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Abstract

To better understand the molecular and cellular differences in brain organization between human 

and non-human primates, we performed transcriptome sequencing of sixteen regions of adult 

human, chimpanzee, and macaque brains. Integration with human single-cell transcriptomic data 

revealed global, regional, and cell-type specific species expression differences in genes 

representing distinct functional categories. We validated and further characterized the human 

specificity of genes enriched in distinct cell types through histological and functional analyses, 

including rare subpallial-derived interneurons expressing dopamine biosynthesis genes enriched in 

the human striatum and absent in the non-human African ape neocortex. Our integrated analysis of 

the generated data revealed diverse molecular and cellular features of the phylogenetic 

reorganization of the human brain across multiple levels of organization, with relevance for brain 

function and disease.

Introduction

Although the human brain is approximately three times larger than those of our closest 

living relatives, the non-human African great apes (chimpanzee, bonobo, and gorilla), 

increased size and neural cell counts fail to explain its unique functionalities (1–5). The 
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brain has also undergone microstructural, connectional, and molecular changes in the human 

lineage (1–5), changes likely mediated by divergent spatiotemporal gene expression (6–17).

Here, we profiled the mRNA and small noncoding RNA transcriptomes of sixteen adult 

brain regions involved in higher-order cognition and behavior of human (H, Homo sapiens), 

chimpanzee (C, Pan troglodytes) - our closest extant relative - and rhesus macaque (M, 

Macaca mulatta) - a commonly studied non-human primate. We integrated these profiles 

with single-cell transcriptomic data from the human brain (18, 19), histological data from 

adult and developmental brains of these and other primates (bonobo, gorilla, orangutan, pig-

tailed macaque, baboon, and capuchin), and multimodal data from human primary and 

induced pluripotent stem cell (iPSC)-derived neural cultures. In doing so, we have 

investigated the evolutionary, cellular, and developmental framework that makes the human 

brain unique.

Overview of regional transcriptome profiling

We generated transcriptional profiles of 247 tissue samples representing hippocampus, 

amygdala, striatum, mediodorsal nucleus of thalamus, cerebellar cortex, and eleven areas of 

the neocortex from six humans, five chimpanzees, and five macaques (figs. S1–S5; table S1). 

To minimize biases in comparative transcriptome analyses, we used the XSAnno pipeline to 

create a common annotation set of 26,514 orthologous mRNAs, including 16,531 protein-

coding genes and 3,253 long intergenic non-coding (linc) RNAs (fig. S2). We re-annotated 

all chimpanzee and macaque micro RNAs (miRNAs) based on annotated human precursor 

sequences (fig. S3). Assessment of global correlation between regions and species by 

unsupervised hierarchical clustering (fig. S5) revealed clustering of the miRNA dataset 

primarily by species. In contrast, cerebellar mRNA samples from all species formed a 

distinct cluster separated from other brain regions (fig. S5), indicating that the various 

cerebella are more similar to each other than to other brain regions within the same species. 

Within each species, hierarchical clustering of mRNA or miRNA datasets were calculated 

based on pairwise correlation matrices of brain regions and confirmed by multiscale 

bootstrap resampling and intra-species genetic distance measurements (figs. S6–7). This 

revealed a similar pattern of inter-regional hierarchical clustering, reflecting known 

topographical proximity and functional overlap (11, 14).

Species differences in regional gene expression

Differentially expressed genes were identified (False Discovery Rate [FDR] < 0.01) in each 

region by comparing generalized linear models with species as the main factor and batch as 

a cofactor. We found 25.9% of mRNAs (6,866 of 26,514) and 40.6% of miRNAs (603 of 

1,485 mature miRNAs included in the analysis) were differentially expressed between at 

least two species in one or more regions. 11.9% of mRNAs (3,154) and 13.6% of miRNAs 

(202), representing distinct functional categories, exhibited human-specific upregulation 

(H>C=M) or downregulation (H<C=M; Figs. 1A–B; tables S2–4), with the highest number 

of differentially expressed genes observed in striatum followed by thalamus, primary visual 

cortex, and dorsolateral prefrontal cortex (fig. S8; table S3). These observations were not 

attributable to variations in the ratio of major cell types among species (fig. S9).
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Among the 3,154 mRNA genes with human-specific differential expression, only 22 were 

upregulated and 9 down-regulated across all analyzed regions (fig. S10). Only 3 genes were 

differentially expressed across analyzed neocortical areas: TWIST1 (down-regulated), a 

transcriptional regulator of neural genes that is mutated in Saethre–Chotzen syndrome, a 

disorder associated with intellectual disability (20) (Fig. 1C; fig. S11A–B), and two 

functionally uncharacterized lincRNAs (RP11-364P22.1 and CTB-78F1.1; upregulated). 

The remaining 3,120 mRNA genes displayed human-specific differential expression in one 

or a subset of brain regions or neocortical areas (Fig. 1C; fig. S10; table S3). Among 

miRNAs, 10.4% (155) and 3.2% (47) were upregulated or downregulated, respectively, in 

the human brain with many displaying region-specific patterns (Fig. 1B; fig. S12). 

Independently validated examples include: PKD2L1 (upregulated in neocortical areas except 

primary motor cortex), a gene encoding an ion channel (21); MET (upregulated in prefrontal 

cortex), a gene implicated in autism spectrum disorder (22); ZP2 (upregulated in 

cerebellum), a gene encoding a protein mediating sperm-egg recognition (23); and several 

miRNAs (Fig. 1C; figs. S11–S12).

Species differences in gene co-expression patterns

To extract additional biologically relevant information, we applied weighted gene co-

expression correlation network analysis (WGCNA) to generate modules of genes with 

similar variation across regions and/or species. We identified 229 mRNA modules, many of 

which exhibited regional and/or species-specific expression patterns (Figs. 2A–B; table S5). 

For example, genes in module 92 (M92) and M32 are respectively upregulated and 

downregulated in human neocortex, and M130 genes are upregulated in human striatum, 

hippocampus, and amygdala (fig. S13). M130 includes tyrosine hydroxylase (TH) and 

DOPA decarboxylase (DDC), both involved in dopamine biosynthesis (fig. S13F). Human-

specific modules were enriched for genes associated with categories and pathways such as 

“Thrombospondin N-terminal-like domains” and “alternative splicing” (table S5).

We also clustered all miRNAs based on their individual correlations to the average 

expression profile of each mRNA module (fig. S14A; table S6). Because the expression of 

each miRNA might correlate with multiple mRNA modules, module pairings were refined 

using a transcriptome-wide HITS-CLIP map of miRNA binding sites in the human brain 

(24) (fig. S14B; table S7). We identified 37 stable miRNA modules, with several pairs of 

miRNA/mRNA modules exhibiting opposing regional and/or species-specific enrichment for 

potential miRNA-mRNA target predictions (fig. S14C–E).

Cell-type specificity of differentially expressed genes

To investigate differential gene expression patterns at the cellular level, we integrated our 

datasets with single-cell RNA-seq data generated from the human neocortex (18, 19) and 

validated findings via immunohistochemistry or in situ hybridization. We found that many of 

the genes displaying species- and/or region-specific patterns also exhibited cell-type specific 

expression. For example, PKD2L1 is enriched in excitatory projection neurons (Figs. 3A and 

3C), TH is expressed in a subset of somatostatin (SST)-expressing inhibitory interneurons in 

human and macaque neocortical deep layers and white matter (Figs. 3B and 3D), and ZP2 is 
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upregulated in the granule cells of the human cerebellum (figs. S11C–D). Additionally, we 

found cell-type specific enrichment among WGCNA modules, including human-specific 

M81 and M162, which were composed of genes enriched in a subset of neocortical 

excitatory projection neurons (Fig. 2B, right panels; table S5).

Species differences in neurotransmitter receptor gene expression

The species- and region-specific expression patterns of several genes associated with 

neurotransmission prompted us to investigate whether there were broad inter-species 

differences in the co-expression networks and genomic sequences of genes encoding 

receptors underlying excitatory, inhibitory, or modulatory signaling (figs. S15A–D). Gene 

co-expression networks of the cholinergic and serotonergic systems differed among the three 

species (figs. S15E–F). While the dopaminergic system did not have enough genes for 

reliable network construction, we found that DRD1, DRD2, and DRD3, genes encoding 

dopamine receptors, exhibited human-specific downregulation in striatum (fig. S10). By 

contrast, excitatory glutamatergic and inhibitory GABAergic systems’ genes exhibited 

conserved networks among species and their coding sequences were more conserved than 

the coding sequences of genes with similar expression levels (figs. S15–17; table S8).

Species differences in dopamine biosynthesis gene expression

We next investigated dopamine biosynthesis and signaling genes. TH and DDC displayed 

human-specific (H>C=M) upregulation in the striatum (Fig. 4A). TH also displayed 

chimpanzee-specific downregulation (C<H=M) in the neocortex (Fig. 4A). An extended 

analysis of RNA-seq data (25) independently validated the downregulation of TH mRNA in 

chimpanzee neocortex compared to human, as well as the downregulation of TH expression 

in the neocortex of bonobo and gorilla, but not of orangutan (fig. S18A).

Analyses of cis-regulatory elements active near the TH gene in the adult human, 

chimpanzee, and macaque brain (26) revealed no differences that would explain observed 

TH expression patterns. We hypothesized that the species-specific TH expression patterns 

might be explained by changes in the number and distribution of TH-expressing 

interneurons, which have been previously identified in telencephalic regions and shown to 

vary in distribution across species (27–29), including depletion in the prefrontal cortex of 

non-human great apes (28). Therefore, we quantified TH-immunopositive (TH+) 

interneurons (figs. S19A–C) on an independent set of 45 adult brains from 9 primate species 

(table S9). Consistent with our transcriptome data, humans have a higher number (Tukey's 

honest significance test all P < 0.05) of TH+ interneurons in both the dorsal caudate nucleus 

and putamen (striatum) when compared to all other analyzed non-human primates (Fig. 4C; 

fig. S20A). Furthermore, we found neocortical TH+ interneurons in all analyzed areas of 

human, all monkey species, and orangutan (Fig. 4C, figs. S20B; S20D), but only TH+ fibers 

in all analyzed neocortical areas of chimpanzee, bonobo, and gorilla (Fig. 4C; fig. S20B). 

We found no differences in the number of TH+ interneurons in human, chimpanzee, gorilla, 

and macaque olfactory bulbs (fig. S19D).
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Molecular profiling of human TH+ interneurons

To further explore the phenotype of adult human neocortical TH+ interneurons, we 

performed immunohistochemistry and in situ hybridization. TH+ interneurons expressed 

GAD1, the GABA synthesis enzyme (Fig. 4B), but were lacking canonical markers of 

neocortical interneuron subtypes such as SST, PVALB, NPY, NOS1, CALB2, and VIP (fig. 

S21), as well as ETV1, which is required for differentiation of dopaminergic neurons in 

multiple species (30), or its homolog, ETV5 (figs. S21H–I). Most TH+/GAD1+ interneurons 

co-expressed DDC (62.54 ± 1.01%; Fig. 4B), the enzyme that converts L-DOPA to 

dopamine, but not DBH (fig. S18; 31), the enzyme that converts dopamine to noradrenaline, 

indicating that a subset of TH+ interneurons are able to produce dopamine, but not 

noradrenaline.

Developmental origin of human TH+ interneurons

To gain insight into the development of TH+ interneurons, we analyzed the regional 

expression of TH across human brain development using the BrainSpan RNA-seq dataset 

(www.brainspan.org). The highest TH expression is observed in striatum and increases 

steadily from early fetal development (period 2, as defined in ref. 11) to young adulthood 

(period 13; Fig. 5A). Lower TH expression is observed in neocortex, hippocampus, and 

amygdala and increases perinatally (periods 7 [late fetal development] and 8 [early infancy]) 

and remains stable in neocortex. In addition, TH expression increases from early childhood 

(period 10) to young adulthood in the amygdala and hippocampus (Fig. 5A).

Using immunohistochemistry, we detected TH+ axons in striatum as early as late midfetal 

development (fig. S22), and occasional bipolar TH+ interneurons were first observed in the 

external capsule and neocortical white matter in the newborn human (Fig. 5B). The neonatal 

chimpanzee brain displayed the same pattern of unmyelinated TH+ fibers in the external 

capsule (Fig. 5B), but no TH+ interneurons were detected in the neocortex.

To identify the birthplace of TH+ interneurons, we prepared primary cell cultures from 17–

18 postconceptional week (pcw)-old human brains (Fig. 5C) of lateral, medial, and caudal 

ganglionic eminences (LGE, MGE, and CGE) of the ventral forebrain (subpallium), known 

to generate interneurons (32–34), and neocortical proliferative zones, which may also 

generate interneurons in humans (13). We found TH+ interneurons co-expressing canonical 

markers of distinct progenitor lineages within ganglionic eminences (NKX2-1, NR2F2, or 

SP8) (Fig. 5D). BrdU birthdating confirmed that TH+ interneurons are generated by 

ganglionic eminence, but not neocortical, progenitors (Fig. 5D–E), indicating that TH+ 

interneurons are derived from diverse subpallial lineages and are developmentally 

heterogeneous. Similar to adult neocortical TH+ interneurons, subpallial-derived TH+ 

interneurons also co-expressed GAD1 and DDC (Fig. 5D). Neocortical TH+ interneurons 

were mainly SP8+ (77.68 ± 12.11%), with a smaller NR2F2+ (22.22 ± 8.78%) 

subpopulation, and were all BrdU−, indicating that they began to migrate into neocortex 

before 17 pcw, but express TH protein later in development (Fig. 5D–E).
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In vitro characterization of human TH+ interneurons

To further characterize TH+ interneuron development and properties, we asked whether TH

+ interneurons could be generated from human iPSCs using a differentiation protocol for 

cortical excitatory projection neurons and inhibitory interneurons (fig. S23; Methods). 

Immunofluorescence confirmed the presence of TH+ cells co-expressing GAD1 and SP8, 

but not SST, PVALB, NR2F2, or NKX2-1, confirming that iPSC-derived TH+ interneurons 

display a similar molecular profile to TH+ interneurons from the adult neocortex and 

neocortical primary culture (fig. S24). Complementary analysis of a single-cell RNA-seq 

dataset from human embryonic stem cell-derived cortical interneurons (35) revealed that 

many TH-expressing cells co-express GABAergic marker genes GAD1/2 at all time points, 

as well as SST, ETV1, and ETV5 transiently at early time points (fig. S25).

We characterized human iPSC-derived TH+ interneurons by assessing their ability to 

produce and transport dopamine using immunofluorescence, a monoamine uptake assay, and 

high-performance liquid chromatography. We found that 72.1 ± 10.0% of 80 DIV TH+ 

interneurons that had taken up a monoamine-imitating fluorophore were DDC+ (Fig. 6A–B), 

and consequently could produce and transport dopamine in vitro. Commensurate with these 

observations, we detected dopamine in conditioned culture media from iPSC-derived and 

LGE primary neural cultures, both of which contained TH+/DDC+ interneurons, but not in 

control culture media (Fig. 6C).

Discussion

Our analysis of transcriptomic data revealed global, regional, and cell-type specific species 

expression differences in protein-coding and non-coding genes. Genes with human-specific 

differential expression patterns include those encoding transcription factors, ion channels, 

and neurotransmitter biosynthesis enzymes and receptors. Changes in the regional and 

cellular expression patterns of these genes could affect function of neural circuits by altering 

transcription of other genes, intrinsic electrophysiological properties, or synaptic 

transmission.

Neuromodulatory systems show broad expression differences between species. One example 

includes a rare and molecularly heterogeneous subpopulation of interneurons expressing 

dopamine biosynthesis genes TH and DDC, which are enriched in the human striatum and 

neocortex as compared to non-human African apes. These cells originate in the subpallial 

ganglionic eminences and likely migrate into the striatum and neocortex during late prenatal 

and early postnatal development. We also observed an increase in TH expression during 

postnatal development and young adulthood, suggesting that TH expression and/or the 

migration of TH+ interneurons may be dynamically regulated and protracted.

The absence of TH+ interneurons from the cortex of non-human African apes (see also 28), 

and their decreased density in the striatum of non-human primates, may result from several 

mechanisms. First, these cells could have been lost due to genetic disruptions affecting 

interneuron migration, differentiation, or survival (32–34). These disruptions may have 

occurred in the common ancestor of African apes prior to being reversed in the human 
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lineage (homoplasy) or, in a less-likely scenario, may have occurred independently in the 

Gorilla and Pan lineages. A second possibility is that these interneurons are present in the 

non-human African ape cortex but do not express TH, do so only transiently, or die prior to 

our ability to detect them. Commensurate with this possibility, the molecular profile of 

mouse cortical SST-positive interneurons is malleable (36) and sensory stimuli can cause a 

switch from the production of TH and dopamine to SST in rat hypothalamic interneurons 

(37). Finally, TH+ interneurons of non-human African apes may have lost their ability to 

deviate to cortex from the rostral migratory stream. Indeed some human TH+ interneurons 

migrating via the rostral migratory stream to the olfactory bulb divert to the prefrontal cortex 

(38) and our observation of SP8+/TH+ co-expression is consistent with a rostral migratory 

stream origin. However, other routes of migration are possible, as suggested by our 

observation of TH+ interneurons in the external capsule of newborn human brain.

Neuromodulatory transmitters, in particular dopamine, are involved in distinctly human 

aspects of cognition and behavior, such as working memory, reasoning, reflective 

exploratory behavior, and overall intelligence. By analyzing brain regions involved in these 

processes, we show that evolutionary modifications in gene expression and the distribution 

of neurons associated with neuromodulatory systems may underlie cognitive and behavioral 

differences between species. Cortical TH+ interneurons are depleted in patients affected by 

Parkinson’s disease (39) or dementia with Lewy bodies (40), and these alterations may 

contribute to cognitive impairments.

As these results demonstrate, the resource we present here may aid future studies on the 

evolution and neuroscience of primates.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Inter-species differential gene expression across sixteen brain regions
(A) Bubble matrix showing the number of mRNA genes with conserved expression (grey 

circles), species-specific upregulation (filled circles), or downregulation (open circles). Post-

hoc comparisons described in table S2. H – human; C – chimpanzee; M – macaque. (B) 

Inter-species patterns of normalized miRNA expression across all regions. Guidelines 

indicate ± 2-fold difference. (C) Examples of protein-coding and non-coding genes 

exhibiting global and regional human-specific upregulation (red and circles with black 

borders) or downregulation (blue and circles with black borders). Additional information 
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and validations are provided in figs. S10–S12. OFC – orbital prefrontal cortex; DFC – 

dorsolateral prefrontal cortex; VFC – ventrolateral prefrontal cortex; MFC – medial 

prefrontal cortex; M1C – primary motor cortex; S1C – primary somatosensory cortex; IPC – 

inferior posterior parietal cortex; A1C – primary auditory cortex; STC – superior temporal 

cortex; ITC – inferior temporal cortex; V1C – primary visual cortex; HIP – hippocampus; 

AMY – amygdala; STR – striatum; MD – mediodorsal nucleus of the thalamus; CBC – 

cerebellar cortex.
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Fig. 2. Conserved and species-specific gene co-expression modules
(A) Number of WGCNA modules (numbers on grey; see table S5) clustered by differential 

expression across brain regions, species, and inter-species differences across regions 

(interaction) (ANOVA of eigengene Bonferroni adjusted P < 0.01, solid line; ≥ 0.01, dashed 

line). (B) Left panel: Enrichment of gene expression for modules (columns) in several cell 

types (rows) based on human single-cell transcriptome data (18, 19), sorted by unsupervised 

hierarchical clustering to show similarities among modules. Right panel: Species-specific 

modules showing human (red), chimpanzee (blue), or macaque (green) upregulation (normal 

font) or downregulation (italics) relative to the other two species exhibit distinct patterns of 

cell-type associated gene expression.

Sousa et al. Page 15

Science. Author manuscript; available in PMC 2018 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. Cellular specificity of neocortical human and chimpanzee-specific differential expression
(A–B) Radar plots depicting neocortical neuron cell-type enrichments of (A) human- or (B) 
chimpanzee-specific differences of genes associated with (i) neuropsychiatric disorders, (ii) 

neurotransmitter biosynthesis, degradation, and transport proteins, and (iii) encoding ion 

channels (table S10). Only genes expressed in the respective cell type are plotted. The 

distance of each gene from the center represents differential expression between human and 

the average of chimpanzee and macaque (red) or between chimpanzee and the other two 

species (blue). The direction of triangles denotes up- or downregulation; filled triangles 

represent cell-type specific expression (Pearson correlations > 0.5). (C) In situ hybridization 

shows that PKD2L1 is expressed in pyramid-shaped cell bodies of excitatory projection 

neurons of human, but not chimpanzee or macaque, neocortex. (D) TH-immunopositive 

interneurons (filled arrowheads) are present in neocortex of human and macaque, but not 

chimpanzee, where only TH+ midbrain dopaminergic axons (open arrowheads) are present. 

Scale bar represents 30 µm.
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Fig. 4. Human-specific expression of genes encoding dopamine biosynthesis enzymes
(A) TH and DDC, respectively, showing higher expression in the human striatum (STR). TH 
is also downregulated in the chimpanzee neocortex. Boxes represent quartiles and whiskers 

1.5 times interquartile range. Red and blue asterisks represent human-specific differential 

expression in striatum and chimpanzee-specific differential expression combining all 

neocortical areas, respectively (FDR < 0.01). (B) Immunofluorescence shows co-localization 

of TH, DDC, and GAD1 in adult human neocortical interneurons (arrowheads). Scale bar 

represents 10 µm. (C) STR (caudate and putamen) shows an enrichment of TH+ 

interneurons in human. MFC, M1C, and STC show a complete depletion of TH+ 

interneurons in chimpanzee and gorilla. Asterisk represents Tukey's honest significance test 

P < 0.05 comparing human or chimpanzee/gorilla with all other species.
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Fig. 5. Human telencephalic TH+ interneurons are of subpallial origin and start to express TH 
protein perinatally
(A) TH expression in human neocortex (NCX), HIP, AMY, and STR throughout 

development. The shaded area corresponds to a confidence interval of 50%. (B) 

Immunohistochemistry reveals TH+ axons in external capsule (arrowheads), STR, and NCX 

of newborn (38 pcw) human and chimpanzee brains. Bipolar TH+ interneurons (filled 

arrowhead) are present in parallel with MBP+/TH− (arrows) and TH+/MBP− (open 

arrowheads) fibers in the external capsule. No TH+ cells were detected in chimpanzee 

external capsule. Scale bar represents 1 cm. (C) Schematic of dissection of ganglionic 

eminences (lateral [LGE], medial [MGE], and caudal [CGE]) and neocortical proliferative 

zones (NCX) from mid-fetal brain for primary cell culture. (D) TH+ cells from ganglionic 

eminences also express NKX2-1, NR2F2, or SP8, and were BrdU+, DDC+, and GAD1+. 

TH+ interneurons in the neocortical culture were SP8+, but BrdU− (bottom right panel). 

Scale bar represents 20 µm. (E) Percentage of TH+/BrdU+ cells in culture from MGE, LGE, 

CGE, and NCX. Error bars represent SEM. Pairwise t-tests were performed and corrected 

for multiple testing using Bonferroni correction. * P < 0.05; ** P < 0.01.
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Fig. 6. Human telencephalic TH+ interneurons synthesize and transport dopamine in vitro
Human iPSC-derived neurons were incubated with a fluorophore-labeled synthetic 

monoamine. (A) TH+ (red) and DDC+ (blue) immunolabeled interneurons (arrowheads) that 

transported monoamine-imitating fluorophore (green) in vitro. Scale bar represents 10 µm. 

(B) Percentage of neurons that took up the fluorophore and were positive for both the uptake 

assay and TH. This population is composed of DDC+ (blue) or DDC− (red) interneurons. 

(C) Concentration of dopamine detected by HPLC in the unused (control, Ctrl) cell culture 

medium, and the conditioned media from LGE and iPSC-derived cultures. Error bars 

represent SEM. Dunnett’s test. *** P < 0.001.

Sousa et al. Page 19

Science. Author manuscript; available in PMC 2018 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript


	Abstract
	Introduction
	Overview of regional transcriptome profiling
	Species differences in regional gene expression
	Species differences in gene co-expression patterns
	Cell-type specificity of differentially expressed genes
	Species differences in neurotransmitter receptor gene expression
	Species differences in dopamine biosynthesis gene expression
	Molecular profiling of human TH+ interneurons
	Developmental origin of human TH+ interneurons
	In vitro characterization of human TH+ interneurons
	Discussion
	References
	Fig. 1
	Fig. 2
	Fig. 3
	Fig. 4
	Fig. 5
	Fig. 6



