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ABSTRACT OF THE THESIS

Deblurring in Scanning Laser Ophthalmoscopy Using Artificial Neural Networks

by

Mohssen H. Kassir

Master of Science, Graduate Program in Bioengineering
University of California, Riverside, March 2022

Dr. Jia Guo, Chairperson

Adaptive optics (AO) has enabled in vivo imaging of the living human retina with

diffraction-limited spatial resolution and thereby can image the retinal structure at the

cellular level. However, AO may not readily be available for all imaging modalities, and

in some cases its performance may be compromised by incomplete compensation of

ocular wave aberrations. We investigate a deep learning based method to enhance spatial

resolution of retinal images without or with AO.

Twelve high-resolution retinal images were obtained using AO scanning laser

ophthalmoscopy (AOSLO) as the ground truth. To model the image blur induced by

ocular optical defects, we introduced various wave aberrations (with varying Zernike

coefficients up to the 6th order). To expand the dataset, the AOSLO images were split

into small patches (2820 average patches/image). With 8 different blurring kernels

applied, there were 270,736 image patches for training and testing. In application of the
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trained networks, the corrected patches were combined to form images of their original

sizes. The artificial neural network was based on a U-net architecture. We performed a

4-fold cross validation study with a quarter of images reserved for testing per cross

validation.

Normalized mean squared error (NMSE) and structural similarity index measure

(SSIM) were calculated for the images before and after correcting for the blurring effects,

using the ground truth images as reference. After correction, the NMSE was reduced by

51% on average, from 0.059 + 0.019 to 0.029 + 0.012. The SSIM was improved by 155%

on average, from 0.22 + 0.09 to 0.56 + 0.12. The improvements were significant (by

paired t-tests, p< 0.001).

In another experiment, we trained the network on non-retinal images and

fine-tuned on retinal images using 6-fold cross validation to explore the feasibility of

applying transfer learning.

Our results showed that deep learning may be useful in correcting the retinal

image blur caused by aberrations. We outline the next possible phase for our work, where

we intend to apply deep learning to retinal images taken without AO in order to

demonstrate the removal of aberrations through processing in real-world examples.
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Chapter 1: Background and Introduction

1.1 Introduction

Medical imaging is used extensively to gain a visual representation of organs and

tissues for medical diagnostic or scientific purposes [1]. One example is scanning laser

ophthalmoscopy (SLO), which is used in conjunction with adaptive optics as a

non-invasive imaging modality for the living eye [2]. The images produced show the

distribution of retinal cells, giving physicians the ability to analyze for potential diseases

or treatments [3]. Machine learning algorithms, such as convolutional neural networks

(CNN), can be used to modify and process images [4]. The goal of my thesis is to explore

the feasibility of augmenting and processing retinal images with machine learning to

improve the quality of retinal SLO images and potentially increase its usefulness in

various clinical applications.

1.2 Adaptive Optics Scanning Laser Ophthalmoscopy (AOSLO) and its Challenges

SLO enables us to use a scanning laser source and a confocal pinhole to obtain

high contrast retinal images [5]. It operates by deflecting a laser beam in 2 dimensions,

hence scanning the retina in a raster pattern [6]. The retina is composed of a multi-layered

and weakly scattered tissue, featuring photoreceptor outer segments, photoreceptor inner

segments, and other layers [2]. Such a tool allows us to visualize individual rods and

cones in a human retina, but the problem is that aberrations limit the possible axial

resolution [2]. SLO is subject to unclear and imperfect imaging due to optical aberrations

[7]. These are caused by irregularities in the corneal surfaces and lens surfaces of the
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human eye, which limit the SLO's ability to achieve high resolutions [7]. Adaptive optics,

originally used in astronomy, has been found to be useful for correcting aberrations in

imaging systems [8]. It was integrated into the SLO by Roorda et al. to create an AOSLO

that can correct the aberrations of all individuals [5]. With ocular aberrations corrected, it

becomes possible to achieve diffraction-limited images using AOSLO, increasing the

type of applications scanning laser ophthalmoscopy can be used for [7].

AOSLO images give high resolution; enough to visualize rods and cones. Images

containing photoreceptors of a retina are used to evaluate density, average size, and

reflectivity using intracellular distance, cell density, and other metrics [3]. These can

provide diagnoses and treatments to patients [3]. AOSLO is additionally used to monitor

retinal changes and temporal processes, such as the relation between retinal disease

progressions and degenerations [9].

1.3 Potential Applications from Machine Learning

Machine learning is an effective tool for computer vision problems when large

amounts of data is available [10]. As a versatile and powerful neural network structure,

CNNs have been used for detection of phenomena and automation of diagnoses within

medical (including retinal) imaging [10]. For example, CNNs have been used to create an

automated segmentation of microaneurysms within the AOSLO image [11].

Specific neural network architectures already developed can be used for new

machine learning problems [10]. The U-net architecture is effective at biomedical image

segmentation [12] and the generative adversarial network (GAN) is useful at creating
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high quality images based on low quality images [13]. Such architectures could possibly

be utilized in our deep learning project.

While some researchers have focused on detection and classification [8], we

anticipate a possibility in applying deep learning algorithms to improve the quality of

AOSLO images. This may assist us in widening access and confronting challenges from

adaptive optics. It may allow the production of high quality images with minimal

aberrations with or without implementation of adaptive optics in SLO.

1.4 Potential Issues Alleviated with the Use of Machine Learning

Usage of adaptive optics in clinical applications (and outside research

laboratories) has been slow [14]. Challenges prevent a wide adoption of AOSLO. Low

fidelity and noise may impede the AOSLO's wavefront sensor, which measures the eye's

aberrations, leading to improper corrections. This prevents complete compensation of the

pupil's wavefront error [14]. In addition, the imaging system can have a limited field of

view [15]. Higher costs and complexities for integrating adaptive optics into instruments

also contributes to low accessibility [14].

AOSLOs have become more technologically sophisticated with time [5, 16].

Updates can improve the ability of AOSLO to compensate for wavefront aberrations

[14]. However, in addition to requiring labs to acquire new AOSLOs to benefit from the

updates, they can be cumbersome to maintain [11]. Integrating machine learning into the

AOSLO can help solve this and widen access to high quality AOSLO images globally (at

little or no additional costs or resources).
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1.5 Major Goal of the Project

The main goal of my thesis is to design a new machine learning based processing

pipeline for improving their quality of retinal images. Our goal is to transform SLO

images and low quality AOSLO images into higher quality images without the need for a

new AOSLO instrument. This can make high quality images far more available globally

to physicians and researchers, increasing their utilities and reducing the cost substantially.
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Chapter 2: Experimental Design and Pipeline

2.1 Introduction

This chapter describes the pipeline we can use to improve image quality through

machine learning. At this stage, before applying to real world retinal images with

aberrations, we seek to create a proof of concept. We design a deep learning algorithm

that can increase the resolution of artificially blurred AOSLO images. Such an algorithm

could be used independently from the ophthalmoscope to improve the image quality

using machine learning. While its design will be detailed and explained in this chapter,

the experimental results are presented in the next chapter.

The pipeline takes images of varying quality (shown in Figure 2.1). These images

are blurred to different extents, allowing each original image to have different blurred

counterparts. The pipeline then splits the original and blurry images into thousands of

small corresponding patches. The blurry patches are fed into the trained CNN, which

individually processes them to remove the blurry effect. Next, the processed patches are

stitched back together, forming complete, unblurred retinal images closely resembling the

ground truth versions. We use high quality images taken at detailed resolutions as the

ground truth. We experiment with using different cost functions and different training

quantities for our neural network. To measure our success, we evaluate our results using

common image quality metrics, specifically mean squared error (MSE) and structural

similarity index measure (SSIM).
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The trained model provides an effective deblurring tool that can serve as a

baseline to compare more sophisticated models developed in the future. This model

should be tested on real world examples in a later phase. Such a technology, if provided

as a software for physicians and laboratories that only have access to lower-end

ophthalmoscopes, may be able to increase the usefulness of those retinal images and the

effectiveness of those laboratories to evaluate patients or perform research.

2.2 Methods

2.2.1 Overview of pipeline

The pipeline (Figure 2.1) is designed for training and validation and contains all

the necessary parts of our software. We start with AOSLO retinal images. For our

training pipeline, we used a 4-fold cross validation, where we used 75% of the images for

training, and 25% for validation in each fold. Each image is used 3 times for training (for

3 cross validations) and once for testing (for 1 cross validation).

Next, we create blurry images artificially. Artificial convolutional kernels are

applied to high quality images. This produces matching pairs of images: a high quality

ground truth image, and a blurred, low quality image for training. We can create a set of

kernels to apply to training images and another set of kernels to apply to the validation

images. Dataset size depends on how many copies of each image we want (each copy

with a different blur).

Each training image is split into many small patches (each patch is 32 x 32 pixels)

[17]. These patches are inputted into the neural network. The splitting process is applied

to both the blurred and ground truth images to have pairs for training. The machine

6



learning algorithm is based on a CNN. The CNN takes in blurry patches and then outputs

processed patches of the same dimensions to calculate loss and backpropagate. Once

training is complete, we have a fully trained CNN and can move on to evaluation.

To evaluate our trained network, we modify the pipeline slightly (Figure 2.1). We

process the blurry patches of our evaluation images through the trained CNN, then stitch

them back to form fully processed images. These images should have the blurring effect

largely removed. Each processed evaluation image can then be compared to the ground

truth image with our two chosen metrics (MSE and SSIM). In the next few sections, we

will be covering specific aspects of each step of the pipeline and the reasoning behind our

design.

All components of the pipeline were written in Python 3.7, and the machine

learning script was written in Tensorflow 2.0.
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Figure 2.1: Our complete pipeline used a 4-fold cross validation. The training and
evaluating portions are shown separately.

2.2.2 Data collection and description

Our dataset consists of 12 high resolution retinal images. 3 of them were provided

to us by Dr. Yohua Zhang at the UCLA Doheny Eye Institute. They were acquired with

an AOSLO developed with their developed AO-NCO [18]. 9 others were taken from

various papers about AOSLO that provided images with their studies [18-21]. These

images were of varying sizes, from 688 x 407 pixels to 460 x 254 pixels. Each image was

a subsection of a retina, some focusing on areas of high rod content and others focusing
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on high cone content. This ensures our ability to work with both rods and cones, as they

are the typical targets in AOSLOs [22]. Each of the 4 folds consisted of 9 images for

training and 3 for testing. They were randomly split between the 4 folds. 36 images were

used in total across the 4 folds for training (3 times per image). 12 images were used for

testing, meaning each image of the set was used once across all validations.

2.2.3 Artificial Blurring

The wavefront error seen in many SLO imaging systems is a result of optical

aberrations caused by the eye lens' imperfections [2]. We applied artificial blurs to our

AOSLO images through convolution to replicate the effect of wavefront error on retinal

images. These blurs were modelled after the aberrations that adaptive optics is meant to

correct by using Zernike polynomials [2, 23]. Zernike polynomials are a complete set of

orthonormal functions over a unit circle. A series of independent Zernike orders can be

used to model a complex continuous surface [2]. The first few orders are especially

useful because they directly correspond to common optical aberrations such as defocus

and astigmatism [2]. We used Zernike polynomials to create a wavefront error function,

took the point spread function (PSF), and convolved the PSF with each image [23].

To obtain the proper PSF to convolve with our image, we used the wavefront

error function , which is a weighted summation of Zernike polynomials.𝑤 𝑤

𝑤(𝑥', 𝑦') =
𝑛,𝑚
∑ 𝑐

𝑛
𝑚𝑧

𝑛
𝑚(𝑥', 𝑦')

Each coefficient was drawn from a Gaussian distribution with a mean matching𝑐

that of an example pupil with a 3.00 mm radius [24] and an arbitrarily chosen standard
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deviation of 0.4. That pupil radius was used to keep computation time reasonable while

being realistic. We used Zernike polynomials only up to the 6th order because higher

orders are shown to have negligible effects [24]. This wavefront error function and

designated pupil area were used to find a generalized pupil function [23].𝑝 𝑔

𝑔(𝑥', 𝑦') = 𝑝(𝑥', 𝑦') 𝑒𝑥𝑝[ 𝑖2π
λ 𝑤(𝑥', 𝑦')] 

The wavelength is assumed to be 500 nanometers, as suggested by Dr. Zhang.λ

Taking the squared modulus of the generalized pupil function produced the PSF [23].ℎ

ℎ(𝑥, 𝑦) =  ||𝐹[𝑔(𝑥', 𝑦')]||2

The PSF was scaled by the resolution of the image, which was assumed to be 714

nanometers for all images based on images from Dr. Zhang’s lab. We cropped the 21 x 21

pixel center of the PSF for convolution (where most of the PSF's weight is) to speed up

the convolving step [23]. The PSF was cropped because the areas outside the center

negligibly contributed to the convolution and doing so saves computation time.

𝑟(𝑥, 𝑦) =  ℎ(𝑥, 𝑦) ∗ 𝑠(𝑥, 𝑦)

Artificial blurring allows having multiple unique blurs for each image and

increases the data size (Figure 2.2). The variation in the blurs produced (based on

randomly varying coefficients of the Zernike terms) allows for the different blurred

images to represent different amounts of aberrations that need to be corrected in images.

Each new blur adds 8 new images for training (one per training image). As a parameter,

data size can be altered to improve the generalizability of the method.
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Figure 2.2: The total number of images for training depends on the number of blurry
kernels. In this diagram, 3 blurry kernels allows us to multiply the original dataset of 2
for 6 total images.

Our artificial blurring doesn't account for the differences in lighting contrast

produced by using AOSLO systems [18]. We chose to not include it in our modelling and

instead focus on improving quality through deblurring. This is to ensure we are

specifically dealing with and attempting to solve the aberration correction problem, while

enhancing lighting contrast is a much easier problem and various solutions are readily

available.

2.2.4 Architecture of Neural Network

Multiple architectures were considered and attempted for this project. Focus was

mainly devoted to the U-net, Res-net, and GAN architectures. Eventually, we settled on

using a U-net with elements of the Res-net (residual connections).

The first attempted architecture was a GAN. Generally, GANs are composed of 2

competing networks, a generator and a discriminator [25]. The generator takes in input
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data and seeks to transform it into images that authentically look like the desired images.

The discriminator evaluates the generator's produced images and assesses their

authenticity. The goal of the generator is to produce authentic-looking images to fool the

discriminator, and the goal of the discriminator is to maintain the ability to distinguish.

Constant training can produce authentic-looking images [25]. The input in our case is a

blurred version of the authentic images, making the deblurGAN possibly useful. The

deblurGAN developed by Kupyn et al. can fix motion blurred images [13]. Its generator

removes the blur from blurry images [13].

The deblurGAN's advantage is its specialty in dealing with blurs and sharpening

images, which was tempting. However, we did not use it because it did not provide

successful results in our initial attempts. Controlling two different neural networks and

how they interact with each other produced great instability. We instead decided to focus

and build a more straightforward and robust neural network with another well-established

architecture.

The U-net architecture was primarily developed for biomedical image

segmentation [12]. Our network should be able to properly outline all the cellular

structures (like segmentation) in order to recover the unblurred form of the images. The

U-net, as shown in Figure 2.3, first has layers that convolve and shrink the image

through max pooling, then convolves and enlarges the image through transpose

convolutions. After each upsample when enlarging, results from a step in the shrinking

phase are concatenated with the image and are fed into the next function. The resulting

output is generally the same or a similar size to the input image [12].
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The Res-net architecture was developed to improve the performance of deep

neural networks [26]. He et al. found them to be well performing, efficient, and easy to

optimize. We used residual connections in our architecture instead of the specific

architecture they provide. A residual connection block works by connecting the output of

a layer with the input of a layer before it, allowing for residual learning to take place [26].

The full architecture is shown in Figure 2.3. It is a 21-layer U-net architecture

that takes in 32 x 32 pixel images, performs 2 convolutions and a downsampling step 3

times (until they are 4 x 4 pixel images). To upsample, it then performs 2 convolutions

and a transpose convolution. It repeats this upsampling mechanism 3 times. While

downsampling, the number of channels reaches 64, and upsampling reduces the channels

to 16. Finally, it performs 3 convolutions at the end, and it results with 32 x 32 pixel

images.

Each convolutional kernel used in our architecture has a 3 x 3 pixel size [12].

Zero-padding is used to ensure no convolution changes the size of the image. Each max

pooling layer reduces the image size by half in each dimension by using a pool size of 2 x

2 pixels and 2 strides. Each transpose convolution uses 2 strides and a 3 x 3 convolutional

kernel. Image dimensions are only changed when they are doubled or halved at the

sampling steps. There is a ReLU activation function in every layer, except the final layer,

which has a tanh activation function [12]. There are 2 total residual connections; both are

done before the first 2 upsamplings. We use an adam optimizer with a learning rate of

0.002 [27]. We feed in the input data as batches, each with the size of 1000 patches.

During the training phase, we save the weights of the neural network that produces the
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lowest cost. Therefore, The final trained network we save uses the best-performing

weights and biases.

Images are reduced to 4 x 4 pixel size to maximize our ability to downsample and

increase U-net's depth and optimize our training. Careful symmetry in image size is

maintained between downsampling and upsampling to allow for transfer of data from the

downsampling side to the upsampling side and to maintain dimensions between input and

output. The conservation of dimension allows for proper restitching and evaluation.

The current architecture was chosen after a series of experimentations with

numbers of layers, channels, and residual connections. A plateau in performance occurred

where (for example) additional layers were added and the U-net decreased the size of the

images to 2 x 2 pixels. This led to little difference in the performance, but it significantly

decreased the speed of the algorithm. It was therefore not seen as optimal.

The small size of input patches in our designed architecture differs from those in

traditional U-net applications that use larger images that can be downsampled more [12].

This was chosen based on the observation of similar and repeated structural patterns of

retinal cells and the need for larger training datasets due to limited datasets available (see

details below).
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Figure 2.3: The U-net architecture of our neural network

2.2.5 Patching and Stitching

We split the images into many small patches to increase our dataset size and

utilize the images' repeated patterns.

Our method of cutting large images down is shown in Figure 2.4 and explained in

the next paragraph. Each image can be used to create thousands of patches, allowing for a
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reasonably large dataset useful for the neural network with just 12 images. The cut-down

patches still maintain the small and repetitive cellular structures of the photoreceptors,

ensuring no loss in structural information.

The algorithm starts in the upper left corner of each image, then shifts 8 pixels to

the right to create each new 32 x 32 patch. Once it reaches the right of the top row, it

resets to 8 pixels under the upper left corner and continues horizontally cutting patches.

The process repeats until the bottom row of the image is taken. If the image dimensions

aren't perfectly divisible by 8, the remaining (less than 8) pixels would not be included in

any patches, and the original images for evaluation would be slightly cropped

accordingly. Every patch is 8 pixels removed from its adjacent patches (vertically and

horizontally) and shares 75% of its pixels with each of its adjacent patches. There were

approximately 2820 patches per image and an average of 33,842 patches per blurring

kernel. Total patches depended on the number of unique blurring kernels. For example, if

8 blurring kernels were used, there would be 270,736 total blurry patches.

Overlapping areas were kept between patches to increase the data size further.

While some photoreceptors appear on multiple patches, no 2 patches carry the same

pattern due to our method of data augmentation. The number of pixels to shift by was

determined after experimentation and comparison of 8, 16 and 32 pixel shifts.

To combine the processed patches, they were stitched back into a whole image.

For the overlapping areas between adjacent patches, we needed a way to average all the

patch pixels meant to occupy one pixel of the complete image. We tried taking the mean,

using the triangular window function, and using the gaussian window function. They all
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produced similar results with no significant difference, and the gaussian window function

was arbitrarily chosen.𝑤

𝑤(𝑛) =  𝑒
− 1

2 ( 𝑛
σ )2

is the number of pixels we wanted to average, and is the arbitrarily chosen𝑛 σ

standard deviation of 3.

Figure 2.4: Dividing the images into small patches. For each image, we start in the upper
left corner and create 32 x 32 patches horizontally, with each patch moved slightly to the
right by 8 pixels. After each horizontal row is completed, we move down 8 pixels
vertically to continue making patches. This is done until we reach the bottom row of the
image. Example patches are on the right.

2.2.6 Metrics for evaluation

SSIM and MSE were used as the metrics to evaluate image quality [28]. This

SSIM metric is meant to more accurately reflect the human visual perception system,

where quality assessment is based on structural information instead of direct

17



comparisons. It depends on luminance, contrast, and structural comparisons [28]. It can

be considered complementary to the more traditional methods. MSE is another

commonly used metric to measure the average pixel differences between images [29]. It

evaluates the average squared difference between the estimated and actual value of a

sample [30]. The MSE values were normalized (normalized MSE, NMSE) to help

training and allow comparison between processings on images of different intensity

ranges. While training, SSIM and NMSE were measured over the small patches and

combined to be used as a cost function. They were applied over every evaluation image

to assess the processed (completely re-stitched) images compared to the ground truth

images.

2.3 Advantages and Limitations

Our model gives us a wide variety of blur types to train our neural network on.

This makes it generalizable, working across different images taken with different

AOSLOs that produce images with varying degrees of quality. As a result, the amount of

data we have depends on our parameters, and we can experiment with blur variations.

The cross validation allows us to run the neural network multiple times, obtaining an

average performance of our pipeline instead of one result to assess its generalisability. All

our images can then be used in both parts of our pipeline, providing a more efficient use

of the data.

One limitation is the small image set size, and we chose to accommodate that in

the data augmentation, hence the usage of overlapping image patches and multiple

blurring effects to adjust our dataset size. Our neural networks would be dealing with
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many similar input patches because of these 2 factors. Our evaluation section helps

address this by testing the effectiveness of the trained model on images (and patches) it

has never seen.

2.4 Conclusion

The complete pipeline (with both training and evaluation sections) enables us to

test the feasibility of our idea: the use of machine learning to improve image quality due

to blurring. Artificial blurring gives us the data needed to work out the concept. Using

this with artificial data will provide us with the preliminary results needed to cement the

workable structure. Further studies meant to improve the performance would be easier

because it would only require a tweaking of the pipeline.
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Chapter 3: Execution and Results

3.1 Introduction

The goal of this section is to use the tools developed in the last section to run

experiments. We ran the basic experiment to evaluate the pipeline's performance and tried

to find the best parameters, such as the cost function ratio. In addition to the evaluation

metrics, we also visualized the images for inspection. A successful result allows future

improvements by finding ways to improve the network structure or parameters based on

testing on different data.

3.2 Methods

3.2.1 Using different amounts of blurs per image

We ran a 4-fold cross validation on 12 images. To test if performance improves

with the number of blurry kernels, we ran the experiment multiple times, using different

amounts of blurry kernels each time. We ran it using 8 blurry kernels, 16 kernels, and 24

kernels per image for comparison. For each cross validation, with patching, the total size

of the training and evaluation set was 270,736 for 8 kernels, 541,472 for 16 kernels, and

812,208 for 24 kernels.

3.2.2 Different ratios for cost function

We ran using the pipeline using different ratios of NMSE and SSIM for the mixed

use cost function of the neural network:

𝑎 ∗  𝑀𝑆𝐸 + 𝑏 ∗ 𝑆𝑆𝐼𝑀 = 𝑎
𝑛

𝑖=1

𝑛

∑ (𝑥
𝑖

− 𝑦
𝑖
)2 + 𝑏 *

(2µ
𝑥
µ

𝑦
 + 0.0001𝐿2)(2σ

𝑥𝑦
 + 0.0009𝐿2)

(µ
𝑥
2 + µ

𝑦
2 + 0.0001𝐿2 )(σ

𝑥
2+ σ

𝑦
2 + 0.0009𝐿2)

 

20



Here, and represent the MSE to SSIM ratio, and represent normalized𝑎 𝑏 𝑥 𝑦

arrays of the two image types, and represent the mean and standard deviation ofµ
𝑥

σ
𝑥

𝑥,

and represent the mean and standard deviation of , represents the total numberµ
𝑦

σ
𝑦

𝑦 𝑛

of pixels, 0.0001 and 0.0009 are often used constants in SSIM, and represents the𝐿

dynamic range of pixel values [29, 31].

This helped us find the optimal ratio for the best performance. We ran the pipeline

with 8 kernels per image starting with 0 to 1.0 NMSE to SSIM ratio. We incrementally

increased the value of NMSE by 0.1 and decreased the value of SSIM by 0.1 with each

iteration. Our final test was using the ratio of 1.0 to 0 NMSE to SSIM. This gave us a

total of 11 experiments to run, all with 4-fold cross validations.

3.3 Results

3.3.1 Using different amounts of blurs per image

Out of the 3 unique 4-fold cross validation experiments, the 8-blur-kernel

experiment performed the best (Figure 3.1), with an 155% average improvement in

SSIM from 0.22 + 0.09 to 0.56 + 0.12 (paired t-test, p < 0.001) on average. NMSE was

significantly reduced by 51% on average, from 0.059 + 0.019 to 0.029 + 0.012 (paired

t-test, p < 0.001). As seen in Table 3.1, the 16-blur and 24-blur experiments performed

slightly worse, with 145% average improvements in SSIM, and 42% and 49% average

reductions in NMSE, respectively. The cost function had a ratio of 0.8 to 0.2 NMSE to

SSIM for all experiments. Paired t-tests were used for statistical comparisons.
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Figure 3.1: Results of a 4-fold cross validation using 8 blurs and a mixed cost function
ratio of 0.8 NMSE:0.2 SSIM. (a) The SSIM of the retinal images compared to the ground
truth before and after being processed. (b) The NMSE of the retinal images compared to
the ground truth before and after being processed.

Blurred Processed

Blurry
kernels
number

NMSE SSIM NMSE SSIM

8 blurs 0.059 + 0.019 0.22 + 0.09 0.029 + 0.012 0.56 + 0.12

16 blurs 0.062 + 0.022 0.22 + 0.09 0.036 + 0.022 0.54 + 0.12

24 blurs 0.061 + 0.019 0.22 + 0.09 0.031 + 0.010 0.54 + 0.12

Table 3.1: The average NMSE and SSIM of images when using different amounts of
blurs before training and after training.

3.3.2 Different ratios for cost function

We tested different ratios of the cost function. We tried using only NMSE, only

SSIM, and 9 different ratios using both (Figure 3.2). We found 0.8 to 0.2 NMSE to SSIM

to be the most optimal, but only by a small margin because most of the results were fairly

similar. The ratios of 0.2 to 0.8, 0.6 to 0.4, 0.7 to 0.3, and 0.8 to 0.2 were significantly

different from both the ratio of 0 to 1 and 1 to 0 for the SSIM measurements (paired
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t-test, p < 0.05). None of the MSE measurements were significantly different (paired

t-test, p < 0.05). Even though the ratio of 0.8:0.2 was the best, other mixed cost function

ratios seem to all push the U-net in the same direction compared to the SSIM cost

function or the NMSE cost function.

Figure 3.2: The (a) NMSE and (b) SSIM results using 11 cost functions with different
NMSE to SSIM ratios.
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3.3.3 Example improvements

Both these metrics showed significant improvements in all experiments. Figure

3.3 and Figure 3.4 are two example sets of the image improvement as a result of our

algorithm. SSIM and NMSE were improved and reduced by 107% and 52%, respectively

in Figure 3.3. They were improved and reduced by 183% and 47%, respectively in

Figure 3.4. Visually, the images look much clearer.

Figure 3.3: Examples of: (a) ground truth image; (b) blurry image; (c) corrected image.
The NMSE were: (b) 0.042 (c) 0.020, and the SSIM: (b) 0.28 (c) 0.58.

Figure 3.4: Another set of examples. The NMSE were: (b) 0.066 (c) 0.035, and the
SSIM: (b) 0.18 (c) 0.51.

3.4 Discussion

We saw a slight decrease in the performance of the neural network when 16 or 24

blurs are used. This was likely showing a plateau in performance. The dramatic increase

in time discouraged us from trying to find an optimal blur amount above 8 because the

result would likely be only a slight improvement. The cost function used during section
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3.3.1 was 0.8 NMSE to 0.2 SSIM. For cost, as seen in section 3.3.2, the mixed cost

function seemed to be similarly effective across multiple ratios. However, it was clearly

better for it to be mixed than for it to use one metric. Our worst performing cost functions

were the non-mixed ones, clearly showing they are disadvantaged.

Visually, we can see in Figure 3.3 and Figure 3.4 that the ability to see the

individual photoreceptors is generally removed when the blurry kernels are applied. With

the processed images, the blur is resolved, allowing us to see them, similar to original

images. We acknowledge that the images still appear to be lower quality compared to the

originals.

These results provide us with valuable information for further analysis. One way

we can evaluate the effectiveness of our image processing pipeline is to evaluate the cell

density of each of the images and note the accuracy. We can do so by relying on multiple

trained observers counting the number of photoreceptors in each image, giving us the

necessary numbers to evaluate [32]. Alternatively, we can rely on newly developed

machine learning algorithms developed to automate this process and improve counting

accuracy [3].

3.5 Conclusion

Preliminary results show that our pipeline and neural network architecture can

properly deblur a low quality AOSLO image. Later sections should draw out how to

apply this to more useful data, such as real world examples, to further demonstrate our

technology's usefulness.
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Chapter 4: Transfer Learning

4.1 Introduction

Transfer learning is often used to improve the performance of machine learning

algorithms by transferring knowledge across domains [33]. By using a pre-trained

network that was trained on a similar domain, such as related images with a similar

format, we can use much of the architecture and optimization from one problem and

transfer it to another.

It often becomes useful when there is a shortage of data pertaining to the problem

of interest [33]. In this case, many of the patterns seen in similar data would be

generalizable and useful on the data of interest [33]. Most of the model's training can

come from using similar data. The limited data with the same distribution as the test data

can then be used to specify the model to be optimized and applicable to the data of

interest.

A pre-trained network can be fine-tuned to the specific problem at hand by

removing the task-specific top layers [34]. Instead, these top layer's weights can be

retrained according to the more relevant data, helping these task-specific layers become

more attuned to the task of interest [34]. This would allow for the use of the knowledge

gained from a similar domain to our domain.

Our data may share patterns with other image types which we intend to use for

transfer learning to assist our training. This can help our network be more generalizable

to various SLO images. Currently we are working with a limited amount of data (12

images). Finding different data types may increase the versatility of our model and
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increase our dataset to consist of diverse training examples [35]. This may assist the

effectiveness of the neural network and address the data limitation.

AOSLO images are limited due to cost and complexity of equipment [14]. Using

transfer learning can mitigate this. Using online images is not optimal, but serves as an

important alternative. Many of the images online do not state their resolution or can

contain artifacts, so to ensure we use high quality images, we had a limited amount of

online retinal data used in our experiment. Datasets which consist of repetitive round

structures can potentially be a similar enough domain to use. By primarily training our

model on a variety of images of round objects, we hope to then fine-tune our model with

AOSLO images to produce a more successful and useful neural network.

4.2 Methods

4.2.1 Using non-retinal images

We included a series of images, fully composed of repetitive small objects,

usually round. This image style was meant to resemble retinal images of photoreceptors,

which are bright dots juxtaposed against a darker background. As a result, we gathered 15

grayscale images (Figure 4.1) of many different types of objects, such as many small

bugs crammed together, piles of corn or grapes, or floors of rocks. The large images were

scaled down such that a 32 x 32 pixel patch would contain many round objects, just like

retinal patches.

The training step used all 15 non-retinal images. The pipeline was the same as the

training portion of Figure 2.1. We used 8 convolution kernels on the training images

(Figure 2.5), split them into many small patches, using the same mechanisms as in
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Figure 2.4 (8 pixels per shift for 32 x 32 pixel patches), and used the same network

architecture as in Figure 2.3. The images lead to a total of about 153,000 patches. We

evaluated the performance of this trained network (before fine-tuning) on all 12 retinal

images, setting the results as the baseline to compare to the results of the transfer learning

portion.

Figure 4.1: Example non-retinal images used for training: (a) corn (b) grapes

4.2.2 Cross validation for fine-tuning

After training and the first evaluation were complete, we fine-tuned the network

on the retinal images using a 6-fold cross validation with 8 convolutional kernels applied

to each image. Each fine-tuning cross validation was done using 2 randomly assigned

images, and we also split them into patches. A 6-fold cross validation allowed for all

images to be used while also keeping the data size small (only 2 images) in the

fine-tuning step. Each image was used 5 times for evaluation since each cross validation

had 10 evaluation images. Each image's metrics were averaged from the 5 images.

4.2.3 Network modifications

We modified the network in 5 different ways and performed 5 different

fine-tuning methods (each with a 6-fold cross validation) to assess if fine-tuning could be
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used to improve results. Each fine-tuning method modified the neural network

architecture in different ways. While the architecture in Figure 2.3 is mostly kept the

same, there are some changes, shown in Table 4.1. Trainability, which determines

whether the weights of the non-reset layers can still be trained or are frozen during

fine-tuning, is turned on in the first 3 methods and turned off in the last 2 methods. If

most of the weights are frozen, then only the final layer or two, which usually assess the

fine details of an image, are retrained. In the first method, none of the layers had their

weights and biases reset to random values. In the second and fourth methods, only the

final layer had its weights and biases reset. In the third and fifth methods, the final two

layers had their weights and biases reset. We focused on resetting the final layers because

they address the fine details of the images (the earlier layers address the general features

of the images) [34]. Since the dataset contains images with similar general features, we

did not attempt resetting them.

Method Trainability Reset Layer Amount

1 on 0

2 on 1

3 on 2

4 off 1

5 off 2

Table 4.1: These different types of experiments were carried out to see the effectiveness
of fine-tuning.
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Each batch contained 250 patches instead of the usual 1,000. This was done

because the fine-tuning set was much smaller, consisting of 2 instead of the usual 9

images. The adam optimizer's learning rate was changed to 0.0005 for this step.

For each experiment, average NMSE and SSIM were found by averaging the

results of all 6 cross validations (with 10 images being used for evaluation for each cross

validation). Each of the 12 images was used 5 times (in 5 of 6 validations) for evaluation.

Because all 12 images are equally used, they can be compared to the results from Chapter

3, where 12 images were used equally (but once each).

4.3 Results

4.3.1 Metrics

The NMSE and SSIM improved during the training phase (Table 4.2). The

fine-tuning phases in all cases generally showed a decrease in performance. The best

performing fine-tuning method is Method 5, which produces the lowest NMSE of 0.0313

+ 0.0127 (paired t-test, p < 0.001) and second highest SSIM of 0.497 + 0.118 (paired

t-test, p < 0.001). This, however, is much lower than the performance before fine-tuning,

which is 0.0264 + 0.0111 for NMSE (paired t-test, p < 0.001) and 0.589 + 0.090 for

SSIM (paired t-test, p < 0.001).
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Processing Step NMSE SSIM

Blurred 0.0596 + 0.0198 0.225 + 0.092

Processed after
training

0.0264 + 0.0111 0.589 + 0.090

Transfer Learning
(TF) Method 1

0.0340 + 0.0168 0.499 + 0.134

TF Method 2 0.0342 + 0.0169 0.496 + 0.133

TF Method 3 0.0343 + 0.0169 0.495 + 0.135

TF Method 4 0.0364 + 0.0156 0.466 + 0.121

TF Method 5 0.0313 + 0.0127 0.497 + 0.118

Table 4.2: The average NMSE and SSIM of images at different stages and using different
methods.

4.3.2 Example Images

Figure 4.2 is an example set of the image change before and during transfer

learning. SSIM and NMSE were improved and reduced by 210% and 53%, respectively,

in Figure 4.2c. They were only improved and reduced by 95% and 34%, respectively, in

Figure 4.2d. Visually, it appears that the fine-tuned images look slightly worse and that

there is more roughness when compared to the images before fine-tuning.
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Figure 4.2: Examples of: (a) ground truth image; (b) blurry image; (c) corrected image
before fine-tuning; (d) corrected image after fine-tuning. The NMSE were: (b) 0.044 (c)
0.021 (d) 0.029, and the SSIM: (b) 0.19 (c) 0.59 (d) 0.37.

4.3.3 Comparison to results from Chapter 3

The best results are produced from training on non-retinal images. Compared to

non-transfer learning with retinal images, transfer learning produced similar NMSE and

SSIM. These are models produced under different validation designs.

Experiment NMSE SSIM

Trained on retinal
images

0.029 + 0.012 0.56 + 0.12

Trained on non-retinal
images

0.026 + 0.011 0.59 + 0.09

Table 4.3: The average NMSE and SSIM of the results from Chapter 3 and the best
results from Chapter 4.
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4.4 Discussion

The results in Table 4.2 show that even though transfer learning is effective, the

fine-tuning step worsens the performance for evaluation. The image results in Figure 4.2

is an example showing that the images for both before and after fine-tuning have some

level of artifact or blurriness still present. When compared to Figure 3.3 and Figure 3.4,

Figure 4.2d looks on par, but Figure 4.2c looks slightly worse compared to them even

though it appears less blurry. Figure 4.2c shows a checkerboard artifact, which is not an

uncommon problem for U-net and CNNs. It typically results from the upsampling portion

of the U-net, which may be the case here [36]. Diagnosing this problem needs further

investigation. It may have resulted from the final layers in the U-net, and further

tweaking may help resolve it. The cause of the decrease in performance after fine-tuning

is also unclear and needs further investigation.

Additionally, non-retinal training is arguably more effective than retinal training,

as seen in Table 4.3 This shows that the diversity brought from incorporating new images

into training potentially increases robustness [35]. It may be possible that the

repetitiveness of 12 images leads to a level of overfitting, which hurts the network.

Another important note is that the sharpness of the images may make them more effective

as agents of deblurring compared to retinal images.

4.5 Conclusion

We have explored using transfer learning in this chapter. There has been some

success, since there is usefulness for non-retinal images, but it has generally not worked

because it leads to worse performance in our chosen metrics. The successful baseline
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model from this chapter can be used in future phases in addition to the successful model

from the previous chapter. Both models will be used in future phases to test on real-world

applications.
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Chapter 5: Applying machine learning to real world data

5.1 Introduction

This chapter outlines an experimental design for the future directions. We have

shown the effectiveness of deep learning in deblurring artificially blurred AOSLO images

but not on real world AOSLO examples. The final step for proving the usefulness of our

pipeline is to use real world examples of blurry retinal images. We should compare SLO

images taken with adaptive optics being "on" to SLO images with the adaptive optics

being "off" to most accurately represent our modelling, which deals with the elimination

of aberrations [5]. This would be an ideal test to observe our technology's ability to

perform in the real world.

5.2 Methods

5.2.1 Collecting Images

To collect the proper images, we plan to recruit 5 subjects. For each subject, we

can take 2 images with an SLO and 2 images with an AOSLO (one image for each eye).

This would give us 10 pairs of images for direct comparison.

5.2.2 Integrating with the pipeline

We should use a similar pipeline structure used for the evaluation process in

Chapter 2. A major difference is relying on authentic pairs for our dataset instead of

convolution kernels. The SLO images can be split into small patches that are inputted

into our best trained model, using the same splitting process seen in 2.2.5. Once patches
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are processed, we can stitch them (see 2.2.5). Having matching pairs allows us to run

evaluation metrics and also compare cone densities.

Figure 5.1: Our complete pipeline for using real world data.

5.3 Future Directions

This technology can provide us with the ability to have high quality retinal images

without optical aberrations (without needing an AOSLO system). Expensive instruments

which need constant maintenance, such as the AOSLO's deformable mirrors, would not

be needed in all cases [37]. This can increase accessibility to research labs and physicians

without good equipment. The pipeline, including the pre-trained network, can be

transformed into an open-source software that can be applied to SLO images to improve

their quality. Such a software could be an easy-to-run python script which outputs SLO

images with aberration corrections. In addition, using what we have developed so far, we

can focus on more intricate challenges within AOSLO images, such as compensating for

aberrations for low quality AOSLO images [13].

36



5.4 Conclusion

Using our preliminary results, we have created a vision to move our project

forward, where with proper resources, we could show the usefulness of our software.

Although we currently only have a proof of concept, with a proper dataset and test

results, we could demonstrate the ability to obtain SLO images with ocular aberrations

and remove those aberrations in the post-imaging phase. This could open up a new

avenue of using machine learning in ophthalmoscopy to deal with the challenges of cost

and availability.
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