometimes be cover for those wanting
their pre-written lyrics to be confused for) improvised or “off the top” performances.
Not only is improv rap genuinely difficult, but also, it is a rare form, and therefore
few possess the relevant expertise to distinguish it from written performance. The
specifics of improvised rhyming and its relevant linguistic cues may provide different
opportunities for the perceptual differentiation of improv vs non-improv rhyming;
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these features include rhythm, melody, rhyme, semantic content, filler phrases, jokes,
observations, vocabulary. Much like in improvised jazz performance, machine learning
classification (using a subset of those features) and human judgements could also
be employed to test differentiation between written and improvised performance of
expert rappers.

3.1.7 Expertise (Production)

Expertise can take many forms. In the literature, two main kinds of fluency tasks are
common, semantic fluency and phonological fluency. They usually consist of a subject
being asked to produce as many words as possible in a given semantic category (e.g.,
farm animals) or phonological category (e.g., words starting with F or P) within a
given duration. That said, expert rhyme fluency, especially in improvisation, is about
more than just the canonical verbal fluency tasks. A long term goal of this review
is to begin asking the question, how is it possible to produce improvised poetry or
rap with the level of complexity and fluency seen in premeditated poetic works or
improvised musical performance? What cognitive networks are involved in this kind
of fluency, and why does it seem to be so rare? To investigate this, one could contrast
improvised rhyming, premeditated rhyming, improvised conversation, and improvised
musical performance (jazz), with an eye towards identifying differentially active brain
regions in subjects who are measured to produce more fluent and complex content.
There are also a number of traditional verbal fluency tasks that can also shed light
on the phenomenon of expert rhyme fluency by revealing the dynamics of relevant
semantic and phonological networks across ages and levels of skill.

But how complex are the phonological structures that human generate improvisation-
ally? Can anyone become fluent in rhyme at high levels of complexity? Arguably, a
handful of rappers have gotten close (e.g., Harry Mack, Juice, Juice WRLD, Blind
Fury, King Los, Franco, Thesaurus, Charron). Although many individuals in the
world of rap try, very few succeed at becoming anywhere near fluent improvisational
rhymers. Moreover, the varying styles of elite improvisational rhymers seem to lead
them to develop dramatically different skill sets that play on different distributions of
linguistic constraints (vocabulary, grammar, complexity, multisyllabic rhyme, puns,
punchlines), as well as musical constraints (stress or rhythmic patterns, a capella vs
to-music, cadences, melody, etc.).

Why is this? Is it just their individual styles (like in conversation), or is it a lack
of pedagogical tools or instructional materials? It is surely possible that complex
improv rhyming may impose particularly demanding or unique constraints on the
normal production of language that make it difficult to learn. Perhaps there is some
vocabulary or grammar that must be acquired? Often improvised rhymers (who are
learning) stop mid-utterance not knowing how to complete a thought and still rhyme.
(Try to rhyme a few thoughts together yourself to see what I mean.)
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No matter the domain of expertise, the underlying cause of peak performance is
hotly debated. One theoretical camp, the habitualists, focus on the realm of auto-
matic execution [178], while another camp, the intellectualists, focus on higher-level
cognition and intention as the main drivers of peak performance. A recent paper
takes a pluralistic stance on this problem, suggesting that “skilled behavior weaves
together automaticity and higher-level cognition. . . [as] both [are] normal features
of skilled behavior that benefit skilled behavior” [179]. This is consistent with the
unique presence of both intention and automated action in an EEG study of lyrical
improvisation, discussed more in Section 3.2.7 [180, 181].

In order to understand the cognitive dynamics of rhyming expertise, it would be ex-
tremely productive to present canonical learning, perception, and production tasks
to both improvising, and non-improvising rappers (as well as non-rappers) in or-
der to understand how they perform, both neurologically speaking, and in terms of
various language/cognitive tasks. For example, administering a suite of tests to sub-
jects including working memory capacity tasks, phonological and semantic fluency
tasks, the flanker task (inhibition), stroop task (verbal/visual mismatch), attentional
control/attention capture, and sound similarity judgment tasks may enable differenti-
ating a particular set of individual abilities that facilitate or are reinforced by rhyming
skill. It could also allow for better backing-out of some of the cognitive mechanisms
related to expertise in multi-syllabic and improvisational rhyming. Finally, it would
also be informative to compare the neural correlates of the various styles, stimuli,
and abilities of rhyming in humans, with special attention paid to the phonological
structures and words they produce.

3.2 Perception & Production

• What cognitive mechanisms underlie rhyme perception and production?

In order to consider the full scope of the phenomenon of language-based music and
its forms and cognitive processes, I take a closer look at the cognitive mechanisms
that support phonological processes and rhyme. I will also cover questions related to
the source of rhyme processing in the brain and how it is related to other processes.

The male proclivity for rhetorical phonological displays of skill has not been well
studied [37], but modern subcultures still exist that continue to demonstrate this
trend. It can be difficult, however, to differentiate where this tendency is due to
gender preferences and where it arises due to gender inequality. Although this paper
is not focused on gender differences, a simple review of relevant data (Figure 3.3)
shows a dramatic disparity in participation of heavily rhyming language arts, and is
certainly cause for future investigation.



57

Figure 3.3: Gender Differences Across Rhyming Domains

3.2.1 Rhythm

Rhythms, or the repeated patterns of intervals in time, like most other aspects of
language and music, unfold over some duration. They are a macroscopically notice-
able aspect of both domains, and serve as a foundation for much of the experienced
time course of events. The idea that rhythm has aesthetic quality and provokes a
sense of movement is not particular to music, language, or dance [182, 183], but it
is in those domains that the variations and complexities of rhythmic patterns have
attracted much study. Some phenomena, like groove, for example, are often under-
stood as a sense of movement [184, 185] or a “wanting to move”, brought on by certain
rhythms in music. Sometimes groove is even interpreted as patterns of performance
or a state of being. Nonetheless, the rhythmic patterns that tend to underlie groove
can be described in terms of five classes, pulse or regular beat; subdivision of the
beat; syncopation; counter-rhythm; and microrhythm [186].

Other empirical measures of rhythm have been developed to compare the rhythmic
structures of language (syllables, duration, stress) and music (tone, beat, organiza-
tion, multiple time-scales) [187]. Early findings of this work indicate that the rhythmic
structures of a language or culture can, in fact, impact the rhythmic structures of that
culture’s musical forms [188].

Together, these observations about rhythm bring up two fundamental issues, how and
where does temporal processing, and more specifically, rhythmic processing, occur in
the brain? One might expect that there is an identifiable region responsible for coor-
dinating time based processing, but instead, meta-analyses on a variety of time-based
processing studies reinforce the consensus that perception of time in the brain spans
a vast distributed network. However, depending on the task design and demands,
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various regions are shown to be associated with temporal processing, including the
supplementary motor area, premotor cortex, inferior frontal gyrus, anterior insula, in-
ferior parietal cortex, posterior superior temporal gyrus/sulcus, and subcortical areas
(basal ganglia, thalamus, cerebellum) [114].

Music

Rhythms are central to musical perception and production. However, it has been
demonstrated that the auditory system is coupled with a variety of motor regions
during rhythm and beat perception, indicating that the neural correlates of perception
and production of rhythm may utilize similar mechanisms [189]. Building on top of a
distributed network of temporal processing in the brain, rhythm and beat perception
seem to depend on the premotor cortex, supplementary motor area, and basal ganglia
[190]. More specifically, listening to musical rhythms seems to recruit motor areas of
the brain, including supplementary motor area (SMA), mid-premotor cortex (PMC),
and cerebellum [191].

In addition, these “[m]usical perception-action coupling[s], set up repeated cycles
of prediction, expectation violation, and resolution” [192]. And due to the simi-
lar rhythmic underpinnings of music and rhyming, it would not be surprising if a
similar repeated cycle of prediction, expectation violation, and resolution of rhyme
and rhythm creates an analogous perception-action coupling in language, or even re-
cruits similar cognitive mechanisms used in musical processing (perhaps additionally
recruiting language centers).

Language

All words and phrases have a stress (or rhythmic) pattern. As was discussed earlier,
rhythm patterns can be an important cue for infants [193, 148] and adults [194, 149]
as they learn to segment words. Stress patterns in language also tend to define a
stereotypical rhythm of alternating stressed and unstressed syllables within a given
language [195, 196], and have even been argued to be an underlying force behind the
internal change and evolution of language structure [197]. Furthermore, rhythm in
language can be examined from a number of perspectives including symbolic repre-
sentation, production, perception, and communicative function [198].

Rhythm and rhyme patterns are coupled at many scales. Not only do all words or
phrases have a rhythmic (stress) pattern, but rhyming words often agree in their
underlying stress pattern. Additionally, forms like sonnets have both end-rhyme pat-
terns and stress constraints (iambic pentameter), that define their poetic structures.
Although sonnets often contain metrical and rhyme constraints, both of which imply
stress requirements, they are independent, but overlapping, sets of constraints.
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3.2.2 Similarity

So far, much of the discussion has invoked notions of similarity, but how is similarity
perceived? And how does this relate specifically to speech sounds? First, it should be
acknowledge that there are no universal measures of similarity. In the case of speech
sound similarity, for example, reliable measures of similarity can be discussed in terms
of distinct dimensions like phonological, articulatory, or perceptual similarity [199].

Faithfully representing sounds and their relations is much more complex than just
discretizing them into phonemes and placing them into a grid. As mentioned above,
speech sounds in natural language are continuous signals which are practically dis-
cretized into differentiable phonemes for perceptual, linguistic, or computational pur-
poses. The mode and level of description chosen (e.g. discrete or continuous) has
deep implications on the measures of similarity that are appropriate for comparing
sounds.

Indeed, much like similarity in other realms, the specific measure chosen will change
based on the mode, context, and purpose. In the realm of verbal sounds there seem
to be at least 5 relevant types of similarity: Articulatory (vocal tract), Acoustic
(sound waves), Perceptual (behavioral & cognitive), Phonological (distinctive feature
based), and Phonological Patterning [200]. As it turns out, perceptual similarity has
the strongest impact on rhyme similarity judgments, followed by articulatory simi-
larity [199]. Although some measures are simpler and more completely defined (e.g
phonological feature based, articulatory), and one may expect them to account for the
“ground truth” of the perceived features of sound, there are counter-intuitive relations
between these elements that have important influences on ‘perceptual similarity and
confusability’ [201]. Furthermore, while distinctive feature or identity based similar-
ity measures may be assumed to be symmetric, when perceptual similarity is taken
into account, this is not true. Instead, in some cases, similarity judgements depend
on the order that sounds are presented, for example “the difference between [y] and
[u] is more detectable when [y] is presented before [u] than in the opposite order”, a
phenomenon called vowel perception asymmetry [202, 203, 204].

Because most work on rhyme uses mainly IPA representations of phonemes, which
are based on discrete segments, two simple approaches to similarity should be noted.
First, perfect similarity or identity can be easily established when two segments are
identical as in the rime components of ‘CAT’ and ‘BAT’. Second, some amount of
imperfect similarity can be established by comparing the number of similar/different
distinctive features between two segments (/p/ vs /b/, or /p/ vs /m/, or /p/ vs /p/,
etc...) [205]. For example, one might determine how similar the words CAT and CAP
are based on comparing how close /t/ and /p/ are in distinctive feature space.

Since rhyme is so understudied, most approaches reasonably focus on perfect identity.
Anything less than perfect similarity often gets lumped into the broad category of
“imperfect rhyme”. This is currently a catch-all for a variety of possibly different
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levels of similarity that have yet to be comprehensively described. Because of the
sparsity of research in this space, it is reasonable to expect the study of rhyme, and
similar language sound patterns, to begin with perfect rhymes in order to identify
larger and more robust macroscopic structural and phonological components. As
research in rhyme and language-based music becomes more developed, researcher can
graduate to a more thorough inclusion of segmental similarity, distinctive features,
perceptual similarity, and finally, more subtle and continuous measures of similarity
(including signal processing based measures).

One might wonder about the degree to which humans are sensitive to sound similar-
ity. For example, are bilinguals sensitive to sound similarity in both their L1 and L2
languages? To some degree, yes. This effect was demonstrated in terms of sensitiv-
ity to neighborhood density (number of similar sounding word neighbors) in picture
naming response times and eye-movement data, as well as in auditory word choice
tasks where presented words have an overlap in the sounds of the subject’s L1 and
L2 words [206]. Also, when tested on their ability to detect phonological mismatches
in words, children seem to be able to detect up to 3 featural differences, more than
the 1 to 2 that were implicated by prior work [207]. Furthermore, some words that
are classified as homophones, and that many believe are pronounced the same (e.g.
freeze vs frees; paws vs pause) are actually spoken with reproducible differences in
duration (4-7%), in cases where the words originate from different morphemes and
one of the homophones ends with an inflected fricative, e.g. [f, s, v, z] [208]. Not only
can these differences be detected with laboratory measurements, but also, humans
have been shown to perceive these subtle differences in the duration of Dutch homo-
phones [209]. This highlights that the human cognitive mechanisms for detecting and
producing slight deviations in otherwise similar words are actually quite fine grained.

Zooming out a bit, one of the more surprising relations between language and music
is that in certain contexts, they can be confused for each other. In fact, the mere act
of repeating the same words or phrases seems to change the way they are perceived,
leading to repeated spoken words sounding sung to listeners [210, 211]. This is referred
to as the speech-to-song effect, and it suggests that it is not just the acoustic properties
of speech sounds that impact the perception of them, but also, higher lever properties
such as repetition and sound-similarity.

The speech-to-song effect is also found to be stronger in non-tonal languages (e.g. En-
glish, German, Italian) as well as when listeners do not understand the language stim-
uli. The authors suggest that perceived prosodic structures may be negatively cor-
related with the speech-to-song illusion. This makes intuitive sense because prosodic
features are highly associated with speech, but not with music [212].

It may even be that certain phonological patterns (not just prosodic features) are
positively associated with this effect. if this is the case it would imply that particular
phoneme sequences may seem more ”musical” than others. It also motivates questions
about the degree to which rhyme is perceived as language versus music. Following
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from that, might the speech-to-song illusion be evoked using multi-syllable rhyming
sets? Future studies can be conducted to address these questions.

These issues of similarity perception are particularly relevant to the phenomenon of
rhyme where specific sounds from different words or phrases are in agreement and
held constant while the words and sounds around them shift (often many times in
rhyme sets). I will discuss this more in the following rhyme acceptability section.
Given that the ‘matched’ components (or positions) of rhyming words are repeated,
yet can have a great deal of imperfection, it raises many questions; How do similarity
judgments change as the length of the sound sequences increase? In what ways might
rhymes have to be similar in order to sound sung when said in succession? If rhyming
pairs or lists can sound sung, it would provide important insight into the holistic
understanding of rhyme perception, as well as the relationship between language and
music perception.

3.2.3 Rhyme Acceptability

Rhyme is often thought of as a matching between the final vowel, stress, and coda
of two words. This particular configuration of matching elements is called a perfect
masculine rhyme, but there are at least 228 [39] other strict and named forms of
rhyme, including feminine, dactylic, holorime, etc.. Historically, most rhyme analysis
has focused on a few of these specific forms.

It has been suggested that both perception and production of rhyme involve “similar
cognitive processes, including orthographic coding, graphic-phonetic transformation,
phonological representation and phonological segmentation” [213]. Below I briefly
review what has been found from the limited number of studies in this field.

There is a long established paradigm of detecting neural responses to ungrammatical
elements of speech through the appearance of N450s [214], a particular component of
event-locked EEG signals. Although there is debate concerning whether it truly rep-
resents ungrammaticality, conflict resolution and detection, or something else [215],
if there are underlying grammar-like or conflict resolution properties to the process
of rhyme, then one might expect that similar neural activations would be detected
when rhyming expectations are violated.

Indeed, when comparing rhyming vs non-rhyming pairs, non-rhyming pairs elicit a
larger N450 in subjects, indicating that non-rhyming pairs might require more conflict
resolution or detection. This effect may be better described by a combination of
expectation and consonance rather than grammar specifically, but it is interesting to
note that there may be a grammar-like error awareness in stimuli for non-rhyming
pairs. Furthermore, exploration of this N450 effect (using orthographic letters as
the rhyming elements) suggests that the effect is more likely related to phonological
properties than simply to orthographic (spelling) differences [216].
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At what level of perception does the classification of rhyme patterns actually happen?
Is rhyme perception global or local, or some combination? In other words, what are
the cues used to perceive or detect a rhyme?; Is it similarity in distinctive features?
Segments? Segment Sequences? Syllables? Rhythm (stress)? Perception? Higher
order poetic structure? How much does the size (number of syllables) of the rhyme
impact perception? I will explore some of these questions here, but many still remain
unanswered. A focus on formalizing imperfect multi-syllable rhyme sequences and
using the discovered patterns in behavioral and cognitive studies can begin to uncover
these mysteries.

Perfect rhymes, especially of the conventional masculine and feminine forms, are
widely accepted as matches, but imperfection in rhyme matches, and the variety of
forms imperfection can take, make relevant the discussion of rhyme acceptability,
and more broadly, sound similarity and pronunciation flexibility. Building on the
various notions of similarity discussed in the last section, it seems that many kinds
of similarity play a role in the classification of rhyme. There is also a modest body of
literature that suggest that perception of half (or imperfect) rhyme may be impacted
by degree of similarity [84, 46, 47, 48, 44]. Imperfect rhymes have even been used
as a measure of phonological similarity [49, 50, 51]. Moreover, the speed of rhyme
and non-rhyme judgements are much faster than imperfect rhyme judgements, which
points to an increased level of uncertainty in making judgements about imperfect
rhymes. That said, imperfect rhyme acceptability judgements do significantly increase
when presented in the context of poems [51]. Given that most rhymes in the wild
are not perceived in isolation (e.g. poems or songs), the increased acceptability of
imperfect rhyme within poetic contexts should be taken into account in future studies
on imperfect or multi-syllable rhyme similarity.

So, how much detail are humans attending to when determining the acceptability
of a rhyme? One study indicates that “rhyme detection does not involve attention
to segments... [n]or does it necessarily involve precise identification of the segment
shared by rhyming words” [217]. Regardless, many poets seem to prefer certain half
rhymes due in part to their perceptual similarity instead of their articulatory similarity
[48]. Imperfection in rhyme also provides more practical options for word choice by
loosening the matching constraints. However, “It [has been] shown that Japanese
speakers do take acoustic details into account when they compose rap rhymes” [48].
Following on this line, rappers have been shown to exhibit detailed implicit knowledge
of speech sounds that are not limited to their native language, but transcend it [45].
All of this seems to support the hypothesis that speakers have well-developed cognitive
processes for and knowledge of the psychoacoustic similarity of words, which may be
particularly relevant to rhyme judgements.

Much like the perceptual effects found in the elements of sound similarity (segments
phonemes) [202], there is a preference for perceptual over articulatory similarity when
people are making judgments of rhyme similarity [199]. Additionally, it has been
shown that lexical decisions are faster when pairs of words are rhyming (perfectly),
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however, when pairs only partially rhyme, there is a much more limited amount of
facilitation. It should also be noted that there seems to be a general ”yes” response
bias in subjects when presented with a target word that rhymes with a priming word
[218]. This can serve as a warning to experiment designers to use care when creating
studies which use rhyming pairs and solicit yes/no responses. This bias is possibly
also reflective of the amount of perceived agreement or resolution associated with
high degrees of perceived similarity.

The cognitive mechanisms related to rhyme acceptability are associated with both ar-
ticulatory and perceptual similarity. In addition, learning and phonological awareness
may be related to the ability to detect or be aware of certain complex sound patterns
and structures. This may make certain individuals more likely to find a rhyme ac-
ceptable (discussed in the following section on Expertise). Collecting multi-syllable
rhyming judgments while holding various stress or phoneme patterns constant can
help determine which aspects of words or sounds are used to make determinations
that one sequence of sounds is similar to another. Furthermore, conducting these
studies across expertise (rappers, lyricists, and neither), age, and language will allow
us to consider the degree to which learning might impact the acceptability of rhyme
judgements.

Although there have not yet been studies on the acceptability of multi-syllabic rhyme
structures, they would be of particular interest given how large multi-syllable rhyme
schemes have become in modern usage and how much imperfection (or flexibility)
they often display.

3.2.4 Orthography

The orthography, or spelling, of words is also important to consider. Lindell & Lum
show that the left hemisphere is more active when phonological similarity was higher,
but that orthographic similarity was associated with both left and right hemisphere
activity. Moreover, Lindell’s experimental setup was able to determine that “both
hemispheres are capable of orthographic analysis, [however,] phonological processing
[was] discretely lateralized to the left hemisphere in males”, but not in females, for
whom it is available in both hemispheres [219]. It is not clear if or how this finding
is related to the historically male propensity for rhyming displays, but it highlights
both the complexity of the cognitive processes used in phonology, and a potential
neuro-physiological difference in the way males and females process rhyme, which
could be a launching point for further investigation.

Finally, orthography also has an influence on perception that can interact with phono-
logical information. Some studies have even suggested that orthographic information
can interfere with phonological information or reaction-time tasks [220]. It may not
be surprising, then, that processing for orthographic and phonological information are
suggested to be separate neural mechanisms. If humans have to “recheck for phono-
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logical similarity when word pairs are visually but not phonologically similar,” it is
hypothesized that articulatory encoding, instead of orthographic ones, may avoid the
slow down in reaction time that orthographic encoding introduces to rhyme judge-
ments [221].

3.2.5 Priming

It is also useful to review some priming effects related to rhyme generation. In general,
a priming effect refers to the notion that the presentation of a stimulus can influence
responses to subsequent stimuli. A 1980 study measured semantic activation based on
spoken production of synonyms, antonyms, and rhymes, finding no significant effects
that involved cross-category rhyme priming. That said, in all cases, rhyme responses
were associated with the fastest response times. Although the study explored lexical
access, the authors note that pre-lexical access may be related to phonological access
or sound production [222].

Extending from this, both rhyme and semantic priming effects are observed in phono-
logical and semantic categorization tasks, suggesting that either kind of task activates
both networks. Two further experiments were conducted within this study that used
color-categorization tasks which required no phonological or semantic processing, yet
priming effects for both were still found. This implies an automatic (and early) activa-
tion of semantic and phonological networks in a variety of contexts [223, 224]. These
networks also seem to work together to facilitate lexical access, as shown by subjects
when generating a missing word in sentence completion tasks, Their produced words
show influence from interacting semantic and phonological features.

Both orthographic and phonological priming effects are also found in spoken word
recognition tasks (even when orthography was not shown). However, these effects
seem to emanate from different neural topological distributions, with phonological
priming localized over the centro-posterior regions, and orthographic priming in more
anterior regions. This indicates that phonological priming operates separately, and
at a different level of representation, than orthographic priming [225]. Phonological
priming is also shown to interact in a complex way with morphology, facilitating
lexical decision speeds when the prime word only rhymes with the root of the target
word (dough – snow-ed) [226]. This indicates that priming and similarity effects are
relevant outside the context of strict end-rhyme paradigms.

Interpreting these findings through the lens of the stimuli-driven improvised rap can
provide some helpful intuitions (e.g. Harry Mack Improvisation, discussed in Chap-
ter 1 & 6). If “phonological facilitation ... operates prior to lexical access” [222],
this may support the ability to rhyme improvisationally while reading orthographic
stimuli. Moreover, the ability for the reading of stimuli and the production of rhyme
to happen either concurrently, or at least in a way that does not cause destructive
interference to fluency, is likely aided by the noted separation in neural networks that
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power phonological and orthographic processing. Finally, the early and automatic ac-
tivation of both semantic, morphological, and phonological networks across a variety
of tasks, provides evidence for a kind of priming that would be beneficial to the task
of constructing semantically related and phonologically patterned lyrics on the fly.

3.2.6 Words

What are the neural processes underlying the production of non-rhyming words and
how is it distinct from rhyming word generation?

There is evidence that word recognition depends asynchronously on phonetic cues
(voice & manner) that are used in lexical access as they are perceived [227]. In nor-
mal speech, it is also assumed that word production is initialized from a “semantic
base”, a process involving morpho-phonological representation, syllabification, and
articulatory gestures (vocal tract, etc.). Although disentangling effects in larger sam-
ples of language is difficult, there are theories of lexical access that offer methods for
investigating both individual words and multi-word utterances. This is critical for
understanding the rhyme phenomena under investigation at scales from individual
words to more naturalistic (and longer) utterances [228].

Although silent rhyming and spoken word generation tasks activate perisylvian lan-
guage regions (inferior frontal gyrus, posterior superior temporal lobe, and fusiform
gyrus), rhyming generation activates more left hemispheric regions than simple word
generation [229]. These findings can act as baselines for future studies that investigate
both more targeted neural activity associated with various types of sound patterns,
particularly in relation to different lengths and combinations of words (e.g. mosaic
rhyme - rhymes across phrases - multiple words).

Speakers also modulate their pronunciation of sounds in words based on the context,
hyper-articulating (over specifying) or hypo-articulating (under specifying) based on
context [230, 231, 232, 233, 234, 235]. In general, speakers tend to hyper-articulate
when there is competition between words or a potential for confusability. These kinds
of online adjustments to the way humans naturally produce language sounds, allow
multiple semantically, and even lexically equivalent utterances, to be expressed in
a variety of ways by speakers [236]. This introduces additional degrees of variation
in sound production that builds on top of the perceptual flexibility discussed in the
previous sections on rhyme acceptability and similarity.

Focusing on sound processing generally, simple noise bursts cause increased activation
in the primary auditory cortex of listeners, whereas speech syllables increase activation
in secondary auditory cortices across hemispheres. Again, a functional lateralization
was found, where pitch discrimination was associated with the right prefrontal cor-
tex, and phonetic discrimination with the left hemisphere’s Broca’s area (generally
implicated in speech production) [237]. It is suspected that the hemispheres may have
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become specialized over time for processing different kinds of acoustic information,
with the left auditory cortical regions more optimized for processing temporal cues
in speech and the right auditory cortical regions are more optimized for spectral, or
frequency information [238]. But the story of speech and sound processing is hardly
as simple as lateralization across hemispheres of the brain. Other studies have shown
that both hemispheres are implicated in decisions on non-rhyming words (or seman-
tically related words), but that rhyming judgements transfer information through the
corpus callosum to the left hemisphere [239].

One fMRI study explored the neural activity associated with phonological versus
semantic word generation in terms of rhyme, synonym, and translation tasks (bilin-
guals). Much like the Rouibah [223] study, the neural processes implicated in tasks in
two languages (English & French) were similar and reliably overlapped in their activa-
tion of the ‘left inferior frontal region’ [240]. Neural activity during word and rhyme
generation can be broadly described in terms of hemispheric activations. Rhyme gen-
eration has in fact been shown to predict “hemispheric language dominance” better
than other neuropsychological paradigms. Not only is this academically interesting,
but also, can provide a non-invasive diagnostic screening phase for a variety of neuro-
surgical interventions [241]. For example, the Wada test is an invasive, but commonly
used pre-surgery test to identify hemispheric lateralization of various language and
motor functions. This invasive test could be replaced by a more robust classification
of hemispheric language dominance based on a simple word rhyming diagnostic test
[242].

3.2.7 Improvisation

Music

Although improvisation is colloquially considered a spontaneous behavior, it is built
on the foundation of prior knowledge. Specifically, it requires a balancing of short
term ongoing attention to sound sequences and the automatic retrieval of musical
patterns from long term memory [243].

Musical improvisation is associated with activity in both the default mode network
(DMN) and the executive control network (ECN). These networks are implicated in
a variety of cognitive processes, but relevant to the tasks at hand, DMN is associated
with mental simulation and self-referencing [244, 245], while ECN seems to be related
to goal oriented tasks and the evaluation of ideas. These networks are generally
negatively correlated [246, 181, 247], and may be at the heart of creative ability
[181, 248]. When these networks are deployed together, associations with increased
creative performance have been observed [249].

Some have also suggested that creativity, which is highly correlated with improvised
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behavior, can be construed as an identifiable mental state. This was determined
using EEG to test for “distinct patterns of neural activity” during Alternative Use
Tasks [250] and Consensual Assessment Techniques (ways to measure the divergence
of use cases or creativity of artifacts, respectively) [251]. It has even been shown
that in less familiar settings, improvisation becomes more predictable, as measured
by entropy and conditional entropy, pointing to the utilization of more predictable
prior knowledge that underlies this complex skill. [252].

In terms of neuro-anatomical regions, musical improvisation is “consistently charac-
terized by a dissociated pattern of activity in the prefrontal cortex” [253]. Further-
more, increased activation of the perisylvian language regions seems to be associated
with collaborative improvisation involving two musicians. Activation of this language
region in music may point to leveraging the cognitive processes used in musical ‘syn-
tax’ [254]. In comparison to classically trained musicians, improvisations performed
by trained Jazz musicians reliably activated certain regions (Broadman’s Area 7)
thought to be related to altered states of consciousness (hypnagogia/sleep). Sim-
ilarly, brain regions active in the production of jazz music were less efficient, less
clustered, and less synchronized in the right-hemisphere than during production of
classical music [255], again indicating differences in the cognitive mechanisms involved
across disciplines.

It should be noted that the neural correlates of both musical composition and impro-
visation vary across individuals and are not particularly robust or widely accepted
(and subject pools for experiments have been small). Furthermore, the study of im-
provisation has largely been limited to jazz and more specifically, piano [256]. Lu
et al. take this into account and include composition tasks for instruments that the
composers do not know, finding similar results as above (previous paragraph). Many
more studies using various kinds of composition, performance, instruments, and im-
provisation (e.g. improvised rap, beat-boxing etc.) will be needed to tease apart more
reliable form-function relations in the brain.

Rhyme

As limited as the understanding of improvised musical production is, improvised lyri-
cal production is even less well studied. A recent characterisation of improvisational
rhyming strategies focused on the practical use of end-rhyming strategies [257] where
target words are chosen and rhymed with. This is in line with characterisations of
what freestylers are doing; “always looking slightly ahead, like when reading music”
- Harry Mack.

Improvisation is, in general, associated with contexts where stimulus-independent
action occurs without being monitored consciously or actively. However, it appears
that in lyrical improvisation, as opposed to musical, there are distinct associations
between regions that are thought to couple intention and action (whereas musical



68

improvisation is dominated by action/motor). This suggests that, for certain aspects
of production in lyrical improvisation, normal “executive control may be bypassed,
[allowing] motor control [to be] directed by... motor mechanisms” [180]. These find-
ings are consistent with a recent study that incorporated various kinds of improvised
performance, including improvised rap, noting that both cognitive control (execu-
tive function) and motor planning can facilitate “seemingly unconstrained behavior”
[181].

These findings suggest that two intertwined processes are involved in improvised lyri-
cal production. On the one hand, there is an automatic, reactive process, where
complex language might produced, but without the patterns becoming the focus of
the speaker’s attention. On the other hand, there is a more intentional process,
where a target word is selected, becoming the temporary focus of attention. The tar-
get word is often silently recited in order to introduce its sounds to the phonological
store. Target words are often not uttered immediately, but rather, are rhymed with
first, only revealing (speaking) the target word as new target word is chosen. And
then the process repeats. This intentional process is consistent with the end-rhyming
strategies mentioned above (target words) [257] and with the pluralist notion of ex-
pertise introduced earlier – the ”weav[ing] together [of] automaticity and higher-level
cognition. . . ” [179].

Comparing the elements of language and music can be a revealing exercise. On a
piano, for instance, each octave has a patterns of 7 white keys and 5 black keys, this
pattern repeats across the keyboard. All possible notes are apparent (visually and
physically) and can be pressed in succession or in parallel to produce musical patterns.
In language, however, the sound elements of interest (phonemes) are not apparent all
at once (as on a piano). In addition, these sound elements are tied to lexical items
(words) which are also not apparent all at once. Without direct access to the elements
and patterns of language sound, in lyrical improvisation, it seems that lexical items
become targets of focus. These target words are intrinsically associated with sound
patterns, which can then be repeated or patterned to create various language-based
music structures.

While the study of musical improvisation has been increasingly utilized in therapeutic
applications [regulating mood, etc.] [258, 259], there is also work suggesting that some
linguistic skills are complementary to musical improvisation and can provide thera-
peutic benefit, skills such as “(1) attending to sound and music; (2) using descriptive
language about music; and (3) facilitating verbal processing of improvisation” [260].
These benefits are not necessarily specific to improvised musical production, and may
indeed overlap with the space of lyrical improvisation.
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3.3 Language

• How has rhyme been formally investigated?

3.3.1 Stress

Prosody is the study of intonation, tone, stress, and rhythm. These elements are often
related to the syllable or individual segments, but exist as what are called supraseg-
mental elements. Stress, and combinations of stress patterns, encode rhythm and
melody and are particularly relevant for rhyme constructs. Some modern approaches
to English stress in linguistics are built on grid-based theories of meter and phonolog-
ical relations [261] (French [262]). More wide-ranging computational approaches have
shown that English words, for example, tend to follow 9 different syllable/primary-
stress patterns, and that these words are not evenly distributed across the lexicon
[263].

Figure 3.4 shows stress pattern permutations from the lexicon, named patterns in
the English. Note that yellow-highlighted dashes denote stressed syllables, while the
u-shaped symbol denotes an unstressed position.

Because of the limited number of stress types (stress, no stress, and secondary stress
- not depicted here), the set is limited enough in size that each of these patterns
can have a name and be the subject of academic study. Although the study of
individual vowel patterns has not followed in this same enumerative tradition, it
would be possible to perform a similar enumeration, though the sets would be much
larger. For example, using the 15 English vowels in CMU pronouncing dictionary,
there would be up to 15x15=225 two-syllable vowel patterns, rather than the 4 2-
syllablle stress patterns seen in Figure 3.4. Exploring the distribution and use of
multi-syllabic rhyme at a deeper level may require a more explicit and comprehensive
investigation of all possible vowel sequences, following in the tradition of stress and
prosody.

Describing patterns of stress in language, and more specifically, how they apply in the
context of poetics, is critical for understanding the patterns and variation in instances
of rhyme. Various defined forms of rhyme incorporate stress pattern requirements,
both in terms of their quality (stressed or unstressed) and their position, often fo-
cusing on the importance of matching sounds with particular stressed positions. For
example, forms like iambic pentameter define large alternating stress patterns, where
the terminal (rhyming) positions of each line are both stressed and expected to rhyme.

Probabilistic regularities are important for learning. And although these regulari-
ties may be necessary for learning, they are not sufficient, as evidenced by the pa-
per “Learning English Metrical Phonology, [. . . ] Probability Distributions Are Not
Enough” [264]. Theoretical, experimental, and behavioral approaches are all critical
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for a comprehensive understanding of stress and phonology. There are complex and
subtle components of the learnability of language, but few paradigms exist where
stress and repetition are so macroscopically observable as in the case of multi-syllable
rhyme. Yet, it is a realm where academic study is almost absent. This phenomenon,
in the context of rhyme, demands more exploration.

3.3.2 Sequences

The distribution of individual sounds in a language is important for understanding
the patterning present in a phenomenon like rhyme. But as seen from Figure 3.4, it is
not just individual phonemes that are important. Sounds do not exist in a vacuum,
but rather, in the context of other sounds, making their transition probabilities and
natural clustering important aspects of linguistic inquiry. Much like the unique stress
patterns shown in the previous section, unique vowel sequences can be used to investi-
gate the underlying vowel sequence vocabulary of multi-syllable rhyme. In contrast to
stress sequences where only 2 states exist (stress, unstressed), for vowel items, many
more possible states (vowels) exist. For instance, for 4-syllable sequences of stress 16
(2x2x2x2) unique possibilities exist, while for 4-syllable sequences of vowels 50,625
(15x15x15x15) unique possibilities exist. Of course, even more unique sequences are
possible if both stress and vowel pattern are considered. It should be noted that many
of these sequences will be covert in practice.

Furthermore, the internal transition probabilities of syllables and sounds used in
multi-syllable rhyme (phonotactics), as well as the possibility space of matches (neigh-
borhood density), both demand further exploration. For example, it is known that
there is a significant correlation between the vowel and coda of a syllable in English
(vowel-coda -¿ the rime), but not between the onset and the vowel [265].

Different individual sounds in language also occur at different rates. For example,
in Figure 3.5 below, the blue bars represent the average probability of occurrence of
each of 15 vowel phonemes from the Brown corpus [266], and the red bars represent
the distribution of those same vowel sounds from Shakespeare’s Sonnet 29, pictured
in Figure 3.5.

Of course this is a small sample, and it will be expected to vary from the popula-
tion mean, but it can reveal the shape of sample distributions (languages, dialects,
subcultures) and help identify outliers in individual samples. Simple comparisons of
unigram distributions like this can also tell us about systematic deviations of different
samples from the population mean in terms of sound usage and how they change over
time. Analysis of bigram and trigram sound sequences, etc., can provide even more
fine-grained descriptions of the variation across sound sequences in different forms
of rhyming language. One could begin asking questions like, do rappers have some
learned vocabulary of sound sequences? Does that vocabulary have a grammar? Do
they employ more consistent use of particular kinds of sequences?
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Phonotactics

Phonotactics is the study of the possible legals transitions or combinations in the
context of sound elements within language, particularly phonemes. Phonotactics is
an important domain of inquiry, both for descriptive linguistics efforts and for better
understanding the learnability/acquisition of language. Here I briefly review some
of the roots of phonotactics that will provide a foundation for understanding larger
rhyme patterns.

There are conditional probabilities associated with the likelihood of transitioning from
one sound to another. Although there have been shown to be long distance relation-
ships between vowel sounds [267, 268], the most reliable and noteworthy transition
probabilities exist in adjacent sounds, as conditioning of sound in language tends to
be a short range phenomenon. Rhyme patterns are a rare case of reliable and long
range (often periodic) vowel, stress, and consonant relationships in language.

Although there are a handful of studies on the phonotactics of rime [269, 270, 271,
272], no studies on the phonotactics of rhyme matching have been conducted. Also,
this might be simplified even further by considering vowel patterning alone to rep-
resent a significant portion of the macroscopic structure of rhyme. Describing vowel
transition probabilities of natural and rhyming language would be an important start-
ing point for motivating a more granular understanding of the phonotactics of complex
rhyme. The more that multisyllabic rhyme has become a prominent form, the more
that these transitions between and within sequences of sounds demand investigation.

Considering that many kinds of phonological patterns occur across genres with dif-
ferent traditions of patterning, it is also of interest to explore how much variability
and structure there is in sound sequences across genres and sound sequence types.

As I will discuss in Chapter 5.1, it seems that some lyrical genres have longer and more
predictable sound sequences than others. In a recent study I compared the conditional
entropy of sequences of phonological patterns in lyrics and found that, in general,
Battle Rap and Sonnets maintain noticeably lower entropy [higher predictability]
than other genres across vowel and stress sequence sizes, respectively [273].

Neighborhood Density

Neighborhood density measures the number of “sound neighbors” that a given word
has. For example, CAT-BAT live in the same sound neighborhood, as they only differ
by the first sound. Because they only differ by one sound, they are also called minimal
pairs. Some words have a high neighborhood density (e.g. CAT), meaning that there
are many other words that are distinct but are still very similar on the whole (one
or two sound segments differ e.g. HAT, SAT, CAP). Words with low neighborhood
density exist in a less populous ‘sound space’ (e.g. ”echolocation”, ”hippopotamus”).
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Neighborhood density has impacts on learning, perception [274], and production [275]
of words. In general, humans perceive and produce high probability phonotactic
sequences faster than low probability sequences, regardless of their neighborhood
density [274, 276, 277], even when those sequences comprise only partial words [278].
This demonstrates the separation between phonotactic and neighborhood density
effects, and that their cognitive effects are about more than just word elements,
drawing from knowledge of sound distributions rather than just lexical distributions.

In spoken language, vowels are sometimes ‘reduced’ or ‘weakened’, indicating some
(predictable) kind of change in the acoustics of vowel production. This can include
changes in stress, sonority, duration, loudness, articulation, or position in the word.
While this is a broad phenomenon, vowel reduction has been shown to be positively
associated with words that have high neighborhood density [279]. In both English and
Dutch there is only a weak correlation between high frequency words (written and spo-
ken) and high neighborhood density. Furthermore, higher neighborhood density has
been shown to be more strongly associated with word bi-grams than with unigrams
[280]. This notion of high neighborhood density and reduction in relation to multi-
syllable rhymes is especially relevant given that word/phrases in low-neighborhood
density areas would seem to have more degrees of freedom for sound change (muta-
tion, insertion, deletion, substitution, etc), given that it is less likely for changes in
low neighborhood density words to result in collisions with other distinct word forms.
For example, most sound changes in the high neighborhood density word ‘cat’ would
change it into another distinct word (kit, cut, kate, cap, cab) whereas similar changes
(minimal pairs) to the word ‘catatonic’ (kitatonic, cutatonic, capatonic, canatonic)
are all still potentially perceivable as ‘catatonic’, even with limited contextual clues.

Learning does not happen in a vacuum, but it is, in fact, related to the complexity of
the signal being learned, as in the case of phonological complexity and the learnability
of language [281]. Interestingly, a recent study has shown that statistical learning is
actually facilitated when the signals being learned are in a particular range of com-
plexity (as measured by entropy efficiency: observed entropy / maximum entropy).
Sets of stimuli with entropy efficiency similar to that of language (Zipfian distribu-
tions) are learned better than sets of stimuli from other distributions, even better than
distributions that are more predictable than Zipf, and intuitively, should be easier to
learn [282, 283]. This suggests that many of the previous studies that have explored
learnability and language complexity by using uniformly distributed stimuli sets may
be investigating a more artificial or laboratory invented phenomenon that does not
well reflect the distribution of stimuli in more naturalistic learning environments.

Age can also be a factor in how humans pick up cues from the environment. For ex-
ample, a developmental study found that high vocabulary five year olds show neigh-
borhood density effects in a rhyme task, whereas children at low vocabulary-ages
(but still 5 years of age) did not [284]. More generally, neighborhood density ef-
fects are observed in spoken word recognition tasks across age groups (preschool,
elementary school, adults). Although word recognition is facilitated in early-acquired
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words from sparse neighborhoods in children, adult word recognition was facilitated
by later-acquired words [285]. In addition, the recognition of words by children was
less dependent on the position of sounds in words (initial, medial, final) than it was
for adults [286]. That said, it is not clear how dependent the recognition of words is
on the specific order of sounds. For example, a recent study showed that recognition
of words (lexical access) in adults was not as strictly dependent on the order of sounds
in words as some models suggest. They used phonemic anadromes, (sub–bus or pat–
tap) to show that words with their letters rearranged (e.g. tap) actually do facilitate
activation of the related word (e.g. pat) [287]. Finally, reaction times and accuracy
in reading tasks improved with age, indicating that certain aspects of phonological
processing may depend on different neural systems or developmental time courses
[288].

In relation to variation or imperfectness in rhyme, these studies suggest two distinct
arenas of flexibility. First, in high density environments, vowels are more prone to
reduction, resulting in common and predictable alternate pronunciations that may be
leveraged in the matching of rhyming words. Second, in low density neighborhoods,
arbitrary sounds may be changed or removed without creating confusion with other
words, since so few similar sounding words exist. This provides additional flexibility
for imperfect or slant rhyming for low-density words that can be much less constrained
than words from high-density neighborhoods. These two scenarios indicate that fa-
cilitation of slant or imperfect rhyme patterning may come from both high and low
density environments.

Questions concerning exactly what does impact rhyme cognition and learning are
largely outstanding as most forms of rhyme have yet to be investigated in any theo-
retical context, such as statistical learning or learning theory. However, vocabulary
acquisition and phonological neighborhood density networks are implicated in the
processing of rhymes. Together, these studies also suggest that complexity, statis-
tical regularities, age-of-acquisition, order of exposure to items, and sound position
(within words), all impact the learning process and should be taken into account
when considering underlying cognitive mechanisms.

3.3.3 Poetic Analysis

Most analysis of poetry takes a relatively holistic approach, analyzing particular works
or authors. However, there have been a couple of efforts that computationally ex-
plore the space of possible poetic devices. For example, despite the common belief
that there is not much possible variety in the end-rhyming patterns of sonnets (e.g.,
ABABCDCD), Höft demonstrates otherwise. He explores the space of patterns used
by individual authors, and the space of all possible patterns, finding more than 4.3
million possible variations on sonnet end-rhyme schemes (w 14 lines) [289].

In Chapter 4.2, I outline the space of all possible matches for various common poetic
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devices. This study used simple templates that operationalize the positions of syllabic
components which must agree across any two words in order to be considered a match
in terms of assonance, consonance, masculine rhyme, feminine rhyme, etc.. [290].

These approaches are informative descriptively, but they also provide a lens through
which the availability of patterns in language can be explored compared to their
perceived availability or their frequency of usage in the wild (e.g. poems, lyrics).

In addition, rhyme style and language features have been explored in the context of
text (genre) classification. Features include rhyme, part-of-speech, bag-of-words, and
various combinations of those features are shown to be productive in improving text
classification and or model simplification (dimensionality reduction) [291].

Stylometrics

Exploring the elements of phonemes, stress, and their distributions is surely important
for a comprehensive understanding of rhyme, but it is also important to review the
larger poetic and linguistic context that rhymes most often exist within. This is
often done using stylometrics, the quantitative study of linguistic style. There have
been a number of efforts to describe the features of poetry, from manual analysis to
automated rule-based approaches, to various forms of visualization [53, 54, 55, 56].
Often the aim is to identify a broad enough base of linguistic features to successfully
and automatically classify or compare works or authors; relevant features include
vocabulary, poetic devices, meter [292, 52], semantic density, prosody, concepts, and
rhyme schemes [53]. This line of investigation has much in common with traditional
authorship identification techniques where a large swath of linguistic features are used
to distinguish between authors. Famously, Shakespeare and the The Bible have been
the target of much of this investigation as it is suspected that these techniques can
help discriminate the author(s) behind their creation [293].

Visualizations

Although direct feature visualization can be difficult in texts like The Bible, which
involve largely non-rhyming prose, more poetic works with added phonological con-
straints tend to be more amenable to effective visualization. The most notable work
on visualizing rhymes uses vertical vectors of color, as in Figure 3.6, to denote the
ABAB rhyme scheme patterns across sonnets [289, 294, 295].

This approach is wonderful for illuminating the variety/distribution of possible 1-
dimensional ABAB rhyme patterns, but, like most research on rhyme until recently,
it assumes that rhyme is limited to (or well represented by) single end-rhyming sylla-
bles. Additionally, the colors here represent the pattern of sounds relative to a single
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poem, rather than the sounds themselves. In other words, A is always blue and B is
always green, but the words/sounds that A or B represent are relative to each poem.
Therefore, the analysis by Höft is about the abstracted end-rhyme patterns, and in
many ways ignores their sound content and related variation.

Although visualizing patterns of end rhyme in sonnets can be informative, even in
the realm of phonological patterns there are many kinds of representations and in-
formation in natural language that should be considered independently. Recently, a
multi-level visualization scheme for poetry was described that allows for the display
of phonological elements of poetry [8], shown in Figure 3.7.

The approach highlighted in Figure 3.7 begins to visually identify how complex and
multi-layered the patterns and representations of sound can be. Going from words to
phonemes (1), then fitting them into a metrical grid (2), and representing them as
syllables (3) or as orthographic patterns (4).

Finally, in an attempt to focus on both rhyme identification and imperfectness, graph
theoretic approaches to rhyme similarity allow for a network based separation of
rhyming words into clusters based on feature similarity and occurrences in rhyming
corpora. It works based on automated pruning of these networks, resulting in relations
between words (nodes) that represent various linguistic relationships. This approach
has many benefits, including computational tractability, discovery of partial rhymes,
as well as historical pronunciation detection. Below, I highlight the resulting graphs
of rhyming clusters to demonstrate this approach to both classifying (clustering)
and visualizing rhyme relations [9]. This is not specifically an approach to rhyme
visualization, but rather, a graph theoretic one that results in visually digestible
networks of rhyming clusters.

As shown in Figure 3.8, these graphical approaches can build networks of words, and
then segment them into clusters along rhyming relations. Based on the particular
pruning approach applied, they can also identify half (partial) rhymes, as well as
sight (spelling) rhymes. Automated clustering of words based on sound similarity and
co-occurrence in written samples is important, and could be applied to a variety of
language data to identify stable word relationships. Although it was developed with
the idea of helping to identify historical pronunciations of words (where historians
are not sure how words were truly pronounced), it can also be used to identify the
pronunciation of words in more modern contexts where slant or imperfect rhyme have
been utilized. Co-occurrence measures allow us to overcome the limitation that many
rhyming pairs drawn from text (partial rhymes, uncommon pronunciations) cannot
be identified based on conventional pronunciation lookup tables alone.
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3.3.4 Rap Analysis

Given the abundance of rhyme in general, and multisyllabic rhyme in rap, it is sur-
prising that so little computational work has been done in this realm. There have
been a handful of efforts to identify the notoriously complex sound patterns in rap
lyrics, however. Unique spelling conventions have been explored [57], as well as rel-
ative vocabulary size, showing that one artist (Aesop Rock) uses many more words
than other well known verbose rappers (Eminem, Andre 3000, Nas, Twista) [58]. But
this level of spelling or lexical diversity says little about the most defining features of
rap lyrics: flow and phonological patterns.

Much like groove in music, which involves rhythm, meter, and musical structure [184],
flow is an aspect of rap lyric delivery that encompasses both metrical and articulatory
techniques. Metrical techniques include the number and placement of rhyming and
accented syllables as well as the relationship between syntactic units and metrical
elements. Articulatory techniques include articulation of consonants and alignment
of syllable articulation with the beat (earlier or later or simultaneous) [25]. This
approach frames the analysis of rap in terms of the musicality of flow rather than
directly as poetic or linguistic content. Two different approaches to analyzing flow
in corpora found a great deal of evidence of end rhymes on or near fourth beats of
each measure [68, 296, 297]. Much more analysis is needed to uncover the musical
and phonological features of rap flow.

There have also been a limited number of attempts to identify the complex rhymes
contained in rap lyrics [11]. In part, this dearth of research is due to the lack of tools
for noticing or encoding these patterns in the first place (which I discuss later in this
section). But even once patterns are identified, there are no robust frameworks for
linguistically or computationally analyzing/characterizing rhymes, especially when
they are imperfect. Here, I review the approaches that have been taken to identify
phonological patterns in rap lyrics.

Complex rhyme is composed of repeated stress, vowel, and consonant elements. Be-
cause vowels occupy the sonorant (i.e. singable sound) nucleus position of the syllable,
they are often the most prominent element of analysis and the most highly weighted
feature of rhyme. An algorithm that counts rhymes on the basis of vowels alone
(assonance) was developed in 2015 which characterized artists by the average length
of vowel patterns observed in their lyrics (Rhyme Factor or average length of vowel
patterns). The approach is simple: it encodes lyrics as just vowels and then iter-
ates, word by word, to find the longest sequence of vowels that ends with vowels
from one of the previous 15 words. This rule based approach seems to overlap with
many rhyming patterns and provide some amount of intuitive multi-syllable rhyme
identification [298]. Recognizing just how underexplored poetic devices are in poetic
works, more recent work attempted to identify assonant clusters by localization across
features of vowel closeness and backness [299].
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Complex rhymes are often characterized not only by their multi-syllabic structure, but
also by their imperfectness and their location in poetic works (internal overlapping
as opposed to merely end-rhyme). There have been some relatively successful efforts
to automatically identify rhyme schemes in the noisy data of rap lyrics, including
applications of frequency scoring [300], expectation maximization [59], and Hidden
Markov models [301]. The available data is messy and unlabeled, however, making
automatic identification difficult. Yet, Addanki Wu, for example, were able to achieve
rhyme classification scores of 35.81% for precision and 57.25% for recall. There is
certainly room for improvement in all of these computational approaches.

3.3.5 Lyric Generation

While there are not yet comprehensive linguistic or computational descriptions of
complex embedded rhyme schemes, a few attempts have emerged to reproduce these
patterns in machine generated lyrics [62].

There are 3 broad approaches to generating lyrics, including templatic, composi-
tional, and end-to-end machine learning. In the templatic approach, some underlying
template of stress or sound patterns can be identified, and then some form of lyric
generation is superimposed on top, with the requirement that the resulting output
meets the phonological (or other) constraints set in the template [63].

Some compositional approaches integrate knowledge and semantic components [64],
while others employ intelligent mixing and matching of newly or previously generated
lines of lyrics, which have been shown to select next lines at a rate 50x better than
a random baseline, and 21% better than human experts [65]. Furthermore, support
vector machines [302], recurrent neural networks (RNNs) [66, 303, 304], and Long
Short-Term Memory (LSTM) models [305], have all been used with limited success in
generating poetry or rap lyrics, usually with compositional or end-to-end approaches.
There has even been work that combines an RNN with a finite-state machine that
deals specifically with the rhyming words and meter [67]. Finally, some poetry genera-
tion has been based on evolutionary algorithms using many agents to search in parallel
across the vast space of possible continuations (stochastic hill climbing), which then
evolve over many generations to optimize constraints like meaningfulness, poeticness,
and grammaticality [306, 307].

Lyric generation efforts could be improved with a better understanding of rhyme
matching options (and other phonological patterns), both in terms of multi-syllable
and imperfect patterns. For example, knowing which kinds of imperfect rhymes are
more perceptually convincing, or which mosaic (across word) rhymes are available,
would greatly benefit lyric generation efforts by carefully expanding the space of
possible rhyme matching, while adding more vocabulary diversity to the semantic
and grammatical constraints of poetry writing.
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Example Templatic Generation

Language is filled with long-range relationships, a notoriously difficult-to-capture di-
mension of language models. LSTM models and transformer models have become
popular for their abilities to better capture long-range relationships in language.
There have been various implementations of models like these which are trained to
produce lyrics in some way. This usually involves retraining the model on relevant
lyrics (to implicitly capture rhyming patterns), or building in some knowledge of
rhyme or sound similarity. Here I use a state-of-the-art transformer model, GPT-2,
to automatically generate language that matches a customizable sound template, a
mixed templatic approach to lyric generation.

Below is sample output from a GPT-2-VowelTemplate model I created. It enables
one to define a vowel template, and then uses GPT-2 to generate text while also
matching the template. This approach allows for generation of text with arbitrary
and controllable vowel sounds.

The approach here uses GPT-2 to generate multiple possible next words. The un-
derlying vowels of each potential next word are extracted and checked for agreement
with the next required sound in the template. If a viable word is found, it is added
to the output chain. Sometimes all the vowel constraints of a given output cannot be
met using this approach, these are considered ’failed’ attempts.

An example context is shown below. These contexts are used to guide the topic
or theme of each generated sample is an integral. The context will compel GPT-
2 to generate text that is somehow related to practicing to become an expert. The
vowel wrapper around GPT-2 then forces language output to adhere to a phonological
template.

In Figure 3.9 below, I define a minimal vowel template that is used to constrain the
output of GPT-2. If no vowel phoneme for a given syllable is specified, any vowel can
be matched (asterisk *). 4 example outputs from a single template and prompt are
shown in Figure 3.9.

3.3.6 Summary

In Chapter 3, I summarized the approaches of poetic analysis, both in terms of
stylometrics and visualization techniques. Then, I focused on the specific case of
linguistic analysis of rap lyrics, a domain where complex multisyllabic rhyme patterns
dominate and, to a large degree, guide the phonological structuring of the genre.
Finally, I discussed approaches that have been used to generate lyrics that include
rhyming components. All of these techniques would certainly benefit from a better
understanding of the dynamics of complex rhyme.
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Figure 3.4: Charts showing all possible stress pattern combinations, also known as
metrical feet up to four syllable sequences. Stress Images from Wikipedia (Foot
(Prosody), 2021).
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Figure 3.5: Rates (in percent) of vowel occurrence across the widely used Brown
corpus are shown in blue and are compared to rates for a sample (Sonnet 29) in red.
Note the disproportionate use of the /aI/ vowel in this poem (eyes, cries, my, etc.),
which is prevalent within its rhyme schemes.

Figure 3.6: Each column represents the pattern of end-rhyme from one sonnet (each
with 14 rows). The first column (sonnet) begins with ABAB, the second and third
(columns/sonnets) begin with ABBA, and so on. The image on the right is an artistic
projection of this same data.

Figure 3.7: 4 different types of visual representations for poetic sounds from [8].
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Figure 3.8: In the above graphs, nodes are words, and observed rhymes are edges. The
degree of similarity is implicitly gathered from poetry with annotated rhyme schemes
and represented here as edges. The color and shape of nodes are visual conveniences
for distinguishing between tight clusters of nodes. [9]
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Figure 3.9: Example output from GPT-2 with a vowel template wrapper. 345 million
feature GPT-2 takes a few parameters, including temperature (relatedness), batch
size, and a context or prompt.



Chapter 4

Overt Patterns

In Chapter 4, I focus on data that are identified to belong to poetic devices. First, in
order to better understand the landscape, I document all possible instances of perfect
poetic devices across all dictionary words. Then, I transition to considering imperfect
rhymes across 500 years of poetry in English. Finally, I turn my focus to more formal
analysis, examining sets of multi-syllable rhymes, something that has not yet been
seriously considered in the literature.

Questions Covered:

• (Section 4.1) How many perfect rhymes are possible?

• (Section 4.2) How perfect is perfect rhyme?

• (Section 4.3) How can imperfect multi-syllable rhyme be quantified?

4.1 Perfect Poetic Devices

How many perfect rhymes are possible?

How many perfect rhymes are possible in English? In other words, what is the shape
of the entire phonological vocabulary at the level of perfect poetic devices. This study
explores the availability of common, perfect, phonologically driven poetic devices like
rhyme, alliteration, and assonance. In addition to providing a way to enumerate
the space of possible poetic devices, this effort offers related metrics such as entropy
and network size. I show that certain devices, such as alliteration and stress, have
many fewer possible unique patterns, while providing dramatically more possible word
matches than other devices like rhyme, assonance, and consonance. These results are
discussed in terms of their cognitive and poetic implications.

83
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Traditionally, the study of poetic devices and artistic patterns in language has focused
on the analysis of creative works themselves. In this section, I instead focus on the
language resources that scaffold and constrain their creation. Exploring the possible
space of common poetic devices across the English dictionary, I examine the baseline
frequencies of patterns like assonance, consonance, masculine, and feminine rhyme
across unique words. How big are each of these networks? In other words, how
available are these poetic devices? And how many matches are there for each of the
incarnations within a poetic device? This investigation is motivated by both a desire
for more data driven descriptions of creative linguistic phenomena, and a desire to
better profile the landscape of possibilities that bound the production and perception
of these patterns.

Understanding the underlying networks of poetic devices, and their availability, can
also provide a statistical learning based lens through which these devices can be inter-
preted. Phonotactic explorations such as this, which study the frequency, probability,
and constraints of transitions in the context of sequences of sound elements, are an
important domain of inquiry, both for descriptive linguistics efforts and for better
understanding the learnability and acquisition of language.

4.1.1 Data

For this analysis I use the CMUdict [308], a phonetic dictionary, as the corpus of
unique English words which provides ARPABET representations of each word’s pro-
nunciation. Below is an example of how words are encoded. There are a total of
120,413 words in the current dictionary.

As I will discuss further in the methods section, for each word, I extract the com-
ponents of words that represent their potential use in poetic devices, highlighted in
green in Figure 4.1 to create a new, more convenient dataset catered to checking for
poetic device agreement.

Approach

The sound components evaluated here, vowels, consonants, and stress, are elements
of the syllable. Agreement in various combinations of these syllable components are
characteristic of different poetic devices. In concept, I test all possible pairs of words
in the dictionary to check if they satisfy the conditions for various poetic relations.
There are at least 229 [39] named forms of rhyme alone, including feminine, dactylic,
holorime, etc. . . . Figure 4.1 shows the set of poetic devices selected for this study.
For both words in any given pairwise comparison, the components of their syllables
which are shown in green must match exactly to satisfy the constraints of a device.
For example, both words in the pair “cat” and “hat” have the same vowel, stress,
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Figure 4.1: Template for components of syllables that must agree (green) in order
to conform to the constraints of a given poetic device. C=Consonant, V=Vowel,
S=Stress (0=Unstressed, 1=Primary Stress, 2=Secondary Stress). If not specified,
words may be any number of syllables where every syllable must match the specified
condition. * pertains to the first syllable of a word of arbitrary length. ** indicates
that matches must be exactly the syllable length specified in the template.

and ending (coda) consonants, so satisfy the requirements of both masculine rhyme
and assonance (Figure 4.1), but they have different initial consonants (onsets) so do
not satisfy the conditions of alliteration.

Again, the idea is to check every possible pair of words from the dictionary against
every template of poetic device similarity conditions from in Figure 4.1. The goal
is to arrive at a list of “match” or “don’t match” answers for every possible pair of
words across each condition. So for the cat-hat pair, or any other pair for that matter,
a vector of items would be produced (e.g. [0, 1, 0, 0, 1, 1, 1]). A 1 means the pair
satisfied the requirements of one of the tested poetic device (condition), and 0 means
it did not.

However, using binary equivalence checks over all unique word-pairs can be time
consuming as it is O(n*n) time complexity. In order to examine all pairs of words,
each word (120,413 from CMUdict) is compared to every other and across all poetic
forms. That is 120,413 * 120,413 or about 14.5 billions pairs of words to check. In
total, 7 checks (one for each poetic device) must be done on each pair, which is just
over 100 Billion checks.

In order to simplify the problem and allow for future scaling to larger datasets, I use
pre-indexing to simplify the required computation. For each word I pre-extract the
sound components, shown in green in Figure 4.1, that could potentially participate
in the chosen poetic devices. These skeletal sound representations of words can then
easily be compared and computed over to extract sound pattern frequencies. For
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example, for the word ”begin”, ’01’ would be extracted for stress, ’B’ for Alliteration,
’IH0 N’ for Masculine Rhyme, and so on. The result is a table with 120,413 rows, and
7 columns, one for each poetic device (but just the extracted green sound segments
of the words). This gives a representation of how many words represent each of the
unique instances of poetic device patterns. One can then simply count the total num-
ber of words, for example, with exactly the stress pattern of ’01’ (stress components),
or with first consonant onsets of ’B (alliteration components), or ending with ’IH0
N’ (masculine rhyme components). If there are 8868 words with just the sound B
in the alliteration position, this represents the number of options available in the ’B’
sub-network of alliteration. Of course, this would need to be combined with counts of
all unique alliterative patterns, not just B, to account for all of alliterative patterns.
I report the Top 5 most common sequences for 4 categories in Figure 4.2 and average
frequencies in Figure 4.4.

Figure 4.2: Top 5 most common poetic device patterns and their frequencies across
words in the dictionary. A given device, like assonance, can be thought of as a
network, while patterns within a device, like /æ-2/ (AE AH) can be thought of as a
sub-network of the larger assonance network.

Figure 4.2 shows the Top 5 most frequent pre-extracted patterns, and how many words
from the dictionary matched each pattern exactly. For example, in the stress column,
it can be seen that the most common stress pattern is ”10” (stressed-unstressed), and
that 41,774 words from the dictionary match this pattern exactly. This provides the
ability to examine how many word options are available for each instance of a given
device, as well as the distributions of these instances across devices.

As an example, Figure 4.3 shows the frequency vs rank plot of all vowel sequences
(assonance) observed in words in the dictionary. This represents the complete con-
tinuation of data from Figure 4.2 in the Assonance column.

One might also conceive of these sound relationships in terms of networks or graphs,
construing each poetic device as a network comprised of many fully connected smaller
networks which represent incarnations of the poetic device in question. For example,
all (6506) words that start with /b/ or all (8868) words that start with /k/ make up
two of the fully connected networks in the larger alliteration network.
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Figure 4.3: Frequency vs Rank of assonance (vowel) sequences extracted from unique
words in CMUdict

Results

Figure 4.4: Results about poetic devices and their patterns. Patterns represent the
unique phonological sequences possible for each type of device.

Unique Poetic Device Patterns

Here, I count the number of unique sound sequences related to each poetic device.
Figure 4.4 column 2 (patterns) shows how many unique instances of each type of
poetic device were identified. I am specifically interested in repeated patterns, so I
also report in terms of the number of unique patterns for each device with a word
match count greater than 1 (column 5). For example, there are 260 stress patterns
from all the words in the dictionary, but only 178 of them characterize more than
one word, meaning 82 of these stress patterns appear only once. ’Only Repeated
Patterns’, on the right, is a subset of ’All Patterns’, on the left, which excludes
patterns that only occur once.
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Avg. Words Per Poetic Device Pattern

Taking this a step further, one might start to ask questions about how productive
these poetic devices could be. For example, on average, how many word options are
available per pattern in a poetic device? I calculate the average number of words that
match patterns within each sub-network of a poetic device. This approach can be
usefully descriptive is some cases, but simple averages do not necessarily well capture
the dramatic differences in distributions and frequencies.

For example, I sum the frequencies of all patterns in Figure 4.2 Stress column (not
just the top 5) and divide by the number of unique patterns, in this case 260. This
gives us 458.8 words per unique stress pattern. This is useful for getting a sense of
scale, but is an oversimplification.

Entropy of Poetic Device Patterns

There are many unique patterns for each type of poetic device (147 alliterative pat-
terns, 260 stress patterns, 7,756 vowel patterns, etc), and different numbers of words
match each of these patterns (e.g. 01, 11, 10). In order to better capture information
about variation in the frequency distributions while taking into account the chang-
ing vocabulary size (number of patterns), I use Shannon entropy. It provides a lens
through which we can compare the predictability of the frequency distributions of
each poetic device archetype. Describing this complexity as information allows for
a measure of poetic device category in terms of ’bits per sequence’. Low entropy is
indicative of a more predictable distribution. Figure 4.5 gives us an intuitive infor-
mation theoretic way to measure predictability or uncertainty across the landscape
of poetic devices. H (entropy) is the average amount of information or uncertainty in
the possible outcomes of a given variable X. The variable X has an alphabet x. The
entropy H of X is given by the summation (p(x)) times the log-base 2 of (1/p(x)) for
each x in the alphabet - here giving results in thee form of bits.

Figure 4.5: Shannon Entropy

I use the number of unique patterns in Figure 4.4 column 2 as the alphabet size for
each poetic device (A), and the counts of their various instantiations, exemplified in
Figure 4.2 as frequencies in the Shannon entropy equation (x).
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Poetic Devices as Networks

Another approach is to measure availability based on the assumption that the size
of the sub-networks within a given poetic device might not be scaled in relation
to the number of unique word possibilities (as above), but rather, may be scaled
exponentially as a function of the number of transitions (edges) between members in
a group (the density of a fully connected sub-network). There would be undirected
edges between all words in a sub-network as in Figure 4.6. These sub-networks are
functionally equivalent to the notion of rhyme sets or alliteration sets, where all
members are matches with all other members on some phonological dimension.

Figure 4.6: 3 Examples of toy alliteration sub-networks - Each sub-network is fully
connected within itself.

Imagine a toy case where there are 3 words that start with ’BL’, and 5 words that start
with ’L’ as shown in Figure 4.6. Comparing these cases only in terms of the number
of words that match, one could say that the ratio of resources between these two sub-
networks is 3:5. However, if considered in terms of how many transitions (matching
pairs) are possible within each sub-network rather than the number of nodes, the
ratio is different (3:10). Calculating the degree of a fully connected network can be
done with the following expression (number of edges = n(n-1)/2)). The number of
nodes in each sub-network (2, 3, and 5) provide a different scale than the number of
corresponding edges (1, 3, 10).

What this accomplishes is to more heavily weight the larger sub-networks in order to
accommodate the intuition that the resources available in these networks may scale
with the transition counts between words (degree), not simply with unique nodes
(possible word options).
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Applied to the data, the most common stress pattern, ’10’ occurs in 41774 words,
and since each of these words can act as a transition (a match) to every other one
with the same stress, the total possible transitions in this sub-network is 41774(41774-
1)/2, or 872,512,651. If the degrees (edge counts) of all sub-networks of stress pat-
terns are summed, the total edges are 1,193,936,341 (possible pairs or transitions).
Then, dividing this by the number of unique repeated stress patterns, 178, gives
us 6,707,507.5, the average number of transitions for each sub-network of stress pat-
terns. So in this case, unique words that match the ’10’ stress pattern comprise about
35% (41,774/120,413) of all stress matches, but 73% (872,512,651/1,193,936,341) of
all transitions. Again, this has the effect of more heavily weighting poetic device
sub-networks that are more densely connected.

4.1.2 Discussion

In general, the number of unique patterns for poetic devices is inversely related to
their availability as a resource in terms of average words per pattern, and their pre-
dictability in term of entropy. This inverse relationship also holds true for average
transitions (or density) of poetic devices, but scaled dramatically differently due to
counting the edges rather than nodes of the fully connected graphs within each poetic
device.

Stress & Alliteration

There are a relatively small number of unique stress and alliterations patterns, but
for different reasons. In the case of stress patterns, there are only 3 possible types of
stress, 0 - Unstressed, 1 - Primary Stress, 2 - Secondary stress.

On the other hand, the first (alliterative) sounds of a word can be comprised of both
vowel and consonant segments, constrained by phonotactics.

This results in a similarly limited number of possible unique patterns that can com-
prise stress or alliterative sequences within words. Due to these smaller number of
patterns, the average number of words that match each of their patterns is quite high,
458.8 and 696.3 respectively. This means that for any given instance of a stress or
alliterative sequence, there are hundreds of individual words that will match or agree.

It should not be surprising then, that the information theoretic measures demonstrate
that stress is the most predictable (least surprising) type of sequence, with an en-
tropy of 2.44 bits per sequence, followed by alliteration, assonance, and consonance,
at 9.9 bits per sequence. These entropy measures take into account the frequency
distribution of these sequences, and so give a more standardized comparative per-
spective on the resource availability of poetic devices than simple counts or averages
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Figure 4.7: Rates of usage for each of 15 vowels in spoken Standard American English
- 52,000 sentences from Brown Corpus

communicate.

Vowels

On the other hand, there are many thousands of unique assonance (vowel) and con-
sonance patterns (7,756 and 47,587), due in part to how large their alphabets are
(15 vowels & 25 consonants) and the fact that these sequences can be quite long. So
when selecting any given assonance or consonance pattern (e.g. /E-I/ or /bl-k/) there
will be, on average, 15.4 words that match the vowel pattern, and 2.5 that match the
consonant pattern (also differing at different sizes).

Following from this, I inspect the more popular structured poetic devices of masculine
and feminine rhyme. In this domain, there are a total of 1,281 and 2,579 possible
unique masculine and feminine sound patterns respectively, where each pattern has,
on average a set of 27.7 or 23.3 words that match it. Their predictability in terms of
entropy is also relatively in the middle (for the data explored here), at 6.19 and 5.9
bits per sequence respectively.

The frequencies of these poetic devices are also often related to the underlying fre-
quencies of the phonemes involved in their construction. I use the vowels specifically
to exemplify this notion. Figure 4.7 shows the relative frequencies of individual
vowel sounds from the Brown Corpus of sentences. Comparing these rates to the Top
5 sequences from Figure 4.2 reveals a few things. First of all, 4 of the the Top 5
assonance (vowel) sequences from Figure 4.2 contain the number one most frequent
vowel sound AH, which here represents both /2/ and /@/ (26.7%). The other vowels
in the top 5 assonance sequences are /æ/, /I/, /E/, and /A/, ranked 6th, 2nd, 4th, and
7th respectively in the Brown Corpus of sentences (Figure 4.7). It seems natural that
many relatively high frequency vowels populate the most common vowel sequences.
However, in the masculine column of Figure 4.2 it can be seen that the second most
common masculine rhyme pattern in the lexicon is one of the least common individual
vowel sounds in natural speech (12th of 15), which occurs only 3.13% of the time in
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the Brown Corpus. The remaining vowels in top masculine rhyme patterns contain
the 3rd, 4th, and 9th most common vowel segments. Further exploration of this kind
may provide insight into the relationship between sound patterns as they appear in
thee lexicon compared with use in natural language.

Homophones

The ”All” category can be understood as a representation of the faithful phonetic
transcription of each word in the dictionary. This means there are 102,471 unique
word pronunciations in the dictionary, and some 11,480 of them are spelling homo-
phones, sound sequences that are associated with more than one unique spelling of a
word (e.g. brake/break, sell/cell). For each spelling homophone there are on average
2.5 words with alternate spellings (Figure 4.4). The vast majority of words in the
dictionary are not homophones, and their sound sequences fully disambiguate their
spelling. Again, it is worth pointing out that because of the huge vocabulary and rela-
tively flat (close to uniform) distribution of unique full word pronunciations, Shannon
entropy is extremely high, 11.47 bits per sequence, indicating high unpredictability
in this poetic device’s in the dictionary. This is not surprising given that there seem
to be strong pressures towards discriminability of the lexicon [309]. If the English
lexicon were dominated by homophones, as in Chinese for example, other features
of the language like phonological, lexical, and contextual information may adjust to
facilitate their better recognition and interpretability [310, 311].

Poetics

Conventionalized poetic structures leverage a number of these, and other named and
unnamed sound patterns. Casting poetic disciplines and the choices of individual
authors in terms of the space of all possible patterns can give context to the forms
that crystallize and become popular, as well as their frequency of use.

Forms like sonnets, often require many instances of masculine or feminine rhyme
in aligned end-rhyme positions, which also nested in the context of even larger con-
straints on stress like iambic pentameter. How is it possible to satisfy both constraints
at once? Perhaps these differentials in poetic resource availability plays a role.

It is also interesting to note that most end-rhymes in sonnets seem to use masculine
rhyme, despite the fact that feminine rhyme is shown here to be more resource rich.
This may indicate an overriding preference for shorter words in these contexts, or an
increased difficulty in the search for longer sequences with more constraints.

On the surface, phonaesthetics is about sounds in language that are euphonious (pleas-
ing) or cacophonous (displeasing). This might include investigations of structures that
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humans report as attractive as well as structures that human brains respond to more
(higher activation).

In a broader sense, aesthetic worth has been suggested to positively correlate with
“unity, complexity, and intense human quality” [16]. Describing the relative com-
plexity of the constraints involved in each of the poetic devices may also contribute
to better understanding their aesthetic utility. For example, in the case of /U/ (OW)
being a relatively uncommon vowel sound, but one of the most resource rich mascu-
line rhyme patterns, it is worth exploring if features related to its sound aesthetics
may be implicated.

Different sounds in languages occur at different rates, that is, they have particular
probabilities of occurring. But how much do these unigram rates of occurrence relate
to their prevalence in larger more complex poetic structures? This work can ulti-
mately be used in conjunction with studies on observed usage rates of poetic devices
in order to bridge the gap between real world usage and potential resource avail-
ability (measured various ways). Is it the case that usage rates broadly map onto
relative resource availability rates for more complex forms? Which other factors (per-
ceptual enjoyment/intelligibility/cultural influence) impose additional constraints on
the utility of poetic devices networks in practice?

Cognition

Although I have outlined the space of possible poetic sound correspondences, I have
said little about their cognitive implications. It seems unlikely, for instance, that
humans use or produce poetic devices with distributions equivalent to those discussed
here. First of all, certain individual sounds, and combinations of sounds are more
pleasing to the ear than others. Second, it may be the case that particular poetic
devices are perceived as more euphonic (pleasing) than others. If the more complex
phonological structure of repeated rhyme resonates in a way similar to resolution in
music, it could help explain the more common explicit use of rhyme than assonance
patterning.

It has also been suggested that both perception and production of rhyme, and other
sound patterns, involve “cognitive processes including, orthographic coding, graphic-
phonetic transformation, phonological representation and phonological segmentation”
[213]. That said, certain patterns provide more available options for word matches,
and so may be deferentially easier or harder utilize. Said another way, particular
poetic devices, or sub-networks within those devices, may act as attractors that make
us more likely to or more familiar with navigating them.



94

Future Work

The scope of phonological pattern templates included could be expanded in order
better represent the availability of more possible phonological patterns. It is also
important to understand the relationship between rates of usage of these patterns in
the wild and their availability in the lexicon. To what degree does the availability
of various poetic devices align with their use in the wild? This question can be
investigated at the level of poetic devices broadly, or at the level of distributions
of sub-networks within poetic devices. Furthermore, related behavioral experiments
could be conducted to investigate the structure of human phonological networks.
This may illuminate the level of correspondence between the poetic resources strictly
available in language in principal, and those adopted by their users in practice.

Conclusion

In sum, I have operationalized the underlying patterns of common poetic devices,
and used them to identify and count the occurrences of these pattern in English
words. This represents an exploration into phonological vocabulary at the level of legal
perfect device archetypes - further analysis may also be done on the specific instances
and distributions of patterns within of any given device (masculine, feminine, etc..).
I have shown that the varying constraints which characterize poetic devices manifest
in the frequency of poetic patterns and their availability and predictability. This
study is a first step towards a more comprehensive description of the landscape of
phonologically driven poetic tools and phonological vocabulary.

4.2 500 Years of Imperfection

How perfect is perfect rhyme?

In the last study, I assumed that poetic devices are composed of perfectly matching
elements, and they often are. But even in traditions where perfect rhyme is stan-
dard, imperfect agreement is also common. In this study, I quantify different forms
of segmental matching within overt rhyming word pairs from five centuries of poetry
(1450-1950). It constitutes an effort in documenting the components of phonologi-
cal vocabulary at the level of perfect rhyme (in poetry). Specifically, I investigate
the relative rates of matching in the vowel, stress, and consonant (onset and coda)
components individually, as well as in combination. I demonstrate that rhymes most
commonly exhibit perfect matching (agreement) in the coda, followed by stress, and
then vowels. I also explore differences in these patterns as a function of the number of
lines apart the rhymes are, and the historical time period the pair occurs in. Finally,
I discuss possible reasons for the differential in the rate of matching components of
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rhyme including ambiguous pronunciations (transcription errors), and the great vowel
shift.

Rhyme is a prominent feature of verbal art practices around the world. It is not
only a named component of syllable structure, but also a type of similarity that
conventionally requires the ’rhyme’ (Nucleus + following consonants in the syllable) of
corresponding syllables across two words to pass some similarity threshold. Remember
that cases where a nucleus and coda of separate words share identity completely, such
as CAN-PLAN, are sometimes called perfect (masculine) rhymes. Nucleus-coda pairs
that fall short of perfect identity, such as CAN-CAM or CAN-CANS, are often called
imperfect rhymes. In previous studies, the perceptual similarity of imperfect rhymes
have been explored, often using similarity judgements of rhyming pairs. Here, I use
the rhyme schemes of the Sonderegger dataset [9] as a way to explore imperfections in
their pairs. Although many of these rhymes are perfect, some are not. These rhymes
are marked with conventional ABBA notation, which obscures the degree of matching
across their sound segments. I examine the variation within these rhymes, describing
rates of feature matching across perfect and imperfect pairs.

Analyzing rhyme across time periods is difficult because the pronunciation of words in
a given language changes over time, and we lack the relevant phonetic transcriptions
[312]. This is made worse by the fact that these phonetic transcriptions are static,
and do not reflect the variation of spoken language (as discussed in Chapter 2). The
approach is to break rhymes down into binary comparisons along various component
parts, which will account for both conventional perfect rhyme, and cases of imperfect
rhyme containing at least some perfect correspondence in component parts.

Validating segment equality is a type of similarity measurement that can be easily
applied to entire syllables, or individual components of syllables. In this way, the
rhyme and associated features can be treated as binary features. In other words,
when comparing CAN and PLANS, a series of identity matching tests are run such
as, do the vowels of this pair match? do the codas match? do the stresses match? do
both vowel and coda match? etc... I compare only the last syllable of each line (in
rhyming and non-rhyming pairs).

This approach will pull apart the component features of rhyme to understand their
relative weighting, and ultimately, the role they play in annotated instances of rhyme
and non-rhyme pairs.
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4.2.1 Data

Data Collection

The data used here is from a collection hand-coded by Morgan Sonderegger [9] which
has been the basis of previous rhyming studies. The Sonderegger dataset consists of
hand annotated poems from 32 authors across five one-hundred year periods from
1450 to 1950 from which I extract 22,219 rhyming pairs and 152,857 non-rhyming
pairs. These pairs are identified by the ABAB, AABB, etc. coding that accompanies
each work.

Within the rhyme scheme of each work, there many be more than 2 words associated
with a given letter (e.g. A,B,C). For the current purposes, I use rhyme sets, extracted
from the annotated rhymes schemes of Sonderegger [9] to generate all possible rhyming
pairs from within its works. I employ ordered rhyme sets, instead of unordered ones,
in order to track the relative location of rhyming utterances. This allows us to ask
questions about the degree to which segment similarity in rhyme pairs changes when
rhymes are farther away from each other (line distance).

Phoneticization

Phonetic transcription is done using the CMU Phonetic Dictionary [313]. It should
be noted that while the Sonderegger dataset represents English as pronounced over
five centuries, the CMU database is intended to capture the pronunciation of mod-
ern Standard American English only. This is a significant limitation of the current
approach.

4.2.2 Results

Rhyme and Non-Rhyme Pairs

In order to provide important context, Figure 4.8 displays rates of feature matching
not only for rhyming pairs (a-a b-b c-c etc) but also for non-rhyming pairs (a-b, b-c
etc). This provides a chance to directly compare differences in feature matching rates
in the subject of interest (rhyme pairs) and how they are systematically differ from
non-rhyming pairs.

Although agreement on these stress and word length features appear common in pairs
of non-rhyming line final words, agreement is greater in rhyming pairs. In both cases,
rates of matching are higher for rhyming than non-rhyming pairs, 91.2% vs 79.7% for
stress and 70.7% vs 61.5% for word length.
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Figure 4.8: Featural Agreement in Rhyming vs. Non-Rhyming Pairs

Three decompositions of the terminal syllable, vowel, coda, and final consonant, illus-
trate the expected and dramatic differences across rhyming and non-rhyming pairs.
Rhyming pairs considered on these features match in 84-97.2% of cases, whereas the
same features in non-rhyming pairs are equivalent less than 11 percent of the time.
Interestingly, the rate at which the final consonant in the coda (last in coda) match in
rhyming pairs is greatest, at 97.2%, whereas only 85% of vowels (Last Vowel) match
in rhyming pairs. Vowel and coda positions are not only highly associated with rhyme,
but also, highly correlated with each other (R=.7). The entire coda (96.6%) is also
more indicative of rhyme than the nucleus (88.0%) across rhyming word pairs.

By treating the combination of vowel and coda matching as a single equivalence
check (Vowel Coda) one can notice that the traditional vowel-coda (rime) condition
of end-rhyme is true for these annotated pairs in only 84% of cases.

Finally, I check the rate of agreement in the last consonant phoneme in the final onset
of each word of a given pair. It may be expected that there will be some similarity
avoidance in this position in order to facilitate differentiation between rhyming words.
For instance, CAN and PLAN rhyme, but if they agree in onset, such as CAN and
CAN, they are no longer phonologically differentiated, and also no longer rhyme.
Despite this, agreement in the onset is found to be nearly twice as great in rhyming
pairs as in non-rhyming pairs.

Time Periods: 500 Years

Next, I plot the rates of agreement on these same features (Figure 4.9), but grouped by
100 year time blocks. This allows for identifying trends in these rates of agreement
over time. In general, the percentage of rhyming pairs that match on the given
features increases over time. The relatively flat line at the top of Figure 4.9) shows a
slight increase in coda agreement over this time period, from 94.4% in 1450-1550 to
97.7% in 1850-1950. For other features, the change in agreement over time is more
variable, but generally increases across all time periods for stress (80% to 88.5%),
vowel (75.4% to 87.2%), vowel+coda combined (72.3% to 86.4%), and syllable count
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Figure 4.9: Rates of Featural Matching by 100-Year Time Periods

(59.4% to 76.4%). For instance, this exposes that trend that rhyming words from
1450-1500 contain the same number of syllables (often 1) only 59.4% of the time,
while from 1850-1950 rhyming words share the same number of syllables 76.4% of the
time, a seemingly significant change in rhyming conventions over time.

Line Distance

Finally, in order to understand whether the physical proximity of words within a verse
pair plays a role in agreement, I group the phonological features by the line distance
between words in each rhyming pair. For example, if a poem is annotated to have
an ABBA pattern, corresponding to lines 1-4, this A-A pair have a line distance of 3
(abs(4-1)), and the B-B pair have a line distance of 1 (abs(3-2)). Figure 4.10) shows
that most (17,374 rhyme pairs of 22,219) occur in close line distance proximity (1-2).
Line distances up to 5 are reported, beyond that the number of rhyme pairs is too low
to provide reliable results. Although there are some slight variations that may merit
further exploration at a more granular level, the observable trend is that agreement
rates across features do not increase or decrease as a function of line distance.

Figure 4.10: Rhyme Pair Line Counts Histogram and Featural Matches by Line Dis-
tance
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4.2.3 Discussion

These results show that, over 500 years of English poetry, the coda consonants are
more indicative of rhyming pairs than vowels, or even vowels and codas combined.
This could be due to the changing accuracy of phonetic transcriptions, poetic struc-
ture, accents, and/or relative vowel-consonant shift.

Although I suspected that increased physical distance between paired words would
reduce rates of agreement in various features, this was not the case. In fact, the line
distance between rhymes seemed to have no impact on their level of agreement. This
could be a fact about how well (perfect) similarity constraints are preserved across
distances, or an artifact relating to a similarity bias human annotators may face when
classifying rhyming words.

500 Years of Sound Change

This dataset contains poetry from regions with dramatically different English accents,
not reflected in the phonetic transcriptions. Moreover, between the 14th and 18th
centuries, many English vowels experienced a dramatic shift, causing long vowels to
become raised, and others to merge and dipthongize. While pronunciations have
shifted, spellings have largely remained the same [314].

As an example, from 1350-1700 the word ”meat” was pronounced similar to ”met”,
then ”mate”, before it took on the modern pronunciation. Meanwhile, the word
”meet” did not follow the same trajectory (it has been pronounced similarly across
these time periods).

Because spelling has remained relatively consistent over this period, encoding from
phonetic dictionaries or human annotators used in studies such as this have strong
biases towards modern pronunciations over older ones.

While English vowels changed drastically during this period, consonants did not. So
the relativley higher reliability of coda positions in rhyme pairs over these 500 years
is consistent with the historical facts concerning vowel and consonant shift. However,
this is specific to the history of English, and trends in other languages will depend
heavily on the particular historical trajectory of change each language. For example,
data from 950-1450 (which I do not investigate) should contain evidence of consonant
shifts (such as pronouncing the ’k’ in ’kn’ words), which would reduce the accuracy
if using modern pronunciation look-up tables for that period.

Beyond sound shift related errors, it may also be the case that conventionally, in
English, coda consonant matching is simply a more robust marker of perfect rhyme
than nucleus matching. However, as I will show in section 3 of the chapter, in multi-
syllabic imperfect rhyming sets, vowels and stress patterns are the most predictable
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positions, while consonant positions are least predictable. This indicates that different
kinds of rhyme may exhibit very different matching standards or constraints.

Conclusions

In sum, this study shows that very simple measures of segment agreement are able
to capture a surprising amount of the predictability of rhyme. Agreement in various
parts of the rhyming syllables do not depend on how close the pair are with any given
work, but does increase with more modern time periods. The changing agreement
rates of segments in rhyming pairs over time reveals the long running stability of
the coda in rhyme. In addition, it is consistent with effects of the great vowel shift.
This provides a snapshot of the components of phonological vocabulary at the level
of traditional perfect rhyme over this time period.

In some contexts, agreement in coda consonants alone is a more reliable predictor of
rhyme than the common operationalized definition of rhyme itself (agreement in both
the nucleus and coda). This finding about coda agreement in rhyme may generalize
to other English rhyming verse written between 1450-1950, especially in contexts
dominated by single-syllable perfect end-rhyme, such as in the Sonderegger data set
[9].

Finally, the specific conclusions about coda preference in English rhyme classification
may not generalize to other languages or traditions.

Future Work

Follow-ups to this study should expand the scope of the time periods, traditions of
rhyme, and languages, to better understand the dynamics of the nucleus and coda in
rhyme pairs. Furthermore, analysis at the level of distinctive features, natural classes,
or even graded measures of similarity can give more fine grained understanding of
rhyme constraints in the wild.

Generalizations about the cross-linguistic relative stability in vowels versus conso-
nants during periods of sound change may also inform the expectations of similar
diachronic studies in other languages. Expanding the feature sets in these models to
include phonological characteristics and natural classes would also allow for a more
fine grained study of imperfect patterns within rhyme. Finally, the imperfect patterns
here are studied in the context of mostly perfect rhymes, which sets up a particular
standards and expectations - different than the rhyme conventions in other contexts.
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4.3 Rhyme Sets: Multi-Syllable Rhyme

How can multi-syllable imperfect rhymes be quantified?

A common literary device, multi-syllable rhyme, is an instance of a broader class of
complex repeated phonological structures. These perceptually noticeable and elusive
forms, and others like them, are not understood in terms of frequency, complex-
ity, constraints, or learnability. Humans produce and perceive a variety of dynamic
phonological patterns in the language arts, particularly in lyrics and rhyming games,
yet no robust framework for their investigation exists.

Named and perfect rhyming forms have dominated traditional poetic disciplines for
many years. Such devices are often identified by segment or feature matching, a
definition-based (Aristotelian) approach to category membership discussed introduced
in Chapter 1. However, in recent decades, subcultures like hip-hop have adopted
and transformed rhyme into increasingly complex forms [11]. These forms can be
imperfect, multi-syllabic, and defy classification by conventional poetic terms. In this
section, I begin exploring the fuzzy internal structure of category membership (i.e.
family resemblance) [91, 89] by examining variation in segment matching of rhyme
sets from a rhyming game.

In this study, I analyze rhyme sets, groups of utterances which can be described by
some shared phonological structure. As an example dataset, I present data from
a hip-hop rhyming game called ’bar pong’, where participants take turns rhyming
with a multi-syllable seed phrase. Finally, I demonstrate approaches to analyzing
these ordered rhyme sets (dynamical systems) using descriptive and computational
methods to reveal and quantify underlying sound structure.

4.3.1 Introduction

Background

Standard poetic analysis considers explicitly defined poetic devices which represent a
strict relationship between two words or phrases, (e.g. perfect, masculine, feminine,
syllabic rhyme, or patterns such as assonance and consonance). These relations are
perceptually and linguistically interesting, but also limit the range of patterns that
can be investigated. This is primarily because they pre-specify the exact requirements
of a similarity relation (e.g. masculine - last coda and nucleus must agree exactly and
both nuclei must present primary stress). Perfect adherence to these strictly defined
relations impairs the ability to uncover the true richness of sound patterning in rhyme.
This study takes an approach that examines the internal structure of sound patterns
[91] within and across sets of rhymes.
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Figure 4.11: Truncated Rhyme Sets (10 members) drawn from three Bar Pong
matches

4.3.2 Data

As discussed in Chapter 1, a rhyme set is a collection of words or phrases that are
identified to rhyme with each other (ordered or unordered).

Figure 4.11 shows 3 truncated rhyme sets drawn from the data in this study (discussed
below). The critical assumption made is that rhyme sets have some underlying phono-
logical structure that can be described. So how can these underlying sound structures
be captured? Traditional terminology for poetic analysis cannot well describe these
data. Here, I describe these underlying patterns with visualizations, entropy (pre-
dictability), and recurrence quantification analysis (dynamics).

Collecting Data

Annotated rhyme schemes from traditional poetry, in the ABAB/AABB style nota-
tion, provide a starting point for analysis, but lack the dimensionality of more modern
patterns known to exist in the wild. Recently, multi-syllablic patterning has become
common in a variety of lyrical genres, none more notable than Hip-Hop. However,
large data sets of ordered rhyme sets have not yet been compiled. Battle Rap, in
particular, has become a venue for the development of multi-syllable rhyme schemes,
with 830+ Battle Rap Leagues having produced over 60,000 rap battles ( 10-45 min
each) [82]. Their transcriptions and annotation can be aided by both human marking
as well as recent unsupervised machine learning methods for rhyme identification.
These unsupervised techniques have had some success, but the resulting sets of clas-
sified matches are also not systematically collected or analyzed.

In particular, a rhyming game that spawned from the battle rap community, Bar
Pong, provides a relatively controlled resource for the current purposes. Each round,
players take turns saying individual lines that rhyme with the designated 3-5 syllable
seed phrase. As mentioned above, sets 1-3 in Figure 4.11 show example rhyme phrases
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from three different Bar Pong matches.

Bar Pong

Bar Pong is an improvised rhyming game done in a capella format (first developed
by a battle rapper named Fredo). The name comes from ‘beer pong’, a turn-taking
drinking game. The term ‘bar’ here is a popular term for a line of lyrics in hip-hop
culture. To begin, a 3+ syllable seed phrase is chosen, such as “Vivian Banks”, and
participants (usually rappers) take turns improvisationally coming up with the next
lyric; a punchline, insult, or turn-of-phrase that rhymes with the seed phrase. This
game is particularly interesting because rhymes come to be identified by the crowd
(of other rappers), who will disqualify a player if they believe the utterance did not
rhyme enough with the seed phrase, an informal and revealing kind of demarcation.

This process often continues for dozens of rounds, and only stops when a participant
takes too long to come up with something (1̃0 seconds) or says a phrase that the sur-
rounding audience (often rappers) determine is not similar enough (i.e. not a rhyme).
There is also a restriction that any given lexical item (word) cannot appear more
than two times across all phonologically matched parts of the phrase. This prevents
repeated use of the same words to achieve the required sound similarity. Again, it
is important to point out that neither the audience nor the participants themselves,
have terminology or explicitly agreed upon standards for determining the acceptabil-
ity of these rhymes. Instead they use a holistic and perceptual sense of acceptability.
In these ways, Bar Pong functions as a sort of naturalistic experimental paradigm
where a dyad (two people) alternate in producing utterances that are phonologically
similar to a target phrase.

4.3.3 Methods

Visualization

Figure 4.12 shows a snapshot of all 8 rhyme sets from this tournament. In terms of
their underlying vowels, these patterns fall into two clusters, sets with more vowel
agreement (Group A), and sets with less vowel agreement (Group B). For Group B,
the underlying stress patterns are also shown. Notice that syllable positions which
have a large amount of variation in stress also tend to display a higher degree of
vowel variation (e.g. the second column of ’Golden Rule’, the second column of
’Vivian Banks’). In some cases, positions that are stressed (stress columns that are
mostly blue) seem to be associated with less vowel variation while positions that are
unstressed (mostly white) are associated with more vowel variation.

It is notable that the average number of rhymes produced in Group B rhyme sets is
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Figure 4.12: Vowel plot of all 8 Bar Pong Matches in a Bar Pong Tournament.

77.5 while the average number of rhymes produces in Group A rhyme sets is 27.7. It
may be that the more relaxed matching constraints in the less agreement rhyme sets
(Group B) make it easier to satisfy the demands of a given pattern, resulting in more
rhymes produced on average. This hypothesis can be tested using both corpus and
behavioral studies.

Most Common Pattern

Whether at the level of phonemes, natural classes, or distinctive features, an extremely
simple summary of a set can be represented by the most common (frequent) phoneme
in each position.

By ignoring some of the interesting variability and dynamics of data like this, we can
focus on the simple most common pattern. After counting the frequency of phonemes
in each position, the most frequent phoneme in each position can be aggregated to
approximate the most common pattern. This is a gross oversimplification, but it
allows for comparing these static patterns to their frequency in the lexicon (among
other things). Figure 4.13 shows how common the vowel and stress patterns of these
seed phrases are in comparison to patterns in the lexicon.

In an English dictionary of 120,000 words, a total of 8119 unique vowel patterns and
265 stress patterns exist. Using the seed phrase from Fredo vs Caustic, ’Vivian Banks’,
it can be observed that its underlying vowel pattern is the 1233rd most common vowel
pattern (of 8119), and its underlying stress pattern is the 78th most common (of 265).
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What governs which seed phrases are chosen or deemed worthy of rhyming with?
It seems natural to assume that the underlying vowel and stress patterns associated
with chosen seed phrases may also be relatively more common in the lexicon, and
indeed this intuition is supported in 4.13.

Figure 4.13: Frequency Rank of Most Common Vowel and Stress Patterns from Bar
Pong Matches

Remember that the selection of seed phrases is an informal process where seed phrases
are suggested and rejected until the players agree that this is a ’good’ or ’reasonable’
phrase. For example, ”boys with toys” might be passed on, whereas ”cats in hats”
(a much more common sound pattern) might be accepted. Furthermore, these higher
frequency rank patterns may be associated with more words, and therefore lead to
longer rhyme sets (more members), at least in the context of bar pong. Figure 4.14
shows the vowel and stress rank plotted against rhyme set length. In these data there
does not seem to be a relationship between pattern frequency and number of rhymes
generated (rhyme set length).

Figure 4.14: Vowel and Stress Rank plotted against Rhyme Set Length i.e. the
number of words (or phrases) generated in each Bar Pong match

Positional Entropy

In order to capture the underlying sound structure within a rhyme set, phonemes in
aligned positions can be evaluated (e.g. syllables, vowels, onsets, codas).
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Shannon Entropy can be used to calculate the uncertainty/predictability within each
position across the pattern. The vowel grid representations shown in this dissertation
can be considered in terms of their column predictability, and the same approach can
be used to consider stress and consonants. All that is required is to count the number
of times each phoneme appears in each position across a rhyme set. These positional
frequency counts can then be used to calculate the positional entropy.

In Figure 4.15 the vowel and stress plots for the ’Vivian Banks’ rhyme set (40 mem-
bers) are shown on the left. On the right, the entropy of each column in the vowel
plot is calculated and recorded in the ’Vowels’ row. The same thing is done for stress
positions, and consonant cluster positions. The resulting heat-map summarizes the
positional predictability of phonemes across all the members of this rhyme set. The
higher the entropy (the darker the red), the less predictable the position is. For in-
stance, Figure 4.15A (Left) shows that the syllables in the left and right most stress
positions are all the same (black - stressed). This is reflected in 4.15 (Right) where
the V1 and V4 stress positions have an entropy of 0, in other words, those positions
(columns) are perfectly predictable. On the other hand, the remaining vowel and
stress positions in this sample contain multiple phonemes, thus lower the predictabil-
ity of the position, the and increasing its entropy.

Figure 4.15: Calculating positional entropy of vowel, stress, and consonant compo-
nents of rhyme sets. Black is stressed, Light Blue is unstressed.

Note that the alphabet size (possible items) for stress, vowel, and consonant categories
are are different, so the maximum entropy possible for each respective category (row)
in 4.15 is different. Max Entropy for each row (cons, vowels, stress) is shown in a
legend on the far right of Figure 4.15.

This approach does not depend on the order of the data (only the frequency), and
can be used to characterized both ordered and unordered rhyme sets.

All the rhyme sets in the Bar Pong tournament can be characterized in this manner



107

Figure 4.16: Entropy Heat-maps of All Matches in a Bar Pong Tournament

to examine and compare their structure. Figure 4.16 shows the related positional
entropy heat-maps for these 8 rhyme sets.

A few things are immediately noticeable. First, the final consonant position (blue)
of every set is reliably the most predictable consonant position. This is unsurprising
since this position coincides with the coda matching of common end-rhyme patterns.
This is also the final sound that is heard in the sequence, so there may be a bias
to match this element more to facilitate perceptual agreement. Second, there is an
observable correlation between the predictability in vowel and stress elements of the
same position (green). Finally, among Group B, the 4 sets with less agreement, the
least predictable vowel and stress positions (pink) are reliably internal. It seems
possible that positions with greater variation tend to be associated with internal
vowel positions, rather than at the start or end of a pattern, in order to preserve
more predictable boundary positions.

Of course, this is a relatively small sample size (only 8 rhyme sets), and it remains
unclear how robust these trends are. Collecting many additional rhyme sets, across
genre and size, could lead to revealing more reliable properties about this phenomenon
of sound similarity.

4.3.4 RQA

Not only can rhyme sets from this game be examined as unordered members of a
set to uncover their underlying positional similarities, but also, they can represent an
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ordered and unfolding dynamical system where the patterns of imperfect similarity
can oscillate and change. In other words, the participants can influence each other
as they explore the state space of sound similarity and the lexicon. It should also be
noted that any ordered rhyme set coming from even a single individual can also be
construed as a dynamical system, influencing itself through choices, state, and path
dependencies.

Figure 4.17: High-Level visual features of RQA plots [10]

Recurrence Quantification Analysis was developed in physics for the study of complex
dynamical systems [315], and has been used across the behavioral and cognitive sci-
ences to quantify coordination of limb movements and vocalizations in infants [316],
coupling and coordination of speakers and listeners [317, 318], bi-manual rhythmic
coordination [319], and adaptive decision making strategies [320].

Recurrence plots can capture various high-level features of complex systems (Figure
4.17). Distinct classes of these systems can be identified from their RQA plots, include
homogeneous, periodic, drift, and disrupted. Note that the rhyme set (vowels) I
consider here will broadly fall into the class of periodic patterns.

In the case of the current bar pong tournament, one can represent a complex dy-
namical system where sequences (here members of a rhyme set) are considered as
samples of the system over time. This approach to characterizing ordered rhyme sets
can reveal clusters and trends in these data. Instead of collapsing time, as with posi-
tional entropy (which loses the time-series order of information), recurrence analysis
can be used to capture, quantify, and characterize patterning strategies through their
dynamics. Indeed, ordered rhyme sets may contain a great deal of information about
how path dependencies and similarity judgments play out in these systems.

RQA treats data in a serialized form (a single row/vector of vowels). In particular,
RQA uses serialized data to compute a low-dimensional phase-space embedding of
a more high-dimensional dynamical system. In the case of rhyme sets, the number
of syllables (or positions) being considered represents the most salient embedding
dimension. In other words, embedding is already known and can be assumed during
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computation (rather than using some approximation to discover it). The embedding
dimension is a parameter of RQA computation, and for the analysis of vowels here, the
embedding dimension is set to 3 for 3-syllable rhyme sets and 4 for 4-syllable rhyme
sets. With an embedding dimension set to 3, each point drawn on the RQA plot
represents sequences that are recurrent across a window of 3 measurements (vowels).
It should be noted that RQA assumes an embedding dimension will apply to the
entirety of the data (that it is stationary). This assumption is satisfied by the current
vowel data which have stationary dimension of either 3 or 4 across each rhyme set
(corresponding to the 3 or 4 syllable vowel patterns).

Figure 4.18: Visualization of vowels from a round of Bar Pong. This is a turn-taking
game where the first row represents the seed phrase and successive rows are rhymes
uttered (turn-taking) by speaker 1 or 2.

In order to build a stronger intuition for why rhyme sets present interesting dynamical
systems, in Figure 4.18 I display the underlying vowels of each phrase in the rhyme
set seeded by ’Vivian Banks’ (also seen in Figures 4.12 and 4.11). Because bar pong
rhyme sets unfold over time as two speakers take turns rhyming, vowel grid plots can
reveal intuitions about these speakers’ coordination over time. For instance, for the
first 8 rhymes (after the seed) Speaker 1 only uses /æ/ (AE) in the last vowel (right-
most position) while Speaker 2 only uses /eI/ (EY) in the same vowel position. This
represents a phase where, in the terminal vowel, the speakers seem to be moving more
independently. However, after this phase, the speakers seem to move more similarly
(with respect to the right-most vowel position).

These data can also be serialized and displayed as RQA plots. Figure 4.19 shows the
vowel grid plots and the corresponding RQA plots for 4 of the considered 8 rhyme
sets (Group A). Notice how the high degree of vowel similarity and repetition in
these 3-syllable patterns are captured in the RQA plots. Diagonal lines in recurrences
plots represent a repeated sequence of event states. In these plots, each event state
(point) represents a recurrence of a sequence of 3 vowels. Notably, the percentage of
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Figure 4.19: RQA Plots of Bar Pong Rhyme Sets with more similarity

recurrence points that occur within diagonal lines (determinism) is extremely high
across Group A, above 99% (Figure 4.21). Again, this is expected given the observable
3-dimensional vowel patterns that dominate Group A. At the vowel level, these 4
rhyme sets seem to follow a deterministic process (i.e. few single dots, many long
diagonal lines)

Figure 4.20: RQA Plots of Bar Pong Rhyme Sets with less similarity

However, the 4 rhyme sets of Group B (with ’less’ vowel agreement) tell a different
story. Figure 4.20 displays the vowel grids and vowel recurrence plots for Group B.
The total number of points in the plot relative to the total possible point, also called
the recurrence rate, varies significantly across Groups. While Group A sets have a
recurrence rate between 21-27%, Group B rhyme sets have recurrence rates of only
2-8%. Moreover, the RQA plots for Group B are visibly less deterministic, displaying
fewer long diagonals and many single dots. Group B rhyme sets display determinism
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between 62-95% (compared to 99%+ for Group A). Finally, Laminarity is the average
length of diagonal lines with a plot. In the case of these data, a diagonal line of length
4 would indicate that the same sequence of 3 (or 4) vowel sounds was repeated 4 times
in succession. Again, the laminarity of data from Group A (8-14) is much different
from that of Group B (3-4), reflecting the average number of successive vowel sequence
repetitions. These RQA metrics are also shown in Figure 4.21, along with Entropy.
In general, entropy from RQA reflects the complexity (Shannon Entropy) of diagonal
lines in a plot. rEntr, shown here, is simply the entropy normalized by number of
lines in the RQA plot.

Figure 4.21: RQA Measurements from Bar Pong Vowel Data, Grouped by Syllable
and Degree of Vowel Agreement. Group A (more vowel agreement) and Group B
(less vowel agreement)

4.3.5 Conclusion

As a tool, rhyme sets (and alliterative sets and consonance sets, etc.) provide a
powerful way to visualize and uncover structure across word forms. Furthermore,
unordered rhyme sets can easily accommodate multi-syllabic and positional analy-
sis, while ordered sets are additionally compatible with dynamical approaches that
quantify how a system unfolds (e.g. RQA).

I began by introducing multi-syllable rhyme sets as a way to explore the structure
and dynamics of complex rhyme. The underlying vowels and stress of Bar Pong
rhyme sets were then plotted and the most common patterns were extracted and
analyzed in terms of their frequency rank, though no obvious trends were identified
when comparing rank to numbers of members in a rhyme set.

The positional predictability of multi-syllable rhyme sets was analyzed using Shannon
entropy, uncovering internal structure if individual rhyme sets. Potential regularities
we also identified across rhyme sets (more/less vowel agreement, terminal coda pre-
dictability, etc.). Finally, RQA revealed both visually observable and measurable
differences across multi-syllable rhyme sets (Group A, Group B).

The approach taken here is also amenable to using graded measure of distance as
well (instead of the identity based measures). Individual phoneme segments were my
focus, but the process can be extended to representations of natural classes, distinctive
features, as well as continuous similarity measures derived from signal processing of
audio.
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Collection and examination of additional rhyme sets would allow for a more systematic
description of this phenomenon, from content, to predictability, to dynamics. In
addition, these data may shed light on new poetic forms as well as enable various
efforts in the study of perception, production, and learning of language.



Chapter 5

Covert Patterns

In this chapter, I examine phonemic differences in language-based music. I begin
with an exploratory study which seeks to find if there are differences in phonological
patterns across different genres of lyrics. Then, I zoom out, using much larger data,
and compare the phoneme frequencies of lyrics with those of fiction, non-fiction,
speech, and poetry. This will allow us to see how genres that reliably include language-
based music (lyrics, poetry) differ from natural language (fiction, non-fiction, speech).

Questions Covered:

• (Section 5.1 & 5.2) How predictable are phonemes across musical and language
genres?

• (Section 5.2) Are there cognitive or task effects related to language-based music?

5.1 Entropy of Sounds: Sonnets to Battle Rap

How predictable are phonemes sequences across musical genres?

Poetry and lyrics across cultures, from Sonnets to Rap, demonstrate an obvious hu-
man cognitive capacity for the perception and production of various multi-syllable
sound patterns. Here, I use entropy to measure discrete serialized sequences of
phonemes to explore the complexity of these sound structures across genres of cre-
ative language arts. This constitutes an investigation into the predictability of covert
phonological vocabulary. The present exploratory analysis has two main objectives.
First, the aim is to broaden the scope of cognitive processes and data that are con-
sidered in statistical learning approaches to phonological learning and language ac-
quisition. Second, I hope to provide a basis for more targeted investigations of these
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patterns. Specifically, I compare the conditional entropy of segment sequences in
lyrical genres. In general, Battle Rap (vowels) and Sonnet (stress) maintain notice-
ably lower entropy than other genres across sequence sizes, while verbal sounds from
Electronic music and Hip-Hop display relatively higher entropy.

Sound patterns that use stress, rhyme, assonance, and consonance are common in lan-
guage art practices across cultures. As genres like Hip-hop, Rap, and improvisational
rhyming trend toward use of larger rhyming patterns than their literary cousins, many
questions arise about the perception, production, and complexity of these structures.

C.E. Shannon estimated the source entropy of English characters, using human guess-
ing, to be between 0.6 and 1.3 bits per [orthographic] character [321]. In 1965 Kol-
mogorov noted that while English characters (at the time) had an estimated source
entropy of 1.9 bits per character, it is likely that works from artistic disciplines, such
as Sonnets, would have more constraints (predictability) and therefore, should have
a lower source entropy, between 1.0 to 1.2 bits per character. [12].

Since then, many better estimates of the entropy of English have been calculated
[322, 323], along with numerous linguistically driven information theoretic studies
[324]. Work focusing on sequences of vowels and consonants has also demonstrated
the interdependence of constituent parts like vowels and consonants [325, 326]. Fur-
thermore, the cognitive science of learnability has flourished, reinforcing the desire to
explore realms of human patterning in terms of perception, production, and statistical
learning [142].

In this section, I measure the conditional entropy of sound segment sequences in lyrics
and poetry as shown in Table 5.1. Orthographic representations of texts are collected,
but instead of analyzing the serialized orthographic characters of a phrase like ”The
Atomic Bomb Designer”, words are serially encoded into ARPABET form (or some
constituent parts: vowel, stress, consonants) to represent the sound information of
the text.

Encoding Example
Words THE ATOMIC BOMB DESIGNER
IPA /T@/ /@tAmIk/ /bAm/ /dIzaInÇ/ ...
ARPABET DH AH0 AH0 T AA1 M IH0...
Vowel AH AH AA IH AA IH AY ER
Stress 0 0 1 0 1 0 1 0
Cons DH T M K B M D Z N

Table 5.1: Categories of phonological items derived from orthography. ARPABET
encoding, also referred to as ALL in this text, represents the full and faithful tran-
scription from orthography to IPA (ARPABET)
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Purpose

Many are familiar with the rhyme and long range metrical constraints on language
in the domains of poetry or iambic pentameter [56]. But as various multi-syllabic
constraints have become common in arenas like Hip-Hop and Battle Rap, an analysis
of the relative complexity of sound sequences across genre is increasingly relevant.

Non-obvious or even unintentional sound patterns throughout language arts often
remain uninvestigated as the identification of marked patterns can be difficult, time
consuming, and up to interpretation. Here, I propose a targeted information theoretic
approach that isolates various streams of sound symbols extracted from 14 genres
of lyrical texts, ranging from sonnets, to musical lyrics, to a capella Battle Rap.
Evidence of underlying sound sequences, as in the example above, and other repeated
phonological patterns, should be detectable through their entropy measures.

Entropy provides a tool to measure the amount of uncertainty or surprise associated
with some message. Information Theory tells us that sequences of items with lower
conditional entropy (conditioned on some context i.e. n-gram) are indicative of higher
predictability of the elements involved. So intuitively, analysis of vowel, stress, or
consonant items here can be approximated to describe the predictability of varying
sizes of sounds sequences. Reductions in entropy can be understood as ’information
gain’.

Approach

A number of linguistic constraints (Semantics, Syntax, Morphology, Articulation,
etc. . . ) guide word choice in the normal output of natural language. But in ver-
bal art, phonological patterning can become paramount, giving rise to a variety of
perceptually interesting patterns (rhyme, assonance, repetition)

In language arts like lyrics and poetry, multi-term sound patterns do not constrain the
entirety of the signal, and authors often maintain commitments to an array of other
linguistic constraints. Here, the interest in artistic sound patterns naturally focuses
the investigation towards the predictability of multi-term sound structures within
lyrics, represented as shown in Table 1. I predict that genres suspected to have the
most formal constraints would contain more phonological regularities, and therefore,
should have lower conditional entropy in these domains (at relevant sequence sizes).
The idea is that, when measuring the conditional entropy of discrete sound items
across genres, the statistical regularities of these sequences in a language should be
captured together with whatever additional phonological predictability is specific to
a given genre, artist, or work. Lower relative entropy could point to the presence of
more formal constraints that exist in different streams of phonological information.
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Assumptions

In comparing genres, I consider the genre that each artist produced their work within
as part of the process that generates sounds with some particular transition proba-
bilities. An author, or even a language itself, is often considered an approximately
ergodic source, satisfying an important assumption of information theoretic analysis.
Here, I treat each genre of expression as an approximately ergodic source in order to
explore the creative sound structures that vary between them.

5.1.1 Data

I collect text from three sources, one poetry data set mined from poetryfounda-
tion.org, song lyrics data from lyricsfreak.com, and 100 rap battles from battlerap.com.
The 100 battle rap texts in question were transcribed to orthography either by bat-
tlerap.com or the performers themselves.

Sonnets and Battle Rap are the subjects of interest largely because humans can ob-
serve multi-term repeated sequences within them. However, these genres are also
limiting factors in sampling for two reasons. On the one hand, very few rap battle
performances have a corresponding transcript, so the number of transcribed works in
this category is quite low (100 to 200 works). On the other hand, although thousands
of sonnets were obtained, they have an average of only 165 syllables. To put this in
perspective, most genres average 220-400 syllables per poem or song, with Hip-Hop
coming in at 499 and battle rap at 4311. For the sake of reasonable comparison across
genres, and with the understanding that vastly different sample lengths and alphabet
sizes impact entropy scores, I report results below on the basis of data prepared as
follows. I randomly select 36 works (song/poem/rap) from each of the 14 genres.
From each work I extract the first 100 consecutive phoneme items, and repeat this
for each sound item type (Vowels, Cons, Stress, ALL). I use CMU Phonetic Dic-
tionary [313] to transcribe orthographies to ARPABET representaions. This allows
for a simple comparison of their information across genres within a set sample size.
Limiting ourselves at 100 phoneme items may not allow us to capture certain long
range patterns relevant to the structure of some of these genres [327]. But this trade-
off seems acceptable, as the focus here is on the predictability of sequences of short
and medium length relevant for perceptually interesting or phonologically patterned
language in lyrics.

Methods

For the scope of this study, I focus on the complexity of the basic elements of sound
patterns across genres. This is done in order to identify sequence sizes (phonologi-
cal structures) that may be interestingly different and merit targeted investigation.
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Simple information content or Shannon entropy measures (Figure 5.1) can be ap-
propriate for exploring the complexity associated with individual items, or averages
over individual items. This gives a framework for describing complexity based on the
probability distribution of a variable X, comprised of a list of items x from an alpha-
bet A. Some such studies were recently conducted focusing on the Shannon entropy
and vocabulary of phenomena like improvised jazz [328, 329] and humpback whale
songs [330].

As described in chapter 4, the entropy (H) is the amount of information or uncertainty
in the possible outcomes of a given variable X. The variable X has an alphabet x.
The entropy H of X is given by the summation p(x) times the log-base 2 of (1/p(x))
for each x in the alphabet - here giving results in the form of bits. The crucial
addition for conditional entropy is that, instead of examining only one variable X
in isolation, the entropy is calculated for X, given another variable Y (X—Y). For
instance, using Shannon entropy one might observe the number of times the alphabet
item /s/ occurs from the list of possible phonemes, however, using conditional entropy
one might observe the number of times the item /s/ occurs, given the phoneme /p/
(only when /p/ directly precedes it).

Figure 5.1: Shannon Entropy

Figure 5.2: Conditional Entropy

Here, I am largely interested in signals associated with multi-term sound patterns,
Therefore, it is informative to utilize conditional entropy measures (Figure 5.2) and
multiple block sizes to explore larger and larger sequences of sound items upon which
to condition the prediction of the next sound item. This is a proxy for asking not just
about the predictability of individual items, but about predictability of individual
items in context. Following from this, I compare entropy scores by group (genre) and
across sound item types (stress, vowels, consonants, ALL - a faithful transcription).

Analysis

I use Markov models of lyrics encoded as ARPABET sound items (stress, vowels,
etc...) at many block sizes to extract transitional probabilities and then calculate
their conditional entropy from the equation in Figure 5.2. This allows for modeling
the complexity of sounds as the sound context upon which I condition increases in size.
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I compare the entropy of each genre’s 36 samples of 100 phoneme items in two ways.
First, as in Figure 5.3, all 36 samples of 100 items for each genre are concatenated
and entropy measures taken from the resulting 3600 item sample in each of the 14
genres. Alternatively, I individually take the conditional entropy of each of the 36
samples in each genre and average them to arrive at a mean conditional entropy per
genre. Finally, I compare genre entropy scores in pairwise fashion using Tukey HSD
pairwise tests and Jensen-Shannon distance metrics and report representative results.

5.1.2 Results

Due to the fact that I am comparing entropy across three relatively large dimensions,
segment item type, block size, and genre, I do no not visually report the complete
results, but relay representative trends and summaries.

Phoneme Sequence Entropy

Figure 5.3: Conditional entropy of vowel sound items by genre: Single 3600 item
sample per genre (concatenation of 36 samples of 100 sound items per genre). Block
Sizes 1-6

Figure 5.3 Shows the decreasing conditional entropy by genre as block (sequence) size
increases for the vowel sound items. All genres begin with high entropy at block size
1, but as blocks increase in size, their entropy is reduced, i.e. information is gained.
The vertical spread between genres indicates that across some sequence sizes, certain
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genres have relatively more predictability and/or information gain relative to other
genres. It is also interesting to note the sigmoid-like (decreasing function) pattern
that all 14 genres follow as a group. The information gain (entropy reduction or f’(x))
from sequences of size 1 to 2 is not as great as the reduction from sequences of sizes
2 to 3 or 3 to 4. However beyond vowel sequences of 4 items, information gain slows
down dramatically. This last point is unsurprising as it is not expected to find strong
dependencies between phonological items at large distances.

Figure 5.4: Plots of conditional entropy against block (n-gram) size for each category
of representation.

Stress Sequence Entropy

In the case of stress sequences, at low n-gram size (1-3) Sonnets and Free Verse
maintain the highest entropy, and at larger sequence sizes (n), they display the lowest
entropy. This indicates a larger entropy reduction and therefore larger information
gain in these genres than others. This is consistent with the notion that when there
are larger patterns in a text than a given n-gram size can account for, entropy tends to
be overestimated [331]. This would explain why Sonnet stress entropy begins higher,
but as ngram sizes increase towards the size of patterns like iambic pentameter (blocks
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of size 10), Sonnet stress patterns are relatively more predictable, reflected by their
lower entropy.

Corresponding plots of stress also display a similar sigmoidally decreasing function,
while all other item categories (shown in Figure 5.4) mirror the common strictly
decreasing source entropy functions.

Pairwise Tukey HSD

We might continue counting and displaying raw entropy scores for each genre, but
in this section I aim to compare entropic measures in order to identify significant
differences between genres.

To avoid the build up of error by repeatedly performing ANOVA tests of this kind
across genre and block sizes, I use the Tukey HSD test which allows us retain statistical
soundness while conducting many pairwise significance tests.

In order to see the quality of these significant relations one can also represent these
pairwise significance results in network form as in Figure 5.5. Nodes represent genres
that passed some significance test. A pairwise similarity matrix lets us visualize the
density and quality of significance relations, where edges indicate specific significant
pairs and their directed edges denote the low-high entropy relation. For reference,
values within nodes convey averages of conditional entropy across the 36 100-item
samples in each genre.

-

Figure 5.5: Network of passed mean conditional entropy significance tests on vowel
sound items, Block Size 4. Edge origin indicates lower entropy of the significant
pair, arrow’s head indicates the higher entropy. Values in each node show means of
conditional entropy across the 36 samples (each of 100 items) per genre. Connection
counts same as column 4 of Figure 5.6.

Figure 5.5 illustrates the significant pairwise differences from these tests, but only
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on vowel items of sequence size 4. This approach can be used to visualize important
relations across sound items types and block sizes. A fully connected graph with 14
nodes would indicate that the entropy in each genre is significantly different from
every other genre. For vowel items at block size 4, Electronic and Hip-Hop have
the relatively higher entropy, forming various pairwise differences with lower entropy
genres, Sonnets, Battle Rap, Free Verse, and Rhymed Stanza.

Stepping back to visualize a broader picture of the range of differences across vowel
sequence length, I run pairwise Tukey HSD across each genre and block size and
report the counts (by genre) of pairwise significance tests passed in Figure 5.6. So
then, column 4 of Figure 5.6 represents the counts of Tukey HSD pairwise tests passed
and displayed in Figure 5.5. Each cell in Figure 5.6 can have a value of up to 13. A
score of 13 would mean that a given genre was statistically different from all other 13
genres at that block size (column).

Figure 5.6: Counts of significant pairwise Tukey HSD tests - Vowel sound items -
Counts represent number of pairwise tests passed, columns are block sizes

Using this approach loses dimensionality about the valance of specific pairwise rela-
tions between genres, but offers the ability to see patterns in the counts of significance
tests passed by each genre as block size increases. This can provide information about
which genres and which sequence lengths may stand out as interestingly different.

Figure 5.6 shows the two main groups of genres that emerge from counts of their
pairwise significance tests. In general, Electronic, Free Verse, Rhymed Stanza, Sonnet,
Hip-Hop, Battle Rap participate in many significant pairs. Electronic, and Hip-Hop
fall on the higher entropy side while Free Verse, Rhymed Stanza, Sonnets, and Battle
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Rap display lower entropy. Figure 5.6 also makes clear that there are block sizes
and genres that do not accommodate many significant cross-genre relations, notably
block sizes of 3 and genres with mostly 0s and 1s. Conditional entropy differences
across genres seem to be described by these two clusters. One where genres find very
few significant differences to any others (Country, Folk, Indie, Jazz, Metal, Pop, RB,
Rock), and one where multiple pairwise differences occur, because of either high or
low entropy.

Jensen-Shannon Distance

In order to arrive at an entropy based measure of similarity between genres, I use
Jensen-Shannon Divergence (JSD), Figure 5.7b. JSD is a symmetric measure based
on the asymmetric Kullback-Leibler Divergence (KLD) shown in 5.7a, which allows
comparison of two probability distributions P and Q. Symmetry is important here
because I want each given entropy metric to be the same when calculating P vs Q
and Q vs P (e.g. Folk vs Country and Country vs Folk). Jensen-Shannon Divergence
smooths and makes symmetric the KLD where M is (P + Q)/2. Lastly, in 5.7c the
square root of JSD is taken to arrive at the Jensen-Shannon distance metric.

Figure 5.7: Expressions for Kullback-Leibler Divergence, Jensen-Shannon Divergence,
& Jensen-Shannon Distance

Applying this measure to all genres in a pairwise fashion, Figure 5.8 shows the means
of Jensen-Shannon Distance from each genre to all other 13 genres, for a given item
type and block size. For example, if I individually calculate the Jensen-Shannon
Distance of unigram stress items between Country and each of the other 13 genres, I
would get 13 distance measures, averaging them results in a score of 0.038, as shown
in the top left of the figure. This process is repeated for each genre and for 1-3 grams
sequences across both stress and vowels items. It provides us with an entropy based
measure that allows us to notice which genres are, on average, more different from
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other genres.

The yellow highlighted regions of Figure 5.8 indicate genres with the highest average
Jensen-Shannon distance from other genres. In the realm of 1-3 grams stress se-
quences, Free Verse, Rhymed Stanza, and Sonnets are most different from the other
genres, while with respect to 1-3 gram vowel sequences, Electronic, Free Verse, Son-
nets, Hip-Hop, and Battle Rap are most differentiated. However, much like in the
pairwise Tukey HSD comparisons, these results demonstrate that there is a difference,
and not what the valence of the difference. For instance, both Electronic and Battle
Rap vowel sequences have a relatively high average Jensen-Shannon distance from
other genres, but for different reasons. While vowels in Electronic lyrics systemati-
cally display relatively higher entropy, vowels from Battle Rap display relatively lower
entropy.

Figure 5.8: Mean Jensen-Shannon Distances from each genre to all other genres.
Columns represent n-gram block sizes.

5.1.3 Discussion

The conventions of language place limits on its structure, and therefore, constrain the
space of likely possible messages, resulting in lower entropy. In some genres, explicit
constraints are clearly defined. This suggests that there may be genre specific sound
patterning constraints that are demonstrated in the predictability of their sound
transitions. Although it might have been expected that sonnets and battle rap have
low entropy, it is a surprise that free verse, which traditionally does not rhyme or
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have a regular meter, would have similarly low entropy. These trends are also broadly
mirrored when considering consonant and ALL item categories.

Source entropy rates cannot reasonably be estimated the in the limit with samples this
small as estimates become deterministic at low values of n. However, the perceptually
interesting multi-syllable sound patterns (rhyme, meter) I am interested in comparing
across genres may be reasonably represented at these low block sizes 1-10. Even
relatively large structures like iambic pentameter (10 syllables per line) seem to be,
at least partially, captured in the relatively lower entropy scores displayed by sonnet
stress.

Using this sampling approach it seems clear that some genres do exhibit lower entropy
than others. This is all the more interesting because they employ drastically different
sound patterning conventions. Sonnets often have some iambic meter and end rhyme
such as ’ABAB’ or ’AABB’ constraints. While in Battle Rap, patterns may be large
and imperfect, they do not follow a standardized metrical or rhyming structure as
sonnets do. However, Hip-Hop rap lyrics, which one might expect to be similar to
Battle Rap, consistently exhibit relatively high entropy in both vowel and consonant
item categories. Finally, Electronic lyrics stand out as the genre with highest entropy
in the case of vowels.

It is also noted that many genres without observed differences from other genres
(Country, Jazz, RB, Rock) have a similar historical roots in the Blues. This admit-
tedly anecdotal observation may open a door to exploring sound entropy in terms of
genealogy and the development of lyrical sound patterns diachronically.

Future Directions

Follow-ups to this study could include use of larger data sets to compare the complex-
ity of literary genres and individual artists. Due to the limited volume of previously
transcribed content, additional rap battles and improvisational performances should
also be transcribed to enable further analysis. In the end, some of these qualita-
tive descriptions of genre-based differences must be more rigorously established with
larger samples and more exhaustive modeling.

It should be noted that the 100 rap battles considered represent written, not impro-
vised content. However, it would be of particular interest to directly compare findings
in the realm of pre-written lyrics to those in similar spontaneous or improvised verbal
expression. This could help to tease apart the complexity of improvised vocabularies
of creative language from those involving large amounts of human engineering (i.e.
explicitly contriving and following some pattern without time constraints).

Many questions remain outstanding. For example, what are these specific phono-
logical constraints, what is their vocabulary, and how are they perceived, learned,
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and produced? This work should be done in conjunction with various phonologi-
cal, behavioral, and computational investigations. It is also important to understand
how the constraints in creative sound sequences interact with other components of
language to produce complex dynamics (syntax, morphology, or phonetic inventory).

As noted in previous work [325, 326], there are interactions between sequences of vow-
els, consonants. This leads to the natural question, how do the patterns presented
here hold when transitioning from simple phonological items (stress, vowels, conso-
nants) to more complex phonological items like syllables (consonant-vowel-consonant
- CVC), rhymes (rime - vowel-consonant - VC), or specific variations such as masculine
and feminine rhyme.

Conclusion

The present work has described a methodology for systematically investigating en-
tropy of sound along three dimensions, source (genre), sequence size (n-gram blocks),
and phonological items (vowels, consonants, and stress sequences). In sum, I have
shown that some genres (Sonnets, Battle Rap) have relatively more predictable se-
quences (lower entropy) at n-gram sizes consistent with their known poetic structures,
while other genres, notably Electronic and Hip-Hop, exhibit markedly less predictabil-
ity.

5.2 Phoneme Frequencies

How predictable are phonemes across musical and language genres?

Are there cognitive or task effects related to language-based music?

While investigating the use of sound sequences in language is important, it is also
relevant to document the phonological vocabulary of language-based music at the level
of individual phonemes. I investigate the phonemes of 5 genres (Non-Fiction, Fiction,
Speech, Poetry, Lyrics) to uncover systematic trends in the language of musical lyrics
and poetry. This allows for uncovering insights about how the task and cognitive
constraints of forms like musical lyrics and poetry may be reflected in language.

For instance, some sounds are more singable than others, a property sometimes con-
nected with the linguistic concept sonorance. The more sonorant a sound is, the
more its production can look similar to a sung note (that can be held). In English,
all vowels are sonorant, while only some consonants are sonorant. One might suspect
that singers have a bias towards using more singable sounds. An intuition for this
bias can be captured in a simple exercise - try singing the following non-sonorant
sounds /p/, /t/, or /k/, then try singing the following sonorant sounds /m/, /n/, /l/.



126

The sonorant consonants can be held as a sung note, while the non-sonorant sounds
cannot be. Here, I inspect the sounds of 5 genres to determine if the sounds used in
language-based reflect a bias towards sonorant sound segments.

In this section, I first present a small dataset of Diverse Creative English Texts
(DCET), which offers an opportunity to explore differences across 5 categories of
language (Non-fiction, Fiction, Speech, Lyrics, Poetry). Second,

Given the creative (and sometimes subtle) use of phonological patterns across these
categories, I explore phoneme term frequency rate features as a way to check for
systematic biases in the data. I also test these features in text classification and
compare them to a UCI dataset containing 5 categories of non-fiction [332]. This
constitutes simple bag-of-words models using phonemes, letters, and words as feature
sets.

5.2.1 Data

All orthographic texts used here are encoded into IPA with the CMU pronouncing
dictionary [313]. In cases where words are not available in CMUdict, I employ a
Grapheme2Phoneme model to encode misspellings or uncommon words [109].

Diverse Creative English Texts (DCET)

In some domains (Lyrics, Poetry), phonological patterns are employed explicitly and
liberally (e.g. poetic devices). In other domains (Non-fiction, Fiction, Speech),
phonological patterns are omnipresent, but may be more subtle or simply reflective
of the phonology of natural language.

The current dataset represents 60 corpora across a diverse range of language (non-
fiction, fiction, speech, musical lyrics, poetry) and serves as a test-bed for exploring
a variety of effects related to language, cognition, and creativity. An important
distinction between Poetry and Lyrics categories here is that they reflect non-musical
and musical samples respectively. DCET provides broad enough samples to test
whether phonemic usage differs across genre. More details on the dataset can be
found in Appendix Fig. A.1.

For this investigation each corpus is limited to 14K words. From these words, 14K
vowels and 22K consonants are extracted. Every unique vowel and consonant segment
is present in every corpus (document).
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UCI Bag-of-words Dataset

The UCI machine-learning BOW dataset [332] represents 5 sub-categories of docu-
ments within Non-fiction, and offers a way to investigate whether phonemic features
generalize from a phonologically creative dataset (DCET) to more common scenarios.
The UCI database covers a range of Non-fiction where there is little reason to expect
that phonemic features should be a strong predictor. I select 5900 documents from
UCI across NY Times articles, Enron e-mails, NIPS full articles, PubMed Abstracts,
and KOS Blog entries. In general, one might expect that the phonological biases of
Musical and Poetic genres do not appear across the UCI data, and that therefore,
phonemic features may be less revealing.

Methods

Traditionally, bag-of-words features are encoded using Term Frequency - Inverse Doc-
ument Frequency (TF-IDF). Inverse Document Frequency is critical to balancing
features with bag-of-words as some words appear in most documents, while others
appear in no documents. The number of unique phonemes terms in this investigation
is small (15 vowels, 24 consonants), and every phonemic term appears in each docu-
ment. Because of this, I focus on simple Term-Frequency and only introduce TF-IDF
processing for lexical items and performance comparison. TF-IDF features are not
further transformed.

Phoneme rates are normalized (0,100). Before processing, phoneme rates are addi-
tionally scaled to shift the distribution to a mean of zero and a standard deviation of
one.

Bag-of-phonemes features are evaluated with both unsupervised (PCA & K-Means)
and supervised methods (Logistic Regression, KNN, SVM, Random Forests) .

5.2.2 Distributions

Word uni-grams follow a Zipfian distribution, implying an inverse relationship be-
tween word rank and word frequency [333]. This sort of distribution means that the
second most frequent item (word) is one-half as frequent as the most frequent item,
and the third most frequent item is one-third as frequent as the most frequent item,
and so on (the nth most frequent item is 1/n as frequent as the most frequent item).
it has also been shown that this Zipfian relationship actually breaks down when there
are a huge amount of items [334] (i.e. including all words in a language rather than
just the 20 or 30 thousand most common ones). However, Zipfian distributions do
apply (again) to the entire lexicon of a language when including phrases (in addition
to words) into the rank-frequency plots [335, 336].
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It is believed that both letter [337] and phoneme uni-gram frequencies [338] do not
follow a Zipfian distribution, but rather a Yule distribution (similar to Zipf, but with
preferential attachment - leading to the “rich get richer” phenomenon). It seems that
“Zipf’s law applies less strongly to phonology”, suggesting that sounds are not as well
described by scaling laws as words [339].

Figure 5.9: Rank vs. Frequency Plots of words, phonemes drawn from words. Number
in bottom left is the slope

Figure 5.9 shows the rank-frequency plots of items (words, phonemes [39]) from across
these 5 genres. These data are presented in order to demonstrate the generally ex-
pected distributions of lexical and phonemic items in this composite data set.

Across DCET words seem to follow a Zipfian distribution. This is usually determined
by examining the slope of the log-log plot of rank vs frequency. If the slope is -1,
then the distribution is assumed to be Zipfian. Conventionally, the slope of the log-
log line has been used as an approximation of alpha in the power law equation f =
(c ∗ (rank+ b)a). But there are other, more reliable ways to fit power laws [340, 341].
The distribution of phonemes across these data sets is also visually consistent with
that of a Yule distribution.

5.2.3 Results

In this section I report notable trends across Syllables Per Word (SPW) and Conso-
nants Per Vowel (CPV) features before discussing and modeling phoneme term rates
(vowels and consonants).

Syllables Per Word (SPW)

The SPW measure uses syllable count to characterized the average length of words
in a sample. As shown in Figure 5.10 (Top), Non-fiction boasts the largest average
syllable length with a mean of 1.61 syllables per word (SPW). The Lyrics category
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has the smallest average SPW (1.25). Infant Directed Speech (Speech) and Battle
Rap (Poetry) corpora display the fewest SPW with 1.2 and 1.19 respectively. The
King James Bible, though classified here as non-fiction, displays a notably lower SPW
than all other non-fiction samples.

Figure 5.10: Syllables Per Word & Consonants Per Vowel Across 5 Genres

Consonants Per Vowel (CPV)

The CPV measure reveals the relative usage of consonants and vowels across a sample
(Figure 5.10 Bottom). In general, the Poetic genre displays the greatest use of conso-
nants with a mean of 1.63 CPV, while Lyrics and Speech utilize the fewest consonants
with a mean CPV of 1.57 and 1.51, respectively. The Freestyle Rap (Improvised) cor-
pus has the lowest CPV by a large margin at 1.38.

Phoneme Term-Frequency

One of the simplest forms of characterizing phonemic features is to capture their
relative frequencies or rates of appearance in each document. Figure 5.11 shows
frequency rates of 2 of the 15 vowel phonemes considered. Note that AH (which
represents /2/ + /@/) is used most in the Non-fiction category, and used least by the
Lyrics category. The opposite pattern is seen in Non-fiction and Lyrics for /aI/.

All phoneme frequency rates for consonants and vowels in DCET are shown in Ap-
pendix Fig. A.2 & A.3. They are processed separately for interpretability. The
data in these charts serve as features for further bag-of-phonemes investigation. All
39 phoneme terms are checked for significance (Appendix Figs. A.6 & A.7) using
a Bonferroni adjustment (p-value = 0.05/39 or 0.00128). 13 of 15 vowels and 18 of
24 consonant phonemes are shown to have significant group differences across the 5
categories in DCET.

Vowel phoneme rates are shown in the chart below, higher rates are denoted by darker
shading. Notice the general visual similarity of phonemes usage rates within genres.
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Figure 5.11: Usage Rates for 2 Vowels Across 5 Genres

In addition, some phonemes are over or under-represented in certain genres. For
instance, in lyrics, /aI/ and /oU/ are used at a higher rate than in any other genre.
At the same time, lyrics utilize relatively fewer ’ER’ sounds (rhotic vowels /Ç/ and
/@~/) than other genres. Vowel and consonant term rates for each category in the
UCI dataset are also included (Appendix Figs. A.5, A.4).

Figure 5.12: DCET Vowel Term Frequency Rates by category and corpus
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Principal Component Analysis

Principal component analysis allows for taking this term frequency data and com-
pressing it in a way the results in features which are as uncorrelated as possible. This
procedure is particularly useful for determining how many features are required to
explain the variance in the original data. From 39 phoneme segments I create 39
principal components (which explain 100% of the variance in the original features).
The top 10, top 5, and top 2 PCA features explain 92%, 83%, 67.3% of the variance,
respectively.

In order to leverage the interpretability that PCA offers I take the top two compo-
nents (67.3% of the variance) and plot the 60 corpora in this two-dimensional space in
Figure 5.13. The top-left of Figure 5.13 shows how DCET’s 5 categories are clustered
along these two PCA dimensions. Two phonemes, AH (/@/ + /2/) and /aI/, are most
strongly correlated with PCA components. The rest of Figure 5.13 is a zoomed-in
version of the top-left where we can more clearly see the loadings (Eigenvectors *√
Eigenvalues ). These loadings describe how much each variable (phoneme) con-

tributes to a particular principal component. Large loadings indicate that a particular
variable has a strong relation to a principal component; its sign indicates a positive
or negative correlation.

Figure 5.13: PCA 2 Components. Top-left is a zoomed out version of the main figure.
Corpora are plotted as color-coded data-points and loadings are plotted to visualize
phoneme correlation with PCA features.

Intuitively, one might expect sung lyrics to be positively correlated with sonorant
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consonants (the most singable consonants) or diphthongs (vowels that start as one
sound, and end as another). Furthermore, the task of singing seems to heavily leverage
continuous sounds, so classes like voiceless stops may be anti-correlated with Lyrics.

To observe some of the linguistic trends in these data I encode all phonemes that
belong to these three select natural classes; Voiceless stops /P, K, T/ in triangles,
diphthongs /AY, EY, AW, OW, OY/ in squares, and sonorant consonants /M, N,
NG, R, L, W, Y/ in circles. Indeed, Figure 5.13 highlights that most diphthongs and
sonorant consonants are positively correlated with Lyrical corpora (loadings point
toward the bottom-right, where all lyrical samples exist in this 2D PCA space). This
is not the case for voiceless stops, which cluster together in the top-region, /P/ being
most anti-correlated with Lyrics. In this space, the sonorant consonants /R/ and
/N/ also appear somewhat anti-correlated with lyrical corpora, /N/ being positively
correlated with Poetry.

K-means

Our 5 human-labeled categories in DCET may not be the best separation of the
data with respect to phoneme frequency so the Elbow method is used to determine
the optimal number of k (k=13) clusters for K-means. These 13 clusters, shown in
Appendix Fig. 5.14, offer intuitive separations of the data. Lyrics, Fiction, and Non-
fiction are each highly associated with two clusters. Almost all poetic corpora are
grouped together, while Battle Rap (Poetry) and Hip-hop (Lyrics) are also clustered
together. Finally, 5 corpora are classed into clusters by themselves.

Figure 5.14: Optimal k=13 clusters (elbow method) produced by k-means. Corpora
names are color-coded based on DCET category (genre).
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Feature Type Feats. Model Acc %
LR RF SVM KNN AVG.

DCET Phoneme TF 39 86.7 86.7 86.7 83.3 85.9
DCET Letter TF 26 85.0 81.7 80.0 80.0 81.7
DCET Word TF-IDF 300 60.0 83.3 80.0 80.0 75.8
DCET Word TF-IDF+PTF 339 86.7 85.0 86.7 83.3 85.4
DCET Word TF-IDF+LTF 326 85.0 83.3 80.0 80.0 82.1
UCI Phoneme TF 39 79.5 84.2 87.7 68.8 80.1
UCI Letter TF 26 76.9 84.3 86.1 73.5 80.2
UCI Word TF-IDF 300 93.2 92.3 94.1 80.3 90.0
UCI Word TF-IDF+PTF 339 95.7 93.7 91.2 70.1 87.7
UCI Word TF-IDF+LTF 326 96.6 95.2 92.5 75.1 89.9

Table 5.2: 5 Feature Sets. 4 Supervised models using properly held out kfold cross val-
idation: 80/20 train-test. Smaller DCET size dictates k=3 kfolds for cross-validation,
UCI cross-validation uses k=10 kfolds. Models are as follows LR - Logistic Regression,
RF - Random Forest, SVM - Support Vector Machine, KNN - K-nearest neighbors

4 Models x 5 Feature Sets x 2 Databases

In Table 1, I separate relevant training features into 5 sets and use 4 types of su-
pervised ML models to test classification performance across datasets. The model
parameters could be better optimized. In addition, this TF-IDF procedure does not
eliminate documents and only considers unigrams.

Across DCET, phoneme term frequency is a better predictor of corpus category than
either Letter TF or Word TF-IDF. Models using Word TF-IDF performance were
also not improved upon by adding either phoneme or letter features.

Results are different for the UCI dataset. Phoneme and Letter TF alone have similar
performance with average accuracy at 80.1% and 80.2% respectively. In addition, in
2 of the models (Log reg. and Rand. Forest), adding phoneme or letter features to a
set of TF-IDF lexical features did improve performance.

5.2.4 Discussion

Various effects related to Lyrics and Poetry make the observed associations between
certain classes of phonemes and language genres seem defensible; First of all, Poetry
utilizes the most consonant sounds, which is consistent with alliterative and rhyme
patterning. Musical Lyrics utilize the fewest consonant sounds overall (consistent with
related difficulty in singing consonants), but still draws more heavily from sonorant
consonants than any other genre. In artistic contexts, phoneme frequency features can
even serve as useful features for classification, indicating productive separation of the
data in both supervised and unsupervised methods; PCA shows strong correlations
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between natural classes of phonemes (e.g. diphthongs, sonorants) and particular text
categories (e.g. Lyrics);

Task effects may also be at play; Battle Rap may present the fewest SPW since its
multi-syllabic rhyming constraints are easier to satisfy by combining shorter words;
Improvised Rap utilizes the fewest consonants, perhaps due to a strong online priority
for vowel matching. At the least, these results motivate further exploration of the
phonological vocabulary of language-based music, not only at the level of individual
phonemes, but also at the level of covert sequences and overt poetic devices.

Furthermore, in more conventional contexts (e.g. UCI dataset of all non-fiction) which
do not contain language-based music, these strong associations of natural classes and
genre are not found, nor do there seem to be performance benefits from using bag-
of-phonemes models. However, this result should be tested on a more comprehensive
dataset such as Pile [342], especially in comparison to larger data sets of poetry and
lyrics.



Chapter 6

Improvisation

Although overt and covert sound patterns in language are an important way to frame
the investigation of language-based music, they largely reflect premeditated or written
language. A focus on online language production tasks is also critical to understanding
this space, and improvised rap is a lyrical online production task that reflects many
aspects of language-based music. Although the cognitive mechanisms of improvisa-
tional rap have only just begun to be investigated using EEG, the improvised lyrics
themselves have yet to be studied. In this chapter, I explore improvised language
production in the context of rhyme and rap.

In Chapter 6, I present case studies of improvised rhyming (rapping) samples using
methods from both Chapters 4 and 5. First, I consider differences in the phonological
vocabulary between written and improvised verses in a rap cipher. Then, I examine
samples of improvised rap, using longitudinal data to uncover changes (over time) in
phonological and lexical complexity, as well as in semantic relatedness. In both cases
I frame these studies in terms of explore-exploit dynamics.

Questions Covered:

• How is improvised rap different from written rap?

• How does improvised rap change over time?

6.1 What’s Different About Improvised Rap?

How is improvised rap different from written rap?

Improvised rap is a notoriously elusive skill. Although it is often associated with
simple rhymes or imperfect language, it is a cognitive ability that can be acquired to an
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extremely high level of proficiency. Online speech production (dialogue, conversation,
etc...) has been studied from a variety of perspectives, though few efforts have focused
on improvised lyricism [343]. Although written rap lyrics have been the target of some
investigations, studies usually highlight musical features like meter [24, 25], imperfect
rhyme [84, 45], rhyme identification [61, 60], or genre comparison [273]. However, the
phonological vocabulary of rap lyrics, both written and improvised, have yet to be
thoroughly considered or compared.

Differences between spoken and written language are well documented, in both native
speakers [344, 345] and second language learners [346], generally highlighting the
presence of larger linguistics structures in written forms (e.g. word length, sentences
length, idea units). The ability to phonologically (and otherwise) pattern language
on-the-fly is itself a kind of auxiliary skill that one must learn in order to become fluent
in improvised rhyming. This cognitive process is related to, but quite distinct from,
the processes of writing, memorizing, or performing rap lyrics. And the distinction
between these types is often a matter of debate. In many case, rappers will even try
to pawn off their written lyrics for improvised ones because it seems more impressive.

Language production, including rap, can be understood as a process of navigating the
landscape of language complexity. Broadly speaking, rhyming lyrics can be generated
either improvisationally, or through writing. So if we imagine that there is a space of
language complexity, we could think of the way improvisers or writer are navigating
the space as an explore-exploit problem.

In improvised rap, one is more constrained by the online demands of time and working
memory. As a result, improvisers are predicted to travel less far in the landscape than
writers and find lower peaks in the space, on average, than writers do.

But rap is not just about rhyme, it is a complex skill, emerging from many dimensions
of language and communication. Here, I focus on simple linguistic features drawn
from 3 of these domains, phonology, rhyme, and semantics, as a proxy for size or
complexity of the language features.

More concretely then, the hypothesis is that, across all our features (discussed below),
improvisers will travel less far in the space, which should result in lower variances in
our selected features, and that improvisers will find lower peaks in the space on
average, resulting in lower means in our features.

In this study, I focus on language features for the comparison of features of phono-
logical vocabulary that may differ across improvised and premeditated modes of pro-
duction. These features are discussed in the Data section below, but include word
length, consonant to vowel ratio (phonemes), rhyme sets, rhymed syllable rate, and
semantic similarity. Given the improvised vs. written nature of the target data, like
in previous studies, it is expected to see a variety of larger linguistic structures in
written rap lyrics. In addition, given the relative freedoms of written composition
(time, editing, offloading, etc.) and the corresponding constraints of improvised lan-
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guage production (working memory, time) written rap is expected to exhibit more
variation across these measures than improvised rap. For each metric, written lyrics
are hypothesized to have a greater mean and a greater variance than improvised rap.
This may seem somewhat counter-intuitive given the wild or chaotic nature of some
improvised rapping. However, at an expert level, improvised rapping is a complex
skill that seems to display a large degree self-similarity.

6.1.1 Data

Improvised rap data are uncommon and limited in size. Although no corpus of im-
provised lyrics exists, the smattering of freestyle rap videos on YouTube provides a
reasonable starting point. The current effort utilizes a classic video from Fresh Coast
- The Documentary. This particular rap cypher [347] is a session from 2007 that
includes both improvised and written performances by the same 7 artists (Nocando,
Okwerdz, The Saurus, Lush One, D Lor, Tantrum, Franco), some of the most accom-
plished improvised rappers in the world (though they represent the American West
Coast hip-hop scene). In this section, I focus on features drawn from transcriptions
of their lyrics and compare them across each artist’s written and improvised verses.

This 20+ minute recording offers a window into understanding the constraints of
different methods of language production. In three rounds, these seven expert rappers
take turns rapping for about 45-60 seconds each round. It should be noted that these
verses are all rapped to music (hip-hop instrumentals) rather than a cappella. This
is a unique recording in that the first two rounds are improvised and the last one is
written, allowing for more direct comparison of mode of production (improvised vs.
written). I have transcribed the lyrics by hand and hand-annotated multi-syllable
rhyme schemes within them (using vowel matching as the case of minimal imperfect
rhyming). All other features (discussed below) are automatically extracted from the
orthographic data using NLP tools, CMUdict for phoneme encoding [308] and GloVe
word embedding for semantic similarity [348].

Various metrics are used to check for differences between improvised and written
rap lyrics. I outline those metrics below. Group means are compared with t-tests,
variances are compared using the bartlett test, and distributions are compared with
the Kolomogorov-Smirnov test.

Word Length

Certain registers and genres of language have been shown to use longer words [345].
This is in part due to different vocabulary across subgenres (e.g. children’s books,
fiction, academic writing, etc.) and in part due to cognitive constraints. Given that
all these samples are from rappers of the same era and subculture (similar register),
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and with similar expertise, word length differences here should be due to either indi-
vidual differences or task constraints (improvised vs premeditated performance). As
mentioned above, it is hypothesized that the length of words in written rap will be
longer than in improvised rap. Word length here is measured in terms of syllable
count.

Phoneme Distribution

The particular sounds (vowels and consonants) used in improvised vs. written rap
may also be different. If certain phonemes are preferred due to task or cognitive con-
straints, or due to rhyme matching constraints such as neighborhood density (how
many words are phonologically similar - i.e. possible rhymes), this should be de-
tectable by comparing their phoneme distributions. Here, I use the Kolmogorov-
Smirnov test to compare the distribution of written vowels to improvised vowels, and
written consonants to improvised consonants.

Consonants Per Vowel - CPV

Consonants per vowel (CPV) captures the relative use of these two types of segments.
A focus on patterns of vowel and consonant similarity is characteristic of both rhyme
and rap, but to what degree are vowel versus consonant sounds leveraged? Vowel
matching (and stress) is central to all forms of rap rhyming. Often, vowel matching
alone is considered the most minimal form of rhyme (i.e. imperfect rhyme or a form
of assonance). Employing consonant matching, as in conventional rhyme, adds addi-
tional constraints that may be more difficult to adhere to while improvising. Given
the task constraints of improv, one might expect these performers to have a bias for
vowels sounds in their improv lyrics. If vowel sounds are preferred, or consonant
sounds are dispreferred while improvised rapping, one should see a difference in the
ratio of consonants to vowels (CPV). The relative importance of vowels in rhyming
combined with the online demands of creating sound patterns quickly during impro-
visation should support a bias for vowel. This measure is calculated by counting the
number of consonant and vowel sounds in each sample and dividing the consonant
frequency by the vowel frequency to get the average number of consonants per vowel.

Again, one might expect written lyrics to use relatively more consonant sounds (higher
CPV), while improvised lyrics should use relatively more vowel sounds (lower CPV).
This is a trend we already observed in 5.2.3, where Harry Mack’s improvised rap
was shown to have a dramatically lower CPV (1.38) than any other corpus in DCET
(1̃.48-1.73).
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Rhyme Sets

Traditional rhyme scheme annotation (e.g. ABABAB or AAABBB) is the default
for capturing line-rhyme or end-rhyme patterns in poetry. But in order to document
important multi-syllable structure in the rhymes of rap lyrics, a slightly higher di-
mensional annotation system is needed. Here, I expand on rhyme sets, groups of
rhymes which are all identified to rhyme with each other. For example, simple rhyme
schemes such as ABABAB, AAABBB or ABAABB can all be minimally described
by two rhyme sets [A,A,A] and [B,B,B]. This form can fully represent the original
ordering of a rhyme scheme by adding an indexical metadata to the rhyme set (e.g.
Scheme: ABABAB → [(A, 1), (A, 3), (A, 5)], [(B, 2), (B, 4), (B, 6)].

But simple 1-dimensional sequences of letters (ABABAB) tell us nothing about the
specific properties of the underlying rhymes. However, if the letters (e.g. A, B) are
replaced with the original utterances themselves, the rhyme sets will look like this:
[floor, store, more] and [Santana, jeweled bandana, new Grand Canyon].

Figure 6.1: 4 example Rhyme Sets created from traditional ABAB annotation

This generalized representation is able to capture traditional rhyme notation while
allowing for extracting additional linguistic features from rhyme data. Just as I
encoded ABAB rhyme indices as metadata above, one can also extract a variety of
other features about rhyming words from sets, including syllable count, word count,
part of speech, sound similarity, and semantic features. Some basic rhyme set metrics
are defined below.
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Set Count is the number of distinct rhyme sets in a sample.

Set Length is the number of rhyming instances in a set.

Set Length Avg. is the average of all Set Lengths in a sample.

Set Syllable Avg. is the average number of syllables-within-rhymes in a set.

Set Word Avg. is the average number of words-within-rhymes in a set.

In this study I utilize Set Length Avg. and Set Syllable Avg. because the aim is
to compare the size of these phonological structures across improvised and written
lyrics. In other words, we want to know, on average, how many times rhymes are
repeated, and how many syllables are being matched in those rhymes.

Rhymed Syllable Rate

In addition, this rhyme annotation (rhyme set) allows for counting the ratio of sylla-
bles that are involved in rhyme schemes across the total number of syllables spoken.
This percentage is referred to as the Rhymed Syllable Rate. It gives a measure that is
correlated with rhyme pattern width, but also takes into account the relative amount
of non-rhyming language in each verse. In simple terms, it reveals how densely a
given sample is infused with rhyme.

Semantic Similarity

The level of semantic relatedness between words is also of interest. Improv rap should
have a lower degree of semantic similarity overall due to the task constraints of Improv.
Semantic similarity between any two words can be measured with the standard word
embedding and cosine similarity. Here I measure the cosine similarity of not only
only adjacent word pairs (n,n+1), but also the similarity within a lexical window of 20
words ((n,n+1)...(n,n+20)). I take the simple average of cosine similarities across this
20 word window for each word in each verse. The word embedding model is trained on
Wikipedia (300-D). In the Results section, I also outline the cosine similarity variance
by artist and across window sizes (1-20) to justify using the simple average over all
20 windows.

6.1.2 Results

Recall that, across all measures (except phoneme distribution), the hypotheses are
the same; the mean and variance of written rap metrics are expected to be greater
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than in improvised rap.

Segments

Figure 6.2 shows the syllable count for each of the 21 verses, broken down by artist
and round. 19 of the verses have between 150 and 250 syllables while two improvised
verses are notably longer at 429 and 367 syllables. Although these verses are not of
equal length, the metrics chosen to compare them are not dependent on the size of
each sample.

Figure 6.2: Syllable Counts for each verse by round and artist. Improvised verses are
blue, written verses are red.

Phoneme Distribution

Figure 6.3: Overlapping bar-plots of phoneme frequencies across improvised and writ-
ten lyrics. Figure A details vowel rates, Figure B details consonant rates.

Next, I describe the distribution of phonemes that participate in rhyme (sets). Figure
6.3A displays the frequency of vowel phonemes, 1382 vowels from improvised rhymes
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(rounds 1 and 2) and 611 vowels from written rhymes (round 3). This overlapping
barplot shows the rates of both improvised (blue) and written vowels (light-red), as
well as their overlap (dark-red). For instance, we can notice that the vowel /æ/ was
used almost twice as much in improvised rhymes (13%) as in written rhymes (7%)

In similar fashion, Figure 6.3B displays the consonant phonemes rates of these sam-
ples, 2377 vowels from improvised rhymes (rounds 1 and 2) and 1086 vowels from
written rhymes (round 3). Again, some phonemes such as /z/, are used almost twice
as much in written rhymes (5%) as in improvised rhymes (3%).

Although many phonemes are used at similar rates, there are notable differences, as
discussed above. The question remains, are the phonemes used in improvised and
written samples drawn from the same distribution? The Kolmogorov-Smirnov test
allows us to reject the null hypothesis that these two samples are drawn from the
same distribution (vowels - pvalue=0.029; consonants - pvalue=0.0135).

The data summarized in Figure 6.3 above only concerns the distribution of phonemes
drawn from rhymes. However, this difference between improvisation and written lyrics
remains when considering the phoneme distributions across improvised and written
verses as a whole (not just within rhymes). This applies to both the consonant
distribution (pvalue=0.0154) and vowel distribution (pvalue=0.003).

Figure 6.4: Primary Results: Box-plots, means, and variances for 6 metrics across
improvised and written rap. pvalues for means are calculated with a t-test, pvalues
for variance are calculated with the bartlett test.
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Word Length

The Word Length measure in Figure 6.4A displays the expected trend of longer
words in written than improv lyrics, though it is not significant (p=0.066). Word
Length variance follows the same pattern (Written larger than Improv) but is also
not significant (p=0.064).

Consonants Per Vowel

The consonant per vowel metric results are shown in Figure 6.4B, highlighting sig-
nificant differences in both the mean and variance of relative consonant and vowel
phoneme usage. This effect also holds when calculating CPV only on the identified
rhyming words (rather than the entire verse) (Means: 1.75 Written, 1.72 Improv).

Set Length Avg. & Set Syllable Avg.

The expected trends (Written > Improv) are also observed in the rhyme set measures
(Figure 6.4C and Figure 6.4D). However, only the variance of Set Syllable Avg. is
shown to be significantly greater in written than in improvised verses (pvalue=0.0142).
Although differences in their means are not significant, the rhyme sets used in written
lyrics are, on average, both wider and longer (3.64 syllables, 4.67 members) than those
in their improvised lyrics (3.13 syllables, 3.82 members).

Rhymed Syllable Rate

The means of Rhymed Syllable Rate indicate that 40.7% of syllables were involved
in rhyme during improvisation, while 43.3% of syllables were involved in rhyme of
written lyrics - though again, this difference was not significant. The variance of
Rhymed Syllable Rate in written verses is demonstrated (Figure 6.4E) to be larger
than improvised verses (pvalue=0.0024). This indicates that written lyrics are more
variable in terms of their degree of rhyme saturation than improvised lyrics.

Semantic Similarity

Figure 6.4F highlights the average semantic similarity for each verse as measured
by GloVe word embedding cosine similarity over a 20-word neighborhood window.
Although neither the mean nor variance of semantic similarity demonstrate significant
group differences (p=0.711, p=0.262) on the entire dataset, when removing a single
outlier (Nocando Round 1), written lyrics are shown to have greater variance than
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improvisation (pvalue=0.0026) while their means remain quite similar. Below is a
further discussion of this outlier and the striking variance of semantic similarity by
verse.

Figure 6.5: Boxplot of semantic similarity measure across each round and individual.
Each boxplot contains 20 data points, the average semantic similarity for all words
at each lexical distance, from 1 to 20.

Nocando is known for his sometimes off-the-wall rapping style where he incorporates
impressive rhymes with surprising or unrelated rhymes. The couplet in Figure 6.6
exemplifies this attribute.

Figure 6.6: Couplet from Round 1 (improvised) - Nocando

Notice the four-syllable rhyme scheme (highlighted in blue) and the grammatical
well-formedness, yet the dramatic lack of semantic similarity. The average semantic
similarity for this entire verse is shown in Figure 6.4F (the single blue data point
below the box-plot) and in the middle box-plot of Figure 6.5 Round 1 (blue). This
verse has a mean semantic similarity that is dramatic lower than other verses, while
its variance is much higher (including compared to Nocando’s other verses). The
particularly low mean and large variance from Nocando here is consistent with the
qualitative perception of this verse as all-over-the-place and semantically dissimilar.

Consider another couplet on the other end of the semantic similarity spectrum,
Tantrum’s 3rd round written verse (6.7). The semantic similarity boxplot for this
entire verse can be seen in the right-most box-plot of Figure 6.5 Round 3 (pink).
Again, the high amount of apparent semantic similarity in this couplet is reflective of
the rest of the verse, which is captured by the high degree of average cosine similarity
across the moving 20-word window.

Figure 6.5 shows the box-plots of this semantic similarity measure by each round and
individual. Box-plots contains 20 data points, the average semantic similarity for all
words at each lexical distance, from 1 to 20. It is striking to notice how the variance
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Figure 6.7: Couplet from Round 3 (written) - Tantrum

of semantic relatedness by verse is so small, while the means of each verse or artist
can vary dramatically.

6.1.3 Discussion

Previous work has shown that in less familiar settings, improvisation becomes more
predictable, as measured by entropy and conditional entropy, pointing to the uti-
lization of more predictable prior knowledge that underlies this complex skill [252].
Although it is not clear whether the setting of this Fresh Coast Cypher would count
as ’less familiar’ for these rappers, the general trend of less variation in improvised
lyrics would seem to indicate higher predictability, consistent with the aforementioned
effect.

In addition to finding appropriate rhymes and rhythmically aligning them, one of the
primary aims of improvised rapping is to generate lyrics that are coherent, relevant,
and even clever. Satisfying all these phonological, grammatical, lexical, and semantic
constraints online is an exceedingly difficult task. And often, generating well formed
meaningful language can take a backseat to meeting phonological constraints. Un-
derstanding these constraints will require examining much larger data-sets as well as
the acquisition of improvised rhyming skills in longitudinal studies (which I explore
in the next section). Regardless, many of their effects are observable in the metrics
chosen for analysis in this study.

In general, the observed trends are consistent with the idea that written rap displays
larger structures than improvised rap. Collecting and analyzing more data than is
available in this case study may be revealing and allow for higher statistical validity.
The results of the Consonants Per Vowel metric suggests that written rap has a
higher representation of consonant sounds. This is consistent with the prediction
that improvisers should be biased towards using more vowels and fewer consonants.
Furthermore, the difference in phoneme frequency distributions across improv and
written rap supports the notion that these modes of production draw from different
distributions, which may again reflect cognitive or task constraints.

The general trend that written rap exhibit larger variances (by the current metrics)
seems plausible. Significant differences are found for Consonants Per Vowel, Set
Syllable Avg., Rhymed Syllable Rate, and Semantic similarity (when removing an
outlier). This suggests that there is more measurable diversity in written lyrics,
while improvised rap seems characterized by less variation across metrics. It is also
possible that the affordances of written composition facilitate surplus expression of
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individual differences in written language while the imposing constraints of improvised
rap narrow its overall variability.

It should also be noted that while Set Length Avg. and Set Syllable Avg. means are
not found to be significantly different, they are surprisingly larger than one might
expect given the difficulty of utilizing even 1-syllable rhyming constraints during
improvised language production. Specifically, it is remarkable these improvised rap-
pers find rhymes on-the-fly that phonologically match an average of 3.1 syllables per
rhyme, and then repeat those rhymes an average of 3.8 times. This consistent use of
multi-syllable structures has been noted in written rap forms, but until now, had not
been documented in improvised lyrics.

Contrary to expectations, the similar semantic similarity scores (means) across improv
and written lyrics suggests that expert improv rappers are not making concessions
on the semantic relatedness of their utterances relative to composed lyrics. However,
the relatively low variance in semantic similarity across all verses also suggests that
semantic continuity or self-similarity is more highly related to a given performance or
verse than to an individual or mode of production. The semantic similarity measure
may be reflecting some sense of theme or topicality that itself is particular to each
performance (verse). Nocando’s first improvised verse, and its low semantic similar-
ity scores, may even indicate a potentially different mode of improvised rap where
semantic constraints are dramatically reduced while still meeting other task demands.

Future Work

Future work should focus on collecting larger samples of improvised rap to validate
these findings and to ask additional questions that are not possible with data of
the scale used in this case study. in addition, collecting speech samples from these
same artists, as well as longitudinal data would allow for better understanding of
the relationship between the dynamics of rap and natural language, improvisation
and composition. Given that these subjects are all experts, we cannot observe how
the various constraints met by these artists have changed over time (especially while
they were acquiring the skill). This is a point for future investigation and will be
considered in the following section. Future studies may also focus on expanding the
semantic similarity and rhyme set metrics to more wide-ranging data.

Conclusion

This case study identified and measured various presumed constraints on improvised
language production. Using a range of metrics to quantitatively compare features of
the phonological vocabulary from improvised and written rap language I uncovered
perceptually observable, as well as subtle differences between them. I have shown that,
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even in small samples such as The Fresh Coast Cypher, improvised and written raps
seem to be quantitatively different along a variety of dimensions including Phoneme
Distribution, Rhyme Set Syllable Avg. (variance), Rhymed Syllable Rate (variance),
Consonants Per Vowel (mean & variance), and Semantic Relatedness (variance).

Improvisers also seem to produce surprisingly large multi-syllable patterns on the
fly, almost 4 syllables in length - even rhyming 41% of their syllables in total. This
further motivates exploring the complexity and dynamics of these improvised rhyming
structures, and how we produce and perceive them.

In sum, I have shown that improvised lyrics display language features with smaller
means and smaller variances than written lyrics, suggesting that explore-exploit dy-
namics may be a productive way to frame the cognition of rapping.

6.2 Improvised Rap Dynamics Over 1 Year

How does improvised rap change over time?

Improvised rap presents a case of an understudied, yet complex, cognitive task that
exemplifies various aspects of language-based music. Improvised rapping is a skill that
is difficult to acquire. Most who have tried it quickly hit various walls when trying
to meet one of the many constraints of improvised rapping (e.g. rhyme, rhythm,
grammar, meaning, cleverness). The current study investigates the changes in some
of these constraints over a one-year period for both a novice and an expert freestyle
rapper. I examine how selected features of improvised language change over time in
order to investigate the development of this skill.

Like in the previous study, this question can be framed as an explore-exploit problem.
In the space of phonological patterns, it is hypothesised that the beginner should be
exploiting the space of sound patterns, reflected by decreasing entropy measurements,
while the expert is expected to be exploring the phonological landscape, reflected by
increasing entropy measurements in this domain. The intuition is that the expert
may be more comfortable exploring the space of phonological patterns because he
can easily and confidently rhyme with any phrase he lands on, while the beginner
may not have a big rhyming or sound pattern matching vocabulary. This results in
the beginner being more comfortable with a certain subset of sound patterns, and so
they should be expected to leverage and exploit those known patterns more heavily in
order to keep up the momentum of rhyming language production. On the other hand,
the expert is already comfortable rhyming with many complex sound patterns, so they
may be expected to be exploring the space of phonological patterns, rather than only
exploiting smaller regions of the space, like the beginner might. In other words,
the complexity of the phonological elements for the beginner is expected to decrease
(reflecting more exploitation) whereas the complexity of phonological elements for
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the expert is expected to increase over time (reflecting more exploration).

An additional prediction from this study is that both the semantic similarity of lan-
guage features for the beginner and the expert will also increase over time. The idea
is, as the beginner learns, they will produce more coherent and well-formed rhyming
language, and their words will display more similarity (as measured by cosine simi-
larity in GloVe word embeddings). Similarly, over the span of a year, the expert is
seemingly integrating additional high level semantic connections in their improvised
lyrics, such as plot and narrative, again resulting in more semantic similarity.

As discussed in Chapter 3, musicians (experts) and non-musicians display distinct
brain wave activity when listening to music, implying different cognitive processes are
at work across skill level. More recently, a study in rhyme facilitation within poetry
demonstrated that, while both novices and experts gained memory benefits from
rhyme (sub-lexical retrieval cues), only experts were shown to anticipate imminent
rhyme [349]. This seems to reveal a degree of learning and cognitive specialization
across experts and novices in the domain of language-based music.

Although the current study does not use a direct measure of rhymed-syllable rate (as
in Chapter 6.1) since it would require annotated rhymes from these works, there is
a proxy. Vowels are a structurally important part of rhyme, and a core element of
imperfect multi-syllable rhyming. Therefore, I use frequencies of vowels sequence of
different sizes (uni-gram, bi-gram, tri-gram, and quad-gram) to capture information
about the phonological (vowel) vocabulary.

6.2.1 Data

An Expert Much like in other disciplines, expert improvisers themselves will tell
you things like “I used to be horrible”, or “I have practiced for years”. But how
does this rapping skill develop and change over time? One rapper, Harry Mack, a
jazz drummer by training, has been practicing rap improvisation for 20 years. He
recently built a large online community (improvising live online in various formats)
and has a series, called Omegle Bars, where he raps for random strangers on video
chat. Each video had between 10 and 25 minutes of improvised content. I collect
text transcripts from the lyrics from these videos and extract lexical, phoneme, and
semantic information. Texts are transcribed and submitted by YouTube user Nick
@plebcrabslayer (& myself).

A Novice A fan and now team member, Ikaanic, was inspired by Harry Mack
to begin learning to rap more intentionally. He has taken lessons from Harry and
records his journey learning to rap in Freestyle Practice videos on YouTube. These
recordings are between 60 and 120 minutes long and are transcribed automatically
by the YouTube speech-to-text model.
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Despite the differences in the length of these videos and their modes of transcription
(human annotated vs. speech-to-text), they are decent comparables as they represent
sequential improvised rap sessions over the same 1-year period. The lexical, phonemic,
and semantic measures used here are robust to the mode of transcription; results were
found to be similar when Harry Mack lyrics were also transcribed using speech-to-text
(rather than hand annotated). Given this similarity, I assume the features drawn from
speech-to-text transcriptions of Ikaanic Freestyle Practice sessions will be sufficient
for comparison (as this content is much too long to transcribe by hand).

6.2.2 Methods

There are three features of language that are measured here in order to describe how
improvised rap language changes over time, lexical and phonological complexity, and
semantic similarity.

Entropy In the literature, increases in entropy have been associated with encourag-
ing exploration. In human experiments, high entropy is associated with participants
switching from exploitation to exploration [350]. The intuition here is that as an
environment changes from a predictable one to a less predictable one, the optimal
strategy to use is no longer exploitation, but exploitation, as the resource to exploit
is less predictable and value can be gained by exploring a new uncertain environment.
Even in reinforcement learning models, high entropy encourages exploration, allowing
agents to avoiding falling into local optima [351, 352, 353].

For instance, one might assume that the unigram distribution of words is approxi-
mately Zipfian. If the complexity (entropy) of individual words (uni-gram) goes up
over time, the distribution of individual words used is becoming more uniform (less
predictable). In contrast, if lexical uni-gram entropy does go down over time, the
distribution of individual words being used is becoming more predictable. In order
to understand how the complexity and constraints of language change as one learns
to improvised rap, I conduct entropy analyses on uni-gram, bi-gram, tri-gram, and
4-gram word and vowel sequences.

Semantic Similarity Just as in the previous study, the semantic similarity be-
tween words is of interest here, too. However, instead of helping to compare written
vs improvised lyrics, word embeddings are used here to explore how semantic simi-
larity changes over time. On the one hand, it might be expected that the semantic
similarity of the words produced increases over time as rappers learn to overcome
rhyming constraints and begin generating more thematic or related content (rather
than simply satisfying rhyming constraints in a semantically unrelated way). On
the other hand, semantic similarity could decrease over time as greater and greater



150

amounts of phonological patterns (e.g. rhyme) are incorporated into language output.
The intuition here is that rhyming words are more inherently semantically unrelated
(except for certain cases of sound symbolism, iconicity etc.)

Semantic similarity between any two words can be measured with the standard word
embedding cosine similarity. Here, I measure the cosine similarity of not only of
adjacent word pairs (n,n+1), but also the similarity within a lexical window of 20
words ((n,n+1)...(n,n+20)). I take the simple average of cosine similarities across
these 20-word windows for each verse. The GloVe word embedding model is trained
on Wikipedia (300-D).

6.2.3 Results

Word Entropy [Figure 6.8] Over the course of 1 year, the word entropy across all
sequence sizes increased for the expert improviser. This same trend of increasing word
entropy was also found for the novice, but only with respect to 3 and 4 gram word
sequences, for 1 and 2 gram items, no significant trend was found and the R-squared
is approximately 0.

Figure 6.8: Entropy of word n-grams over time and n-gram size. Left: Novice Ikaanic.
Right Expert Harry Mack

Vowel Entropy Figure [6.9] In terms of vowel sequences, the improv expert demon-
strated increases in entropy over the course of this year across all sizes. These increases
are also slightly larger in magnitude than the corresponding increases in word entropy
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discussed above. However, for the novice, the opposite trend is observed. 1-3 grams
vowel sequences produced by Ikaanic are decreasing in entropy over this time period
while the distribution of his 4-gram vowel sequences is not changing.

Figure 6.9: Entropy of vowel n-grams over time and n-gram size. Left: Novice Ikaanic.
Right Expert Harry Mack

Figure 6.10: Avg Semantic Similarity (Avg. cosine similarity in 20-word window)
over time. Blue: Novice Ikaanic. Red Expert Harry Mack

. Each successive rap session is shown along the x-axis.

Semantic Similarity Figure [6.10] For both the novice and expert improviser,
the degree of semantic similarity is shown to decrease over time. These decreases
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are strongly correlated with time (R-squared 0.45) and have similar slopes, however
their y-intercepts are shifted. This indicates that, while their trajectories are similar
over this period, these two individuals began with very different degrees of semantic
similarity, which continued to decrease at a similar rate over the year.

6.2.4 Discussion

A high-level summary of these three sets of results is shown in Figure 6.11. Notice that
while semantic similarity is decreasing over time for both individuals, for the expert,
word and vowel entropy are consistently increasing (all n-gram sizes). Meanwhile, the
novice displays a different profile of entropy trajectories.

Figure 6.11: Summary of word, vowel, and cosine similarity trends over a course of a
year

These data only represent a single year of development, so we are not observing dy-
namic shifts in these constraints over time (they are monotonic shifts). For example,
one might expect that enough longitudinal data (many years) would reveal changing
constraints at different periods in development – periods of entropy reduction (to-
wards more exploitation), and other periods where entropy increases (towards more
exploration).

In general, word entropy increased for both artists over the course of this year. This
may mean that the distribution of used words is becoming increasingly uniform (less
predictable), reflecting a more even use of words and phrases. Notably, the distribu-
tion of uni-gram and bi-gram word phrases used by Ikaanic does not change over this
period. The intuition here is that, while the distribution of uni-grams and bi-grams
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is not changing over this year, those uni-grams and bi-grams are combined to make
novel 3 and 4-gram phrases, which may contribute to Ikaanic’s entropy (complexity)
increases in 3 and 4-gram word phrases over this same period.

On the other hand, the expert’s word entropy is increasing across all n-gram sizes
measured. This indicates that, not only is his distribution of 3 and 4-word phrases
becoming less predictable (more complex) over time, but his use of 1 and 2-word
phrases is also becoming less predictable. Remember that increases in entropy en-
courage exploration while decreases in entropy encourage exploitation, so this trend
across lexical items suggests that both this novice and expert are increasingly explor-
ing (rather than exploiting) the space of words and word phrases in their rap.

Given that Ikaanic is a novice at freestyle, and just learning how to navigate the
constraints and demands of improvised rap, it may be unsurprising that his vowel
entropy is decreasing over this period - indicating a trend towards exploiting (rather
than exploring) vowel sequences for rhyme. His vowel patterns are becoming more
predictable, ostensibly shifting towards an increased exploitation of these sound pat-
terns. On the other hand, Harry Mack’s vowel entropy is shown to increase over
this same time period, suggesting that he is shifting towards increased exploration
of vowel sequences. This is consistent with Harry Mack’s self-reported approach to
improvisation. Rather than “just rapping with no plan”, he practices various word,
sound, rhythm, and meaning oriented drills, focusing on what he is bad at and trying
to improve, akin to how intentional practicing of an instrument is different from just
jamming or performing. It could also be that, because Harry Mack is already fluent
in rhyme and an expert at improved rap, he is able to easily rhyme with any given
sound pattern. This means that he may not have as strong of a functional bias as
Ikaanic towards using specific phrases or sound patterns that he is comfortable with.
Instead, Harry Mack can say whatever he likes, and be confident that he will find
relevant rhymes with it. This same intuition can be applied to Ikaanic and his down-
ward trending vowel sequence entropy. Since Ikaanic does not know how to fluently
rhyme with any given phrase yet, he will likely have a bias to use words and phrases
from sound patterns that he is familiar with - an example of exploiting local optima.
It seems likely that the trajectory of developing this complex skill involves many al-
ternating periods of exploiting (local optima) and exploring (global optima). Some
learners may even get stuck in various local optima. For example, this could mani-
fest as an individual only ever rhyming with 5̃0 of the 225 2-syllable vowel sequences
[15x15]), potentially limiting development in both lexical and phonological space.

Finally, the degree of semantic similarity across words for both artists decreased over
the year, indicating that words, within a window of 20, are becoming less semanti-
cally related over time. On the surface, this may seem to be related to the increased
word entropy overtime. As the variety of words increases, and their frequencies be-
come more uniform, semantic similarity may tend to decrease due to a more uniform
drawing from words across semantic space. However, entropy of word uni-grams and
bi-grams do not increase for the novice, indicating that decreases in semantic similar-



154

ity may not be directly associated with increases in word entropy here. Additionally,
the vowel entropy trends are opposite for the novice (decreasing) and the expert
(increasing), which also indicates that its interplay with semantic similarity may be
minimal.

So why might semantic similarity be decreasing so reliably over time? The vowel
entropy measure gives a sense of vowel sequence complexity across an entire verse,
that is to say, across all rhyming and non-rhyme words. It may be that the relative
about of rhyming words within a verse (or sample) is driving much of this reduction in
semantic similarity - The higher the proportion of rhymed syllables (Rhymed Syllable
Rate from section 6.1) the more semantically dissimilar its words are likely to become.
Why? In order to match words that satisfy particular phonological constraints (e.g.
alliteration, rhyme, assonance), they must be selected from specific ’bins’ (e.g. all
words that rhyme with ’day’ or all words that start with ’/fl/’). Not only do these
’bins’ of possible matches dramatically limit which words can be chosen, but for the
most part, their words are semantically unrelated. Due to the linguistic phenomenon
of ’arbirariness of the sign’ words with similar, or even the same sounds, may have
entirely different meanings. As was discussed in Chapter 2, there are some known
semantic relations across words with similar sounds. Sound symbolism, iconicity,
and phoneaesthetics play a role in sound-meaning correspondences, leading to some
reliable semantic relations between classes of sound (particular sound), and some
meaning in the world (e.g. /gl/, /sn/). If one were only satisfying rhyming phono-
logical constraints with words that share these sound symbolic or iconic relations,
it might be predicted that increased proportions of rhymed (or matched) segments
would also increase semantic similarity. This is because when trying to alliterate
with /sn/ one would only ever pick words like snort, snout, sniffle, and sneeze, but
never add sneakers to that list because sneakers are not nose-related. However, as I
mentioned, the vast majority of words with phonological similarity are not so clearly
semantically related, or even related at all. Indeed, due to the potential productive-
ness of maintaining arbitrariness of the sign, most words that sound similar will not
have any clear semantic relationship.

For these reasons, when meeting the phonological constraints of language-based-
music, the rhyming (or alliterated, etc.) words are likely to be less semantically
related. Therefore, the higher the proportion of rhyming words in a sample, the lower
the semantic similarity metric may be.

This hypothesis can be tested in future work in a number of ways. First of all, it is
important to establish more baselines for this particular semantic similarity metric,
especially in longitudinal spoken and written language data that are non-rhyming.
Second, rhymes and other poetic devices within longitudinal lyrical data could be
annotated (as in Section 6.1) and the connection between ’rhymed syllable rate’ and
semantic similarity can be directly tested.

Learning to rap improvisationally can be framed as a form of language skill acqui-
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sition, a productive and creative kind of expertise that may be learnable in any
language. Learning technology has been shown to “generate new linguistic habits”
in rappers [174], so both beginner and veteran rappers may even benefit from more
formal pedagogical resources, effects which can be measured by approaches like those
presented here.

6.2.5 Conclusion

In this section, I focused on creative language patterns (e.g. rhyme) and the holistic
practice of improvisational rapping (development and skill). This study has explored
the development of lexical, phonological, and semantic constraints in two rappers over
a 1-year period of improvisation. I have shown that, although some dimensions of
language display similar developmental trajectories across the novice and expert (lex-
ical, semantic), other dimensions of language display opposite trends (phonological
complexity). Further investigations may uncover more of the dynamics of phonolog-
ical development and their interactions with related complex language components
and skills (like improvised rap).



Chapter 7

Conclusion

The goal of this dissertation was to motivate and develop the study of language-based
music. Our empirical domain has been the exploration of rhyme in multiple genres
with a special focus on rap. We demonstrated that an instructive investigation of
this space requires the development of both visualization and computational tools.
Furthermore, since language-based music patterns can occur without being explicitly
noticed, it is also important to use these tools to detect both overt and covert pat-
terns. These resources and their results, in turn, make various data structures more
accessible for both linguistic and cognitive investigations. To truly understand the
phenomenon of language-based music, it is crucial to relate these patterns to the cog-
nitive mechanisms that constrain their perception and production, and that facilitate
their use.

In Chapter 1 I introduced language-based music and an interdisciplinary approach
to exploring its forms and underlying cognitive mechanisms. I briefly reviewed the
cultural and academic history of rhyme before outlining the two main problem spaces
covered in this project, overt and covert sound patterns in language. Specifically, I
motivated the study of complex patterns in language by examining a poem and exam-
ple word sets, highlighting how large sound structures often go unnoticed. Following
from this, I highlighted the notion of Rhyme Sets as particularly useful for the study
of repeated (and multi-syllable) phonological structures. Finally, I framed the entire
exploration in terms of phonological vocabulary, a hierarchical system of phonological
elements used by an individual or language.

In Chapter 2 I presented a toolkit, Phonesse, for simple sound segment manipu-
lation and visualization from text corpora as well as a related exploratory interface,
Rhymable.com. In particular, I provided MIDI and grid-based representations of lan-
guage sounds, and a psychologically aligned color-to-vowel mapping that can be used
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to intuitively reveal patterns of underlying and imperfect sound patterns. Here, I also
introduced the majority of the data used in the contained studies including DCET,
bar pong, The Fresh Coast Cypher, and longitudinal rap performances.

In Chapter 3 I addressed two primary questions:

• What cognitive mechanisms underlie the perception and production of rhyme
forms?

• How have the elements of rhyme been explored using computational tools?

I first reviewed elements related to the perception and production of rhyme, including
rhythm, similarity, rhyme acceptability, orthography, priming, words, sound symbol-
ism, and improvisation. Then, I discussed the cognitive mechanisms that support
rhyme, covering areas such as memory, language change, phonology and the phono-
logical loop, literacy, expertise, and educational applications. Finally, I reviewed how
the elements of rhyme have been explored computationally in the areas of stress,
sequences, poetic analysis, rap analysis, and lyric generation.

In Chapter 4 I investigated overt poetic devices and addressed three primary
questions:

• How many perfect rhymes (and other poetic devices) are possible?

• How prevalent is imperfect rhyming?

• How can multi-syllable imperfect rhyming (Rhyme Sets) be quantified?

I began by counting all possible perfect poetic device matches (within words in a
dictionary) in order to document the range of patterns and pattern matches that are
available in English. Then, I looked at 500 years of rhymes, finding large differences
in rates of feature agreement over time. In addition, final coda agreement did not
change over time, and was shown to be the most predictive rhyme feature across this
period (in a context dominated by perfect rhyme). Finally, I expanded on Shaw’s large
rhyme sets, demonstrating how treating these data as complex systems, rather than
isolated pairs, can help visualize and describe their sound structure and dynamics.

In Chapter 5 I investigated corpora that contain covert poetic devices and ad-
dressed two primary questions:

• How are phonemes distributed across language and musical genres?
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• Are there cognitive or task effects related to language-based music?

Here, I began with a comparative case study which demonstrated clear differences
between the sound sequences of many genres of music, some of which typify the
well known phonological devices used in forms like sonnets (iambic pentameter) or
battle rap (multi-syllable rhyme). Then, I expanded the scope of investigation, using
the DCET data set and machine learning to identify sound usage differences across
musical lyrics, poetry, speech, fiction, and non-fiction. In general, I found significant
sound segment biases within poetry (e.g. consonant sounds) and musical lyrics (e.g.
sonorant sounds and diphthongs) that seem to reflect task biases and enable reliable
text classification (in some contexts).

In Chapter 6 I focused on the language of improvisational rap and addressed two
primary questions:

• How is improvised rap different from written rap?

• How does improvised rap change over time?

Using the Fresh Coast Cypher rap session, I compared phonological and semantic
differences between written and improvised rap verse. In general, the means of overt
phonological structures in improvised rap were found to be smaller (word len, rhyme
set height/width, etc.), while improvised variance was also found to be smaller than
in written rap. Despite these differences (only some of which were significant), im-
provised rap lyrics still displayed surprisingly large phonological patterns (rhyme set
avg width: 3.14 syllables, rhyme set avg height: 3.82 repeats). Finally, I investigated
changes in lexical, phonological, and semantic rap constraints over a one-year time
period. For the beginner and expert improvised rappers, lexical and semantic trends
were found to be similar, whereas the changes in their phonological constraints over
time were in opposition (beginner trends towards exploiting, expert trends towards
exploring). This suggests that important changes in phonological constraints may
occur in the trajectory of learning to rap improvisationally.

7.0.1 Limitations

As discussed in Chapter 2, though extracting sound elements from orthographic texts
provides many conveniences and opportunities for mining existing corpora, there is a
limit to the accuracy of these transcriptions. In many cases, phonemes extracted auto-
matically from text should be additionally validated by human annotators. Phonemes
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can also be automatically extracted from audio files, presenting a more difficult tran-
scription problem (classification) but providing a more faithful correlation to the
phones uttered.

While lyrics and textual documents are plentiful in the wild, some phenomena, such as
rhyme sets or improvised rap sessions, have only begun to be collected and are limited
in quantity. Results from the current studies should be validated and extended on
larger data sets and in languages other than English. Furthermore, in some cases here,
I focus on vowels as a convenient proxy for the larger scale phonological patterns that
exist in language-based music. However, this is a dramatic oversimplification that
looses information about consonants, stress, and their associations. There are various
phonological relationships between elements of syllables, and including these relations
can improve the resolution and validity of the examined data.

7.0.2 Future Work

Beyond addressing the limitations mentioned above, future studies may expand on
the form, theory, cognition, learning, or pedagogy of language-based music.

Collecting much larger sets of annotated data would allow for a deeper understanding
of common phonologically driven poetic devices as well as the imperfect and multi-
syllabic structures that have become so common.

Developing more tools and formal (or annotated) representations of rhyme (and re-
lated patterns) can enable better training in supervised models and more surface area
for clustering in unsupervised models.

Unsupervised ML approaches may also be used to discover practical boundaries be-
tween repeated sound structures or rhyme sets, avoiding the common dependency on
only human annotations of rhyme. Machine identified patterns can also be treated as
rhyme sets (or other sets) themselves, and can be used to make transparent the under-
lying sound structure of machine identified rhyme. These data can also be leveraged
for academic and practical (e.g. education, art) purposes.

Furthermore, studies that correlate brain activity with annotated devices may re-
veal important associations between the neural processes and linguistic structures of
language-based music.
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[78] Éva M Jeremiás and David Neil MacKenzie. The grammatical tradition in per-
sian: Shams-i fakhr̄ı’s rhyme science in the fourteenth century. Iran, 48(1):153–
162, 2010.

[79] O Jemie. Yo Mama!: New Raps, Toasts, Dozens, Jokes, and Children’s Rhymes
from Urban Black America. Temple University Press, 2003.

[80] Elijah Wald. The Dozens: a history of rap’s mama. Oxford University Press,
2012.

[81] Jack Beckwith. The Evolution of Music Genre Popularity. https://

thedataface.com/2016/09/culture/genre-lifecycles, 2016.

[82] VerseTracker: The battle rap culture index. http://www.versetracker.com.
Accessed: 2022-4-18.

[83] Harry Mack. Harry Mack - YouTube Channel. https://www.youtube.com/c/
HarryMack, 2022.

[84] Shigeto Kawahara. Half rhymes in japanese rap lyrics and knowledge of simi-
larity. Journal of East Asian Linguistics, 16(2):113–144, 2007.

https://thedataface.com/2016/09/culture/genre-lifecycles
https://thedataface.com/2016/09/culture/genre-lifecycles
http://www.versetracker.com.
https://www.youtube.com/c/HarryMack
https://www.youtube.com/c/HarryMack


166

[85] Paul Bauschatz. Rhyme and the structure of english consonants. English Lan-
guage & Linguistics, 7(1):29–56, 2003.

[86] Kristin Hanson. Formal variation in the rhymes of robert pinsky’s the inferno
of dante. Language and Literature, 12(4):309–337, 2003.

[87] EM Edghill et al. The categories. Good Press, 2019.

[88] That is Embarrassing Illusion. https://www.youtube.com/watch?v=

8FXQ38-ZQK0, 2021.

[89] Eleanor Rosch. Wittgenstein and categorization research in cognitive psychol-
ogy. In Meaning and the growth of understanding, pages 151–166. Springer,
1987.

[90] Jaakko Hintikka. Semantical games and aristotelian categories. In The Game
of Language, pages 201–229. Springer, 1983.

[91] Eleanor Rosch and Carolyn B Mervis. Family resemblances: Studies in the
internal structure of categories. Cognitive psychology, 7(4):573–605, 1975.

[92] J Thomas Shaw. Large rhyme sets and puškin’s poetry. Slavic and East Euro-
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[173] Cristina Aliagas Maŕın. Rap music in minority languages in secondary educa-
tion: A case study of catalan rap. Int. J. Soc. Lang., 2017(248), September
2017.

[174] Evelyn Ch’ien. Creative technology and rap. World Englishes, 30(1):60–75,
March 2011.

[175] Jordan Ackerman. WordSurge - The Smart Dictionary. https://www.

wordsurge.com, 2013.

[176] Annerose Engel and Peter E Keller. The perception of musical spontaneity in
improvised and imitated jazz performances. Front. Psychol., 2:83, May 2011.

[177] Masaru Sasaki, John Iversen, and Daniel E Callan. Music improvisation is char-
acterized by increase EEG spectral power in prefrontal and perceptual motor
cortical sources and can be reliably classified from non-improvisatory perfor-
mance. Front. Hum. Neurosci., 13:435, December 2019.

[178] R. Anderson, S.J. Hanrahan, and C.J. Mallett. Investigating the optimal psy-
chological state for peak performance in australian elite athletes. journal of
applied sport psychology 26, 2014.

[179] Alex Dayer and Carolyn Dicey Jennings. Correction to: Attention in skilled
behavior: An argument for pluralism. Rev. Philos. Psychol., 12(3):639–639,
September 2021.

[180] Siyuan Liu, Ho Ming Chow, Yisheng Xu, Michael G Erkkinen, Katherine E
Swett, Michael W Eagle, Daniel A Rizik-Baer, and Allen R Braun. Neural
correlates of lyrical improvisation: an FMRI study of freestyle rap. Sci. Rep.,
2(1):834, November 2012.

[181] Roger E Beaty. The neuroscience of musical improvisation. Neurosci. Biobehav.
Rev., 51:108–117, April 2015.

[182] P Cheyne and A Hamilton. The Philosophy of Rhythm: Aesthetics. Oxford
University Press, Music, Poetics; USA, 2019.

https://www.wordsurge.com
https://www.wordsurge.com


173

[183] Jonna K Vuoskoski and Dee Reynolds. Music, rowing, and the aesthetics of
rhythm. The Senses and Society, 14(1):1–14, 2019.

[184] Jan Stupacher, Michael J Hove, and Petr Janata. Audio features underlying
perceived groove and sensorimotor synchronization in music. Music Percept.,
33(5):571–589, June 2016.

[185] Maria AG Witek, Eric F Clarke, Mikkel Wallentin, Morten L Kringelbach, and
Peter Vuust. Syncopation, body-movement and pleasure in groove music. PloS
one, 9(4):e94446, 2014.
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Figure A.1: Short Descriptions of Corpora collected for Diverse Creative English
Texts dataset. For the current exploration, I only take the first 14K vowels and 22K
consonants from each corpus.
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Figure A.2: DCET Vowel Term Frequency Rates by category and corpora (document)

Figure A.3: DCET Consonant Term Frequency Rates by category and corpora (doc-
ument)
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Figure A.4: UCI BOW Vowel Term Frequency Rates by category

Figure A.5: UCI BOW Consonant Term Frequency Rates by category
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Figure A.6: Plots of Vowel Usage Rates by phoneme and category. Y-axis is variance,
columns on X-axis are 1-Fiction, 2-Lyrics, 3-Non-Fiction, 4-Poetry, 5-Speech. A green
check indicates significant group differences.

Figure A.7: Plots of Consonant Usage Rates by phoneme and category. Y-axis is vari-
ance, columns on X-axis are 1-Fiction, 2-Lyrics, 3-Non-Fiction, 4-Poetry, 5-Speech.
A green check indicates significant group differences.
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