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Abstract of the Thesis

A Study On

The Impact Of Compiler Optimizations

On High-Level Synthesis

by

Raghu Prabhakar

Master of Science in Computer Science

University of California, Los Angeles, 2012

Professor Jason Cong, Chair

High-level synthesis is a design process which takes an UN-timed, behavioral description in a

high-level language like C and produces register-transfer-level (RTL) code that implements

the same behaviour in hardware. In this design flow, the quality of the generated RTL

is greatly influenced by high-level description of the language. Hence it follows that both

source-level and IR-level compiler optimizations could either improve or hurt the quality of

the generated RTL. The problem of ordering compiler optimization passes, also known as

the phase-ordering problem, has been an area of active research over the past decade. An

optimization has enabling and disabling effects on other optimizations, and such effects are

caused by either the nature of the optimization itself, the input program being optimized,

or the target platform for which the code is being optimized. A well-known fact in literature

is that the standard optimization order chosen by the compiler writer may not be the best

order for every input, and hence can end up producing inferior code.

All methods mentioned above are targeted towards compilers producing code that will

be executed on a processor. In this study, we explore the effects of both source-level and

IR optimizations on high-level synthesis. The parameters of the generated RTL are very

sensitive to high-level optimizations, in the sense that a right choice can provide significant
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benefits and a wrong choice can cause significant degradation. We consider three source-level

optimizations commonly used in High-level synthesis. We study them in isolation and then

propose simple yet effective heuristics to apply them to obtain a reasonable latency-area

tradeoff. We also study the phase-ordering problem for IR-level optimizations from a HLS

perspective. As many optimizations that are employed in a typical HLS flow were originally

developed with a standard compiler in mind, and given the increasing popularity of HLS, we

feel that such a study is essential to building high-quality HLS tools. Our initial results show

that an input-specific order can achieve significant reduction in the latency of the generated

RTL, and opens up this technology for future research.
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CHAPTER 1

Introduction

The field of compiler optimizations has been an area of active research for more than fifty

years. Numerous optimizations have been proposed and deployed over the course of time,

each trying to optimize a certain aspect of an input program. With the increasing level

of abstraction in programming languages and constantly evolving architectures, newer op-

portunities for optimization were created. Today, a great deal of literature is available to

understand the mechanics, goals and theoretical complexities of each optimization. Opti-

mizations play a key role in evaluating a compiler. Moreover, as processor clock speeds no

longer increase in accordance with Moores law, the free ride of better performance obtained

every couple of years by increased clock speeds is no longer available. Current trends in

architecture favor a heterogeneous mix of general-purpose CPUs, application-specific accel-

erators like GPUs, FPGAs and hybrid memory hierarchies. Software must be explicitly

written to take advantage of such a heterogeneous mixture of computing power. This places

a heavy responsibility on the compiler to intelligently transform input code to achieve a

certain objective, like code size, execution time or energy.

Given the significance of compiler transformations, it is important to understand the

nature of each transformation so that it can be used intelligently. A well-known fact in liter-

ature is that optimizations have enabling and disabling interactions among themselves. This

problem, also known as the phase-ordering problem, basically implies that applying transfor-

mation a before another transformation b can potentially increase the benefit obtained from

b or can destroy the same. The interaction that exists between instruction scheduling and

register allocation is a classical example for such a behavior. To make matters even more

complicated, most of such interactions are input-dependent; depending on the existence of a
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certain structure and opportunities in the input program, interactions may or may not exist,

and can vary in degree. Unfortunately, studies on most of the transformations have been

conducted in unison, without considering the presence of other optimizations. A typical

production compiler like GCC has more than 100 optimization flags. Standard optimiza-

tion orders (i.e., -O2, -O3 etc.) are chosen by the compiler writer based on an averaged

performance number on a large benchmark set. Past research has shown that the standard

sequence yields inferior code, and that the best sequence is largely dependent on the input,

the target architecture and the objective (time, code size etc.). As the solution space is

huge, compiler researchers have tried a plethora of methods over the past decade based on

searching techniques ([10] [9] [17] [16], [4]), analytical models ([29], [33], [32], [26], [31]),

empirical approaches based on statistical data ([25], [24] [2]), and a mixture of all of these

([12], [27], [22]).

However, it is to be noted that all aforementioned approaches have been used to arrive

at an optimal optimization sequence that can transform an input program such that the

transformed version executes efficiently on a given processor, for some definition of efficiency.

In this case, decisions regarding optimization orders are implicitly or explicitly influenced

by code execution parameters such as the processor pipeline, size of the instruction window,

live variables affecting register pressure, presence of hardware-managed caches and so on.

How different would such optimization orders be if the code being optimized was not meant

to be executed on hardware? In other words, what is the impact of the order of compiler

transformations if the input is a behavioral description of some hardware itself?

For instance, consider the example design in Figure 1.1. The function walks through all

elements of array a in a loop and computes the sum and product of all array elements. Note

that the loop trip-count and array size are statically known. Array sizes are required to be

known at compile-time for HLS to work, and loop trip-count needs to be known statically so

that latency estimation can be performed. Also, let us consider a set of three optimizations

mentioned below.1

1We use the letters within brackets to refer to the respective optimizations in this section.
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int add(int a[20], int o[2])

{

int i;

o[0] = 0;

o[1] = 1;

for(i = 1; i < 20; i++) {

if(a[i]%2 == 0) {

o[0] += a[i];

o[1] *= a[i];

}

}

}

Figure 1.1: Example design optimized with -gvn, -indvars and -mem2reg. CPU best sequence

differs from HLS best sequence.

• -gvn (g): Global value numbering.

• -mem2reg (m): Promote memory to register.

• -indvars (i): Canonicalize induction variables.

Table 1.1: Benchmarks and description.

Sequence CPU (cycles) HLS (cycles)

gim 3903 12

img 3814 22

Consider two sequences, gim and img. In order to measure and compare the impact of

the two sequences on the CPU and HLS, we optimized the design in Figure 1.1 using the

two sequences, and ran a final dead-code elimination pass. To measure CPU performance,

we compiled the optimized function into a binary by attaching some driver code. We used a

cycle-accurate state-of-the-art out-of-order processor simulator Simics to get accurate CPU
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performance. We used xPilot to get latency measurements of the physical circuit this design

represents, given a target clock period of 5 ns. Table 1.1 summarizes the performance of the

sequences in these two scenarios.

We can observe that the sequence gim has a better performance in the HLS setting while

sequence img has a better performance for code executed on the CPU. Upon examining the

effects of the optimizations, we find that img produces smaller code with fewer loads. This is

because the -gvn optimization applied after -mem2reg is exposed to far more opportunities

like re-calculating array indices after their base addresses have been promoted to registers.

This explains why the CPU shows better performance on the img optimization. However, this

raises the question as to why the design with greater number of loads has a smaller latency

in the HLS setting, especially because loads are expensive operations. Further examination

revealed that while img reduced the loads by re-using computed values, it increased the

length of the data dependency chain. This led to the img design having one extra state in

its finite state machine created during scheduling.

The simple example shown above demonstrates that there are very subtle details and side

effects that can have different impacts on CPU codes and HLS designs. Also, the impact

of one optimization can be more pronounced in a HLS setting than in a CPU design. A

typical CPU has many hardware features that enhance the performance of code that is being

executed. For example, multiple levels of caches and out-of-order execution drastically reduce

the cost of a single load. Techniques like branch prediction and speculative execution can

hide the cost of evaluating a branch most of the times in case of loops. High-level synthesis is

a different area in that way where each load corresponds to a read from a memory block, and

each load costs the same number of cycles. Every branch instruction is dependent on another

instruction that computes the exit condition, and branch prediction mechanisms have to be

specified in software manually by the designer if needed. Also, HLS can potentially exploit

greater ILP limited only by the physical resources available on the target platform. On a

typical processor, only the ILP available within the instruction window is exploited.

In this study we perform an initial investigation into the impact of compiler transforma-

tions on behavioral descriptions of hardware circuits, which are passed through a high-level
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synthesis (HLS) tool. High-level synthesis is an automated design process that takes an

UN-timed, behavioral description of a circuit in a familiar, high-level language like C, and

generates a timed or UN-timed register-transfer-level (RTL) net-list that implements the

same behavior. The generated RTL can then be passed through vendor-specific logic syn-

thesis tools to obtain the final net-list. High-level synthesis provides a convenient way for a

designer to specify the behavior of a circuit without worrying about low-level timing details.

With the increase in the complexity of circuits application-specific processors, ASICs and

FPGA-based accelerators, HLS is growing in popularity in the system design community.

In this study, we investigate the effects of compiler optimization orders on the quality

of RTLs generated in HLS, for some definition of quality. The RTL generated by a HLS

process is heavily influenced by the way the design is specified at the high-level. As a result,

researchers have developed several source-level optimizations, some of them specific to HLS

like array partitioning. Each high-level optimization can be tuned using specific parameters,

and the choice of the parameters can either enable or disable another optimization. For

example, a wrong array partition factor can be detrimental to loop pipelining. We have

chosen three important high-level optimizations - loop unrolling, loop pipelining and array

partitioning - and examined the interactions between them. We use AutoESL, an industry-

standard High-level synthesis tool from Xilinx along with other EDA tools from Xilinx to

analyze the effects of the optimizations under study. We describe and use a set of simple,

yet effective heuristics to quickly search the space of the described optimizations and study

their effects on several benchmarks.

We also study the impact of classical scalar optimizations on High-level synthesis. As

AutoESL is a commercial tool that performs many optimizations internally, AutoESL is

not a suitable tool to study such lower level optimizations. We motivate our study of this

problem using data from xPilot [5], a research High-level synthesis tool developed at UCLA.

xPilot provides the flexibility to enable and disable specific low-level optimizations, and

thus is an ideal tool for our study. We evaluate several approaches, and suggest a new

approach based on lookahead for optimizations. Our initial experiments show that latency

improvements of more than 3X can be achieved by choosing the right order for an input

5



behavioural description. We thus highlight the importance of phase ordering and the more

general idea of having a strong compilation technology in a HLS tool-chain.

The rest of the thesis is organized as follows. We provide some necessary background

information regarding HLS and xPilot in chapter 2. Our study on high-level optimizations

are described in chapter 3. For scalar optimizations, we motivate, describe and evaluate all

our methods in chapter 4. We discuss related work in chapter 5 and conclude with comments

on future work in Section 6.
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CHAPTER 2

Background

2.1 High-level Synthesis

High-level synthesis (HLS), or behavioral synthesis, is the process of automatically generating

cycle-accurate RTL models from behavioral specifications. The behavioral specifications are

typically in a high-level language, like C/C++/Matlab. The generated RTL models can

then be accepted by the downstream RTL synthesis flow for implementation using ASICs or

FPGAs.

A high-level synthesis tool can be regarded as a compiler for such high-level language,

with a target machine that are specifically created to run the particular program. Compared

to the traditional RTL-based design flow, potential advantages of HLS include the following.

• Better management of design complexity. Raised level of abstraction leads to reduced

code size and thus increased efficiency in design capture, simulation and verification.

With the increase of design complexity, this can lead to overwhelming improvement in

time to market.

• Code reuse. Since a design is specified using a high-level language without much

knowledge about the target platform, it is easy to re-target an existing design towards

a different platform or a different frequency. In addition, libraries containing behavioral

specifications of common functionalities can be built to facilitate such reuse.

• Easy design-space exploration. By applying different directives (e.g., loop unrolling,

memory mapping, pipelining) and constraints (e.g., resource allocation, clock period),

different architectures can be generated and evaluated easily. The designer can thus

7



generate a lot of design alternatives and pick the one that best fits the need of the

system.

HLS has been an active research topic for more than 30 years. Early attempts to de-

ploy HLS tools began when RTL-based design flows were well adopted. In 1995, Synopsys

announced Behavioral Compiler, which accepts behavioral HDL code and connects to down-

stream flows. Similar tools include Monet from Mentor Graphics and Visual Architect from

Cadence. This wave of tools received wide attention, but failed to widely replace RTL design.

This is partly ascribed to the use of behavioral HDLs, which are not popular among algo-

rithm and system designers and require steep learning curves. Since 2000, a new generation

of HLS tools has been developed in both academia and industry. Unlike many predecessors,

many of them use C-based languages to capture the design. This makes them more accessi-

ble to algorithm and system designers. It also enables hardware and software to be specified

in the same language, facilitating software/hardware co-design and co-verification. The use

of C-based languages also makes it easy to leverage new techniques in software compilers

for parallelization and optimization. As of 2012, notable commercial C-based tools include

Cadence C-to-Silicon Compiler, Calypto Catapult C (formerly a product of Mentor Graph-

ics), NEC CyberWorkBench, Synopsys Synphony C (formerly a product of Synfora, and

originating from the HP PICO project), and Xilinx AutoESL (originating from the UCLA

xPilot project [5]). More detailed surveys on the history and progress of HLS are available

from [13, 14, 6].

2.2 xPilot

xPilot [5] is an academic HLS tool developed at UCLA. It takes as input a C function and

generates an RTL Verilog module to implement the functionality. Internally, the process is

divided into the following phases. Compiler transformations are first performed on the source

code using LLVM [19] to obtain an optimized intermediate representation, which can be

translated to a control-data flow graph (CDFG). Operation scheduling is then performed on

the CDFG, and it generates a finite-state machine with data path (FSMD) model, where each

8



Compiler
Transformation

Scheduling

Binding

Behavioral Specification

CDFG

FSMD

RTL

Figure 2.1: The high-level synthesis flow in xPilot.

operation is assigned to a state in the FSM. After scheduling, the cycle-accurate behavior is

determined. Binding is then performed on the FSMD to allocate functional units, storage

units and interconnects, and then the RTL net-list is decided. The basic flow is illustrated in

Figure 2.1. Note that the flow can be organized in slightly different ways, e.g. [7] performs

scheduling and binding in an iterative manner.

As mentioned earlier, the LLVM compiler framework [19] is employed as the front-end

framework in xPilot. A sequence of LLVM passes, including the standard ones and one

specifically designed for HLS, are performed to generate the CDFG. For a given CDFG, the

scheduler in xPilot tries to minimize worst-case latency by default, under the constraints of

data dependency, control dependency, clock frequency, and resource limits [8]. The scheduler

tries to insert clock boundaries on certain edges of the dependency graph, in order to guar-

antee that the combinational delay of the logic in each state is within the target clock period,

and that the number of operations of a certain type (e.g., multiplication) in each state is

less than or equal to the number of corresponding functional units (e.g., multipliers). In a

simplified model, operations in the same basic block are scheduled into consecutive control

states; branches (including loops) are implemented as state transitions in the FSM. Thus,

the resulting FSM is somewhat similar to the control-flow graph of the input function. If the

control-flow graph of the input function is reducible, it is possible to estimate the worst-case

latency of the module given the trip counts of loops.

As shown in Table 2.1, xPilot uses around 55 different optimizations during CDFG cre-
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ation . These include standard compiler transformations like dead code elimination, algebraic

re-association, common sub-expression elimination, peephole optimizations and so on. There

are also certain other transformations which are unique to a HLS-based setting, one example

being the bitwidth minimization optimization. By default, xPilot applies a pre-determined

optimization sequence which has around 250 optimizations. Some optimizations like dead-

code elimination are applied many times. In the default setting the user does not have an

option to control these optimizations. However, for the purpose of our study, we have mod-

ified xPilot so that we have greater control over the optimization sequence used to generate

the CDFG. Chapter 4 describes this aspect of our study in detail.

In order to study the effect of IR-level transformations, it is important that we have

complete control over all the optimization phases that the code goes through before a CDFG

is generated from it. Commercial tools like AutoESL do not provide this flexibility. Although

it is possible to perform the transformations, AutoESL performs several transformations

upon this input on invocation and hence our analysis would become inaccurate. As explained

further in Chapter 3 and Chapter 4, we use AutoESL to study high-level transformations

and xPilot to study IR-level transformations.

2.3 Experiment design flow

Figure 2.2 describes the architecture of our flow, which will be described in the subsequent

two chapters. Source-level transformations are studied using AutoESL. We use AutoESL’s

estimates in our iterative approach to quickly arrive at a good configuration for a design,

and then invoke the Xilinx back-end. We use xPilot to study IR-level transformations and

their impact on the latency of the RTL generated. As we are not factoring area utilization

for IR-level transformations into our study here, we do not go through the Xilinx back-end.
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Figure 2.2: Broad design flow used in all our experiments. xPilot is used for IR-level opti-

mizations while AutoESL is used for source-level optimizations.
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Table 2.1: Benchmarks and description.
Optimization Description Optimization Description

-ptrLegalization Convert pointers to array indices -interface-gen Interface generation

-func-inst Instantiate a function -inst-simplify Operator strength reduction

-globalsmodref-aa Mod-ref analysis for globals -loop-dep Loop dependency analysis

-bitwidth Bitwidth analysis -aggr-aa Aggressive alias analysis

-flattenloopnest Flatten a loop nest -function-uniquify Uniquify functions

-loop-merge Fuse loops -mergereturn Unify function exit nodes

-mem2reg Promote memory to register -array-seg-normalize Array segment normalization

-constprop Constant propagation -globalopt Global variable optimizer

-doublePtrElim Eliminate double pointers -pointer-simplify Simplify pointers

-directive-preproc Preprocess directives -if-conv If-conversion

-rm-dup-func Remove duplicate functions -array-normalize Normalize array accesses

-argpromotion Promote ’by reference’ arguments to scalars -array-partition Array partitioning

-break-crit-edges Break critical edges in CFG -loopsimplify Simplify loops

-dce Dead code elimination -loop-deletion Delete dead loops

-adce Aggressive dead code elimination -syn-check Check synthesizability

-array-map Perform array mapping -deadargelim Dead argument elimination

-function-inline Function in-lining -xunroll Partially unroll loops

-gcse Global common sub-expression elimination -ipconstprop Interprocedural constant propagation

-scalarrepl Scalar replacement -func-legal Legalize function

-ptrArgReplace Pointer Argment replacement -deadtypeelim Dead type elimination

-reassociate Algebraic re-association -array-flatten Flatten arrays into scalars

-indvars Canonicalize induction variables -condprop Conditional propagation

-array-streaming Specify array as streaming -instcombine Combine instructions

-simplifycfg Simplify the CFG -expr-balance Expression tree balancing

-dse Dead store elimination -gvn Global value numbering

-bitwidthmin Bit-width minimization -loop-bound Loop-bound estimation

-licm Loop-invariant code motion -basicaa Basic alias analysis

-simplify-libcalls Simplify library calls
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CHAPTER 3

Source-level Optimizations

In this chapter, we describe our study of high-level optimization interactions. By high-level

optimizations, we are referring to optimizations that are typically performed on a high-level

representation of a program like an abstract syntax tree (AST). In this study, we consider

three optimizations commonly used on High-level synthesis designs - array partitioning,

loop unrolling and loop pipelining. We have chosen these optimizations as they are most

commonly employed in standard high-level designs. A quick survey of accelerators in the

Open Accelerator Repository [1] shows that these three optimizations are applied in almost

every design. AutoESL provides a convenient interface to specify these optimizations either

via a directive in a configuration file or as a pragma in the source code itself. We first describe

AutoESL’s optimization options and study each of the three optimizations mentioned above

individually. We then analyze interactions, draw conclusions and describe a set of simple

heuristics to quickly eliminate bad choices and arrive at a good configuration.

3.1 AutoESL optimization options

Table 3.1 describes all the directives that AutoESL exposes to users to optimize the design.

As can be seen, the solution space is large, not just because the number of directives is large,

but also because each directive takes multiple parameters. The parameters used with the

optimizations along with the choice of optimizations often has a significant impact on the

latency and area occupied by the generated RTL.
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Table 3.1: Options available in AutoESL. Each option can either be specified as a configu-

ration directive or as a pragma in source code.

set directive allocation Specify instance restrictions for resource allocation

set directive array map Maps a smaller array into a larger array

set directive array partition Partitions an array into smaller arrays or individual elements

set directive array reshape Combines array partitioning with vertical array mapping

set directive array stream Use FIFOs are used instead of RAMs for arrays

set directive clock Applies the named clock to the specified function

set directive dataflow Specifies that dataflow optimization be performed on the functions or loops

set directive dependence Allows the user to explicitly specify dependence information

set directive expression balance Rearrange expression operations to create a balanced tree

set directive function instantiate Create a unique RTL implementation for each instance of a function

set directive inline Inline a function

set directive interface Specify how RTL ports are created during interface synthesis

set directive latency Allows a maximum and/or minimum latency value to be specified on a function

set directive loop flatten Flatten nested loops into a single loop hierarchy

set directive loop merge Merge all the loops into a single loop

set directive loop tripcount allows the user to loop trip-count

set directive loop unroll Unroll a loop either completely or by a specified factor

set directive occurrence Specify that code executes at a lesser rate than enclosing function or loop

set directive pipeline Pipeline a given function or loop

set directive protocol Specify code region where no clock operations will be inserted by AutoESL

set directive resource Use specific library resource be used to implement a variable in the RTL

3.2 Array Partitioning

Array structures in high-level design descriptions are implemented as memory blocks by

default. This saves considerable amount of area than compared to using flip-flops to store

individual elements, especially when the arrays are big. However, mapping arrays to available

RAM resources creates resource constraints that may limit the ILP in the design. Each

physical RAM block has a fixed number of read and write ports, and can therefore support

only those many number of loads and stores in parallel. It is sometimes desirable to obtain a

’banked’ implementation of an array, where the array elements are divided and mapped onto
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void testAP(int a[10], int i)

{

a[i] = i;

}

Figure 3.1: Example design to study array partitioning
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Figure 3.2: Comparison of latency and area numbers for different partitions for design in

3.2. Power-of-2 partitions perform better.

several RAM blocks. This effectively increases the number of read/write ports to the array

and can alleviate the resource constraint problem. However, choosing the right splitting

mechanism and number of banks is extremely crucial to obtain good benefits. A wrong

partitioning choice can have a big negative impact not only by itself, but also on other

optimizations. In this study, we concentrate only on cyclic distribution of array elements to

different partitions.

For example, consider a simple piece of code as shown in Figure 3.2. Figure 3.2 shows the

effect of various partition numbers on the latency and area. This is obviously a very simple

contrived case where array partitioning is not needed, but it serves as a good example to
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understand the effects of array partitioning. In particular, we make the observation that the

best choices for the number of partitions seem to be powers of 2. This can be explained by

observing and understanding the array partitioning optimization in action. When an array

is partitioned, some additional code gets added into the design. This is required to select

the right array bank and the right index within the bank. For instance, if the array a above

has been divided into 3 partitions, each store into a[i] will require selecting the right array

bank depending on the value of i. Hence additional code is inserted that performs i mod

3, based on the result of which a series of select statements will select the right bank. It

turns out that the mod operator is very expensive as it is slow and occupies a large area.

However, mod operator on powers-of-2 numbers are very cheap as it can be implemented

by examining the appropriate number of least significant bits (LSB) and just truncating the

rest. For example, to perform i mod 2, the least two significant bits of i provide the answer

instantly. Similarly, least three significant bits are used to perform i mod 4, and so on. To

perform mod on any other number, a 32-bit mod operator is required.

3.3 Loop Unrolling

Loop unrolling is a popular, commonly used optimization that fuses successive loop iterations

into the same iteration. The number of iterations fused together is called as the unroll

factor. Loop unrolling reduces the number of exit checks in a loop. Also, as consecutive

loop iterations are merged into the same body, unrolling can potentially improve ILP. Loop

unrolling also exposes more opportunities to other optimizations like scalar replacement and

dead code elimination, especially in loops with a carried dependency.

in order to understand and illustrate the effects of loop unrolling from a HLS perspective,

we consider two simple kernel loops shown in Figure 3.3. The first loop is a daxpy-style data-

parallel vector computation operating on integer elements. The second loop is a sequential

prefix sum implementation with a loop carried dependence across one iteration.

Figures 3.4 and 3.5 show the latency and area numbers of the loops in Figures 3.3(a) and

3.3(b) respectively. We make the following observations:
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#define N 500
void daxpy(int a[N], int b[N], int k, int c)
{

int i;
L1:for(i=0;i<N;i++) 
{

a[i] = b[i] * k + c;
}

}
    (a)  No dependency

#define N 500
void prefix(int a[N+1], int b[N+1], int k, int c)
{

int i;
L1:for(i=1;i<N+1;i++) {

a[i] = a[i1] + a[i];
}

}

     (b)  Dependence distance = 1 

Figure 3.3: Two simple kernels subject to loop unrolling.
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Figure 3.4: Latency and area numbers for loop in 3.3(a).
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Figure 3.5: Latency and area numbers for loop in 3.3(b).
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• We can observe that the best performing unroll factors in both the kernels considered

are 2,4,5,8,10,16,20. While it is not immediately obvious from these results alone,

further experiments with different trip-counts revealed that the set of best unroll factors

consists of both the factors of the loop trip-count as well as all powers of 2 lesser than

the trip count. This can be explained by understanding why the other factors are bad

choices. Unrolling a loop with a number that is not a factor of the trip-count leaves

some remainder iterations to be executed. In the actual implementation, this causes

the addition of a number of exit checks and branches at various stages in the loop

which add considerable overhead. For non-power-of-2 unroll factors, the exit checks

need a full 32-bit comparator to check the index variable’s size. Also, as the exit checks

are dependent on the loop index variable, they introduce data dependency with the

instructions that update the loop index variable. This limits the available ILP. Due

to these reasons, the finite state machine created for this design during the scheduling

phase is bigger with more nodes and much more complicated, thereby needing greater

area (LUTs, multiplexers) to be implemented.

Limiting the unroll factor search space to just factors of the trip-count will lose some

opportunities. Power-of-2 unroll factors are also good choices because they simplify

exit check comparisons, needing smaller (and hence faster) comparators. Considerably

lesser number of exit checks are generated for power-of-2 unroll factors, thereby not

adding too much overhead in each iteration. Hence, the finite state machine of the

design has fewer nodes and is relatively less complicated, thereby costing lesser area

as well.

• Area consumption increases linearly with unroll factor. This is an obvious conclusion

because unrolling exposes many instructions that could execute in parallel. Hence the

scheduler gets extra freedom to pack more instructions into each cycle, and hence there

is less re-use. Also, as each iteration in the unrolled loop is much bigger, it increases

the number of nodes in the finite state machine, thus increasing area.

• Unrolling dependent loops enables optimizations like scalar replacement. As loads
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from memory are expensive operations, unrolling dependent loops is a good choice.

However, the reduction in latency due to saving loads quickly balances out with the

increase in the size of each iteration.

• In both cases discussed here, it is clear from Figures 3.4 and 3.5 that the latency gain

from unrolling (using good unrolling factors) quickly flattens out. For example, the

relative gains between unroll factors 8 and 10 is far lesser than the gain between factors

5 and 8.

From the observations above, we form the following conclusions:

• The set of good unroll factors S for a loop L with a trip-count of n can be defined as

follows:

S = {fi|mod(fi, n) = 0}
⋃
{2k|(k ∈ N) ∧ (2k ≤ n)} (3.1)

• As area increases linearly with unroll factor, an incremental search algorithm can be

used to search S for an unroll factor that provides a reasonable performance-area trade-

off. The initial latency and area occupied by the completely rolled version of the loop

is considered as the starting point. Starting from the lowest unroll factor si in S, the

loop in consideration is unrolled with factor si. The latency and area of the loop are

measured. For area numbers, we need only a rough approximate such that relative

increases in area are captured ’accurately enough’. For this purpose, we use the area

numbers reported by AutoESL and skip the lengthy process of logic synthesis, map

and place-route. After the latency and area numbers are obtained, we calculate the

latency slope l and area slope a. Based on the values of l and a, one of the following

actions are taken:

– If |l| > |a| and l < 0, then the unroll factor si is good. The next unroll factor will

be compared to the results of si.

– If |l| < |a|, then the latency gain is smaller compared to the area it occupies. The

algorithm stops and previous unroll factor is returned.
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– If l > 0 and a > 0, then si is clearly a bad choice. In our current implementation,

we remain optimistic by just skipping over si and moving on to the next unroll

factor in S

The above algorithm can easily be generalized to sacrifice either latency or area. For

example, in order to favour latency, we can modify the first condition by adding a

weight w > 0 to the |a| parameter. This will allow unroll factors that still achieve

latency reduction, but causing a greater increase in area.

3.4 Loop Pipelining

Software pipelining is another popular loop transformation that also attempts to exploit

ILP, but in a different way. Software pipelining attempts to re-order instructions such that

independent instructions across iterations are executed in parallel. The goal of software

pipelining is to start execution of the second (or i + 1th) iteration in as short an interval

as possible. This interval between the launch of two successive iterations is called as the

initiation interval (II). Software pipelining increases design throughput. In the steady state,

effectively each iteration takes II cycles to complete. Therefore, pipelining a loop with low

II yields a very high throughput.

To illustrate the benefit from pipelining, consider again Figure 3.3(a). Figure 3.6 com-

pares the latency and area of the unpipelined loop with a pipelined version having an II=1.

As we can see, almost a 3X reduction in latency is achieved with a modest 20% increase in

the number of slices.

A common practice is to use loop unrolling and loop pipelining in tandem. If a loop

with II=1 is unrolled twice and pipelined, and if the minimum II that can be achieved with

the unrolled loop can still be 1, then in the steady state each iteration in the original rolled

loop takes just 0.5 cycles in the pipelined version. In general, it is profitable to unroll and

pipeline a loop as long as the minimum achievable II is increasing at a slower rate than the

unroll factor.
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Figure 3.6: Comparison: No pipelining v/s Pipelined loop (II=1)
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Figure 3.7: Pipelining with unrolling loop in 3.3(a) for 65536 iterations.
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Figure 3.8: Pipelining with unrolling and partitioning 3.3(a) for 65536 iterations.

However, software pipelining can be constrained by the available memory bandwidth.

Consider Figure 3.7 for instance. Here the loop in 3.3(a) has been executed for a greater

number of iterations (65536) for a better illustration. While unrolling is causing a linear

increase in area, software pipelining is unable to achieve the required II due to a resource

constraint in terms of the number of read/write ports. With appropriate array partitioning,

software pipelining combined with loop unrolling proves to be a powerful combination. Figure

3.8 shows just that. We can clearly observe gains for unroll factors of 2,4 and 8, all of which

happen to be factors of the trip-count (65536) and a power of 2, making them good candidates

for array partitioning.
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3.5 Approach to search optimization space

We adopt the following simple approach in order to arrive at a loop configuration that

achieves a reasonable performance to area. We use the algorithm described in section 3.3 to

obtain the unroll factor ui giving best performance to area. The loop is unrolled ui number

of times and then pipelined. We leverage the detailed information that AutoESL provides

regarding the minimum pipelining II achieved, resource and data constraints. If the II is

constrained due to memory resources, the appropriate array is subjected to partitioning.

The partition factor starts at 2 and is then doubled in subsequent iterations if the previous

partition factor was insufficient to resolve the resource constraint. We have found that this

approach is simple, yet is very effective in quickly arriving at optimal loop configurations.

In the next section, we evaluate our approach on a set of benchmark designs.

3.6 Evaluation

In this section, we evaluate the methods and heuristics presented in the previous section.

We first discuss our experimental setup and flow. We then describe the set of kernels we

have chosen for evaluation and discuss results.

3.6.1 Experimental setup

Figure 3.9 shows the structure of our evaluation flow. For purposes of evaluation, we use

AutoESL, an industry-standard High-level synthesis tool. We obtain area numbers from the

EDA tool-chain provided by Xilinx. The target platform we consider here is Xilinx Virtex

5. However, there was no specific reason to choose Virtex5 over others, and the experiments

can be run just as easily targeting any other platform. Currently, we can handle benchmarks

whose loop trip-counts can be determined at compile-time.
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Figure 3.9: Structure of our experimental flow.

3.6.2 Results

We tested our approach on five different kinds of kernels taken from the Open Accelerator

repository [1] and MiBench [15]. We have hand-chosen different kernels in order to achieve

a broader evaluation coverage. The benchmarks are described below :

• adpcm decoder: Kernel function of the ADPCM decoding algorithm. The main loop

consists of a carried dependency through a scalar variable. Every iteration reads one

element from an inbuffer and writes one element to the outbuffer. The trip-count of

this main loop is 500.

• daxpy: A simple kernel function performing the vector operation A = Bk + c, where k

and c are integer constants. The size of vectors A and B is 500, and the loop trip-count

is 500.

• prefix: A kernel function calculating prefix sum on a vector of integers. The size of the

array and the loop trip-counts are both 500. The loop carries a dependency through

the vector.

26



• segmentation: Kernel performing one compute step in an image segmentation algo-

rithm. The kernel consists of a nested loop with lots of floating point computations

and sqrt operations. This loop is data-parallel. We currently handle the innermost

loop in the nest. AutoESL automatically flattens the loop nest if any outer loop is

attempted to be pipelined. We do not explore that here currently. The inner loop runs

64 times.

• smithwaterman: An implementation of the Smith-Waterman algorithm. This algo-

rithm also contains nested loops with the core innermost loop having a trip-count of

76. This implementation contains many two-dimensional arrays and the loop body

performs considerably many array loads and stores, more than any other benchmark

that we have considered here. The loop carries a data dependency through an array.

Table 3.2: Comparison between baseline and heuristically optimized benchmark versions

against latency and area using ER. The unroll and partition factors used are also specified.

Benchmark
Unroll factor No. of partitions Numbers

Slice LUT FF II Depth Latency ER

adpcm decoder

4 1 Baseline 200 588 217 - - 2502 1

1 Baseline + PP 224 741 234 2 5 1006 2.22

1 U4 + PP 619 2009 471 8 11 1006 0.8035

daxpy

8 1 Baseline 21 80 62 - - 1501 1

1 Baseline + PP 26 92 75 1 3 504 2.405

4 U8 + PP 89 324 315 1 3 67 5.286

prefix

8 1 Baseline 29 113 80 - - 1501 1

1 Baseline + PP 43 166 91 2 3 1003 1.009

8 U8 + PP 109 307 375 2 4 130 3.072

segmentation

32 1 Baseline 31 110 65 - - 8321 1

1 Baseline + PP 43 153 88 1 2 4100 1.463

16 U32 + PP 173 522 160 1 3 132 11.296

smithwaterman

4 1 Baseline 26 102 46 - - 52281 1

1 Baseline + PP 19 73 46 2 3 11708 6.110

1 U4 + PP - - - - - - -

Table 3.2 shows the optimal factor obtained, number of partitions required, latency and

area numbers for all benchmarks. Each benchmark is reported under three configurations:
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Baseline - where the benchmark was run without any high-level optimization, Baseline +

PP - baseline with pipelining, where the main loop was pipelined with the required number

of array partitions, and U(num) + PP - Unroll by obtained unroll factor with pipelining

along with required number of array partitions.

We define the efficiency ratio ER as the latency-area product, as follows:

ER =
latencyb ∗ areab
latency ∗ area

(3.2)

Here, latencyb and areab are the latency and area numbers of the baseline respectively. We

use the number of slices occupied as the representative for area of a design.

The ER is basically a ratio of the speedup v/s area increase, and gives an indication

about the how well the area has been utilized. We can see the ER increases with increase

in speedup and decrease in area utilization. The higher the ER, better is the result.

We make the following observations:

• adpcm decoder does not benefit from unrolling. In fact, unrolling degrades its perfor-

mance as can be seen by its ER. This can be explained by examining the structure of

the loop. As mentioned before, the adpcm decoder loop contains a dependency across

iterations carried over by a scalar. Due to the carried constraint, unrolling the loop just

concatenated more instructions from the next iteration to the end of the loop body.

As a result, the II scaled linearly with increase in the unroll factor, thereby mitigating

the effects of software pipelining. Hence the best result for this benchmark is when

unrolling is at its minimum i.e., the loop is completely rolled. Also, as the constraint

is a data dependency, array partitioning cannot help alleviate the constraint.

• Benchmarks daxpy and prefix perform well, with ERs of 5.2 and 3 respectively. It

is to be noted that the achieved performance is due to the combined effect of array

partitioning, loop unrolling and software pipelining. Further experiments showed a

decrease in performance if either one of these parameters were altered. Prefix has a

slightly smaller gain than daxpy due to the carried constraint in the loop.
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• Segmentation achieves a remarkable benefit with its configuration with an ER of

around 11. As the core loop is data parallel, the only constraint to achieve mini-

mal II would be array resources, and a partitioning factor of 16 resolves all resource

constraints.

• Smithwaterman’s numbers are surprising. The area occupied by the pipelined base-

line version is lesser than the unpipelined version. This suggests that the schedule is

utilizing the hardware very efficiently. Also, SmithWaterman benefits from pipelining

with an ER of 6. Using our heuristics, an unroll factor of 4 was found to give the

best performance to area value. However, pipelining the unrolled loop resulted in an

AutoESL crash due to an internal bug in the tool.

Although some benchmarks we have chosen to evaluate our approach are relatively small

in size, they are kernels which represent real-world computation. We see that the right

combination of partition factor, unroll factor and pipelining can improve the performance

by an order of magnitude.
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CHAPTER 4

IR-level optimizations

In this chapter, we describe our study on the effects of phase-ordering of IR-level optimiza-

tions. Here, we use the latency of the RTL as the metric representing the quality of the

RTL. We first describe the various optimizations used and how we chose them. We then

describe several techniques that we have implemented and evaluated. We also compile and

produce binaries using the same sequence used in HLS, simulate them on a cycle-accurate

out-of-order processor simulator and compare the ranks of each sequence on a processor and

in HLS.

4.1 Motivation

We motivated our study by discussing a simple example in Chapter 1. In this section we

study the same example along with another simple design pattern in the HLS perspective

only, to highlight the significance of compiler optimizations on the generated RTL.

Consider the two example programs shown in Figures 4.1 and 4.2. We consider the same

set of optimizations that we consider in Chapter 1.

• -gvn (g): Global value numbering.

• -mem2reg (m): Promote memory to register.

• -indvars (i): Canonicalize induction variables.

Figure 4.3 provides the performance of three combinations - img, mig and gim on the

two benchmarks. Two things are evident in this example:
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void add(int i[20], int o[2])
{
    int iter;
    o[0] = o[1] = 0;
    for(iter = 1; iter <= 20; iter++) 
    {
      if(i[iter]%2 == 0) {
         o[0] += i[iter];
         o[1] += i[iter];
      }
    }
}

Figure 4.1: Motivational example - simple addition.

  

void fact(int *i, int *o)
{
   int n = *i;
   int fact = 1;
   int iter;
   for(iter = 1; iter <= n; iter++) {
        fact = fact*iter;
   }
   *o = fact;
}

Figure 4.2: Motivational example - factorial.
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Figure 4.3: Latency comparison for different optimization orders for examples in Figure 4.1

and Figure 4.2.

• There is a noticeable variance in the latencies of the RTLs generated with different

optimization combinations. The latency of add varies from 12 to 62 while the latency

of fact varies from 12 to 23

• The best sequence is different for the two programs. In case of add, it is sequence gim

whereas in case of fact, it is img.

Although the example considered above is small, it helps illustrate the effect that the

order of application of transformations has on the resulting RTL’s latency.

As a second case study, we examined a benchmark matrixmul that performs tiled matrix

multiplication. This benchmark is greater in terms of both size and complexity than the

example above. We considered 68 different optimizations and applied several transformation

sequences on matrixmul, where each transformation sequence was of length 200. All opti-

mizations were applied using xPilot’s LLVM-based HLS front-end. The transformed output

from xPilot was passed through AutoESL, a commercial High-level synthesis tool. We fur-

ther synthesized the generated RTLs using XST, Xilinx’s logic synthesis tool in order to get

accurate area estimates.

Figure 4.4 shows the normalized latency and area numbers for a few sequences. We can
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Figure 4.4: Normalized latency and area numbers for matrixmul obtained from AutoESL

and Xilinx back-end.

see that a reduction in latency of almost 2X can be obtained, with a very modest increase in

area. This shows that applications can derive significant benefit with the correct optimization

order.

Another aspect that can be noticed is the irregularity and discreteness of the space of

optimizations. As can be seen in later sections, latency does not take on a spread of values

for different optimization sequences; there are discrete clusters of good and bad sequences.

Such a step-constant nature of the optimization sequence space is not a new finding. Pre-

vious research [18][4] has shown the same result. This result suggests that the latency is

affected only by a few ”critical” optimizations. Section 4.2 provides further details on our

investigation of this property.

We used AutoESL synthesis tool only as part of our initial study to explore the possible

gains that could be achieved. While the encouraging results from such a tool provides a

strong motivation, most commercial tools are licenced and are not open source. Also, it is

likely that the tool performs many transformations on the input which cannot be turned

off, and hence it would not be possible to correctly evaluate the sequences that we use to
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transform the input before passing it through the tool. On the other hand, xPilot is an

academic tool which provides us with maximum flexibility to accurately test the effect of

phase orders. Therefore, for all our experiments mentioned henceforth, we use only xPilot.

4.2 Methodology

In this section, we first describe the various optimizations used and how we chose them.

We then describe several techniques that we have implemented and evaluated to search the

optimization search space. We introduce the simple idea of lookAhead in Section 4.2.4. We

then describe a technique that we tried to speed up our iterative algorithm using a static

latency estimation model.

4.2.1 Optimizations considered

In the default setting, xPilot applies close to 250 transformations from a set of 68 unique

optimizations. While most of the optimizations in this set are standard compiler transfor-

mations like global value numbering, strength reduction etc., a few optimizations are specific

to High-level synthesis. One example for such an optimization is the bitwidth minimization

optimization. Unlike a conventional CPU, reconfigurable fabric like FPGAs can support ar-

bitrary data sizes. This optimization can be very beneficial, as shown section 4.3. Intuitively,

say we have an integer multiply instruction a∗b in the input program. If the maximum range

of values taken by a and b can be statically estimated to not exceed 256, an 8-bit multiplier

can be used to perform this operation as opposed to a 32-bit adder, thereby conserving area

and also decreasing latency.

As mentioned earlier, the space of optimization sequences is discrete. To investigate this,

we generated 1000 random sequences of length 200, where optimizations were taken from

the same set that is used by Xpilot. While this is by no means exhaustive, it is sufficient for

understanding some aspects of the solution space. Figure 4.5 shows the scatterplot of the

average latencies obtained from the sequences. One can immediately observe the discrete

horizontal steps and blank spaces in-between. We repeated the same experiment on multiple
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Figure 4.5: Scatterplot of latencies for matrixmul

benchmarks, only to see a similar result.

Intuitively, such behavior is caused when a few optimizations are far more important than

the others. In order to empirically support our claim, we randomly chose 100 sequences and

examined the effect of each optimization on latency in a step-wise fashion, with the hope

of finding the critical jump points. In other words, if the sequence under consideration is

abcde, we examined the change in latency due to a alone, then ab, then abc and so on. Table

4.1 shows the result of one such examination.

Table 4.1 clearly shows the critical points where there is an observable change in latency.

Similar experiments with other sequences and other benchmarks yield similar results with

discrete changes. Although the order of optimizations was different in each case, there was a

large overlap among the set of optimizations occurring in such critical points. We performed

this exercise on 100 randomly chosen samples from five different benchmarks, and listed
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Table 4.1: Step-wise analysis of one sequence. Reported latency is reported (in cycles) from

xPilot. We used a target clock period of 50 ns.

Position Optimization Latency change (cycles) Final (cycles)

2 instcombine −27000 708094

22 inst-simplify +27000 735094

40 loop-deletion +3520 738614

42 indvars −6682 731932

66 gcse +316536 1048468

68 gvn −647792 400676

74 simplifycfg −400627 49

the most commonly occurring optimizations. Table 4.2 gives a brief description of all the

short-listed optimizations. From here on in this paper, we restrict all our experiments to

this restricted subset of optimizations.

4.2.2 Random search

In our implementation of random search, we generate random sequences containing upto 25

optimizations each. We allow repetitions of optimizations, since it resembles a more natural

setting. We generated and evaluated 5000 random sequences for each of the benchmarks

considered. Section 4.3 has further information on our evaluation.

4.2.3 Genetic Algorithm

We implement a genetic algorithm to search the space of optimization sequences using latency

as the minimization cost function. Genetic algorithms are iterative algorithms that converge

to a solution mimicking the process of natural evolution. In our implementation, we chose

to have a randomly generated initial population of 20 sequences, each of which can have as

many as 25 optimizations. We repeat the iterative search process for 500 generations. In

each iteration, all the sequences in the population are evaluated and ranked. The sequence
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Table 4.2: Subset of optimizations and descriptions.

name description

adce (a) aggressive dead code elimination

bitwidthmin (b) bitwidth minimization

condprop (p) conditional propagation

constprop (k) constant propagation

dse (e) dead store elimination

gcse (c) global common subexpression elimination

gvn (n) global value Numbering

indvars (v) canonicalize induction variables

instcombine (i) combine redundant instructions

inst-simplify (t) operator strength reduction

loop-deletion (d) delete dead loops

loop-preproc (o) Loop preprocess

loop-simplify (l) canonicalize natural loops

mem2reg (m) promote memory to register

ptr-legalization (r) convert pointers to array indices

simplifycfg (s) simplify the control-flow graph

xunroll (x) partially unroll loops

with the lowest latency among all is given rank 1, while the sequence with greatest latency is

given rank 20. At the end of evaluation, sequences in the population undergo mutation and

crossover as follows. Four bottom-most sequences having the greatest ranks are removed.

They are replaced with new sequences formed by crossing over the top four sequences. To

perform a crossover, we concatenate the first half of one sequence with the second half of

another sequence. The best sequence is carried through to the next generation unaltered.

As a last step, 8 to 10 sequences are randomly chosen and mutated. Our implementation

chooses sequences at the bottom with a higher probability to be mutated. To perform

a mutation, we randomly change an arbitrary number of flags in the sequence. Finally,
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duplicate sequences are replaced with random sequences. The best solution found after 500

generations is reported.

4.2.4 n-lookahead scheme

One way to construct an optimization scheme is to progressively consider the best alternative

among all choices and append the best choice to the existing sequence. The n-lookahead

scheme is based on an observation that the number of optimizations enabled or disabled

by each optimization is relatively small. A bad sequence typically consists of a few mis-

placed optimizations which cause a cascade of disabling interactions. In other words, we

can think of an optimization sequence as a sequence of smaller subsequences, where only

the subsequences need to be thoroughly examined for interactions. If the length of such a

subsequence is n, constructing an optimization sequence involves selecting the best set of

n-length subsequences. In this way, we are effectively looking ahead by n steps and choosing

the subsequence that gives the best overall benefit at each step.

A 0-lookahead scheme is basically a greedy approach where we evaluate and choose the

best optimization at every stage during the construction of a sequence. Likewise, a n-

lookAhead scheme where n is the length of the sequence itself is nothing but an exhaustive

search algorithm employed on the whole sequence. From a perspective of capturing all

interaction behaviour, we would want n to be as large as possible, thereby having a greater

window of lookAhead into the possible enabling and disabling effects. However, increasing

n to a large number will exponentially increase the number of combinations to be evaluated.

If we have to construct a sequence of length k with n levels of look ahead, and we have N

number of unique optimizations, the number of combinations to be evaluated is (k/n) ∗Nn.

The value of n should therefore be small enough to have a reasonable number of sequences

to evaluate, while large enough to capture the essential interactions successfully.

In our current implementation of lookahead-0 and lookahead-1, we exhaustively examine

all possible choices at each stage of operation before making a decision. That is, we examine

all N optimizations for lookahead-0 and all N2 pairs of optimizations for lookahead-1 at each
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stage. We then sort and rank all choices based on the benefits obtained, where the sequence

achieving most reduction in latency is given rank 1. In case there is a tie between two

candidate subsequences that give the same benefit, we break the tie by arbitrarily choosing

one of the sequences in alphabetical order. A special case is when none of the sequences offer

any benefit i.e., all choices are tied at 0 benefit. In such a case, we try all the choices to see

if some other optimizations might get enabled after we apply them. In case no optimization

was found to be enabled, the search stops and reports the best sequence and latency found.

In section 4.3, we evaluate the effectiveness of 0-lookahead and 1-lookahead schemes.

4.2.5 Latency estimation model

We were motivated by the following reasons to build a static cost model based on input

program features:

• A static cost model is much faster in providing a latency estimate than xPilot’s backend.

This can help significantly speed up all algorithms discussed in this work, especially

for complicated designs like smithwaterman which take around 80 to 90 seconds to

evaluate one sequence.

• A cost model based solely on input program features provides a convenient and unified

way to study the interaction of transformations on the cost function at a greater detail.

In other words, we will understand the behavior of each optimization in terms of the

cost-affecting program features that it modifies as well as the effect that it has on the

cost function.

Our initial experiments clearly showed that straight-forward features like instruction

count, basic block count etc., poorly correlated with latency. In this work we attempted to

find program metrics that affect RTL latency. As an initial study we have considered three

simple latency estimators based on three program metrics. The metrics are described below:

• The longest weighted data-dependent path: In order to extract this metric, we first

build a data dependency graph (DDG) using the def-use chains in the code. Each node
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in the DDG corresponds to one instruction. Our data dependency graph is acyclic,

in the sense that we do not add back-edges to the graph. However, we annotate each

node with a special weight W . We use the W to factor in effects such as functional

units with a greater latency, instruction within loops etc. W is calculated as follows.

All nodes by default have a weight of 1. Instructions like mul and div have a weight

of 2. Instructions with a loop nest level of l are assigned a final weight of W ∗ 2l. The

estimated latency is the sum of weights of all nodes along the longest path in the DDG.

• Longest un-weighted data-dependent path: Extraction of this metric is very similar

to the metric above, except that we simply count the total number of nodes on the

longest path and ignore their weights.

• Topological nodes removed per iteration: A topological sort of the DDG gives a sched-

ule of instructions that preserves all data dependencies. When performing a topological

sort on a DDG, the number of nodes that have no predecessors in each iteration is basi-

cally the number of independent instructions that are ready to be scheduled. Therefore,

examining the number of nodes removed per iteration of topological sort gives a rough

idea of the structure of the input code. A well known fact is that a broad, balanced-

tree structure in a DDG has a shorter critical path. Such a tree-like structure would

have a large number of nodes removed during the first few iterations of the topological

sort, followed by continually diminshing quantities of nodes in successive iterations,

which means that this parameter would have a large variance but small median. We

ran experiments using the median of the number of nodes removed per iteration and

discuss results in section 4.3.

Latency is influenced by a combination of the factors above and many more factors such

as resource constraints, number of loops and so on. Building a good latency model is a

complicated task. As we show in section 4.3, although the simple experimental models

above provides reasonable performance for a few benchmarks, more number of metrics need

to be taken into consideration to ensure consistency of the estimator across benchmarks.
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Figure 4.6: Modified xPilot structure.

4.3 Evaluation

In this section, we evaluate our approaches described in section 4.2.

4.3.1 Experimental setup

We use xPilot [5], a High-level synthesis tool for research. We slightly re-structured xPilot’s

flow as shown in Figure 4.6 to facilitate easier evaluation of sequences. All tests were run

on an Intel(R) Xeon(R) CE5405 CPU, which has 8 cores running on a 2.00GHz clock. We

have chosen the HLS target platform to be Xilinx Virtex4. There is no specific reason for

choosing Virtex4; the same study could be repeated easily on targeting different platform.

All tests were controlled and automated using a few python scripts. The data dependency

graph construction and latency estimation were done by a pass written in LLVM.

Table 4.3 lists and describes the set of benchmarks that we consider in our evaluation

process. We consider a mixture of simple benchmark designs like binarysearch and honda

to complicated benchmarks like fft and smithwaterman. Another aspect to be kept in mind
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Table 4.3: Benchmarks and description.

Benchmark Description

binarysearch Iterative binary search

cftmdl Kernel region in 1D FFT computation

chem DSP algorithm in a chemical plant

dir Direct implementation of 1D DCT

fft Fast fourier tranform from MiBench [15]

honda DSP filter application

jacobi Jacobi method to solve linear equations

lee Lee’s algorithm for 1D DCT [20]

matrixmul Tiled matrix multiplication

sha SHA-1 encryption algorithm

smithwaterman Smith-Waterman algorithm

is that all benchmarks are behavioural descriptions that are to be implemented in hard-

ware. Therefore, benchmarks like sha are fairly complicated cases. In our current study, all

benchmarks contain just one function. We slightly modified a few benchmarks by manually

in-lining a few helper functions so that the benchmark was contained in a single function.

Extending our approach to multiple functions is relatively easy.

4.3.2 Random sampling vs. xPilot

Figure 4.7 shows the comparison between the results of random search and the default

optimization setting in xPilot. It can be seen that there are significant gains that can be

achieved with an optimization order that is benchmark-specific.

Benchmarks binarysearch, cftmdl, chem, dir, honda and lee are all small benchmarks. In

spite of their simplicity, it can be seen that they benefit from the choice of optimizations.

Upon inspecting one of the benchmarks, honda closely, we were able to pin-point the reason

that the default setting was performing badly. The default setting applies the algebraic

re-association operation (-reassociate) which basically re-orders expressions such that more

42



  

fft

ja
co

bi

m
at

rix
m

ul

sh
a

sm
ith

w
at

er
m

an

bi
na

ry
se

ar
ch

cf
tm

dl

ch
em di

r

ho
nd

a

le
e

0

0.2

0.4

0.6

0.8

1

1.2

xPilot
random

Benchmarks

N
o

rm
a

liz
e

d
 la

te
n

cy

Figure 4.7: Comparison of latencies: xPilot default sequence v Random search. Results are

normalized to latency obtained by xPilot’s default setting.

opportunities are exposed to other optimizations following it, such as constant folding, partial

redundancy elimination etc. For example, consider an expression y = 4 +x+ 5, which would

translate to a 3-address IR of t1 = 4+x; y = t1+5;. The algebraic re-association optimization

aims to re-associate such potential candidates so that the IR looks like t1 = 4+5; y = t2+x,

so that constant folding and propagation can be performed to eliminate the first instruction

altogether. However, it turns out that while the re-association operation exposes a few

more redundant expressions, it has a side-effect of lengthening the critical chain. We could

explain (and verify by hand) that in this case, re-association was adding more skew to the

data-dependency graph, and hence increasing the latency of honda. As our optimization

subset does not contain re-association, none of the sequences generated and searched by our

algorithms faced this problem.

Benchmark jacobi achieves a rather remarkable reduction in latency. The original latency

was 20788 cycles, while the best latency searched was 492. We discuss this in greater detail

later in this section.
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Overall, we achieve a mean reduction in latency of 50.42% over xPilot’s default setting.

4.3.3 Comparison of approaches

In this section, we compare the performances of various approaches discussed in Section 4.2.

As mentioned previously, we consider several small benchmarks in our benchmark set.

While they help illustrate the fact that even small designs can benefit from good phase or-

ders, they provide little information about the effectiveness of our approaches. All the small

benchmarks achieved the exact same gain as random search from all our other approaches.

The reason for this is that such benchmarks contain opportunities for only a few optimiza-

tions, and hence the interacting subset is fairly small. We discussed the nature of one such

interaction with honda in the previous section. To better quantize the merits/de-merits of

our approaches, we include only one small benchmark (binarysearch) as a representative

example for all the other smaller benchmarks in all our further analyses.

Table 4.4 shows the comparison (in clock cycles) of the best latencies along with the best

sequences obtained using different methods. Random search and genetic algorithm match

up to each other in most cases except fft, where the genetic algorithm outperforms random

search.

We can also see that a similar trend exists between random search and 1-lookahead. We

consider this to be a promising result; by looking at just pairs of optimizations, we can arrive

at the same solution that we could arrive at using genetic algorithms and random search.

However, we can see that matrixmul does not match up like the other benchmarks. It is

likely that a 2-lookahead scheme would have covered a few of the interactions that were

missed by the 1-lookahead scheme, but we did not explore that as part of this work.

Table 4.5 shows the number of generations that the genetic algorithm took to converge

to the solution reported in Table 4.4. We can immediately see that the algorithm converges

pretty quickly. fft takes the longest time of 186 generations. Figure 4.8 shows the rate of

convergence. One can observe that all the graphs are step functions containing one or two

main steep drops. This strongly indicates the presence of a handful of critical optimizations
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Table 4.4: Comparison of different approaches. Some smaller benchmarks were left out for

brevity, as they closely resembled binarysearch.
Benchmark Approach Benchmark Approach

fft

Random
Latency: 2361

jacobi

Random
Latency: 492

Sequence: srnaln Sequence: cbaemkxemsbsdtntsem

GA
Latency: 1896

GA
Latency: 492

Sequence: mxvbvenr Sequence: bmciensi

0-lookAhead
Latency: 2359

0-lookAhead
Latency: 48358

Sequence: nktadnxpslbcoemns Sequence: mxbtpsealodk

1-lookAhead
Latency: 2339

1-lookAhead
Latency: 492

Sequence: mnriksbtvbosknkacr Sequence: kmnsossbcsebnaiinr

matrixmul

Random
Latency: 49

sha

Random
Latency: 1442

Sequence: aooeakbesmdsttvocaosa Sequence: mxxasdotxrlxlbrmnt

GA
Latency: 49

GA
Latency: 1442

Sequence: mceosi Sequence: iiiiiiim

0-lookAhead
Latency: 80119

0-lookAhead
Latency: 1442

Sequence: rnevxbntoldamssss Sequence: mxnapseixrnacsmo

1-lookAhead
Latency: 669

1-lookAhead
Latency: 1442

Sequence: rpnevxbpdeboomisiceb Sequence: kmsipekrbrrpemoker

smithwaterman

Random
Latency: 23

binarysearch

Random
Latency: 12

Sequence: kbvdsbbtmeosmn Sequence: etaneb

GA
Latency: 23

GA
Latency: 12

Sequence: inemsobs Sequence: iiiiiiin

0-lookAhead
Latency: 844

0-lookAhead
Latency: 12

Sequence: kneimmissnirnxxxp Sequence: mtsnprciebvsdsak

1-lookAhead
Latency: 23

1-lookAhead
Latency: 12

Sequence: neamiaosaaaa Sequence: kmpkrsnciienaebmts

that account for maximum reduction in latency.

Further analysis on the best sequences for each benchmark revealed interesting results.

The following are a few of the observations that we make:

• Benchmark jacobi achieves a remarkable reduction in latency. In order to ascertain the

reason for such a drastic difference, we examined the differences between the default

sequence and the best sequence. We found that the jacobi benchmark has subsequence

ns (-gvn -simplifycfg) as one of its critical optimizations. We observed that the default

sequence applied -scalarrepl optimization (scalar replacement) before -gvn or simplify-
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Table 4.5: Convergence of the genetic algorithm. Some smaller benchmarks were left out for

brevity, as they closely resembled binarysearch.

Benchmark Generations

fft 186

jacobi 33

matrixmul 1

sha 1

smithwaterman 51

binarysearch 1

cfg. In this case, -scalarrepl had a disabling interaction on ns. We re-ran the default

sequence by disabling just the -scalarrepl optimization, and obtained the same reduced

latency number as shown in Table 4.4. We can also observe the presence of either ns

or bs in all the good sequences for jacobi reported in Table 4.4. Note that the critical

pair need not be applied consecutively as long as there is no disabling optimization

(like -scalarrepl in this case) applied in between them.

• Benchmark smithwaterman benefits from the existence of the pair ms (i.e., -mem2reg

-simplifycfg). We obtained this information by observing all the sequences in successive

generations of sequences evaluated as part of the genetic algorithm. We noticed that

a vast majority of bad sequences did not contain either m or s or both.

• Genetic algorithm search for benchmark sha produced an interesting sequence as re-

ported in Table 4.4. It turns out that optimization m (i.e., -mem2reg) is a critical

optimization. We can observe in Table 4.4 that all the reported good sequences apply

m quite early in the sequence, and that i ( -instcombine) does not affect m’s opportu-

nities. However, in order to examine the set of optimizations that do have a negative

effect on m, we studied a set of bad sequences obtained from the genetic algorithm and

random search. We observed that a vast majority of the sequences that had optimiza-

tions r (-ptrLegalisation) and t (inst-simplify) applied before m performed poorly as
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Figure 4.8: Convergence rate of genetic algorithm for benchmarks.

they negatively interacted with m.

• Benchmark binarysearch is far less complex and contains only a few optimization oppor-

tunities. Sequences from lookahead and genetic algorithms revealed that optimizations

m or n can both optimize binarysearch to achieve the latency reported in Table 4.4.

4.3.4 Evaluating the latency estimation model

In this section, we evaluate the three metrics introduced earlier in section 4.2.5. To evaluate

the metrics, we use them to steer the genetic algorithm described above. The initial popu-

lation is initialized randomly as before, but the evaluation of sequences is done solely based

on the metrics. We evaluate all three metrics in isolation by measuring the final latency that

the genetic algorithm converges to after 100 generations.

Table 4.6 shows the performance of the three metrics. We can see that sha and fft

perform well on the topological count metric. The weighted path performs poorly on all three

benchmarks, suggesting that the weight scheme used is not modeling latencies correctly.
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Table 4.6: Evaluation of latency estimation metrics. The metric in the first column was used

to guide the GA, and a best sequence was obtained. The numbers reported are the final

latencies from xPilot upon applying the best sequence obtained from the model-guided GA.

Metric sha fft smithwaterman

Max. weighted path 2444 6215 7565

Max. unweighted path 1889 5410 8244

Median of topological count 1444 2351 2765

sha performs reasonably well when the unweighted path metric is used. This indicates

that the latency for sha has a strong correlation with the length of its critical path. The

topological count metric models latency relatively well because it captures information about

the structure of the tree and gives an average measure of the variance in ILP available in

the program.

To summarize, the models suggested in this initial study see some limited success, but are

not sophisticated enough to capture all aspects of a program that collectively affect latency.

Building such a model is a non-trivial task and is something that we are considering for

future work.

4.3.5 Comparison of best sequences across benchmarks

In this section, we briefly explore the proximity of best sequences of different benchmarks

in their impact towards the latency of the RTL generated. In order to measure this, we

take the best sequence of each benchmark and run xPilot on every benchmark using that

optimization sequence.

Table 4.7 shows the comparison for the five benchmarks using all the best sequences. As

can be seen, the best sequence for one benchmark can be the best sequence of another similar

benchmark. For example, matrixmul performs well on the best sequence for smithwaterman

as well. This is because they are affected by the same critical optimizations. Similarly, sha

and smithwaterman perform well on each other’s best sequences as well.
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Table 4.7: Comparison of best sequences. We synthesize each of the four benchmarks using

the best optimization sequence from each benchmark. Columns represent benchmarks and

rows represent the benchmark whose best sequence is being used. Number reported is latency

from xPilot, in cycles.

matrixmul sha smithwaterman fft jacobi

bestSeq - matrixmul 49 1526 23 5359 78357

bestSeq - sha 708094 1442 844 2349 62561

bestSeq - smithwaterman 49 1442 23 3359 57206

bestSeq - fft 250676 3982 152152 1896 76781

bestSeq - jacobi 49 1442 23 2359 492

Table 4.8 shows the best sequence for each benchmark. From Tables 4.7 and 4.8, we can

notice that the best sequences for matrixmul and smithwaterman show similar behaviour on

all benchmarks, and are hence having the same set of critical optimizations. A closer ex-

amination would reveal that the sub-sequence -mem2reg -loop-preproc -simplifycfg is present

in both sequences, and this sub-sequence happens to be the critical optimization sequence

for both matrixmul and smithwaterman. We re-synthesized the two benchmarks using just

the critical sequence to confirm the same. We can also observe in Table 4.7 that the best

sequence for jacobi performs well on most of the benchmarks. This is because it contains the

sub-sequence -mem2reg -loop-preproc -simplifycfg, and hence performs better on matrixmul

and smithwaterman. It also contains the optimization mem2reg which is the sole critical

optimization for sha and also greatly affects fft. This also explains why the best sequence

for fft does not perform well on any benchmark - because it does not have the sequence of

required critical optimizations.

4.3.6 Comparison with CPU performance

After all the analyses and conclusions, one question still remains. Are the results really

unique to High-level synthesis, or does the same sequence qualify to be the best sequence

for a general purpose CPU as well? In order to find out, we picked 200 of the randomly
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Table 4.8: Best sequences for each individual benchmark.

Benchmark Best sequence

matrixmul
-
xunroll -indvars -dse -mem2reg -xunroll

-loop-preproc -ptrLegalization -simplifycfg

sha -instcombine -mem2reg

smithwaterman
-
gvn -dse -adce -mem2reg -instcombine

-adce -loop-preproc -simplifycfg

fft
-
mem2reg -xunroll -indvars -bitwidthmin

-indvars -dse -gvn -ptrLegalization

jacobi

-

constprop -mem2reg -gvn -simplifycfg

-loop-preproc -simplifycfg -bitwidthmin -gcse -simplifycfg

-dse -gvn -adce -instcombine -gvn -ptrLegalization

generated optimization sequences for two benchmarks, sha and smithwaterman. The same

sequences were used to compile the same kernel code into object code. The object code

was then linked to a driver to create an executable. 200 such executables were created and

labelled with their sequence. The executables were simulated on a cycle-accurate out-of-

order processor simulator Simics to get accurate cycle counts. The executables were then

given a CPU rank and an xPilot rank based on their execution time and latency respectively,

with the lesser quantity obtaining higher rank i.e., the first rank executable has the lowest

cycle count.

Figures 4.9 and 4.10 show the rank disparity between xPilot and CPU for the same

optimization sequence. In order to better understand this behaviour, let us consider a

specific example from benchmark Sha in Figure 4.10. Sequence number 1101 has an xPilot

rank of 2 while a CPU rank of 175. The optimization sequence 1101 is shown in Figure 4.11.

Further experiments revealed that the HLS-specific bitwidth optimization was adding

a lot of overhead instructions, thereby increasing the instruction count. While optimizing

bitwidth is a very beneficial optimization from a HLS perspective, the side-effects of arbitrary

bitwidth-optimized code is the addition of a large number of instructions (like sethi, shl, and
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Figure 4.9: Rank comparison for SmithWaterman: CPU vs xPilot. As can be observed, the

same sequence ranks differently with respect to other sequences in a CPU setting compared

to a HLS setting.
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Figure 4.10: Rank comparison for Sha: CPU vs xPilot. As can be observed, the same

sequence ranks differently with respect to other sequences in a CPU setting compared to a

HLS setting.

-loopsimplify -loop-deletion -adce -loop-preproc -mem2reg -bitwidthmin

-loop-preproc -condprop -inst-simplify -gcse -xunroll

-ptrLegalization -condprop

Figure 4.11: Optimization sequence 1101 under comparative study between CPU and xPilot.

This sequence favours HLS.
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-gvn -condprop -xunroll -indvars -dse -find-region -array-normalize

-ptrLegalization -indvars -find-region -adce -loop-deletion -constprop

-xunroll -gvn -ptrLegalization -gvn -loopsimplify -xunroll

Figure 4.12: Optimization sequence 118 under comparative study between CPU and xPilot.

This sequence favours CPUs.

in the Sparc ISA that Simics recognizes) along with dependencies between them. This

increases the number of cycles needed to execute the same function. Such side-effects do not

exist in HLS because an operator of a specific bit-width can be realized in hardware without

additional overhead instructions as needed by a CPU. In order to confirm our suspicions,

we generated another binary using the sequence in Figure 4.11, without the -bitwidthmin

optimization. Table 4.9 shows the difference in the cycle count. We can clearly observe the

drop in the cycle count in the case without -bitwidthmin.

Table 4.9: CPU cycle count from Simics of two binaries generated using the optimization

sequence in Figure 4.11, with and without -bitwidthmin.

Binary type Cycle count from Simics

With -bitwidthmin 70790

Without -bitwidthmin 55981

Upon further examination, we found that most of the lower-ranked sequences for CPUs

had -bitwidthmin optimization included in them.

One can argue that the bit-width optimization has always been a HLS-specific optimiza-

tion and hence it is unfair and unnecessary to study it in a CPU setting. Hence, a more

interesting case would be a sequence that suits a CPU better than a HLS setting, which is

what we discuss here. Consider Figure 4.12, which shows optimization sequence 118. This

sequence has a CPU rank of 9 and an xPilot rank of 191.

Examining this case was much more complicated. It turns out that the pair of opti-

mizations -gvn and -indvars have an interesting interplay that varies between a CPU setting

53



and a HLS setting. To study this in greater detail, we generated binaries for several cases

and compared the behaviour of the CPU and HLS setting. Table 4.10 summarizes our

experiments.

Table 4.10: Comparison of CPU and HLS settings with optimization sequences involving

-gvn and -indvars.

Optimization sequence xPilot latency CPU cycle count

(none) 1844 54710

-indvars 1844 54709

-indvars -gvn 1444 54959

-gvn 1444 54958

-gvn -indvars 4024 53644

We can see that the pair -gvn and -indvars affect the CPU and HLS setting in opposite

ways. First, we note that as the benchmark loops are in normal form by default, -indvars

alone does not have any effect, and-gvn creates opportunity for -indvars. The -gvn optimiza-

tion tries to remove redundant instructions and tries to re-use previously computed values.

Hence, intuitively -gvn decreases code size, and our simulation runs confirm that. The fact

the -gvn increases CPU cycle count in spite of reducing the number of instructions might

seem puzzling at first, but can be explained as follows. While -gvn removes redundant code,

it can have a potential side effect of introducing data dependency due to re-use. Also, if

the data to be re-used is in memory, -gvn can slightly increase the number of loads in the

program, as is the case in our example. The combined effect leads to an increased number

of pipeline stalls which explains the increased cycle count. The -indvars pass adds simple

additional instructions like add, sub etc to canonicalize loop induction variables, and hence

increases code size. Also, the implementation of -indvars tends to promote certain memory

values to registers, thereby reducing the number of loads. Running an -indvars pass after

-gvn pass increases the number of instructions, reduces the number of loads and pipeline

stalls, and thus effectively un-does the damage caused by -gvn. Hence we see that in the

CPU setting, -indvars has a positive effect after -gvn.
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In the HLS setting, however, there is no instruction execution pipeline. The design can

be seen as a data and control-flow driven application where a finite set of instructions can

be scheduled to run in every cycle. Hence, fewer instructions need fewer cycles to run. This

explains the positive effect of -gvn on the xPilot latency. Running an -indvars pass after

-gvn introduces many additional instructions which are dependent on existing instructions.

This leads to an increase in the number of states in the FSM and an increase in latency.

We re-ran xPilot using the sequence in Figure 4.12 without the -indvars option and

observed that the latency dropped from 4024 to 1444.

The above experiments show that a good sequence for a CPU need not necessarily be a

good sequence for a hardware designer aiming to reduce latency. This finding also provides

empirical proof that the best sequences cannot be blindly borrowed using results from a

processor.
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CHAPTER 5

Related Work

Numerous approaches have been proposed by researchers to explore the compiler optimiza-

tion solution space, and they can be broadly classified into the following groups:

• Design space exploration: So et al [23] use synthesis estimation techniques to evaluate

design alternatives for a loop nest. They introduce a balance metric that represents

the computation and memory requirements of a loop nest, based on which the loop is

classified to be either compute-bound or memory bound. The designs are optimized

for performance. The authors in [21] develop a mathematical model that captures vari-

ous loop characteristics like parallelism, dependencies and resource requirements. This

model is used to find an optimal unroll factor. Here again, the optimal unroll factor is

the one that achieves best performance under a given resource constraint. The model

along with an FPGA frequency estimation technique is used to analyze whether loop

unrolling alone is a better optimization choice or unrolling combined with software

pipelining. Other works like [11] focus on studying the effects between loop unrolling

and shifting on loops that are mapped onto re-configurable fabric. This approach uses

profiling information obtained by executing the code on a general-purpose processor to

determine the most appropriate transformation. Studies like [28] use iterative compila-

tion to study the tradeoff between software pipelining and loop unrolling. [3] presents

a survey of approaches taken to model loop unrolling along with issues that are still

open to be addressed.

• Searching techniques: This body of work treats optimizations as black-boxes and uses

searching techniques like genetic algorithms, hill climbing etc., to minimize the cost
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function. Cooper et al [10] used genetic algorithms to find an optimization sequence

that gives the smallest code. They chose a sequence of length 12 from a set of ten

optimizations using the static length of the code emitted as the cost function to be

minimized. Several techniques have been proposed to speed up the time to convergence

of the searching algorithms. Cooper et al suggest a virtual execution [9] technique

where the program is profiled just once, and structural changes made to the program

by transformations are used to estimate the change in latency. Kulkarni et al [17]

suggest a different route for faster convergence, by performing a series of checks to

reduce redundant execution during searches, as well as providing more intelligence to

the search algorithm itself - by the initial population choice, past history of interacting

optimizations and so on. Kisuki et al [16] evaluate a variety of searching techniques to

select the best combination of tile size and unroll factor.

• Statistical and machine learning techniques: Stephenson et al [25] use an unsupervised

learning technique in the form of genetic programming to tune optimization heuristics

(like savings on spilling a variable) for optimizations like register allocation, hyper-

block formation etc on a per-program basis. Supervised classification techniques like

support vector machines and nearest neighbor have been used in [24] to predict optimal

or near-to-optimal loop unroll factors. Agakov et al [2] use supervised classification

to identify the probabilities of optimizations to be ”good” for a given input program.

These probabilities are then used to make choices in search algorithms to achieve faster

convergence.

• Exploration techniques: Triantafyllis et al propose OSE [27], where a set of opti-

mizations are selected at compiler construction time using a ”compiler construction

pruning” algorithm. A tree of optimizations is built out of the selected set, which is

traversed to select the best optimization order for a given program. Pan et al [22]

propose algorithms like Batch Elimination, Iterative Elimination and Combined Elim-

ination which attempt to find a set of optimizations that minimize execution time.

However, this work does not consider the order of optimizations. A more recent work
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by Chabbi et al [4] proposed an interesting idea of exploring optimization sequences

one pair at a time, and is close to some of the analyses that we have performed.

• Model-based approaches: Whitfield et al [29] [30] proposed a specification language to

describe the nature of each optimization as aset of entry conditions, transformation

actions and exit conditions. By having such a specification for each optimization,

automated detection of enabling and disabling conditions between optimizations can

be performed. [33] extends [30] to include a larger class of optimizations. Zhao et al

use a combination of code, optimization and resource models to predict the impact

of high-level optimizations such as loop unrolling, loop tiling etc [31] as well as scalar

optimizations such as partial redundancy elimination and register allocation [32]. In

our work so far, we have used a simple model with a few simple features and we have

not modeled resource constraints. We are looking into the same as part of future work.

Tate et al [26] propose a method of ”equality saturation”, where each optimization does

not transform a program but adds equality information to the IR. Such an IR maintains

multiple versions of the source program, and an optimal version can be chosen by just

picking among equivalent nodes based on a certain cost function. A hybrid method of

empirical approach and analytic models [12] has been used to tune the performance of

libraries, such as ATLAS, on a particular target.

As evident from above, there is a vast literature of work in this broad area. However,

each contribution is targeted towards a specific subset of the problem, and hence the area of

design space exploration using compiler optimization phase ordering is still far from being

solved. Our work here uses past analyses to quickly eliminate bad choices so that the right

optimization metrics are arrived at quickly.
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CHAPTER 6

Conclusions

Given the rise in popularity in high-level synthesis as a popular design choice in the sys-

tem design community, we believe that having a sound compilation technology in high-level

synthesis is very essential. In this paper, we have presented a first study on the impact

of compiler optimization phase ordering on design space exploration and the quality of the

generated RTLs. Several differences exist between a CPU-based setting and a High-level

synthesis design from a compilation perspective. For instance, there is no branch prediction

or speculative execution, so the execution time savings achieved by such hardware enhance-

ments are not applicable in a HLS domain. Absence of caches means that each load costs

the same, and can only be amortized by greater ILP. HLS tools can exploit greater ILP

constrained only by the resources on the target platform, while an out-of-order processor

can exploit ILP only among instructions in its scheduling window. We provided a strong

motivation to our study using using simple pedagogical examples as well as data collected

from well-known and commercial tools like AutoESL and Simics. We studied the impact of

high-level optimizations and IR-level optimizations using AutoESL and xPilot respectively.

AutoESL is a commercial high-level synthesis tool which provides an easy interface to specify

high-level optimizations. However, AutoESL does not give the user the capability to specify

lower-level optimizations. Hence, we evaluate IR-level optimizations using xPilot.

We have presented studies on three important high-level optimizations - loop unrolling,

software pipelining and array partitioning and interactions between them. We demonstrate

and provide insights into the effects of these optimizations using simple examples and devise

a strategy to cover the search space. We show and explain that the best partitions are always

power-of-2 factors so that index calculation is cheaper. We also show that the best unroll
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factors depends largely on the loop trip-count and form a restricted set of unroll factors using

powers-of-2 and factors of the trip-count. We use simple heuristics to quickly eliminate bad

choices early and use existing estimation techniques in AutoESL to arrive at an unroll factor

that provides a good performance to area. We present studies on the combined effect of

the three optimizations and demonstrated its effectiveness on several benchmarks. We use

the efficiency ratio or ER, which is the ratio of the latency-area product to evaluate the

optimized benchmarks against the baselines. We achieve a maximum ER of 11.29, which

shows that significant enhancements can be achieved with the right combination of the three

optimizations. At the same time, we also demonstrate cases where the ER is less than 1,

and discuss the reasons and pitfalls.

We also presented a detailed study of the effects of scalar optimization phase ordering on

high-level synthesis. We have shown the discreteness and step-constant nature of the opti-

mization solution space. We have then discussed and evaluated a variety of techniques like

random search and genetic algorithm. We have presented a general n-lookahead technique

and show that a 1-lookahead can achieve the same level of performance as random search in

majority of cases. We have extracted and evaluated a few simple latency estimation metrics

based on static program features, but with limited success. We have reported a mean reduc-

tion in latency of 50.42% against xPilot’s default setting. We have also studied the generality

in the best sequences of optimizations and found that the best sequence for one benchmark

can indeed be the best sequence for other benchmarks that are similar. We compare our

study to a CPU-based setting and provide several insights into the subtle variations that

causes pairs of optimizations to have different effects.

We believe that our work opens up many interesting future directions. An interesting

direction for future work would be to consider more high-level optimizations like loop tiling,

strip mining etc. Such a design space is extremely vast, and accurate models of representation

is required for both the code and the optimizations themselves. We believe that it would be

beneficial to have a more sophisticated estimator that would provide estimations with greater

accuracy for any arbitrarily complicated program. With the vast amount of data that we

have collected, one of our future directions is to explore the idea of building a predictive
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model using static program features. Yet another potential direction could be to explore

the idea of capturing the behavior of compiler optimizations using latency-sensitive or area-

sensitive program features. With our promising initial results, we believe that research in

this direction would benefit the high-level synthesis community.
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