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Highlights

•

A meta-analysis of N2O EFs in Mediterranean cropping systems was conducted.

•

Mediterranean EFs (average of 0.5%) were lower than the IPCC default value 

(1%).

•

Annual rainfall, water management and crop type highly affected EFs.

•

Drip irrigation (EF = 0.51%) is a promising measure to mitigate N2O emissions.

•

The use of new EFs would reduce the estimation of Spanish N2O emissions 2-

fold.

Abstract

Many recent reviews and meta-analyses of N2O emissions do not include data from 

Mediterranean studies. In this paper we present a meta-analysis of the N2O emissions 

from Mediterranean cropping systems, and propose a more robust and reliable regional 

emission factor (EF) for N2O, distinguishing the effects of water management, crop type,

and fertilizer management. The average overall EF for Mediterranean agriculture (EFMed) 

was 0.5%, which is substantially lower than the IPCC default value of 1%. Soil 

properties had no significant effect on EFs for N2O. Increasing the N fertilizer rate led to 

higher EFs; when N was applied at rates greater than 400 kg N ha−1, the EF did not 

significantly differ from the 1% default value (EF: 0.82%). Liquid slurries led to 

emissions that did not significantly differ from 1%; the other fertilizer types were lower 
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but did not significantly differ from each other. Rain-fed crops in Mediterranean regions 

have lower EFs (EF: 0.27%) than irrigated crops (EF: 0.63%). Drip irrigation systems 

(EF: 0.51%) had 44% lower EF than sprinkler irrigation methods (EF: 0.91%). Extensive

crops, such as winter cereals (wheat, oat and barley), had lower EFs (EF: 0.26%) than 

intensive crops such as maize (EF: 0.83%). For flooded rice, anaerobic conditions likely 

led to complete denitrification and low EFs (EF: 0.19%). Our results indicate that N2O 

emissions from Mediterranean agriculture are overestimated in current national 

greenhouse gas inventories and that, with the new EF determined from this study, the 

effect of mitigation strategies such as drip irrigation or the use of nitrification inhibitors, 

even if highly significant, may be smaller in absolute terms.
 Previous     article
 Next     article
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1. Introduction

More than half of the global Mediterranean climate zone is located on the 

Mediterranean Sea Basin (Aschmann, 1973); the remainder is on the Pacific coast of 

North America, south-western Australia, the Cape region of South Africa and the central 

coast of Chile (Olson et al., 2001). One of the most distinctive features of Mediterranean

climates is the summer drought and relatively mild temperatures in winter. However, 

annual precipitation is variable, between 275 and 1000 mm, such that Mediterranean 

climate regions range from semi-arid to humid.

In Mediterranean climates, precipitation and temperatures are suitable in winter for 

cultivating a variety of rain-fed crops including cereals, grain legumes, oilseeds and 

horticulture (Andrews et al., 2002). Cultivation of perennial crops is common in 

Mediterranean climate areas. Some of these crops are resistant to summer droughts, 

including olives, almonds, and grapes, while others are cultivated under irrigation, such 

as citrus and other fruit trees. Agriculture in Mediterranean climates regions, therefore, 

provides a high diversity of crops.
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Agricultural soils are regarded as the primary source of anthropogenic N2O emissions 

(Smith et al., 2008). Despite the cultural and economic importance of Mediterranean 

agriculture (Grigg, 1974), the number of field studies analyzing N2O emissions from 

Mediterranean agricultural lands is much smaller than from other temperate areas 

(Stehfest and Bouwman, 2006). Recent reviews and meta-analyses of N2O emissions 

do not include data from Mediterranean studies (e.g. Kim et al., 2013, Lesschen et al., 

2011, Shcherbak et al., 2014). Estimating N2O emissions and N2O emission factors (EF, 

the percentage of fertilizer N applied that is transformed and emitted on site as N2O) is 

essential for assessing the impact of agriculture on greenhouse gas (GHG) emissions 

for a particular area. Current national emission inventory methods use a direct EF for 

N2O, with a default value of 1% or 1.25% (depending on the country) of the N input from 

manure and mineral fertilizer (IPCC, 2006). However, many studies have concluded that

the response of direct N2O emissions to N input is non-linear (Kim et al., 2013, Philibert 

et al., 2012, Shcherbak et al., 2014), and other recent studies highlighted the important 

role of environmental and management factors in determining N2O emissions and EFs, 

such as climate, soil characteristics, type of fertilizer and time of application, crop type, 

and irrigation system (Aguilera et al., 2013a, Bouwman et al., 2002, Gerber et al., 

2016, Leip et al., 2011, Lesschen et al., 2011). For example, Aguilera et al. 

(2013a) suggested using a lower EF for Mediterranean areas than for other temperate 

regions, especially in rain-fed systems.

There are three characteristics of Mediterranean regions that are fundamental to 

understanding why soil N2O emissions from these regions are idiosyncratic and in-turn 

why the adoption of EFs which differ from other climate regions should be considered. 

Firstly, due to limited availability of water, irrigation is a prerequisite for the cultivation of 

many annual crops during summer, whereas mild, humid winters enable annual crops to

be rain-fed. Different EFs are therefore needed for irrigated and rain-fed crops. 

Secondly, soils in the Mediterranean zone generally have a neutral to alkaline soil pH 

and very low concentrations of organic C (Aguilera et al., 2013b, Verheye and de la 

Rosa, 2005). These conditions influence denitrification rates and N2O/N2 ratios (Li et al., 

2005, Šimek and Cooper, 2002). Thirdly, soils in Mediterranean regions are rarely 

exposed to freeze–thaw cycles, which cause high N2O emissions, especially in fertilized 

soils (Schouten et al., 2012, Tenuta and Sparling, 2011), which lead to high EFs.

The aim of this study was to improve our understanding of soil N2O emissions from 

Mediterranean cropping systems by (i) summarizing available field data of soil N2O 

emissions; (ii) proposing a more robust and reliable regional EF; and (iii) identifying 

controlling factors of N2O EFs (soil type, climate variability, irrigation and N fertilizer 
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management) as a basis for developing soil N2O mitigation strategies for regions with 

Mediterranean climates.

2. Methods

2.1. Selection of studies and data extraction

There are varying definitions to demarcate Mediterranean climate regions worldwide, 

which are typically based on climate and plant associations. We chose the widely used 

delineation of the Mediterranean biome from the collection of ecoregions mapped by the

World Wildlife Fund (Fig. 1). We selected studies in this area and in marginal areas 

defined as ‘Mediterranean’ by the authors of the original papers. Soil N2O emission data 

from field-based studies investigating fertilizer-induced soil N2O emissions were 

collected from these Mediterranean regions, including the Mediterranean Sea Basin, 

California, Australia and Chile (Fig. 1). We are not aware of any field study reporting 

N2O emissions in the Mediterranean region of South Africa (Mary Scholes, Wits 

University, personal communication).
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1. Download high-res image     (408KB)

2. Download full-size image

Fig. 1. Location of the study sites included in the dataset. The dark gray area delimits 
the Mediterranean biome from the collection of ecoregions mapped by the World 
Wildlife Fund (Olson et al., 2001).

The criteria for inclusion of a study in the dataset were: (i) area-scaled N2O emissions 

were reported for N fertilizer treatments, (ii) the number of replicates was reported 

unambiguously with a minimum of three replicates per treatment, (iii) only field studies 

were considered and (iv) only when N2O emissions were reported for at least an entire 

growing season.

The cumulative N2O emissions for each N fertilizer treatment were extracted from 

published papers and reports, together with a measure of variance, the number of 

replicates and the N application rate (kg N ha−1) during the observational period. Key 

characteristics (location, climate data, soil type, soil management, irrigation, type of 

fertilizers, etc.) were collected when available (Supplementary material 1). When data 

were presented graphically, WebPlot Digitizer was used to extract data points 

(http://arohatgi.info/WebPlotDigitizer/). If cumulative N2O emissions or other information 

were not reported, the authors of the field study were contacted to supply missing 

information. In some cases, cumulative emissions were estimated by integrating the 

average daily fluxes over the measurement period (Alluvione et al., 2010, Castaldi et al.,

2011, Kong et al., 2009, Ranucci et al., 2011, Vitale et al., 2013). Experiments 

assessing the effect of nitrification/urease inhibitors were studied as a separate group 

(when evaluating the influence of the type of fertilization), but were not included to 

obtain the mean EF for Mediterranean crops (EFMed) because they were not considered 

representative of current management practices. Fifty-three studies and 223 datasets 

were included in the meta-analyses (Table 1, Supplementary material 1).

Table 1. Studies included in the meta-analyses.

Mediterranean-
type climate 
area

Country Studies

Mediterranean 
Basin

Spain Abalos et al., 2012, Abalos et al., 
2013, Abalos et al., 2014; Huérfano 
et al. (2015); López-Fernández et al. 
(2007); Maris et al., 2015a, Maris et 
al., 2015b; Meijide et al., 
2007, Meijide et al., 2009; Plaza-
Bonilla et al. (2014); Sánchez-García 
et al. (2016); Sánchez-Martín et al., 
2008, Sánchez-Martín et al., 
2010a, Sánchez-Martín et al., 
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Mediterranean-
type climate 
area

Country Studies

2010b; Sanz-Cobena et al., 
2012, Sanz-Cobena et al., 
2014a; Tellez-Rio et al. 
(2015); Vallejo et al., 2005, Vallejo et
al., 2006, Vallejo et al., 2014

Italy

Alluvione et al. (2010); Bosco et al. 
(2015); Castaldi et al. 
(2011); Ranucci et al. (2011); Rees et 
al. (2013); Vitale et al. (2013)

Israel/Portugal/Greece
Heller et al. (2010); Kontopoulou et 
al. (2015); Pereira et al. (2013)

Australia Australia
Barton et al., 2008, Barton et al., 
2010, Barton et al., 2013; Li et al. 
(2011)

California USA

Alsina et al. (2013); Angst et al. 
(2014); Garland et al., 2011, Garland 
et al., 2014; Kallenbach et al. 
(2010); Kennedy et al. (2013); Kong 
et al. (2009); Lee et al. 
(2009); Pittelkow et al. 
(2013); Schellenberg et al. 
(2012); Simmonds et al. 
(2015); Suddick and Six 
(2013); Townsend-Small et al. 
(2011); Verhoeven and Six 
(2014); Zhu-Barker et al. (2015)

Chile Chile
Hube et al. (2017); Vistoso et al. 
(2012)

Since most of the field studies in our database focus on assessing the performance of 

specific crop management practices over both emissions and crop yields, they often do 

not include post-harvest season emissions. While full year emissions are desirable for 

determining EFs (IPCC, 2016), in the systems we are studying, we assume that the 

inclusion of growing season only emissions will have minimal influence on our 

calculated EFs, since emissions in the intercrop period will be a) low in summer (fallow 

of winter crops), when the soil is dry, due to decreased microbiological activity, and b) 

very low in winter (fallow of summer crops) under cold conditions without freeze–thaw 

cycles (Aguilera et al., 2013a). In the few studies where emissions were measured over 

an entire year, those during the fallow period were 10% or less of the total (e.g. Sanz-

Cobena et al., 2012).

2.2. Soil and land management data compilation
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Soil and land management data was grouped into categories based on:

-

soil pHH2O: (i) pH < 7.5 and (ii) pH > 7.5 (The soil pH values measured with 

CaCl2 were converted to values measured in distilled water using a method 

described by Minasny et al. (2011));

-

soil texture: (i) coarse (sandy loam, sandy clay loam, loamy sand), (ii) medium 

(clay loam, loam, silty clay loam, silt, silt loam), and (iii) fine (clay, silt clay, sandy 

clay) (USDA, 1999);

-

topsoil organic C concentration: low (<10 g C kg−1 soil), medium (10–

20 g C kg−1 soil), and high (>20 g C kg−1soil);

-

water input and management: (i) rain-fed and annual precipitation <450 mm, (ii) 

rain-fed and annual precipitation >450 mm, (iii) sprinklers, (iv) flooded, (v) furrow 

or surface irrigation, and (vi) drip irrigation;

-

type of N fertilizer: (i) synthetic (including all types of mineral fertilizers), (ii) 

organic-solid (compost, solid fraction of manures, solid organic residues), (iii) 

organic-liquid (pig/cattle slurries, liquid fraction of slurries, digestates), (iv) 

organic-synthetic mixture, and (v) inhibitors (nitrification and/or urease inhibitors: 

DCD, DMPP,NBPT);

-

N fertilizer rate: (i) <100 kg N ha−1, (ii) 100–400 kg N ha−1, and (iii) >400 kg N ha−1;

-

type of crop: (i) winter cereals (hereafter: ‘cereals’), (ii) horticulture, (iii) maize, (iv)

rice, (v) perennials, and (vi) other.

2.3. Calculation of emission factors

Most studies included in the meta-analysis did not explicitly report EFs since they were 

designed with different aims. We calculated EFs as the difference between N2O 

emissions from a fertilized treatment (kg N2O N ha−1) and the non-fertilized (control) 

treatment (kg N2O N-N ha−1) divided by applied N fertilizer (kg N ha−1). In 39% of 

cases, there was no control treatment and these missing data were obtained through 
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multiple imputation by chained equations (Azur et al., 2011) with IBM SPSS Statistics 24

(for a detailed description of missing data treatment and sensitivity tests see 

Supplementary material 2).

2.4. Data analysis

We performed a standard pair-wise meta-analysis using emission factors (EFs) as effect

sizes with MetaWin version 2 (Rosenberg et al., 2000). Mean effect sizes for each 

grouping and the 95% confidence intervals (CI) generated by bootstrapping (999 

iterations) were calculated using a categorical random effects model (Adams et al., 

1997). For a detailed description of the statistical procedure see Supplementary 

material 2. Mean effect sizes were considered significantly different from each other if 

their 95% CI did not overlap; they were considered significantly different from the default

IPCC Tier I value (1%) if the 95% CIs did not overlap with 1%. To test the possibility of 

publication bias (studies showing no significant effects might not be published), the 

Rosenthal's fail-safe N test was used (Rosenthal, 1979).
2.5. Case study: effect of EF choice on Spanish N2O emissions estimation

We chose Spain to examine the effect of applying the EFs found in this study because 

Spain includes both rain-fed and irrigated crops, and has one of the largest agricultural 

land uses within Europe. In addition, nutrient budgets at the regional scale have been 

well developed for Spain (Lassaletta et al., 2014, Sanz-Cobena et al., 2014b). We 

processed the information provided by MMARM (2010) on N fertilizer use (organic and 

synthetic) for rain-fed and irrigated crops (by surface) in Spanish NUTS3 (Nomenclature

of territorial Units for statistics, level 3) regions to estimate the total input of fertilizer per 

climatic region (temperate and Mediterranean) and water management type. We then 

compared two methods to calculate the Spanish national N2O emissions: 1) ‘Current 

EF’, we applied an EF = 1.0% (IPCC, 2006) on the N inputs; 2) ‘New EFs’, the EFs 

obtained in this study for rain-fed, furrow, sprinkler and drip-irrigated systems in 

Mediterranean areas, and the IPCC (2006) EF for temperate areas in the cropping 

systems of northern Spain.

3. Results

3.1. Cumulative N2O emissions and EF for Mediterranean regions

A total of 53 field studies analyzing N2O emissions in Mediterranean areas have been 

published in the last 10 years from four of the five Mediterranean regions worldwide 

(see Supplementary material 2 for regional description). The cumulative emissions 

compiled here ranged from −0.15 kg N2O N ha−1 in a rice crop in California 

(Simmonds et al., 2015) to 43.3 kg N2O N ha−1 in a maize field in Israel (Heller et al., 
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2010), with a mean value of 2.8 kg N2O N ha−1. N2O emissions were on average 

largest for drip irrigation (4.6 kg N2O N ha−1) and smallest for flooded irrigation 

(0.5 kg N2O N ha−1) systems (Table 2). Synthetic fertilizers were the dominant type of 

fertilizer in all irrigation systems (Fig. S2) with drip irrigation systems receiving the most 

N fertilizer (295 kg N ha−1), with some cases of extremely high (1500 kg N ha−1) 

application rates (Heller et al., 2010). Treatments with a mixture of organic-synthetic 

fertilizers emitted the most N2O (9.8 kg N2O N ha−1), which is related to the high 

average N application rate in this group (535 kg N ha−1). Organic-liquid fertilizers were 

applied at similar rates as synthetic fertilizers, but their emissions were on average 

higher (4.8 vs. 1.7 kg N2O N ha−1). The use of organic-solid fertilizers or the addition of

inhibitors led to the lowest average cumulative emissions (1.8 and 1.2 kg N2O N ha−1, 

respectively) (Table 2). Maize and horticulture crops had the highest N2O emissions (4.7

and 3.4 kg N2O N ha−1),while rice and cereal crops had the lowest (0.5 and 0.7 kg N2O

N ha−1) (Table 2).

Table 2. The number of observations (N), mean and standard deviation (SD) of cumulative N2O 

emissions, N application rate and experiment duration for some of the factors with a significant influence 

on N2O emissions from agricultural fields.

Water
Cumulative N2O 
emissions (kg N2O
N ha−1)

N application 
rate (kg N ha−1)

Experiment 
duration (days)

N Mean SD Mean SD Mean SD

Water

Drip 55 4.6 9.5 295 387 299 110

Flooded 14 0.5 0.8 161 59 277 106

Furrow 29 2.9 4.7 205 94 254 92

Sprinkler 55 3.7 3.3 226 75 186 99

Rain-fed <450 
mm

39 0.4 0.3 117 58 269 66

Rain-fed >450 
mm

40 2.3 4.8 153 125 253 131

Fertilizer type

Organic-liquid 30 4.8 5.4 172 95 251 71

Organic-solid 26 1.8 2.3 238 155 227 114

Mixture 22 9.8 13.5 535 523 327 73

Synthetic 131 1.7 3.1 157 77 260 108

Inhibitora 23 1.2 1.7 167 78 167 129
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Water
Cumulative N2O 
emissions (kg N2O
N ha−1)

N application 
rate (kg N ha−1)

Experiment 
duration (days)

N Mean SD Mean SD Mean SD

Crop type

Maize 56 4.7 7.0 323 298 223 129

Horticulture 36 3.4 4.6 182 67 231 125

Perennial 22 1.2 1.5 104 73 297 100

Cereal 61 0.7 0.6 138 62 277 68

Rice 14 0.5 0.8 161 59 277 106

Others 43 4.5 8.8 230 290 243 112

a

inhibitor refers to treatments with synthetic and/or organic fertilizers where nitrification or urease 

inhibitors were applied.

The mean EF for Mediterranean crops (EFMed)—covering rain-fed and irrigated systems, 

arable and permanent crops, organically and synthetically fertilized systems (treatments

with inhibitors excluded) for all Mediterranean-type climate areas was 0.50% ± 0.12 

(EFMed ± 95%CI, N = 200; Rosenthal’s fail-safe test: 4830). Grouping into different 

categories allowed us to identify which factors (soil, crop, irrigation system, type of 

fertilizer and application rate) had a significant impact on averaged EFs, providing key 

information when proposing N2O mitigation strategies.

3.2. Influence of soil characteristics on EF

Soil pH, soil organic C or soil texture did not significantly affect EFs. Soil pHs ranged 

from 4.8 in a rice experimental station field site in California (Simmonds et al., 2015) to 

8.5 in a cereal crop in north-eastern Spain (Plaza-Bonilla et al., 2014), with most soils 

having a neutral to alkaline pH (in 83% of the cases, pH > 7). The concentration of 

organic C in soils ranged from 4 g C kg−1 soil in California (Schellenberg et al., 2012) to 

133 g C kg−1 soil in Chile (Vistoso et al., 2012), and the average soil organic C 

concentration was 15.9 g C kg−1 soil. EFs did not significantly differ among soils with low 

(EF: 0.56, N = 59), medium (EF: 0.51, N = 94) or high (EF: 0.37, N = 5) organic C 

concentrations. Finally, soil texture had no significant effect on average EFs, although 

trends suggested that larger EFs could be expected from coarse (EF: 0.58%, N = 77) 

and medium-textured soils (EF: 0.48%, N = 100), than from fine-textured soils (EF: 

0.27%, N = 22).

3.3. Influence of water management on EF
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Rain-fed systems had an average EF of 0.27% ± 0.21 (N = 62) which was significantly 

lower than 1% (Fig. 2). Studies under dry Mediterranean conditions (average annual 

precipitation <450 mm) had lower EFs (EF: 0.21% ± 0.26, N = 38) than studies in areas 

with an average annual precipitation >450 mm (EF: 0.32% ± 0.33, N = 24).

1. Download high-res image     (151KB)

2. Download full-size image

Fig. 2. The influence of different irrigation options on changes in N2O emission factors 
(EFs) in Mediterranean-type climate areas. Symbols represent mean effect sizes [EFs 
(%)] with 95% confidence intervals. The numbers shown in parentheses correspond to 
observations in each class upon which the statistical analysis was based. For this 
analysis, treatments with nitrification inhibitors were excluded (see Methods).

There was high variability in EFs between types of irrigation management (Fig. 2). Drip-

irrigated (including both surface and subsurface) and furrow systems had lower EFs 

(EF: 0.51% ± 0.26, N = 52 and EF: 0.47% ± 0.36, N = 27, respectively) than sprinklers 
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(EF: 0.91% ± 0.24, N = 45), which was close and not significantly differ from the IPCC 

default EF.

It is important to note that drip-irrigated systems had the highest level of N fertilization 

(Table 2), which could have biased the results of the meta-analysis, increasing the EF 

for this group. Flooded systems (rice fields) had the lowest EF (0.19% ± 0.50, N = 14), 

in line with IPCC (2006) guidelines.

3.4. Influence of fertilizer type and application rate on EF

The highest EFs corresponded with organic-liquid fertilizers (EF: 0.85% ± 0.30, N = 30), 

which were mostly pig or cattle slurries, or the liquid fraction of their digestates (Fig. 3); 

this EF did not significantly differ from 1%. The rest of the fertilizer types had an EF 

significantly lower than 1% but were statistically similar to each other. The use of 

nitrification/urease inhibitors decreased the average EFs (EF: 0.14% ± 0.32, N = 23) 

when compared with synthetic, organic-liquid, and mixtures of organic and synthetic 

fertilizers, but was similar to EFs from organic-solid fertilizers (EF: 0.19% ± 0.33, 

N = 24). Crops fertilized with organic-solid fertilizers received, on average, almost 

double the amount of N than those with synthetic or liquid fertilizers (Table 2), which 

reinforces organic-solid fertilization as a strategy to decrease EFs. Although not 

statistically significant, higher N application rates increased EFs. Low N application 

rates (<100 kg N ha−1) had the lowest EFs (EF: 0.27%, N = 40), whereas high N 

application rates (>400 kg N ha−1) resulted in EFs that did not significantly differ from the

1% IPCC value (EF: 0.82%, N = 15).
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Fig. 3. The impact of the type of N fertilizer and application rate on changes in N2O 
emission factors (EFs) in Mediterranean-type climate areas. Symbols represent mean 
effect sizes [EFs (%)] with 95% confidence intervals. The numbers shown in 
parentheses correspond to observations in each class upon which the statistical 
analysis was based.

3.5. Influence of crop types on EF

Five out of the six considered crops presented EFs significantly lower than 1% (Fig. 4). 

Rice and cereals (wheat, barley, and oat) had the smallest EFs (EF: 0.19%± 0.51, 

N = 14 for rice and 0.26% ± 0.22, N = 53 for cereals). Perennials (including vineyards, 

almonds, and olive orchards) and others (including pasture, legumes, rapeseed, crop 

rotations and bare soil) had intermediate EFs (EF: 0.54%, N = 19 for perennials and EF:

0.47%, N = 33 for others). Horticultural crops (melons, onions, tomatoes, and potatoes) 

showed a slightly higher than average EF (EF: 0.63% ± 0.31, N = 34). Finally, maize 
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had a relatively high average EF (EF: 0.83% ± 0.26, N = 47) which did not significantly 

differ from the 1% default.

1. Download high-res image     (127KB)

2. Download full-size image

Fig. 4. Average N2O emission factors (EFs) in Mediterranean-type climate areas 
depending on the type of crop. Symbols represent mean effect sizes [EFs (%)] with 95%
confidence intervals. The numbers shown in parentheses correspond to observations in 
each class upon which the statistical analysis was based. For this analysis, treatments 
with nitrification inhibitors were excluded (see Methods).
3.6. Case study: effect of EF choice on Spanish N2O emissions estimation

Table 3 shows ‘current EF’ used by national inventories (IPCC, 2006) and the ‘New EFs’

determined from this study for rain-fed, furrow, sprinkler and drip-irrigated systems in 

Mediterranean crops. Nitrous oxide emissions from Spanish agriculture vary 

considerably depending on the calculation method. The emissions from Mediterranean 
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Spanish agriculture calculated with the current EF (12.5 Gg N2O N yr−1) exceeded the 

value using the new EFs (5.5 Gg N2O N yr−1) by a factor of two and this had a 

substantial impact on the estimates of total national emissions from cropping systems 

(Table 4).

Table 3. Emission factors (EFs) used to estimate total N2O emissions in the Spanish cropping systems: 

current EFs according to IPCC (2006) and the new values for Mediterranean areas developed in this work

for different irrigation systems. The percentages in brackets show the proportion of the area under each 

irrigation system in Spain.

EFs
Temperate 
climate

Mediterranean 
climate

Current
Rain-fed crops 1.0% 1.0%

Irrigated crops 1.0% 1.0%

New 
EFs

Rain-fed crops 1.0% 0.27%

Irrigated furrow (27% 
surface)

1.0% 0.47%

Sprinkler (24% surface) 1.0% 0.91%

Drip (49% surface) 1.0% 0.51%

Table 4. Comparison of total N2O emissions in Spanish cropping systems (MMARM, 2010) after the 

application of the current EFs and the new EFs obtained in this study, considering that all the irrigated 

crops are furrow, sprinkler or drip irrigated. The percentages in brackets show the proportion of the area 

under each irrigation system in Spain.

Temperate 
climate

Mediterranean 
climate

Total

Fertilizer N input 
(synth + org)
(Gg N yr−1)

Rain-fed 
crops

137 585 722

Irrigated 
crops

13 664 678

Total 151 1249 1400

Current EFs
Rain-fed 
crops

1.4 5.8 7.2

Total N2O emissions
Irrigated 
crops

0.1 6.6 6.8

(Gg N yr−1) Total 1.5 12.5 14.0

Rain-fed 
crops

1.4 1.6 3.0

New EFs
Furrow 
(27%)

0.0 0.8 0.9

Total N2O emissions Sprinkler 0.0 1.5 1.5
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Temperate 
climate

Mediterranean 
climate

Total

(24%)

(Gg N yr−1) Drip (49%) 0.1 1.7 1.7

Total 1.5 5.5 7.0

4. Discussion

In this paper, we derived an EF for N2O emissions from Mediterranean regions (EFMed: 

0.5%) and demonstrated that EFs in Mediterranean-cultivated lands are significantly 

lower than the 1% IPCC Tier I default value (IPCC, 2006) or the 1.25% (IPCC, 1996) 

used to calculate N2O emissions in response to applying N fertilizer to land. We, 

therefore, recommend that Mediterranean countries, or regions, consider refining their 

national inventories to reflect the relatively small EF. Here, we show the implications of 

such a change by using the EFs obtained in this study to estimate total N2O emissions 

from cropping systems in Spain and compare them to estimates using the IPCC default 

value.

To derive statistically robust estimates of EFs, we opted to retain studies without control 

measurements. We performed a sensitivity test (see Supplementary material 2) which 

demonstrated that including these studies had no impact on the mean EFMed (EF: 

0.496% including all studies and EF: 0.463% excluding cases without control, see 

Supplementary material 2). We, therefore, conclude that the EFMed is robust, but due to 

the high heterogeneity of the studies included in the dataset, it was often difficult to find 

significant differences between different management strategies. Further field research, 

measuring emissions over the whole year and including control treatments, is merited to

better quantify EFs for the various management options in Mediterranean systems.

4.1. Influence of soil characteristics on EF

Soil characteristics show very limited impact of EFs. This finding seems to contradict 

previous studies where soil organic C concentration and pH had a clear impact on 

denitrification and therefore N2O emissions (Li et al., 2005, Šimek and Cooper, 2002). 

However, these relationships might be difficult to find in our dataset, where most soils 

had a neutral or slightly alkaline pH and similar (in general low) concentrations of 

organic C, with other variables having a stronger effect on N2O emissions (N application 

rate, soil water content, type of fertilizer applied, etc.). In addition, although 

denitrification is generally identified as the major process generating N2O in most 

cropping systems, this does not necessarily stand for studies under Mediterranean 
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conditions, where the importance of nitrifier-nitrification and nitrifier-denitrification have 

been documented (Sánchez-García et al., 2014, Sánchez-Martín et al., 2008). 

Nitrification (contrarily to denitrification) does not need an additional source of C and 

therefore if nitrification pathways dominate, the soil C availability may not play an 

important role on N2O emissions.

Although not significant, we found higher EFs in coarse/medium-textured soils (EF: 0.58

and 0.48%) than in fine-textured soils (EF: 0.27%). Since denitrification needs 

anaerobic conditions, which are more likely to occur in fine-textured soils, this result 

seems contradictory. Our finding might be related to (i) complete denitrification 

(transformation to N2) in less-aerated fine-textured soils (Šimek and Cooper, 2002) or (ii)

nitrification processes having an important role in N2O emissions, with higher nitrification

rates in low water content, well-aerated soils (Thomsen et al., 2003). Also, previous 

studies found higher annual denitrification losses in loamy soils than sandy or clay-

textured soils, which was interpreted as a limitation of C diffusion by adsorption to clays 

in fine-textured soils (Barton et al., 1999).

4.2. Influence of water management on EF

Among the irrigation technologies used in Mediterranean cropping systems, furrows are 

still widespread in summer-irrigated crops and sprinkler irrigation systems are on the 

increase in Spain (MAGRAMA, 2014). However, since many Mediterranean regions 

suffer from water scarcity, water-saving irrigation systems such as drip irrigation (both 

surface and subsurface) are being developed. The area sown to maize under drip 

irrigation is expected to increase due to higher water use efficiency, maintained crop 

yields and technical viability (Couto et al., 2013). Despite these advantages, the impact 

of drip irrigation systems on N2O emissions is poorly documented.

Our analyses revealed that EFs for N2O from drip-irrigated systems are much lower than

those in which water is applied through sprinklers, even when the average N application

rate was higher with drip irrigation. This is consistent with other field-based research 

(Kallenbach et al., 2010, Sánchez-Martín et al., 2008) and a previous review under 

Mediterranean conditions (Aguilera et al., 2013a). The reduction in N2O emissions with 

drip irrigation is probably caused by a reduction in the rate of water application 

compared with other conventional systems (Sharmasarkar et al., 2001). This may 

decrease the soil-water-filled pore space (WFPS) below the optimum range for N2O 

production through denitrification, which is 60–90% depending on soil type (Barton et 

al., 1999, Sanz-Cobena et al., 2014a). WFPS levels below this threshold are common in

many of the drip irrigation studies included in this review. For instance, in Abalos et al. 
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(2014), the WFPS was below 65% for 84% of the experimental period; it never 

exceeded 50% in the study of Schellenberg et al. (2012), and it ranged from 20 to 30% 

and 40–60% in Kallenbach et al. (2010)and Kennedy et al. (2013), respectively. 

Therefore, our results suggest that drip irrigation represents an effective N2O mitigation 

practice in Mediterranean irrigated systems. These benefits, however, should be 

evaluated together with other effects on the GHG balance and further 

socioenvironmental consequences. For example, increased infrastructure material 

requirements and energy needs for pressurizing the irrigation water might offset drip 

irrigation N2O-related emission savings in certain situations, while reduced water use 

(and related energy consumption) might be the main component responsible for 

emission reduction in other situations (Sanz-Cobena et al., 2017).

The lower EFs found under furrow irrigation compared to sprinkler irrigation might be 

related to a slightly lower average N application in the furrow systems included in our 

dataset and to a different soil wetting pattern, favoring complete denitrification to N2 after

irrigation events in furrows (Sánchez-Martín et al., 2008).

Our results show that rain-fed crops with less than 450 mm rainfall and flooded systems

have the lowest EFs of all systems (Fig. 2). In contrast, rain-fed crops in areas with 

annual precipitation greater than 450 mm have larger emissions. These findings show 

the strong effect of specific climatic conditions and soil moisture on the performance of 

Mediterranean cropping systems in terms of N2O emissions. The distribution of rain 

inputs also plays a relevant role. The first rainfall after long periods of drought (common 

in summers of Mediterranean areas) usually triggers N2O emissions. This pulsing effect, 

also observed in the dry areas of drip-irrigated crops, is due to the accumulation of 

mineral N in dry soils and the reactivation of water-stressed bacteria after rainfall events

(Sánchez-Martín et al., 2010a, Skiba et al., 1997).

Drip irrigation may have an adverse side-effect as its use has been associated with 

enhanced emissions of nitric oxide (NO) (Abalos et al., 2014). This is because the lower

WFPS may favor NO production from nitrification. Pilegaard (2013)reported maximum 

NO emissions at intermediate soil moisture (40–60% WFPS) since NO is highly reactive

and will be consumed at higher soil moisture.

4.3. Influence of fertilizer type and application rate on EF

Our results suggest that the use of liquid manures and inorganic N fertilizers results in 

greater N2O emissions than organic-solid fertilizers such as composted manures and 

green wastes. Liquid and inorganic N fertilizers are likely to be more readily available to 

plants and microorganisms, whereas solid organically-bound N requires decomposition 
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and microbial mineralization to be used in N2O-producing processes (Poodle et al., 

2002). Composted organic fertilizer N is thus released more slowly, ultimately increasing

N uptake by crops (Ryals et al., 2015) and decreasing the potential for N2O emissions. It

is notable that not all organic fertilizers are equivalent with regard to their potential 

effects on N2O emissions. For example, fresh manures and manure slurries can result in

relatively large N2O emissions. A recent meta-analysis found the IPCC Tier II model 

underestimated N2O emissions from cattle manure in the United States by an order of 

magnitude (Owen and Silver, 2015). Davidson (2009) also suggested that manure 

management was a dominant source of atmospheric N2O concentrations, accounting for

more than 40% of anthropogenic N2O emissions. Liquid manures are rich in both N and 

C, potentially facilitating N2O production in low C environments, mostly through 

denitrification. As already observed in Aguilera et al. (2013a), solid manure would result 

in lower N2O emissions, unlike in more humid areas with relatively high decomposition 

rates and N2O EFs (Owen et al., 2015).

As expected, nitrification/urease inhibitors effectively reduced EFs from Mediterranean 

systems (Mosier et al., 1996). In a recent review, Gilsanz et al. (2016) developed EFs of

0.42% ± 2.2 and 0.70% ± 3.3 for DCD and DMPP, respectively, two commonly used 

nitrification inhibitors. The lower EF found in our study (0.14% ± 0.32) agrees with the 

low baseline EFs found in the studies included in our dataset. Thus, inhibitors seem to 

be a good strategy to mitigate direct N2O emissions under Mediterranean conditions, 

although the potential is lowered by the relatively small baseline emissions in 

Mediterranean systems.

In agreement with previous studies (Kim et al., 2013, Shcherbak et al., 2014), 

increasing fertilizer application rates led to increased EFs. We found that applying N 

fertilizers over 400 kg N ha−1 resulted in EFs that did not significantly differ from the 1% 

IPCC Tier I default value. The lack of statistical significance between N doses is 

probably related to the fact that in our dataset most studies only considered one N 

application rate, with a limited number of cases with very low or high N fertilization rates.

4.4. Influence of crop types on EF

In a previous quantitative review of Mediterranean cropping systems, Aguilera et al. 

(2013a) observed that the differences in cumulative N2O emissions among crop types 

clearly respond to the management characteristics of each crop type; our results 

confirm these conclusions. Generally, the crop types in which water and fertilizer 

applications are low (see Figs. S3 and S4 and Table 2), such as rain-fed crops (winter 

cereals), have the lowest N2O response to N applications. A low EF for rice is associated
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with flooding which generates anaerobic conditions favoring complete denitrification to 

N2, thereby reducing N2O release from the soil (Conrad, 1996). Maize has a high EF, 

possibly because it is irrigated without implementation of water-saving techniques and 

has on average higher N application rates. The wide confidence intervals observed for 

the EFs in perennials and rice are due to the lower number of observations within these 

crop categories.
4.5. Case study: effect of EF choice on Spanish N2O emissions estimation

In this work we have seen how the application of EFs adapted to Mediterranean 

conditions can significantly reduce the national estimates of total N2O emissions from 

cropping systems. Applying the new EFs has consequences for determining the 

effectiveness of N2O mitigation strategies in Mediterranean regions, as baseline 

emissions will be smaller than those suggested by Tier I emission estimates. The level 

of indirect emissions is, however, highly uncertain, and published information is scarce, 

and has thus not been assessed in this study. IPCC Tier I proposes an EF for indirect 

emissions of 0.75% while Garnier et al., 2009, Garnier et al., 2013 estimated that, for 

the Seine temperate basin, indirect emissions represented 13–17% of total direct 

emissions. Due to the regulation of water in Mediterranean agricultural areas in Spain 

through a dense drainage network and reservoirs (Aguilera et al., 2015), the potential 

for denitrification could be high and could, therefore, generate high indirect emissions. 

The magnitude of indirect N2O emissions in Mediterranean areas is an interesting area 

for future research.

5. Concluding remarks

The average EF for nitrous oxide emissions in Mediterranean cropping systems was 

50% lower than the IPCC Tier I default value (1%), which is largely based on values 

observed in temperate regions. The most important factors controlling the magnitude of 

soil N2O EFs from Mediterranean regions were water regime (irrigation technique or 

precipitation amount) and fertilizer type and application rate. In rain-fed systems with 

precipitation below 450 mm, the EF is much lower than the IPCC values. The EF for 

sprinkler-irrigated systems is similar to that for temperate cropping systems, whereas 

drip-irrigated systems have a high potential for mitigation (EF: 0.51%). The N fertilizer 

rate altered EFs, suggesting a non-linear relationship between N2O emissions and N 

application rate. Intensive cropping systems, such as irrigated maize, tended to have 

higher EFs than less intensive systems such as cereals.

Applying specific EFs would lower estimates of total N2O emissions in countries with 

large areas of agricultural soils in Mediterranean climates. For example, applying 
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current Tier I EFs to Spanish cropping systems leads to a total N2O emission estimate 

that is a factor of two higher than when applying the new EFs from our analysis (14 Gg 

N2O N yr−1vs. 7 Gg N2O N yr−1). Our results indicate that N2O emissions from 

Mediterranean agriculture are much lower than expected and that with the new EFs, the

effect of mitigation strategies such as drip irrigation or using nitrification inhibitors, even 

if highly significant, may be smaller in absolute terms (since baseline emissions will be 

lower).
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