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Abstract

Decision Theory Models of Information and Consideration

by

Juan Sebastián Lleras

Doctor of Philosophy in Economics

University of California, Berkeley

Professor David S. Ahn, Chair

This dissertation develops axiomatic models to identify two important elements that influence
choice behavior: knowledge and consideration. Furthermore it analyzes the behavioral and
welfare implications that these models have.

First, information (knowledge) about uncertainties plays an important role in a decision-
maker’s choices and it is usually taken as an explicit part of economic models. However,
in many situations it cannot be observed, so it should be derived. This dissertation pro-
vides foundations for the identification of information from choice behavior represented by
preference. From a classical statistical point of view, models of preferences over single el-
ements cannot capture the role of information in a decision problem. The research on
this dissertation shows that by considering the richer primitive of preferences over menus of
state-contingent outcomes, if the preferences satisfy some conditions it is possible to uniquely
identify private knowledge about future uncertainties. To expect information is necessary
to exhibit a desire for flexibility, therefore a preference for flexibility is instrumental for the
identification of information. In addition to providing a characterization of a preference for
flexibility, this model gives a comparative notion of being informed as aversion to trading
menus for menus of certainty equivalent options. Consequently, with this representation it is
possible to assess the value of information for a problem and determine what type of options
provide flexibility to a decision-maker.

Secondly, identifying what a decision-maker considers is important for economic analysis
because the classical revealed preference model implicitly assumes that decision-makers con-
sider all available options, which are known by an analyst. However, there is well-established
evidence that decision makers consistently fail to consider all available options. Instead, they
restrict their attention to only a subset of it and then undertake a more detailed analysis of
the reduced sets of alternatives. This systematic lack of consideration of available options
can lead to a “too much choice” effect, where excess of options can be welfare-reducing for a
DM. Building on this idea, this dissertation models individuals who might pay attention to
only a subset of the choice problem presented to them. Within this smaller set, a decision
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maker is rational in the standard sense, and she chooses the maximal element with respect
to her preference. This dissertation provides testable characterization results for choice be-
havior under different consideration structures, which are inspired by psychological evidence.
First, one such condition is that awareness is a function of the quantity of options available:
the more options the more likely it is to ignore available options; secondly the other condi-
tions states that decision-makers are unaware that they did not consider something. This
dissertation characterizes to which options the decision makers must pay attention to at each
set, which elements are revealed preferred to which, and discusses welfare implications.
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Chapter 1

Introduction

The analysis of opportunity sets- sets of feasible options- has always played an impor-
tant role in modern economic theory. The seminal work of Samuelson [1938] paved the way
for the analysis of choices from opportunity sets to identify conditions on the choices that
allow economic analysts to identify preferences and other unobserved behavioral character-
istics. More recently, decision-theoretical models of preferences over opportunity sets have
been used to analyze and explain choice behavior that models of preferences over singleton
elements cannot capture, such as preferences for flexibility, temptation, self control, regret,
experimentation, preferences for late or early resolution of uncertainty, etc.

This dissertation presents two decision theoretical models where the opportunity sets, or
menus, are the objects of choice. I show that these models can be used to identify some
unobserved elements that influence an individual decision-maker (henceforth DM) choices
and actions.

The first model (Chapter 2) is a model where the primitives are preferences defined over
menus of state-contingent contracts (Anscombe-Aumann acts). The main result form this
model is the possibility to identify unobserve information that economic agents might have
from observation of binary comparisons between menus. This results come from a paper
called Expected Knowledge.1

The second model (Chapter 3) presents a model where the primitives are choices from
opportunity sets. This is a joint project2 with Yusufcan Masatlioglu, Daisuke Nakajima,
and Erkut Ozbay called Limited Consideration: When More is Less. This model adds the
possibility to be unaware of some of the available options, and studies what are the welfare
implications of adding that possibility to the classical rational choice model.

1This paper was previously circulated with the name Expecting Information Informing Expected Utility:

Identification of Information Partitions, Preferences, and Beliefs.
2Accordingly, the whole chapter is written in plural.
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1.1 Information and Knowledge

An individual decision-maker’s choices, when there is uncertainty, are influenced by prefer-
ences over the final outcomes, beliefs about the uncertainties, and information. Throughout
the chapter I use the idea of information which is tied to the concept of knowledge, which
is what a decision-maker knows about the uncertain states. Uncertainty is modeled with a
state space, and information is modeled as a partition of this state space [Billingsley, 1995,
pg 57-58].

In the decision theory literature the are well known axiomatic models that can identify
the preferences over the outcomes in the form of a utility function, and the beliefs about the
uncertainties as a probability distribution about the state space. In Chapter 2, I present and
axiomatic model that shows necessary and sufficient conditions on preferences over menus
to be able to uniquely identify the knowledge that the DM expects to have in the future.

The fact that the preferences are defined over opportunity sets- as the evaluation of
a future problem- is fundamental in the identification of information. To expect future
information has instrumental value to decision makers, in line with the ideas of Blackwell
[1951, 1953], because it allows the decision maker to choose a different path of action for
each event that she expects to know before having to make a choice of action. When the
value of information is strictly instrumental, if there are no options to choose from (i.e. the
DM has only one option to follow in the future) the DM should have no value of getting
information in the future because she is unable to condition her action on the information
that she expects to know.

The identification of private information is very relevant in economic applications. Usu-
ally, when information play an important role for economic analysis, asymmetric information
models for example, the economic analyst chooses some information structure for the eco-
nomic agents based on previous observation, intuition, or a rule of thumb. However, here
I show that there is a way to elicit what economic agents expect to know in the future by
considering preferences over menus of state-contingent claims (acts), so the information is
something that can be derived and tested rather than assumed.

1.2 Consideration: Awareness and Unawareness

The idea of revealed preference is one of the most beautiful and powerful ideas in economics.
When a DM chooses something, then the chosen element must be preferred to everything else
that available and not chosen. However, this idea hinge on the implicit assumption that a
DM considers everything available (in the budget set). If that is not the case, and the DM is
not aware of some options in his choice set, then the standard revealed preferred argument is
somewhat weakened; when a DM chooses something, then this elements is revealed preferred
to every other element that is available and considered by the DM.

We consider two natural conditions on the structure of consideration, and lack thereof.
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First we consider a condition inspired by the “choice overload” effect mentioned in the
marketing and psychology literature. The fact that the presence of many options might lead
the decision-maker to miss some of the available options, leads to the intuitive condition
that if some element is observed on a large set, it must be observed in any subset. This
is consistent with the marketing idea that products compete for the consumer’s attention
on the shelf. The second structural condition on consideration is that DM who does not
consider an element is unaware that he is unaware of his unawareness, hence removing the
overlooked element does not change the consideration structure.

Here, we derive from observation of choices part of a preference relation, which is the
revealed attention - those elements for which there is enough data to have a consisted binary
comparison-; we also characterize a revealed attention and inattention - those elements that
an economic analyst can be certain the DM paid attention to, and those elements that were
overlooked.
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Chapter 2

Identification of Knowledge from
Preferences

2.1 Introduction

Choice under uncertainty is determined by preferences over outcomes, and beliefs and knowl-
edge about the uncertainties. An analyst would ideally want to separately identify these
components from choice data, since preferences, beliefs, and information are generally un-
observable. Revealed preference analysis tackles the problem of identifying preferences over
outcomes [Samuelson, 1938], and beliefs can be elicited from choices over bets [Anscombe
and Aumann, 1963, Savage, 1954]. However, the identification of private knowledge- or
information- about the uncertainties from choice behavior has not yet been studied. Through-
out this paper, the use of the term information is going to be interchangeably used with the
term knowledge.1

The role of private knowledge about the uncertainties is central in many economic prob-
lems. There are many cases where the degree of knowledge that economic agents have about
some uncertain states is instrumental for the modeling and analysis of some situations, and
can have important welfare implications. The importance of private knowledge is particu-
larly relevant in models involving asymmetric information. A simple asymmetric information
problem is framed as an agent who knows her type, or expects to know it in the future, and
a principal who doesn’t know the type of the agent he is dealing with (more generally, as
an agent who has more information than the principal). The degree of difference in this
information between principal and agent is instrumental in deriving welfare consequences
for problems of asymmetric information. The model is analyzed assuming some information

1See [Billingsley, 1995, pg 57-59] for a discussion of the use of the term information in probability as a
subfield, which “corresponds heuristically to partial information” and can be analyzed in terms of partitions
of a state space. This idea of information as partitions is also closely related to the seminal knowledge model
developed by Hintikka [1962].
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structure for the agent and for the principal, which is implicitly assuming that the analyst
has the same information than the agent, and knows exactly what the principal knows. How-
ever, it is unreasonable to believe that an outside analyst knows what the economic agents
know about the uncertainties. In addition, it is possible that the agent is more informed in
some aspects relevant to the interaction, but the principal is more informed on some other
aspects. To assume some information structure for each economic agent as a foundation
for an economic can lead to misleading welfare implications; hence the information that
principal and agent have is something that should be derived form observation rather than
assumed.

Keep in mind that the goal of this paper is not to shed some light on the strategic
interaction between principals and agents, the goal is to provide foundations to elicit the
information about the uncertainties that economic agents expect to get in the future, i.e.
what a DM expects to know about the uncertain states, from preferences.

From the classical statistics literature [Blackwell, 1951, 1953], information has instru-
mental value when it leads to “more informed decisions.” Hence, revelation of information
is advantageous when there are different options to choose from because a decision-maker
(henceforth DM) can condition her choice on the information learned. With only one option
to choose from, getting information has no instrumental value because the action cannot
change conditional on learning information. Throughout the paper I will use the terms
choice set, menu, and (choice) problem interchangeably.

The Savage [1954] or Anscombe and Aumann [1963] models of choice under uncertainty
are not equipped to study the role of information because the primitive is a preference over
individual elements (acts). In this paper, I consider a richer primitive, choices over menus
of acts, and show that this allows for the unique identification of information, as well as
preferences and beliefs. Information in this paper is modeled as a partition of the state
space. A state space S is a formal description of all the uncertainties in the world, and a
partition is a set of pairwise disjoint subsets (events) that span the whole state-space. This
is an appealing way of modeling information it gives an objective description of what the
decision-maker knows upon the realization of any uncertainty, which is independent of a prior
distribution over the state space. Once a state is revealed, the DM will know that the true
state is one of the states in an element of the partition (event) that contain the true state. In
addition she will know which states are not the true states of the world. For example if the
DM is uncertain about the temperature, an information partition can consist of two events,
“above freezing” and “below freezing.” The interpretation is that once the temperature is
realized she will not know it exactly, but she will be able to determine whether or not it is
above freezing. In contrast to the typical statistical exercise, which consists of evaluating
problems based on predetermined information, in this paper I show that information can be
identified from preferences over problems.

Since the instrumental value of information depends on the available options, there is a
link between the choice set and the value of information. In this paper I show how information
is related to the concept of preference for flexibility. The seminal work of Kreps [1979], Kreps
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[1992] and Dekel et al. [2001], studies a preference for flexibility as a model of subjective
uncertainties. A DM has an ex-ante preference for larger choice sets because she is uncertain
about her future preferences, and expects the uncertainty to resolve before making the choice
from the menu. These future preferences are called a subjective state space. Kreps and DLR
argue that there is no a-priori reason to assume that the analyst knows what a DM has
in mind when observing choices. Therefore a subjective state space must be derived and
not taken as a primitive. One drawback of considering subjective uncertainties is that they
are not observable or describable, which means that the model has little empirical content.
This paper considers the case where there is an objective state space, which represents “a
description of the world, leaving no relevant aspect undescribed” [Savage, 1954, pg 9]. In
this model there is parallel between the derivation of a subjective state space from Kreps
and DLR, and the identification of information partitions.

I consider a model where the object of choice are menus of Anscombe-Aumann (AA)
acts, which represent state-contingent outcomes. Between choosing a menu and selecting
an element from the menu, information can be revealed to the DM, represented by the
event of a partition that contains the true state of the world. The expected arrival of
information drives the preference for larger choice sets because for every event learned,
the DM can condition her choice on that particular information. I derive necessary and
sufficient conditions to represent the behavior of a DM who has some information. For every
known event, she will choose the best element from the menu conditional on the event,
and weigh the utility value by her subjective likelihood of the event happening. I call this
representation an Expected Information-Subjective Expected Utility (EI-SEU) representation.
This representation achieves the identification of information on a classical Anscombe and
Aumann [1963] framework. The EI-SEU representation consists of a utility function, a prior
belief, and an information partition of the world, all of which can be separately identified
from choices.

For example consider the situation where a DM wants to buy an used car in the future
at a dealership. For simplicity suppose there are two types of characteristics that determine
the value of a car for the DM: its price and its quality. The price can be high or low, and
the quality can be good or the car can be a lemon. Here we can think about the price as
the type of deal that the dealer gives the DM (down payment, interest rate, perks, etc).
How can we as analysts infer today what the DM expects to know in the future about the
particular car when she looks at a car in the dealership? This is the question this paper
tackles. I show that to be able to identify this type of information, is necessary to consider
preferences over menus of options- car dealerships in this example- rather than individual
elements. A strict preference for the larger menu can only exist if the DM expects to get
some information about the car before committing to buying it. For example if the DM can
tell a good financial deal from a bad one, then she can condition the car she purchases (or
not) on the information she gets. If she does not expect to know anything about the car,
then she would evaluate a dealership by the best possible car on expectation, i.e. a menu by
the best ex-ante element.
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The Kreps and DLR models of subjective uncertainties justifies a strict preference for
large menus (when compared to one of its strict submenus) with the existence of subjective
instances (states) where the DM will feel that one element on the menu is better, and some
instances where she will feel that other elements are better. These subjective states are
not observed or known, so it is impossible to conclude anything else from the observation of
choices. The difference between the two models is that in my model the states are observable
descriptions of the world, and the preferences for outcomes do not depend on the realization
of the state, whereas in the Kreps and DLR models the subjective states cannot be observed,
and the preferences depend on these subjective states. Despite the fact that the primitives
of both models are different, my model is in some sense less general than the classical
preference for flexibility model, since it places restrictions on how the uncertainties influence
preferences. However in this more restrictive environment, it is possible to uniquely identify,
and behaviorally justify, preferences, priors and information, which is not the case in the
Kreps and DLR models.

This treatment of has several benefits. First, the model is based on an observable state
space, which allows for meaningful identification of information and beliefs. The drawback
of the DLR model is that the state space is not observable and it simultaneously drives
preferences, information (as a revelation of the true preference) and beliefs, therefore neither
elements can be identified. Moreover since the model is based on observable states it can
be applied and tested. Secondly, the model has a dynamic component since it allows for
the identification partial revelation of information with a natural interpretation. Finally, the
source of a preference for flexibility is exclusively the revelation of information, which allows
me to tie the preference for flexibility concept to the instrumental value of information from
a statistical point of view.

In addition, some natural results about information and flexibility can be derived from EI-
SEU representation. I find that information is a necessary condition to identify a preference
for flexibility, and a preference for flexibility for a particular subset of menus is necessary
and sufficient condition to identify unobserved information. The representation provides a
cardinal measure of the value of information for any decision problem, since it satisfies the
necessary and sufficient conditions identified by Gilboa and Lehrer [1991] for information
functions. Hence, it provides a framework to study willingness to pay for information, and
to determine what type of information is useful (useless) for a DM who is facing a particular
problem. From the relation between information and flexibility, the EI-SEU representation
also gives the value to adding options to a decision problem for some information.

2.1.1 Background and Preview of the Results

I consider an objective state space S and a finite set of outcomes B, where ∆(B) is the set
up probability distributions over B. The objects of choice are menus of Anscombe-Aumann
acts, which are functions from S to ∆(B). Denote Q as the set of all menus of AA acts.
I consider a two-stage decision process. In stage 1 the DM chooses a menu that captures
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the set of options that she will have in stage 2. Between stage 1 and 2 the DM may receive
information; and in stage 2 she selects an element out of her choice set. Given a particular
objective state space, S, I model information as partitions of the state space. A partition
of the state space is given by π = {E1, ..., Em}, where all the Ei’s are pairwise disjoint and
span S. Each Ei is called Event. To consider partitions of the state space as information
agrees with the notion of information from the classical statistics literature [Blackwell, 1951,
1953].2 The benefit using partitions of the state space to represent information is that it a
concept completely tied to the state space, which represents all possible descriptions of the
world. Moreover, for a partition, events are revealed from the realization of the state, which
makes such a model empirically applicable. In Section 2.7, I discuss the relationship between
information as partitions and other information structures.3

Figure 2.1: Timing- Observed Information

% on Q×Π

Information: π ∈ Π

Publicly Revealed

Menu Choice:
x ∈ Q

Event: E ∈ π

Publicly Realized

Choice from Menu:
f ∈ x

s ∈ E realized

I consider two choice environments in terms of how information enters the problem. First,
the situation when the information is explicitly given as a part of the problem. I call this
case the Observed Information environment. Second, I consider the environment where the
information that each DM has is unobservable, called the Unobserved Information environ-
ment. In both environments, I analyze the choice over menus only, therefore I take the part
of the model after the choice of a menu as implicit. The timing of the observed information
environment is presented in Figure 2.1, and the timing of the personal information is given
by Figure 2.2. The difference between the two environments is whether or not information
is observable by an outside analyst. The main result of the paper is the representation for
the unobserved information domain by showing that even when information is not observed,

2Since Aumann [1974] and Aumann [1976], partitions of the state space have been commonly used to
represent information and knowledge in the economics literature.

3A more general setting is to consider sets of signals that are correlated with the state space. However
the observation of those signals is usually not possible, and the interpretation (the correlation between signal
and state) is subjective to each DM. Therefore information cannot be naturally justified as an observable
part of the model. The information partition setting can be considered a special case of deterministic signals
about the state space, where the signal observed is uniquely determined by the state.



9

Figure 2.2: Timing- Unobserved Information

% on Q

Information: π∗

Unobserved

Privately Realized

Menu Choice:
x ∈ Q

Event: E ∈ π∗

Unobserved

Privately Known

Choice from Menu:
f ∈ x

s ∈ E realized

it can be inferred from choices. The dotted line in the timing figures represent the part of
the model that is implicit, which is not studied in this paper.

Expected Information-Subjective Expected Utility Representation

The functional representation result from this paper is called the Expected Information-
Subjective Expected Utility (EI-SEU) representation.

Definition 2.1. A preference relation over Q admits a EI-SEU representation if it can be
represented by triple (U, µ, π) with the functional

V (x) =
∑

E∈π

sup
f∈x

(
∑

s∈E

µ(s|E) (U(fs))

)

µ(E) (2.1.1)

Where µ is a distribution over S, µ(·|E) is the distribution µ conditional on E, U : ∆(B) → R
is a Expected Utility function, and π is a partition of S.

Since U is an EU function, without loss of generality can let U be determined vNM utility
index u : B → R, and the dot product. Such that for any p ∈ ∆(B), U(p) = 〈u, p〉.

For the observable information case, I first fix an information partition and consider
preferences over menus conditional on a particular partition. For an object (x, π), which is
a menu conditional on information partition π, I find necessary and sufficient conditions to
find a EI-SEU representation (U, µ, π) for this particular π. Then I consider the more general
case where information can vary, where preferences are defined across all menu-information
partition pairs. I show that as long as there exists a EI-SEU representation for each π ∈ Π,
(Uπ, µπ, π), by adding the condition that the preferences over singleton menus do not vary
with information, achieves the result that preferences over menus-information pairs can be
represented by the collection of EI-SEU representations {(U, µ, π)}π∈Π where the µ and U
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are the same across π. Therefore (x, π) % (y, π′) if and only if

∑

E∈π

sup
f∈x

(
∑

s∈E

µ(s|E) (U(fs))

)

µ(E) ≥
∑

F∈π′

sup
g∈y

(
∑

s∈F

µ(s|F ) (U(gs))

)

µ(F )

This result states that if information is only valuable when there is more than one option
in the menu, and for any information π, the behavior admits a EI-SEU representation, then
the behavior of a DM is consistent across information. The evaluation of the menu consists
in choosing to best element form the menu for every event that she expects to know, and
then weight this valuation by the subjective likelihood of that event occurring. For a DM
the model gives a measure of the value of objective information for a fixed set of options x.
This function satisfies the necessary and sufficient conditions from Gilboa and Lehrer [1991]
for it to be a function that can give the value of information for a particular problem. In
this case, the value getting information π′ (from π) is given by the difference Vπ′(x)−Vπ(x),
where Vπ′ and Vπ are the functional representations of (U, µ, π′) and (U, µ, π) respectively.

For the unobserved information choice environment, preferences are defined only over
menus of AA acts. The main result of the paper is the EI-SEU representation for this
environment. I find necessary and sufficient conditions on preferences to have a EI-SEU
representation, (U, µ, π∗), where π∗ is a unique partition over S. The novelty of this result is
that even though information is not observed it can still be uniquely identified from choice
behavior. As a consequence, there is a testable characterization of being informed, and a
way to make comparisons on relative information between decision-makers.

Preference for Flexibility

For the EI-SEU representation, the desire to have more options comes from the availability
of information. Since a DM can choose a different act on each event of her information
partition there is compelling justification to a preference for flexibility. This observation is
consistent with the argument that information is valuable when it allows a DM to change
the course of action once information is revealed. Moreover, the model allows me to com-
pletely characterize a preference for flexibility in this environment. Formally, a preference
for flexibility is the situation where for two menus, x and y, their union is strictly preferred
to both menus individually, i.e. {x ∪ y} ≻ x and {x ∪ y} ≻ x. In this paper the preference
for flexibility is exclusively attributed to objective information, which makes it tractable.

When all the acts in a menu are constant on a particular event (give the same outcome
regardless of the state as long as the state is part of the event), the DM will not have this
option value of getting information about that event. Therefore in this model for any menu,
a DM can be worse off by being offered a version of that menu that consists of constant
options that are ex-ante indifferent to every element of the menu. I refer to this idea of
comparing acts with an equivalent constant act as Subjective Certainty Equivalence (SCE),
where the constant act is called a SCE version of the original act. Likewise, for any menu,



11

a SCE version of the menu is a menu consisting of SCE acts.4 In the car example a SCE
version of the menu is to finance the any car in the dealership through a third party (a bank
for example) rather than the dealer, where the third party will offer the DM a financing deal
such that the DM is indifferent between each car financed by the bank and what the DM
expect to get from the dealer ex-ante for each car. This deal must be better than a bad deal
but worse than a good deal, since there is uncertainty about the type of deal. Intuitively, a
DM who can tell good deals and bad deals apart will be hurt by financing through the bank
because it is taking the ability to act differently conditional on the type of deal the dealership
offer away. Hence, behavior with respect to SCE plays an important role in identifying the
value of information, private information, and a preference for flexibility.

The EI-SEU representation captures a comparative notion between a preference for flexi-
bility and information (Section 2.5). First this notion is related to a SCE aversion, which by
the previous discussion gets rid of the option value of menus. Secondly, whereas is not always
true that a “more informed” DM will exhibit a preference for flexibility, a characterization
of the value of menus with respect to the value of singleton acts will be consistent with the
degree of information.5

2.1.2 Related Literature

Kreps [1979] provides an axiomatic characterization of the preference for flexibility for pref-
erences over menus of options. He justifies the strict preference for bigger menus through
the existence of a subjective state space S that summarizes all contingencies that influence
preferences. Kreps [1992] interprets this model as a model of subjective contingencies, where
there is subjective uncertainty about future tastes. The state space, as the set of future pref-
erences, represent those instances where a strict preference for larger choice sets is observed.
However, in the Kreps model, this subjective state space S cannot be uniquely identified.
Dekel et al. [2001] (DLR) and Dekel et al. [2007] extend the Kreps idea of preference for flex-
ibility as subjective contingencies in a richer domain where they can identify a minimal state
space S. However, in the DLR model a subjective distribution over S cannot be identified
because of state-dependent preferences. Epstein and Seo [2009] extend DLR by considering
a more general class of future preferences, and identifies a subjective state space uniquely as
well under this more general setting.

Using a similar framework to mine, Takeoka [2005], Takeoka [2007] and Hyogo [2007]
consider a menu choice problem with an objective state space. However in these papers
there is also a subjective state space, which represents the possible signals that the DM can
get about the objective state space. These papers consider the arrival subjective signals
over objective states as the subjective state space. Takeoka [2005] considers a menu choice

4Not a constant menu that is indifferent to the original menu.
5Thanks to David Dillenberger and Philipp Sadowski for pointing this last point out, which is consistent

with a more general version of this model developed in parallel and independently by them (see Dillenberger
and Sadowski [2011]).
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problem where he identifies a unique distribution over the subjective state space, which is the
possible distributions over the state space from choices. Hyogo [2007] considers the extension
of this model where active experimentation leads to subjective signals about the distribution
over the state space. Takeoka [2007] extends this idea to a multi-period setting, deriving a
subjective decision tree. In these papers, by using an Anscombe-Aumann framework, it is
possible to identify subjective beliefs because a DM is uncertain about her beliefs but certain
about her preferences. I discuss the relation between these papers and this one in Section
2.7.

Epstein [2006], and Epstein et al. [2008], use menus of AA acts to study non-Bayesian
updating rules. In these papers there is an interim revelation of information, which a-priori
known. The revelation of information is fixed. At each state, which is represented by the
revelation of some information, the DM takes an action that leads to a future, contingent
menu, for the next period. In this paper the revelation of information is not observed and
not known a-priori.

The remainder of the paper is structured as follows. Section 2.2 introduces the formal
model of the paper. The representation results for the observable information case is given
in Section 2.3. Section 2.4 presents the main result of the paper, which is the EI-SEU
representation for the unobserved information environment, where I show that it is possible
to identify information from choice behavior. The identification of information partitions
provides a comparative notion of being informed. Section 2.5 characterizes the preferences
for flexibility and the link between flexibility and information, and Section 2.6 provides an
application of the model to identify willingness to pay for information. Section 2.7 discusses
the differences and the relation of this paper with similar work. Finally Section 2.8 concludes.

2.2 Model

• Let B be finite, with |B| = k, non-empty, outcome space. Generic elements are given
by b1, b2, .., bk.

6

• ∆(B) set of all probability measures over B; generic elements are given by p, q, etc.

• S be a finite set of objective states of the world, with |S| = n. S = {s1, s2, .., sn}.

• H = (∆(B))S the set of AA acts, f ∈ H , f : S → ∆(B). Elements given by f, g, h,
etc.

• Q = 2H \ ∅ the set of all non-empty subsets of H . These are menus of AA acts. Menus
are denoted by x, y, z, etc.

6The results can be naturally extended to arbitrary prize space B, and the Borel probability measures
∆(B). However, depending on the topological structure of B, some extra structure and continuity assump-
tions on convergence of distributions are required to get the same representation results (see Fishburn [1970],
or Kreps [1998]).
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• Π be the set of all partitions of S. A partition π is given by π = {E1, ..., Em}, where
S = ∪m

i=1Ei and Ei ∩ Ej = ∅ for j 6= i.

• Preferences are defined on two domains:

– In the observable information environment % is defined over the set of all menu-
partition pairs: Q× Π.

– In the unobservable information case % is defined over menus of acts: Q.

I use the sup norm on Rn for the distance between lotteries p, q ∈ ∆(B), and for H use the
sup norm on (∆(B))S. Also endow Q with the Hausdorff topology on sets (details are in
Section 2.9.1).

Finally, for this paper I assume that all states are non-null. A state is null if it does not
affect preferences for acts, formally a state s ∈ S is null if psf ∼ qsf for any p, q ∈ ∆(B),
and for all f, g ∈ H . As usual, a state is non-null, if it is not null. Since null states are states
of the world that do not influence preferences it is safe to ignore them (see e.g. [Kreps, 1998,
pg. 109]).

2.2.1 Information: Partitions and Event Mixtures

I model information as a partition of the state space. The motivation is that the DM is
uncertain about the state of the world, but she knows that she has information to distinguish
among different events (set of states) once the state is realized. For the car example, the
DM is uncertain about the type of car she is going to get, but she knows that she will be
able to determine if the deal she is offered is good or not (high price or low price) once it is
presented to her.

A partition of the state space is a collection of pairwise disjoint sets, which are called
Events, {Ei}

k
i=1. These events span S, i.e.

⋃k

i=1Ei = S. Let Π be the set of all partitions
of S. On Π define a “finer than” binary relation, ≥f , as π ≥f π′ if for every E ∈ π′, there
exist {Fi} ∈ π such that E =

⋃

i F .
Since information plays a role, using events to condition outcomes is instrumental for the

identification of information. On acts, define for any event E ⊂ S, the Event Mixture of f
and g, as the act fEg that gives the outcomes of f on E and of g everywhere else. Similarly
extend this notion to menus, by referring to the Event Mixture of two menus, xEy, as the
menu that consists of the union of the Event Mixture of all the acts in x and all acts in y.

Definition 2.2. Given two acts, f, g ∈ H , and an event E ⊆ S, define the Event Mixture
of f and g, fEg, as

fEg =

{
f(s) for s ∈ E
g(s) for s ∈ Ec



14

Given x, y ∈ Q, and E ⊆ S, define the Event Mixture of x and y, xEy, as

xEy = {fEg : f ∈ x, g ∈ y}

The following example illustrates how to construct these acts of the form fEg, and menus
of the form xEy, for any event E.

Example 2.1. Let S = {s1, s2, s3} and B = {b1, b2} hence any element of ∆(B) is repre-
sented by α ∈ [0, 1], which gives the probability of getting b1 (probability of getting b2 is
1− α). Let

x =
{(1

2
,
1

2
,
1

2

)

︸ ︷︷ ︸

f1

, (0, 1, 0)
︸ ︷︷ ︸

f2

}

and y =
{

(1, 0, 0)
︸ ︷︷ ︸

g1

, (0, 0, 1)
︸ ︷︷ ︸

g2

}

Suppose E = {s1, s2}, then

xEy =
{(1

2
,
1

2
, 0

)

︸ ︷︷ ︸

f1Eg1

,

(
1

2
,
1

2
, 1

)

︸ ︷︷ ︸

f1Eg2

, (0, 1, 0)
︸ ︷︷ ︸

f2Eg1

, (0, 1, 1)
︸ ︷︷ ︸

f2Eg2

}

For any z ∈ Q, I say that menus of the form xEz and yEz, agree on Ec.

2.2.2 Conditional Subjective Certainty Equivalence

Traditionally, the term certainty equivalence is used to refer to a risk-less (certain) prospect
that is indifferent to a gamble, or any other prospect involving some uncertainty. This is
generally used to measure risk attitudes by determining the amount of money that a DM
is willing to pay/get to avoid a gamble. I use the term subjective certainty equivalence to
distinguish the concept from this paper from the standard certainty equivalence. Subjective
certainty equivalence (SCE) refers to the elimination of the subjective uncertainty in a way
that keeps the DM indifferent among individual choices.

This distinction is relevant because an act f ∈ H is exposed to random variability from
two different sources. First the subjective uncertainty from the realization of a state in S,
and secondly the objective uncertainty from the lottery fs once state s is realized. This paper
is mostly concerned with the uncertainty about the realization of a state in S, therefore I
use the term subjective certainty equivalent to refer to acts that are equivalent to f but give
the same outcome in all the states. These acts are not exposed to any ex-ante subjective
uncertainty since the realization of the state doesn’t influence payouts. Nonetheless, since
the payouts are lotteries in this framework, there can still be objective uncertainty, which in
the Anscombe-Aumann framework is what determines the risk attitudes.
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I define a E-conditional SCE act to f , or E-conditional SCE version of f , as an act that
is ex-ante indifferent to f , is equal to f on Ec, and gives a constant outcome on E. So for
some f , an E-conditional SCE act to f , as a version of f that has no subjective uncertainty
within the event E. There is a distinction between E-conditional SCE acts and lotteries in
the paper. For an f ∈ H a E-conditional SCE lottery is the outcome lottery on all the states
in E, and an E-conditional SCE act is the act that gives the E-conditional SCE lottery on
E, and f on Ec.

Definition 2.3. Given an act f , and %, a preference relation over H . For an event E ⊆ S,
a E-conditional subjective certainty equivalent (E-conditional SCE) lottery, p ∈ ∆(B), is a
lottery such that f ∼ pEf . The act pEf ∈ H is defined as an E-conditional SCE act to f .

For p ∈ ∆(B), the act p ∈ H , is the constant act where ps = p for all s ∈ S. This notation
is used interchangeably whenever there is no confusion. Define the set of E-conditional SCE
Lotteries to an act f as

CE∆(f |E) = {p ∈ ∆(B) : pEf ∼ f}

and the set of E-conditional SCE acts as

CE(f |E) = {g ∈ H : g = pEf for p ∈ CE∆(f |E)}

For any partition π = {E1, ..., Ek}, define a π-conditional subjective certainty equivalent
acts (π-conditional SCE) acts to f , as those acts where for each E ∈ π, the outcome is an
E-conditional SCE lottery to f . From definition this act is not necessarily indifferent to f ,
even though all the lotteries were defined through indifference.7

Definition 2.4. Given f ∈ H , g ∈ H is a π-conditional subjective certainty equivalent act
to f , if gs ∈ CE∆(f |Ei

) for all s ∈ Ei ∈ π. Define CE(f |π) as the set of all π-conditional
SCE acts to f .

Label the family of all acts that are constant on E as the set of E-measurable acts, H(E).
Similarly the family of all acts that are constant on all events of a partition π, is called the
set of π-measurable acts, H(π). Let QE = P(H(E)) \ ∅, be the set of all E-measurable
menus; and Qπ = P(H(π)) \ ∅, be the set of all π-measurable menus.

SCE can be naturally extended to menus, by considering the E-conditional and π-
conditional SCE acts for all elements in the menu. First, for an event E ⊂ S and a menu x,
define an E-conditional SCE menu to x, as a menu consisting of E-conditional SCE acts to
each f ∈ x. Let xE ∈ QE be an E-conditional SCE menu if

xE =
⋃

f∈x

(c(f |E)Ef) (2.2.1)

7Whenever a preference is additively separable representation f will be indifferent to any π-conditional
SCE version of f .
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for some for each f ∈ x, for and some c(f |E) ∈ CE∆(f |E). Let CE(x|E) be the set of
E-conditional SCE menus to x. Similarly, a π-conditional SCE act, for some partition π, a
π-conditional SCE menu to x is a menu consisting of π-conditional SCE acts to any f ∈ x.
Let CE(x|π) be the set of all π-conditional SCE menus to x.

The notation c(f |E) ∈ ∆(B) refers to a lottery that is E-conditional SCE to f , fE refers
to E-conditional SCE acts to f , and fπ to π-conditional SCE acts to f . Similarly, xE is the
notation for a E-conditional SCE menus to x, and xπ for a π-conditional SCE menus to x.

x = {f ∪ g}

s1 s2 s3 s4

U(fs)

Figure 2.3: Menu

xE = {fE ∪ gE}

s1 s2 s3 s4

U(fs)

︸ ︷︷ ︸

E

Figure 2.4: E-conditional SCE menu.

xπ = {fπ ∪ gπ}

s1 s2 s3 s4

U(fs)

︸ ︷︷ ︸

E

︸ ︷︷ ︸

F

Figure 2.5: π-conditional SCE Menu

xS = {c(f |S) ∪ c(g|S)}

s1 s2 s3 s4

U(fs)

Figure 2.6: SCE Menu

For a graphical representation of conditional SCE acts and menus, consider Figures 2.3-
2.6. Figure 2.3 represents a menu two acts: one act is given by the dotted line and the other
one is given by the solid line. There are 4 states, and on each state an act gives as outcome a
lottery with a particular expected utility value. Consider the disjoint events E = {s1, s2} and
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F = {s3, s4}. Figure 2.4 represents E-conditional SCE version of the original menu. This
E-conditional SCE version of the menu consists of two acts, each one is an E-conditional
SCE act to an act of the menu. The outcome on E is constant for each act, such that
the DM is indifferent between the original act and the E-conditional SCE act. Similarly,
π = {E, F} is a partition of S, then Figure 2.5 represents a menu that is π-conditional SCE
version of the original menu, which consists of acts where the outcome on each event is an
event-conditional SCE lottery to each act on the menu. Finally, 2.6 is a SCE menu that
consists of two acts that gives a constant outcome regardless of the state, where each act is
indifferent to one of the original acts.

2.3 Menu Choice with Observed Information

First, I consider the domain where the information is observed. Preferences are defined
over menus of AA acts with some information partition. In this case, there can be tension
between a menu of ex-ante better options with less information, and a menu of relatively
worse options with more information. I analyze this problem in two steps. First consider
a fixed information partition π, and analyze preferences over menus conditional on π. I
derive necessary and sufficient conditions on preferences to get the EI-SEU representation
(U, µ, π). Second, I allow the information to vary, extending the choice domain to all menu-
information partition pairs. In this domain, it is possible to capture the tension between
quality of options and amount of information. For the fixed information case I let %π, be a
preference order over Q× π, the set of menus with some fixed information π. And let % be
preferences over Q× Π, the set of all possible menus with all information partitions.

2.3.1 Axioms

First, for a EI-SEU representation, some standard conditions are necessary: Order, Indepen-
dence, Continuity, Non-degeneracy, and Monotonicity. The axioms are defined on % over
Q×Π, where %π is the restriction of % to the domain Q× π.

Axiom 2.3.1. Order. % is complete and transitive.

Axiom 2.3.2. π-Continuity. Given π ∈ Π, for all x ∈ Q the sets {y ∈ Q|(y, π) % (x, π)}
and {y ∈ Q|(x, π) % (y, π)}, are closed.
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Axiom 2.3.3. π-Independence. Given π ∈ Π, for any x, y, z ∈ Q, α ∈ [0, 1].8

(x, π) % (y, π) ⇐⇒ (αx+ (1− α)z, π) % (αy + (1− α)z, π)

Axiom 2.3.4. π-Non-Triviality. Given π ∈ Π, there exist x, y ∈ Q such that (x, π) ≻
(y, π).

These conditions are standard conditions to use the Mixture Space Theorem and derive
mixture linear representations (see Fishburn [1970]). To get a SEU representation over
singleton menus [Anscombe and Aumann, 1963], State-Independence is required. State-
Independence is implied by Monotonicity9

Axiom 2.3.5. Monotonicity. For f, g ∈ H . If fs % gs for all s ∈ S, then f % g.10

The next set of axioms is new. These axioms deal with behavior conditional on informa-
tion. The first conditioning axiom, Menu-Sure Thing Principle states that preferences are
separable across elements of the information partition. This axiom is an extension of Savage
[1954] (P2) to menus, hence the name. It states that the information π gives the DM the
ability to compare menus based on outcomes on elements of the information partition. If
two menus are the same everywhere except an event, E ∈ π, it is enough to compare those
menus on the event, independently of what the outcomes are on the rest of the state space,
Ec, as long as both menus agree on Ec.

The second conditioning axiom is called Event Strategic Rationality. It implies that
conditional on information that is available, E ∈ π, then the DM is strategically rational.
A DM is considered strategically rational on their preferences over choice sets if she ranks
menus according to its best element only. Strategically rational behavior is characterized
by the property on preferences that x % y implies {x ∪ y} ∼ x (see Barbera et al. [2001]).
Event strategically rationality is a weaker condition than strategic rationality, since requires
a DM to be strategically rational only if the menus differ some event E that she knows. If
two menus differ only on the outcomes on E, which is known to the DM, adding the less
preferred menu on E is not going to change her ranking.11

8Here the mixture of menus is defined the same way it is defined in DLR and all subsequent papers.For
any α ∈ [0, 1], x, y ∈ Q, define the mixture by

αx+ (1− α)y = {αf + (1 − α)f ′ : f ∈ x, f ′ ∈ y}.

DLR justify Independence as indifference to the timing of resolution of uncertainty, which is implicit in
the Anscombe-Aumann framework since the DMs correctly compound “horse-race” and “roulette wheel”
lotteries.

9Thanks to Pietro Ortoleva for pointing this out, which makes the exposition clearer and takes care of a
dominance axiom in Section 2.4 needed on a previous version of the paper.

10fs is the constant act with outcome fs ∈ ∆(B) for every s ∈ S.
11Clearly strategic rationality implies Event Strategic Rationality.
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The third conditioning axiom implies consistent aggregation of preferences across events
on the information partition. If for every event in the information partition, conditional on
that event, xEz is better than yEz, it must be the case that x is overall better than y. This
property is called Event Dominance.

Axiom 2.3.6. Menu-Sure Thing Principle. Given π ∈ Π, if (xEz, π) % (yEz, π) for
z ∈ Q, and some E ∈ π, then (xEz′, π) % (yEz′, π) for all z′ ∈ Q.

Axiom 2.3.7. Event Strategic Rationality. Given π ∈ Π, if (xEz, π) % (yEz, π) for
some E ∈ π, then (xEz, π) ∼ ({x ∪ y}Ez, π).

Axiom 2.3.8. Event Dominance. Given π ∈ Π, if for all E ∈ π, for all z ∈ Q, (xEz, π) %
(yEz, π), then (x, π) % (y, π).

The last condition is necessary for the environment where the information is allowed to
vary. This condition states that information is objectively valuable, hence it is only useful
when there are options to choose from. It is called Information Value from Options.

Axiom 2.3.9. Information Value from Options. For all f ∈ H , and any π, π′ ∈ Π,
(f, π) ∼ (f, π′).

In the classical Kreps setting, one of the necessary conditions to have preference for
flexibility is Menu-Monotonicity. Menu-Monotonicity is the condition that states that bigger
menus are weakly better than their subsets. In this paper Menu-Monotonicity is a property
implied by the other axioms, rather than an axiom itself (Lemma 2.8) because the preference
for larger choice sets is captured with the information conditioning axioms. In Section 2.5, I
explore the link between flexibility and information, which characterizes all those problems
where adding options to a menu is strictly better conditional on the information known.

2.3.2 EI-SEU Representation with Observed Information

Fix any information partition π ∈ Π, which represents the information that the DM has,
I consider preferences over menus conditional on this information and find necessary and
sufficient conditions to achieve the EI-SEU representation (U, µ, π) for this particular infor-
mation. The EI-SEU represents a DM who learns some information between the choice of a
menu and a choice out of that menu, which is exogenously given to him. Based on that infor-
mation, she maximizes the subjective expected utility conditional on each event learned, and
then weights each utility value by her subjective likelihood of an event occurring. Preferences
%π are defined over Q× π.

Theorem 2.1. Given a partition π ∈ Π, let %π be a preference order over Q × π. Then
%π satisfies Order, π-Continuity, π-Independence, π-Non-Triviality, Monotonicity, Event
Strategic Rationality, Event Dominance, and Menu-Sure Thing Principle if and only if %π

admits a EI-SEU representation (U, µ, π). In addition, U is unique up to positive affine
transformations and µ is a unique distribution over S.
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Now extend the representation to all menu information pairs, Q×Π. Here it is possible to
compare situations when there is some tension between quality of a menu and the quality of
the information. Consider now % over Q×Π. I find a representation of % given by the whole
family of EI-SEU representations {(U, µ, π)}π∈Π, where the utility function U and the prior µ
do not vary across π. This representation allow for comparison across information partitions
by comparing the EI-SEU utility value of the menus in different partitions. The intuition
behind the representation {(U, µ, π)}π∈Π is that the DM aggregates preferences consistently
across partitions. Hence information affects the problems consistently. This behavior is
characterized by the same conditions as the EI-SEU representation (Axioms 2.3.1- 2.3.8)
for each π, (Uπ, µπ, π). Adding Information Value from Options guarantees that for any
π, π′ ∈ Π, µπ = µπ′ and Uπ = Uπ′ .

Theorem 2.2. Let % be a preference over Q × Π. % satisfies Information Value from
Options, and for all π ∈ Π admits a EI-SEU representation (Uπ, µπ, π) if and only if % can
be represented by the family of EI-SEU representations {(U, µ, π)}π∈Π where U and µ do not
vary across π (i.e. Uπ = Uπ′ = U and µπ = µπ′ = µ for all π).

This result states that for each π, the utility value of (x, π) is the utility value given by
Vπ(x) from the representation (U, µ, π) from Theorem 2.1. It is therefore possible to compare
pairs of different menus with different information partitions, where (x, π) % (y, π′) if and
only if

∑

E∈π

sup
f∈x

(
∑

s∈E

µ(s|E) (U(fs))

)

µ(E) ≥
∑

F∈π′

sup
g∈y

(
∑

s∈F

µ(s|F ) (U(gs))

)

µ(F )

Additionally, the representation {(U, µ, π)}π∈Π has the distinctive feature that the full
information case is a Kreps/DLR-like additive representation with an objective state space;
and the no information case represents a strategically rational Anscombe-Aumann SEU
maximizer. This highlights the role of information in a desire for flexibility. If πK\DLR =
{{s1}, ..., {sn}} and πSEU = {s1, ...., sn}, the full-information and no-information cases re-
spectively. For any x ∈ Q,

VπK\DLR
(x) =

∑

s∈S

sup
f∈x

(U(fs))µ(s)

VπSEU
(x) = sup

f∈x

(
∑

s∈S

µ(s) (U(fs))

)

For any type of information, π, which is finer than no-information case and coarser than the
full information case,

VπK\DLR
(x) ≥ Vπ(x) ≥ VπSEU

(x)

In this model, the preference for flexibility will come from the revelation of information,
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which allows a DM to go from the strategically rational world, where menus are evaluates
according to the best ex-ante element, to a Kreps/DLR world where there is full desire for
flexibility since in every state the choice from the menu can differ. This implies that the
limit on the preference for flexibility is given by the states of the world.

Proof Sketch Theorem 2.1

Here I give a brief sketch of the sufficiency proof of Theorems 2.1 and 2.2.
First consider the restriction of %π, to acts. Axioms 3.1-3.5 are the Anscombe-Aumann

axioms, which guarantee a representation of preferences over singleton menus VSEU(f) =
∑

s∈S µ(s) 〈u, fs〉. µ is a unique distribution over S and u : B → R a vNM utility index,
unique up to positive affine transformations. In addition, %π satisfies the Mixture Space
Theorem axioms, then there is a mixture linear representation of %π (over menus), Vπ : Q →
R, which is unique up to positive affine transformations. Since Vπ is mixture linear and affine
it is possible to normalize the utility Vπ(δb) = VSEU(δb) = u(b), where abusing the notation
δb is treated as the degenerate act that gives constant outcome b in every state.

For each f ∈ H , define a π-conditional SCE version of f , fπµ
∈ CE(f |π), where f ∼π fπ,

and it is defined as

fπµ
=






cµ(f |E1) s ∈ E1
...

...
cµ(f |Em

) s ∈ Em




 (2.3.1)

Where for each E ∈ π, the E-conditional SCE lottery to f is given by

cµ(f |E) =
∑

s∈E

µ(s)

µ(E)
f(s) (2.3.2)

For any menu x ∈ Q, define a π-conditional SCE version, xπµ
∈ CE(x|π), as

xπµ
=
⋃

f∈x

fπµ
(2.3.3)

Given Axioms 2.3.1- 2.3.8, for the π-conditional SCE menu xπµ
, it follows that xπµ

∼π x.
I restrict the attention to the domainK∗(Qπ), the set of all compact, convex, π-measurable,

and maximal in the sense that each menu includes all the acts that are dominated by ele-
ments in the menu in every possible event. From Axioms 2.3.1- 2.3.8, every x ∈ Q can be
identified via indifference with a unique element in K∗(Qπ). For every E ∈ π, define the
function

σx(E) = sup
f∈x

〈u, cµ(f |E)〉

which without loss is bounded between [0, 1] from the normalization 0 ≤ u(b) ≤ 1 for all
b ∈ B. Let σx = (σx(E1), ..., σx(Em)). The operation σ defines a linear function on [0, 1] for
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every x ∈ K∗(Qπ), hence σ : K∗(Qπ) → ([0, 1]m)∗, the set of all linear functions on [0, 1]m.
σ is one to one, onto, Hausdorff continuous and mixture linear. For any linear function
v ∈ ([0, 1]m)∗, define the functional L : ([0, 1]m)∗ → R as L(v) = Vπ(σ

−1(v)). This is well
defined since for every v ∈ [0, 1]m, there is a unique x ∈ K∗(Qπ) such that σx = v. L
is continuous and mixture linear since σ and Vπ are continuous and mixture linear. L is
a positive linear functional on ([0, 1]m)∗. By by the Riesz Representation Theorem there
exists a unique positive measure µπ on π such that for any v ∈ ([0, 1]m)∗, the functional L is
represented as integration with respect to the measure µπ, i.e.

L(v) =

∫

π

v(E)µπ(dE) =
∑

E∈π

v(E)µπ(E)

Without loss of generality, normalize µπ to be a probability measure over π. The functional
L on ([0, 1]m)∗ is defined as L(v) = Vπ(σ

−1(v)), for every x ∈ K∗(Qπ). Therefore

Vπ(x) = L(σx) =
∑

E∈π

σx(E)µπ(E) =
∑

E∈π

sup
f∈x

(U(cµ(f |E)))µπ(E)

For the mixture linear U : ∆(B) → R given by U = 〈u, ·〉, and for the vNM utility indices
u = (u(b1), ..., u(bk)). L(·) is mixture linear and agrees with the representation Vπ(x) = L(σx)
for all x ∈ K∗(Qπ). Therefore Vπ is a representation of %π restricted to K(Qπ) since every
x in K(Qπ) is uniquely identified with a function σx ∈ ([0, 1]m)∗. Next, since every x ∈ Q
is identified with an element of K(Qπ), I show that the representation can be extended to
Q. From the uniqueness of the representation of preferences over acts, the prior is uniquely
identified as µπ = µ. Therefore for any π ∈ Π, %π admits an EI-SEU representation (U, µ, π)
for a unique distribution µ, π ∈ Π and U : ∆(B) → R which is unique up to positive affine
transformations if and only if %π satisfies Axioms 2.3.1- 2.3.8 for π.

Proof Sketch Theorem 2.2

If % satisfies Axioms 2.3.1- 2.3.8 for all π ∈ Π, for each π there is a EI-SEU representation
(Uπ, µπ, π) from Theorem 2.1. There exists a set of EI-SEU representations {(Uπ, µπ, π)}π∈Π
that represent preferences over menus with fixed partitions. From the construction of the
representation (Uπ, µπ, π) for a particular π, µπ is the same for every π, and for every π, π′,
Uπ is a positive affine transformation of Uπ′ . Without loss let U be the same function across
partitions. Now, adding the axiom Information Value from Options gets the result that
the representation of % over Q × Π satisfying axioms 3.1-3.9, is given by the functional
V ((x, π)) = Vπ(x), where Vπ is a EI-SEU representation (U, µ, π).

To do this, the key step is to show that for any given π-measurable x ∈ Qπ, there is no
benefit in getting finer information, represented by a partition π′ ≥f π. From the proof of
Theorem 2.1, (x, π) ∼ (xπµ

, π). From the definition of fπ, for any π′ ≥f π, (fπ)π′ = fπ. So if
x ∈ Qπ, x = xπµ

by construction.



23

For each menu x and information π, construct an act which is indifferent to x for in-
formation π. This is defined as f ∗

(x,π)(s) = argmaxf∈cl(xπµ ) 〈u, fs〉 for each s ∈ S. Since

for x ∈ Qπ, xπµ
= xπ′

µ
= x, then f ∗

(x,π) = f ∗
(x,π′). Therefore (f ∗

(x,π), π) ∼ (f ∗
(x,π′), π

′) from

Information Value from Options, and thus (x, π) ∼ (x, π′) whenever π′ ≥f π and x ∈ Qπ.
The result follows from the fact that for any (x, π) and (y, π′) ∈ Q×Π, π∨π′ is finer than

both π and π′. Since there is no benefit for finer information, (xπµ
, π∨π′) ∼ (xπµ

, π) ∼ (x, π),
and (yπµ

, π∨π′) ∼ (yπ′
µ
, π′) ∼ (y, π′). Therefore it is possible to compare (x, π) and (y, π′) by

comparing (x, π∨π′) and (y, π∨π′), and hence extend the representation with the functional
W : Q×Π → R given by V ((x, π)) = Vπ(x) =

∑

E∈π supf∈x

(∑

s∈E 〈u, fs〉
)
µ(E).

2.4 Menu Choice with Unobserved Information

Theorems 2.1 and 2.2 are the stepping stone for the main result of this paper, which is
the EI-SEU functional representation for preferences over menus. This result provides a
representation where the information can uniquely be identified from choices. Choices are
over menus of AA acts, and any information that the DM has is unobservable. This can
also be called subjective information, which means the information the DM thinks she will
have before making the choice. However I have tried to avoid this term because it can be
confounded with subjective states.

The domain of choice is the set of all menus, Q. I show that by considering choices
over menus of AA acts allows me to identify unobserved information uniquely, as well as the
priors and utility. The main result is that from preferences over menus, I can find a EI-SEU
representation (U, µ, π∗), where the distribution µ and information partition π∗ are uniquely
determined, and U is identified up to a positive affine transformation.

2.4.1 Axioms

The first 4 axioms are exactly the standard AA-DLR axioms on preferences over menus.
Monotonicity is extended to a version of the axioms for menus, that guarantees that menus
of dominated elements (in the Monotonicity sense) cannot be better than the menus of
dominant elements. Of the 3 conditioning axioms on Section 2.3, if the information is unob-
servable Menu- Sure Thing Principle is the only conditioning axiom since it is not possible
to use the structure of the information on the axioms like in Event Strategic Rationality
or Event Dominance. The final two axioms are new for this environment have to do with
behavior with respect to SCE versions of menus. The first is aversion to SCE versions of
the menus, and the second one is a consistency (transitivity) requirement on indifference
between menus and SCE versions of the menus.

Axiom 2.4.1. Order. % is complete and transitive.
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Axiom 2.4.2. Continuity. For all x ∈ Q, π ∈ Π, the sets {y ∈ Q|y % x} and {y ∈ Q|x %

y}, are closed.

Axiom 2.4.3. Independence. For any x, y, z ∈ Q, α ∈ [0, 1], and π ∈ Π.

x % y ⇐⇒ {αx+ (1− α)z} % {αy + (1− α)z}

Axiom 2.4.4. Non-Triviality. There exist x, y ∈ Q such that x ≻ y.

Monotonicity*, is an extension of Monotonicity (Axiom 2.3.5) to menus, which is that a
menu is always better than any menu of dominated elements. Menu-Sure Thing Principle is
the same condition as in the observed information case.

Axiom 2.4.5. Monotonicity*. If for all g ∈ y there exists f ∈ x such that fs % gs for all
s ∈ S, then x % y.12

Axiom 2.4.6. Menu-Sure Thing Principle. If xEz % yEz for some z ∈ Q, and some
E ⊂ S, then xEz′ % yEz′ for all z′ ∈ Q.

The final two axioms are new in this case, and they deal with how the DM behaves with
respect to SCE versions of menus. These axioms are the key axioms in the identification of
information. First, the choice behavior is characterized by an aversion to subjective certainty
equivalence. As previously mentioned with the car purchase example, a DM would prefer a
menu with some variability, to a an E-conditional SCE version of that menu. This is because
variability of outcomes on different states of the world is what allows the DM exploit the
knowledge she expects to get by planning on choosing different elements conditional on the
information she expects to get; and subjective certainty equivalence gets rid of variability in
a menu, as previously explained with the car purchase example.13

The second condition states that if for a pair of states the behavior exhibits indifference
between all possible menus and conditional SCE versions of the menus (conditional on the
pair of states), this behavior is transitive. If for states r ant t, for the DM every menu is
indifferent to any {r, t}-conditional SCE version of the menu, then the DM has no interest
in option value on those states. This axioms states that this interest in option value is
transitive. So if she is not interested in the having option value on states r and s, and also
not interested on the option value on states s and t, then she must not be interested in
having the option value on states r and t. This condition will be instrumental in identifying
information as a partition of the state space.

Axiom 2.4.7. SCE Aversion. For any x ∈ Q, and E ⊆ S, x % xE for any xE ∈ CE(x|E).

12Again fs ∈ H is the constant act with outcome fs on every state.
13From the Anscombe-Aumann framework, all the uncertainty is properly compounded for each act, hence

the risk preferences are determined by the utility function U , not by the subjective uncertainty about states.
In this model SCE is going to be given by the expected utility for lotteries over S, according to µ.
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Axiom 2.4.8. Transitive Indifference to SCE. Given r, s, t ∈ S, if for all x ∈ Q, for any
x{r,s} ∈ CE(x| {r, s}) and any x{s,t} ∈ CE(x| {s, t}), x ∼ x{r,s} and x ∼ x{s,t}, then x ∼ x{r,t}

for any x{r,t} ∈ CE(x| {r, t}).

In this environment, given the axioms 2.4.1- 2.4.8, % will also satisfy Menu-Monotonicity
which is that a menu is always weakly preferred to any of its subsets. Like in Section 2.3,
Menu-Monotonicity is a condition implied by the axioms on %, rather than assumed as a
property of the preferences (Lemma 2.9). This is consistent with the idea of preference for
flexibility coming only from the revelation of information.

2.4.2 EI-SEU Representation with Unobserved Information

In this choice environment, the information that the DM has is not observed. However, I
show that it can uniquely identified from choice behavior for a EI-SEU representation. This
partition represents the way the DM understands the uncertainty in the world, what she
thinks she will know before the choice from the menu has to take place. An implication of
the result is that subjective information that DMs might have does not need to be observed
from the data to be inferred and used. By identifying uniquely the information from choices,
the model can be applied to determine what type of information will be useful, and what type
of information will be useless to a DM. Moreover the unobserved information is identified
from preferences between menus and E-conditional SCE versions of menus, which leads to a
behavioral characterization of being informed as a dislike for SCE versions of choice problems.

Theorem 2.3. Let % be a preference over Q. % satisfies

• Order, Continuity, Independence, Non-degeneracy

• Monotonicity*, Menu-Sure Thing Principle

• SCE Aversion, and Transitive Indifference to SCE.

if and only if % admits a EI-SEU representation (U, µ, π∗), where µ is unique distribution
over S, U is unique up to positive affine transformations, and π∗ is a unique partition of S.

Proof Sketch of Theorem 2.3

Here is a brief sketch of the proof of the if part of Theorem 2.3. The general strategy of
the proof is to first construct a unique partition of S, π∗, from choice behavior. Then show
that % satisfies the necessary and sufficient conditions for the EI-SEU for π∗ (Theorem 2.1).
Finally, to get uniqueness, show that for any other π ∈ Π where π 6= π∗, % fails to satisfy
one of the conditions for a EI-SEU representation for π. Hence the partition π∗ is unique in
representing the preferences with a EI-SEU functional.
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For the identification of partitions I consider %∆(B), as the preference over singleton

constant menus (lotteries). Let δ and δ be the degenerate lotteries that respectively give the
best and worst outcome with certainty, which is possible from Non-Triviality. Given Axioms
2.4.1- 2.4.8, preferences over menus of the form PEz and QEz, where P and Q are menus
of lotteries are determined by %∆(B). This is because if p %∆(B) q then pEz % qEz; and for
any menu of the form PEz, there exist one element in the closure of P , p∗ ∈ cl(P ), such
that p∗Ez ∼ PEz.

Next, define the join of two acts as and act, as (f ∨g)(s) = fs∨gs = argmax%∆(B)
{fs, gs}

for any s ∈ S. Extend this to any menu by defining
∨
x = argmax%∆(B)

{f ∈ cl(x)}. Given
2.4.1- 2.4.8,

∨
x dominates any f ∈ x for every state, therefore from Monotonicity* and

Continuity ∨x % x for all x ∈ Q.
Now show that for any pair of states s, s′ ∈ S, the preferences between menus and any

{s, s′}-conditional SCE version of the menu, can be determined from the preferences over
menus that consist of acts that give the best outcome for sure in one particular state and
the worst outcome for sure in all the other states. Define these acts as

f ∗
s =

{
δb̄ t = s
δb t 6= s

(2.4.1)

Given the axioms on %, for any pair of acts f ∗
s and f ∗

s′ there choice behavior either
exhibits a preference for flexibility or strategic rationality. Therefore I show that for any
s, s′ ∈ S, either {f ∗

s ∪ f ∗
s′} ∼ (f ∗

s ∨ f ∗
s′) or {f

∗
s ∪ f ∗

s′} ∼ f ∗
t for some t ∈ {s, s′}. This result can

be extended by Independence for any menu of two acts, f and g, which differ only on s and
s′, hence {f ∪ g} is indifferent to f ∨ g if {f ∗

s ∪ f ∗
s′} ∼ (f ∗

s ∨ f ∗
s′), and is indifferent to one of

the two acts if {f ∗
s ∪ f ∗

s′} ≺ (f ∗
s ∨ f ∗

s′). For any s, I define [s], as the set of states where the
join of f ∗

s and any other f ∗
t for t ∈ [s] is strictly preferred than the menu consisting of the

two acts, i.e.

[s] = {t ∈ S : {f ∗
s ∪ f ∗

t } ≺ (f ∗
s ∨ f ∗

t )} =
{
t ∈ S :

{[
δ{s}δ

]
∪
[
δ{t}δ

]}
≺
[
δ{s, t}δ

]}

From Transitive Indifference to SCE, [s] is a partition, so let [s] = π∗. An implication of this
construction is an extension of the previously mentioned result that PEz ∼ p∗Ez when P is
a menu of lotteries. For any F ⊂ E ∈ π∗, the union of menus that agree on F c, is indifferent
to one element f ∗ ∈ cl(F ). Therefore for all x, z ∈ Q,

xFz =
⋃

g∈x

[
g F
z F c

]

∼ f ∗Fz

I show that% satisfies the Axioms 2.3.1- 2.3.8 for π∗, hence it admits a EI-SEU representation
for the partition π∗. Finally, to show uniqueness of π∗, show that if π 6= π∗, then either Event
Strategic Rationality or Event Dominance will fail. Therefore there is no other π ∈ Π that
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will satisfy the necessary conditions for a EI-SEU representation (U, µ, π). Hence π∗ is
unique.

2.4.3 Comparative Statics

If preferences over Q admit a EI-SEU representation (U, µ, π∗), SCE Aversion play an im-
portant role in identifying information. For any menu, any E-conditional SCE version of
that menu is either indifferent to the menu, or strictly dispreferred to it. This leads to the
comparative notion “more SCE averse than”, as how willing DMs are willing to change a
menu for a conditional SCE version of it. For DM 1 to be more SCE averse than DM 2,
whenever DM 1 prefers any E-conditional SCE version of a menu to the menu itself, then
DM 2 must prefer the E-conditional SCE version of the menu as well (note that the SCE
versions of a menu can be different across decision-makers, so an E-conditional SCE version
of a menu depends on the DM).

For two decision makers whose preferences can be represented by EI-SEU representation,
this definition implies that there does not exist a menu, x and an event E ⊆ S, where DM
2 exhibits strict preferences for a menu over an E-conditional version of the menu, and 1
is indifferent between the two. This is because any E-conditional SCE version of a menu is
always dispreferred to the original menu from the axioms.

Definition 2.5. Given two preferences over Q, %1 and %2. Define the comparative relation
“1 has greater SCE aversion than 2” if for any event E ⊆ S, whenever x ∈ Q, xE %1 x for
any xE ∈ CE1(x|E), then xE %2 x for any xE ∈ CE2(x|E).14

Greater aversion to SCE is equivalent to having more information about the world, i.e.
a finer information partition. This adheres to the intuition that in this setting flexibility
comes from the arrival of information. For some event E ⊆ S, an E-conditional SCE version
of the menu eliminates the option value of the menu by offering a constant outcome on E. If
the DM has information that is useful to distinguish among states in E, the DM will strictly
prefer a menu over any E-conditional SCE version of the menu (if the menu provides some
options where the information can be valuable, i.e. on some states on E, the optimal element
from the menu conditional on the information is different).

Likewise, comparing the degree of information between two DMs is equivalent to com-
paring the preferences between singleton acts and any menu. This is consistent with the idea
that if information has only instrumental value the more knowledgeable DMs are the ones
who value more having more options.

Proposition 2.1. Let %1, %2 be two preferences over Q that admit EI-SEU representations
(U, µ, π1) and (U, µ, π2) respectively.

15 Then the following are equivalent:

14Here CEi(x|E) is the set of E-conditional SCE menus for DM i.
15Note that U1 = U2 = U and µ1 = µ2 = µ, so priors and utilities are the same across DMs. The only

difference is in information.
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1. %1 has a greater SCE aversion %2.

2. π1 ≥
f π2.

3. For any f ∈ H, and any x ∈ Q, x ≻2 {f} implies x ≻1 {f}.
16

Proof. In Section 2.9.3.

Note however, that the more informed DM will not always exhibit a preference for flex-
ibility when the less informed DM does. This preference for flexibility depends not only on
the information of the DM but also on the elements in the menu; as it is shown on example
2.2 there can be situations where a less informed DM will exhibit a preference for flexibility
and a more informed DM will not. Characterization of a preference for flexibility for a DM
who admits a EI-SEU representation is given in Section 2.5.

Example 2.2. Let DM 1 and DM 2 admit a EI-SEU representation (Ui, µi, πi) for i = 1, 2.
Let |S| = 4, U1 = U2 = U and µ(si) =

1
4
for all i. Suppose that π1 = {{s1}, {s2}, {s3}, {s4}}

and π2 = {{s1, s2}, {s3}, {s4}}. Clearly π1 ≥f π2. Let acts f, g, h ∈ H be such that
U(f) = (1, 0, 1, 0), U(g) = (0, 1, 0, 1) and U(h) = (.9, .9, 0, 0). Consider the menus y = {f∪g}
and x = {f ∪ g ∪ h}, so that y ⊂ x. First, for DM 2:

V 2(y) =
1

2

(
1

2
(1) +

1

2
(0)

)

+
1

4
(1) +

1

4
(1) +

1

4
(1) =

3

4

V 2(x) =
1

2

(
1

2
(.9) +

1

2
(.9)

)

+
1

4
(1) +

1

4
(1) +

1

4
(1) =

19

20

Hence x ≻2 y, and DM 2 exhibits a preference for flexibility. Now for DM 1:

V 1(y) =
1

4
(1) +

1

4
(1) +

1

4
(1) +

1

4
(1) = 1

V 1(x) =
1

4
(1) +

1

4
(1) +

1

4
(1) +

1

4
(1) = 1

which implies that x ∼1 y. So DM 2 is less informed than DM 1 and exhibits a preference
for flexibility at a problem where DM 1 does not exhibit a preference for flexibility.

2.5 Characterization of Preferences for Flexibility

In this Section I present a characterization of preferences for flexibility for the EI-SEU
representations, which depends exclusively on the information structure. A preference for
flexibility is a strict preference for a large choice set over its subsets. When considering

16Thanks to David Dillenberger and Phlipp Sadowski for pointing out this result to me.
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preferences between a menu and one of its subsets, it is important to disentangle the flexibility
motives (have a bigger choice set) from the strategically rational motives (have better options
in the larger menu). Therefore I characterize these flexibility motives as a menu x providing
flexibility to another menu y, if the union of the two menus is strictly better than both x
and y. This interpretation rules out exclusively strategically rational motives to the strict
preference, since the existence of strictly better elements in the larger menu does not explain
it fully. Define ≍ over Q×Q, a flexibility relation on Q.

Definition 2.6. For any menu y ∈ Q, define x ≍ y as y and x exhibit flexibility if {x∪y} ≻ x
and {y ∪ x} ≻ y.

Exhibition of flexibility is a symmetric relation from definition since by definition x ≍ y
if and only if y ≍ x. Moreover, from the EI-SEU representation, x ≍ y, if x provides better
conditional outcomes on some events of the information partition than y, and y provides
better outcomes on some other events. This concept is tied to the definition of π-dominated
menus from equation (2.9.7). For any x, Oπ(x) is the set of all π-dominated menus, where
for every g ∈ Oπ(x), there is a f ∈ x such that every E-conditional SCE lottery to f for
every E is preferred to every E-conditional SCE lottery to g.

Formally, the set of all dominated elements by f if the information is π, Oπ, is defined as

Oπ(f) =
{

g ∈ H
∣
∣
∣c(f |E) % c(g|E), ∀ E ∈ π

}

for all c(f |E) ∈ CE∆(f |E), and all c(g|E) ∈ CE∆(g|E). For a menu x, Oπ(x) is the union of
all Oπ(f) for f ∈ x.

Oπµ
(x) =

⋃

f∈x

Oπµ
(f)

The following Proposition provides a characterization of all pairs of problems that comple-
ment each other, or provide flexibility, in terms of the information available.

Proposition 2.2. Let % satisfy a EI-SEU representation (U, µ, π). Then the following are
equivalent

1. x ≍ y.

2. x 6∈ Oπ(y) and y 6∈ Oπ(x).

3. There exists E, F ∈ π such that for E ∈ π, supf∈x U(cµ(f |E)) > supg∈y U(cµ(g|E)) and
for F ∈ π, supf∈x U(cµ(g|F )) < supg∈y U(cµ(g|F )).

Proof. In Section 2.9.3

Flexibility in this framework is exclusively a consequence on the outcomes of menus
conditional on the information provided. Proposition 2.2 provides a direct link between
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the concept of a preference for flexibility form the decision theory literature and the value
of information from a statistics perspective. Moreover, the Proposition also shows that
information is necessary to exhibit a preference for flexibility. This result has the applied
benefit that it characterizes which options can be given to a DM to make her better off.

2.6 Applications

2.6.1 Value of Information

An application of the EI-SEU representation is to give a value of information for a particular
choice problem x. For the family of EI-SEU representations {(U, µ, π)}π∈Π, where Vπ(·) rep-
resents (U, µ, π), the value of information is given by Vπ(x)− Vπ′(x). The value is a function
of the options that are available on the menu, which is consistent with the concept of value
of information provided by the seminal work of Blackwell [1951, 1953] in the statistics liter-
ature. Particularly interesting, and relevant to applications, is the case where the acquired
information π′ is finer than the old information π, i.e. π′ ≥f π. This represents the value of
getting better information from the status quo π.17 From the representation of preferences
over Q×Π, , for any x ∈ Q, and some information π′, the value of getting finer information
π is given by the expression

Vπ(x)− Vπ′(x)

=
∑

F∈π′

(∑

E⊆F

E∈π

[

sup
f∈x

(∑

s∈E

µ(s)

µ(E)
(U(fs))

)

µ(E)
]

− sup
f∈x

(∑

s∈F

µ(s)

µ(F )
(U(fs))

)

µ(F )
)

=
∑

F∈π′

(∑

E⊆F

E∈π

[

sup
f∈x

(∑

s∈E

µ(s)

µ(E)
(U(fs))

)

µ(E)− sup
f∈x

(∑

s∈F

µ(s)

µ(F )
(U(fs))

)

µ(E)
])

(2.6.1)

The increase in utility from getting more information can come from different sources,
which makes it difficult to derive comparative statics results. To illustrate how these effects
enter the value of information, I will use the terminology “old event” as one that is part of the
old information, which is split by new information into “new events.” The first source of value
is dispersion of the prior distribution over objective states. Loosely speaking, information is
more valuable for more dispersed priors because learning something is more informative if
all events are equally likely (uniform being the most dispersed distribution). In this context,
it more likely that the best choice on the old event is not the best conditional choice on new
information for more dispersed distributions (a measure of the dispersion can be the entropy.
This type of effect has been discussed in the statistics literature since Shannon [1948]). The

17If a DM maker has information π, getting information π′ (which is not necessarily finer than π), can be
represented by the refinement of the initial information π from getting π′, given by π ∨ π′.



31

second source of value is how likely are the events that could not be distinguished by the old
information. If information can split a likely old event it generally is more valuable. The
final source of value is how the expected value of the best option in the menu on the new
events differs from the value of the best option in the menu conditional on the old event.
The general intuition is that information is valuable if it reveals events where the best option
conditional on the old information is not optimal on the new events, despite being the best
option on average on the old event.18

The expression (2.6.1) can applied to measure the cardinal value of information for prob-
lem x. For any x ∈ Q, define the function Wx : Π → R, as Wx(π) = Vπ(x). For any x, the
function Wx satisfies the maximality necessary condition from Gilboa and Lehrer [1991] to
be a function that measures the value of information. That is, given each E ∈ π, the choice
out of x is maximal conditional on E.

2.6.2 Willingness to Trade Problems

Usually the disagreement between DMs is attributed to preferences or beliefs. Disagreement
can be a determinant of Pareto improvements of situations. Whenever two decision makers
disagree on the ordinal value of a problem, they would be willing to trade problems and be
better off. A simple result that follows from the model, is that even if two decision-makers
share the same preferences and beliefs, there are always choice problems that they are willing
to trade if their information differs. Therefore the always exists a situations where it is Pareto
optimal for DMs to trade. Conversely if two DMs with the same priors and risk preferences
are willing to trade problems, then they must have different information.

Proposition 2.3. 2.9.3 Let %1, %2 be two preferences over Q that admit EI-SEU represen-
tations (U, µ, π∗

1) and (U, µ, π∗
2) respectively

19. If π∗
1 6= π∗

2, there exists menus x, y ∈ Q, such
that x ≻1 y and y ≻2 x.

Proof. In Section 2.9.3.

The intuition behind this result is that depending on the information available menus
are evaluated differently. If the information is very coarse, a DM would want a menu that
provides elements that are good on average. On the other hand, if the information is fine a
DM would want a menu that provides elements that are good on particular states.

Traditionally there are financial instruments such as options that provide hedging to
investors against risk. An natural implication of Proposition 2.3 (if x and y are treated as
financial instruments), is that there are financial instruments that can be used to “hedge
information” even if the risk preferences are the same.

18Keep in mind that all the effects operate jointly, hence the intuition given for the 3 effects just represents
the general idea on how information can bring value, it is not very precise.

19Note again that U1 = U2 = U and µ1 = µ2 = µ.
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2.7 Discussion

Subjective State Space

A state space is a modeling device to represent the uncertainty about the world. Kreps
[1979] and Dekel et al. [2001] argue that a state space should not be taken as a primitive
but rather it should be derived, since it is not realistic that an outside observer can observe
the uncertainties that the DM perceives. Kreps and DLR derive a subjective state space
from choices over menus. The identification of a subjective state space has the drawback
that the model is hard to apply to data. The motivation for subjective uncertainties has the
implicit temporal component that the DM will realize a state of the world between the menu
choice and the choice from the menu. However, the realization of a subjective state is not
observable to an analyst so it is not immediate how explicitly use the model in a dynamic
setting. In addition, since states and the realization of the states are not observable the
state space jointly captures preferences, beliefs and the information the DM is supposed to
get (the realization of her true preferences).

The idea that there is no a-priori reason why the analyst can observe what a decision-
maker knows about the world is appealing. In this paper I tackle this problem in a alternative
way to the subjective uncertainties motivation. I base the analysis on Savage’s idea that there
is a state space contains all the possible physical descriptions of the world (uncertainties).
Therefore the state space is known and states are verifiable. However, a decision maker
can have coarse information about the world. Even though a DM knows which uncertainty
affects outcomes, she does not know precisely which uncertainties are realized, instead she
has an idea of which state could be the true state (and which states couldn’t) upon the
realization of a state. The parallel of what DLR and Kreps call a subjective state space in
this paper is a particular idea of what she will know about the universal state space, given by
a partition of the state space. Every event in the partition, is equivalent to a subjective state
in the Kreps model, since it represents what the DM will know upon realization of a state.
Hence, there is this natural relation between a subjective state space and the “state space”
given by events in the information partition. In both models the states/events represent
what the DM will know before the choice from the menu. Moreover, both types of state
are identified from observing a preference for flexibility. Taking this approach to subjective
uncertainties as information about an uncertain world, has the benefit that the model can
be applied in a dynamic setting, where information, beliefs, and preferences can be uniquely
identified, which is not possible by taking the subjective uncertainties approach.

The empirical benefit of talking considering objective states is that behavior can be
analyzed from observations. It is conceivable that most subjective uncertainties can be also
be described by some objective state. Kreps’ motivation about the subjective uncertainties
is that the DM doesn’t know how she will feel about the options the future, however in most
cases this behavior can be attributed to some physical observation, and the objective state
space can be made fine enough to capture this physical observation. For example, in the
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Kreps’ example the DM exhibits preferences for the menu {steak, chicke} to {chicken}, and
to {steak} individually. He attributes this as the DM doesn’t know how she will feel at the
time of the choice about each option, therefore she will exhibit a preference for flexibility.
If the reason why she is unsure about her future preferences can be objectively justified,
then an objective state space will capture this. If she can argue that her choice will depend
on whether the chicken is free range, or what dinner the previous night was, or what time
of the day it is, etc, then a precise specification of an objective state space can capture
those uncertainties. Kreps’ and DLR’s model also explains the case when the DM cannot
objectively justify her preferences, but the use of an objective state space fits most examples.

The main result from this paper is consistent with the idea of that a state space should be
derived rather than assumed. In this model it is an information partition what is derived. A
partition is an ex-ante specification of the knowledge that the DM will have about the world
once a state is realized, and can be considered a state space on that sense. However in this
model, the benefit is that the information can be objectively described, and it is identified
by the knowledge of an observable state.

Objective State Space and Subjective Signals

Takeoka [2005] is the most similar approach to this paper. Here I discuss the similarities and
differences between the two models. Takeoka considers as a primitive preferences over menus
of AA acts, so there is an objective state space Ω as all those contingencies that influence
outcomes. Then he defines a subjective state space S as the set of probability distributions
over the objective state space, i.e. S = ∆(Ω). The interpretation is that a DM is certain
about her future preferences but uncertain about her beliefs about Ω. Using this framework,
Takeoka identifies uniquely a distribution about over the subjective state space S, µ. The
representation that Takeoka derives is similar to the one in this paper, and it is given by

U(x) =

∫

S

sup
f∈x

(
∑

ω∈Ω

U(fω)p(ω)

)

µ(dp)

where p ∈ ∆(Ω) is a particular belief about the distribution of Ω.
In terms of the axiomatic characterization, this model requires stronger conditions than

Takeoka’s. The conditions that identify the additive SEU representation from Takeoka are
Risk Certainty Equivalence and Menu-Monotonicity. Risk Certainty Equivalence is the con-
dition that x ∼ O(x) for all x ∈ Q. In this model Monotonicity* clearly implies Risk
Certainty Equivalence. Likewise, Monotonicity* implies Menu-Monotonicity which is the
condition that for any x ⊃ x′, x % x′.

The setup from this paper can be embedded as a special case of the Takeoka [2005] model,
where the only possible signals about the state space are deterministic [Azrieli and Lehrer,
2008]. A deterministic signal is a when the signal observed is uniquely determined by the
state, information is completely pinned down by knowing the state. Using this subset of
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signals, has the benefit that there is a natural relation between information as a signal, and
a partition of the state space, this makes the model closed, since the state space contains
all possible descriptions of the world the information should be able to be described with
relationship about the state space. In my model the state space captures all there is to
know about the decision problem and information is naturally tied to it. By allowing for
subjective signals which are uncertain, there are essentially some uncertainties that are not
captured by the objective state space. The appeal of an objective state space is that it
captures all the uncertainties perceived by the DM. By considering any type of subjective
states or signals, it is not possible to tie information to observable elements. In the Takeoka
model, the true state space is the product space S × Ω, and since S is subjective cannot
be considered an objective description of the world. Since the subjective signals cannot be
objectively described it is not possible to test the model empirically nor to do meaningful
comparative statics with information.

2.8 Conclusion

In many case it is reasonable to conclude that knowledge about future uncertainties, which
can affect a decision-maker’s choices, cannot be observed by an analyst. Therefore it is
something that should be able to be derived. In this paper I extend the choice domain of
Anscombe and Aumann [1963] to choices over menus of AA acts, and show that it is possible
to uniquely identify unobserved information from choice behavior. Information is modeled
as a partition of the state space, which has the natural interpretation that for every possible
state, the DM has the ability to tell which are the possible true states, and which are not.
This type of information is related to the state space, and can be objectively described based
on the specification of the state space. This makes the model easily applicable.

I provide a characterization of preferences over menus of AA acts that is represented with
a EI-SEU representation (U, µ, π). The EI-SEU model represent a DM that has a particular
information about the world given by a partition of the state space. She expects to learn
objective information between the evaluation of a menu, and the choice of an element from
that menu, which helps he to condition her choice on each event learned. The EI-SEU
model allows for the assessment of the value of information and to determine a preference
for flexibility as a function of the available information.

I characterize preference for flexibility as a result of information about the world based on
the statistics idea that information is useful when there are many options to choose from. A
DM with no information about the world has no preference for flexibility, because she cannot
condition her choice. This complements the idea of the classical menu choice literature
where the preference for flexibility comes from the revelation of subjective contingencies, by
arguing that if subjective uncertainties can be objectively described, they can be interpreted
as information about the world, represented by a partition. This type of interpretation leads
to the natural comparative static of “being more informed”, as getting finer information



35

about the state-space, which is something that can be determined from choice behavior.
In this model the DM uses Bayesian updating to process information. So an extension

would be to identify information without subjective expected utility, and for any type of up-
dating rule, like Machina and Schmeidler [1995] identify priors without the expected utility
assumption. In addition, the information in this case has no intrinsic value, which is some-
thing that can be added. This would be the natural step to tie this model with objective
states to the regret [Sarver, 2008] or costly contemplation [Ergin, 2003, Ergin and Sarver,
2010] ideas.

2.9 Auxiliary Results, Lemmas and Proofs

2.9.1 Hausdorff Topology

Endow Q× π (note that here π is fixed) with the usual Hausdorff Topology, given a metric
d on H , the Hausdorff distance between x, y ∈ Q,

dH(x, y) ≡ max

{

sup
f∈x

inf
g∈y

d(f, g), sup
g∈y

inf
f∈x

d(f, g)

}

Endow also H and ∆(B) with the sup metric. For any f, g ∈ H , d(f, g) = sups∈S d∆(B)(fs, gs)
where d∆(B) is the sup norm on Rk. Therefore

d(f, g) = ||f − g||∞ = max
s∈S

{||f(s)− g(s)||∞} = max
s∈S

{

max
b∈B

|fs(b)− gs(b)|

}

Q is the set of all a nonempty subsets of n copies of the k-dimensional unit simplex, (∆k)n.
Since ∆k is a bounded subset of Rk, then (∆k)n is a bounded subset of (Rk)n. By the Heine
Borel Theorem, any closed menu is a compact menu.

2.9.2 Lemmas

This Section contains results that are mentioned in the body and some are useful for the
proofs of Theorems 2.1-2.3, and Propositions 1-3. Proofs to the following lemmas and propo-
sitions are in Section 2.9.3.

Lemma 2.4. Let {xn} be an increasing sequence of subsets of a metric space. x1 ⊆ x2 ⊆ ...,
and let x∗ =

⋃∞
n=1 xn. Then xn → cl(x∗) in the Hausdorff topology.

Lemma 2.5. Given any x ∈ Q. Let % over Q satisfy Continuity then x ∼ cl(x), where
cl(x) is the closure of x.

Lemma 2.6. Let % over Q satisfy Order, Independence and Continuity, then x ∼ co(x).



36

Lemma 2.7. Fix π ∈ Π. Let % satisfy Event Dominance and Menu-Sure Thing Principle,
then for all x ∈ Q and any E ∈ π, (x, π) ∼ (xEx, π).

Lemma 2.8. Let %π satisfy Event Dominance and Event Strategic Rationality, then %π for
any x, x′ ∈ Q with x ⊃ x′, (x, π) % (x, π′).

Lemma 2.9. Let % satisfy Monotonicity* then % satisfies Menu-Monotonicity, i.e. for
x′ ⊂ x, then x % x′.

Lemma 2.10. Let Oπµ
be defined in equation (2.9.7). Given π ∈ Π, let % on Q × Π

satisfy Order, π-Continuity, π-Independence, Non-Triviality, Monotonicity, Event Strategic
Rationality, and Event Dominance, then (x, π) ∼ (Oπµ

(x), π).

Lemma 2.11. Let % on Q satisfy Continuity, Independence, Order and Monotonicity* then
x ∼ O(x)

2.9.3 Proofs

This Section provides proofs to Theorems 1-3 and Propositions 1-3. To make the main proofs
easier to follow, proofs for most of the intermediate results within these proofs are at the
end of the Section.

Proof of Theorem 2.1

Given a fixed π ∈ Π, consider, %π, preferences over Q × π. Since π remains fixed in this
choice domain, I omit the π in the proof. I use x instead of (x, π). Moreover for p ∈ ∆(B)
I abuse the notation to use p to refer also to the constant act p ∈ H that gives constant
outcome ps = p for all s ∈ S.

Here I prove sufficiency in several steps. Necessity is routine to check, and the results
follow form the fact that the dot product is a continuous function linear function and

sup
f∈x

〈u, fs〉 = max
f∈cl(x)

〈u, fs〉 = max
f∈co(cl(x))

〈u, fs〉

Step 1: Existence of a SEU representation for the restriction of %π to the domain H × π.

Let %π|H be the restriction of %π to singleton menus, which is a preference relation
over the set H × π. From Axioms 3.1-3.5, %π|H admits a SEU representation [Anscombe
and Aumann, 1963], given by VSEU : H × π → R. VSEU(f) =

∑

s∈S µ(s) (U(fs)), where
U : ∆(B) → R is a mixture linear function, unique up to positive affine transformations,
and µ is a unique, probability distribution over S. Can normalize U to be an Expected
Utility function which is given by U(fs) = 〈u, fs〉, where for all s ∈ S, fs ∈ ∆(B); and
u : B → R is a vNM utility index, unique up to a positive affine transformation. Consider



37

u as a k-dimensional vector (|B| = k) which gives the utility index for each b ∈ B.

Step 2: Existence of a mixture linear representation of %π.

%π satisfies Order, π-Continuity, and π-Independence, then by the Herstein Milnor The-
orem there exists a mixture linear representation of %π, which is unique to positive affine
transformations.

Vπ : Q× π → R

Restricting the attention to singleton menus, Vπ(·) : H × π → R is a mixture linear repre-
sentation of %π|H as well. By uniqueness of the SEU representation, VSEU , from step 1, for
any degenerate constant act, δb, which is the act that gives outcome b for every state with
certainty, Vπ(δb) = αu(b) + β, where u is a vNM utility index from the AA representation
VSEU in step 1. So, it is possible to normalize to Vπ(δb) = VSEU(δb) = u(b) by the uniqueness
result of the SEU representation. Let set vNM utility indices {u(b)}b∈B. In addition, since
B is finite and %π satisfies π-Non-Triviality, can normalize the vNM utility indices to be
bounded between 0 and 1. Assign the vNM utility index value 1 and 0 to the best and worst
elements in B, b and b, respectively; i.e. u((b)) = 1 and u(b) = 0. Hence {u(b)}b∈B ∈ [0, 1]k.

Step 3: Map each act into a unique π-conditional SCE act.

Given E ⊆ S, and f ∈ H , construct an E-conditional SCE lottery to f , cµ(f |E) ∈
CE∆(f |E). This lottery is constructed by the convex combination of the outcomes on the
states in E of f , fs, where the weight on the outcome on each state in E is given by subjective
likelihood given by the prior µ from the representation for %π|H (Step 1), conditional on E.

cµ(f |E) =
∑

s∈E

µ(s)

µ(E)
f(s) (2.9.1)

Here for any b ∈ B, cµ(f |E)(b) ≡ Pr(b) =
∑

s∈E
µ(s)
µ(E)

fs(b). In addition, define fEµ
∈

CE(f |E), a E-conditional SCE version of f as

fEµ
≡ cµ(f |E)Ef (2.9.2)

As operations, f 7→ cµ(f |E), and f 7→ fEµ
are well defined, continuous, onto and mixture

linear operations.

Lemma 2.12. The operation cµ(·|E) : H → ∆(B), where f 7→ cµ(f |E) defined as

cµ(f |E) =
∑

s∈E

µ(s)

µ(E)
fs (2.9.3)



38

where µ is a fixed a distribution over S, is

1. Well defined.

2. Continuous.

3. Onto.

4. Mixture Linear.

Proof. In Section 2.9.3

Also since %π satisfies a SEU utility representation when restricted to acts, fEµ
∼ f by

the additive separability of the representation. Moreover, the following lemma is a result of
the construction from equation (2.9.1) for disjoint events, E and F .

Lemma 2.13. Given E, F ⊆ S, with E ∩ F = ∅, then cµ(fEµ
|F ) = cµ(f |F ) and cµ(fFµ

|E) =
cµ(f |E).

As a corollary of Lemma 2.13, every act f can be mapped into a π-conditional SCE act
uniquely by finding cµ(f |E) for each ∈ π. Denote this act as fπµ

∈ CE(f |π). This fπ ∈ H
is uniquely defined as20

fπµ
=






cµ(f |E1) s ∈ E1
...

...
cµ(f |Em

) s ∈ Em




 (2.9.4)

The mapping f 7→ fπµ
is continuous, mixture linear, and onto. This follows directly from

Lemma 2.12. By construction f ∼π fπ.

Step 4: Map each menu into a particular π-conditional SCE menu, xπµ
.

Define xπµ
, as the menu where each f ∈ x is mapped into fπµ

∈ CE(f |π), as defined in
equation (2.9.4). The map x 7→ xπµ

is well defined, onto, continuous, and mixture linear.

xπµ
=
⋃

f∈x

fπµ
(2.9.5)

Lemma 2.14. Let x ∈ Q∗, the set of all closed menus. Given some π ∈ Π, define the
operation πµ : Q∗ → Qπ

∗, where

πµ(x) =
⋃

f∈x

πµ(f)

and
πµ(f)(s) = cµ(f |E) for all s ∈ E ∈ π (2.9.6)

20I will use this matrix notation thought the proofs when it is easier to follow.
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For the cµ(f |E) defined in equation (2.9.3). Then

1. πµ is well-defined.

2. πµ is onto.

3. πµ is Hausdorff continuous.

4. πµ is mixture linear.

Proof. In Section 2.9.3

Proposition 2.15. Let %π satisfy Axioms 2.3.1- 2.3.8 then for any x ∈ Q, xπµ
∼π x.

Proof. In Section 2.9.3.

For each x ∈ Q, if %π satisfy Axioms 2.3.1- 2.3.8, xππ
is indifferent to x. Hence, it

is possible to identify each menu x with a particular π-conditional SCE menu xπµ
that is

indifferent to x.

Step 5: Restrict the domain of choice: closed, convex, π-measurable, and menus that in-
clude all their π-dominated elements.

For any f ∈ H , define Oπµ
(f), the set of all π-dominated acts by f , as

Oπµ
(f) =

{

g ∈ H
∣
∣
∣cµ(f |E) %π cµ(g|E), ∀ E ∈ π

}

This is the set of all g ∈ H , for which the E-conditional SCE lottery given by cµ(g|E) is
dominated by cµ(f |E) for all E ∈ π. Here I treat c(f |E) ∈ ∆(B) as the constant act that
gives outcome c(f |E) in every state.21 Similarly, define the menu of dominated acts by x,
Oπµ

(x), as

Oπµ
(x) =

⋃

f∈x

Oπµ
(f)

As an operation on menus, x 7→ Oπµ
(x) is well-defined, Hausdorff continuous, and mixture

linear operation.

Lemma 2.16. Let Oπµ
: K(Qπ) → K(Qπ) be the mapping x 7→ Oπµ

(x), where

Oπµ
(f) =

{

g ∈ H
∣
∣
∣cµ(f |E) % cµ(g|E), ∀ E ∈ π

}

and

Oπµ
(x) =

⋃

f∈x

Oπµ
(f) (2.9.7)

21I follow the notation of Takeoka [2005], who defines the acts that are dominated by f as O(f); which is
the set of acts dominated by f in every possible state.
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cµ(f |E) defined in equation (2.9.3). Then

1. If x ∈ K(Qπ) then Oπµ
(x) ∈ K(Qπ) (Oπµ

is well defined).

2. Oπµ
is Hausdorff continuous.

3. Oπµ
is mixture linear

Proof. In Section 2.9.3

For each x ∈ Q, the menu Oπµ
(x) contains all the acts that are π-dominated by some

element of x. This menu is maximal on the sense that for any act h 6∈ Oπµ
(x), for any f ∈ x,

there exists E ∈ π such that cµ(h|E) ≻ cµ(f |E). Lemma 2.10 states that given Axioms 2.3.1-
2.3.8, x ∼π Oπµ

(x). Thus adding elements to a menu x that are π-dominated do not change
preferences for the menu.

From Lemma 2.5 and Lemma 2.6 (in Section 2.9.2), if %π satisfies Axioms 2.3.1- 2.3.8,
x ∼π cl(x) and x ∼π co(x) for all x ∈ Q. Therefore I can restrict the attention to K(Q),
the set of all closed and convex menus. This set is compact from the Heine Borel Theorem
because Q it is equivalent to a closed and bounded subset of Euclidean Space

Moreover, from Proposition 2.15, x ∼π xπµ
for any x ∈ Q. Since π(·) is onto, continuous,

and mixture linear operation on Q (Lemma 2.14), I can identify each x ∈ K(Q) with some
xπµ

, which is also going to be closed and convex. Hence, further narrow the attention to
those menus in K(Q) that are π-measurable, which is the set K(Qπ), the se of closed and
convex π-measurable menus. One final restriction on the domain is to menus in K(Qπ) that
are maximal in the sense that they include all the acts that are π-dominated by elements in
x. Let

K∗(Qπ) =
{
x ∈ K(Qπ) : x = Oπµ

(x)
}

The set K∗(Qπ) is also compact and convex, since by Lemma 2.16, Oπµ
(·) as an opera-

tion is well defined, Hausdorff continuous, and mixture linear. Given Axioms 2.3.1- 2.3.8,
x ∼ Oπµ

((cl(co(x)))πµ
). Hence each menu x ∈ Q is identified by indifference with a menu on

K∗(Qπ). By considering K∗(Qπ) it is possible to follow the construction of DLR’s additive
representation (adapted to this particular domain).22

Step 7: DLR-like representation for %π restricted to K∗(Qπ).

Consider the set K∗(Qπ). For any x ∈ K∗(Qπ), for each objective state s ∈ S, define the
function, σx(s) = supf∈x (〈u, fs〉), and σx = (σx(s1), ..., σx(sn)). Here u is the vNM utility
index obtained form Step 1, which is bounded between 0 and 1. The function σ(·), has as

22It is key in the DLR approach that the “support function”, which gives the maximum at each state is a
1-1 mapping. If I include all menus that are not maximal with respect to this notion of π-dominated acts,
two menus might give the same function without being the same menu by just adding dominated elements
on a particular event E ∈ π, thus it wouldn’t be 1-1.
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codomain the set of linear functions on [0, 1]n, labeled ([0, 1]n)∗. Therefore σ : K∗(Qπ) →
([0, 1]n)∗.

For x ∈ K∗(Qπ), any f ∈ x is constant on E for each E ∈ π. Therefore there are some
linear restrictions on the set of functions that σ maps into. For each E, there is the restriction
that fs = fs′ if s, s

′ ∈ E, therefore the range of σ will be homeomorphic to ([0, 1]|π|)∗. Take
π = {E1, ..., Em} as a “state space” since there is no way of distinguishing states in each
Ei for π-measurable menus. Let |π| = m ≤ n. For K(Qπ), each x defines a vector in a
linear subspace of [0, 1]n of dimension m, which can be identified with [0, 1]m. By the duality
between vectors and linear functions on Rm, σx defines a continuous linear function on a
space homeomorphic to [0, 1]m.

Since x is π-measurable, for any f ∈ x, fs = fs′ where s, s′ ∈ E for E ∈ π, then
fs = cµ(f |E) for the event E ∈ π where E ∋ s. Then

σx(E) = sup
f∈x

〈u, cµ(fE)〉

Write σx as:
σx = (σx(E1), ..., σx(Em)) ∈ ([0, 1]m)∗

The following Lemma shows the properties of sigma, that are key to follow DLR’s additive
representation construction.

Lemma 2.17. Let σ : K∗(Qπ) → ([0, 1]m)∗ be (σxπ
(E1), ..., σxπ

(Em)). Then

1. σ is continuous (using the sup norm on Rm).

2. σ is mixture linear.

3. σ is one to one.

4. σ is onto.

Proof. In Section 2.9.3.

Now, for any linear function v on [0, 1]m, define the functional L : ([0, 1]m)∗ → R as
L(v) = Vπ(σ

−1(v)). This is well defined since for every vector v ∈ [0, 1]m, there is a unique
x ∈ K∗(Qπ) such that σx = v from Lemma 2.17. L is continuous and mixture linear since σ
and Vπ are continuous and mixture linear. So L is a positive linear functional on ([0, 1]m)∗.
By by the Riesz Representation Theorem there exists a unique positive measure µπ on π
such that for any v ∈ ([0, 1]m)∗, the functional L is represented as integration with respect
to the measure µπ (see Aliprantis and Border [2006]), i.e.

L(v) =

∫

π

v(E)µπ(dE)
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Without loss, normalize µπ to be a probability measure over π. Since π is finite, can write

L(v) =
∑

E∈π

v(E)µπ(E)

The functional L on ([0, 1]m)∗ was defined as L(v) = Vπ(σ
−1(v)), for any π ∈ Π and every

x ∈ K∗(Qπ),

Vπ(x) = L(σx) =
∑

E∈π

σx(E)µπ(E) =
∑

E∈π

(

sup
f∈x

〈u, cµ(f |E)〉

)

µπ(E)

=
∑

E∈π

sup
f∈x

(U(cµ(f |E)))µπ(E) (2.9.8)

For the EU function U : ∆(B) → R given by U = 〈u, ·〉, for the vNM utility indices
u = (u(b1), ..., u(bk)). L(·) is mixture linear and agrees with the Vπ(x) = L(σx) for all
x ∈ K∗(Qπ). Therefore equation (2.9.8) can be extended as a representation of %π over all
the π-measurable menus, since x ∼π cl(x), x ∼π co(x), x ∼π cl(x), and x ∼π Oπµ

(x) for
x ∈ Qπ, and

sup
f∈x

〈u, c(f |E)〉 = max
f∈cl(x)

〈u, c(f |E)〉 = max
f∈co(cl(x))

〈u, c(f |E)〉 = sup
f∈Oπµ (x)

〈u, c(f |E)〉

The construction of the representation is given by the commutative diagram on Figure 2.7.

Figure 2.7: EI-SEU Representation

K∗(Qπ) R

([0, 1]m)∗

σ

Vπ

L

Step 8: µπ and µ must be aligned on events defined by the partition.

µπ from the representation theorem on equation (2.9.8) is a measure over events in π,
not over the whole state space S. It is possible to identify µπ = µ on π uniquely from the
uniqueness of the mixture linear representation of %π|H , the restriction of %π to singleton



43

menus (acts) because Vπ restricted to H is also a mixture linear representation of %π|H , and
µ is unique for mixture linear representation of %π|H .
Step 9: Extend representation to all menus.

The representation result from Step 7 is over all π-measurable menus. For x ∈ Qπ, f ∈ x
is constant on E for all E ∈ π. From the definition of cµ(f |E) on equation (2.9.1), for any
f ∈ x ∈ Qπ, fs = cµ(f |E) for E ∋ s, equation (2.9.8), can be rewritten as

Vπ(x) =
∑

E∈π

(

sup
f∈x

〈u, cµ(f |E)〉

)

µ(E) =
∑

E∈π

sup
f∈x

(
∑

s∈E

µ(s)

µ(E)
(〈u, fs〉)

)

µ(E)

Since µπ(E) = µ(E) from Step 8. Now consider x ∈ Q, and from x ∼π xπµ
(Proposition

2.15) extend the representation to Q. Hence, to extend the representation to any menu,
suffices to show that for any x ∈ Q,

∑

E∈π

(

sup
f∈x

[
∑

s∈E

µ(s|E) 〈u, fs〉

])

µ(E) =
∑

E∈π

(

sup
f∈xπµ

[
∑

s∈E

µ(s|E) 〈u, fs〉

])

µ(E) (2.9.9)

Given x, for each E ∈ π, consider supf∈x

(∑

s∈E µ(s|E) 〈u, fs〉
)
. For each E, and f ∈ x,

by construction of xπµ
, f is associated with a unique cµ(f |E) ∈ ∆(B), which is defined as

cµ(f |E) =
∑

s∈E
µ(s)
µ(E)

fs. Therefore

sup
f∈x

(
∑

s∈E

µ(s|E) 〈u, fs〉

)

= sup
f∈x

(
∑

s∈E

µ(s)

µ(E)
〈u, fs〉

)

= sup
f∈x

(
∑

s∈E

〈

u,
µ(s)

µ(E)
fs

〉)

= sup
f∈x

(
∑

s∈E

〈u, cµ(f |E)〉

)

= sup
f∈xπµ

(
∑

s∈E

µ(s|E) 〈u, fs〉

)

Hence equation (2.9.9) is always satisfied. So %π can be represented by the functional

Vπ(x) =
∑

E∈π

sup
f∈x

(
∑

s∈E

µ(s|E)(U(fs))

)

µ(E) (2.9.10)

Where U is a EU function, unique up to positive affine transformation, µ is a unique distri-
bution over S, and µ(·|E) is the conditional distribution of S on event E. Therefore from
any π ∈ Π, %π admits an EI-SEU representation given by equation (2.9.10) if and only if
%π satisfies Axioms 2.3.1- 2.3.8 (for a fixed partition π).
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Proof of Theorem 2.2

Necessity is again routine to check. Here I prove sufficiency. %π admits a EI-SEU represen-
tation (Uπ, µπ, π), given by the functional Vπ : Q × π → R, for each π ∈ Π. Now extend
EI-SEU representation to all partitions, where % is a preference order defined over Q× Π.
The key step is to show that the axioms imply that π-measurable menus do not get any
benefit from getting information finer than π. This implies that it is possible to compare
(x, π) and (y, π′), with the functional Vπ∨π′ : Q× (π∨π′) → R, which represents the coarsest
common information between π and π′.

For any π, Vπ, is given by µπ, a measure over S, and a mixture linear utility function
Uπ : ∆(B) → R. From Information Value from Options for the preferences to be represented
by {Vπ}π∈Π it is necessary that Uπ = Uπ′ for all π, π′ ∈ Π, since µπ = µπ′ = µ from the
existence of a SEU representation over acts (Step 8 in Proof of Theorem 2.1).

From the representation of %π, if % satisfies Axioms 2.3.1- 2.3.8 for any π ∈ Π, from
Proposition 2.15, (x, π) ∼ (xπµ

, π) for any x ∈ Q. For any π consider finer information
than π, π′ ≥f π. The mapping, through operation π′ (as defined in Proposition 2.14), of a
π-measurable menu is the identity if π′ is finer than π (i.e. the menu does not change).

Lemma 2.18. Let % satisfy Axioms 3.1-3.9. Given π ∈ Π, for any x ∈ Qπ and any π′ ≥f π,
xπ′

µ
= x, where xπ′

µ
is the menu of π′-conditional SCE equivalent acts to x defined in equation

(2.9.5).

Proof. In Section 2.9.3.

For (x, π) ∈ Q× Π, from the utility index u, define the act f ∗
(x,π) as

f ∗
(x,π)(s) = arg max

f∈cl(xπµ )
〈u, fs〉 (2.9.11)

From the definition of xπµ
, this is equivalent to f ∗

(x,π)(s) = argmaxf∈cl(x) 〈u, cµ(f |E)〉 for

s ∈ E. From the utility representation for %π, (f
∗
(x,π), π) ∼π (x, π) since

Vπ(f
∗
(x,π)) =

∑

E∈S

(
∑

s∈E

µ(s|E)
〈
u, f ∗

(x,π)

〉

)

µ(E)

=
∑

E∈S

(
∑

s∈E

µ(s|E) max
f∈cl(x)

〈u, cµ(f |E)〉

)

µ(E)

=
∑

E∈S

sup
f∈x

(
∑

s∈E

µ(s|E) 〈u, fs〉

)

µ(E)

= Vπ(x)
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Using the construction of this act, as an act that is indifferent to x given information π,
show that for any π-measurable menu x, there is no benefit from giving the DM information
finer than π.

Proposition 2.19. Let % satisfy Axioms 3.1-3.9, then for any x ∈ Qπ, (x, π) ∼ (x, π′) for
any π′ ≥f π.

Proof. In Section 2.9.3.

Corollary 2.20. Let % satisfy Axioms 3.1-3.9. For all x ∈ Q and π ∈ Π, (xπµ
, π) ∼

(xπµ
, π ∨ π′) for all π′ ∈ Π.

From the previous results, any information finer than π is useless if the menu consists of
π-measurable acts, given by the next Proposition.

Proposition 2.21. Let % satisfy Axioms 3.1-3.9, then for any x ∈ Q, π ∈ Π, (x, π) % (x, π′)
implies (xπµ

, π ∨ π′) % (xπ′
µ
, π ∨ π′).

Proof. In Section 2.9.3.

From Proposition 2.15, it follows that two menus with different information can be com-
pared in the coarsest common refinement of the partition.

Corollary 2.22. Let % satisfy Axioms 3.1-3.9, then for any x, y ∈ Q, π, π′ ∈ Π, (x, π) %
(y, π′) implies (xπµ

, π ∨ π′) % (yπ′
µ
, π ∨ π′).

Hence, to compare any menu with different information structures, it is possible to com-
pare π- and π′-conditional SCE equivalent menus xπµ

and xπ′
µ
with the information given

by π ∨ π′. Therefore it is possible to extend the representation of %π for each π over menus
with any information. To see this, let (x, π) and (y, π′) ∈ Q × Π. From definition of xπµ

and Lemma 2.18, (xπµ
, π ∨ π′) ∼ (x, π) and (y, π′) ∼ (yπ′

µ
, π ∨ π′). Therefore (x, π) % (y, π′)

implies (xπµ
, π ∨ π′) % (yπµ

, π ∨ π′). From Theorem 2.1 there is a representation for %π∨π.
Hence (xπµ

, π ∨ π′) % (yπµ
, π ∨ π′) if and only if

∑

E∈π∨π′

sup
f∈xπµ

(
∑

s∈E

µ(s|E) 〈u, fs〉

)

µ(E) ≥
∑

E∈π∨π′

sup
g∈yπ′

µ

(
∑

s∈E

µ(s|E) 〈u, gs〉

)

µ(E)
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But note that

Vπ∨π′(xπµ
) =

∑

E∈π∨π′

sup
f∈xπµ

(
∑

s∈E

µ(s|E) 〈u, fs〉

)

µ(E)

=
∑

F∈π






∑

E⊂F

F∈π∨π′

sup
f∈xπµ

(
∑

s∈E

µ(s|F ) 〈u, fs〉

)

µ(F )






=
∑

F∈π

sup
f∈xπµ

(
∑

s∈E

µ(s|F ) 〈u, fs〉

)

µ(E)

=Vπ(xπµ
) = Vπ(x)

Hence (x, π) % (y, π′) implies that Vπ(x) ≥ Vπ′(y), extending the representation to the whole
domain of %.

Proof of Theorem 2.3

Here I prove sufficiency, necessity is straightforward. For the proof, let %H be the restriction
of % to singleton menus (acts), and %∆(B), the restriction of % to constant acts (lotteries).
I abuse notation when by using

[
p s ∈ E
z s ∈ Ec

]

≡ pEz

for p ∈ ∆(B). pEf is the act for which (pEf)s = p, for all s ∈ E.

Step 1: Existence of a SEU representation for %H .

Like in Theorem 2.1, Axioms 2.4.1- 2.4.8 guarantee that there exists a SEU representation
for %H . This representation identifies a unique µ over S, and a EU function U : ∆(B) → R
unique up to positive affine transformations. U is given by U = 〈u, p〉 for some u : B → R.
From Non-Triviality there exist best and worst elements in B, b and b respectively. Let δ
be the degenerate lottery that gives the best outcome with certainty and δ the degenerate
lottery that gives the worst outcomes for sure.

Step 2: For menus that agree on everything except an event, if they are constant on that
event, they can be evaluated with the %∆(B) −best element.

The next two lemmas show that the preferences for menus of the form PEz and QEz are
determined by the %∆(B)-best element in P and Q. First I show that for menus of the form
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pEz and qEz the preference between the lotteries p and q will determine the preference over
menus. Then I show that for any E ⊂ S, and any menu of the form PEz, PEz equivalent
to the menu consisting of just one lottery on E for some p∗ ∈ cl(P ), given by p∗Ez.

Lemma 2.23. Let % satisfy Axioms 2.4.1- 2.4.8, then for any p, q ∈ ∆(B), where p %∆(B) q,
for all E ⊆ S, x ∈ Q,

pEx % qEx

Proof. In Section 2.9.3.

Lemma 2.24. Let % satisfy Axioms 2.4.1- 2.4.8, then for any P ∈ 2∆(B), and z ∈ Q, and
any E ⊆ S, there exists p∗ ∈ cl(P ) such that

PEs ∼ p∗Ez. (2.9.12)

Proof. In Section 2.9.3.

A corollary to the two lemmas is that adding to a menu indifferent lotteries p and p′, where
p ∼∆(B) p′, on a particular state doesn’t change the preferences for the menu. Therefore
menus of the form pEz can be evaluated as lotteries.

Corollary 2.25. Let % satisfy Axioms 2.4.1- 2.4.8. Let p, q ∈ ∆(B) such that p ∼∆(B) q. p
and q are not necessarily the same lottery. Then for any x ∈ Q, for any s ∈ S, x ∪ (psx) ∼
x ∪ (p′sx).23

Proof. In Section 2.9.3.

By Lemmas 2.23 and 2.24, and Corollary 2.25, it follows that when evaluating menus
that are constant on an event E, it is enough to consider the best lottery on each menu.

Step 3: Define the join of a menu, as the act that dominates all elements in the menu.

Definition 2.7. Let %∆(B) be the preference over ∆(B), induced by the restriction of % on
constant acts. For any finite x, define the join act, (∨x)s ∈ ∆(B), as the element in x that
maximizes %∆(B) for every s ∈ S,

(∨x)s = arg max
%∆(B)

{fs : f ∈ x}

∨x is the act

∨x = ((∨x)s1 , (∨x)s2 , ..., (∨x)sn)

23Which is equivalent to {x ∪ p}sx ∼ {x ∪ p′}sx by the definition of psx.
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For any closed menu x, (∨x)(s) is well defined as well because x is closed and bounded,
subset of Euclidean space, hence compact. By Lemma 2.5, cl(x) ∼ x, and continuity so for
an arbitrary x, can define ∨x ≡ ∨(cl(x)). By construction ∨x dominates all acts in x in
every possible state, hence the next Proposition is a natural result.

Proposition 2.26. Let % satisfy Axioms 2.4.1- 2.4.8 then for any closed x ∈ Q, ∨x % x.

Proof. In Section 2.9.3.

Step 4: Identify preferences between menu and {s, s′}-conditional SCE versions, for pairs
of states s, s′ ∈ S.

Define the act f ∗
s ∈ H , as the act that gives the best degenerate lottery on state s and

the worst outcome everywhere else.

f ∗
s =

{
δb̄ s = t
δb s 6= t

(2.9.13)

The following two results state the properties of unions of acts that differ only on two
states. First, for states s and s′, the indifference between two acts that differ only on those
two states and the join is determined by the indifference between the menu {f ∗

s ∪ f ∗
s′} and

the act (f ∗
s ∨ f ∗

s′). Secondly, if the union of two acts that differ only on s and s′ is strictly
dispreferred to the join, then it must be indifferent to one of the two acts in the menu.
By construction the best individual act is always indifferent to the {s, s′}-conditional SCE
menu.

Lemma 2.27. Let % satisfy Axioms 2.4.1- 2.4.8. Given s, s′ ∈ S,

{f ∗
s ∪ f ∗

s′} ∼ (f ∗
s ∨ f ∗

s′)

if and only if for any p, q, p′, q′ ∈ ∆(B), with p ≻∆(B) p
′ and q′ ≻∆(B) q, or p′ ≻∆(B) p and

q ≻∆(B) q
′











p s
q s′

δ {s, s′}c



 ∪





p′ s
q′ s′

δ {s, s′}c










∼





p ∨ p′ s
q ∨ q′ s′

δ {s, s′}c





=









p s
q s′

δ {s, s′}c



 ∨





p′ s
q′ s′

δ {s, s′}c









Proof. In Section 2.9.3.
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Lemma 2.28. Let % satisfy Axioms 2.4.1- 2.4.8. For any s, s′ ∈ S, and any f, g ∈ H, and
any x ∈ Q, If

{[f{s, s′}x] ∪ [g{s, s′}x]} ≺ [(f ∨ g){s, s′}x]

then

{[f{s, s′}x] ∪ [g{s, s′}x]} ∼ [f{s, s′}x] or {[f{s, s′}x] ∪ [g{s, s′}x]} ∼ [g{s, s′}x]

Proof. In Section 2.9.3.

Step 5: Define information separable states, and construct a partition as an equivalence
class of states that are not information separable.

Definition 2.8. For two states, s and s′, define s and s′ as Information Separable if for all
f, g ∈ H ,

{[f{s, s′}δ] ∪ [g{s, s′}δ]} ∼ [(f ∨ g){s, s′}δ]

By Lemma 2.27 to check if s and s′ are information separable, it is enough to check if
the states are separable for the menu consisting of f ∗

s and f ∗
s′. If for some f, g ∈ H

[(f ∨ g){s, s′}δ] ≻ {[f{s, s′}δ] ∪ [g{s, s′}δ]}

then s and s′ are not information separable, which will have the consequence that the
DM has no information to distinguish the two states. By Lemma 2.28 if states are not
information separable then for a ny f, g ∈ H , {[f{s, s′}δ] ∪ [g{s, s′}δ]} ∼ [f{s, s′}δ] or
{[f{s, s′}δ] ∪ [g{s, s′}δ]} ∼ [g{s, s′}δ]. Given this observation, the following Corollary fol-
lows directly from Lemmas 2.27, and 2.28.

Corollary 2.29. Let % satisfy Axioms 2.4.1- 2.4.8. Let s, s′ ∈ S, if

{[
δ{s}δ

]
∪
[
δ{s′}δ

]}

︸ ︷︷ ︸

{f∗
s ∪f

∗
s′
}

≺
[
δ{s, s′}δ

]

︸ ︷︷ ︸

f∗
s ∨f

∗
s′

then for any p, q, p′, q′ ∈ ∆(B), with p∨ p′ = p and q ∨ q′ = q′, and p ≻∆(B) p
′ or q′ ≻∆(B) q.











p s
q s′

δ {s, s′}c



 ∪





p′ s
q′ s′

δ {s, s′}c










≺





p ∨ p′ s
q ∨ q′ s′

δ {s, s′}c





Therefore, if % satisfies Axioms 2.4.1- 2.4.8, then not information separability is an
equivalence class. Intuitively, if there is not enough information to separate s and s′, and no
information to separate s′ and s′′, there cannot be enough information to separate s and s′′.
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Lemma 2.30. Let % satisfy Axioms 2.4.1- 2.4.8. If for s, s′, s′′ ∈ S,

{[
δ{s}δ

]
∪
[
δ{s′}δ

]}
≺
[
δ{s, s′}δ

]
and

{[
δ{s}δ

]
∪
[
δ{s′′}δ

]}
≺
[
δ{s, s′′}δ

]

then

{[
δ{s′}δ

]
∪
[
δ{s′′}δ

]}
≺
[
δ{s′, s′′}δ

]

Proof. This follows directly form Corollary 2.29 and Transitive Indifference to SCE, since
a SCE version of a menu is always as good as a particular element on the event where the
menu is constant.

Define the [s] as the equivalence class of all the states in S, that are not information
separable to s. Let

[s] = {t ∈ S : {f ∗
s ∪ f ∗

t } ≺ (f ∗
s ∨ f ∗

t )}

=
{
t ∈ S :

{[
δ{s}δ

]
∪
[
δ{t}δ

]}
≺
[
δ{s, t}δ

]}
(2.9.14)

[s] is all those states that cannot be distinguished from [s] based on the DM’s choices. For
any t 6∈ [s], by Transitive Indifference to SCE and Lemma 2.28 {f ∗

t ∪ f ∗
s } ∼ (f ∗

s ∨ f ∗
t ). By

Lemma 2.30, [s] is well defined and a partitions S. This follows from the fact that for any
t ∈ [s], then t 6∈ [s′] for any s′ 6∈ [s]. Let the partition π∗ be defined as

π∗ = [s]

For π∗, it is possible to generalize the observation of Lemma 2.28 for subsets of any event in
π∗, which is given by the following Proposition.

Proposition 2.31. Let % satisfy Axioms 2.4.1- 2.4.8. Let F ⊆ E ∈ π∗, then for any
x, z ∈ Q, there exists f ∗ ∈ x such that

xFz =
⋃

g∈x

[
g F
z F c

]

∼ f ∗Fz (2.9.15)

Proof. In Section 2.9.3.

Step 6: Show that if % satisfies Axioms 2.4.1- 2.4.8, % admits a EI-SEU representation
(U, µ, π∗).

Here I show that Axioms 2.4.1- 2.4.8 imply Axioms 2.3.1- 2.3.8 for the partition π∗,
therefore showing the existence of a EI-SEU representation of %, with the functional Vπ∗

from equation 2.9.10.
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Proposition 2.32. Let % satisfy Axioms 2.4.1- 2.4.8, then % satisfies Order, π-Continuity,
π-Independence, π-Non-Triviality, Monotonicity, Event Strategic Rationality, Event Domi-
nance and Menu-Sure Thing Principle for π∗.

Proof. Clearly, % satisfies Order, π-Continuity, π-Independence, π-Non-Triviality, Mono-
tonicity and Menu-Sure Thing Principle. Need to prove that % satisfies Event Strategic
Rationality and Event Dominance for E ∈ π∗.

Event Strategic Rationality. Want to show that xEz % yEz for some E ∈ π∗, then
xEz ∼ {x∪y}Ez. From Proposition 2.31, since E ∈ π∗, there exists c(f ∗|E), c(g

∗|E) ∈ ∆(B)
such that xEz ∼ c(f ∗|E)Ez and yEz ∼ c(g∗|E)Ez, and c(f ∗|E) ∈ CE(f |E) for some
f ∈ x, and c(g∗|E) ∈ CE(g|E) for some g ∈ y. Since xEz % yEz, by Lemma 2.23,
c(f ∗|E) %∆(B) c(g∗|E). Now, by Lemma 2.24, {c(f ∗|E) ∪ c(g∗|E)}Ez ∼ c(f ∗|E)Ez ∼ xEz.
By Menu-Monotonicity, {c(f ∗|E) ∪ c(g∗|E)}Ez ⊆ {x ∪ y}Ez, however by proposition 2.31,
c(h∗|E)Ez ∼ {x ∪ y}Ez must hold, where c(h∗|E) ∈ CE({x ∪ y}|E). So c(h∗|E) ∈ CE(x|E)
or c(h∗|E) ∈ CE(y|E), hence c(h∗|E) = c(f ∗|E), and the result follows. So % satisfies Event
Strategic Rationality for all E ∈ π∗.

Event Dominance. For any z ∈ Q, let xEz % yEz. Want to show that x % y. For each E, by
proposition 2.31, there exists c(f ∗|E), c(g

∗|E) ∈ ∆(B) such that xEz ∼ c(f ∗|E)Ez ∼ f ∗
EEz,

and yEz ∼ c(g∗|E)Ez ∼ g∗EEz, for all E. Then c(f ∗|E) %∆(B) c(g
∗|E) for all E by Lemma

2.23.
Let x′ and x′′ be two menus defined as follows (and y′ and y′′ are defined the same way,

but using g∗E ∈ y instead)

x′ =
⋃

E∈π

{f ∗
EEδ}

x′′ =
⋃

E∈π

{c(f ∗
E|E)Eδ}

Where f ∗
E ∈ x is the act defined as in Proposition 2.31, and c(f ∗

E|E) ∈ CE(f ∗
E |E). From

SCE Aversion, x′ % x′′ and from Monotonicity*, x % x′. Now show that

x′′ ∼






c(f ∗
E1
|E1) E1
...

c(f ∗
Em

|Em
) Em




 ∈ H

To prove this, prove first the following two Lemmas
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Lemma 2.33. Let F,E ∈ π∗ where E 6= F . Then for any set of lotteries p, p ∈ ∆(B),

{[pEδ] ∪ [qFδ]} ∼





P E
q F
δ {E ∪ F}c





Proof. In Section 2.9.3.

Lemma 2.34. Let {si}
ℓ
i=1 ∈ S be any set of states in S, such that for all i, j si ∈ Ei ∈ π∗,

sj ∈ Ej ∈ π∗, and Ei 6= Ej. Then for any {pi} ∈ ∆(B),

ℓ⋃

i=1

{[pisiδ} ∼








p1 s1
...
pℓ sℓ
δ {E ∪ F}c








Proof. In Section 2.9.3.

Applying Lemmas 2.33 and 2.34 recursively, it follows that

⋃

E∈π

{c(f ∗
E |E)Eδ} ∼






c(f ∗
E1
|E1) E1
...

c(f ∗
Em

|Em
) Em




 ∈ H

And by definition of c(f ∗|E) ∈ CE(f ∗|E), then from Monotonicity*






c(f ∗
E1
|E1) E1
...

c(f ∗
Em

|Em
) Em




 ∼






f ∗
E1

E1
...

f ∗
Em

Em




 % x′

And therefore x ∼ x′′. Likewise y ∼ y′′, and form the previous observation that c(f ∗|E) %∆(B)

c(g∗|E) for all E and Monotonicity*, x % y follows. Hence % satisfies Event Strategic
Rationality.

Corollary 2.35. % admits a EI-SEU representation (U, µ, π∗), given by V (x) = Vπ∗(x) from
theorem 2.2, since it satisfies all necessary and sufficient axioms for a EI-SEU representation
for partition π∗.

V (x) =
∑

E∈π∗

sup
f∈x

(
∑

s∈E

µ(s|E) (U(fs))

)

µ(E)

Step 7: Show that for any other π′ ∈ Π where π′ 6= π, then % fails Event Strategic
Rationality or Event Dominance for some E ∈ π′. Hence π∗ is unique, and (U, µ, π∗) is a
EI-SEU representation of %.
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Proposition 2.36. Let % satisfy axioms 2.4.1- 2.4.8. If π′ 6= π∗, then % does not admit a
EI-SEU representation (U, µ, π).

Proof. If π′ 6= π∗ there are two cases: 1) there exists F ∈ π′ such that F intersects two
distinct events in π∗; 2) π′ is strictly finer than π∗.

Event Strategic Rationality. There exists F ∈ π′ such that F ∩ Ei 6= ∅ and F ∩ Ej 6= ∅ for
Ei, Ej ∈ π and Ei 6= Ej . Then there exist states s, t ∈ S where s ∈ Ei, t ∈ Ej and s, t ∈ F .
Show that this contradicts Event Strategic Rationality. Let x, y be defined as follows:

x =

[
δ s
δ S \ s

]

and y =

[
δ t
δ S \ t

]

Suppose z = δ. Without loss, suppose xFz % yFz. Moreover xFz = x and yFz = y.
However

{x ∪ y}Fz =

{[
δ s
δ S \ s

]

∪

[
δ t
δ S \ t

]}

Since t 6∈ [s], and s 6∈ [t], by Lemma 2.28, and definition of [s],

{x ∪ y}Fz =

{[
δ s
δ S \ s

]

∪

[
δ t
δ S \ t

]}

∼





δ s

δ t
δ S \ {s, t}





and by Lemma 2.23,

{x ∪ y}Fz ∼





δ s

δ t
δ S \ {s, t}



 ≻

[
δ s
δ S \ s

]

= xFz

Hence % doesn’t satisfy Event Strategic Rationality for F ∈ π′.

Event Dominance. Suppose that π′ >f π. Then there exist Fi, Fj ∈ π′ with Fi 6= Fj, and
Fi ∪ Fj ⊆ E for some E ∈ π. There exists t, s ∈ S such that s, t ∈ E and s ∈ Fi, t ∈ Fj .
Consider the following menu

x =

{[
δ s
δ S \ s

]

∪

[
δ t
δ S \ t

]}

By definition of π, s, t ∈ [s] for some s ∈ S by definition of π and Lemma 2.28, without loss
of generality, for some p ∈ ∆(B),

x =

{[
δ s
δ S \ s

]

∪

[
δ t
δ S \ t

]}

∼

[
δ s
δ S \ s

]

∼

[
p {s ∪ t}
δ S \ {s ∪ t}

]
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Consider q ∈ ∆(B) such that δ ≻∆(B) q ≻∆(B) p, and define y as follows

y =

[
q {s ∪ t}
δ S \ {s ∪ t}

]

Therefore y ≻ x. Now let z be the degenerate lottery that gives outcome b in every state.
Note that for any F ∈ π′ such that F 6= Fi or F 6= Fj, xFz = z and yFz = z. For Fi and
Fj ,

xFiz =

{[
δ s
δ S \ s

]

∪
[
δ S

]
}

∼

[
δ s
δ S \ s

]

xFjz =

{[
δ t
δ S \ t

]

∪
[
δ S

]
}

∼

[
δ t
δ S \ t

]

and

yFiz =

[
p′ s
δ S \ s

]

yFjz =

[
p′ t
δ S \ t

]

Hence for all F ∈ π, xFz % yFz but y ≻ x; therefore % does not satisfy Event Dominance
for π′.

A corollary of the representation result is that xF ∼ x for any menu x, and F -conditional
SCE menu to x is equivalent to F ∈ π∗.

Corollary 2.37. Let % admit a EI-SEU representation (U, µ, π∗), then for any x ∈ Q and
any xF ∈ CE(x|F ) x ∼ xF if and only if F ⊆ E ∈ π∗.

Therefore if% admits a EI-SEU utility representation (U, µ, π∗), U is unique up to positive
affine transformations, and µ and π∗ are unique.

Proof of Proposition 2.1

(1) implies (2). Let %1 be more averse to SCE than %2. By proposition 2.31 for any E ∈ π∗
1,

x ∼1 xE for any x ∈ Q and xE ∈ CE(x|E). Since %1 is more SCE averse than %2, then
xE %2 x for any x ∈ Q and xE ∈ CE(x|E).24 From Corollary 2.37 and the SCE aversion
from the EI-SEU representation xE %2 x implies that xE ∼2 x, and this is equivalent to
E ⊆ F ∈ π∗

2 . Hence π∗
1 ≥f π∗

2.
(2) implies (1). Let π∗

1 ≥f π∗
2. Let xE %1 x for some x, for any xE ∈ CE1(x|E). Since

U1 = U2 and µ1 = µ2, then CE1(x|E) and CE2(x|E) (the definition of SCE is independent of
the information that the DM has). Since %1 admits a EI-SEU representation then xE ∼1 x

24since U and µ are the same xE ∈ CE(x|E) for both DMs
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for any xE ∈ CE(x|E). From Corollary 2.37, this is equivalent to E ⊂ F1 for some F1 ∈ π∗
1.

Since π∗
1 ≥f π∗

2, then there is F2 ⊇ F1 with F2 ∈ π∗
2. By Corollary 2.37 for any x ∈ Q,

x ∼2 xE for any xE ∈ CE2(x|E) since E ⊂ F2 ∈ π∗
2. Hence xE %2 x for any xE ∈ CE2(x|E)

by SCE aversion from the EI-SEU representation. Hence %1 is more SCE averse than %2.
(2) implies (3). This follows from the fact that V1(f) = V2(f) if U1 = U2 and µ1 = µ2,

since information has no value for singleton acts as previously discussed. By the functional
for of the EI-SEU representation it is easy to check that V1(x) ≥ V2(x) for all x ∈ Q, since
information is always (weakly) valuable. Hence it follows that if x ≻1 {f}, then x ≻2 {f}
as well.

(3) implies (2). Prove the contrapositive. Suppose that π∗
1 6=f π∗

2. Then there exists
some F ∈ π∗

2 such that F ∩ Ei 6= ∅ and F ∩ Ej 6= ∅ for some Ei, Ej ∈ π∗
1. Then there exist

si, sj ∈ F , where si ∈ Ei and sj ∈ Ej . Consider the acts fi and fj , where for k = i, j,
fk(sk) = δ and fk(s) = δ for s 6= sk. Clearly from Proposition 2.31, for DM 2, {fj∪fj} ≻2 fj
since si and sj are in different cells of π∗

2 . However, since si, sk ∈ F ∈ π∗
1, by the same

Proposition {fj ∪ fj} ∼1 fj , therefore the condition x ≻2 f implies x ≻1 f doesn’t hold.

Proof of Proposition 2.2

This is a straightforward application of the utility representation and definition of Oπ. The
equivalence between (2) and (3) is the definition of Oπ(). Now show that (1) is equivalent to
(2). Let % satisfy a EI-SEU representation with information π. Suppose for some x, y ∈ Q,
x ≍ y, then

∑

E∈π

sup
f∈{x∪y}

∑

s∈E

µ(s|E)(U(fs)) >
∑

E∈π

sup
f∈x

∑

s∈E

µ(s|E)(U(fs))

Since for all E ∈ π,

sup
f∈{x∪y}

∑

s∈E

µ(s|E)(U(fs)) = max
{

sup
f∈x

∑

s∈E

µ(s|E)(U(fs)), sup
g∈y

∑

s∈E

µ(s|E)(U(gs))
}

there exists some g ∈ y and E ∈ π, such that,

sup
g∈y

∑

s∈E

µ(s|E)(U(gs)) > sup
f∈x

∑

s∈E

µ(s|E)(U(fs))

This implies that supg∈y U
(
∑

s∈E
µ(s)
µ(E)

gs

)

> supf∈x U
(
∑

s∈E
µ(s)
µ(E)

fs

)

. Which areE-conditional

SCE lotteries to f and g respectively. So (1) ⇒ (2) follows. The converse follows by the
exact same argument using the functional utility representation, and Proposition 2.15, which
states that xπµ

∼ x, where xπµ
defined in equation (2.3.3).
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Proof of Proposition 2.3

If π∗
1 = π∗

2 the preferences are the same, hence for any two problems x %1 y if and only if
x %2 y. Therefore the DMs are not willing to trade problems. Now let π∗

1 6= π∗
2 . Similar to

the proof of Theorem 2.3, consider two cases: 1) there exists F ∈ π∗
1 such that F intersects

two distinct events in π∗
2; 2) π

∗
1 is strictly finer than π∗

2.
Case 1) There exists F ∈ π∗

2 such that F ∩ Ei 6= ∅ and F ∩ Ej 6= ∅ for Ei, Ej ∈ π∗
1 and

Ei 6= Ej. Then there exist states s, t ∈ S where s ∈ Ei, t ∈ Ej and s, t ∈ F . Define x
as x = {f ∗

s ∪ f ∗
t } where f ∗

s is defined as in equation (2.4.1) as the act that gives the best
outcome in s and the worst outcome everywhere else. By definition of π∗

2, x ∼1 (f
∗
s ∨f ∗

t ) and
x ≺2 (f

∗
s ∨ f ∗

t ), where without loss x ∼2 f
∗
s . This comes from Lemma 2.28 and definition of

π∗
i . By Continuity and Independence for any α ∈ (0, 1], α(f ∗

s ∨ f ∗
t ) + (1 − α)f ∗

s ≻2 f ∗
s ∼ x.

Similarly for any β ∈ [0, 1), β(f ∗
s ∨ f ∗

t ) + (1 − β)f ∗
s ≺1 (f ∗

s ∨ f ∗
t ) ∼1 x. Hence let γ ∈ (0, 1)

and let y = γ(f ∗
s ∨ f ∗

t ) + (1 − γ)f ∗
s . Then x ≻1 y and y ≻2 x. Hence the 2 DM are willing

to trade problems. Case 2) Let π∗
1 >f π∗

2 . There exists E ∈ π∗
2 such that E ⊇ F1 ∪ F2 where

F1, F2 ∈ π∗
1. Consider s ∈ F1 and t ∈ F2, then the same construction of x and y as in Case

1), implies x ≻1 y and y ≻2 x.

Proofs of Lemmas and Propositions

Proof of Lemma 2.4. This is DLR Lemma 5. x∗ =
⋃∞

i=1 xi. For any ǫ > 0, since cl(x∗) = x̄
is compact25, there exists a finite open cover by ǫ

3
-balls (in the Hausdorff Topology), with

centers aj , j = 1, ..., J . For any N large enough, xN = ∪N
i=1xi must contain at least one

element of each of the J balls, hence

sup
f∈x

inf
g∈xN

d(f, g) ≤
2ǫ

3

because each element in cl(x∗) is within ǫ
3
of one of the aj ’s, and there is an element in xN

inside one of the ǫ
3
-balls too; hence the distance between the two sets is at most 2ǫ

3
. Therefore

lim
n→∞

sup
f∈x

inf
g∈xn

d(f, g) = 0

so xn → x.

Proof of Lemma 2.5. This is DLR Lemma 2. For any ǫ > 0 and any metric d on H , an
ǫ-ball in the Hausdorff Topology is given by

B(x, ǫ) ≡

{

y ∈ Q
∣
∣
∣max

{

sup
f∈x

inf
g∈y

d(f, g), sup
g∈y

inf
f∈x

d(f, g)

}

< ǫ

}

25Closed and bounded subset of Euclidean space.
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Therefore cl(x) ∈ B(x, ǫ). Let L(x) = {y ∈ Q|x ≻ y} be the strict lower contour set of x.
Suppose from some y ∈ Q, y ≻ x, then x ∈ L(y) and L(y) is open, thus cl(x) ∈ L(y) as
well by Continuity. Hence y ≻ cl(x). Hence if x ≻ cl(x), x ∈ L(cl(x)); and by Continuity
cl(x) ≻ cl(x) which is a contradiction since % is a weak order. The argument for x ≻ y is
identical.

Proof of Lemma 2.6. This is exactly like DLR Lemma 1. Here I reproduce their proof
for completeness of the results. Let x be a finite menu where x = {f1, ..., fn}. Consider the
set αx + (1 − α) co(x) for some α ∈ (0, 1

n
]. Show that this set is co(x). By definition of

the convex hull, αx + (1 − α) co(x) ⊆ co(x) for any α ∈ [0, 1]. Fix any α ∈ (0, 1
n
], and any

g ∈ co(x). By definition g =
∑n

i=1 tifi = g, for some positive numbers ti, i = 1, ..., n, where
∑n

i=1 ti = 1. There must be some j with tj ≥
1
n
, so define t̂i for i = 1, ..., n as

t̂j =
tj − α

1− α
and for i 6= j t̂i =

ti
1− α

Since tj ≥
1
n
and α ∈ (0, 1

n
], t̂j ≥ 0 and t̂i ≥ 0 for all i 6= j. Then

n∑

i=1

t̂i =
1

1− α

[

tj − α +
∑

i 6=j

ti

]

=
1

1− α
[1− α] = 1

Let ĝ =
∑n

i=1 t̂ifi. Write αfj + (1 − α)ĝ =
∑

i t
′
ifi for some coefficients ti, i = 1, ..., n. t′i =

(1−α)t̂i = ti for all i 6= j. and t′j = α+(1−α)t̂j = tj . Therefore αfj+(1−α)ĝ = g ∈ co(x).
Hence αx+(1−α) co(x) = co(x). Now since x ⊆ co(x), by Independence, if x ≁ co(x), then
there is no α ∈ [0, 1) such that α co(x) + (1− α)x ∼ α co(x) + (1− α) co(x). Since the right
hand is co(x) and by the previous observation there are values of α such that the right hand
side is co(x). Therefore for finite x, x ∼ co(x).

To extend the result to infinite x, first note that by Continuity and the result for finite
menus, extend the observation to countable x. By Lemma 2.5, since x ∼ cl(x), restrict the
attention to closed menus x. Since x is a closed and bounded subset of Euclidean space, it is
compact; so there exists a countable dense subset in x. Let E be the countable dense subset
of x, where E = {e1, e2, ...., en, ...}. Consider the increasing sequence of sets ei = {e1, ..., ei},
by the result for finite menus ei ∼ co(ei) for all i. By Lemma 2.4, ei → cl(E) = x and
co(ei) → cl(co(x)) = co(x) in the Hausdorff Topology. This and ei ∼ co(ei) for all i, imply
x ∼ co(x) by Continuity. To see this, suppose that x ≻ co(x). By Continuity there is a
n large enough such that x ≻ co(en) and en ≻ co(x). Fix such an n. By Continuity , for
some m sufficiently large em ≻ co(en) and en ≻ co(em). However, since co(en) ∼ en, this
implies that em ≻ co(em), a contradiction. The case where co(x) ≻ x is similar. Therefore
x ∼ co(x).26

26I use this argument repeatedly throughout the paper to extend the results from finite menus to infinite
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Proof of Lemma 2.7. For any x ∈ Q, and any E ∈ π, (xEx)Ex = xEx, therefore
(xEx)Ex ∼ xEx. By Menu-Sure Thing Principle for any z ∈ Q, (xEx)Ez ∼ xEz. For
any F ∈ π, F 6= E, by definition, (xEx)Fx = xFx, and obviously (xEx)Fx ∼ xFx,
and by Menu-Sure Thing Principle (xEx)Fz ∼ xFz. Therefore Event Dominance implies
xEx ∼ x.

Proof of Lemma 2.8. Consider x′ ⊆ x for a fixed π ∈ Π. For any E ∈ π, and any z ∈ Q,
since x = {x′∪ y} where y = (x\x′), by order either x′Ez % y′Ez or y′Ez % x′Ez. In either
case, by Event Strategic Rationality, ({x′ ∪ y′}Ez, π) % (x′Ez, π) for all E ∈ π. Therefore
Event Dominance implies that (x, π) % (x′, π).

Proof of Lemma 2.10. x ∈ Oπµ
(x) by definition, and by Menu-Monotonicity (Lemma

2.8), O(x) %π x. Let y = Oπµ
(x) \ x. Suppose O(x) ≻π x, then there exists E ∈ π, g ∈ y

such that gEg ≻π xEg. Otherwise, Event Dominance and Event Strategic Rationality would
imply x %π O(x). Since g ∈ Oπµ

(x), there exists f ∈ x such that cµ(f |E) %π cµ(g|E) for all
E ∈ π. Then fEg %π gEg from Monotonicity. Therefore, by Order fEg ≻π xEg, which by
Event Strategic Rationality implies fEg ∼π {f ∪ x}Eg ≻π xEg, which is a contradiction,
since f ∈ x implies that x = {f ∪ x}, hence xEg = {x ∪ f}Eg. Therefore Oπµ

(x) ∼π x.

Proof of Lemma 2.11. By definition of O(x) for any g ∈ O(x) there exists f ∈ x such
that fs % gs for all s ∈ S. Therefore from Monotonicity*, x % O(x). x ∈ O(x), therefore
x ∼ O(x) by the same Monotonicity* argument.

Proof of Lemma 2.12. Let cµ(f |E) =
∑

s∈S

µ(s)

µ(E)
fs ∈ ∆(B)

Well-Defined. cµ(·|E) is well defined since µ is unique and cµ(f |E) is a convex combination
of lotteries.

Continuous. cµ(·|E) is continuous since it can also be defined as the composition of a dot
product and a projection, both continuous operations, as

cµ(f |E) =
1

µ(E)
〈ProjE µ,ProjE f〉

considering µ as an |S|- vector and f as a vector of size |S| over ∆(B), and E ⊆ S.

Onto. For any p ∈ ∆(B) there exists a constant act p ∈ H , where ps = p for any s ∈ S. So
it is obvious that cµ(p|E) = p.

menu.
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Mixture Linear. Given f, g ∈ H , for any α ∈ [0, 1],

cµ(αf + (1− α)g|E) =
∑

s∈E

µ(s)

µ(E)
(αfs + (1− α)gs)

=
∑

s∈E

(
µ(s)

µ(E)
αfs +

µ(s)

µ(E)
(1− α)gs

)

= α
∑

s∈E

µ(s)

µ(E)
fs + (1− α)

∑

s∈E

µ(s)

µ(E)
gs

= αcµ(f |E) + (1− α)cµ(g|E)

Proof of Lemma 2.13. By definition fEµ
(s) = [cµ(f |E)Ef ](s) = f(s) for all s ∈ F since

E ∩ F = ∅, similarly fFµ
(s) = [cµ(f |F )Ff ](s) = f(s) for all s ∈ E. Thus by the construc-

tion of cµ(f |E) (equation (2.9.1)), it is easy to see that cµ([cµ(f |E)Ef ]|F ) = cµ(f |F ) and
cµ([cµ(f |F )Ff ]|E) = cµ(f |E).

Proof of Lemma 2.14. Let x ∈ Q∗, be a closed menu. Define the operation πµ(x) =
⋃

f∈x πµ(f) where πµ(f) is defined in equation (2.9.6).

Well-Defined. Fix E ∈ π, by Lemma 2.12, cµ(f |E) is well defined for each f and E, hence
πµ(x) is well defined. Also πµ(x) is closed if x is closed. Let fn ∈ πµ(x) such that fn → f .
Want to show that f ∈ πµ(x), i.e. there exists g ∈ x such that πµ(g) = f . Since fn ∈ πµ(x),
there exists a sequence gn ∈ x such that for all n, πµ(g

n) = fn; where cµ(g
n|E) = fn(s) for

all s ∈ E. Since x is compact, there exists a convergent subsequence gnk → g∗ ∈ x. For
all nk, cµ(g

nk|E)f
nk(s) for any s ∈ E. From Lemma 2.12, cµ(·|E) is a continuous function

so lim cµ(g
nk|E) = lim fnk , hence cµ(g

∗|E) = f(s) for any s ∈ E. This holds for all E ∈ π.
Therefore f ∈ πµ(x), hence πµ(x) ∈ Q∗.

Onto. Given any x ∈ Q∗
π ⊆ Q, for any f ∈ x, f ∈ H(π). Therefore πµ(f)s = cµ(f |E) = fs

(Lemma 2.12). Then πµ(x) = x.

Hausdorff Continuous. Want to show that if xn → x, then πµ(x
n) → πµ(x) = xπµ

. πµ(x) is
closed and bounded, hence compact, then there exist a convergent subsequence πµ(x

n) → y ∈
Qπ. To prove Continuity, show that for any x, y ∈ Q, and π ∈ Π, dH(x, y) ≥ dH(xπµ

, yπµ
).
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So if xn → x then xn
πµ

→ xπµ
.

dH(xπµ
, yπµ

) = max

{

sup
f∈xπµ

inf
g∈yπµ

d(f, g), sup
g∈yπµ

inf
f∈xπµ

d(f, g)

}

= max

{

sup
f∈xπµ

inf
g∈yπµ

(

max
s∈S

max
b∈B

|fs(b)− gs(b)|

)

, sup
g∈yπµ

inf
f∈xπµ

(

max
s∈S

max
b∈B

|fs(b)− gs(b)|

)}

By the construction of cµ(f |E) there exists f ∈ x and g ∈ y such that

sup
f∈xπµ

inf
g∈yπµ

(

max
E∈π

max
b∈B

|cµ(f |E)(b)− cµ(g|E)(b)|

)

=sup
f∈x

inf
g∈y

(

max
E∈π

max
b∈B

∣
∣
∣
∣
∣

∑

s∈E

µ(s)

µ(E)
fs(b)−

∑

s∈E

µ(s)

µ(E)
gs(b)

∣
∣
∣
∣
∣

)

=sup
f∈x

inf
g∈y

(

max
E∈π

∣
∣
∣
∣
∣

(
1

µ(E)

)

max
b∈B

∣
∣
∣
∣
∣

∑

s∈E

µ(s)fs(b)−
∑

s∈E

µ(s)gs(b)

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

)

≤ sup
f∈x

inf
g∈y

(

max
E∈π

∣
∣
∣
∣
∣

(
1

µ(E)

)
∑

s∈E

µ(s)max
b∈B

|fs(b)− gs(b)|

∣
∣
∣
∣
∣

)

≤ sup
f∈x

inf
g∈y

(

max
s∈S

max
b∈B

|fs(b)− gs(b)|

)

Same result holds for supg∈yπµ
inff∈xπµ

(supE∈π supb∈B |cµ(f |E)(b)− cµ(g|E)(b)|), therefore

dH(xπµ
, yπµ

) ≤ max

{

sup
f∈x

inf
g∈y

(

sup
s∈S

sup
b∈B

|fs(b)− gs(b)|

)

, sup
g∈y

inf
f∈x

(

sup
s∈S

sup
b∈B

|fs(b)− gs(b)|

)}

= dH(x, y)

Therefore πµ is Hausdorff continuous.

Mixture Linear. From Lemma 2.14, for any E ∈ π, and f ∈ x, cµ(αf + (1 − α)g|E) =
αcµ(f |E)+(1−α)cµ(g|E). Therefore, by definition of πµ(x) it follows that πµ(αx+(1−α)y) =
απµ(x) + (1− α)πµ(y).

Proof of Proposition 2.15. First note the following auxiliary observation. For any two
acts and an event, there is always better conditional on that event.

Lemma 2.38. Let %π satisfy Order, and Menu-Sure Thing Principle. Given f, g ∈ H and
π ∈ Π. For any E ∈ π, and for c(f |E) ∈ CE∆(f |E) and c(g|E) ∈ CE∆(g|E), which are
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defined as in equation (2.9.1).

[cµ(f |E)Eg] %π [cµ(g|E)Eg] ∼π g or [cµ(g|E)Ef ] %π [cµ(f |E)Ef ] ∼π f

To see this note that without loss of generality g ∼π cµ(g|E)Eg ≻π cµ(f |E)Eg, so lottery
cµ(f |E) does not improve g on E, it makes it worse). Then by Menu-Sure Thing Principle
c(g|E)Ef %π cµ(f |E)Ef , so cµ(g|E) ∈ ∆(B) must weakly improve f on E.

Prove by induction. Consider some x ∈ Q where x = {f, g}. For some E ∈ π, with-
out loss let fEµ

Eg %π gEµ
Eg ∼π g27(from Lemma 2.38). By Menu-Sure Thing Princi-

ple and Event Strategic Rationality, fEµ
E {f ∪ g} ∼π

{
fEµ

∪ gEµ

}
E {f ∪ g}. Moreover,

from the construction of fEµ
, Menu-Sure Thing Principle also implies that fEµ

E {f ∪ g} ∼π

fEµ
E {f ∪ g}, fEµ

Eg ∼π fEg, and fEµ
E {f ∪ g} ∼π fE {f ∪ g}. Also, from fEµ

Eg %π

gEµ
Eg, by Event Strategic Rationality and Menu-Sure Thing Principle fEµ

E {f ∪ g} ∼π{
fEµ

∪ gEµ

}
E {f ∪ g}. Moreover fEµ

Eg %π gEµ
Eg ∼π g, Order, Event Strategic Ratio-

nality, and Menu-Sure Thing Principle implies fE {f ∪ g} ∼π {f ∪ g}E {f ∪ g}. Using
these results and Order implies {f ∪ g}E {f ∪ g} ∼π

{
fEµ

∪ gEµ

}
E {f ∪ g}. By Lemma

2.7, {f ∪ g} ∼π {fEµ
∪ gEµ

}.
Since π is a finite partition, repeat the argument for each E ∈ π. By Lemma 2.13, on

each Ei repeat this argument recursively. For each i > 1, let fi = cµ(f |Ei−1
)Ei−1fi−1 and

gi = cµ(g|Ei−1
)Ei−1gi−1. The acts f and g will is constant on all Ej for j < i. By Order and

by Lemma 2.7, for every f, g ∈ H ,

{f ∪ g} ∼π

{
fπµ

∪ gπµ

}

Now suppose that for menus of size up to n, xπµ
∼π x. Define xEµ

as xEµ
=
⋃

f∈x fEµ
. From

the induction hypothesis, for any E ∈ π, xEµ
∼π x if |x| ≤ n.

Let |x| = n, and consider any f ∈ H , so that |x∪ f | = n+1. For this particular f , if %π

satisfies Axioms 2.3.1- 2.3.8, one of these 2 conditions must hold: 1) fEµ
Ex ≻π xEµ

Ex and
fEx ≻π xEx; or 2) xEµ

Ex %π fEµ
Ex and xEx %π fEx.28

1) Note that for any f , fEµ
Ef ∼π fEf by definition, hence by Menu-Sure Thing Principle

fEµ
Ex ∼π fEx. Thus, from the induction hypothesis, and Lemma 2.7,

fEx ∼π fEµ
Ex ≻π xEµ

Ex
︸ ︷︷ ︸

=xEµExEµ

∼π xEµ
∼π x ∼π xEx

27cµ(f |E)Eg = fEµ
Eg by definition of fEµ

.
28It is impossible to have fEµ

Ex ≻π xEµ
Ex and xEx %π fEx; or xEµ

Ex %π fEµ
Ex and fEx ≻π xEx,

since it violates Order. To see this, if fEµ
Ex ≻π xEµ

Ex and xEx %π fEx, by the induction hypothesis
xEµ

Ex ∼π xEx %π fEx, which by the definition of fEµ
, and Menu-Sure Thing Principle implies fEµ

Ex ∼π

fEx. This would imply that fEµ
Ex ≻π xEµ

Ex ∼π xEx %π fEx ∼π fEµ
Ex, which is a contradiction. The

same logic applies to the case where xEµ
Ex %π fEµ

Ex and fEx ≻π xEx.
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therefore by Menu-Sure Thing Principle,

fE {f ∪ x} ∼π fEµ
E {f ∪ x} ≻π xEµ

E {f ∪ x} ∼π xE {f ∪ x}

By Event Strategic Rationality
{
fEµ

∪ xEµ

}
E {f ∪ x} ∼π fEµ

E {f ∪ x} ∼π fE {f ∪ x},
and fE {f ∪ x} ∼π {f ∪ x}E {f ∪ x}. Therefore by Order

{
fEµ

∪ xEµ

}
E {f ∪ x} ∼π

{f ∪ x}E {f ∪ x} for any E ∈ π. Repeat this procedure sequentially for all E ∈ π (well
defined by Lemma 2.13) to get

{
fπµ

∪ xπµ

}
E
{
xπµ

∪ fπµ

}
∼π {f ∪ x}E {f ∪ x}. Which

by Lemma 2.7 and Order,gets {xπµ
∪ fπµ

} ∼π {xπµ
∪ fπµ

}.

2) Since xEµ
Ex %π fEµ

Ex, Event Strategic Rationality and Menu-Sure Thing Principle im-
ply xEµ

E {f ∪ x} ∼π

{
fEµ

∪ xEµ

}
E {f ∪ x}. Similarly, Event Strategic Rationality and

Menu-Sure Thing Principle imply xE {f ∪ x} ∼π {f ∪ x}E {f ∪ x} from xEx %π fEx.
Then by Order and the induction hypothesis, xEµ

∼π x, implies
{
fEµ

∪ xEµ

}
E {f ∪ x} ∼π

{f ∪ x}E {f ∪ x}. Repeating this procedure for all E ∈ π sequentially, leads to the result
that

{
xπµ

∪ fπµ

}
E
{
xπµ

∪ fπµ

}
∼π {f ∪ x}E {f ∪ x}.

By induction, for any finite x given a partition π, the π-conditional SCE menu xπµ
(equation

(2.9.5)) is indifferent to x, i.e. x ∼π xπµ
for all finite x ∈ Q.

To extend the result to any menu, any countable menu, x ∼ xπµ
. This follows from

Continuity, since for any fixed n ∈ N, (
⋃n

i=1 f) ∼π

(⋃n

i=1 fπµ

)
. In addition, since %π satisfies

Axioms 2.3.1- 2.3.8, from Lemma 2.5, x ∼π cl(x). Consider only closed menus. x is closed
and bounded, hence it is compact, and separable since the space is a metric space. Therefore
there exists a countable dense subset of x, y = {g1, g2, ..., ...}. Let yn = {g1, ..., gn}, then
yn ∈ Q and yn ∼π ynπµ

for all n. yn → cl(y) = x (by Lemma 2.4). Then yn → x, and
ynπµ

→ yπµ
, so by Continuity y ∼π x, and y ∼π yπµ

. Since the operation π is continuous and
well defined (Lemma 2.14), cl(ynπµ

) = xπµ
. Hence x ∼π xπµ

for any x ∈ Q.

Proof of Lemma 2.16. Let K(Qπ) be the set of compact, convex menus, π-measurable.

Well Defined. Let x ∈ K(Qπ). Show that Oπµ
(x) is closed. Since Oπµ

(x) can be identifies
with a subset of the m-dimensional simplex, which is a subset of Euclidean space, Oπµ

(x) is
bounded. By the Heine-Borel Theorem, if Oπµ

(x) is closed and bounded subset of Euclidean
space, it is compact. Consider a sequence fn ∈ Oπµ

(x) such that fn → f . By definition of
Oπµ

(x), there exists a sequence gn ∈ x such that cµ(g
n|E) % cµ(f

n|E) for all E ∈ π. Since
x is compact, there exists a convergent subsequence gnk ∈ x where gnk → g∗ ∈ x. Since
cµ(g

nk|E) % cµ(f
nk|E) for all E, from π-Continuity, cµ(g

∗|E) % cµ(f |E) for all E. Hence
g∗ ∈ Oπµ

(g∗) ⊂ Oπµ
(x) and Oπµ

(x) is compact.
To prove convexity, consider f, g ∈ Oπµ

(x). Then there are f ′, g′ ∈ x such that cµ(f
′|E) %

cµ(f |E) and cµ(g
′|E) % cµ(g|E) for all E ∈ π. Since x is convex, for any α ∈ [0, 1],

αcµ(f
′|E) + (1 − α)cµ(g

′|E) ∈ x, hence by Order, and Independence αcµ(f
′|E) + (1 −



63

α)cµ(g
′|E) % αcµ(f |E) + (1− α)cµ(g|E) for all E ∈ π, therefore αf + (1− α)g ∈ Oπµ

(x).

Hausdorff Continuous. Let xn → x. Show that Oπµ
(xn) → Oπµ

(x). Since K(Qπ) is compact,
without loss of generality let O(xn) → y ∈ K(Qπ). Show now that y = Oπµ

(x).
First show y ⊆ Oπµ

(x). Suppose not, then there exists g ∈ y \ Oπµ
(x). Hence, there is a

ǫ-Ball around g such that Bǫ(g) ∩ Oπµ
(x) = ∅. By the definition of y = lim xn, there exists

a sequence gn ∈ xn ⊆ Oπµ
(xn), where gn → g. Also, for gn ∈ Oπµ

(xn), there exists fn ∈ xn

such that for every E ∈ π, cµ(f
n|E) % cµ(g

n|E).
Since H is compact and metrizable, every sequence has a convergent subsequence. Hence

without loss, assume that fn → f ∗ ∈ x. Since cµ(f
n|E) % cµ(g

n|E) for all E ∈ π for all n, by
π-Continuity, cµ(f

∗|E) % cµ(g|E) for all E ∈ π. Hence g ∈ Oπµ
(x), which is a contradiction.

Hence y ⊆ Oπµ
(x).

Now show Oπµ
(x) ⊆ y. Suppose not, then there exists g ∈ Oπµ

(x) \ y. There exists
Bǫ(g) such that Bǫ(g) ∩ Oπµ

(x) = ∅. Hence for n large enough, Bǫ(g) ∩ Oπµ
(xn) = ∅. Since

g ∈ Oπµ
(x), there exists f ∈ x such that cµ(f |E) % cµ(g|E) for all E ∈ π. Since xn → x, and

f ∈ x, then there exists a sequence fn → f , where fn ∈ xn for all n.
Construct a sequence gn → g, such that gn ∈ Oπµ

(xn) for all n. Take any E ∈ π
fixed. There are two cases (i) cµ(f |E) ≻ cµ(g|E), and (ii) cµ(f |E) ∼ cµ(g|E). For case (i),
by Continuity cµ(f

n|E) ≻ cµ(g|E) for n > N for some N , then let cµ(g
n|E) = cµ(g|E), for

all n > N , and cµ(g
n|E) any point in Oπµ

(xn) for all n ≤ N . Clearly cµ(g
n|E) → g, and

cn(f |E) ≻ cµ(g
n|E) for all n. Now for case (ii), there are two possibilities.

• For n such that cµ(f
n|E) % cµ(f |E) ∼ cµ(g|E), define cµ(g

n|E) = cµ(g|E) and then
cµ(f

n|E) % cµ(g
n|E).

• For n where cµ(f |E) ∼ cµ(g|E) ≻ cµ(f
n|E), define cµ(g

n|E) = cµ(f
n|E).

cµ(g
n|E) → cµ(g|E) for all E ∈ π, and cµ(g

n|E) ∈ Oπµ
(xn) for all n, which contradicts that

there exists ǫ > 0 such that Bǫ(g) ∩ Oπµ
(xn) = ∅ for n large enough. Therefore y = Oπµ

(x).

Mixture Linear. First show that if f ∈ Oπµ
(αx+(1−α)y) then f ∈ αOπµ

(x)+(1−α)Oπµ
(y).

Take f ∈ Oπµ
(αx+ (1− α)y), then there exists g ∈ x, and g′ ∈ y such that

αcµ(g|E)(x) + (1− α)cµ(g
′|E) % cµ(f |E) ∀ E ∈ π

Find h ∈ Oπµ
(x), and h′ ∈ Oπµ

(y) such that f = αh + (1 − α)h′. Fix E ∈ π, then without
loss assume cµ(g|E) % cµ(g

′|E). By π-Independence cµ(g|E) % αcµ(g|E) + (1 − α)cµ(g
′|E) %

cµ(g
′|E). If cµ(g

′|E) % cµ(f |E), then cµ(g|E) % cµ(f |E) as well. Define cµ(h|E) = cµ(f |E) and
cµ(h

′|E) = cµ(f |E). In both cases, if this holds for all E ∈ π, this would imply that h ∈ Oπµ
(x)

and h′ ∈ Oπµ
(y), and αcµ(h|E) + (1− α)cµ(h|E) = cµ(f |E). If cµ(g|E) % cµ(f |E) ≻ cµ(g

′|E).
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Consider the act βcµ(g|E) + (1− β)cµ(g
′|E) for some β ∈ (0, 1]. Let

cµ(h|E) =

(
β

α

)

cµ(g|E) +

(

1−

(
β

α

))

cµ(g
′|E)

cµ(h
′|E) = cµ(g

′|E)

For α ≥ β. Then clearly cµ(g|E) % cµ(h|E) by Continuity and Independence, and cµ(g
′|E) %

cµ(h
′|E). Hence h′ ∈ Oπµ

(y) and x ∈ Oπµ
(x), and f = αh + (1 − α)h′. For the events

where cµ(g
′|E) % cµ(g|E), the construction of the acts h and h′ is similar. Hence it is

possible to construct h ∈ Oπµ
(x), y ∈ Oπµ

(y) such that f = αh + (1 − α)h′, therefore
f ∈ αOπµ

(x) + (1− α)Oπµ
(y).

Now show that f ∈ αOπµ
(x) + (1 − α)Oπµ

(y) implies f ∈ Oπµ
(αx + (1 − α)y). Let

f ∈ αOπµ
(x) + (1− α)Oπµ

(y). Then there exist g ∈ Oπµ
(x), and g′ ∈ Oπµ

(y) such that f =
αg+(1−α)g′. By definition of Oπµ

(x), there exist h ∈ x, h′ ∈ y with cµ(h|E) % cµ(g|E) and
cµ(h

′|E) % cµ(g
′|E) for all E ∈ π. Consider the act αh+(1−α)h′ ∈ αOπµ

(x)+(1−α)Oπµ
(y),

by Independence, for all E ∈ π, αcµ(h|E) + (1 − α)cµ(h
′|E) % αcµ(h|E) + (1 − α)cµ(g

′|E)
and αcµ(h|E) + (1 − α)cµ(g

′|E) % αcµ(g|E) + (1 − α)cµ(g
′|E). Since cµ(·|E) is mixture lin-

ear (Lemma 2.12) the result follows. Hence Oπµ
(αx+(1−α)y) = αOπµ

(x)+(1−α)Oπµ
(y).

Proof of Lemma 2.17. Let u ∈ [0, 1]m be the m-vector of vNM utility indices from Step
1.

Continuity. Let xn ∈ K∗(Qπ) such that xn → x. K∗(Qπ) is compact metric space, hence it
is sequentially compact, which allows to assume without loss that x ∈ K∗(Qπ). Show that
σxn → σx in 3 steps.

(i) Fix E ∈ π. Define a function ξE : K∗(Qπ) → K([0, 1]), where K([0, 1]) is the set of all
intervals in [0, 1] (compact and convex subsets of [0, 1]). Let ξE(x) ≡ (〈u, cµ(f |E)〉)f∈x.
Since 〈u, ·〉 is continuous,x is compact, and cµ(f |E) is well defined, continuous and
mixture linear (Lemma 2.12), ξE has a maximum and a minimum on x. Let cµ(f

∗|E)
and cµ(f∗|E) be the argmax and argmin of 〈u, ·〉 on x respectively, these exists since x
is compact. Moreover, since x is convex, for any a ∈ [〈u, cµ(f∗|E)〉, 〈u, cµ(f

∗|E)〉] there
exists a fa ∈ x such that 〈u, cµ(fa|E)〉 = a. So ξE(x) is an interval in [0, 1].

(ii) For a fixed E ∈ π, show that the mapping ξE : K∗(Qπ) → [0, 1] is continuous. Let
xn → x, for xn, x ∈ K(Qπ). Since [0, 1] a compact set, every sequence has a convergent
subsequence, so assume without loss that ξn = ξE(x

n) → ℓ ∈ K([0, 1]). Show ξE(x) = ℓ.
ξE(x) and ℓ are intervals, let ℓ = [ℓ, ℓ] and ξE(x) = [r, r]. Suppose ξE(x) 6= ℓ ([r, r] 6=
[ℓ, ℓ]).

If ∃ r ∈ [r, r] such that r 6∈ [ℓ, ℓ], for some ǫ > 0, (r− ǫ, r+ ǫ)∩ [ℓ, ℓ] = ∅. Hence there is
an open set that separates r and ℓ. By convexity of x, since r ∈ ξE(x), there exits some
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f ∈ x such that 〈u, cµ(f |E)〉 = r. Since xn → x, and 〈u, ·〉 is a continuous function, now
find a converging sequence fn → f with 〈u, fn〉 → 〈u, f〉 = r. Consider the sequence
ξE(f

n), then there exists N ∈ N such that for all n > N , ξE(f
n) ∈ (r − ǫ, r + ǫ). By

definition ξE(f
n) ⊂ ξE(x

n), thus ξE(f
n) ∈ ℓ, but ℓ ∩ (r − ǫ, r + ǫ) = ∅, which is a

contradiction. Hence [r, r] ⊂ [ℓ, ℓ].

Similarly, if there exists l ∈ [ℓ, ℓ] such that l 6∈ [r, r], for some ǫ > 0, (l−ǫ, l+ǫ)∩[r, r] =
∅. Since l ∈ ℓ then there exists fn ∈ xn such that for all ǫ > 0, there exists N ∈ N such
that 〈u, fn〉 ∈ (l− ǫ, l+ ǫ) for all n > N . From compactness of H , assume without loss
that fn → f . Again, since the dot product is a continuous function 〈u, fn〉 → 〈u, f〉. In
addition since xn → x, and fn ∈ xn for all n then f ∈ x. Thus 〈u, f〉 ∈ ξE(x) = [r, r]
which is a contradiction since (l − ǫ, l + ǫ) ∩ [r, r] = ∅. Hence [ℓ, ℓ] ⊂ [r, r]. Thus
[ℓ, ℓ] = [r, r], which implies that ξE(x) = limn→∞ ξE(x

n) whenever xn → x.

Since π is a finite partition, then the mapping ξ : K∗(Qπ) → [0, 1]m defined as

ξ(x) = (ξE(x))E∈π

is continuous, since the mapping ξE is continuous for every E ∈ π.

(iii) Finally show that dsupnorm(σx(E), σy(E)) ≤ dH(ξE(x), ξE(y)) for all E ∈ π, which in
turn implies that dsupnorm(σx, σy) ≤ dH(ξ(x), ξ(y)).

Recall that for any x, ξE(x) is an interval, [rx, rx]. For any E,

dH(ξE(x), ξE(y)) = max

{

sup
rx∈[rx,rx]

inf
ry∈[ry,ry]

|rx − ry|, sup
ry∈[ry,ry ]

inf
rx∈[rx,rx]

|rx − ry|

}

= max {|rx − ry|, |rx − ry|}

≥ |rx − ry|

= | sup
f∈x

〈u, cµ(f |E)〉 − sup
g∈y

〈u, cµ(g|E)〉|

(by defn. of ξE(x) and compactness)

= dsupnorm(σx(E), σy(E))

Since this holds for all E, dsupnorm(σx, σy) ≤ dH(ξ(x), ξ(y)). This proves that σ is Haus-
dorff continuous.

Mixture Linear. Take any α ∈ [0, 1] and consider the menu αx + (1 − α)y. For any E ∈ π,
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x, y ∈ K∗(Qπ), since the dot product is a linear function,

σαx+(1−α)y(E) = sup
h∈αx+(1−α)y

〈u, cµ(h|E)〉

≤ sup
f∈x

〈u, αcµ(f |E)〉+ sup
g∈y

〈u, (1− α)cµ(g|E)〉

= α sup
f∈x

〈u, cµ(f |E)〉+ (1− α) sup
g∈y

〈u, cµ(g|E)〉

= ασx(E) + (1− α)σy(E)

Since x and y are compact, 〈u, ·〉 has a maximum and a minimum on x and y. For f ∗ =
argmaxf∈x〈u, cµ(f |E)〉 and g∗ = argmaxg∈y〈u, cµ(g|E)〉, where αf

∗(1−α)g∗ ∈ αx+(1−α)y
by definition. Hence

sup
h∈αx+(1−α)y

〈u, cµ(h|E)〉 ≥ 〈u, αcµ(f
∗|E) + (1− α)cµ(g

∗|E)〉

=α sup
f∈x

〈u, cµ(f |E)〉+ (1− α) sup
g∈y

〈u, cµ(g|E)〉

Thus, for all E, σαx+(1−α)y(E) = ασx(E) + (1− α)σy(E), therefore σ is mixture linear.

One to One. Let x, y ∈ K∗(Qπ), such that x 6= y. There exits h ∈ H(π) such that h ∈ x \ y.
Show that for some E, ξE(h) 6∈ ξE(y), which in turn implies that σx 6= σy.

Suppose that for all E, supf∈y〈u, cµ(f |E)〉 ≥ 〈u, cµ(h|E)〉. Then by the definition of
Oπµ

(h) as the menu of elements dominated by h in every E ∈ π, this would imply that
h ∈ Oπµ

(y), which is a contradiction since all menus in K∗(Qπ) are of the form x = Oπ(x),
and h 6∈ y. Thus for some E ∈ π, 〈u, cµ(h|E)〉 > supg∈y〈u, cµ(g|E)〉. By the definition of ξE,
ξE(h) 6∈ ξE(x) and ξE(h) > ξE(f) for all f ∈ x. Hence for E ∈ π,

σx(E) = sup
f∈x

〈u, cµ(f |E)〉 ≥ 〈u, cµ(h|E)〉 > sup
g∈y

〈u, cµ(g|E)〉 = σy(E)

Which implies that

σx =

(

sup
f∈x

〈u, cµ(f |E)〉

)

E∈π

6=

(

sup
g∈y

〈u, cµ(g|E)〉

)

E∈π

= σy

since it is not equal for at least one E ∈ π. Therefore σ is 1 to 1.

Onto. Consider any linear function on [0, 1]m, which is identified with a particular vector
v = (v1, ..., vm) where vi ∈ [0, 1] for all i = 1, ..., m. Show that there exits x ∈ K∗(Qπ) such
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that σx = v. Let f ∈ H be defined as

f ∗ =






v1δ + (1− v1)δ s ∈ E1
...

...

vmδ + (1− vm)δ s ∈ Em






f ∗ is closed, convex, and π-measurable by construction. Consider x = Oπµ
(f ∗) ∈ K∗(Qπ)

(Lemma 2.17). By definition of Oπµ
, for any Ei ∈ π, cµ(f

∗|Ei
) = viδ + (1− vi)δ, and for any

other g ∈ x, 〈u, cµ(g|Ei
)〉 ≤ 〈u, cµ(f

∗|E)〉 =
〈
u, viδ + (1− vi)δ

〉
. Therefore,

σx(Ei) = sup
g∈x

〈u, cµ(g|Ei
)〉 = 〈u, cµ(f

∗|Ei
)〉 = u(b)vi + u(b)(1− vi) = vi

Proof of Lemma 2.18. For any π, xπ′
µ
was defined as the π-measurable menu where every

act is mapped uniquely into a equivalent π-measurable act defined by equation (2.9.4). For
f ∈ x, since x is π-measurable, then f ∈ H(π). Therefore f can be written as

f =






pE1 s ∈ E1
...

...
pEm

s ∈ Em






Where pEi
∈ ∆(B) is a lottery (constant) for all events Ei. So f gives the same lottery for

every state s ∈ E for every specified event E by π. Since π′ ≥f π, for every F ∈ π′, F ⊆ E for
some E ∈ π. Since f ∈ H(π), fs = fs′ ≡ pE ∈ ∆(B) for all s, s′ ∈ E; thus F ⊆ E also implies

that fs = fs′ for all s ∈ F . Then, by definition of xπ′
µ
, since c(f |F ) =

∑

s∈F
µ(s)
µ(F )

pE = pE it
follows that

f =






pE1 s ∈ E1
...

...
pEm

s ∈ Em




 =






pE1 for s ∈ F ⊂ E1
...

...
...

pEm
for s ∈ F ⊂ Em




 = fπ′

µ

Since x =
⋃

f∈x f and f = fπµ
for all f ∈ x, by definition of xπ′

µ
(equation (2.9.5)),

x =
⋃

f∈x f =
⋃

f∈x fπ′
µ
= xπ′

µ

Proof of Lemma 2.19. From Lemma 2.18, for any π′ ≥f π, given some x ∈ Qπ,
xπ′

µ
= x. Then, from the construction of f ∗

(x,π), it follows that f ∗
(x,π′)(s) = f ∗

(x,π)(s) for

all s ∈ S, hence f ∗
(x,π′) = f ∗

(x,π). From the previous observation, (f ∗
(x,π′), π

′) ∼ (x, π′), and

(f ∗
(x,π), π) ∼ (x, π). Therefore from Information Value from Options, since f ∗

(x,π′) = f ∗
(x,π), it

follows that (f ∗
(x,π), π) ∼ (f ∗

(x,π′), π
′). Therefore by Order (x, π) ∼ (x, π′).
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Proof of Lemma 2.21. Given π, π′ ∈ Π, π ∨ π′ ≥f π and π ∨ π′ ≥f π′. By Proposition
2.15, (x, π) ∼ (xπµ

, π), and (x, π′) ∼ (xπ′
µ
, π′). Since any information finer than π is use-

less for menus consisting of π-measurable acts, by Proposition 2.20 (xπµ
, π ∨ π′) ∼ (xπµ

, π)
and (xπ′

µ
, π ∨ π′) ∼ (xπ′

µ
, π′). Hence by Order, (x, π) % (x, π′) implies (xπµ

, π ∨ π′) %

(xπ′
µ
, π ∨ π′).

Proof of Lemma 2.23. From the SEU representation in Step 1 for any f ∈ H , and any
s ∈ S, psf %H qsf . Now consider q ∈ H , i.e. the constant act that gives lottery q as a prize,
regardless of the state. Let E ⊂ S, and s1, s2, ..., sj be the states in E. By Monotonicity*
ps1q % q, and applying Monotonicity* again to ps1q and state s2, ps2(ps1q) % ps1q, where
ps2(ps1q) = p {s1, s2} q. By following this construction for si ∈ E, gives

q - ps1q - p {s1, s2} q - ... - p {s1, ..., sj} q = pEq

Hence pEq % qEq, and therefore by Menu-Sure Thing Principle, for every x ∈ Q, pEx %

qEx.

Proof of Lemma 2.24. Since P is closed and nonempty subset of the |B|-unit simplex, it is
compact. Moreover, since % is a continuous weak order, the set {p ∈ P : p %∆(B) q ∀q ∈ P}
will have a maximum in P . Take any p∗ ∈ {p ∈ P : p %∆(B) q ∀q ∈ P}. For any finite set
of lotteries |P | = n equation (2.9.12) follows directly from Monotonicity* and Lemma 2.23,
since p %∆(B) q implies that psx % qsx for all q ∈ P , and therefore p∗sx % P sx = (

⋃n

i=1 pi)sx.
By a similar construction as in Lemma 2.23, it follows that p∗Ex % PEx whenever |P | < ∞.
Equation (2.9.12) will also hold for any countable P from Continuity of %. To show that the
result holds for any arbitrary P , since P compact, and ∆(B) is a metric (metrizable) space,
P is separable. So there exists a countable dense subset {p1, ...., pn, ...} of P , and by Lemma
2.4,

⋃n

i=1 pi → cl(
⋃∞

i=1 pi) = P . Then by Continuity the result will follow.

Proof of Corollary 2.25.
By Lemma 2.23, for any x ∈ Q, psx ∼ qsx since p ∼∆(B) q. Then by Order if psx ≻ xsx,

then qsx ≻ xsx too and (p∪ x)sx ∼ (q ∪ x)sx follows from Monotonicity* and Order. Simi-
larly if xsx % psx, xsx % qsx, and by Monotonicity*, (p ∪ x)sx ∼ (q ∪ x)sx ∼ xsx.

Proof of Proposition 2.26. This follows directly from Monotonicity*

Proof of Lemma 2.27. The only if part follows from Non-Degeneracy, since δ ≻∆(B) δ,

and letting p = q′ = δ, and p′ = q = δ implies (f ∗
s ∪ f ∗

s′) ∼ f ∗
s ∨ f ∗

s′.
For the if part, the interesting case is when p ∨ p′ = p and q ∨ q′ = q′, otherwise from

Monotonicity* it will follow. Without loss of generality, let p ∨ p′ = p and q ∨ q′ = q′.
Consider the case where p %∆(B) q (the proof for q %∆(B) p is the same inverting the roles of
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α and β). By Independence and Continuity, there exist α and β such that

p ∼∆(B) αδ + (1− α)δ and q′ ∼∆(B) βδ + (1− β)δ

where α ≥ β since p %∆(B) q. Now, by Monotonicity* and Corollary 2.25,





p ∨ q = p s
q′ s′

δ S \ {s, s′}c



 ∼





αδ + (1− α)δ s

βδ + (1− β)δ s′

δ {s, s′}c





which, by Independence,





αδ + (1− α)δ s

βδ + (1− β)δ s′

δ {s, s′}c



 = β
[
δ{s, s′}δ

]

︸ ︷︷ ︸

∼{f∗
s∪f

∗
s′}={[δsδ]∪[δs′δ]}

+(α− β)
[
δsδ
]
+ (1− α) [δ]

∼ β
{
[δsδ] ∪ [δs′δ]

}
+ (α− β)

[
δsδ
]
+ (1− α) [δ]

∼
{[

(αδ + (1− α)δ)sδ
]
∪
[
(βδ + (1− β)δ)s′δ

]}

∼ {[psδ] ∪ [q′s′δ]}

By definition, p′ %∆(B) δ and q′ %∆(B) δ. By Monotonicity*,











p s
q s′

δ {s, s′}c



 ∪





p′ s
q′ s′

δ {s, s′}c










% {[psδ] ∪ [q′s′δ]}

But (f ∨ g) % f ∪ g, therefore











p s
q s′

δ {s, s′}c



 ∪





p′ s
q′ s′

δ {s, s′}c










∼





p ∨ p′ s
q ∨ q′ s′

δ {s, s′}c





Proof of Lemma 2.28. Without loss of generality let

[f{s, s′}x] % [g{s, s′}x]

with fs ≻∆(B) gs and gs ≻∆(B) fs′. Otherwise (ft ∨ gt) = ft or (ft ∨ gt) = gt for t = s, s′, and
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Monotonicity* implies the result. Suppose without loss that in this case x ∈ H (a singleton
menu), by Menu-Sure Thing Principle it is possible to extend this to any menu x ∈ Q. Prove
by contradiction. Suppose

[(f ∨ g){s, s′}x] ≻ {[f{s, s′}x] ∪ [g{s, s′}x]} ≻ [f{s, s′}x] (2.9.16)

Then by Independence and Continuity there exists α ∈ (0, 1) such that

α[f{s, s′}x] + (1− α) [(f ∨ g){s, s′}x] ∼ {[f{s, s′}x] ∪ [g{s, s′}x]}

By the definition of a mixture of menus, this is equivalent to the act





fs s
αfs′ + (1− α)gs′ s′

x {s, s′}c



 ∼ {[f{s, s′}x] ∪ [g{s, s′}x]} (2.9.17)

Consider a new menu x given by

x =











fs s
αfs′ + (1− α)gs′ s′

x S \ {s, s′}



 ∪





αgs + (1− α)fs s
gs′ s′

x S \ {s, s′}










(2.9.18)

By Lemma 2.27, equation 2.9.17, Continuity and α ∈ (0, 1),

x ≺ [(f ∨ g){s, s′}x]

In addition, if











fs s
αfs′ + (1− α)gs′ s′

x {s, s′}c



 ∪





αgs + (1− α)fs s
gs′ s′

x {s, s′}c











∼





fs s
αfs′(1− α)gs′ s′

x {s, s′}c





From the definition of a mixture of menus, this indifference relation is equivalent to

α {[f{s, s′}x] ∪ [g{s, s′}x]} + (1− α) [[(f ∨ g){s, s′}x]]

∼ α[f{s, s′}x] + (1− α) [[(f ∨ g){s, s′}x]]

which by Independence implies {[f{s, s′}x] ∪ [g{s, s′}x]} ∼ [f{s, s′}x]. This contradicts
equation (2.9.16). Hence this new menu from equation (2.9.18) must be better than each of
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the acts that constitute it, but it still must be worse than the join, i.e.

[(f ∨ g){s, s′}x] ≻ x ≻





fs s
αgs′ + (1− α)fs′ s′

x {s, s′}c



 (2.9.19)

Also equation (2.9.19) and Continuity imply that for β ∈ (0, 1),

β {[f{s, s′}x] ∪ [g{s, s′}x]}+ (1− β)[(f ∨ g){s, s′}x]

≻





fs s
βgs′ + (1− β)fs′ s′

x S \ {s, s′}



 (2.9.20)

Moreover for any β ∈ (0, 1), by Independence,

β {[f{s, s′}x] ∪ [g{s, s′}x]}+ (1− β)[(f ∨ g){s, s′}x]

∼ β





fs s
αgs′ + (1− α)fs′ s′

x {s, s′}c



+ (1− β)





fs s
gs′ s′

x {s, s′}c





∼





fs s
αβfs′ + (1− αβ)gs′ s′

x {s, s′}c





∼ αβ[f{s, s′}x] + (1− αβ)[(f ∨ g){s, s′}x]

Where α is fixed. as defined in equation (2.9.17). So for any γ ∈ (0, α), by Continuity and
Independence

γ[f{s, s′}x] + (1− γ)[(f ∨ g){s, s′}x] ≺ α[f{s, s′}x] + (1− α)[(f ∨ g){s, s′}x]

∼ {[f{s, s′}x] ∪ [g{s, s′}x]} (2.9.21)

However, since γ ∈ (0, α), define β = γ

α
∈ (0, 1), then

γ
︸︷︷︸

αβ

[f{s, s′}x] + (1− γ
︸︷︷︸

αβ

)[(f ∨ g){s, s′}x]

∼β {[f{s, s′}x] ∪ [g{s, s′}x]}+ (1− β)[(f ∨ g){s, s′}x]

≻





fs s
αgs′ + (1− α)fs′ s′

x S \ {s, s′}



 by eqn. (2.9.20)

∼{[f{s, s′}x] ∪ [g{s, s′}x]}
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Which is a contradiction of equation (2.9.21). Then the result follows.

Proof of Proposition 2.31. Prove by induction. For the base step, show that for any
f, g ∈ H ,

{[
f F
z F c

]

∪

[
g F
z F c

]}

∼

[
f F
z F c

]

or

{[
f F
z F c

]

∪

[
g F
z F c

]}

∼

[
g F
z F c

]

Let F = {s1, ..., sk}, where for any pair s, t ∈ F , s, t ∈ E for some E ∈ π∗. From the
definition of π∗, Lemma 2.28, and Lemma 2.27, for any f, g ∈ H and any menu z ∈ Q,

{[f{s, t}z] ∪ [g{s, t}z]} ∼ [f{s, t}z] or {[f{s, t}z] ∪ [g{s, t}z]} ∼ [g{s, t}z]

Without loss consider the first case. By definition of fE as the E-conditional SCE act to f
(defined in equation (2.9.2)), and Menu-Sure Thing Principle

[f{s, t}z] ∼
[
c(f |{s,t}){s, t}z

]

Where c(f |{s, t}) ∈ ∆(B) is a {s, t}-conditional SCE act. Moreover, by Lemma 2.24 adding
a menu that agrees everywhere and is constant on {s, t}, but dominated by c(f |{s, t}) doesn’t
change the ranking of the menu, therefore

{[f{s, t}z] ∪ [g{s, t}z]} ∼ {[c(f |{s, t}){s, t}z] ∪ [c(g|{s, t}){s, t}z]}

Since this holds for any s, t, it will hold for
⋃k

i=1 si = F from Transitive Indifference to SCE
and SCE Aversion. To see this, suppose that for s, t, r ∈ F

{[f{r, s, t}z] ∪ [g{r, s, t}z]} ≻ {[c(f |{r, s, t}){r, s, t}z] ∪ [c(g|{r, s, t}){r, s, t}z]}

Without loss of generality (from Lemma 2.24), let

{[
c(f |{r,s,t}){r, s, t}z

]
∪
[
c(g|{r,s,t}){r, s, t}z

]}
∼
[
c(f |{r,s,t}){r, s, t}z

]

And by definition of c(·|E) and Menu-Sure Thing Principle,
[
c(f |{r,s,t}){r, s, t}z

]
∼ [f{r, s, t}z].

In addition, suppose without loss that fr %∆(B) gr, which by Monotonicity* implies







[f{r, s, t}z] ∪







g s
g t
f r
z {s, t, r}c













% {[f{s, t, r}z] ∪ [g{s, t, r}z]}
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But by SCE Aversion, given that the two acts agree on {s, t}c, and x{s,t} ∼ x for all x ∈ Q,







[f{r, s, t}z] ∪







g s
g t
f r
z {s, t, r}c













∼ [f{r, s, t}z]

which is a contradiction. Therefore,

{[f{r, s, t}z] ∪ [g{r, s, t}z]} ∼
{[
c(f |{r,s,t}){r, s, t}z

]
∪
[
c(g|{r,s,t}){r, s, t}z

]}

Using the same argument inductively, since F is finite, it follows that

{[
f F
z F c

]

∪

[
g F
z F c

]}

∼

{[
c(f |F ) F

x F c

]

∪

[
c(g|F ) F

z F c

]}

By Lemma 2.24, the definition of c(f |F ), c(g|F ) ∈ ∆(B), and Menu-Sure Thing Principle,
imply

[
c(f |F ) ∪ c(g|F ) F

z F c

]

∼

[
f F
z F c

]

or

[
c(f |F ) ∪ c(g|F ) F

z F c

]

∼

[
g F
z F c

]

Suppose that the result holds for any |x| < n, so for all x ∈ Q, for all F ⊆ E ∈ π∗,
there exists f ∈ x such that xFz ∼ fFz. By Menu-Sure Thing Principle, and Lemma 2.23,
xFz ∼ c(f |F )Fz for some f ∈ x where c(f |F ) %∆(B) c(g|F ) for all g ∈ x. For any y such
that |y| = n ≥ 3, consider the menus x1 = y \ g1 and x2 = y \ g2 for some g1, g2 ∈ y, such
that gi 6= f for i = 1, 2, and g1 6= g2 (hence g1 ∈ x2 and g2 ∈ x1).

Since f ∈ x1 ∩ x2, then x1Fz ∼ c(f |F )Fz and x2Fz ∼ c(f |F )Fz by the induction
hypothesis. Consider the menu given by

1

2
[x1Ez] +

1

2
[x2Ez]

by Independence and Order, 1
2
{x1Ez} + 1

2
{x2Ez} ∼ 1

2

[
c(f|F )Fz

]
+ 1

2
[c(f |F )Fz]. And

also since 1
2
[x1Ez] + 1

2
[x2Ez] ⊇ 1

2
[fFz] + 1

2
[yFz], by Menu-Monotonicity yFz ⊃ xiFz ∼

c(f |F )Fz, which implies that yFz % c(f |F )Fz. Then by Independence, yFz ∼ c(f |F )Fz.
So equation (2.9.15) will holds for any finite menu x by induction. Extend the observation
to countable menus using Continuity. Then extend to any menu by separability of x as a
space and Lemma 2.4, just like some of the previous proofs.

Proof of Lemma 2.33. Prove by induction on |E ∪ F |. For |E ∪ F | = 2 it holds by the
definition of π∗. Suppose it holds for all E, F ∈ π∗ such that |E ∪ F | < k. Show that it
holds for |E ∪ F | = k. Let |E| = m ≥ 2, so E = s ∪ t ∪ E1, with E1 ≥ 0, then |F | = k −m.
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Consider the menu 







p s
p t
p E1

δ F
δ {E ∪ F}c









∪









δ s
δ t
δ E1

q F
δ {E ∪ F}c









By the induction hypothesis and Menu-Sure Thing Principle the following two relations hold

{









p s
p t
p E1

δ F
δ {E ∪ F}c









∪









p s
δ t
δ E1

q F
δ {E ∪ F}c









}

∼









p s
p t
p E1

q F
δ {E ∪ F}c









{









p s
p t
p E1

δ F
δ {E ∪ F}c









∪









δ s
p t
δ E1

q F
δ {E ∪ F}c









}

∼









p s
p t
p E1

q F
δ {E ∪ F}c









Now by Independence for α = 1
2
, letting δ = 0 to reduce the notational clutter,

1

2

{









p s
p t
p E1

δ F
δ {E ∪ F}c









∪









δ s
δ t
δ E1

q F
δ {E ∪ F}c









}

+
1

2









p s
p t
p E1

q F
δ {E ∪ F}c









=

{









p s
p t
p E1
1
2
q F
0 {E ∪ F}c









∪









1
2
p s

1
2
p t

1
2
p E1

q F
0 {E ∪ F}c









}

= z1
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Also for α = 1
2
,

1

2

{









p s
p t
p E1

δ F
δ {E ∪ F}c









∪









δ s
p t
δ E1

q F
δ {E ∪ F}c









}

+
1

2

{









p s
p t
p E1

δ F
δ {E ∪ F}c









∪









p s
δ t
δ E1

q F
δ {E ∪ F}c









}

=

{









p s
p t
p E1

0 F
0 {E ∪ F}c









∪









p s
1
2
p t

1
2
p E1

1
2
q F
0 {E ∪ F}c









∪









1
2
p s
p t
1
2
p E1

1
2
q F
0 {E ∪ F}c









∪









1
2
p s

1
2
p t
δ E1

q F
0 {E ∪ F}c









}

= z2

By Monotonicity* z1 % z2, since every act in z2 is dominated by some act in z1. Hence the
result follows.

Proof of Lemma 2.34. Prove by induction on |{si}|. For |{si}| = 2 the result follows
again from the definition of π∗. Suppose the result holds for any |{si}| < k. Now show that
it holds for |{si}| = k. The argument for the proof is the same as the proof of Lemma 2.33.
By the induction hypothesis and Menu-Sure Thing Principle any menu with k − 1 acts the
following holds

xi =

{












p1 s1
0 s2
...
pi si
...
0 sk












∪ ... ∪












0 s1
0 s2
...
pi si
...
pk sk












}

∼






p1 s1
...
pk sk






There are k such menus, since every menu is missing one act of the form pjsjδ, for j = 1, ..., k.
And every act in the menu xi has outcome pi on state si. Applying Independence for α = 1

k
,

after some (omitted) algebra it is possible to show that every act in the convex combination

1

k
x1 + ...

1

k
xk

is dominated by some act in

1

k

{
k⋃

i=1

[pisiδ]

}

+
k − 1

k






p1 s1
...
pk sk
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Since each xi is indifferent to the best menu, by Monotonicity*

1

k

{
k⋃

i=1

[pisiδ]

}

+
k − 1

k






p1 s1
...
pk sk




 %






p1 s1
...
pk sk






and the result follows.
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Chapter 3

Identification of Consideration and
Inattention from Choices

3.1 Introduction

In many choice problems, decision makers face a considerable number of alternatives. In ad-
dition, to having a large amount of choices, there has been an ongoing trend to increase even
more the number of available options in many markets. For instance, nowadays a shopper in
a supermarket needs to select from 285 varieties of cookies, 85 flavors and brands of juices,
230 different soups and 275 varieties of boxed cereal Schwartz [2005]. Also, Scheibehenne
[2008] provides many examples of markets where we have had a “variety revolution”, this
trend of increasing the number of options offered to consumers: the number of types of
products offered by companies that produce ice cream, potato chips, fast food, and orange
juice have increased more than 10 fold in the past 50 years. And looking at internet markets,
the number of options offered in markets like music, books, or movies is staggering: there
are tens of thousands of available good in these markets. Classical rational choice theory
would conclude this exuberance of choice has positive welfare consequences since increasing
the number of available options in any market is unambiguously beneficial for consumers.
However, alternatively to this classical idea of “more is better”, there is recent evidence on a
“Too Much Choice” (TMC) effect in many choice situations, where a large amount of options
can have negative consequences in terms of welfare for decision makers.

Since it conflicts with the standard view of rational choice theory, the aforementioned
Too Much Choice effect has also been labeled as “The Paradox of Choice” (see Schwartz
[2005]). Schwartz [2005] claims that one of the reasons that motivate the Paradox of Choice
is that more options can hurt consumers since the choice process may seem overwhelming:
the overwhelming nature of some problems might lead DMs might fail to consider some
objects that are available to them, which might even be preferred than the actual chosen
element; or even to inaction. This idea of the possible negative effects of an excessive number
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of alternatives dates back to the seminal psychology contribution of Miller [1956], which
studied the limited ability of decision makers to process bits of information. By designing
experiments that test the cognitive capacity of subjects, Miller [1956] establishes that there
is an upper bound on the amount of information that the average person can process in the
short term (when suddenly presented with new information).

If DMs have a rather limited attention span, abundance of choice can create difficulties
for the decision making process, which is something that has been extensively documented:
decision makers often deal with a small number of alternatives which is far fewer than the
total number of alternatives [Hauser and Wernerfelt, 1990] (see also Chiang et al. [1998],
Stigler [1961], Pessemier [1978]). For example, in financial economics, (see e.g. Huberman
and Regev [2001]), it is known that investors make investing decision based on a limited
number of all the available options. Similar examples can be found in job search (see Richards
et al. [1975]), university choice (see e.g. Laroche et al. [1984], Rosen et al. [1998]), and airport
choice (see Basar and Bhat [2004]). Hence, a common procedure is for decision makers to
choose heuristics, or rules of thumb, to simplify the choice problem to one they can analyze
(i.e. apply a maximization procedure). A classical example of such heuristic choices is to
choose the second cheapest wine on the menu, which is arguably just a reduction of the
dimensionality of the problem to facilitate a choice, and this rule of thumb is most likely
orthogonal to any maximization procedure (see Tversky [1972], Tversky and Kahneman
[1974], Martignon and Hoffrage [2002], or Katsikopoulos and Martignon [2006] for more
examples, evidence, and analysis of heuristic choices).

Complementary to the evidence of the recurrent use of heuristics to simplify complex
choice problems, there have been several studies that have found that there is the TMC effect,
where the excess of available options lead decision makers to be worse off than with fewer
options. Iyengar and Lepper [2000] famous work, consider three different choice situations,
on the field and on the lab, and showed that in the three studies subjects were better off
under the situation of a smaller number choices rather than a bigger number of elements
they could choose from. The first experiment involved a jam tasting and consumer welfare
is measured in the likelihood of buying jam; the finding is that consumers were more likely
to buy jam (redeem a coupon given to them for participating in the tasting) when they
were in the groups that tasted less options. A lab experiment involved chocolate tasting,
and consumers who faced less options said that they enjoyed more the tasting than the
ones who faced more types of chocolate. Finally, Iyengar and Lepper [2000] also showed
that the quality of extra credit essays, and the number of essays completed, increased as
students were presented with fewer choices. Along the same lines, Iyengar et al. [2004],
showed that people are more likely to enroll in company sponsored retirement plans when
they have fewer available plans; and Chernev [2003] also showed that in a experiment with
chocolate choices, subjects that were presented fewer options were more confident with their
choice, when questioned about it by the experimenter (they were less likely to change the
choice once suggested by the experimenter). Furthermore, Caplin et al. [2009] study a choice
environment where a large amount of options can lead consumers to “make mistakes” (i.e.
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choose some element that is not their preferred one). By tracking choices over time, they
conclude that people tend to make more mistakes when there are more available options,
and that these mistakes decrease by increasing the contemplation time. See Schwartz [2005]
for more documented instances of the TMC effect.1

Given these results about limited cognitive capacity decision makers in different situa-
tions, the idea of the Paradox of Choice seems intuitive in terms of choice overload: how can
we know, by observing choices, that a consumer really chose her most preferred option out
of a menu, when she is not able to pay attention to all available options?

In this paper we model, within the classical rational choice theory framework, a choice
situation susceptible to a Too Much Choice effect. Based on this idea, and the empirical
evidence of choice overload, we consider a choice situation where too many options can
lead the DM to overlook some of the available option, which has intuitive negative welfare
consequences. By using an axiomatic choice theoretical framework we can analyze in which
choice problems we, as analysts, can claim that “more is less”, i.e. when more options can
lead to lower consumer welfare, and what the DMs considered and the revealed preference
at each possible menu.

We model a choice problem with two independent steps. First, agents consider some
of the available options, this will be the DMs consideration set, and afterwards they make
a choice. Usually axiomatic choice theory does not deal with the first step, by implicitly
assuming that DMs sees everything that is available, focusing exclusively on the choice or
maximization step. However, if we allow the possibility to not consider some elements, from
observation we cannot disentangle each step. As analysts, we do not know what was observed
and what was the procedure used for the making the choice separately. In this paper, we
explicitly incorporate the consideration step of the decision-making process into the classical
choice theory framework and explore how much of each process we can separately identify,
conditional to some consistency conditions on the way observations work. Moreover, we use
consideration of elements, or lack thereof, to identify a revealed preference (a la Samuelson
[1938]) that come from some maximization procedure, and instances in the decision-making
process that possibly came from heuristics.

Here, we require a minimal condition on the formation of consideration sets to capture
the TMC effect: if the DM pay attention to some element in a large menu, then she will
pay attention to that element on a smaller menu. If the number of available options is what
affect the DM’s consideration of products, for example it is reasonable to think that if the
DM pay attention to a certain type of boxed cereal in a crowded supermarket shelf, then she
will pay attention to that same cereal in a smaller neighborhood convenience store.2

1Nonetheless, some authors, such a Scheibehenne et al. [2009] argue that the too much effect is small and
unquantifiable at best under certain environments.

2In a companion paper, Masatlioglu et al. [2009], consider a choice environment, which is independent
to ours, where DMs can be unaware of being unaware, which require a different condition on the formation
of consideration sets. We extend the problem to satisfy both these conditions on Section 3.4. Within a
similar framework, we will see that the welfare implications of the two models are substantially different. In
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Based on the consistency conditions for the formation of consideration sets, we provide
axiomatic characterization, revealed preference results, and welfare implications for Choice
with Limited Consideration (CLC). By CLC we mean a procedure where the DM uses a
complete and transitive order to choose out of the consideration set, which can be smaller
than the actual menu of options offered, i.e. a rational consumer that overlooks some of
the available elements in the choice set. Formally, we will say that a choice function c
is a CLC with a consideration filter, if there is a consideration filter Γ, which we define
formally in Section 3.2, and a utility function u,3 such that the decision maker chooses the
alternative with highest utility in the consideration set, i.e, for each A, the decision maker’s
maximization problem can be written as

max u(x) subject to x ∈ Γ(A).

Within this framework, we can see that as consequence of allowing DMs to possibly
overlook some available elements, we incur some limitations when we try to make revealed
preference, structure of the consideration set, and welfare claims. How can we tell choice
behavior that fails rationality when DM might overlook options? And to what extent can we
make revealed preference and welfare assertions? In this paper we provide answers for these
two questions within the classical choice theory framework. In this paper we characterize a
model of choice where the DM might fail to observe elements in the choice set, following the
lines of the “Too Much Choice” argument; thus as a consequence in our model if the choices
can be characterized as a CLC with a consideration filter, whenever we observe a choice
reversal we can conclude that at that instance the DM suffered from too much choice and
didn’t observe or analyze all the options, and thus the smaller menu is welfare enhancing.

The remainder of the paper will be structured as follows, Section 3.2 formally defines and
discusses the relevance consideration filters, Section 3.3 characterizes the choice with limited
consideration model for functions and linear orders and discusses the revealed preference,
revealed attention and revealed inattention within our framework. Section 3.4 imposes an
additional restriction on the consideration filter, from Masatlioglu et al. [2009], called atten-
tion filter, and adding these two conditions gives us a strong filter. For this type of filter we
also provide a characterization result. Section 3.5 establishes characterization and welfare
results for two independent special cases of the CLC with limited consideration: full atten-
tion on binary menus; and filters generated by a transitive order, which established a direct
connection between our paper and Manzini and Mariotti [2007] Rational Shortlist Method.
Section 3.6 discusses the related literature, and finally Section 3.7 concludes.

addition, we consider more restrictive consideration filter structures on Section 3.5.
3We consider in the body of paper the case of choice functions with a linear order ≻, which is more

tractable. However, in Section 3.8 we show that it is possible to extend the main characterization result to
choice correspondences with a weak order %.
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3.2 Consideration Filters

The model as presented now has no empirical content. In other words, if there is no restriction
on Γ, then any choice function can be interpreted as a CLC. Precisely, if Γ consists of only
chosen element, then choice is rationalized by any order4, and the problem is trivial. So to
analyze this problem we have to impose some minimal condition on Γ.5

In many real-world markets, every product is competing with each other for the space
in the consideration set of DMs, who have cognitive limitations. In these situations, if an
alternative attracts attention when there are many others, then it must be considered when
some of them become unavailable. For example, if a product is able to attract attention in a
crowded supermarket shelf, the same product will be noticed in a smaller convenience store,
where there are fewer alternatives. We call such consideration sets as attention filter, and
we will formally define it later. Under this structure, we show that we deduce part of the
DM’s preference whenever her choices from a large set and a smaller set are inconsistent.
Since the choice from the larger set must be considered in the smaller set, we can conclude
that it is less preferred to the choice from the smaller set.

Consider some strategies to narrow down the set of available alternatives.

Example 3.1. A decision maker may pay attention to (be aware of) only

1. The three most advertised or safest cars in the market.

2. The cheapest car, the most fuel efficient car and the most advertised car in the market.

This behavior is often called “all or nothing” or “extreme seeking” behavior. Gourville
and Soman [2005] show that subjects, who presented with laptop computers that in-
cluded a basic model, a fully-loaded model, and either one, two, or three intermediate
models, increasingly chose one of the two extreme models as the overall assortment
increased in size.

3. The top three job candidates in each field: theory, macro, and econometrics for hiring
one assistant professor.

4. All products appearing in the first page of search result and/or sponsored links.

For many customers, web-search engines, such as Yahoo!, Google, MSN Search, and
AOL, are now the primary method for finding products. Customers pay attention to
products appearing in the top part of first page in search results.

4We will only require that x ∼ y if x, y ∈ c(A) for some A if we consider choice correspondences.
5For instance, in the companion paper, Masatlioglu et al. [2009], impose the minimal condition that x 6∈

Γ(A) ⇒ Γ(A) = Γ(A \ x) to study the lack of attention, here we impose a similar but independent condition
based on a different behavioral motivation: the effect of too many alternatives on lack of consideration of
some available elements.
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5. The n cheapest options.

In case of choosing a supplier for a particular product, Dulleck et al. [2008] show that
consumers select a shortlist of suppliers by using the price variable only (for example
ten cheapest suppliers) and they trade off reliability and price among these shortlisted
suppliers.

6. All products appearing in the search result if the total number is 20 or less. Otherwise,
the DM adds another keyword to narrow down her search.

7. All products of a particular brand, if there are none available choose another brand
and consider only those products. This type of behavior is studied in the marketing
literature as brand consideration (see Roberts and Lattin [1997]).

8. Consider all brands of cars that have n models or less.

The common property across all these examples: if an alternative is considered in a
decision problem, it will also be considered when some alternatives are removed; we can
think that alternatives are competing for the DMs attention. For example, consider the first
example above. If a car is one of the three most advertised ones, then it will still be so when
some of others are out of the market. Therefore we consider a particular type of consideration
that is motivated by the vast research on that shows consumers are overwhelmed by the
abundance of options. This lack of attention can be attributed to the size or complexity
of the choice set (see e.g. [Schwartz, 2005]), and evidence of this phenomenon goes back
to the psychology literature to Miller [1956]. We call this type of consideration structure a
consideration filter. Before the definition, some notation is needed. Let X be an arbitrary
non-empty finite set and X be the set of all non-empty subsets of X.

Definition 3.1. A correspondence Γ : X → X is called an Consideration Filter if x ∈
S ⊂ T and x ∈ Γ(T ) then x ∈ Γ(S).

Our goal here is to capture some systematic failures to consider options that have been
considered in the literature, focusing on the “too much choice” phenomenon. Therefore we
are modeling the observation process as a consideration filter, implicitly assuming that the
reason why agents fail to consider options is the size or complexity of the opportunity set.
This is in line with the Miller [1956] findings of the limited amount of information that DMs
can process mentioned, and with the empirical evidence which shows the complexity of a
decision process as a function of size of the menu such as Iyengar and Lepper [2000], Iyengar
et al. [2004], etc. In general, these research shows when there is a larger set of options DMs
seem to loose something in terms of welfare compared to the simpler, smaller, alternative
(submenu).

Modeling consideration, and the advertising implications as a function of the size of
the menu has been common on the marketing literature like Hauser and Wernerfelt [1990]
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and Shugan [1983], or Weinberger [2007]. Hauser and Wernerfelt [1990] show that as both
the number of options and the information about options increases, people consider fewer
choices and process a smaller fraction of the overall information available regarding their
choices. Consideration filter captures the idea that the more products are available, the
more products a decision maker overlooks. For instance, if a decision maker overlooks a
particular alternative in some set, and we think there is a reason (element, who captures
the DMs attention) to overlook it. If a smaller set contains such a reason, a superset of it
must contain it too. Therefore, the overlooked alternative in the small set should not attract
attention in a larger set either.

The monotone cost of observation with respect to size was used since early as in Stigler
[1961], as a rational search model; and more recently complexity of choice problems has
been interpreted as a size of the choice set in choice theory work like Ergin [2003], Ergin
and Sarver [2010], Tyson [2008], Dean and Caplin [2008], Dean [2008], and Masatlioglu and
Nakajima [2010b] or applied theory models like Eliaz and Spiegler [2007]. Here we model
the possible lack of attention or failure to consider as a function of size of the opportunity
set with the consideration filter, but in general terms this approach of linking complexity of
a problem and the size of the menu is common in different fields.

As previously mentioned, it is not novel to think that the size of the menu has an impact
on the choices. For instance Tyson [2008] models the complexity of choices is a function
of size of the menu in a very similar way. Tyson [2008] does it through the nestedness
requirement for the system of preferences, mentioning that if it is possible to relate two
elements x and y, on a big menu A, then the same relation will hold for any subset of A
that contains x and y. We build this assumption of the relation of the size of the menu to
the complexity of the problem through a contraction consistency property. In Tyson [2008]
a DM might not be able to compare options on a bigger menu, and in our approach the
DM might not consider options on a bigger menu, they are different things but nonetheless
they share that same flavor of the complexity of the problem (the inability to compare, or
to observe) is related to the size of the menu.

Even with this restriction on the consideration set of being the result of a consideration
filter, our model “rationalizes”, in the sense of a DM having a well-defined maximization
process, several anomalies pointed in experimental literature such as the attraction effect,
choice cycles and choosing pairwise dominated alternatives, and in the marketing literature
such as advertising an irrelevant alternative and introducing overqualified products.

3.3 CLC: Characterization Results

A choice or plan assigns a unique chosen element to every non-empty feasible set. This
choice can be represented by a choice function on X , c : X → X, such that c(S) ∈ S for
every S ∈ X . Let ≻ be a strict linear order on X . We denote the best element in S with
respect to ≻ by max≻ S.
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We propose a model to capture the idea of limited attention: our decision maker pays
attention only a subset of all available alternatives and picks the best alternative among
them. Her choice for a given feasible set S is the alternative x ∈ S that she prefers (given
her preference ≻) among all feasible alternatives to which she pays attention. Formally,

c(S) = max
≻

Γ (S) ,

where ∅ 6= Γ(S) ⊆ S is the consideration set that consists of alternatives to which the
decision maker pays attention under choice problem S. Then her choice will be the best
element in Γ(S) according to ≻.

If a decision maker is not aware of a particular product, it cannot be part of her con-
sideration set. Therefore, awareness of the item is the necessary condition Lavidge and
Steiner [1961]. However, in some choice environments, individuals might be aware of a lot
of products but they do not seriously consider all of them for purchase. Therefore, the
consideration set can be smaller than the awareness set. Indeed, Jarvis and Wilcox [1977]
shows that while the average number of known products may vary a lot for different class
of products, the average size of the consideration set is three to eight products. In extreme
cases, consumers actually have a consideration set of size one. In an empirical study of about
1,000 recent buyers of new cars, 22% of new-car buyers looked at only one brand (Laper-
sonne et al. [1995]). Even though the marketing literature has consideration models with
different degrees of consideration or awareness, which would be important in a search model
(see e.g. Wu and Rangaswamy [2003]), we abstract away from this notion which would make
our model less clean and study the choice problem with only two options: either the DM
considers something or not. This way we gain tractability and arguably do not loose too
much in terms of behavior.

Now, as mentioned in section 3.2, without any structure on the consideration sets, the
model has no empirical context since any choice could be rationalized this way by allowing the
DM to only look at the element chosen. This would make the decision vacuously maximal
with the respect to the observed options. Now we add the necessity of the consideration
structure to be a consideration filter, we formally define the workhorse of this paper, the
model of Choice with Limited Consideration, or CLC.

Definition 3.2. A choice function c is a Choice with Limited Consideration with a consid-
eration filter if there exists a strict order ≻ and a consideration set mapping Γ such that

c(S) = max
≻

Γ (S) .

and Γ is a Consideration Filter.

Occasionally, we say that (Γ,≻) represents c. We also mention that ≻ represents c,
which means that there exists some consideration set mapping Γ such that (Γ,≻) represents
c. In Section 3.8 we show that it is possible to extend the main characterization result to
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correspondences and weak orders. However here we show all the characterization results
only for functions for intuition and tractability.

Our main characterization result is concerned with finding necessary and sufficient condi-
tions for the type of choice behavior is consistent with our model: How could one test whether
choice data is consistent with CLC with a consideration filter? Surprisingly, it turns out that
CLC with a consideration filter can be simply characterized through one observable property
of choice, just like WARP in the classical choice setting.

We provide several examples which exhibit choice reversals and are consideration filters.
Therefore, the postulate we provide should allow choice reversals. Before we state the test,
recall the standard Weak Axiom of Revealed Preference (WARP) which does not allow any
type of choice reversals. WARP requires that every set S has the “best” alternative x∗ (for
choice functions), that is, x∗ must be chosen from a budget set T whenever x∗ is available
and the choice from T lies in S. Formally,

Axiom. WARP. For any nonempty S, there exists x∗ ∈ S such that for any T including
x∗,

c(T ) = x∗ whenever c(T ) ∈ S.

A rational decision maker making a choice with a consideration filter might exhibit a
choice reversal as Aumann [2005] argues, which is incompatible with WARP, we need to relax
WARP to characterize rational behavior when choices might be overlooked. Our Limited
Consideration WARP axiom allows choice reversals, but requires some consistency in the
way they operate, consistent with the idea that the reason for a choice reversal is the lack
of consideration of some elements in a menu. Recall that we are modeling the situation
where we can conclude that “more is less”, so choice reversals (in some consistent way) in
our model will reveal a welfare enhancement, since the DM essentially failed to consider a
better element in the large, and more complex, menu.

Axiom 3.3.1. LC-WARP. For any nonempty S, there exists x∗ ∈ S such that for any T
including x∗,

c(T ) = x∗ whenever (i) c(T ) ∈ S, and
(ii) c(T ′) = x∗ for some T ′ ⊃ T

Let us explain Limited Consideration WARP by comparing it with WARP. WARP states
that every set S has the “best” item x∗ in the sense that it is always chosen whenever the
chosen element is within S (and x∗ is available). LC-WARP requires that x∗ must be chosen
from T only when the chosen element from T is within S and x∗ is chosen from some set
larger than T .

To understand the axiom better, we provide an example which does not satisfy LC-
WARP. Consider the following choice pattern:

c(xyzt) = y, c(xyz) = x and c(xy) = y.
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To see how LC-WARP rules out the example above, take S equal to {x, y}. Either x or
y should obey the condition in the axiom for S. Suppose that x∗ = y, then for T ′ = xyzt,
and T = xyz. Since y = c(xyzt), c(xyz) ∈ S if c satisfies LC-WARP then y = c(xyz), which
is not the case. If x∗ = x, then consider T ′ = xyz and T = xy. Since c(xyz) = x, then
LC-WARP would require x = c(xy), which is not true either. So there is no element in S
that satisfies the condition for x∗. Now if x = x∗, c(xyz) = x and c(xy) = y imply that x
does not satisfy the condition. Therefore, above example violates LC-WARP for S = {x, y}.
Note that the axiom applies to any set of alternatives so it rules out more than the above
example.

In other words, to put the same example in the context of our model of choice with limited
consideration with a consideration filter, note that c(xyzt) = y reveals y attracts attention at
{x, y, z, t}. This implies that the decision maker aware of y in {x, y, z}. c(xyz) = x requires
that she prefers x to y (x ≻ y) since she is aware of y. This observation also implies that x
is revealed to be preferred to y. By the similar argument, c(xyz) = x and c(xy) = y imply
y is revealed to be preferred to x. This is a contradiction, since it would imply a cycle of 2.

Since the choice reversals in our model directly imply some revealed preference we can
notice the following. Whenever her choices from a small set and a larger set is inconsistent,
the former reflects her true preference under this framework. Formally, for any distinct x
and y, define the following binary relation:

xPy if there exist S and T with {x, y} ⊆ S ⊂ T

such that x = c(S) and y = c(T ). (3.3.1)

This binary relation P determines observed choice reversals. We can see from the def-
inition of CLC, and the welfare improving quality of choice reversals in our model, that if
we observe y being chosen from a large menu, and x being chosen from a smaller menu
containing y, then x must be preferred to y by the DM. In addition, we also should be able
to conclude that she prefers x to z if xPy and yPz for some y, even when xPz does not hold
(i.e. we don’t see a choice reversal from z to x). Thus, we let PT be the transitive closure of
P .

The following Lemma shows the link between LC-WARP and PT , which furthermore
we’ll see is the only behavioral postulate needed to characterize our Choice with Limited
Consideration model.

Lemma 3.1. c satisfies Limited Consideration WARP if and only if PT is acyclical.

Proof. First, we show that P is acyclical, so is PT . Assume that xnPxn−1P · · ·Px1Pxn

occurs. Then there exists no element in {x1, . . . , xn} serving the role of x∗ in the axiom.
For example, xk cannot be x∗ since xk+1Pxk, i.e. there exist Sk ⊂ Tk with {xk, xk+1} ⊂
Sk ⊂ Tk s.t. xk+1 = c(Sk) and xk = c(Tk). To show the other way, take S ∈ X . Since P is
acyclical, there exist P -undominated elements in S. Then it is routine to check that any of
them serves the role of x∗ in the axiom.
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The following theorem shows that a CLC with a consideration filter is captured by a single
behavioral postulate: Limited Consideration WARP. This makes it possible to test our model
non-perimetrically by using the standard revealed-preference technique a la Samuelson and
to derive endogenously decision maker’s preferences and consideration filter from observed
choice data.

Theorem 3.1. A choice function c satisfies LC-WARP if and only if c is a CLC with a
consideration filter.

Proof. The if-part is a direct implication of Lemma 3.1. If c violates Limited Consideration
WARP, its revealed preference has a cycle. Let us prove the only-if part. By Lemma 3.1 and
the existence of a linear order that is an extension of a partial order on a nonempty X ,there
is a preference that includes PT . Take such a preference arbitrarily and define

Γm(S) = {x ∈ S|∃S ⊂ T s.t. x = c(T )}

We have already shown that this Γm is indeed a consideration filter and c(S) is the ≻-best
element in Γm(S). Therefore, (Γm,≻) represents c.

3.3.1 Revealed Preference and Revealed (In)attention

We now illustrate how to infer (1) a decision maker’s actual preference and (2) to what
she pays (and does not pay) attention from her choice behavior, given that is a CLC with
a consideration filter. We are interested in this question because the revealed preference
can be used for welfare analysis and the revealed attention/inattention can determine which
marketing strategy is effective.

Imagine a decision maker chooses x when y is one of the available alternatives. The
standard revealed preference argument immediately concludes that x is preferred to y. To
justify such an inference, one must implicitly assume that she has paid attention to y.
Without this hidden assumption, we cannot make any inference because she may prefer y
but overlook it. Therefore, eliciting her ranking between x and y (preference) might no
longer follow the standard revealed preference analysis because her choice can be attributed
to her preference or her inattention.

This observation of the possible tension between preference and attention suggests that
multiple pairs of a preference and a consideration filter can generate the same choice behavior.
To illustrate this, consider the choice function with three elements exhibiting a cycle:

c(xyz) = y, c(xy) = x, c(yz) = y, c(xz) = z.

One possibility is that her preference is x ≻ y ≻ z and she overlooks x both at {x, y, z} and
{x, z}. Another possibility is that her preference is z ≻ x ≻ y and she does not pay attention
to x only at {x, y, z}. Consequently, we cannot determine which of them is her true preference
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from her choice data. Likewise, we cannot determine whether she pays an attention to x at
{x, z}. On the other hand, both of the preferences rank x above y. Therefore, if these two
pairs are only possibilities, we can unambiguously conclude that she prefers x to y, which
we shall now define as the revealed preference.

Let c is a CLC with a consideration filter, suppose there are k different pairs of strict
preferences and consideration filters representing c:

(Γ1,≻1), (Γ2,≻2), . . . , (Γk,≻k).

So for each i, c(S) = max≻i
Γi(S).

If there are two ≻i and ≻j disagreing on the ranking of x and y, we cannot identify her
true preference between x and y. On the contrary, if every ≻i ranks x above y, we can infer
that she prefers x to y, which leads to the following definition:

Definition 3.3. Suppose c is a CLC, represented by k different pairs: (Γ1,≻1), . . . , (Γk,≻k).

• x is revealed preferred to y, denoted by x ≻R y, if x ≻i y for all i.

• x is revealed to attract attention at S if x ∈ Γi(S) for all i.

• x is revealed to NOT attract attention at S if x 6∈ Γi(S) for all i.

If one wants to know whether x is revealed to be preferred to y, it seems to be necessary
to check for every (Γ,≻) whether it represents her choice or not, which is not practical
especially when there are many alternatives. We shall now provide characterization of her
revealed preference, attention and inattention completely.

Let us go back to the previous example where c(xyz) = y and c(xy) = x. We can
immediately conclude that she pays attention to y at {x, y, z} so does she at {x, y} (revealed
attention). Since she picks x from {x, y}, we can conclude that she prefers x over y (revealed
preference). Then, we also learn that she does not pay attention to x at {x, y, z} because
she picked an inferior alterative y (revealed inattention).

We can see from the example, and the definition of PT that it is sufficient to have xPTy
to conclude that x is revealed preferred to y, now the question we can ask ourselves is if
there is some revealed preference not captured by PT . The next proposition states that the
answer is no: PT is the revealed preference.

Proposition 3.2. Suppose c is a CLC with a consideration filter. x is revealed to be preferred
to y if and only if xPT y.

Proof. We have already proven the if-part of Proposition 3.2. This immediately implies that
P is acyclical since c is a CLC with a consideration filter. To see the only-if part, take any
pair of x and y without xPTy. Then there exists a preference ≻ including PT and y ≻ x
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since PT is transitive. Define the consideration filter Γm as follows:6

Γm(S) = {x ∈ S|∃S ⊂ T s.t. x = c(T )} (3.3.2)

By construction, Γm is a consideration filter. It is easy to see that c(S) is ≻-best element in
Γm(S) because c(S) ∈ Γm(S) and x( 6= c(S)) ∈ Γm(S) only if c(S)Px (so c(S) ≻ x).

Now we investigate when we can unambiguously conclude our decision maker pays (or
does not pay) attention to an alternative. Note that if she chooses x from S, she must be
paying attention to x at S. Therefore, we can determine that she pays attention to x at any
smaller decision problem including x. On the other hand, suppose she has revealed to prefer
x over y and chooses y from a set T including x. Then we can immediately conclude that
she does not pay attention to x at T . Furthermore, this also implies that she does not pay
attention to x at any decision problem larger than T .

Proposition 3.3 summarizes the above discussions and also provides full characterizations
for revealed attention and inattention.

Proposition 3.3. Suppose c is a Choice with Limited Consideration then:

(i) x is revealed to attract attention at S if and only if x is chosen from some super set of
S (possibly from S), i.e. x = c(T ) for T ⊇ S.

(ii) x is revealed not to attract attention at S if and only if x is revealed to be preferred to
c(T ) for some T such that x ∈ T ⊂ S.

The if-parts of both statements have been already shown above. The proofs of the only-
if-parts are given in Section 3.10.

A corollary of proposition 3.3 is that we can restate the condition of limited attention
in terms of consideration filters, since we defined Γm to be the minimal consideration filter
that is consistent with the choices and the structure we imposed on any Γ.

Corollary 3.4. Let c be a CLC with a consideration filter. Then x is revealed to attract
attention at S if and only if x ∈ Γm(S).

3.4 CLC: Strong Consideration Filters

In this section we provide a characterization of CLC with strong consideration filters, which
are consideration filters, that also satisfy the attention filter condition from Masatlioglu
et al. [2009]. Here we show that we gain predictive power, but not surprisingly we cannot

6We are going to use this construction of the consideration filter Γm throughout the paper. Γm is the
smallest possible consideration filter that we can infer from the choices, which is going to be important for
the characterization for the characterization of revealed preference and attention.
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incorporate some observed behavior such as “choosing pairwise unchosen” to the model. The
additional condition that we add in this section to the consideration filter is that the removal
of an alternative that is overlooked does not change the consideration set. Essentially the
condition we add is that the DM maker is unaware that she is unaware.

Despite the similarities between our choice with limited consideration with a consideration
filter, and MNO’s CLC with an attention filter, the two models are independent. One
particular feature of our model is that when we observe choice reversals, we conclude that
a smaller menu (less options) are revealed to improve welfare, whereas this is not necessary
the case in MNO.

Example 3.2. To show the independence between our model and Masatlioglu et al. [2009]
we show here examples of consideration set formation where: (i) Γ is a consideration filter
but not an attention filter, (ii) Γ′ is an attention filter but not a consideration filter.

menu xyz xy xz yz
Γ : x xy xz y
Γ′ : xyz xy yz z

Despite being two different models of consideration, most real world examples mentioned
above and in Masatlioglu et al. [2009], satisfy both properties. Thus we study these properties
in this section, where we define a Strong Filter, which satisfy both properties: consideration
filter and attention filter. And derive all the revealed preference, and revealed attention
results for those structures.

For instance an example of a consideration filter that is not an attention filter consider a
DM looking for cars, she only considers those brands with at most 3 models. It is easy to see
that this is a consideration filter, since if a car is considered for any subset of the available
options, there will be at most 3 models of that brand, thus x will be considered. On the
other hand, suppose x is not considered given the available options, thus there are 4 or more
cars in the brand of x. If there are exactly 4 cars, removing x will lead the DM to consider
the remaining 3 cars in the brand of x, thus this will not be an attention filter.

In addition, MNO give a formation of a consideration set that is an attention filter but not
a consideration filter, which they call “Searching more when the decision is tough”. Suppose
the DM is looking for airline tickets. The DM considers alternatives that are easy to find
(first page of search results in some travel website) and if there is an item that dominates
all others in all dimensions (price, departure time, arrival, number of stops) then the DM
picks that. Otherwise she spends time and does an extensive search to consider all available
options (look at other sites, or airlines that are not affiliated with the travel website), and
picks the preferred one. In this case to see why this might not be a consideration filter,
suppose x is easy to find, but does not dominate any of the easy to find airline tickets, i.e.
y is easy to find and cheaper, then DM will consider all the possible options. If we remove
y, then x dominates all the easy options, thus the DM will not make the extensive search,
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and all the hard to find elements are considered in the first menu, and not considered in the
submenu where we remove y.

The fact that many of the examples considered in this paper and in MNO satisfy both the
attention and consideration filter properties, suggests that we should study the case where a
consideration filter satisfies the following extra property that “an item that does not attract
DM’s attention does not affect her attention span at all”[Masatlioglu et al., 2009], this is
called an attention filter by MNO.7 This prompts the following definition of a strong filter:

Definition 3.4. An consideration function Γ is called strong Consideration Filter if

(i) For any S and T , x ∈ Γ(T ) implies x ∈ Γ(S) whenever x ∈ S ⊂ T .

(ii) For any S, x 6∈ Γ(S) implies Γ(A) = Γ(A \ x).

Indeed, all the heuristic ways of generating a consideration set discussed in section 3.2
are strong filters, except the consideration filter where the DM considers all elements of a
brand if there are most n goods of that brand. Thus is natural to characterize these type of
choice functions.

Similarly we can define a choice function c as Choice with Limited Consideration with a
strong consideration filter as

Definition 3.5. A choice function c is a CLC with strong consideration filter if there exists
a strict order and a consideration set mapping Γ such that

c(S) = max
≻

Γ(S)

and Γ is a strong Consideration Filter.

First let us characterize the reveled preference when Γ is known to be a strong consid-
eration filter. To do this, we revisit the cyclical choice behavior in the previous subsection8

where we know that while x is revealed to preferred to y, there is no other revealed preference
(see Proposition 3.2). Interestingly, we can uniquely pin down the preference for the cyclical
choice example when Γ is a strong consideration filter.

To see this, first note that c(xyz) = x implies that the DM pays attention to x at {x, y, z}
so does she at {x, z} (revealed attention). Since she picks z from {x, z}, we can conclude
that she prefers z over x (revealed preference). Since any strong consideration filter is an
attention filter, we must have x is revealed to preferred to y. Therefore, her preference is
uniquely pinned down: z ≻ x ≻ y.

Now we generalize this observation. Suppose c(T ) 6= c(T \ y). Then we conclude that y
must be paid attention to at T . Since Γ is a strong filter, y must attract attention not only

7The companion paper, Masatlioglu et al. [2009], extensively investigates consideration sets that satisfies
only this property, called attention filter, and which is formally stated as x 6∈ Γ(S) =⇒ Γ(S) = Γ(S \ x).

8Recall the cyclical choice problem: c(xyz) = y, c(xy) = x, c(yz) = y, c(xz) = z.
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at T but also at any decision problem S smaller than T including y. Therefore, if c(S) 6= y,
c(S) is revealed to be preferred to y. Formally, for any distinct pair of x and y define:

xP ′y if there exist S and T such that (i) {x, y} ⊂ S ⊂ T and x = c(S)
(ii) c(T ) 6= c(T \ y)

Notice that c(T ) 6= c(T \ c(T )). This implies that c(T ) must have been considered not
only at T but also at any decision problem S smaller than T including c(T ) since Γ is a
strong filter. Therefore, whenever {c(T )} ⊆ S ⊂ T and c(T ) 6= c(S), we have c(S) ≻ c(T ).
Indeed this is the way we infer z is better than x in the previous paragraph.

As before, if xP ′y and yP ′z for some y, we also conclude that she prefers x to z even
when xP ′z does not hold. The following proposition states that the transitive closure of P ′,
denoted by P ′

T is the revealed preference.
Strong consideration filter captures the idea that an alternative that is not paid attention

in a smaller set cannot attract attention when there are more alternatives. Hence, situations
where presence of some alternatives reminds the DM the existence of some other alternatives
are compatible with the attention filter but not with the strong consideration filter.

The example of “choosing pairwisely unchosen”, studied in MNO, perfectly highlights
this distinction between attention filter and strong consideration filter structures. Recall
that we uniquely identify the attention filter for {x, y, z}, {x, z}, and {y, z};

Γ(xyz) = xyz, Γ(yz) = y, and Γ(xz) = x.

Here, z attracts attention only when both x and y are present. In other words, while
z draws the attention from a big selection, it is not considered from a restrictive selection.
Hence this is not a strong filter. A strong filter requires z ∈ Γ(xyz) but z /∈ Γ(yz), hence we
can immediately conclude that this choice behavior cannot be explained by a strong filter.
We can also reach the same conclusion by using revealed preference: the DM’s choice exhibits
two choice reversals: (1) between {x, y, z} and {x, z} and (2) between {x, y, z} and {y, z}.
Based on Proposition 3.5, the first one implies that her preference must be x ≻ z ≻ y and
the second reveals y ≻ z ≻ x, which are contradicting.

Next, we provide a characterization for CLC with a strong consideration filter. The axiom
we propose is a stronger version of LC-WARP. Remember that LC-WARP requires that every
set S has the “best” alternative x∗ and it must be chosen from any other decision problem
T where the choice is part of S and is chosen in some problem that is more complex, i.e.
T ′ ⊃ T . Remember that, with a consideration filter, an alternative, say x∗, attracts attention
at a choice set, T if it is chosen from a superset T ′ ⊃ T .

Now that we assume the attention filter is strong, we can also conclude it when we know
x∗ is paid attention to at some decision problem T ′ ⊃ T , if removing it causes a choice
reversal, by observing c(T ′) 6= c(T ′ \ x∗). Therefore, we need to modify the requirement in
LC-WARP: if the removal of x∗ changes the choice in some super set of T , then it attracts
attention at T (even if it is not chosen at T ′ or T ).
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Note that throughout this paper we use the term consideration as a concept related to
the formation of consideration sets when too many options might overwhelm the DM, and
she might not pay attention to some. In the companion paper, MNO, use the term attention
as a concept related to formation of consideration sets in the presence of unawareness (un-
awareness of being unaware). Thus the similarity of the names of the behavioral postulates,
LC-WARP and LA-WARP, as choice patterns that capture behavior under the different
consideration structures. Therefore, it is only natural to define behavioral postulate that
captures behavior under consideration sets that satisfy both properties (strong filters), as
Limited Attention and Consideration WARP.

Axiom 3.4.1. LCA-WARP. If for any nonempty S, there exists x∗ ∈ S such that for any
T ∋ x∗,

c(T ) = x∗ whenever (i) c(T ) ∈ S, and
(ii) c(T ′) 6= c(T ′ \ x∗) for some T ′ ⊃ T

It turns out that LCA-WARP is the necessary and sufficient condition for CLC with a
strong consideration filter. Indeed, it is equivalent to the acyclicity of the revealed preference,
P ′
T .

Theorem 3.2. (Characterization) A choice function satisfies LCA-WARP if and only if it
is a CLC with a strong consideration filter.

Theorem 3.2 characterizes a special of class of choice behavior studied we studied earlier.
Similar to Theorem 3.1, the characterization involves a single behavioral postulate which is
stronger that WARP with Limited Consideration. We show that while this model has higher
predictive power, which comes with diminishing explanatory power: “choosing pairwisely
unchosen” is no longer within the model.

We finalize this section by revisiting the Attraction Effect. Consider the following ob-
served choice behavior:

c(xyz) = y, c(xy) = x, c(yz) = y, c(xz) = x.

It is routine to verify that this choice behavior satisfies LCA-WARP.9 Hence Theorem
3.2 implies that it is consistent with a CLC with a strong consideration filter. The choice
reversal between {x, y, z} and {x, y} yields that her preference must be x ≻ y ≻ z.

In addition, one can derive the unique consideration set mapping. To see this, consider
the set {x, y, z}. First of all, the choice, which is y, must be in the consideration set. Since
removing z changes the choice, therefore z is also in it (attention filter). Finally, we know
x is better than the choice from above discussion, x does not belong the consideration set
of {x, y, z}. Hence Γ(xyz) = yz. In addition, the strong consideration filter assumption

9One can show that x serves the role of x∗ for {x, y, z}. For the rest, c(S) does the job.
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requires that y and z attract attention whenever they are available, which pins down the
consideration set mapping uniquely for this example.

Γ(xyz) = yz, Γ(xy) = xy, Γ(yz) = yz, and Γ(xz) = xz.

We argue that the benefit of a CLC with a strong consideration filter, is that we gain
in predictive power, in terms of what we can pin down as revealed attention and revealed
preference. We can see that in both, CLC with a consideration filter and CLC with a strong
consideration filter, we can conclude revealed attention from choice reversals, however with
the consideration filter we can only conclude attention for the chosen options that constitute
the choice reversal, whereas in the CLC with a strong attention filter, the fact that removing
an alternative that is not chosen causes a choice reversal also reveals attention. Moreover,
if we can pin down more of the revealed attention, if the choice function is a CLC, we can
also pin down more of the preference as shown in the Attraction Effect example above.

The cost of having better identification in terms of what we can conclude that the DM
observed, is that we lose some types of behavior considered under the two models, since as
mentioned above, some behavior is captured by a consideration filter and not an attention
filter and vice versa. However most examples from this paper, and MNO, satisfy both
properties.

In the CLC with a consideration filter, we can only pin down part of the attention and
preference, and in the case where choices satisfy WARP we cannot conclude anything. We
provide a full characterization of the extent of characterizing attention and consideration,
and the tension between attention and preference in these models, especially when the choice
rules satisfy WARP in appendix 3.9.

Similarly to the CLC with a consideration filter from section 3.3, when we have a strong
consideration filter, instead of a consideration filter, we can also characterize revealed pref-
erence from LCA-WARP.

Proposition 3.5. Suppose c is a CLC with a strong consideration filter. Then, x is revealed
to be preferred to y if and only if xP ′

T y.

Proof. The if-part has been already demonstrated. The only-if part can be shown paralleled
with Theorem 3.2, where we shall show that any ≻ including P ′

T represents c by choosing Γ
properly.

3.5 Additional Discussion

In this section two independent special cases of our model. The first one assumes that the
decision maker has no limited attention problem in a binary set, hence she pays attention
to both alternatives. In the second one, the consideration filter is generated by a transitive
order, which might conflict with the preferences.
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3.5.1 Full Consideration in Binary Comparisons

Although choice overload is usually attributed to the number of options presented to decision
makers, another source of choice overload is the number of attributes. Therefore, even with
small number of alternatives, one may not compare all available alternatives. Our framework
allows such an extreme case.

However, if the source of attention is just abundance of alternatives, it is more likely
that she considers all of alternatives in smaller decision problems. As a benchmark case, we
consider a decision maker who has an attention filter but pays attention to both alternatives
in every binary decision problem. That is, Γ(S) = S whenever |S| = 2. We now provide a
characterization for this class of choice function.

With the full consideration assumption, our decision maker’s choices in binary sets must
be consistent with preference maximization for some preference. Hence, it is needed to
assume that

Axiom 3.5.1. Pairwise Consistency. If c(xy) = x and c(yz) = y imply c(xz) = x.

As we discussed earlier, an alternative, c(T ), is revealed to attract attention at a set S
whenever T is a super set of S. If c(T ) is not the chosen one, then it is strictly worse than
c(S). This information should not conflict with binary data, that is, c(S) must be the choice
from {c(S), c(T )}.

Axiom 3.5.2. Weak Contraction. If c(S) ∈ T and S ⊂ T then c(S) = c({c(S), c(T )}).

This axiom is trivially satisfied in the standard theory, where c(S) = c(T ). Here, we
require a weaker version of it, because we need to know whether the alternative attracts
attention to reach the same conclusion.

Theorem 3.3. A choice function satisfies Axiom 3.5.1 and 3.5.2 if and only if it is a CLC
with a consideration filter where there is full consideration at binary sets.

There are two important implications of this theorem: (i) more predictive power and
(ii) a unique preference. As previously mentioned, on the appendix 3.9 we show that there
are limitations to the predictive power of the model, since many consideration filters, and
preferences can represent a CLC with a consideration filter. For instance, our earlier model,
CLC with consideration filter, can accommodate any type of behavior with three elements,
so it is not falsifiable. Because of Pairwise Consistency, cyclical choice behavior in binaries
is ruled out in this model. Hence the model can be tested even with three options.

As in the standard theory, where the DM is assumed to pay attention to all the al-
ternatives, it is possible to infer her preference by asking the choice from the sets of two
alternatives:

xP ∗y if c(xy) = x (3.5.1)

In section 3.3, we illustrate that different preferences might generate the same behavior.
In the extreme case, where WARP is satisfies, there is no revealed preference at all. This is
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because a choice can be attributed either to preference or to inattention. To illustrate this,
consider the choice function with three elements satisfying WARP:

c(xyz) = x, c(xy) = x, c(yz) = y, c(xz) = x.

One possibility is that her preference is x ≻ y ≻ z and she considers everything. Another
possibility is that her preference is z ≻ y ≻ x and she considers c(S) at S. By full consider-
ation assumption at binaries, one can pin down the true preference even WARP is satisfied
(see Appendix 3.9 to see the limitations of the standard CLC with consideration filter model
when c satisfies WARP).

3.5.2 Attention Filters Generated by a Transitive Order

Here, we also consider a natural special case whereby the decision maker overlooks or dis-
regards an alternative because it is dominated by another item in some aspect. Imagine
Maryland’s economics department is hiring one tenure-track theorist. Since there are too
many candidates in the market, the department asks other departments to recommend their
best theory student. Therefore, a candidate from Michigan is ignored if and only if there is
another Michigan candidate who is rated better by Michigan. In this case, Maryland’s filter
is represented by a irreflexive and transitive order as long as each department’s ranking over
its students is rational. However, the order does not compare any two candidates from dif-
ferent schools so it is not complete.10 Notice that this order may not be consistent with the
preference of Maryland. It is possible that Michigan evaluates its job candidates differently
than Maryland, in which case Maryland may eliminate its preferred candidate. Therefore,
the order and the preference may be inconsistent.

Formally, let � be an irreflexive and transitive order over X and Γ� be an consideration
filter generated by �, that is:

Γ�(S) = {x ∈ S| ∄y ∈ S s.t. y � x} ,

for all S ∈ X . Here, the decision maker does not consider x at decision problem S if and
only if there is another alternative y ∈ S that dominates x according to the transitive order.
It is easy to see that Γ� is indeed a special class of strong consideration filters.

Here we illustrate that Γ� is a strong consideration filter for any irreflexible transitive
order �. First Γ�(T ) is a subset of Γ�(S) for all S ⊂ T . To see this, assume z ∈ Γ�(T ).
Then there exists no alternative in T �-dominates z, which implies that z is �-undominated
in any subset of T , so z ∈ Γ�(S) for all S ⊂ T . Particularly, we have Γ�(S) ⊂ Γ�(S \ x)
for any x ∈ S. Now we need to show that Γ�(S \ x) ⊂ Γ�(S) when x /∈ Γ�(S). Suppose
x, y ∈ S \ Γ�(S). Then, there must exist z ∈ S \ x such that z � x. If x � y, then by the

10The special case in which the rationale always yields a unique maximal element corresponds to the
standard model of rationality.
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transitivity, z � y as well so y 6∈ Γ�(S \ x). If it is not x� y, then what eliminates y at S is
also included in S \ x so y 6∈ Γ�(S \ x). Therefore, Γ� is a strong consideration filter.

Since Γ� is a strong consideration filter, LCA-WARP is a necessary condition for CLC
with an attention filter generated by a transitive order. In addition to that there is another
necessary condition:

Axiom 3.5.3. Expansion. If x = c(S) = c(T ), then x = c(S ∪ T ).

Manzini and Mariotti [2007] dub this property Expansion, and it directly rules out At-
traction Effect type of anomalies. It says that an alternative chosen from each of two sets
is also chosen from their union. To see that it is necessary, assume (Γ�,≻) represents c
and x = c(S) = c(T ). The latter implies that x is the ≻-best element in both Γ�(S)
and Γ�(T ). Hence x is �-undominated in both S and T , so x is in Γ�(S ∪ T ). Since
Γ�(S ∪ T ) ⊂ Γ�(S) ∪ Γ�(T ), x is also the ≻-best Γ�(S ∪ T ). Hence x = c(S ∪ T ).

Therefore, if a consideration filter of our decision maker is generated by a transitive order,
then her choice must satisfy Expansion, as well as LCA-WARP. Indeed its converse is true
so these two axioms characterize such choice functions.

Theorem 3.4. A choice function satisfies LCA-WARP and Expansion if and only if it is a
CLC with a strong consideration filter, which is generated by a transitive order.

Now, we discuss the revealed preference and the revealed order. Notice that this is a
special case of CLC with a strong consideration filter, P ′

R, which is the revealed preference
for the strong consideration filter must be a part of the revealed preference for this model
and it turns out that there is no extra inference of DM’s preference.

However, we can now obtain the revealed order: if all of attention filters generated by
some transitive order that can represent the choice agree on x � y, we call it the revealed
order. The revealed order can be obtained in a simple way. If she picks x from {x, y}
but reveals that she prefers y over x, it must be the case that y is disregarded at {x, y}.
Therefore, we can conclude x� y.

Proposition 3.6. Suppose c is a CLC with a consideration filter that is generated by a
transitive order.

• x is revealed to be preferred to y if and only if xP ′
Ry.

• x� y is revealed if and only if yP ′
R but x = c(xy).

Finally, we argue that the class of choice behavior characterized in Theorem 3.4 is a
specific subclass of Manzini and Mariotti [2007]’s rational shortlist method. Similar to
our model, the shortlist method operates through two binary relations P1 (acyclic) and P2

(asymmetric): the decision maker filters out P1-dominated alternatives and selects P2-best
among them. Unlike our model, P1 may be intransitive and P2 may have a cycle. Hence, our
model is a rational shortlist method where P1 is transitive and P2 is a preference. Indeed, it
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is a strict subset of shortlist method. Before we illustrate this, we remind the second axiom,
Weak WARP, used in the characterization of the rational shortlist method. The axiom says
that if an alternative x is chosen both when only y is also available and when y and other
set of alternatives, T , are available, then y is not chosen from any subset of T whenever x is
available. Formally,

Axiom. Weak WARP. Suppose {x, y} ⊂ S ⊂ T . If x = c(xy) = c(T ), then y 6= c(S).

We end this section, with a list of examples that show the independence of our axioms
and the ones presented by

Here is the example in which Weak WARP and Expansion are satisfied but not LCA-
WARP, hence our model is a strict subclass of their model.

Example 3.3. There are five alternatives: a, b, c, d, x. The decision maker has two rationales:
one is acyclic P1 = {(c, a), (d, b), (a, x)} and the second one is asymmetric including P2 =
{(a, b), (b, c), (c, d), (d, a), (x, d)}. Note that P2 is cyclical. The decision maker sequentially
applies P1 and P2 to make a choice as in the shortlisting method.11

Now we show that this choice behavior violates LCA-WARP at S = {a, b, c, d}. In other
words, there is no alternative in S which serves the role of x∗ in the axiom. For example,
the alternative a changes the choice (c(dx) 6= c(adx)) but it is not chosen (c(ad) 6= a and
{a, d} ⊂ {a, d, x}).

Likewise, the following example, show behavior that satisfies WeakWARP and Expansion
but violates LC-WARP.

Example 3.4. There are six alternatives: a, b, c, d, x, y. The decision maker has two ratio-
nales:
P1: aP1c, bP1d, xP1a, and yP1b. P2: aP2b, bP2c, cP2d, dP2a, xP2y and all of a, b, c, d
P2-dominates x and y.

Notice that P1 is acyclic and P2 is asymmetric (but cyclic). The decision maker sequen-
tially applies P1 and P2 to make a choice. We argue that exactly one element survives this
process so her choice is always uniquely determined. Since P1 is acyclic, at least one element
survives in the first round of elimination. By inspecting P2, we can see no alternative survives
in the second round if and only if all of a, b, c, d survive in the first round. Similarly, we can
see that more than one alternative survive in the second round only if the survivors of the
first round include either “a and c” or “b and d.” However neither of them is possible because
of aP1c and bP1d. Therefore, there is a unique survivor of this two-stage elimination, so this
is a well defined choice function that is a rational shortlist method. Hence, it satisfies both
Weak WARP and Expansion. However, this violates LC-WARP at S = {a, b, c, d} because
“a = c(ab) but b = c(abx),” “b = c(bc) but c = c(bcy),” “c = c(cd) but d = c(acd),” and
“d = c(ad) but a = c(abd).”

11One can define P2 completely so that there is a unique survivor of this two-stage elimination, hence this
is a well-defined choice function that is a rational shortlist method. Since our aim is to show that it violates
LCA-WARP, we define necessary part of P2.
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Finally, this last example satisfies LC-WARP and Expansion but not LCA-WARP.

Example 3.5. The decision maker’s preference ≻ is a ≻ b ≻ c ≻ d. Her attention filter is
generated by the following �: d� c� b�a but it is not transitive. Then, ≻ and � represent
a choice with limited attention whose attention filter is generated by � so it satisfies LC-
WARP and Expansion. However, it violates LCA-WARP at S = {b, d} because “d = c(abcd)
but a = c(acd)” and “b = c(bd) but d = c(bcd).

3.6 Related Literature

Samuelson [1938] first introduced theWeak Axiom of Revealed Preference (WARP) as a novel
approach to derive demand functions. Based on this idea of revealed preference analysis,
choice theory developed with the pioneering work of Arrow [1959], Richter [1966], Hansson
[1968] and Sen [1971]. There are several other papers that use the classical choice framework
to analyze choice behavior that does not fit the rational model, but it is nonetheless motivated
by experimental and psychological evidence.

Kalai et al. [2002] study choice behavior in terms of number of preference orders necessary
to rationalize choice data. Cherepanov et al. [2008] present a model of rationalization,
in which preferences over outcomes are well defined, but there are some rationalization
(psychological) constraints. Hence a good element might not be chosen because it cannot
be rationalized represented as “being able to give an explanation for”. de Clippel and Eliaz
[2009] offer a model of personal bargaining across selves that generate choices that might fail
to be rational in the classical sense. Masatlioglu and Ok [2005] consider choice with statu-
quo bias, and how the presence of an element considered as the statu-quo, can influence
choice behavior. This idea of reference dependence is choices is studied also by Ok et al.
[2008].

Manzini and Mariotti [2007], Mandler et al. [2008], and Manzini and Mariotti [2009c]
provide models where the DM sequentially eliminates objects, according to some process,
and the makes a final choice from the remaining ones. In this models, unlike in our model,
the DM considers all the elements, and uses some process (binary relation) to eliminate some
before having to make the final choice.

The lack of consideration of some options, plays an relevant role in several papers. Eliaz
and Ok [2006a] present a choice framework where it is possible to distinguish indifference and
indecisiveness from choice data. Masatlioglu and Nakajima [2010b] consider a model of choice
by elimination, where the consideration sets evolve as some alternatives are sequentially
eliminated. Eliaz et al. [2009] consider a model where the consideration sets of DMs are
directly observed, rather than partially identified like in our model.

Finally, the effect on final choices of a large set of options is featured in some other
papers like Dean and Caplin [2008], and Dean [2008], where the consideration of elements is
a procedure based on search costs. Also, Tyson [2008], offers a model of “Satisfycing” (see
Simon [1955]) where the preferences are generated by systems of binary relations, which are
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indexed by choice sets. He also requires some consistency between preferences for going from
large choice sets to its subsets, similar to our behavioral requirement on Consideration Filters.
Finally, as previously mentioned, the companion paper Masatlioglu et al. [2009] studies a
similar choice environment, with different requirements on the consistency of consideration
filter to analyze some other types of observed behavior.

3.7 Conclusion

Consumers do not consider all the available alternatives. They intentionally or unintention-
ally ignore some of the alternatives and focus on a limited number of alternatives. In this
paper, we relax the full consideration of the standard choice theory to allow for the choice
with limited consideration.

Marketing and finance literatures argue that the abundance of alternatives is the ba-
sic motive for limiting the consideration set. While limiting the consideration, it is well
documented that different types of filters have been used by the consumers. As motivated
by the real life examples, we provide characterization for these different types filters: (i) If
a consumer considers an alternative among a large set of option, he will still continue to
considering the same alternative when some alternatives become unavailable. (ii) If an alter-
native that the consumer does not consider becomes unavailable, his consideration set will
not be affected. (iii) Consumer has some categories, and he only considers the top options
according to his categories. (iv) Consumer is able to fully consider only limited number of
alternatives, e.g. when he is confronted with two alternatives, he can consider both of the
alternatives, but when there are more than two alternatives, he may not be able to consider
some of them. Although the consideration sets are not observable, our axiomatic approach
enables the identify which filters are used by the decision makers simply by observing their
choices. Identification of the filters will help companies to develop new marketing strategies
such that their products will attract attention by the consumers. Additionally, we show that
choice with limited consideration is capable of explaining behavioral anomalies that look
puzzling under standard choice theory.

3.8 CLC: Choice Correspondences

In the following section we show that the approach can be extended to choice correspon-
dences. Here we generalize the main characterization and revealed preference/attention
results from the paper, the characterization of CLC, by allowing choices to be multivalued,
and choice sets be arbitrary. The intuition behind the representations is the same, thus we
present them first for functions to gain better intuition without the technical complications
of the correspondences and arbitrary choice sets.

All the proofs of this section are included in this section.
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In this section we consider the general case where X is the (possible infinite) choice set.
Again X is the set of all proper subsets of X . Similarly, a choice correspondence will be
given by c : X → X, such that c(S) ∈ S for every S ∈ X . Now we let % be a weak order
linear order on X . Also we denote the best element in S with respect to % by max% S.
Here we show that all the results hold for the more general case with only a few changes
and additions since we have revealed indifference as well. Nonetheless the characterization
of CLC for correspondences is not as clean an straightforward as the one for functions and
finite X , thus here we just give the results and all the motivation and discussion in on section
3.3.

The difference between this setup and what we presented in section 3.3 is that we are
allowing for choices to be multi-valued (choice correspondences), and the choice set to be
arbitrary. When choices are multi-valued, instead of the linear order presented before we
need to consider weak orders to allow for the possible indifference relation.

We showed that the only behavioral postulate that characterized CLC with a consid-
eration filter was (LC)WARP. Thus we need to modify the LC-WARP presented before.
The first natural modification allows for multivalued choices, and as we will see, extends
the concept of revealed indifference. This extension, given by the following axiom, requires
choices to be consistent across choice sets. Making a parallel with LC-WARP, if there is
more than one element, x∗, y∗ satisfying the property for LC-WARP for a set S, then those
two elements must be satisfy (or not) LC-WARP together for any set that contains both
of them. In other words, it does not allow for choice reversals for one element but not the
other, once both elements have been chosen at some point.

Axiom 3.8.1. Weak Revealed Indifferences (WRI). If for {x, y} ⊆ T ⊂ S, x, y ∈ c(S),
then x ∈ c(T ) implies y ∈ c(T ).

One consequence of WRI, is that whenever there is a choice reversal then the intersection
of the two choice sets must be empty, and thus we are be able to distinguish between (strict)
revealed preference and revealed indifference from choice data, as we will see.

Lemma 3.7. Let c satisfy WRI. Then x ∈ c(T ) and x 6∈ C(S) for some S ⊂ T implies
c(S) ∩ c(T ) = ∅.

Proof. Suppose there exists y ∈ C(T )∩c(S), then byWRI we have x ∈ c(S), since x, y ∈ c(T )
and y ∈ c(S) which would be a contradiction. Therefore c(T ) ∩ c(S) = ∅.

The second axiom that we want to introduce to characterize CLC for correspondences
is called No Cyclic Choice Reversals. This is a stronger condition than LC-WARP, since it
guarantees that not only LC-WARP is satisfies, but also, once there is a choice reversal we
cannot find a chain of pairwise comparisons by either indifference or more choice reversals
(which in this model characterize preference), that would imply a reversal going the other
way. So if we reverse the choices from c(T ′) to something in c(T ), so x ∈ c(T ′) and x 6∈ c(T )
for some T ′ ⊃ T , then we won’t be able to indirectly reverse the choice the other way, from
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something in c(T ) to x or anything in c(T ′). It is straightforward to see that NCCR implies
LC-WARP for choice functions.

Axiom 3.8.2. No Cyclic Choice Reversal (NCCR). If for any set of menu-submenu
pairs {Si, Ti} (so that Ti ⊆ Si), where c(Ti+1) ∩ c(Si) 6= ∅, for i = 1, ..., n − 1. Then if
c(Ti) ∩ c(Si) = ∅ for one i we have c(T1) ∩ c(Sn) = ∅

Again, we define two binary relations in a similar fashion to the choice function case: P
(an asymmetric relation) which is the same P as the function case given in 3.3.1, and I, a
symmetric relation that we will see is going to capture the idea of revealed indifference.

Definition 3.6. Given a choice correspondence c define two binary relations, P and I the
following way.

1. xPy if there exists {x, y} ⊆ S ⊂ T such that x ∈ c(S), y 6∈ c(S), and y ∈ c(T ).

2. xIy if there exists {x, y} ⊆ S such that x, y ∈ c(S).

First of all, we can see that if a choice correspondence satisfies our two axioms, we have
that P and I are disjoint.

Proposition 3.8. If c satisfies NCCR and WRI, then P ∩ I = ∅.

Proof. Let xPy, then there exists {x, y} ⊆ S ⊂ T such that x ∈ c(S), y 6∈ c(S), and y ∈ c(T ).
Suppose there exists T ′ ∈ X such that x, y ∈ c(T ′). By Lemma 3.7, c(T ) ∩ c(S) = ∅, and
{x, y} ⊆ T ′, then c(xy) = xy by WRI. And by NCCR, since c(xy) ∩ c(S) 6= ∅, we have
c(xy)∩ c(T ) = ∅, which is a contradiction. So there does not exists such a T ′, and therefore
¬(xIy).

Let xIy, then there exists S ⊇ {x, y} such that x, y ∈ C(S). By WRI we must also
have c(xy) = xy. Suppose there exists {x, y} ⊆ S ⊂ T such that x ∈ c(S), y 6∈ c(S), and
y ∈ c(T ). Then by Lemma 3.7 we must have c(S) ∩ c(T ) = ∅. And c(S)∩ c(xy) = x implies
c(T )∩ c(xy) = ∅, which is a contradiction since y ∈ c(T ) and c(xy) = xy. Therefore no such
S ⊂ T exists, thus ¬(xPy).

We can define a new binary relation R by taking the union of P and I. Intuitively, we are
taking a symmetric relation that captures some notion of indifference when there is limited
observation and asymmetric relation that captures some notion of strict preference (in terms
of choice reversals as discussed in section 3.3).

Lemma 3.9. Let R = P ∪ I, then xRy if and only if there exists {x, y} ⊆ S ⊆ T such that
x ∈ c(S) and y ∈ c(T ).

Proof. This follows from the definitions of P and I.
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Hence we can see that the two axioms are equivalent to not being able to find two
conflicting choice reversals. In parallel to the function case, this will imply that once we take
the transitive closure of R, we will not have cycles.

Proposition 3.10. c satisfies NCCR, and WRI if and only if xnRxn−1R...Rx2Rx1 implies
¬(x1Pxn).

Proof. (⇒). Consider xi ∈ X such that xnRxn−1R...Rx2Rx1. Then by the definition of R,
there must exists for each i = 2, ..., n sets and subsets Si ⊇ Ti with xi ∈ c(Si) and xi−1 ∈ (̧Ti)
(see Lemma 3.9).

Suppose x1Pxn, then there exists {x, y} ⊆ S ′ ⊂ T ′ such that x1 ∈ c(S ′), xn 6∈ c(S ′),
and xn ∈ c(T ′). By WRI, c(S ′) ∩ c(T ′) = ∅. Let S1 = S ′ and T1 = T ′, then by NCCR
c(Sn) ∩ c(T1) = ∅, but xn ∈ c(Sn) by definition, and xn ∈ c(T1) by x1Pxn. Contradiction.
Therefore ¬(x1Pxn).

(⇐). Let x, y ∈ C(T ) and x ∈ c(S) for some S ⊇ {x, y}. Then we have yIx, which by
definition of R implies yRx. If y 6∈ c(S) then by definition of P we have xPy, but this is a
contradiction since yRx implies ¬(xPy) by the condition. So c satisfies WRI.

Let Si ⊆ Ti such that xi ∈ c(Si) and xi−1 ∈ c(Ti) for i = 2, ..., n and x1 ∈ c(S1). So we
have c(Si)∩ c(Ti+1) 6= ∅ for all i = 2, ..., n. This implies xnRxn−1R...Rx2Rx1. Now we prove
the contrapositive, let c fail NCCR. WLOG let xn ∈ c(T1) and c(T1) ∩ (S1) = ∅, so c(Sn) ∩
c(A1) 6= ∅, and for one of the Si, Ti, c(Si) ∩ c(Ti) = ∅. Then we have xnRxn−1R...Rx2Rx1,
and since xn ∈ c(T1) and xn 6∈ c(S1), and x1 ∈ c(S1), by definition of P x1Pxn. This fails
the condition that xnRxn−1R...Rx2Rx1 implies ¬(x1Pxn).

Just like in the function case, let RT be the transitive closure of R. Just like in the
functions case, we show that if R satisfies the condition of proposition 3.10, then we can
extend RT so that c is represented by some (Γ,%) where Γ is a consideration filter and % is
a weak order that contains RT .

First, we show that for any % that can possibly represent a CLC correspondence c, then
% needs to include RT .

Proposition 3.11. Suppose c is a CLC represented by (Γ,%). Then RT ⊆%.

Proof. Let xRT y, then z1, ..., zn such that x = z1Rz2R...Rzn = y (possibly z2 = y, in which
case xRy). For any ziRzi+1, there exists {zi, zi+1} ⊆ Si ⊆ Ti such that zi ∈ c(Si) and
zi+1 ∈ c(Ti). Since Γi is an attention filter, zi, zi+1 ∈ Γ(Si); and zi ∈ c(Si) implies that
zi is % −maximal in Γ(S ′), i.e. zi % zi+1 because c is a CLC correspondence. Therefore
x = z1 % z2... % zn = y, and by transitivity of %, x % y follows. Therefore RT ⊆%.

The following theorem shows that CLC behavior when allowing for choice correspon-
dences is completely characterized by the two axioms NCCR and WRI.

Theorem 3.5. A choice correspondence c is a CLC if and only if c satisfies NCCR and
WRI.
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Proof. (⇒). First we show necessity of the two axioms. Let c be a CLC represented by
(%,Γ), where Γ is a consideration filter.

To prove NCCR, let Ti ⊆ Si be a set of menus such that c(Si) ∩ c(Ti+1) 6= ∅. Without
loss let c(S1) ∩ c(T1) = ∅. Let xi ∈ c(Si) and yi ∈ c(Ti) be elements of the respective choice
sets.

Since c is a CLC, the information c(S1) ∩ c(T1) = ∅, c(Si) ∩ c(Ti+1) 6= ∅, and c(Si) ∩
c(Ti+1) 6= ∅ tells us xi, yi ∈ Γ(Ti) for all i and therefore we can conclude

y1 ≻ x1yi % xi ∀ixi+1 ∼ yi ∀i

Therefore we have yn % xn ∼ yn−1 % ... % y2 % x2 ∼ y1 ≻ x1. Since % is a weak order, we
must have yn ≻ x1. For any z ∈ c(Sn), z ∼ yn since c is a CLC. So z ≻ x1 and z ≻ w for
any w ∈ c(T1). This implies that for all w ∈ c(T1), w 6∈ c(Sn). Similarly for any z ∈ c(T1),
z ∼ x1 and since c is a CLC represented by (%,Γ), w ≻ z for all w ∈ c(Sn), and we get
z 6∈ c(T1) since c is a CLC. Therefore c(Sn) ∩ c(T1) = ∅.

Now we prove the necessity of WRI. Let c be a CLC represented by (%,Γ). Suppose
x, y ∈ c(S) for some {x, y} ⊆ T ⊂ S. Then x, y ∈ Γ(S) and since Γ is a consideration
filter, x, y ∈ Γ(T ). Given that x, y ∈ Γ(S) ∩ (̧S), and there is a weak order % such that
c(S) = max% Γ(S) for all S, we must have x ∼ y. Let x ∈ c(T ), then for all z ∈ Γ(T ), x % z.
By transitivity y % z for all z ∈ Γ(T ), since x ∼ y and y ∈ Γ(T ). Therefore y ∈ c(T ). Which
means that c satisfies WRI.

(⇐). We can construct a weak order % if c satisfies NCCR and WRI, such that (Γm,%)
represent c. This is proved in propositions 3.12 and 3.14.

Similarly to the definition of revealed preference on section 3.3. We can define revealed
(strict) preference and revealed indifference.

Definition 3.7. Let c be a CLC correspondence and that there are k different attention
filter, weak orders representing c

(Γi,%1), (Γ2,%2), ..., (Γk,%k)

For such a c we define the use the same definition for revealed preference, attention and inat-
tention as for the choice functions but also distinguish between the revealed strict preference
and revealed indifference.

• x is revealed preferred to y, x %R y, if x %i y for all i.

– x is (strictly) revealed preferred to y, x ≻R y, if x ≻i y for all i.

– x is revealed indifferent to y, x ∼R y, if x ∼i y for all i.

• x is revealed to attract attention at S if x ∈ Γi(S) for all i.
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• x is revealed NOT to attract attention at S if x 6∈ Γi(S) for all i.

In a similar fashion to the characterization for CLC functions and revealed attention and
preferences in sections 3.3.1 and 3.3, we show that our axioms guarantee that the binary
relation R, does not have a cycle. So if there is a chain of weakly related elements, then
there cannot be a strict relation that creates a cycle.12 The following result is the analogue
for correspondence as the result proved in proposition 3.10.

Now we know that from observe choice data, RT is identifiable. The next propositions
show the analogue Revealed Preference and Revealed Attention results for correspondence
that tell us that RT actually all you can distinguish form choice data.

Proposition 3.12. Let (Γ,%) represent c. Let RT be the transitive closure of R. Let c be a
CLC correspondence. Then x is revealed preferred to y (x %R y), if and only if xRT y.

Proof. (⇒). We prove the contrapositive. Suppose ¬(xRT y). Note RT is not necessarily
complete we can have i) yRTx or ii) ¬(yRTx). First define

Γm(S) = {x ∈ S|x ∈ c(T ) for some T ⊇ S}

Since ¬(xRT y), there is no S ⊆ T such that x ∈ c(S) and y ∈ c(T ), thus there is no S such
that x, y ∈ Γm(S) by the construction of Γm.

Now it is possible to construct a weak order, % such that y ≻ x and (Γm,%) represents c.
First add (y, x) to RT ,

13 Thus we have R′ = RT ∪ (y, x), and denote R′
T to be its transitive

closure. We claim that (x, y) 6∈ R′
T . To see this, ¬(xRT y) means that (x, y) 6∈ RT . So

suppose (x, y) ∈ R′
T , since (x, y) 6∈ RT ∪ (y, x), then there exists z1 = x, z2, ..., zn = y such

that x = z1R
′z2R

′...R′zn = y. (x, y) 6∈ RT implies that we must have (y, x) somewhere in
this chain. So zi = y, zi+1 = x for some i < n. But then we have x = zi+1RT zi+2...RT zn = y,
which implies that (x, y) ∈ RT , contradiction. So adding (y, x) ro RT doesn’t add (x, y) to
the transitive closure of RT ∪ (y, x), R′

T .
Then by the existence of a complete extension of R′

T as a corollary of Szpilrajn [1930] (see
Ok [2004a]), we can construct a weak order %, where y ≻ x. Therefore we have ¬(xRT y),
since y ≻ x, if (Γm,%) in fact represents c. Now we show that this is a CLC representation
of c.

First let x ∈ c(S), we want to show that x is %-maximal in Γm(S). First, x ∈ Γm(S) by
construction. Let y ∈ Γm(S), then y ∈ (̧T ) for some T ⊇ S, therefore xRy by definition of R.
Since % is a complete extension of the transitive closure of R, x % y follows by construction.

Now let x ∈ S such that x % y for all y ∈ Γm(S), we want to show that ∄z ∈ c(S)
such that z ≻ x. This is almost immediate by the way we constructed Γm. Note that
x ∈ Γm(S) implies x ∈ c(T ) for some T ⊇ S. Likewise if ∃ z ∈ c(S) such that z ≻ x we

12Recall that R is not necessarily complete.
13(x, y) might be in RT already.
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have x, z ∈ Γm(S). However, x % z for all z ∈ Γm(S), therefore no such z exists, and we can
conclude that (Γm,%) represents c.

(⇐). Let xRT y then by proposition 3.11, for any (Γi,%i) representing c, x %i y which
equivalent to x %R y, x is revealed preferred to y.

Corollary 3.13. Let IT and PT be the symmetric and asymmetric components of RT re-
spectively.

(i) x is revealed indifferent to y if and only if xIT y

(ii) x is (strictly) revealed preferred to y if and only if xPTy.

Proposition 3.14. Suppose c is a CLC correspondence with an attention filter.

(i) x is revealed to attract attention at S if and only if x is chosen from some super set of
S (possibly from S).

(ii) x is revealed not to attract attention at S if and only if x is revealed to be preferred to
y ∈ c(T ) for some T such that x ∈ T ⊂ S, and x 6∈ c(T ).

Proof. (i) (⇒). Let x be revealed to attract attention at S. Thus for all (Γi,%i), x ∈ Γi(S).
We prove the contrapositive. Suppose for all T ⊆ S, x 6∈ c(T ). Then x 6∈ Γm(S),
as previously defined (Γm(S) = {x ∈ S|x ∈ c(T ) for some T ⊇ S}), and we know
from proposition 3.14 that there exists a weak order % such that (Γm,%) represents c.
Therefore x is not revealed to attract attention at S.

(⇐). x ∈ c(T ) for some T ⊇ S, since c is a CLC, x is %i-maximal in Γi(T ) for all i.
Therefore for all S ⊆ T with x ∈ S, x ∈ Γi(S) since Gi is an attention filter for all i,
otherwise if x ∈ Γi(S), then x ∈ Γi(T ). Therefore x is revealed to attract attention at
S.

(ii) (⇐). Let x %i y for all i, where y ∈ c(T ), and x ∈ T ⊆ S. Then for any Γi, y is %i-
maximal in Γi(T ). x 6∈ c(T ) implies that if x ∈ Γi(T ), then y ≻i x, which is impossible
since x %R y. Therefore x 6∈ Γi(T ) for all i. Since Γi is an attention filter x 6∈ Γi(S) for
all i since T ⊆ S. Therefore x is revealed not to attract attention at S.

(⇒). We prove the contrapositive. Let x ∈ S. Suppose for all T ⊆ S with x 6∈ c(T ),
¬(xRT y) for any y ∈ c(T ). We want to show that there exists a pair (Γ,%) with
x ∈ Γ(S) representing c. Therefore x is not revealed not to attract attention at S.

We use Γm(S) = {x ∈ S|x ∈ c(T ) for some T ⊇ S} as well. Define Γ′ and %′ as follows:

Γ′(T ′) =

{
Γm(T ′) ∪ {x} if x ∈ T ′ ⊆ S

Γm(T ′) otherwise

Let R′ = RT ∪ (y, x) for all y ∈ c(T ) for T ⊆ S (for all these y we have ¬(xRT y) by the
assumption). Following the proof of proposition 3.12 that this will imply (x, y) 6∈ R′

T , the
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transitive closure of R′,there exists a complete extension of R′
T , call it %, where (x, y) 6∈%,

and moreover (Γm,%) represents c.
Now we show (Γ′,%) also represents c and x ∈ Γ(S). For any T 6∈ {T ∈ X : T ⊆ S},

Γ′(T ) = Γm(T ), and we know from proposition 3.12 that c(T ) = max% Γ′(T ). Now let
T ∈ {T ∈ X : T ⊆ S}, so x ∈ T . Suppose y ∈ c(T ), then y ∈ Γm(T ), and y % z for all
z ∈ Γm(T ), and by construction of %, y ≻ x. Therefore y % z for all z ∈ Γ′(T ). Similarly,
if y is %-maximal in Γm(T ) (we know y ∈ c(T )), y is also %-maximal in Γ′(T ) since y ≻ x
and Γ′(T ) = Γm(T ) ∪ {x}. Therefore (Γ′,%) represent c and x ∈ Γ′(S), therefore x is not
revealed to not attract attention at S.

So the revealed preference, indifference, and revealed attention inattention results can be
summarized by the fact that RT gives use the revealed preference and indifference, Γm, as
defined in 3.3.2, gives us the revealed attention, and RT along with Γm give us the revealed
inattention (when elements are revealed not to attract attention in a menu).

Thus we can see that this exercise of considering choice correspondences has the same
intuitive results than the function setting, but lacks some clarity and tractability.

3.9 Uniqueness of CLC and Relation to WARP

The following proposition explains the relation between the revealed preference, revealed
attention, and revealed inattention, and moreover the relationship between all the parts of
our model and the classical choice model and WARP.

Proposition 3.15. Let c be a CLC with a consideration filter. Then the following are
equivalent.

(1) c satisfies WARP.

(2) For all S ∈ X , Revealed Inattention is empty (i.e. for all S, for all x ∈ S there exists a
(Γ,%) that represent c and x ∈ Γ(S).

(3) PT = ∅.

(4) For all S ∈ X , Revealed Attention corresponds to c(S).

Proof. We prove (1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (1).
(1) ⇒ (2). Let c satisfy WARP, thus for all S there exists x∗ such that c(T ) ∈ S implies

c(T ) = x∗ for all T ∋ x, in particular x∗ = c(S). Suppose for some S ∈ X there exists
y ∈ S that is revealed not to attract attention at S, then by Proposition 3.3, we must have
yPT c(T ), for some T ⊂ S, and y 6∈ c(S). Thus c(T ) = y ∋ S, which implies x∗ = c(T ) by
WARP, contradiction. Hence there does not exist any y that reveals to attract no attention
at S, for all S ∈ X .
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(2) ⇒ (3). We prove the contrapositive, so if xPy for some x, y ∈ X (we know P ⊆ PT ,
and if xPTy there exist a chain x1Px2P...Py, so without loss we can consider the case where
xPy), then Revealed Inattention is nonempty for some S ∈ X . Let xPy, then there exist
T ⊂ S such that x = c(T ) and y = c(S), so x is revealed preferred to y = c(T ) and T ⊂ S,
thus by Proposition 3.3, we have that x is revealed not to attract attention at S. Hence
Revealed Inattention is nonempty for S.

(3) ⇒ (4). Let PT = ∅. Let y ∈ S such that y is revealed to attract attention at S, we
show that y = c(S). Since y is revealed to attract attention at S, then y = c(T ) for some
T ⊇ S (the characterization of revealed attention is given by Prop. 3.3). Since PT = ∅, P = ∅
too, and if y 6= c(S), then c(S) ∈ T where T ⊇ S, thus c(S)Py, which is a contradiction
since P = ∅, thus y = c(S). Therefore revealed attention at S is only c(S).

(4) ⇒ (1). We prove the contrapositive. Suppose WARP fails, then we show that there
exists some S∗ such that x is revealed to attract attention at S and x 6= c(S∗). Let WARP
fail, thus there exists S ∈ X , such that for every x ∈ S, there exists Tx ∈ x such that
c(Tx) ∈ S and c(Tx) 6= x. Since c is nonempty, let x = c(S), and c(Tx) = y. Consider {xy}.
Since c is nonempty we have two consider two cases:

• x = c(xy), then since x ∈ Tx, we have {xy} ⊆ Tx. Given that x = c(xy) and y = c(Tx)
where Tx ⊃ {xy}, we have that y reveals to attract attention at {xy} and y 6= c(xy)
by the characterization of revealed attention (prop. 3.3).

• Similarly when y = c(xy), given that c(Tx) ∈ S, we have {xy} ⊆ S. And x = c(S) and
y = c(xy) implies that x is revealed to attract attention at {xy}.

In either case the S∗ = {xy}, since x and y reveal to attract attention at {xy} and one of
the two is not chosen.

This proposition gives a direct link between revealed attention and the minimal consid-
eration structure.

Proposition 3.16. Recall the definition for Γm, where

Γm(A) = {x ∈ S|∃S ⊂ T s.t. x = c(T )}

Let c be a CLC with a consideration filter, then for any (Γ,≻) that rationalize c, Γm(A) ⊆
Γ(A), moreover, (Γm,≻) also rationalizes c.

Similarly, we can define a maximal consideration structure, to see how much of the
preference order we can pin down.

Definition 3.8. Let c be a CLC. Define

I(S) = {x ∈ S : x is revealed not to attract attention at S},

as the set of elements at S not considered for any (Γ,≻) representing c.
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This definition of the set of ignored elements prompts the following definition of the
maximal possible filter.

Definition 3.9. Let c be a CLC. Then define the maximal filter as

Γ∗(S) = S \ I(S)

Lemma 3.17. Γ∗(S) is a consideration filter.

Proof. Let x ∈ Γ∗(S), then x is not revealed to not attract attention at S, so for any T ⊂ S,
either c(T )PTx or ¬(c(T )PTx) and ¬(xPT c(T )), since x is not revealed preferred to any c(T )
for all subsets T ⊂ S. Given S ′ ⊂ S, where x ∈ S ′ we know already that x is not revealed
preferred to any T ⊂ S, therefore for any T ′ ⊂ S ′ ⊂ S, x is not revealed preferred to c(T ′),
thus x does not reveal to attract no attention at S ′, hence x ∈ Γ∗(S ′) for S ′ ⊂ S. So Γ∗ is a
consideration filter.

Even with maximal possible consideration we cannot pin down the preference completely,
except for the case of WARP.

Proposition 3.18. Let c be a CLC with a consideration filter. Then ∃!, ≻∗ such that (Γ∗,≻∗)
rationalizes c if and only if c satisfies WARP.

Proof. The only-if part is the standard result form classical choice theory. By proposition
3.15 the revealed inattention is empty for all S ∈ X . Thus by the construction of Γ∗,
Γ∗(S) = S for all S. Thus by the std. result WARP is equivalent to the existence of a
unique ≻∗ such that c(A) = max≻∗ A.

For the if-part. Let there be a unique ≻∗ such that (Γ∗,≻∗) rationalize c. It is first of
all necessary that Γ∗(S) = S for all S, else by the construction of Γ∗, Γ∗(S) 6= S for some
S implies that there is revealed inattention at S, and by proposition 3.15, c cannot satisfy
WARP. But a unique preference order is equivalent to WARP under full consideration, so
the result follows.

3.10 Proofs

Proof of Proposition 3.3

Proof. “Only if part of i)” In the proof of Theorem 3.1, we show that

Γ(S) = {y ∈ S|∃T ⊃ S s.t. y = c(T )}

represents c along with some ≻. This means if x is never chosen from any superset of S,
there is one attention filter representing c but it does not include x at S.
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“Only if part of ii)” Suppose there exists no T ⊂ S such that xPRc(T ) and x ∈ T . Define

Γ′ (T ′) =

{
Γ (T ′) ∪ {x} if x ∈ T ′ ⊂ S

Γ (T ′) otherwise

and a ≻′ b if (i) aPRb or (ii) a 6= b = x and not xPRa. First, we show that ≻′ is acyclical by
contradiction. Suppose ≻′ has a cycle, then it must involve x because PR is acyclical, say
x ≻′ a1 ≻′ · · · ≻′ an ≻′ x. By definition of ≻′ it implies xPRa1PR · · ·PRan ≻′ x. Since PR

is transitive, it is reduced to xPRan ≻′ x. Since PR is asymmetric, an ≻′ x is because of the
second condition in defining ≻′, which is not xPRan. This is a contradiction. Therefore, ≻′

is acyclical. Let ≻ be any completion of ≻′.
We argue that (Γ,≻) represents c case by case. Take y ∈ Γ′ (T ) \ {c(T )}.
Case 1: y 6= x. Then y ∈ Γ (T ). We know that any completion of PR represents c along

with Γ. Because of that, y is PR-dominated by c (T ). Since ≻ is one of PR’s completion, y
is also ≻-dominated by c (T ).

Case 2: y = x. If x ∈ Γ(T ), the logic used in Case 1 is applicable. Consider the case
where x /∈ Γ(T ). In this case, it must be x ∈ T ⊂ S by the construction of Γ′. By the
assumption, we have notxPRc(T ). Therefore, c(T ) ≻ x follows from the definition of ≻′ and
≻. Therefore, (Γ′,≻) represents c.

Proof of Theorem 3.2

Define xP ′′y if and only if there exist T and T ′ with x, y ∈ T ⊂ T ′ such that

x = c(T ) and c(T ′) 6= c(T ′ \ y)

Lemma 3.19. P ′′ is acyclic if and only if c satisfies Strong Consistency.

The proof of Lemma 3.19 is completely analogous to earlier Lemma, so we skip it.

Let P ′′
R be the transitive closure of P ′′ and let ≻ be any arbitrary completion of P ′′

R.
For every S, we call B ⊂ S is a minimum block of S if and only if c(S) 6= c(S \ B) but
c(S) = c(S \B′) for any B′ ( B. Given this, define Γ recursively as follows:

1. Γ(X) consists of the ≻-worst element of each of X ’s minimum block.

2. Suppose Γ has been already defined for all proper supersets of S. Then, define Γ(S)

(a) First, put x ∈ S into Γ(S) if x ∈ Γ(T ) for some T ) S.

(b) If there is a minimum block of S that does not have an element in Γ(S) according
to the above, pick the ≻-worst element into Γ(S).
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Lemma 3.20. For any S,

(i) {c(S)} is a minimum block of S. There is no other minimum block that includes c(S).

(ii) If B is a minimum block of S other than {c(S)}, then c(S) ≻ x for all x ∈ B.

(iii) If c(T ) 6= c(S) and T ) S, then T has a minimum block that is a subset of T \ S.

Proof. Part (i) and (iii) are obvious so only prove Part (ii). Let B′ = B \ x (it may be
empty). Then we have

c(S) = c(S \B′) 6= c((S \B′) \ x)

Therefore, we have c(S)P ′′x so it must be c(S) ≻ x.

Claim 1. Γ is a strong consideration filter.

Proof. Γ is an attention filter by construction so we shall prove that Γ is a strong consid-
eration filter. Suppose x, y ∈ S, x, y /∈ Γ(S), but y ∈ Γ(S \ x). Then there exists T ⊃ S
such that (i) T \ x has a minimum block B and y is the worst element in B and (ii) none of
elements in B is included in Γ(T ′) for any T ′ ) T \ x.

Then, we must have c(T ) = c(T \x). Otherwise {x} is a minimum block of T ′ so we have
x ∈ Γ(T ′) that implies x ∈ Γ(S). Therefore, we have

c(T ) = c(T \ x) 6= c((T \ x) \B) = c(T \ ({x} ∪B))

Therefore, by Lemma 3.20 (iii), T has a minimum block that is a subset of x∪B so at least
one element in x ∪B must be in Γ(T ), which is a contradiction.

Now we want to show that (≻,Γ) represents c. Since Lemma 3.20 (i) implies that
c(S) ∈ Γ(S), all we need to show is that c(S) ≻ y for all y ∈ Γ(S) \ c(S).

Claim 2. If y ∈ Γ(S) and y 6= c(S), then c(S) ≻ y.

Proof. Since y ∈ Γ(S), there exists T ⊃ S such that y ∈ Γ(T ). Furthermore, T has a
minimum block B where y is the worst element and none of elements in B is in Γ(T ′) for
any T ′ ) T . There are three easy cases: (i) if c(S) = c(T ) then by Lemma 3.20 (ii) we have
c(S) = c(T ) ≻ y, (ii) if y = c(T ) then we have c(S)P ′′y so it must be c(S) ≻ y, and finally
(iii) if c(S) ∈ B, then c(S) ≻ y by the construction. Therefore, we only need investigate the
case when y 6= c(T ) 6= c(S) and c(S) /∈ B. Note that c(T ) ≻ y in this case by Lemma 3.20
(ii).

Now let S ′ = S \B. Since y ∈ B, S ′ is a proper subset of S.

Case I: c(S ′′) 6= c(S) for some S ′′ where S ′ ⊂ S ′′ ⊂ S.
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By Lemma 3.20 (iii), S has a minimum block B′ that is a subset of S \ S ′′ ⊂ B. Since
c(S) /∈ B′(⊂ B), every element in B′ is worse than c(S) by Lemma 3.20 (ii). Since y is the
worst element in B that is a superset of B′, we conclude c(S) ≻ y.

Case II: c(S ′′) = c(S) for all S ′′ where S ′ ⊂ S ′′ ⊂ S.
Since y 6= c(T ) = c(T \ (B \ y)) 6= c(T \ B), and c(S \ (B \ y)) ∈ T \ (B \ y), we have

c(S \ (B \ y)) P ′′ y. Therefore, c(S) ≻ y because of c(S \ (B \ y)) = c(S).

Proof of Theorem 3.3

The if-part is demonstrated in the main body. For the only-if part, notice that Pairwise
Consistency and Weak Contraction imply that P is acyclic so the proof of Theorem 1’s
only-if part is applicable by setting ≻ to be equal to P ∗. Given this, it is easy to see that Γ
constructed in the proof has the property Γ (S) = S whenever |S| = 2. �

Proof of Theorem 3.4

We have already shown the if-part of the statement in the main text so we shall show
the only-if part. Take any completion of P ′′, denoted by ≻. (P ′′ is defined in the proof
of Theorem 3.2. Such ≻ exists because Strong Consistency guarantees that P ′′ is acyclic).
Then define x�

′ y if and only if

y ≻ x and x = c (xy)

Since x�′ y only if y ≻ x and ≻ is a preference, �′ is acyclic. Let � be the transitive closure
of �′. It is acyclic as well. Therefore, all we need to show is that (Γ�,≻) represents c.

Lemma 3.21. If y ≻ c(S), then y /∈ Γ�(S)

Proof. Let x = c(S). The statement is trivial when y /∈ S so assume y ∈ S. Since � is the
transitive closure of �′, it is Γ� (S) ⊂ Γ�′ (S) so it is enough to show y /∈ C�′ (S).

The statement is true when |S| = 2 by the definition of �′. Suppose there exists S and
y ∈ S such that y ≻ x and y ∈ Γ� (S). Without loss of generality, assume that S has
the smallest cardinality among such sets. We shall lead a contradiction by showing several
claims.

Claim 3. For any S ′ ( S, x 6= c (S ′) whenever y ∈ S ′.

Proof. Since y ∈ Γ�′ (S), it must be y ∈ Γ�′ (S ′) as well. If x = c(S ′) then this violates
the assumption that S has the smallest cardinality at which the statement of Lemma 3.21
is violated.
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Now consider all budget sets that can be obtained by removing one element from S.
Notice that there are |S| such decision problems and only elements in S may be chosen from
those sets.

Claim 4. For any z ∈ S, there exists z′ ∈ S \ {z} such that z = c (S \ z′).

Proof. Suppose not. By the pigeonhole principle, there must exist α ∈ S such that

α = c (S \ β) = c (S \ γ)

for some distinct β, γ ∈ S. By Expansion, c (S) = α so it must be α = x. Since y must be
included either in S \ α or S \ β, Claim 3 implies that x 6= c(S \ α) or x 6= c(S \ β). This is
a contradiction.

Claim 5. x = c (S \ y) and y = c (S \ x).

Proof. The combination of Claim 3 and 4 immediately implies x = c (S \ y). By Claim 4, y
must be chosen from S \ z for some z ∈ S. If z 6= x, then we have yP ′x so it must be y ≻ x.
Therefore, it cannot be y �′ x. Hence, y = c (S \ x).

Now take any z ∈ S \ {x, y}. (Notice that |S| ≥ 3). If |S| = 3, Claim 4 requires
z = c (S \ x) or z = c (S \ y) but both possibilities are excluded by Claim 5. Suppose
|S| ≥ 4. Let α = c (S \ z). By Claim 4 and Claim 5, α ∈ S \ {x, y, z}. Hence, we have
αP ′x so it must be α ≻ x. Now consider c (S \ α), which must be something other than x.
Hence, we have xP ′α so is x ≻ α. This is a contradiction. Therefore, there is no S such that
x = c(S) but y ∈ S so Lemma 3.21 is proven. �

Lemma 3.22. c (S) ∈ Γ� (S).

Proof. Let x = c (S) but there exists y ∈ S such that y � x. If y �′ x (i.e. before taking the
transitive closure), then it must be x ≻ y and c (xy) = y. c(xy) = y and c(S) = x imply
yP ′x so we cannot have x ≻ y, which is a contradiction. Therefore, it cannot be y �′ x. so
there must exist z1, . . . , zk such that

y �′ z1 �
′ z2 �

′ · · ·�′ zk �
′ x.

By definition of �′ it must be

x ≻ zk ≻ · · · ≻ z2 ≻ z1 ≻ y

and
c (yz1) = y, c (z1z2) = z1, . . . , c (zk−1zk) = zk−1, c (zkx) = zk

Since x ≻ y, we cannot have y = c (xy) (if so, it would be y �′ x and we have shown that it
would lead a contradiction). so it must be x = c (xy).
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Now consider c (xyz1 . . . zk). It cannot be x because, if so, it must be zkP
′x so is zk ≻ x.

It cannot be zi (because if so zi−1 ≻ zi or y ≻ z1). Therefore, it must be y = c (xyz1, . . . , zk) .
Since x = c (xy), there must exist i such that:

y = c (xyzizi+1 . . . zk) 6= c (xyzi+1 . . . zk)

which implies yP ′zi so y ≻ zi. This is a contradiction. Therefore, we conclude that there is
no y ∈ S such that y � x.

These two lemmas prove that c is represented by (Γ�,≻).

Proof of Proposition 3.6

The if-parts of both the revealed preference and the revealed order are shown in the main
body. To prove the only-if parts, the proof of the only-if part of Theorem 3.4 is applicable.
If not xP ′

Ry, it has been shown that a preference with y ≻ x can represent c. If yP ′
Rx but

x = c(xy), then we indeed define x� y to represent c.
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P. M. Todd and G. Gigerenzer. Précis of simple heuristics that make us smart. Behavioral
and brain sciences, 23:727–780, 2000.

E. Torgersen. Comparison of Statistical Experiments. Cambridge University Press, 1991.

A. Tversky. Intransitivity of preferences. Psychological Review, 76:31–48, 1969.

A. Tversky. Elimination by aspects. Psychological Review, 79:281–299, 1972.

A. Tversky. Features of similarity. Psychological Review, 84:327–352, 1977.

A. Tversky and D. Kahneman. Judgment under Uncertainty: Heuristics and Biases. Science,
185(4157):1124–1131, 1974.

A. Tversky and D. Kahneman. The framing of decisions and the psychology of choice.
Science, 211(4481):453–458, January 1981.

A. Tversky and D. Kahneman. Loss aversion in riskless choice: A reference-dependent model.
The Quarterly Journal of Economics, 106(4):1039–1061, 1991.

A. Tversky and S. Sattath. Preference trees. Psychological Review, 86:542–573, 1979.

A. Tversky and E. Shafir. Choice under conflict: The dynamics of the deferred decision.
Psychological Science, 3:358–361, 1992.

A. Tversky and I. Simonson. Context-dependent preferences. Management Science, 39:
1179–1189, 1993a.

A. Tversky and I. Simonson. Context-dependent preferences. Management Science, 39(10):
1179–1189, 1993b.

A. Tversky and I. Simonson. Context-dependent preferences. Management Science, 39(10):
1179–1189, 1993c.

A. Tversky, P. Slovic, and D. Kahneman. The causes of preference reversal. American
Economic Review, 80:204–17, 1990.

D. Tversky, Amos; Kahneman. Extensional versus intuitive reasoning: The conjunction
fallacy in probability judgment. Psychological Review, 90:293–315, 1983.

C. J. Tyson. Cognitive constraints, contraction consistency, and the satisficing criterion.
Journal of Economic Theory, 127(1):51–70, January 2008.



133

H. Varian. Revealed preference. In M. Szenberg, L. Ramrattan, and A. A. Gottesman,
editors, Samuelsonian Economics and the Twenty-First Century, pages 99–115. Oxford
University Press, USA, 2006.

J. Von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton
University Press, Princeton, 1944.

P. Wakker and A. Tversky. An axiomatization of cumulative prospect theory. Journal of
Risk and Uncertainty, 17(7):147–176, 1993.

D. H. Wedell. Distinguishing among models of contextually induced preference reversals.
Journal of Experimental Psychology: Learning, Memory, and Cognition, 17(4):767–778,
1991.

D. Weinberger. Everything is Miscellaneous. Times Books, Henry Holt and Co. LLC, 2007.

P. Wright and F. Barbour. Phased decision strategies: Sequels to an initial screening.
In M. Starr and M. Zeleny, editors, Studies in Management Sciences, Multiple Criteria
Decision Making, pages 91–109. North-Holland, Amsterdam, 1977.

J. Wu and A. Rangaswamy. A fuzzy set model of search and consideration with an application
to an online market. Marketing Science, 22(3):411–434, 2003.

Z. J. Zhang. Price-matching policy and the principle of minimum differentiation. Journal of
Industrial Economics, 43(3):287–99, September 1995.

P. Zhao, R. Chen, and S. Su. The size of consideration set on regret. mimeo, 2008.

S. Zyman. The End of Marketing as We Know It. Harper Collins, New York, 1999.




