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Abstract

Twisted K-Theoretic Gromov-Witten Invariants and Euler Characteristics

by

Irit Huq-Kuruvilla

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Alexander Givental, Chair

We prove a twisting theorem for nodal classes in permutation-equivariant quantumK-theory,
and combine it with existing theorems of Givental [8] to obtain a twisting a theorem for
general characteristic classes of the virtual tangent bundle of the moduli space of stable
maps. Using this result, we develop complex cobordism-valued Gromov-Witten invariants
defined via K-theory, and relate those invariants to K-theoretic ones via the quantization
of suitable symplectic transformations. This procedure is a K-theoretic analogue of the
quantum cobordism theory developed by Givental and Coates in [5]. Using the universality
of cobordism theory, we give an example of these results in the context of “Hirzebruch
K-theory”, which is the cohomology theory determined by the Hirzebruch χ−y-genus.

We then introduce Euler-theoretic Gromov-Witten invariants, which are based on the or-
dinary topological Euler characteristics of loci of curves. These invariants have useful enu-
merative properties. They are integer valued, there is a reliable way to remove boundary
contributions, and when the moduli spaces are smooth orbifolds, have a concrete geomet-
ric intepretation. In this case, the invariants also encompass the ordinary (i.e. integer)
topological Euler characteristic of Mg,n,d(X) and its compactification.

We give a Wick-type formula computing these invariants in terms of twisted cohomological
Gromov-Witten invariants, and we also show that they can be regarded as the limit as y → 1
of the Hirzebruch-theoretic invariants introduced earlier in this work.

Specializing to the case of a point target space, our formulas yield similar results to the
computation of the Euler characteristics of the moduli spaces of n-pointed curves, given by
Bini-Harer.
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Chapter 1

Introduction and Summary of Results

Quantum K-theory, introduced by Givental and Lee, is a deformation of the K-ring of a
manifold using K-theoretic Gromov-Witten invariants, which are certain holomorphic Euler
characteristics of certain sheaves the Gromov-Witten moduli spaces M g,n,d(X) (henceforth
shortened to Xg,n,d).

For example, the invariant representing the count of degree-d genus g curves in X passing
through n points would be:

χ(Xg,n,d;Ovir ⊗
⊗
i

ev∗iOpt)

Givental generalized these invariants the permutation-equivariant context, which replaces
the operation of taking the holomorphic Euler characteristic with taking the supertrace of
some h ∈ Sn on the sheaf cohomology.

As with quantum cohomology, there is a symplectic loop space formalism governing these
invariants. Let DX denote the generating function for these invariants, with contributions
from disconnected curves. Givental situates this function (after a translation of the inputs
known as the dilaton shift) as an quantum state in a symplectic loop space K∞. The in-
gredients defining the data of K∞, the symplectic form, the dilaton shift, and the choice of
Lagrangian polarization, are in some sense derived from the formal group law computing the
K-theoretic Euler class of the tensor product of two line bundles.

Various problems in cohomological Gromov-Witten theory are best understood in terms
of twisting classes. Given some invertible multiplicative characteristic class C and some
bundle V on Xg,n+1,d, twisted invariants are defined by modifying the virtual fundamental
cycle [Xg,n,d]

vir by capping it with C(ft∗V ).
Givental generalized this notion to K-theory, allowing the twisting class to be of the form

e
∑

k ̸=0
Ψk

k
(Ek), where the Ek. must all be one of two types.

• Type I: Ek = ft∗ev
∗
n+1E, for E ∈ K0(X).
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• Type II: Ek = ft∗f(Ln+1), where f is a Laurent polynomial with coefficients pulled
back from K0(X) satisfying f(1) = 0. (Changing f(1) simply adds another twisting
of Type I).

In the same work, Givental computed the operator relating DX and Dtw
X for each type of

twisting. The formulas themselves are complicated, but become conceptually simpler upon
relating them to K∞, where they essentially involve altering some of the symplectic data. For
twistings of type I, the operator is a quantized version of a certain multiplication operator
om K∞, regarded as a symplectomprhism between K∞,Ω, and K∞,Ωtw.

For twistings of type II, the operator is a translation on Fock spaces that is equivalent
to modifying the dilaton shift.

We introduce a third type of twisting. We allow Ek to be ft∗i∗f(L+, L−), where f is a
symmetic Laurent polynomial, and i is the inclusion of the codimension-2 locus of nodes Z
into Xg,n+1,d, L+, L− are the cotangent lines to each branch at the node.

Our twisting theorem is as follows:

Theorem 1. For a twisting of type III

Dtw
X = □̂DX

Whwre □̂ is the quantization of a symplectic map □ that fixes K+ maps K− to a different
choice of negative subspace.

Remark. Twistings of different types can be applied in sequence, and the same theorems
hold true, relating a twisted potential to a further-twisted one.

Remark. These twisting theorems easily specialize to the non Sn-equivariant case, relating
the ordinary K-theoretic potential DK

X to its twisted versions. The loop space in question is
a direct summand of K∞ denoted K.

The virtual tangent bundle of the moduli space of stable maps has the following decom-
position in K-theory:

T vir = ft∗ev
∗
n+1(TX − 1) + ft∗(1− L−1

n+1)− (ft∗OZ)
∗

Roughly, the first factor corresponds to deformations of the stable map, the second comes
from deforming the complex structure on the source curve, and the third comes from smooth-
ing the nodes on the source curve. Each of the three twisting theorems governs classes of
one of these 3 components, so taken together, we have twisting theorems for arbitrary char-
acteristic classes of T vir.

To any morphism of complex-oriented cohomology theories, there corresponds a Hirzebruch-
Riemann-Roch formula that relates the pushforwards in each theory. MU∗, complex cobor-
dism theory, is universal among such theories. The HRR theorem relating complex cobor-
dism theory and K-theory looks as follows. There is an isomorphism ChK : MU∗(X,Q) →
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K∗(X) ⊗MU∗(pt,Q). If π denotes the map X → pt, then the Hirzebruch-Riemann-Roch
type theorem relating the MU∗-theoretic and K-theoretic pushforwards looks like:

π∗α = χ(X;ChK(α)C(TX))

Where C is the universal multiplicative invertible characteristic class in K-theory. Spe-
cializing MU∗ to any other theory recovers the corresponding Hirzebruch-Riemann-Roch
theorem.

Using C as a twisting class, we can define MU∗-valued Gromov-Witten invariants of
X by defining them via the right hand side of the Hirzebruch-Riemann-Roch formula, as
K-theoretic invariants twisted by C(T vir). Since there is no true Hirzebruch-Riemann-Roch
formula of this kind, these invariants are not genuine MU∗-theoretic pushforwards on Xg,n,d

(as such things are not even defined).
Another verson of cobordism-theoretic invariants were defined by Coates and Givental,

using cohomology rather than K-theory, and the theory was given the name fake quantum
cobordism theory. Our invariants interact differentily with the orbifold structure of the
moduli spaces, since they are defined K-theoreticlaly. Since K-theory is the cohomology
theory corresponding to the multiplciative formal group law, we give the resulting theory
the name multiplicative quantum cobordism theory.

We call the generating function for these invariants DU
X . If we denote the that converts

inputs (and MU∗-theoretic characteristic classes of cotangent lines) to their K-theoretic
counterparts by qChK , then we have the following theorem:

Theorem 2.
qChK⟨DU

X⟩ = ∇⟨DK
X ⟩

Here the operator ∇ corrects the symplectic form to one based on the MU∗-theoretic
Poincare pairing, and modifies the dilaton shift and polarization to ones determined by the
MU∗-theoretic formal group laws. The result is that the connection between moduli spaces
of stable maps and formal group laws discovered in [5] persists in the quantum K-theoretic
context.

A particularly interesting example of these kinds of invariants occur when considering the
specialiation of C to the class Cy, the S

1-equivariant Euler class with equivariant parameter
y. It is determined on line bundles by Cy(L) = 1 − yL−1. When the moduli space is a
manifold, such an invariant (with no inputs) computes the Hirzebruch χ−y-genus, hence we
call the twisted theory Hirzebruch K-theory.

For cases where the moduli space is a smooth orbifold, the limit as y 7→ 1 of the
Hirzebruch-theoretic correlator with no inputs is χ(Xg,n,d). The ordinary (i.e. non-orbifold)
topological Euler characteristic.

However, taking the limit of the entire formalism breaks down. To describe the what
happens at the limit, we develop a new class of Gromov-Witten invariants we call Euler
Invariants.
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Roughly, they are defined as follows: Given [fi] bordism classes of maps Yi → X, Euler-
theoretic correlators are integrals of the form:∫

IXg,n,d

c(TIXg,n,d)(
∏
i

ev∗i fi∗c(Tfi)|IXg,n,d

These invariants represent (ordinary) Euler characteristics of the orbispace (or singular
Deligne-Mumford stack) Mf : Xg,n,d ×∏

evi X
n ×∏

i fi

∏
i Yi. In sufficiently nice situations,

they can be literally geometrically interpreted as such.

Theorem 3. If Xg,n,d is a smooth orbifold of the correct expected dimension (i.e. X = pt
or g = 0 and X is convex), then the map

∏
i fi :

∏
i Yi → Xn can be moved by homotopy

to a map F satisfying some transversality condition with respect to the evaluation maps (the
precise notion we use will be explained in the relevant chapter), so that MF := Xg,n,d ×∏

evi

Xn×F

∏
i Yi is a smooth almost complex orbifold. Doing this yields a geometric interpretation

for the associated Euler-theoretic invariant, namely:

⟨[f1], . . . , [fn]⟩
E

g,n,d = χ(MF )

In particular, the invariants are integers in this case, and can be thought of as versions
of Gromov-Witten invariants that ignore automorphisms, counting each curve with weight
1 regardless of the isotropy group.

We package these invariants (along with an Sn-equivariant generalization) into a gener-
ating function DE

X .
Another advantage of this theory is that the Euler characteristic is additive, so we can

define invariants representing the contributions from smooth curves simply by subtracting
boundary contributions. We call these invariants incomplete Euler-theoretic invariants, and
denote their generating function by EX .

However thus defined, the invariants are not easy to compute, since they require inte-
grating over IXg,n,d, we give two theorems that provide means of computation.

Theorem 4. Euler-theoretic invariants can be computed as limits of Hirzebruch-theoretic
invariants for certain choices of input.

By the twisting theorem for K-theory, this means the invariants can be expressed in
terms of usual K-theoretic Gromov-Witten invariants of X.

However, they can also be computed via cohomological invariants of X. We introduce
the potential DE,fake

X , which is the generating function for cohomological Gromov-Witten
invariants for X, twisted by the total Chern class of the virtual tangent bundle. These have
the same geometric interpreation as Euler-theoretic invariants, except the ordinary Euler
characteristic is replaced with the orbifold one.
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Theorem 5. After some adjustment to the inputs, degrees, and Planck’s constant, we have
a Wick-type formula (given by summation over graphs) of the general form:

DE
X =

[
exp(

∑
r

ℏrr
2

∇r
⊗
M

DE,fake
X×BZM

]
(1.1)

For ∇r an order-2 differential operator that plays the role of the propagator at each edge.

The potentials DE,fake
X×BZM

can be expressed in terms of DE,fake
X , so for the case when Xg,n,d

is smooth of the expected dimension, the formula expresses the (integer) ordinary Euler
characteristics χ(Xg,n,d) in terms of their (rational) orbifold counterparts.

Analogues of the above results also hold in the incomplete setting. Applying the resulting
formula to the case X = pt recovers a formula of Bini-Harer from [2] expressing χ(Mg,n) in
terms of χorb(Mg,n).
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Chapter 2

Quantum K-Theory and Twisting
Classes

2.1 Basic Formulations

We recall the definition of permutation-equivariant K-theoretic Gromov-Witten invariants
and the associated potentials, using the definitions introduced by Givental in [7].

For X a smooth projective variety, let Xg,n,d be the moduli space of stable maps from
n-pointed curves of genus g and degree d, with maps evi to X corresponding to evaluation
at the ith marked point. Define K = K0(X)⊗Λ, for Λ some algebra equipped with Adams
operations Ψk, extending the ones on K0(X).

Given q permutation h ∈ Sn with ℓr(h) cycles of length r, with r ranging from 1 to s, h
acts on Xg,n,d by permuting the marked points.
For each r, given inputs wr1, . . . , wrℓr each Laurent polynomials in q of the form

∑
m∈Z ϕmq

m,
for ϕm ∈ K, associate to the input wrk the bundle Wrk =

⊗r
α=1

∑
m ev∗σαϕmL

m
σα , where σα

are the marked points permuted by the kth cycle of length r, and Lσα are the corresponding
universal cotangent lines on Xg,n,d

Define the correlators of Sn-equivariant quantum K-theory to be (given a genus g, par-
tition ℓ, and degree d), and inputs only in K0(X)[q, q−1]:
⟨w11, . . . , w1ℓ1 , . . . ⟩g,ℓ,d =

∏
r r

−ℓrstrhH
∗(Xg,n,d,Ovir

g,n,d

⊗s
i=1⊗

ℓi
j=1Wij).

Extend this to inputs inK0(X)⊗Λ Ψ-linearly, i.e scaling wri by λ ∈ Λ scales the potential
by Ψr(λ). The motivation for the choice of Ψ-linear scaling is if h permutes V ⊗r cyclically
trh(V

⊗r) = Ψr(V ).
Packaging these correlators together and normalizing appropriately gives the genus g
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potential function

FX
g :=

∑
d

Qd
∑
ℓ

1∏
r ℓr!

⟨t1, . . . , tr, . . . , ⟩g,ℓ,d

FX
g represents all invariants coming from connected curves of genus g, in this formulation,

inputs corresponding to cycles of length r are treated as the same, and have value tr.

Note. We make a modification to FX
0 by adding 1

2
(Ψ2(t2(1), 1), here () denotes the Poincare

pairing on X. This contribution (in a sense that we shall describe later) accounts for curves
with 2 marked points permuted by a 2 cycle.

The total potential DX is defined to represent contributions from possibly disconnected
curves. It is given by the formula

DX := e
∑

g≥0(
∑

k>0 ℏk(g−1) Ψk

k
(Rk(Fg)))

Here the operator Rk takes F (t1, t2, . . . ) to F (tk, t2k, . . . ).

The justification for this choice of definition is as follows, the only nonzero contributions
from disconnected curves occur when h cyclically permutes k curves of the same genus g,
and hk acts as the same permutation on each component. This is equivalent to computing
trhk on a single component, and then applying Ψr to the result. However the cycle lengths
are all scaled by k, hence the operator Rk.

We will regard DX and similar functions as quantum states in suitable symplectic vector
spaces, using Givental’s loop space formalism.

2.2 Symplectic Loop Space Formalism

Let K = K0(X)⊗ Λ, where Λ is some algebra with an action of Adams operations1.
Denote the K-theoretic Poncare pairing by (a, b) := χ(X; a ⊗ b). Let K be the space of

rational functions of q with coefficients in K, with poles allowed only at 0,∞, and roots of
unity. K has the symplectic form Ω(f, g) = −[Res0,∞](χ(f(q−1)g(q))dq

q
). Here Res0,∞ is the

sum of the residues at 0 and ∞. K has a Lagrangian polarization given by K+ = K[q±1],
K− = {f : f(∞) = 0, f(0) ̸= ∞}.

Let the symplectic loop space K∞ be defined as a K-module by
∏

r∈Z+
K. It is given a

symplectic structure via the form Ω∞(f, g) =
⊕

Ψr

r
Ω(fr, gr), and the polarization is similarly

inherited from K.

Remark. K∞
+ represents legitimate inputs to the potential DX , however, there are many

possible choices for complementary spaces, we describe a way of thinking about the choice of

1We also need to complete this space with respect to Novikov’s variables Qd, but we suppress this
notation.
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K∞
− . Consider the expression 1

1−L1L2
, the reciprocal of the ”inverse Euler class” of L1⊗L2 in

K-theory. Regarding it as a symmetric tensor in K ⊗K and dualizing it via the symplectic
form gives a map A : K → K given by sending f(q) to Res0,∞

f(q)
q−xdq.

This map is the identity on K+, and has kernel K−. We will henceforth label different
polarizations of K by expressions of this kind.

One can regard K∞ as a phase space in classical mechanics, with K∞
+ representing position

coordinates and K∞
− representing momentum coordinates. The potential DX is a function

on K∞ constant in the directon of K∞
− , and hence defines a quantum state ⟨DX⟩ in the “Fock

Space” of K∞. We actually define the quantum state ⟨DX⟩ to be DX shifted by (1− q)1 in
each block, this translation is called the dilaton shift.

Given some infinitesemial symplectic transformation, it can be represented as a quadratic
Hamiltonian f(p, q), it induces an action on Fock space by a differential operator f̂ , deter-
mined by the following quantization rules:

• q̂αqβ = ℏ−rqαqβ

• q̂αpβ = qα∂qβ

• p̂αpβ = ℏr∂qα∂qβ

Given a linear symplectomorphism S, we can define the quantization Ŝ as exp(l̂og(S)).
As we will see in the next chapter, complicated formulas relating two generating functions
can be described as quantizations of relatively simple transformations on K∞.

2.3 Twisting Classes

We can define ”twisted”-K-theoretic potentials by tensoring Ovir with other classes from
K0(Xg,n,d).

These classes are expressions of the form e
∑

k∈Z/0
Ψk

k
(Ek), where the Eks must all be of the

following 3 types:

• Type I: Ek = ft∗ev
∗Vk, where Vk ∈ K.

• Type II:Ek = ft∗Fk(L), where L is the universal cotangent line and Fk is a polynomial
with coefficients in ev∗K, these are K-theoretic versions of Kabanov and Kimura’s
κ-classes.

• Type III: Ek = ft∗i∗Fk(L+, L−), where i : Z → Ug,n,d is the inclusion of the codimension-
2 locus of nodes, and Fk is a symmetric Laurent polynomial with coefficients pulled
back by evn+1 from K. L+ and L− are the cotangent branches to the node. (Note we
could equivalently write Ek = ft(Fk(L+, L−)⊗ i∗OZ))
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Remark. To be somewhat more precise, for k a negative number, we define Ψk on line
bundles by Ψk(L) = Ψ−k(L−1), and extend it to K0(X), we also requite some extension of
these operations to Λ. The twisting classes must also be chosen to converge in the topology
of Λ, which can be achieved by adding auxilliary variables to the coefficients. We will address
the details of these requirements as they are needed in examples.

The generating functions Fg
X for twisted invariants are constructed exactly like the ones

for untwisted ones, only with a change to Ovir. However, there is a further modification
necesary for the total descendant potentials. For a twisting class T, the twisted potential is
DT
X is given by the formula

DX := e
∑

g≥0(
∑

k>0 ℏk(g−1) Ψk

k
(Rk(FX

g )))

Here the operator Rk takes F (t1, t2, . . . ) to F (tk, t2k, . . . ), but also changes Ek to Erk.
The justification for this modification is the following: if we have r copies ofM permuted

cyclically with inputs labelled T , the corresponding contribution should be:

strhH
∗(M r;OMr ⊗ e

∑
k

Ψk

k
(
∑r

i=1 pr
∗
i Ek)

∏
i pr

∗
i T )

However it was shown in [8] that this quantity is equal to

Ψr(χ(M : OM ⊗⊗e
∑

k
Ψk

k
(Erk)T ))

To describe the relationship between the twisted potentials Dtw
X and DX , we use the

language of quantization. The potential DX can be regarded as an element of the Fock space
of K∞, i.e. the space of lifts of function from K∞/K∞

− . It thus defines (after a translation of
the inputs by (1− q)1 called the dilaton shift) a ”quantum state” ⟨DX ⟩.

The effect of any such twistings on DX is as follows: ⟨Dtw
X ⟩ = ∇⟨DX⟩, where ∇ is some

differential operator defined on the Fock space.
The following theorem, proven by Givental in [8], describes ∇ for twistings of type 1 and

2 in terms of the symplectic geometry of K∞

Theorem 2.3.1. For a twisting of type I, ∇ is the quantization of the transformation

Φ : fr → Φrfr, where Φr is the Euler-Maclaurin asymptotics of e
∑

k ̸=0

Ψrk

k
(Erk)

1−qk . Here Φ
is regarded as a symplectomorphism from K∞ with symplectic form governed by the twisted

Poincare pairing (a, b)tw,r = Ψr

r
χ(a ⊗ b ⊗ e

∑ Ψrk

k
(Erk)) to K∞ with the standard symplectic

form.
For a twisting of type II, the operator ∇ is the quantization of the translation that changes

the dilaton shift from vr = Ψr(1− q) to vr = Ψr((1− q)e
∑

k
Ψk(Frk(q)−Frk(1))

k(1−qk) ).

In the next chapter, we prove an analogous theorem for twistings of type III:
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Theorem 2.3.2. For a twisting of type III, the operator ∇ is a second-order differential
operator representing change of the negative space of the polarization of K∞, with the new

polarization generated by the expression e
∑

k
Ψk

k
(Frk(L+,L−)⊗(1−L+L−)

1−L+L−
.

To actually write down the operator relating the twisted and untwisted potential, we
observe the following.

e
∑

k
Ψk

k
(Frk(L+,L−)⊗(1−L+L−)

1−L+L−
− 1

1−L+L−
is in K+

r ⊗ K+
r , and as such represents a quadratic

Hamiltonian of type pαpβ. Dualizing it using the symplectic form yields a map A− : K−
r →

K+
r . The time-1/2 flow of this quadratic Hamiltonian is the symplectomorphism (q, p) 7→

(q + A−p, p), sending the negatives space q = 0 to q = A−p. Regarding the tensor as one
living in Kr ⊗Kr, A− can also be regarded as a map A : Kr → Kr, sending (q, p) to (Ap, 0).

This change of polarization is the desired one, since the map Kr → Kr given by dualizing

e
∑

k
Ψk

k
(Frk(L+,L−)⊗(1−L+L−)

1−L+L−
is A− P , where P is the identity on K+ and sends K− to 0. Since

we observe that (A− P )(q, p)) = (A−p, 0)− (q.0), the kernel of this map is (A−p, p), which
is exactly the new negative space.

When calculating the new negative space, the −1
1−L+L−

term is ignored in some other parts
of the literature, which does not change the outcome, since when the domain is restricted to
K−
r , dualizing

1
1−L+L−

yields the zero map.

Remark. We must once again address the case of the addition to FX
0 . The term added

is now 1
8
(Ψ2(t2)(1), f(−1), f(−1))tw, where tw denotes the Poincare pairing on X twisted

by the type-I twisting class, and f denotes the changed dilaton shift in the r = 1 coordi-
nate. This term agrees with the correction in the untwisted case, since 1

8
(Ψ2(t2)(1), 2, 2) =

1
2
(Ψ2(t2)(1), 1).

An important special case that warrants its own interpretation is when the twistings are
a multiplicative (stable) characteristic class C applied to the virtual tangent bundle T .

Using the decomposition T vir = ft∗ev
∗
n+1(TX − 1)+ ft∗(1−L−1

n+1)− (ft∗OZ)
∗, we prove

the following corollary:

Theorem 2.3.3. Let C be an invertible multiplicative characteristic class defined by C(V ) =

e
∑

k∈Z/0 Ψk

k
(skV ), for coefficients sk ∈ Λ. Twisting the (ordinary, not Sn-equivariant) K-

theoretic potential by C(T vir) amounts to the following changes (the symplectic loop space
we consider is now just K):

Type I: The multiplication operator is the asymptotic expansion of C((TX − 1)/(1− q))
(regarded as a function with poles at roots of unity), which scales the Poincare pairing by
C(TX − 1).

Type II: The dilaton shift is (1− q)/(C(q−1).
Type III: The new polarization is determined by the asymptotic expansion of the symmet-

ric function C∗(L1⊗L2)/C(1)(1−L1L2), where C
∗ denotes the characteristic class given by

C∗(V ) = C(V ∗).
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2.4 Example: Hirzebruch K-Theory

Given a vector bundle V with the C∗-action given by scaling the fibers, the equivariant
K-theoretic Euler class is Cy(V ) =

∑
p(−y)p

∧p(V ∗). These invariants appear in [9], in the
context of Grassmanians.

Complete Λ with respect to the variable y and declare Ψr(y) = yr. The class Cy(L) =

1− L−1 =
∑

k<0
Ψk

k
(L/y).

Since Erk = Ek for any r > 0, the expression determining the twisting in the rth block
is the same for each r. The resulting operator accomplishing this twisting is equivalent to
making the following alterations to the symplectic space K∞:

• Changing the K-theoretic Poincare pairing to the pairing (a, b)y =
1

1−yχ(X;Cy(TX)ab).

• Changing the dilaton shift to 1−q
1−yq in each block.

• Changing the polarization to the one determined by 1
(1−y)

1−yL+L−
1−L+L−

We can calculate the negative polarization explicitly. The change of polarization map is:

f 7→ −Res0,∞
1

1− y

f(q)(1− yq−1x)

q − x

dq

q
,

which sends f ∈ K∞
− to f + y

1−yf(0), so the new negative space is

{f : f(∞) = yf(0) ̸= ∞}.
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Chapter 3

Proof of Nodal Twisting Theorem

Adelic Formula for DX

We recall the adelic formula for DX , which recasts the K-theoretic potential into purely
cohomological terms. The proof of theorem 2.2 will rely heavily on this formula.

We define the adelic symplectic loop space K∞ =
⊕

M∈Z+
Kfake(X × BZM), where

Kfake(X × BZM) denotes the loop space of the fake quantum K-theory of the orbifold
X×BZM . Each summand splits as a direct sum of M sectors Kζ

M labelled by roots of unity
ζ, each isomorphic to K((q − 1)).

The symplectic structure on Kfake(X ×BZM) comes from an additional twisting of fake
quantum K-theory which we outline later, and is described as follows: The symplectic form

Ωtw pairs Kζ
M with Kζ−1

M by Ωtw(f, g) = 1
M
(f(q), g(q−1))(r), where (Ψra,Ψrb)(r) = rΨr(a, b),

for (a, b) the usual Poincare pairing, and r is the index of ⟨ζ⟩ in ZM . Let m(ζ) = M
r(ζ)

denote
the primitive order of ζ.

Define the adelic potential DX to be
⊗

M Dtw
X×BZM

.
We can resum the component spaces according to r, to describe the adelic space as:⊕

ζ

⊕
r

Kζ
r

Where the first sum is taken over all roots of unity.
After resumming, the symplectic form becomes

Ω∞(f, g) =
∑
ζ

1

m(ζ)

∑
r

Resq=1(f
ζ
r (q

−1), gζ
−1

r (q))(r)
dq

q
.

The adelic map Φ : (f1, . . . ) 7→ Ψr(fr(
q

1
m

ζ
)) defines a symplectic Ψ-linear transforma-

tion between K∞ and K∞, which respects positive, but not negative polarizations, since an
element of K∞

− will not be polar at every root of unity.

A result of [7] is that ⟨DX⟩ = Φ∗eℏ/2
∑

r,ζη ̸=1 ∇r,ζ,ηDX , where exp(ℏ/2
∑

r,ζη ̸=1∇r,ζ,η) is
the quantization of the rotation changing the standard polarization on K∞ to the uniform
polarization, which is determined by the image of K−

∞ under Φ.



CHAPTER 3. PROOF OF NODAL TWISTING THEOREM 13

This formula has the form of Wick’s summation over graphs, and arises from the appli-
cation of the Lefschetz-Kawasaki-Riemann-Roch theorem to DX . The theorem states that
for X a orbifold, V an orbibundle, and h a discrete automorphism of X that lifts to V :

strh(X ;V ) = χfake
(
IX h;

trh̃(V )

strh̃N
∗
IXh|X

)
Here h̃ some lifting of h on each component of IX h, and χfake(A;V ) is defined to be∫
A
ch(V ) td(TA), i.e. the pushforward in fake K-theory. This theorem is consequence of

the usual Kawasaki-Riemann-Roch theorem, which was shown by Tonita in [16] to hold for
virtually smooth orbifolds.

We recall from [7] the following description of IXh
g,n,d:

The total space itself corresponds to a moduli space of stable maps from curves C with
a symmetry h̃ accomplishing the permutation h of marked points.

A connected component (henceforth referred to as a Kawasaki stratum) of this space is
described by certain combinatorial data:

• A graph G dual to the quotient of the curve by the cyclic group generated by h̃.

• A positive integer Mv for each vertex v Mv representing the order of h̃ on the vertex v.

• The discrete characteristics (genus, degree) of the map on each irreducible component.

• A labelling of the vertices of G with eigenvalues of h̃r on the tangent lines to the
branches at the ramification points of order r. These eigenvalues will be primitive mth
roots of unity for m = Mv

r
.

• A labeling of the edges of G (corresponding to nodes) with pairs of eigenvalues of h̃r on
each branch to the node. We require that these eigenvalues not be inverse to each other
(i.e. the node is unbalanced), so the node cannot be smoothed within the stratum.

After normalizing at the unbalanced nodes, each vertex represents a component of a Chen-
Ruan moduli space of stable maps to the orbifold X×BZM . After doing this, the eigenvalue
at a marked point or node also determines the sector of I(X×BZM) in which the evaluation
map at that marked point lands.

Thus the KRR formula relates a correlator to some fake K-theoretic correlators of X ×
BZM , which are additionally twisted by the denominator terms. These account for the
twistings of fake K-theory that appear in the adelic space formalism.

Marrying the vertices at edges involves the application of a propagator operator for each
edge, which coincides with the change of polarization from the standard to the uniform
polarization.
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Twisted potentials

The exact same argument applies essentially verbatim to twisted potentials, with two differ-
ences. The vertex potentials are further twisted by the restriction of the twisting class (we
label the resulting potentials Dtw,E

X×BZM
). And, only in the case of type III twistings, the edge

operators are modified as well.
Our strategy will thus be to begin with the twisted potential DT

X , where T denotes a
twisting of type III, we pass to the adelic potential DT

X , and analyze the vertex contributions

coming from E to relate DT
X and DX . Then we use the adelic formula to convert that

to a relationship between DT
X and DX , which will involve comparing the respective edge

operators.
Rather than beginning with DX , we could take T to be the composition of T0, a twisting

of type I and II, and T1, a twisting of type III. The resulting argument would give a
relationship between DT

X and DT0
X , and is identical to the case where T0 is trivial, so we just

work in the latter setting to minimize notation.

Vertex Contributions

Let M̂ be a Kawasaki stratum with ambient moduli space Xg,n,d (from which the twisting

classes are inherited). Let C be the universal curve, and Ĉ = C be the universal quotient
curve by h. Let ft, ev, i denote the structure maps of C (the unitalicized such maps denote
the ones coming from the ambient space Xg,n,d). Let the vertex and edge nodes of C be
labelled Zv, respectively, and label the cotangent branches by L±. Any hatted version of the
previously introduced notation refers to the corresponding construction on Ĉ.

We have
ft∗i∗ev

∗Vk|M̂ = ft∗i∗OZCFk(L+, L−)Eu(N)),

for N some excess normal bundle bundle, and Eu the K-theoretic Euler class.
NZv is trivial, since all vertex nodes can be smoothed within the stratum. This allows us

to recast the nodal twisting restricted to 1-vertex strata solely in terms of the nodal loci of
those strata.Let M̂ now denote a stratum with one vertex and no edges.

If we denote the twisting class by S, the vertex potential is the cohomological potential
of X ×BZM , twisted by ch(trh̃(S|M̂)), td(TM̂), and the denominator of the KRR formula,

which contributes a class Otw
X×BZM

(TM̂). If V denotes the terms coming from the inputs in

a particular twisted correlator, the contribution of of M̂ into the Kawasaki-Riemann-Roch
formula applied to that correlator is:

χfake(M̂;Ovir
M̂ · trh̃(S · V ) · Otw

X×BZM
(TM̂)).

We will henceforth isolate the contribution of the locus of nodes with r copies on the
covering curve, which we refer to as Zr.

Differentiating the twisting class in Ek brings down the factor

ch(∆r
k) := ch(trh̃

Ψk

k
(ft∗i∗Fk(L+, L−))).
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Since taking the (genuine) K-theoretic pushforward from the quotient Ẑr = Zr//ZM
extracts ZM -invariants, we can rewrite this expression as ch(

∑
λM=1 λ

kΨk

k
(f̂ t∗̂i∗F̂k(L+L−)⊗

Cλ−1)

Here F̂ is just F , with coefficients pulled back by êv. To simplify the expression, we
make the following calculation:

Lemma 3.0.1. ch(f̂ t∗̂i∗êv
∗αLa+L

b
−⊗Cλ−1)) =

{
0 λr ̸= ζa−b

f̂ t∗̂i∗(ch(êv
∗αLa+L

b
−) td(L+L

∗
−)) λr = ζb−a

Proof. We apply Toen’s Grothendieck-Riemann-Roch theorem. The preimage of M̂ in the
inertia stack of Zr is m copies of the node, labelled by elements of the automorphism group
of the node, labelled by powers of h̃r, which acts on L± by ζ∓1. Since L+L− is invariant
under the h̃r-action, the Todd class is invariant under h̃r.

So the pushforward is equal to f̂ t∗̂i∗ ch(
∑

s λ
−rsζ(b−a)sêv∗αLa+L

b
−) td(L+L−).

Since
∑m

s=1 λ
−rsζ(b−a)s = 0 unless λ−rζb−a = 1, so λr = ζb−a, in which case the result is:

f̂ t∗̂i∗ ch(êv
∗αLa+L

b
−) td(L+L−)

The factor m from the m copies is cancelled by the factor 1
m

in the construction of the
Chern character for orbifolds due to the size of the automorphism group at the node.

Since the Chern character intertwines Adams operations and cohomological power oper-
ations (denoted here P k), the contribution of the term êv∗αLa+L

b
− of F̂k to ch(∆r

k) can be
described as the following cohomological pushforward:∑

λM=1,λr=ζb−a

λk
P k

k

(
(f̂ t ◦ î)∗ ch(êv∗aLa+Lb− ⊗ Cλ−1) td(L+L−)

)
If λr = ζb−a and λ is an Mth root of unity, we necessarily have that r|M . So we can

relabel k as rl0. Collecting the r terms corresponding to the eigenvalues with λr = ζb−a

terms yields that the above expression is equal to:

ζ l0(b−a)
P rl0

l0
(f̂ t∗̂i∗ ch(êv

∗αLa+L
b
−) td(L+L−)

Since orbifold Gromov-Witten theory uses the cotangent lines L̂± on the quotient curve,

we rewrite L± as L̂
1
m
± , which is valid in fake K-theory even though such a bundle may not

exist genuinely. Pulling back ∆r
rl0

to Ẑr, renaming Ψl0

l0
(F̂l0) to Sl0 , and reverting to the

notation of fake K-theory yields:

î∗f̂ t
∗
∆r
rl0

= Ψr
(
êv∗Srl0(ζ

−1L̂
1
m
+ , ζL̂

1
m
− )(1− L̂

l0
m
+ L̂

l0
m
− )
)
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The factor (1 − L̂
1/m
+ L̂

1/m
− ) occurs from pulling back î∗f̂ t∗OẐr

, and is the K-theoretic

Euler class of the normal bundle of Ẑr in M̂.
To compute the correlator as an integral on Ẑr, we use the general formula for a morphism

Y → X:

χfake(X;V ) = χfake(Y ;
f ∗(V )

Eu(Nf )
).

If we label the twisting class, contributions from the KRR denominators, and correlator
inputs together as B, we thus have:

χfake(M̂; ∆r
k ·B · Otw

X×BZM
) =

χfake
(
Ẑr;

Ψr(Srl0(ζ
−1L̂

1/m
+ , ζL̂

1/m
− )(1− L̂

l0/m
+ L̂

l0/m
− )) · î∗f̂ t

∗
(B · Otw

X×BZM
)

1− L̂
1/m
+ L̂

1/m
−

)
.

Ungluing the nodes and integrating over the moduli spaces of component curves yields an

order-2 recurrence relation on the correllators, in which the tensor
Srl0

(ζ−1L+,ζL−)(1−Ll0
+L

l0
− )

1−L+L−
is

split among the points that were unglued and inserted in the corresponding seats. However,
since we need the virtual structure sheaves of the components to match Otw (i.e. also include
the KRR denominators), we must also replace the denominator 1 − L+L− with Ψr(1 −
L+L−). This follows from the explicit calculation of Otw in [7], and accounts for the fact
that deformations of a node on the quotient curve correspond to coherent deformations of the
r preimages on the covering curve, whereas in general they can be deformed independently.

A more detailed account of how ungluing the nodes interacts with cohomological nodal
twisting classes is given in [17] (see Proposition 3.9) for the case where Fk are constants, the
addition of nonconstant terms does not alter the argument.

The differential operator determined from this recurrence adds a factor of ℏr/2, due to
the symmetry between L+ and L−, and the genus reduction (one node on the quotient curve
corresponds to r nodes on the covering curve).

So the potential Dtw,E
X×BZM

satisfies the same differential equation as ∇rDtw
X×BZM

, where
∇r corresponds to changing the polarization in the sectors of order r and eigenvalue ζ using

the expression Ψr
(
e
∑ Ψl

l
Frl(ζ

−1L̂
1
m
+ ,ζL̂

1
m
− )).

Z2-symmetries

We now discuss the role of the anomalous term in the definition of the total descendant
potential. Consider the case where hr fixes a node but swaps the two branches. More
precisely, the covering consists of three components, corresponding to the left branch, the
right branch, and a contracted CP 1 with two nodes. hr acts by swapping the branches (and
the nodes). Any order 2 automorphism of CP 1 has two fixed points (e.g. consider z 7→ −z,
which fixes 0 and ∞), which become marked when passing to the quotient. So the quotient
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curve has a balanced node (with eigenvalues±1), and 2 marked points. However, the covering
curve may not have those points marked, and hence the corresponding component would not
be stable.

More precisely, the moduli space of quotient curves is the component of M0,3,0(X/Z2)
where the first two marked points must have non-trivial orbifold structure. Thus the moduli
space is the component of the Chen-Ruan space

M := M0,3,0(X ×BZ2)

corresponding to the sectors (−1,−1, 1) of I(X ×BZ2).
There is only one such orbicurve, namely the quotient of P1 by the map z 7→ z2. The

two orbifold points are at 0,∞, the nonorbifold point is at 1. Thus M ∼= X ×BZ2, and the
universal cotangent line bundle is trivial.

The untwisted adelic formula compares the contibution of the covering curve P1 with the
contribution of the quotient curve. However we have to deal with the possibility that the
two marked points were not marked on the covering curve, making it unstable.

Formally, the adelic formula accounts for this do this into each of the inputs the expression
1−ζL−r/m), for ζ the eigenvalue and r the covering curve. value of the contribution is (since
all cotangent line bundles are trivial):

χfake(M;T⊗ (1− ζL
1/2
1 )(1− ζL

1/2
2 )Ψ2(ev∗3t2) = χfake(X ×BZ2;T(2)(2)Ψ2(t2(1))

Here T is the twisting class from the Kawasaki-Riemann-Roch denominator. M para-
materizes a certain class of Z2-fixed curves in an ambient moduli space, which in this case
is X0,4,0

∼= X × P1, with Z2 acting by cyclic permutation of a pair of marked points. The
normal bundle of M ∈ X0,4,0 is just the restriction of the tangent bundle of P1, which is
a trivial line bundle, on which h acts with eigenvalue −1. So the Kawasaki-Riemann-Roch
denominator is 1

1−(−1)1
= 1

2
.

Thus the contribution of such curves is 1
2
χfake(X ×BZ2; (2)(2)Ψ

2(t2(1)). Changing from
the Poincare pairing on X × BZ2 to X adds another factor of 1/2. This term appears in
the adelic formula with coefficient 1

3!
= 1

6
, but there are three such choices of moduli space

(depending on which marked point is allowed to have orbifold structure), so we get another
factor of 1

2
, yielding a total contribution of:

1

8
(Ψ2(t2)(1), 2, 2)

However, this contribution does not appear on the left side of the adelic formula, since
the covering curve is not stable.

In the case of twisted potentials, the argument is essentially the same. The only changes
are that the input 1− ζL1/2 is replaced f(ζL), where f is the function representing the new
dilaton shift in the r = 1 coordinate, and the Poincare pairing () is replaced by its twisted

counterpart, since the type I component of the twisting class becomes e
∑

k
Ψk

k
(ft∗ev∗Vk) =
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e
∑

k
Ψk

k
(Vk). The modification to the dilaton shift comes from the fact that the restriction of

the universal cotangent Ln+1 is not trivialized on the points that are marked on the quotient
curve but not the covering curve, so there is a correction term in each of those sectors.

Edge contributions

Recall that an edge in the graph of a Kawasaki stratum corresponds to an unbalanced node
in the quotient curve corresponding to r nodes on the cover curve where h̃r acts on the
tangent branches with eigenvalues ν+, ν−, which are respectively primitive m+,m−, roots of
unity, let M be the order of h on the stratum, and let m = M

r
.

Fixing a particular edge e0, we perform the same procedure as the vertices to compute
the contribution of the nodal locus Ze0 . The Euler factor Eu(N) in the previous section

becomes 1− L+L−, since smoothing the edge node is normal to M̂.
Differentiating in Ek as before brings out the term

ch(∆e0
k ) = ch(trh

Ψk

k
(ft∗i∗Fk(L+L−)(1−L+L−)) = ch(

∑
λM=1

λk(
Ψk

k
(f̂ t∗̂i∗F̂k(L+, L−)(1−L+L−)).

The map f̂ t ◦ î is an isomorphism on coarse spaces, since every point in M̂ has a node
corresponding to the edge. At the level of stacks, the automorphism group of the node
is contracted to the identity, thus the (genuine) K-theoretic pushforward only extracts hr

invariants. The term êv∗Li+L
j
− ⊗ Cλ−1 only has a nonzero contribution when λr = µ−iν−j.

Thus if k = rl0, then

î∗f̂ t
∗
∆e
k = Ψr(êv∗Sk(L+µ

−1, L−ν
−1)(1− µ−1ν−1L+L−).

This means that ungluing the edge nodes is done by applying the operator: e
∑

edges rΨ
r(ℏ/2∇µ,ν),

where

∇µ,ν =
e
∑

l
Ψl

l
(F̂rl(L̂

1
m+
+ µ−1,L̂

1
m−
− ν−1)(1−µ−1ν−1L̂

1
m+
+ L̂

1
m−
− ))(ϕα ⊗ ϕα)

1− µ−1ν−1L̂
1

m+

+ L̂
1

m−
−

.

The other ingredients here are the same as the ones calculated in [7]: The denominator

is the contribution of the normal bundle of M̂ in the denominator of Kawasaki-Riemann-
Roch formula, ϕα, ϕα constitute a Poincare-dual basis of K0(X), which unglues the diagonal
constraint at the nodes.

The resulting change of polarization on the adelic map pulls back to the one described
in the theorem statement.
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Chapter 4

Multiplicative Quantum Cobordism
Theory

4.1 Complex-oriented cohomology theories and

formal group laws

A complex-oriented cohomology theory is a generalized cohomology theory which admits
Chern classes for complex vector bundles. For a theory A∗, a complex orientation is deter-
mined its value on the universal line bundle, which is an element uA in A2(CP∞). For the
standard orientation of cohomology, this element is traditionally denoted z. In K-theory, we
use 1− q−1, where q is the class of the universal line bundle itself.

A complex-oriented cohomology theory defines a formal group law by the rule

c1(L1 ⊗ L2) = F (c1(L1), c1(L2)).

For ordinary cohomology theory, it is additive formal group law, for K-theory, the result is
the multiplicative formal group law since cK1 (L1 ⊗ L2) = 1− L−1

1 L−1
2 .

Complex cobordism theory is the cohomology theory defined by the Thom spectrum. It
admits a tautological orientation u coming from the isomorphism between the Thom space
of the universal line bundle and CP∞. This orientation is universal in the following sense:
a choice of complex orientation on a homotopy commutative ring spectrum A corresponds
to a map ϕ : MU → A. Similarly, the formal group law associated with MU∗ is the
universal one, meaning that the coefficients of the defining power series are free generators
of MU∗(pt), which is the ring of manifolds under complex cobordism. Over Q, it a polynomial
ring generated by CP k in degree −2k.

The Chern-Dold character mentioned in the introduction is the isomorphism U∗(X) →
H∗(X,U∗(pt)) determined by sending u ∈ U2(CP∞) to u(z) ∈ H∗(CP∞, U∗(pt)), where
u(z) is the exponential of the cobordism-theoretic formal group law. Specializing to K-
theory gives the series 1 − e−z, which is indeed an isomorphism from the additive to the
multiplicative formal group.
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The multiplicative Chern character ChK : U∗(X) → K0(X)⊗ U∗(pt) is defined by Ch ◦
ch−1, and it is determined by the image u ∈ U2(CP n), which is a power series in 1 − q−1

which we denote by u(1− q−1).
As mentioned in the introduction ChK and the cobordism-theoretic pushforward map

satisfy a Hirzebruch-Riemann-Roch formula, i.e. for π the map X → pt, we have:

π∗α = χ(X;ChK(α) TdK(TX)),

where the multiplicative Todd class TdK is the universal stable exponential characteristic
class in K-theory. It is defined on the universal line bundle by the formula 1−q−1

u(1−q−1)
.

This is a consequence of a more general theorem of Dyer that gives a similar result
between any two cohomology theories [6], but can be viewed more concretely as combination
of the Hirzebruch-Riemann-Roch formula for U∗ and the usual one relating pushforwards in
K-theory and cohomology.

The logarithm of the formal group law of cobordism theory is given by Mischenko’s
formula as

z(u) = u+
∑
n≥1

[CP n]
un+1

n+ 1
.

One can thus explicitly compute u(1 − q−1) as the series inverse of 1 − e−z(u). There
are some generators bk of U∗(pt) such that: u(1− q−1) = 1− q−1 +

∑
k≥1 bk(1− q−1)k+1.

Similarly: ln( 1−q−1

u(1−q−1)
) =

∑
k≥1 ak(1 − q−1)k for a different set of generators ak. After

completing with respect to this grading,
∑

k≥1 ak(1 − q−1)k can be rewritten as a series in

q−k, denoted s(q) =
∑

k≥0 ckq
−k. The ck≥1 are independent in the completion of U∗(pt), but

c0 is determined by the requirement s(1) = 0.

Since TdK is multiplicative and Adams operations are additive, the formula for the
multiplicative Todd class of a general bundle is:

TdK(·) = e
∑

k≥0
ck
k
Ψk(·).

Here Ψ0 is the rank operator. This is the universalK-theoretic characteristic class mentioned
in the introduction, with the additional requirement of stability.

The stability requirement can be relaxed in the following way. Given a characteristic
class C with C(1) = t for t some unit, we can regard it as coming from a series 1−q−1

u(1−qt) , where

u(1 − qt) is a homomorphism the multiplicative group with orientation given by (1 − q−t)
instead of (1− q−1). This scales the logarithm z(u) by a factor of 1

t
.

Using C and u(1 − q−t) define new versions of ChK and TdK , however, the resulting
pushforwards have the same value as if we used the normalized version of C instead. To
see this, apply the ordinary Riemann-Roch formula to rewrite χ(X;ChK(α) TdK(TX)) as
an integral over X. The 1

t
coefficients appearing from the expansion of td(TdK(TX)) and

ch(ChK(α)) cancel in the top degree. The same result is true in the orbifold setting, which
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can be shown by applying Kawasaki-Riemann-Roch and then considering top-degree terms
on each stratum.

Keeping this in mind, the c0 term in the exponential expression for TdK can be ignored,
provided we apply the above modifications consistently.

Cobordism-valued Gromov-Witten invariants

Define the algebra U to be Û∗(X), where the hat denotes completion by the grading in-
troduced in the previous section, and further completion to ensure u(1 − q−1) is a Laurent
polynomial in q (the latter may involve adding an additional variable).

Define q(u) to be ez(u). The inputs to cobordism-theoretic correlators are drawn from
U [q(u)±], regarded as a subalgebra of U(u). This algebra contains u as well as u∗ := u(1−
q(u)), which represents the first U∗-theoretic Chern class of the dual to the universal line
bundle.

For αi ∈ U [q(u)±], the cobordism theoretic correlators are defined via the right hand side
of the Hirzebruch-Riemann-Roch formula, i.e.

⟨α1, . . . , αn⟩Ug,n,d = χ(Xg,n,d;Ovir · TdK(T vir)
n∏
i=1

ev∗i ChK αi(Li)).

The genus g and total descendant potentials Fg.U
X and DU

X are defined in the same way
as for K-theory.

The loop space U
We construct the space U in a similar manner to K. As a U -module, U is defined as U [q(u)±]
localized at 1− q(u)m for each m ∈ Z̸=0. The symplectic form is

ΩU(f, g) := Resq(u)=0,∞(f(u), g(u∗))Udz(u).

(, )U denotes the cobordism-theoretic Poincare pairing.
As with K, U+ is U [q(u)±], however the negative space is not the natural analogue of

K−, consisting of functions holomorphic at 0 and vanishing at ∞. Rather, it is obtained
from that space by dualizing the symmetric tensor 1

cU1 (L∗
1⊗L∗

2)
, and taking the image under

the resulting linear map. With the above data, DU
X defines a quantum state ⟨DU

X⟩ of U after
a dilaton shift of u∗.

4.2 Formula for DU
X

We are now in the position to state the formula relating DK
X and DU

X :
The quantum multiplicative Chern character qChK, defined by extending ChK by u 7→

u(1 − q−1), (equivalently q(u) 7→ q), is a linear isomorphism from U to K (provided Λ is
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chosen to be u∗(pt) completed appropriately). qChK is not a symplectomorphism, since it
transforms the cobordism-theoretic Poincare pairing into the K-theoretic pairing with the
insertion of t · TdK(TX). Furthermore, it does not identify dilaton shifts nor polarizations.
Roughly, after correcting these discrepancies, qChK identifies the quantum states. More
precisely, the following formula holds:

Theorem 4.2.1.
qChK⟨DU

X⟩ = ∇⟨DK
X ⟩

Where ∇ consists of 3 operators:

• The quantization of the scalar multiplication by the asymptotic expansion of TdK(
TX−1
1−q ),

which is regarded as a symplectomorphism from K with symplectic structure twisted by
t · TdK(TX − 1) to K with its original symplectic structure. Thus viewed, the quanti-
zation acts in the opposite direction.

• A translation operator on Fock space which changes the dilaton shift to from 1 − q to
qChK(u

∗) = u(1− q).

• The quantization of a symplectomorphism of the form (p, q) 7→ (p, q+Sp), which leaves
K+ unchanged and changes K− into qChK(U−).

qChK identifies the potentials DU
X and DK,tw

X , where the twisting class is TdUK(T
vir). We

recall the decomposition of T vir in K0(Xg,n,d) proved in [4]:

T vir = −ft∗(L
−1 − 1) + ft∗(ev

∗(TX − 1))− ft∗i∗OZ
∗.

Thus twisting by TdK(T
vir) induces one twisting of each type.

By theorems 2.1, 2.2, and 2.3, ⟨Dtw
X ⟩ = ∇′⟨DX⟨, where ∇′ is an operator that encodes a

change of symplectic form, dilaton shift, and polarization.
So the formula is equivalent to showing that ∇ = ∇′, and that qChK is a symplectomor-

phism, which respects dilaton shift and polarization, provided that the symplectic structure
on K is the one determined by ∇.

Twisting by TdK(T
vir) = e

∑
k>0

Ψk

k
(skT

vir), for some particular choices of sk, results in
three twistings, one of each type:

• Type I: e
∑

k<0
Ψk

k
(skft∗(1−L−1))

• Type II: e
∑

k<0
Ψk

k
(skft∗ev

∗(TX−1))

• Type III: e
∑

k<0
Ψk

k
(sk(−ft∗i∗OZ)∗ .

These result in the following changes:
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• Multiplication operator and symplectic pairing: Since the twisting of type I is
TdK(ft∗ev

∗(TX − 1)), the resulting multiplication operator is equivalent to changing
the Poincare pairing into the following:

1

TdK(1)
Resq=0,∞ χ(X; f(q)g(q−1) TdK(TX))

dq

q
.

The operator itself is the asymptotic expansion of
∏

m≤0 TdK(αiq
m)

TdK(qm)
. The residue opera-

tions on U and K themselves coincide since qChK(dz(u)) =
1

TdK(1)
d log(q) = 1

TdK(1)
dq
q
.

• Dilaton shift: The dilaton shift changes to (1− q)e
∑

k<0
Ψk

k
(sk(1−q)), which is the asymp-

totic expansion of (1− q) TdK(q
−1) = u(1− q) = qChK(u

∗).

• Change in polarization: The twisting of type III is by TdK(−ft∗i∗OZ
∗) = 1/Td∗

K(ft∗i∗OZ).
Here Td∗

K(V ) denotes TdK(V
∗). So the expression determining the new polarization

is:

1

(Td∗
K(1− L+L−)(1− L+L−)

=
TdK(L+L

∗
−)

TdK(1)(1− L+ L−)
= qChK(

1

cU1 (L
∗
+L

∗
−)

)

4.3 Specialization and examples

Other cohomology theories

Over Q, the universality of cobordism theory also holds for cohomology rings. Given a
cohomology theory A, the specialization map ϕ : U∗(pt) → A∗(pt) is given by sending [CP n]
to the pushforward to the point of the class 1 ∈ A∗(CP n). One recovers A∗(X) by restriction
of scalars from U∗(X), which is exact over Q.

In this way, one can in principle specialize the constructions of the previous section to
any complex oriented cohomology theory, and thus define Gromov-Witten invariants valued
in that theory. However, since we use a completed version of U∗, the map qChK and the class
TdK(T

vir) will only be well-defined if ϕ factors through the completion, i.e. if uA(1 − q−1)
is actually a Laurent polynomial in q.

We can also use the same framework to define invariants for algebraically-oriented the-
ories. Levine and Morel’s theory of algebraic cobordism outlined in [12] has the same uni-
versality properties among algebraic theories as MU∗ does for complex oriented ones. The
necessary Riemann-Roch theorems are due to Smirnov ([15]). So the formalism we have
constructed works equally well in this context.
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Example: the χ−y-genus and Hirzebruch K-theory

The Hirzebruch χ−y-genus is a polynomial deformation of the holomorphic Euler character-
istic, it is defined on complex manifolds by

χ−y(C) = χ(M ;
∑
p

(−y)pΩp
X),

with a y a formal variable.
The same definition extends to virtually smooth orbifolds X if we interpret ΩX to the

the virtual cotangent bundle. Recall the class Cy(V ) :=
∑

p(−y)p(V ∗)p) can be rewritten as

e
∑

k≤0
1

yk
Ψk

k
(V )k

. We can treat this as if it were a multiplicative Todd class, but from K-theory
to itself, with a different choice of complex orientation, we call this modification of K-theory
Hirzebruch K-theory.

We can regard the K-theoretic Gromov-Witten invariants twisted by Cy introduced in
Chapter 1 as Hirzebruch-theoretic Gromov-Witten invariants of X. If L is a line bundle
then Cy(L) = 1 − yL∗, and Cy(1) = 1 − y. Treating Cy as a Todd class (i.e. ratio of two
Euler classes) means, that Hirzebruch theory comes from the morphism of formal group laws

given by the series u(1 − q−1) = 1−q−1

1−yq−1 . If we complete the base algebra with respect to y,

u(1− q−1) becomes a Laurent polynomial in q.
Using the formula from earlier, the transition to Hirzebruch K-theory has the following

effects on the symplectic loop space:

• The multiplication operator from the type I part of the twisting changes the Poincare
pairing to (a, b) = χ(X; a·b·Tdy(TX)), and scales the symplectic form by Tdy(1) =

1
1−y .

• The dilaton shift becomes u(1− q) = 1−q
1−yq , demonstrating formal group inversion.

• The subsequent polarization changes to the one determined by 1
1−yu

∗(L+L−) =
1−yL+L+−
1−L+L−

.

These agree with the corresponding calculations in chapter 1 for r = 1.
One can interpet these invariants as computing the virtual χ−y−genera of loci inside

Xg,n,d satisfying some enumerative constraints. For genuinely smooth orbifolds, when y = 1,
this version of the χ−y-genus becomes the ordinary topological Euler characteristic of the
coarse moduli space. So in cases where Xg,n,d is genuinely smooth, which includes cases
where X is homogeneous, in particular Mg,n. Applying the corresponding approach using
the cohomologically defined invariants of [5] instead yields the orbifold Euler characteristic,
which is a rational number given by a weighted count of simplices. This illustrates the general
principle that multiplicative cobordism-theoretic invariants will have different relationships
to the orbifold structure of Xg,n,d than “fake” ones.

However, the symplectic formalism degenerates in this limit, so any computations must
be done for a general y, and then specialized. A detailed discussion of the kind of invariants
that thus result will be done in the next chapter.
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Chapter 5

Euler-theoretic Gromov-Witten
Invariants

5.1 Introduction

There are many different generalizations of the notion of Euler characteristics to orbifolds
(a family of which are documented in [3]). They are given different names throughout the
literature, to eliminate ambiguity, We will specify the two we use here below. The ordinary
Euler characteristic of an orbifold X with coarse space X, is just χ(X). It is integral and
behaves well with respect to covering maps, provided ones uses the degree of the map on
coarse spaces, rather than the orbifold degree. We denote it by χ(X).

The other Euler characteristic we consider is the orbifold Euler characterstic. Given an
effective orbifold X with underlying topological space X , we can choose a presentation X as
a quotient of a manifold M by an almost-free action of a Lie Group G.

An orbifold triangulation S on X is a triangulation on X such that each point in the
interior of a simplex ∆ has the same isotropy group G∆ under the G-action, and that each
simplex is small enough to be contained in a single orbifold chart of X . Such a triangulation
always exists, by a result of Illman [10].

Definition 5.1.1 ([13]). The orbifold Euler Characteristic χorb(X ) is defined to be (for a
choice of orbifold triangulation S):

∑
∆∈S

(−1)dim(∆)

|G∆|

By the same arguments as the ordinary cohomological Euler characterstic for manifolds,
χorb is independent of the choice of triangulation.

The orbifold Euler characteristic is related to its ordinary Euler characteristic by the
following theorem:
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Theorem 5.1.2. For an arbitrary orbifold X :
χ(X ) = χorb(IX )

Proof. For a simplex δ with isotropy group Gδ, it appears in CGδ
components of the inertia

orbifold, where CGδ
is the class number, and in the component corresponding to class c

is counted with multiplicity 1
|c| . Thus the total contribution of preimages of δ in IX is∑

c∈Cl(Gδ)
1
|c| = 1.

If X is a compact almost complex orbifold, the orbifold Euler characteristic satisfies the
Poincare-Hopf and Chern-Gauss-Bonnet theorems.

Theorem 5.1.3 ([13]). For V a vector field with isolated singularities on X :

χorb(X ) =
∑

∂∈Sing(V )

Indorbp (V )

(The orbifold index of a vector field at a point is its index in an orbifold chart containing
that point, divided by the order of the isotropy group at that point).

Theorem 5.1.4 ([13]).

χorb(X ) =

∫
X
ctop(TX )

As a corollary, χ(X ) =
∫
IX
ctop(IX), and both Euler characteristics are invariant under

deformations.

5.2 Euler characteristics and Gromov-Witten

Invariants

Motivation: Computing Euler Characteristics of Fiber Products

For the rest of this text, we use the following notation:
Given a map f between orbifolds, If will denote the induced map between inertia orb-

ifolds.
Given a bundle V . c(V ) denotes the total Chern class of that bundle.
Given a morphism f : X → Y , the relative tangent bunlde Tf is TX − f ∗TY .
The motivation for the definition of the Gromov-Witten invariants we consider comes

from the following theorem:

Theorem 5.2.1. Given a fiber diagram:
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M f //

j
��

Y

g
��

X h // Z

Where X is a compact almost-complex orbifold, Y and Z are compact almost-complex
manifolds.

If M (which is a priori an orbispace), has the structure of a smooth orbifold, we have:

χ(M) =

∫
IX
c(TIX )Ih∗g∗c(Tg)

Proof. Taking inertia orbifolds on all sides gives that:

IM If //

j
��

Y

g
��

IX Ih // Z

is also a fiber diagram.
Thus

Ih∗g∗c(Tg) = j∗If
∗c(Tg) = Ij∗c(If

∗Tg).

Another consequence of the above diagram being a fiber square is that If ∗Tg = TIj, so
we can rewrite ∫

IX
c(TIX )Ih∗g∗c(Tg) =

∫
IX
c(TIX )Ij∗(TIj).

By the projection formula above is equal to:∫
IM

c(Ij∗TIX )c(TIj).

Since TIj = TIM− Ij∗TIX , this integral is equal to∫
IM

c(TIM) = χ(M).

Application to Gromov-Witten Moduli Spaces

Let Xg,n,d be the moduli space of degree d maps from n-pointed stable curves to X. Let
fi : Yi → X be (almost)-holomorphic maps from (almost)-complex manifolds Yi. Consider
the diagram:
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Mf
α //

β

��

∏
i Yi∏

i fi
��

Xg,n,d

∏
i evi // Xn

IfXg,n,d andMf are orbifolds, by the the theorem in the previous section we can conclude:

χ(M) =

∫
IXg,n,d

c(TIXg,n,d)
∏
i

Iev∗i fi∗c(Tfi).

Both quantities only depend on the complex bordism class of fi, denoted [fi]. (More
precisely, they depend on the image of [fi] under the map φ :MU∗(X) → H∗(X) induced by
the map MU∗(pt) → Z sending a class of a manifold to its topological Euler characteristic).

5.3 Permutation-Equivariant Invariants

Based on this idea, we will define a theory of Gromov-Witten invariants encompassing the
above Euler characteristics, and the Euler characteristics of their Sn-fixed loci.

Given an element h ∈ Sn, with cycle structure given by an integer vector ℓ, with ℓr cycles
of length r. Take inputs α1, . . . , α|ℓ| ∈MU∗(X), such that for all α in the pth cycle of length
q, they are all the same, equal to αp,q.

Define the Sn-equivariant Euler-theoretic correlator ⟨α1,1, . . . , αℓ1,1, . . . , αk,ℓk⟩
E

g,ℓ,dto be

∏
r

r−ℓr
∫
IXh

g,|ℓ|,d

ctotal(T
vir)

k∏
j=1

ℓj∏
i=1

Iêv∗i,j(φ(αi,j))

Here êvi,j denotes the restriction of any of the evaluation maps from marked points
permuted by the ith length-j cycle of h. All such resctrictions are equal since we restrict to
the h-fixed locus. By construction these correlators are polyadditive.

We package these correlators into genus-g generating functions in the following manner:

FE
g,X :=

∑
d

Qd
∑
ℓ

1∏
r ℓr!

⟨t1, . . . , tr, . . . ⟩Eg,ℓ,d

Here the input tr =
∑
ϕata,r for ϕa running a basis of MU∗(X) (so all cycles of length r

receive the same input). As with K-theoretic invariants, we can extend the input algebra to
some Λ equipped with Adams operations, but in this case these operations act trivially on
MU∗(X), and will not currently be relevant to the applications discussed in this work.

Assume we have h acting on some disconnected curve with components C1, . . . , Ck. The
corresponding moduli space only has non-trivial h-fixed locus if h cyclically permutes the k
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components, and hb acts on each as a permutation of the marked points on that curve. The
union of the curves also has Euler characteristic k(2− 2g).

Motivated by this fact, we define the total descendant potential DE
X to be

exp(
∑
g

∑
k

ℏk(g−1)Ψk(Rk(FE
g,X))/k)

. The Rk changes the input (t1, . . . , tr, . . . ) into (tk, . . . , trk, . . . ), which are there to correct
for the fact that the cycles of h are all k times longer than the corresponding cycle of hk.

Remark. As in theK-theoretic case, we add to FE
0 an anomalous term, in this case 1

4
(Ψ2(t2), 1),

here (, ) denotes the Euler-theoretic Poincare pairing. There is an adelic type formula for
these invariants, and this modification serves the same purpose as in the K-theoretic case.
(As ever for Euler theoretic invariants, the Adams operations do not actually do anything
here unless the coefficients are taken from some nontrivial Λ−algebra).

Remark. The inputs come from cobordism theory, but in the integral, they are specialized
to the cohomology theory with the total Chern class playing the role of the Todd class. We
will henceforce refer to this theory as Euler Theory.

Incomplete Invariants

An advantage of the Euler characteristic is that it is additive, so to define an integral rep-
resenting contributions from the interior of the moduli space, we can simply subtract the
corresponding Euler characteristics from the boundary. We call these ”incomplete” Euler
invariants. They are denoted without bars, i.e. the incomplete Euler correlator is denoted
⟨[f1], . . . , [fn]⟩Eg,ℓ,d, and is “defined” by:

⟨[f1], . . . , [fn]⟩Eg,ℓ,d := ⟨[f1], . . . , [fn]⟩
E

g,ℓ,d − boundary contributions

For a precise description of these correlators, we introduce the following notation: Write
t =

∑
a taϕ

a, for ϕa a basis ofMU∗(X). Denote ∂
∂ta,r

by ∂a,r, and let ga,b be the matrix of the

specialization of the MU∗-theoretic Poincare pairing to Euler theory. Given a permutation
h with cycle structure ℓ, boundary components of the associated moduli space Xh

g,n,d arise
from curves splitting into components along cycles of nodes, rather than individual nodes
themselves.

A given codimension-d boundary stratum is a fiber product of lower-dimensional moduli
spaces : Xh1

g1,|ℓ1|,d1 ×ev (X0,3,0)
r1 ×ev X

h2
g2,|ℓ2|,d2 × . . . Xhk

gk,|ℓk|,dk , together with an assignment I
of the locations of the original marked points, and cycles corresponding to genus reductions.
Call the set of such I B(Xh

g,|ℓ|,d)), each I ∈ B(Xh
g,|ℓ|,d) determines a unique closed boundary

stratum XI , as well as an ”open” boundary stratum MI , obtained by replacing the moduli
spaces in the fiber product with their uncompactified counterparts. The same statement
is true at the level of inertia orbifolds, since passing to inertia orbifold preserves the fiber
diagram, and X0,3,0 is a manifold. In more concrete terms, an auotmorphism of a reducible
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curve fixing the marked points and nodes is nothing more than an automorphism of each of
the components, fixing the marked points and attaching point. This means that the same
procedure of ”ungluing” boundary strata in the calculation of Gromov-Witten invariants
applies in this setting.

Fixing such a stratum XI , we denote the contribution to the correlator (with original
inputs α = (α1,1, . . . )) by C

E
α (Xi), which is defined by:

Cα(XI) :=
∏k

i=1 ⟨αI⟩
E

gi,ni,di
.

Here the insertion αI into a correlator means that inputs are determined according to the
assignment I, with inputs corresponding to a cycle of nodes of length r receiving

∑
rga,bϕa⊗

ϕb (either as an individual inpout in the case of nodes corresponding to a genus reduction, or
split between the two correlators for reducible nodes. We will omit the subscript α when the
inputs are obvious. Using this notation, we can formally define the incomplete correlators:

⟨α1,1, . . . ⟩Eg,n,d :=
∑
I

(−1)dCE
α (XI).

The factor r in the input for nodes accounts for the normalization coefficient
∏

r r
−ℓr , as

each node contributes an additional cycle of length r which is not present in ℓ.

Remark. We can also rewrite these equations in terms of the ”open” boundary strata, which
will be useful later. Given the same labelling data, let MI be the ”open” part (i.e. ignoring
the singular locus in each term in the fiber product) of XI . Define C(MI) in the same way
as C(XI), but with all complete correlators replaced with incomplete ones. Since the open
boundaries do not overlap we can rewrite the previous equation as:

⟨α1, . . . , αn⟩Eg,n,d = ⟨α1, . . . , αn⟩
E

g,n,d −
∑
I

CE(MI).

Denote the total descendent potential of these invariants as EX .

Theorem 5.3.1.

exp(−
⊕
r

1

2
rℏr
∑
a,b

ga,b∂a,r∂b,r)DE
X = EX

We will first consider the case where tr = 0 for all r ≥ 1, i.e. we consider the ordinary,
rather than Sn-equivariant theory.

First note ∑
a,b

gabℏ∂a∂bexp(
∑
g

ℏg−1FE
g,X) =∑

a,b

gabDE
X(t)(ℏ

∑
ℏg−1FE

g,X(t, ϕ
a)FE

g,X(t, ϕ
b) +DE

X(t)(
∑

ℏg)Fg,E(t, ϕ
a, ϕb)

(5.1)

This is precisely the generating function for invariants of disconnected curves, where the
contribution from one component is replaced with the contribution from its codimension-1
boundary.
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The placement of the extra ℏ ensures that a product of correlators from curves with
genus g1 and g2 each with one fixed insert has coefficient ℏg1+g2−1, so it is treated as coming
from a degeneration of a curve with genus g1 + g2, and similarly, a correlator with 2 fixed
inserts has coefficient ℏg, so it is treated as coming from a genus g+1 curve. The factor 1/2
accounts for the symmetry between the branches.

Similarly 1
n!
(ℏ
2
∂a∂b)

n accounts for contributions from the virtual codimension n boundary
components, the 1

n!
coefficient corrects for the order in which the insertions are taken.

The argument is essentially the same for the general case. In the case of invariants coming
from a permutation h with cycle structue ℓ, the codimension-1 boundary strata of Xh

g,|ℓ|,d
correspond to a cycle of marked points coinciding with another cycle. h restricts on each
component to a symmetry h1, h2, with cycle structures (ℓ1, C), (ℓ2, C), where C represents
a single cycle of length r.

Splitting along such a cycle is accounted for entirely by the operator

∆ := exp(−1

2
ℏrr
∑
a,b

ga,b∂a,r∂b,r),

,the ℏr to account for the change in Euler characteristic by r points, and the additional
factor of r to correct the normalization term

∏
r r

−ℓr , since the terms associated to (ℓ1, C)
and (ℓ2, C) differ from the term associated to ℓ by a factor of r.

5.4 Geometric Interpretation

For this section, we provide a literal geometric interpretation of Euler-theoretic correlators in
the case where Xg,n,d is a smooth orbifold (i.e. X = pt or g = 0 and X is convex). Consider
a diagram of the form:

M h //

j

��

∏
i Yi

F

��
X0,n,d

ev // Xn

IfM is an almost-complex orbifold, and h, d are smooth and almost holomorphic, then the

Gromov-Witten invariant ⟨[f1], . . . , ⟩
E

0,n,d computes χ(M). However, for general maps fi, M
will be an orbispace (or a singular Deligne-Mumford stack), and no such direct interpretation
is possible.

Working in the smooth category, there is a notion of transversality introduced by Schmalz
in [14] for maps from orbifolds to manifolds that gives sufficient conditions for M to be an
orbifold.

Definition 5.4.1 ([14]). Given a map f : X → M , for X an orbifold and M a manifold,
and Y a closed submanifold whose incluson into M is given by the embedding i : Y → M ,
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then f is transverse to Y if for a choice of orbifold charts Ui, the map Ui × Y →M ×M is
transverse to the diagonal in M ×M .

In [14], Schmalz also showed that this notion of transversality retains the expected prop-
erties:

• If f is transverse to Y , then f−1(Y ) is a suborbifold of X .

• Given f,M, Y, i as in the previous definition, one can deform the inclusion i : Y →M
by homotopy to i′ : Y →M such that f is transverse to Y ′.

• If f−1(i(Y )) is compact, we can choose i′ so that property is preserved.

Using this notion, we will prove the following theorem:

Theorem 5.4.2. If X0,n,d is a smooth orbifold, the correlator ⟨[f1], . . . , ⟩
E

0,n,d computes the
Euler characteristic of the orbifold X0,n,d ×ev X ×F ′

∏
i Yi, where F

′ is some smooth map
homotopic of

∏
i fi, chosen so that F ′ × ev is transverse to the diagonal.

Proof. First, we deform ∆ ∈ X×X to ∆′, so the map
∏

i fi×ev is transverse to ∆′. However,
we can regard ∆′ as the graph of a map g : X → X that is homotopic to the identity, and
the statement fi × ev is transverse to ∆′ becomes equivalent to g ◦

∏
i fi × ev is transverse

to ∆. We call g ◦
∏

i fi F
′.

We now observe that transversality of the maps F ′, ev means that the preimage of the
diagonal, which is M ′ := X0,n,d ×ev X ×F ′

∏
i Yi, is indeed an orbifold. The maps h and j in

the below diagram are smooth, since they are compositions of the inclusion of M ′ into the
product, with projections onto each factor.

M′ h //

j

��

∏
i Yi

F

��
X0,n,d

ev // Xn

If all the maps in the above diagram were almost holomorphic, the result would follow
immediately from the arguments in section 5.2 Unfortunately, we cannot necessarily guaran-
tee that g (and thus F ′) will be almost holomorphic. However, there is a way around this, F ′

is almost holomorphic after giving X the almost-complex structure determined by pushing
forward the original complex structure by dg. Since g is homotopic to the identity, this new
complex structure is connected by some path to the original one, and thus determines the
same Chern classes. Thus for the purposes of evaluating the correlator, we can treat all maps
as if they were holomorphic, since the only integrals being taken are of Chern classes. We
can also replace all the orbifolds in the diagram with their inertia orbifolds, thus allowing us
to conclude:
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∫
IX0,n,d

c(TIX0,n,d)
∏

fi∗c(Tfi) =

∫
IX0,n,d

c(TIX0,n,d)
∏

F ′c(TF ′) =

∫
IM ′

c(TIM ′) = χ(M ′)

Remark. The analogous result is true for the the permutation-equivariant case, n = |ℓ| for
some partition ℓ, and the [fi] are chosen such that they are compatible with ℓ, then the
corresponding permutation-equivariant correlator represents the Euler characteristic of the
h-fixed locus of Mf , deformed as above. Since the fixed-point loci of a finite group acting on
a smooth orbifold are also smooth orbifolds, the above calculation goes through essentially
unchanged.

The interpretation of these results are as follows. If fi are all embeddings Yi → X, then
the corresponding Euler-theoretic Gromov-Witten invariant computes the Euler character-
istic of the locus of curves of evi maps into Yi, for sufficiently generic deformation of

∏
fi.

If Yi = pt, these have the same enumerative interpretation as usual Gromov-Witten invari-
ants. Passing to incomplete invariants subtracts the contributions from nodal curves, while
analogous procedures are not possible in classical Gromov-Witten theory.

In the special cases we have used, the argument shows that the Euler-theoretic invariants
are integer-valued. The same is true from Gromov-Witten invariants in these cases, however,
we conjecture that Euler-theoretic invariants are always integers.

5.5 Fake Euler Theoretic Invariants

We can build the exact same formalism based on the orbifold Euler charactersitc character-
istic, i.e. twisting the virtual fundamental class of Xg,n,d by ctotal(TX

vir
g,n,d), rather than using

the tangent bundle to the inertia stack. We do so for now without permutation-equivariance,
i.e. we define correlators:

⟨α1, . . . , αn⟩
E,fake

g,n,D :=

∫
Xg,n,d

c(TXvir
g,n,d)

∏
i

ev∗i αi

We define the complete and incomplete correlators ⟨α1, . . . , αn⟩
E,fake

g,n,d and ⟨α1, . . . , αn⟩E,fakeg,n,d

analogously to the Euler-theoretic case. That is:

⟨α1, . . . , αn⟩
E,fake

g,n,d :=

∫
[Xg,n,d]vir

c(T vir)
∏
i

ev∗i ϕ(αi)

and

⟨α1, . . . , αn⟩E,fakeg,n,d :=

∫
[Xg,n,d]vir

c(T vir)
∏
i

ev∗i ϕ(αi)− boundary contributions
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Call the corresponding potentials DE,fake
X and EfakeX , the operator subtracting the bound-

ary contributions is the same as in the non-fake case, except only involving terms corre-
sponding to r = 1:

∆E,fake := exp(−ℏ
2

∑
a,b

ga,b∂a∂b).

The geometric interpretation for Euler-theoretic invariants discussed in the previous section
also applies verbatim to fake Euler invariants, using the orbifold Euler characteristic rather
than the ordinary one.

Unlike Euler theoretic invariants, fake Euler-theoretic invariants are actually already
well-understood. DE,fake

X is (after specializing the inputs from MU∗(X)), mothing more
than the generating function for ordinary cohomological Gromov-Witten invariants, twisted
by the total Chern class of the virtual tangent bundle, and is determined from the ordinary
cohomological potential DX by the cohomological twisting theorems, proven by Coates in
[4].

The incomplete correlators also arise this way, and do not need a cumbersome definition.
We remind that the virtual tangent bundle to Xg,n,d has the form:

π∗ev
∗
n+1TX − π∗L

−1
n+1 − (π∗i∗OZ)

∗

.
The first two components form the part logarithmic with respect to the singular locus,

denoted T virlog .
By Coates’ theorem again, twisting by the total Chern class of the third component is

equivalent to applying the operator ∆−1
Efake (see the Appendix for an explanation of this

result). So omiting the third component from the twisting is equivalent to subtracting
the boundary components, hence we can alternatively write incomplete fake Euler-theoretic
correlators as:

⟨α1, . . . , αn⟩E,fakeg,n,D =

∫
Xg,n,d

c(T virlogXg,n,d)
∏
i

ev∗iφ(αi)

Remark. Such a result is to be expected, as for D a normal crossings divisor in an orbifold
X :

χorb(X −D) =

∫
X
c(TXlog(D)).

In the next chapter, we will see a corresponding formula for genuine incomplete invariants.

5.6 Target X ×BZM
The adelic formula for Euler-theoretic invariants involves fake Euler-theoretic invariants for
orbifolds X×BZM . For moduli spaces of stable maps to an orbifold X , the evaluation maps
actually land in the inertia orbifold IX . However, given the lack of an appropriate notion
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of bordism theory for orbifolds, the same definitions do not carry over. Instead, for the case
when the target space X is an orbifold, we avoid interpreting the notion of a bordism class
of a map to X , and define the potentials DE,fake

X to be the usual Gromov-Witten potential,
but with inputs taken from H∗(IX ) ⊗MU∗(pt), and virtual fundamental cycle twisted by
the classes c(T vir).

As in Chapter 3, I(X × BZM) is a union of M sectors, each isomorphic to X × BZM ,
labelled by Mth roots of unity. The cohomology (with rational coefficients) is

⊕
ζ H

∗(X)hζ ,
where hζ is the fundamental class of the sector labelled ζ.

These invariants are determined for in terms of those forX in the following way: instead of
using sectors, we use a basis of characters χ : ZM → C∗. Where the character χ corresponds
to the cohomology ckass

∑
ζ χ(ζ)hζ . For some γ =

∑
ζ γζhζ , we can express γ as

∑
χ γχχ

where:

γζ =
1

M

∑
χ

γχχ(ζ)

and
γχ =

∑
ζ

χ(ζ−1)

Theorem 5.6.1. Using this basis, we can move from invariants of X ×BZM to invariants
of X, via the formula

DE,fake
X×BZM

(
∑

tχχ, ℏ) =
∏
χ

DE,fake
X (tχ,M

2ℏ)

This is an adapation of Jarvis-Kimura’s formula from [11] for untwisted Gromov-Witten
invariants of X ×BZM , a proof in the twisted case is given in the appendix. It is important
to note that this formula holds at the level of literal generating functions, not just quantum
states (i.e. it is not just true up to scale factor).

5.7 Adelic Formulas for Euler Invariants

The inputs to the fake Euler theory of X ×BZM are labelled tζ for ζ
M = 1 according to the

sector in which the marked point lands. In the following argument, we consider the tensor
product

⊗
M DE,fake

X×BZM
. We relabel the tζ input to the potential of X × BZM to tζ,r, where

r =M/ord(ζ).
We use the description of the inertia stack ofXg,n,d introduced in [7] to prove the following

”adelic formula” for the DE
X .

DE
X =[

exp(
∑
r

ℏrr
2

Ψr(∇r
ζ,η)

∑
ζ,η ̸=1

⊗
M

DE,fake
X×BZM

( 1√
ℏM

(
ΨM(tM)√

ℏM
h1+

∑
ζM=1,ζ ̸=1

Ψr(tr(ζ)) + 1√
ℏr(ζ)

hζ), ℏM , QM
)
.
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Where
∇r
ζ,η =

∑
a,b

gab∂ζ,r,a∂η−1,r,b

In addition:

EX =
[⊗

M

EfakeX×BZM

]
|tζ,r=tr (5.2)

Remark. The Ψr operations here play no real role, they are there to account for the fact
that the Sn-equivariant correlators are Ψ-linear but the fake correlators are linear. So in
applications where no nontrivial Λ-algebra structure is present, the Adams operations can
safely be ignored.

Adelic Description of IXg,n,d

A connected component (henceforth referred to as a Kawasaki stratum) of this space is
described by certain combinatorial data:

• A graph G dual to Ĉ, the quotient of C by the cyclic group generated by h̃.

• A positive integer Mv for each vertex v, denoting the number of preimages in C of the
irreducible component corresponding to v.

• The discrete characteristics (genus ĝv, degree d̂v, number of marked points and edges
n̂v) of the map on each irreducible component.

• A labelling of the vertices of G with eigenvalues of h̃r on the tangent lines to any
preimage of the ramification points of order r. These eigenvalues will be primitive mth
roots of unity for m = Mv

r
.

• A labeling of the edges of G (corresponding to nodes) with pairs of eigenvalues of h̃r

on any branch at a preimage to the node. We require that these eigenvalues not be
inverse to each other (i.e. the node is unbalanced), so the node cannot be smoothed
within the stratum.

After normalizing at the unbalanced nodes, each vertex represents a component of a
Chen-Ruan moduli space of stable maps to the orbifold X × BZM , given by taking the
quotient of the stable map to X by h̃. After doing this, the eigenvalue at a marked point
also determines the sector of I(X×BZM) in which the evaluation map at that marked point
lands.

In the reverse direction, given any collection of stable maps coming from the vertices of
a graph G. The above data gives gives a ramified ZMv -principal bundle over the curve Ĉv,
for each vertex v.
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By imposing a diagonal constraint at each edge, these bundles can be glued ZMv -equivariantly.

The resulting total space is a curve C with a map to X of degree
∑

vMvd̂v, and a symmetry

h̃ given by a generator of Zlcm(Mv).
Using this description we can rewrite the Euler-theoretic integral over IXh

g,n,d, in terms
of integrals over these Chen-Ruan spaces. The resulting formula takes the form of Wick’s
summation over graphs. As we will see, the vertex contributions end up being integrals in
the fake Euler theory of X ×BZM .

The justification for this technique is similar than other applications, albeit slightly sim-
pler since the invariants are already defined as integrals on the inertia orbifold, so there is
no need to invoke any kind of Kawasaki formula.

Vertex and Edge Contributions

Recall that the Euler theoretic correlator ⟨t1, . . . , ⟩
E

g,ℓ,d is equal to∫
IXh

g,ℓ,d

c(T virIXh
g,ℓ,d)

∏
i

êv∗i c(t)

We will compute this integral on each component of IXg,n,d as in Wick’s formula, first
by computing it on a stratum of a single vertex, and then computing the effect of joining
two vertices via an edge.

Vertices

Let M̂ be a Kawasaki stratum of IXg,n,d consisting of a single vertex with 0 edges. The
contribution from this stratum to the above correlator is equal to:∫

M̂
c(T virM̂)

∏
i

êv∗i t|M̂

M̂ is a connected component Chen-Ruan moduli space of maps toX×BZM (meaning the
sectors in which each marked point lands are pretedeterined). In this guise, it has evaluation
maps to X×BZM which we abusively also denote êv. This is justified since restricting êv∗αi
to M̂ is equivalent to pulling by αihζi via the ith evaluation map on M.

So the above integral is equal to:∫
M̂
c(T virM̂)

∏
i

êv∗iΨ
r(t)hζ(i)

This is an invariant in the fake Euler-theory of X × BZM . (The marked points that do
not appear as a result of the quotient have input 1 in their appropriate sector)

Thus the vertex contributions of Wick’s formula are of the form
⊗

M DE,fake
X×BZM

. After some
adjustments to the inputs, Novikov’s variables, and Planck’s constant, which we delineate
below:
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Inputs

First, to reconcile the exponents of ℏ in both sides of the formula, since ℏ is weighted by half
the Euler characteristic of the covering curve in DE

X , and it is based on the same invariant
quotient curve in DE,fake

X×BZM
. This procedure ends up being essentially the same as what is

done in [7].
Namely, on a stratum given by a graph G where the component of the quotient curve

has genus ĝv, n̂v marked points, and h̃ has order Mv, we can apply the Riemann-Hurwitz to
the quotient map to determine the Euler characteristic of the covering curve C. (Each edge
e has re preimages on C, and the ith marked point on the component corresponding to v has
ri preimages on C.)

The result is

−χ(C)
2

=
∑
v

Mv(ĝv − 1)−
∑

Mv(
n̂v
2
)−

∑
v

∑
i

ri
2
+
∑
e

re.

This means that the necessary steps to correct the exponents of ℏ are as follows:
To account for the first two terms, replace ℏ with ℏMv in each vertex potential, then

divide each input by ℏMv/2.
To address the remaining terms, add a factor of ℏr at each edge, and divide each input

by an additional factor of ℏr/2. In addition, to correct the degree of the maps we replace Q
with QMv .

Under the present accounting, a marked point on the quotient curve with eigenvalue ζ
receives the input tr(ζ)hζ if it represents a cycle of r marked points on the covering curve.
Otherwise, it receives an input of 1hζ , note that non-orbifold marked points (ζ = 1, r(ζ) =
M) can only occur as images of the original points, so they do not ever received the input
of 1.

To account for both of the above possibilities for orbifold marked points, and to perform
the corrections to ℏ discussed previously, the necessary vertex contributions must be:⊗

M

DE,fake
X×BZM

( 1√
ℏM

(
tM√
ℏM

h1 +
∑

ζM=1,ζ ̸=1

tr(ζ) + 1√
ℏr(ζ)

hζ), ℏM , QM
)

Remark. The case of Z2 symmetries works essentially the same way as for K-theoretic invari-
ants. THe adelic formula does not involve any further twisting classes, and the correction
term for unmarked points is 1, so the contribution of a moduli space of orbicurves with three
marked points coming from covering curves with a Z2 symmetry is equal to:∫

X×BZ2

(Ψ2(t2), 1, 1) =
1

2
(Ψ2(t2(1)), 1, 1)

As before, there are three such moduli spaces, and they receive a coefficient of 1/6 in the
generating function, so the total contribution of such curves is 1

4
(Ψ2(t2(1)), 1, 1).
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Edge Contributions

Recall an edge of level r of a graph G connecting vertices v+, v− with labels η+, η−, represents
an r−tuple of nodes on the covering curve permuted cyclically by h̃, with h̃r acting on each
branch with eigenvalues ν+ and ν−, which are not mutually inverse. After normalization,
the remnants of e represent marked points in the Chen-Ruan spaces M+ and M−, of sector
ν+ and ν− respectively.

As we have discussed, at each edge we multiply by ℏr to correctly account for the Euler
characteristic of the covering curve. In addition, we need to enforce that evaluation maps
êv+, êv− at each branch send the marked points connected by e to the same class in H∗(X),
which regarded as the ν± sector in H∗(IX ×BZM±).

To account for the fact that there are r ways to equivariantly glue the two covering curves
of the vertices, and the symmetry between ν+ and ν−, we multiply by an additional factor
of r/2. We also add a Ψr to correct for scale factors, since an edge corresponds to a cycle of
r nodes on the covering curve.

This means the contribution for an edge e of r with eigenvalues ν± is rℏr
2
Ψr(∇ν+,ν

−1
−

e ),
where ∆e unglues the diagonal constraint between the sectors ν+, ν

−1
− ).

So the formula is, written naively:

exp(
∑
edges

rℏr

2
Ψr(∇e,r))

⊗
vertices

DE,fake(v). (5.3)

If e connects two vertices, ∇e,r multiplies the two potentials and glues them along the
ν, ν−1. If e is a loop, ∆e glues the two correlator series. Since we have the formula eFxy =
FzFye

F + Fxye
F , applying a quadratic differential accounts for both kinds of insertion. For

r > 1, the operator includes a factor of r to account for the r ways of choosing which point
to label ”1” when gluing the covering curves. Similarly, the operators receive a factor of ℏr
to correctly account for the Euler characteristic of the covering curve. If we denote by S the
subspace of adelic inputs where Ψr(tr) = tr,ζ . The product of this procedure is:

DE
X(t, ℏ, Q) =[

e

∑
r

ℏr
2
Ψr(

∑
ν+ν−̸=1

∑
a,b g

a,b∂ν+,r,a∂
ν−1
−
,r,b)⊗

M

DE,fake
X×BZM

( 1√
ℏM

(
tM,1√
ℏM

h1 +
∑

ζM=1,ζ ̸=1

tr(ζ),ζ + 1√
ℏr(ζ)

hζ), ℏM , QM
)]
|S

(5.4)

The formula suggests the following simplification. If we shift the Euler-theoretic inputs by
1, and the fake inputs by 1 in the identity component, the formula simply becomes:
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DE
X(t, ℏ, Q) =[

e

∑
r

ℏr
2
Ψr(

∑
ν+ν−̸=1

∑
a,b g

a,b∂ν+,r,a∂
ν−1
−
,r,b)⊗

M

DE,fake
X×BZM

( 1√
ℏM

(
tM,1√
ℏM

h1 +
∑

ζM=1,ζ ̸=1

tr(ζ),ζ√
ℏr(ζ)

hζ), ℏM , QM
)]
|S

(5.5)

Incomplete Potentials

For this section, we ignore Adams operations for ease of reading, reinserting them where
necessary is trivial. We can rewrite the term inside the exponential of the edge operator as
the difference:

rℏr

2

∑
a,b

ga,b
(
(
∑
ζ

∂ζ,a)(
∑
η

∂η−1,b)−
∑
ζ

∂ζ,a∂ζ−1,b

)
.

The contributions of the second term of the difference do not involve any edges, since
they only deal with balanced nodes. Restricted to a vertex of order M the operator is:

∆M = exp(
∑
r

−rℏ
r

2

∑
a,b

ga,b
∑

ord(ζ)=M/r

∂r,ζ,a∂r,ζ−1,b)

If we apply this to the vertex potential before correcting the inputs, we get:

∆M = exp(
ℏ
2

∑
a,b

ga,b
∑
ζM=1

∂r(ζ),ζ,a∂r(ζ),ζ−1,b)

Since the input corrections account for the missing factor of r, and correct the exponent of
ℏ.

Dividing the edge operator this ways leaves us with the formula:

DE
X(t, ℏ, Q) = exp(

∑
r

rℏr

2

∑
a,b

(
∑
ζ

∂r,ζ,a)(
∑
η

∂r,η,b)
(⊗

M

∆MD̄E,fake
(X×BZM )(. . . )

)
(5.6)

The operator exp(
∑

r r
ℏr
2

∑
a,b(
∑

ζ ∂r,ζ,a)(
∑

η ∂r,η,b)) when applied after the restriction to
the subspace tζ,r = tr takes the form:

∇ := exp(
∑
r

ℏr/2
∑
a,b

ga,b∂a,r∂b,r)

.
Renaming ∇−1 to ∆ and moving it to the other side of the formula gives:

∆DX =
⊗
M

∆MDE,fake
X×BZM

(. . . ). (5.7)
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The interpretation of this formula is as follows, ∆ is the operator introduced earlier
that subtracts the contributions from nodal curves to the Euler-theoretic integrals. ∆M is
the corresponding operator for fake Euler theory. So as a corollary (with the same input
corrections), we obtain (for the same inputs as above):

EX(t, ℏ, Q) =
[⊗

M

EfakeX×BZM

( 1√
ℏM

(
tM,1√
ℏM

h1 +
∑

ζM=1,ζ ̸=1

tr(ζ),ζ + 1√
ℏr(ζ)

hζ), ℏM , QM
)]

tr=tr,ζ

5.8 Example: Generating function for virtual Euler

characteristics

If we set tr = 0 for r > 1, and t1 = t[X], the generating function EX becomes

exp(
∑
g

ℏg−1
∑
n

1

n!
χvir(Mg,n,d(X)tn)

In the adelic formula, for the term corresponding toM , inputs corresponding to primitive
roots of unity receive an input of t + 1, and other inputs receive a 1, except for the unit
sector hM , which receives nothing (except for M = 1), so the (not dilaton shifted) formula
reads (Denoting the primitive M/rth roots of unity as P (M, r)):

EX =
⊗
M

EfakeX×BZM

( 1√
ℏM

(
∑

ζ∈P (1,M)

thζ√
ℏ
+
∑

M>r≥1

∑
ζ∈P (r,M)

tr(ζ),ζ√
ℏr(ζ)

hζ), ℏM , QM
))

Fix some generator h0 of ZM . The input in the sector ζ only depends on r(ζ), hence the
character coordinates only depend on the order of χ(h0). Given a character χ, define the
level of χ to be M/ord(χ(h0)). There are φ(M/k) characters of level k.

Denote by b(M, r, k) the sum of the kth powers of elements in P (M, r). It is a classical
result (see e.g. [1]), that:

b(M, r, k) =
φ(M/r)

φ( M/r
(k,M/r)

)
µ(

M/r

(k,M/r)
)

We observe that for a character χ of level k, we have:
∑

ζ∈P (M,r) χ(ζ
−1) = c(M, r, k)

So the χ coordinate after changing the input into a basis of characteris is:

1

M
√
ℏM

∑
M>r>=1

b(M, r, k)
1√
ℏr

+
t√
ℏ
b(M, 1, k)

We will use the formula of Jarvis-Kimura to convert these potentials into ones for X.
The conversion for characters of level k is the same for any such character, so the Mth term
in the tensor product becomes:
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EX(t, 0, . . . ) =⊗
M

∏
k|M

EfakeX

(
(

1

M
√
ℏM
( t√

ℏ
b(M, 1, k) +

∑
M>r>=1

b(M, r, k)
1√
ℏr
)
,M2ℏM , QM)

)φ(M/k)

Bini and Harer computed χ(Mg,n) and χ(Mg,n) in terms of their orbifold Euler charac-
teristics in [2], using the same combinatorial formalism of graph sums. The above formula,
when specialized to t = 1, X = pt, is essentially the same as their formula (25) after applying
a Mobius inversion.
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Chapter 6

Limits from Hirzebruch theory

As promised in chapter 3, the Euler-theoretic invariants are the correct answer for what the
limit at y = 1, should be for the Hirzebruch invariants. In this chapter, we will state and
prove a precise version of this claim, both in the complete and incomplete contexts. These
limiting formulas are also useful in understanding the Euler-theoretic invariants themselves,
as we will demonstrate by using them to show that the invariants are integer valued.

Hirzebruch χ−y−genus and Euler Characteristics

As observed classically by Hirzebruch, for manifolds limy→1 χ−y(M) = χ(M). A similar
result holds in the case of orbifolds, using the ordinary Euler characteristic.

Before doing this, we prove a lemma that will be useful on many occasions.

Lemma 6.0.1.

lim
y→1

1− ae(y−1)z

1− yae(y−1)z
=

{
z

1+z
if a = 1

1 otherwise

Proof. The case a ̸= 1 is obvious (even for me). For a = 1, we expand the numerator and
denominator to yield:

−(y − 1)z +O(1− y)2)

1− y − (y − 1)z +O((1− y)2)

Cancelling a 1− y gives:

z +O(1− y)

1 + z +O((1− y))

Taking the limit yields: z
1+z

, as desired.

Theorem 6.0.2. If X is a virtually smooth orbifold then:

lim
y→1

χ(X ; Λ−y(T
vir,∗X)) = χvir(X )
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Proof. We begin with the case where X is smooth: We apply the Kawasaki-Riemann-Roch
theorem, the left hand side becomes:∫

IX
Td(IX )ch(tr(Λ−y(i

∗T ∗X )))
1

ch(tr(Λ(N∗))

Splitting up i∗TX into components tangent and normal to the stratum yields:∫
IXTd(IX )ch(Λ−y(T

∗IX ))ch(tr(
Λ−y(N

∗)

Λ(N∗)
))

The trace is omitted from the cotangent term because the h-invariant part of TX is
exactly the tangent bundle to the component of IX given by h,so no additional eigenvalues
appear.

Denote by T (V ) the class Td(V )ch(Λ−y(V
∗)). It is the multiplicative characteristic class

determined on line bundles by the formula z(1−ye−z)
1−e−z , where z stands for the first Chern class

of a line bundle.
The value of the integral does not change if we scale the class T by 1

(1−y) , and si-

multaneously scale z by (1 − y) (this involves replacing the usual Chern character with
chy(L) = e(1−y)c1(L)). The only terms that contribute to the integral are top-degree ones,
and the changes cancel out in that case. After doing this, the integral looks like:∫

IX
Ty(TIX )chy(tr(

Λ−y(N
∗)

Λ(N∗)
))

The normal bundle term is a product of terms of the form 1−yζe(y−1)z

1−ζe(y−1)z , for z Chern roots of
the normal bundle, and ζ the corresponding eigenvalues of h. Since N is the normal bundle
of the inclusion IX to X , there are no eigenvalues equal to 1. So in the limit, the entire
term becomes 1.

Ty is determined on line bundles by the formula z(1−e(y−1)z)

1−e(y−1)z , which becomes in the limit
1+ z, using the lemma from earlier. The formula 1+ z corresponds to the total Chern class,
so the integral is equal to: ∫

IX
c(TIX ) = χorb(IX ) = χ(X )

This argument generalizes completely to the virtual case, using Tonita’s virtual Kawasaki
Riemann-Roch theorem. The main difference is the virtual tangent bundle is the difference
of two bundles: T vir = E1 − E0. This means that both the bundles T virIX and N are
also such differences, being the fixed and moving parts of E1 − E0 respectively. The class
Ty(T

virIX ) becomes in the limit c(Efix
1 )/c(Efix

0 ) = c(T virIX ), and the normal bundle terms
still become 1.
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Reminder of Hirzebruch Invariants

We can realize the Euler-theoretic correlators as limits of correlators from wquantum Hirze-
bruch theory. Quantum Hirzebruch theory is a variant of quantum K-theory, based on the
Hirzebruch χ−y−genus. It is defined as follows:

Let the class Λ−y(V ) be defined for bundles by
∑

i(−y)iΛi(V ∗). Extend it multiplicatively
to a characteristic class on virtual bundles. In this guise, it is determined by the series 1−
yq−1. On manifolds, the extension to virtual bundles is well-defined provided the coefficient
ring is localized at y − 1, since (L− 1) is a nilpotent class, and we can expand:

1

1− yL−1
=

1

1− y

1

1− y
1−yL

−1
=
∑
n≥0

yn

(1− y)n+1
(L−1 − 1)n

However the case for orbibundles is slightly more complicated, as (L − 1) need not be
nilpotent for a 1-dimensional orbibundle. Using the fact that Kawasaki’s Chern character
gives an isomorphism between K0(X) and H∗(IX), we see that we the coefficients will
be rational functions of y with poles at roots of unity, call the algebra of such functions
A. Hirzebruch theory is Sn-equivariant K-theory, which the virtual structure sheaf Ovir

tensored with Λ−y(T
vir). Call a correlator from this theory ⟨. . . ⟩yg,ℓ,d, the inputs are tensored

with rational functions of y, and we impose that Ψk(y) = yk.
We prove that the limit as y 7→ 1 of these invariants (with specifically chosen inputs), re-

cover Euler-theoretic invariants. For ease of reading, we first prove it for ordinary invariants,
then address the changes required to adapt the proof to Sn-equivariant ones.

6.1 Ordinary Limit

Given inputs Vi ∈ K0(X)⊗ A, the ordinary Hirzebruch-theoretic correlator is:

⟨V1, . . . , Vn⟩yg,n,d = χvir(Xg,n,d; Λ−y(T
vir)
∏
i

ev∗i Vi).

Theorem 6.1.1.

limy 7→1⟨f1∗Λ−y(Tf ), . . . ⟩yg,n,d = ⟨[f1], . . . , [fn]⟩
E

g,n,d

Proof. We apply the Kawasaki-Riemann-Roch theorem (more precisely, the virtual version
due to Tonita) to the right hand side, yielding the following:

⟨f1∗Λ−y(Tf ), . . . ⟩yg,n,d =
∫
IXg,n,d

Td(TIXg,n,d)ch(tr(i
∗Λ−y∗(TXg,n,d)

∏
i

ev∗i fi∗Λ−y(Tfi)))
1

ch(tr(ΛN∗))

(Here N is the normal bundle of the natural map IXg,n,d → Xg,n,d. The invariant part
of i∗TXg,n,d is TIXg,n,d, and the components with nontrivial eigenvalues form the normal
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bundle to i of the component. The trace operator does nothing to classes pulled back from
X, since they are all necessarily g-invariant. Thus we can simplify the above expression as
follows:

⟨f1∗Λ−y(Tf1), . . . ⟩
y
g,n,d =

∫
IXg,n,d

Td(TIXg,n,d)ch(Λ−y∗(TIXg,n,d))
∏
i

Iev∗i ch(fi∗Λ−y(Tfi))
ch(tr(Λ−y(N))

ch(tr(ΛN∗))

We can then use the (ordinary) Grothendieck-Riemann-Roch theorem on each fi to yield:

⟨f1∗Λ−y(Tf1), . . . ⟩
y
g,n,d =∫

IXg,n,d

Td(TIXg,n,d)ch(Λ−y ∗ (TIXg,n,d))
∏
i

Iev∗i fi∗ch(Λ−y(Tfi)Td(Tfi))
ch(tr(Λ−y(N))

ch(tr(ΛN∗))

The operation fi∗ preserves cohomological degree, so we can make the same substitution
as before (i.e. scale all Chern classes by 1 − y and divide the result by (1 − y)d, for d the
virtual dimension of the component of IXg,n,d), without altering the result of the integral.
Now we proceed exactly as in the lemma regarding ordinary orbifolds, yielding a result of:∫

IXg,n,d

c(TIXg,n,d)
∏
i

Iev∗i fi∗c(Tfi)

Which is equal to the desired correlator.

6.2 General Limit

Theorem 6.2.1. Given maps fi,j : Yi,j → X compatible with the cycle structure ℓ:

limy 7→1⟨f1,1∗Λ−y(Tf1,1), . . . ⟩
y
g,ℓ,d = ⟨[f1,1], . . . ⟩

E

g,ℓ,d

.
For inputs Vi,j, the Hirzebruch-theoretic correlator (ignoring the normalization factor)

associated to g, ℓ, d is equal to (if we denote the ith cycle of length j by C(i, j)):

strh(Xg,|ℓ|,d; Λ−y(T
vir)
⊗
i,j

∏
α∈C(i,j)

ev∗σαVi,j)

We proceed as in the first case, but apply the Lefschetz-Kawasaki-Riemann-Roch theorem
from [7], which states that:

strh(M, V ) =

∫
IMh

Td(IMh)ch
(
trh(V ))

1

trhΛNh∗

)
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.
Here Nh is the normal bundle to M (not Mh!).
Since each input Vi,j appears j times, corresponding to the j marked points in the ith

length-j cycle, h acts on these by cyclically permuting the copies. Each evaluation map in
the cycle is the same on the h-fixed locus, we give the name êv to any such map. We thus
conclude:

trh(
⊗
α

ev∗σαVi,j) = êv∗i,jΨ
j(Vi,j)

Replacing the Vi,j with the inputs from the theorem yields:∫
IXh

g,|ℓ|,d

Td(T virIXh
g,|ℓ|,d)ch

(∏
i,j

êv∗i,jΨ
j(fi,j∗Λ−y(Tfij))trh(

Λ−y(N
h∗)

Λ(N∗)
)
)

This is similar to the computation in the previous case replacing Xg,n,d with its h-fixed
locus, except the inputs have received Adams operations, and the normal bundle term is
wrong.

However, as we have seen before, the terms from the normal bundle will become 1 in the
limit. The geometric interpretation of this is that (for all inputs equal to 1) an Sn-equivariant
Hirzebruch-theoretic correlator does not compute the (virtual) orbifold Hirzebruch χ−y-genus
of Xh

g,n,d, however it computes a quantity that has the same limit when y 7→ 1.
The remaining change from the previous case is what happens to the inputs. So we need

only consider what happens to a particular input, V = f∗Λ−y(Tf ), coming from some cycle
of length k. The corresponding term in the expression is ch(êv∗Ψk(f∗Λ−y(Tf )))

We can apply Adams-Riemann-Roch on the target to this quantity to get:

ch(f∗(Ψ
k(Λ−y(Tf ))Ck(Tf )))

Here Ck is the Adams-Todd class, determined on a line bundle q by 1−q−1

1−q−k .
Now we can apply Grothendieck-Riemann-Roch to rewrite this expression as:

f∗Td(Tf )ch(Ψ
k(Λ−y(Tf ))Ck(Tf ))

, which is equal to f∗(H(Tf )), where H(Tf ) is the characteristic class determined by the

expression: (1−yke−kz)z
1−e−kz . Applying the same change of coordinates: i.e. scaling z by (1 − y)

and dividing the characteristic class by (1− y) gives:

(1− yke(y−1)kz)z

1− e(y−1)kz

Expanding this expression yields:

1− yk − yk(k(y − 1)z + . . . )

−(y − 1)kz + . . .
z =

1−yk
1−y − yk(kz + . . . )

−kz + . . .
z
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The limit of this expression as y 7→ 1 is 1 + z, the total Chern class, as before, so we are
in exactly the same situation as case with ordinary invariants.

While it may seem surprising at first that Adams operations do not affect the limit here,
it is essentially to be expected. If fi was a map the point, the input term would compute
χ−y(Yi). Applying an Adams operation to this only changes y to yk, which does not change
the limit. The general argument is essentially a relative version of the above observation.

6.3 Incomplete Invariants

The logarithmic part of the virtual tangent bundle to Xg,n,d is given in K−theory by the
formula T virlog := ft∗ev

∗(TX − 1)− ft∗(L
−1 − 1). In the genuinely smooth case, it is the dual

to the bundle Ω(ft∗i∗OZ) of 1-forms with logarithmic poles at the normal crossings divisor
given by the map ft◦ i : Z → Xg,n,d. We can define a variant of Hirzebruch theory using the
logarithmic bundle instead of the usual virtual tangent bundle. We denote the correlators
⟨, ⟩y,log and the generating function Dy,log

X . These have the same relationship to incomplete
Euler-theoretic correlators as the usual Hirzebruch-theoretic correlators do to complete ones.

Theorem 6.3.1. If the inputs are taken to be the ones used in the complete limit:

lim
y→1

Dy,log
X = EX

One can argue similarly as to the previous case, by expressing χ(Xg,n,d; Λ−y(Ω
vir(i∗OZ))

in terms of holomorphic Euler characteristics on Xg,n,d and each irreducible component of Z,
and then modifying these arguments for the Sn-equivariant case. However, a quicker (and
perhaps more instructive) way to see this is to use the twisting theorems from the second
chapter. The twisting class applied to each component of the logarithmic tangent bundle

is e
∑

k<0
Ψk(V/y)

k . In comparison to the standard K-theoretic potential, the type I component
scales the Poincare pairing in the rth block to Ψr

r(1−yr)(χ(X; Λ−y(T
∗X)a ⊗ b)), the type II

component alters the dilaton shift, which will not be relevant for this argument, as the
translations are the same in both cases, and we can adjust the input so the dilaton shift does
not appear in the correlators. Going from Dy

X to Dy,log
X is an additional nodal twisting, so the

relationship between the two potentials is given by an operator ∆ changing the polarization,
after the dilaton shift and the Poincare pairing have been adjusted. For suitable choices of
input, the limit of Dy

X is DE
X , we will show that the limit of ∆ is the operator relating DE

X

and EX .
As we have calculated previously, the change to the polarization in the rth block is

determined by expression 1−yL+L−
(1−y)1−L+L−

= 1
1−L+L−

+ y
(1−y) . Thus, the corresponding differential

operator is determined by the insertion of the symmetric tensor

1− yL+L−

(1− y)(1− L+L−)
− 1

1− L+L−
=

y

1− y
.
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However, taking the limit this way is not possible, since the symplectic form is based on
the Poincare pairing of Hirzebruch theory scaled by 1

(1−y) . If we modify the pairing to the

”usual” Hirzebruch-theoretic Poincare pairing, the tensor is scaled by (1−y), and becomes y.
After the scaling, the rth block Poincare pairing (a, b) is Ψr/rχ(X : Λ−y(T

∗X)ab). Choose

a, b of the form a = 1−α−1

1−yα−1 , b =
1−β−1

1−yβ−1 , for α, β line bundles (we can find Poincare dual basis

of the Hirzebruch-theory of X using elements of this form). Applying Adams-Riemann-Roch
to the Poincare pairing (a, b)r result yields:

1

r
χ(X; Λ−y(Ψ

rT ∗X))Ψr(a)Ψr(b)TdΨk(TX))

The Adams-Todd class TdΨk(TX) is determined on line bundles by 1−L−1

1−L−r . Combining

this with the Hirzebruch theoretic Todd class yields the class 1−yrq−r(1−q−1)
1−q−r . We can rewrite

this as (1− yq−1)
∏

ζr=1,ζ ̸=1
1−ζyq−1

1−ζq−1 .
Applying the usual Hirzebruch-Riemann-Roch theorem, scaling the Todd classes as be-

fore, and taking the limit as y 7→ 1 eliminates the terms containing ζs, and the result is:

1

r

∫
X

c(TX)
c1(α)

1 + c1(α)

c1(β)

1 + c1(β)

So the limit of the rth block Poincare pairing is the Euler-theoretic Poincare pairing,
scaled by 1

r
.

Taking the limit as y 7→ 1 of the tensor itself yields 1, which corresponds to the second-

order differential operator e
ℏr
2
r
∑

a,b g
a,b∂ta∂tb . The factor r comes from correcting for the

factor 1
r
by which the limit of the Hirzebruch-theoretic Poincare pairing differs from the

usual Poincare pairing in Euler theory.

6.4 Example Calculations

We will include some examples illustrating how the limiting formulas work in practice. We
will introduce the various complications in different sections.

χ(M̄1,1)

We begin with the simplest possible case M = M̄1,1 is a smooth orbifold, isomorphic to
the weighted projective space P(4, 6). Denote the line bundles corresponding to projective
coordinates x0, x1 by L0 and L1. The tangent bundle to the moduli stack is isomorphic to
L0 ⊗ L1 (for the same reason TP1 ∼= O(−2)).

The only relevant correlator to compute is the orbifold χ−y genus of M̄1,1 itself, which is
equal to:

χ(M ; Λ−y(TM)) = χ(P(4, 6); Λ−y(L
∗
0 + L∗

1 −O))
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We can apply the Kawasaki-Riemann-Roch theorem, noting that the inertia stack of
P)(4, 6) is to two copies of P(4, 6) (corresponding to elements in the universal isotropy group
of Z/2Z), 2 copies of BZ/4Z (corresponding to the point 0 with isotropy group Z/4Z), and
4 copies of BZ/6Z (corresponding to the point ∞ with isotropy group Z/6Z). If we let

xi = c1(Li), the Chow ring of P(4, 6) has presentation C[x0,x1]
(x0x1,3x0−2x1)

:

Each copy of P(4, 6) contributes the following integral to the Kawasaki-Riemann-Roch
formula: ∫

P(4,6)
Td(TM)ch(Λ−y(TM)) =

∫
P(4,6)

Td(L0)Td(L1)ch(Λ−y(TM))

Expanding the terms inside the characteristic classes gives:∫
P(4,6)

(x1 + x0)(1− ye−x1−x0

1− e−x1−x0
)

This expression can be simplified by observing that all terms with degree at least 2 vanish,
yielding: ∫

P(4,6)
(1− y) +

(1− y)

2
(x0 + x1) + y(x0 + x1)

From this description alone it is obvious that setting y = 1 computes χorb(P(4, 6)) =
deg(x0 + x1) = 1

4
+ 1

6
= 5

12
, however we use this opportunity to demonstrate the effect of

scaling the Chern classes. Replacing xi with (1−y)xi and dividing the result by (1−y) does
not affect the value of the integral, but the expression inside it becomes:

1 +
(1− y)

2
(x0 + x1) + y(x0 + x1)

Now taking the limit y 7→ 1 yields 1 + x0 + x1 = c(TP(4, 3)), the total Chern class of the
tangent bundle.

So the contribution from both of these components is 10
12
.

The remaining components are much simpler. Each stratum Sζ is labelled by a root of
unity ζ corresponding to an element of its isotropy group, which will be either Z/4 or Z/6.
The components corresponding to ζ = ±1 were discussed previously. Sζ is either BZ4 or
BZ6 depending on ζ. The normal bundle is the restriction of L0+L1, and the isotropy group
element acts on it by scaling by ζ2. So the contribution to the integral is:∫

Sζ

1− yζ

1− ζ

When y = 1, the integrand is 1, and the integral is either 1
4
or 1

6
depending on the size

of the isotropy group. Adding up all contributions yields:

2(
5

12
) + 2(

1

4
) + 4(

1

6
) = 2 = χ(P(4.6))
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Sn-equivariant case

Now consider g = 0, n = 4, X = pt. The moduli space M0,4
∼= P1, by letting the first three

points be 0, 1,∞, and having the 4th point parametrized by the cross-ratio λ ∈ CU∞. The
action of the Klein 4-group generated by (12)(34), (13)(24) inside S4 preserves the cross-
ratio, and thus fixes the entire space. The action of S3, the permutations on (234), looks as
follows:

• (34) : λ→ 1
λ

• (213) : λ→ 1
1−λ

• (123) : λ→ λ−1
λ

• (231) : λ→ λ
1−λ

• (23) : λ→ 1− λ

Realizing S4 as a semidirect product of these groups determines the action completely.
We will choose h = (34). Given some Y , let f be the map Y → pt. We will compute
the limit correlator ⟨f∗Λ−y(T

∗f), 1, 1⟩y0,ℓ, where ℓ is the cycle structure of h, i.e. [2, 1, 1].

The corresponding Euler-theoretic correlator is 1
2
times the Euler characteristic of the fiber

product Y × Ph, so it has value χ(Y )
2

, since P1,h is just the point 1 ∈ P1.
Actually computing ⟨f∗Λ−y(T

∗f), 1, 1⟩y0,ℓ by the Lefschetz-Kawasaki-Riemann-Roch For-
mula yields:

1

2
strh(P1; Λ−y(O(2))

4∏
i=3

ev∗i f∗Λ−y(TY )))

The fixed locus is the point 1 ∈ P1, so applying the Lefschetz-Kawasaki-Riemann-Roch
formula gives: ∫

pt

ch(trh(Λ−y(O(2))(êvf∗Λ−y(TY ))2)ch(trh(
1

Λ(O(2))
))

h acts on the input by cyclic permutation of the two factors, so the trace operator
becomes Ψ2(f∗Λ−y(TY )). The evaluation map is just the constant map from the point
to itself. However since f∗ is the map to a point, this expression is nothing more than
Ψ2(χ−y(Y )). h acts on the conormal bundle with eigenvalue −1.

So the integral becomes:

Ψ2(χ−y(Y ))

∫
pt

1 + y

2
= Ψ2(χ−y(Y ))(

1 + y

4
)

The limit of this quantity is χ(Y ), as desired. The Adams operations only serve to replace
y with y2, which does not alter the limit. This is a special case of the Adams-Riemann-Roch
argument given in the general proof of the limiting formula.
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Logarithmic Corel;ators and Boundary Components

Now, we are interested in using the nodal twisting theorem to compute logarithmic Hirze-
bruch invariants and its limit as y 7→ 1. Let us try calculating the logarithmic version of the
same correlator as before. First directly, and then by use of the nodal twisting theorem. Here
i∗OZ is just O1+O0+O∞. So the value of the logarithmic correlator ⟨f∗Λ−y(T

∗Y ), 1, 1⟩y,log0,[2,1,1]

is:

∫
1∈P1

ch(trh(Λ−y(O(2) +O1 +O0 +O∞)(êvf∗Λ−y(T
∗Y ))2)|ptch(trh(

1

Λ(O(2))
))

The terms coming from 0,∞ simply become 0, as their restriction to the point 1 vanishes.
The restriction of O1 to 1 is the Euler class of the conormal bundle, which is the cotangent
space at 1, which is isomorphic to the pullback of 1−O(2). Thus the integral is:

∫
pt=1

ch(trh(Λ−y(1)(êv
∗f∗Λ−y(T

∗Y ))2)|pt
1

2
=

1− y

2
trh((êv

∗f∗Λ−y(T
∗Y ))2)) =

1− y

2
Ψ2(χ−y(Y ))

Since λ−y(1) = 1 − y, the limit of this quantity is equal to 0. This is as expected,
since the fixed locus of h is contained inside the boundary of M0,4, so subtracting boundary
contributions should kill its contribution.

We will also check that this calculation agrees with the result of applying the nodal twist-

ing theorem, which states that the operator taking the Dy
pt to Dy,log

pt is e
−ℏr
2

y
1−y

∑
r

∑
a,b ∂r,a∂r,b .

The term of Dy,log
pt we’re interested in is the one with coefficient ℏ−1t2t

2
1 (i.e. correspond-

ing to contributions from genus 0 curves with 4 marked points with 1 cycle of length 2).
Expanding the operator as 1− ℏ

2
y

1−y∂r,a∂r,b + . . . , we find that only the first two terms yield
any contribution, and that only happens when r = 1.

The first term is ⟨t2, t1, t1, ⟩y0,[2,1,1], and the second term is −y
1−y
∑

a,b⟨t2, ϕa⟩0,[2,1]⟨t1, t1, ϕb⟩
y
0,[1,1,1].

Note thatX is a point, and the Poincare pairing is (a, b) := χ(pt; a⊗b⊗Λ−y(Tpt−1)) = 1
1−yab.

So a Poincare dual basis just consists of 1 and 1− y. Thus the pole at y = 1 in the second
term gets cancelled, yielding a result of:

⟩t2, t1, t1, ⟨y0,[2,1,1]−− y⟨t2, 1⟩y0,[2,1]⟨t1, t1, 1⟩
y
0,[1,1,1].

The left term is, as we calculated in the previous section 1
2
1+y
2
t21trh(t2). ⟨t2, 1⟩y0,[2,1] is

equal to 1
2
trh(t2), and ⟨t1, t1, 1⟩y0,[1,1,1] = t21. So the total value of the expression is:

1

2

1 + y

2
t21trh(t2)−

1

2
trh(t2)t

2
1 =

1− y

4
t21trh(t2)

This recovers the calculation we did by hand, and verifies that the corresponding incom-
plete Euler theoretic invariant is 0 for any input.
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⟨t2, t2⟩
E

0,[2,2] − ⟨t2, ϕa⟩
E

0,[2,1]⟨t2, ϕb⟩
E

0,[2,1]

This is equal to ⟨t1, t2⟩E0,[2,2], as desired.
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Chapter 7

Appendix

7.1 Background on Cohomological Gromov-Witten

Theory

Ordinary Invariants

Givental’s loop space formalism and the notion of twisting classes were first developed for the
context of cohomological invariants. To better understand the ”fake” side of Euler theory, we
include some background about this in this section. Correlators for cohomological Gromov-
Witten theory are defined as follows: For αi ∈ H∗(X)[[z]], the correlator ⟨α1, . . . , αn⟩g,n,d :=∫
[Xg,n,d]vir

∏
i ev

∗
i αi(ψi)), where ψi = c1(Li). We denote the total descendant potential for

this theory by DH
X .

The loop space formalism for ordinary Gromov-Witten invariants looks as follows: Given
some smooth projective target X, the loop space HX is the vector space of formal Lau-
rent series in a variable z with coefficients in H∗(X). The symplectic form is ΩX(f, g) :=
Resz=0(f(z), g(−z))dz, where () denotes the cohomological Poincare pairing. The positive
space of the polarization consists of power series in z, and the negative space consists of
power series in 1/z with no constant term.

The usual dilaton shift for the cohomological generating function is −z.

Orbifold Gromov-Witten Theory

When the target X is an orbifold, the moduli space Xg,n,d is the moduli of stable maps from
n-pointed stable orbicurves C to IX . The curves are allowed to have orbifold points at
marked points and nodes, and the action of the isotropy group must be balanced at each
node. IX is the union of sectors Xµ, and there is an involution map that sends a sector µ
to its ”inverse sector” µI . The orbifold type of a given marked point or node is determined
by the sector µ it is sent to by the evaluation map, so the space Xg,n,d is the union of many
components, correspponding to the possible orbifold types of each marked point.
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The universal family Ug,n,d consists of the components of Xg,n+1,d, where the n + 1st
marked point is not an orbifold point.

The Poincare pairing on H∗(IX ) is
⊕

()µ, where ()µ pairs Xµ with XIµ. The symplectic
loop space HX is H∗(IX )[[z±]], with symplectic form ΩX(f, g) := Resz=0(f(z), g(−z))dz,
using the Poincare pairing for H∗(IX ).

Twisting Classes

Similarly to what we have introduced in the K-theoretic context, there is a theory of twisting
classes for cohomological invariants, first developed by Coates in [4], and developed for
orbifold targets by Tonita in [17]. We will state the version for orbifold theory. A general
multiplicative characteristic class in cohomology theory is described as follows:

C(E) = exp

(∑
k≥0

skchkE

)
.

As with K-theory, we consider three types of twistings

• Type I: twistings by a class C(ft∗(ev∗n+1E)), where E ∈ K0(X ).

• Type II: twistings by a class of the form:

C
(
ft∗(f(L

−1
n+1)− f(1))

)
,

where Ln+1 is the cotangent line bundle at the extra marked point on the universal
curve, f is a polynomial with coefficients in ev∗n+1K

0(X ) and 1 is the trivial line bundle.

• Type III: twistings by nodal classes Cµ of the form:∏
µ

Cµ
(
ft∗(ev

∗
n+1Fµ ⊗ iµ∗OZµ)

)
,

where Fµ ∈ K0(X ). Zµ is the locus of nodes with orbifold type µ, and iµ is the
corresponding inclusion into the universal family.

These effect of these twistings on the potential DX are given by the following theorems:

Theorem 7.1.1.

⟨Dtw
X ⟩ = ∆̂⟨DX ⟩

Where

∆ := exp

(∑
k≥0

sk

(∑
j≥0

[Aj]k+1−jz
j−1

j!
+
chk(E

(0))

2

))
,
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Here [Aj] are some elements in H∗(IX ) and [Aj]i denotes the degree i part. These
elements act by multiplication.

We define the Aj as follows: Let mµ be the order of a group element defining the sector
µ of IX . Restricted to Xµ, the bundle E used as input for the twisting class decomposes

into characters El
µ, where the group element acts as ζ l for ζ = e

2πi
mµ .

Then

(Aj)|Xµ :=

l=rµ−1∑
l=0

Bj(
l

rµ
)ch(E(l)

µ ).

Where Bj denotes the jth Bernoulli polynomial.

Theorem 7.1.2. The twisting by the classes of type II induces a translation of potentials:

⟨Dtw(t)⟩ = ⟨D
(
t+ z − zC

(
−f(L

−1
z )− f(1)

Lz − 1

))
⟩

Where Lz be a line bundle with first Chern class z.

Theorem 7.1.3. For a twisting of type III, the formula looks like:

⟩Dtw
X ⟨= ∆̂⟩DA,B⟨

Here the operator ∆̂ is a quadratic Hamiltonian corresponding to a change of polarization,
determined in the sector µ by the expression:

∆µ∗

(
Cµ
(
(q∗Fµ)

(0)
µ ⊗ (1− Lz)

)
− 1
)

−ψ+ − ψ−
∈ ∈ H∗(Xµ,Q)[ψ+]⊗H∗(XµI ,Q)[ψ−].

q is the map IX → X, and q∗F
(0)
µ denotes the part of q∗F invariant under the action of

the group element corresponding to the sector µ.

The twistings can be taken on top of one another, and the the same results hold relating
twisted invariants to further-twisted ones.

Remark. Quantum states do not depend on scaling, so as stated, these theorems are only
true projectively. In fact, as in K-theory, the third twisting theorems are true without the
addition of any scale factors. The first and second twisting theorem do require scale factors.
The scale factor from the first twisting theorem is 1 when C(1) = 1, which is the only
situation of our interest (see 4.2.1 in [19]). The second scale factor we will discus later.
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Target X ×BZM

The orbifold target spaces we consider in this work are all the form X×BZM . WThe actual
target of the evaluation maps is I(X×BZM), which isM disjoint copies of X×BZM labelled
by roots of unity ζ. The cohomology ring is thus

⊕
H∗(X)hζ , where hζ is the fundamental

class on the ζth sector.
The Poincare pairing is (

∑
aζhζ ,

∑
bζhζ) =

1
M

∑
ζ(aζ , bζ−1)X , where ()X is the Poincare

pairing on X. If H,ΩX , is the symplectic loop space coming from the cohomological GW
theory of X, the loop space for X ×BZM is given by

⊕
ζ Hhζ . The symplectic form is given

by 1
M

∑
ζ ΩX(fζ , gζ), and the symplectic polarization is inherited from H.

We can interpret the Gromov-Witten invariants of X ×BZM as invariants of X using a
formula of Jarvis-Kimura [11], who proved that each connected component ofM g,n,d(X×BG)
is a virtual covering of Xg,n,d with a prescribed degree, determined by the group G. This
means, for ordinary cohomological Gromov-Witten invariants:

⟨α1hζ1 , . . . , αnhζn⟩g,n,d,X×BZM
=

{
M2g−1⟨α1, . . . , αn⟩g,n,d,X

∏n
i=1 ζi = 1

0 otherwise

Another way of interpreting this result is in the basis of characters. Rather than using
elements of ZM , we break of H∗(I(X × BZM)) into

⊕
H∗(I)χ, for χ a character of ZM .

Sector and character coordinates are related via Fourier transform: i.e. given some element
f :

fζ =
1

M

∑
χ

fχχ(ζ)

fχ =
∑
ζ

fζχ(ζ
−1)

The translation of Jarvis-Kimura’s result into the character basis is the following:

⟨t1χ1, . . . , tnχn⟩X×BZM
g,n,d =

M2g−1

Mn

∑
∏

i ζi=1

∏
i

χi(ζi)⟨t1, . . . , tn⟩Xg,n,d

The coefficient
∑∏

i ζi=1

∏
i χi(ζi) is 0 unless all χis are equal, and then it is Mn−1. So

the result is that:

⟨t1χ, . . . , tnχ⟩X×BZM
g,n,d =M2g−2⟨t1, . . . , tn⟩Xg,n,d

And any other choices of inputs yield 0.
This observation allows us to identify DH

X×BZM
(
∑
tχχ, ℏ, Q) with

⊗
χDH

X(tχ,M
2ℏ, Q), at

the level of generating functions. However, to make the formula amenable to twisting, we
also need to identify these functions at the level of quantum states.
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To draw conclusions about potentials, we need to also understand the dilaton shift,
Poincare pairing and symplectic polarization, once written in the character basis. Resum-
ming the sectorial expression for the Poincare pairing yields: (f, g) = 1

M2

∑
χ(fχ, gχ)X

The dilaton shift is −z
∑

χ χ, since the sum of all the characters is h1, so it is equivalent

to shifting each potential DH
X by the correct value.

The positive and negative spaces are similarly just H+ and H− in each coordinate χ.
So the quantum state ⟨DH

X×BZM
(
∑
tχχ, ℏ, Q)⟩is the same as

⊗
χ⟨DH

X(tχ,M
2ℏ, Q)⟩, pro-

vided that each factor in the tensor product is regarded as a quantum state in the loop space
HX,χ, which is the direct summand of HX×BZM

corresponding to the character χ. It is the
same as Hx, except the Poincare pairing is scaled by 1

M2 .

Fake Euler-Theoretic Invariants for X ×BZM

As discussed earlier, we define the fake Euler-theoretic potentials DE,fake
X to be the usual

Gromov-Witten potential, but with inputs taken from H∗(IX )⊗MU∗(pt), and virtual fun-
damental cycle twisted by the classes c(T vir). The same decomposition theorem for T vir

holds in the orbifold case, so we have:

T vir = ft∗ev
∗
n+1(TX − 1) + ft∗(1− L−1

n+1)− (ft∗OZ)
∗

The main difference to note here is that Z is the union of all Zµ.

Theorem 7.1.4. A Jarvis-Kimura formula holds in this context as well:

DE,fake
X×BZM

(
∑
χ

tχχ, ℏ) =
∏
χ

DE,fake
X (tχ,M

2ℏ)

We will prove this by using Tonita’s twisting theorem for orbifold cohomological Gromov-
Witten theory. Twisting by the class c(T vir) will decompose into twisting transformations
in each character. We will find that these twistings correspond to the twistings that change
DH
X into DE,fake

X .

• A multiplication operator, the same in each sector, since T (X × BZM) has no inter-
action with the orbifold structure of X × BZM , all the El

µs are equal to TX if l = 0
and 0 otherwise. The corresponding operator, restricted to a single sector is equal
to sqrt(c(TX)) multiplied by the Euler-Maclaurin asymptotics of the infinite product∏∞

m=1 c(TX ⊗ L−m
z ). The effect is to scale the Poincare pairing in each sector from

the cohomological pairing to the Euler-theoretic one. Each operator is identical to the
multiplication operator involved in changing from the non-orbifold potential DX to
DE,fake
X (this is the same operator as above, but with M = 1).

• A change in the dilaton shift in the unit sector from −z to:

−zc(−1− L−1
z

Lz − 1
) =

−z
c(L−1

z

=
−z
1− z
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in the unit sector. Changing from sector to character coordinates becomes
∑

χ
z
z−1

χ,
matching with the dilaton shift of the fake potential of X in each character.

• A change in the polarization in each sector, given by the expansion of the symmetric
tensor

∆µ∗ (c ((1− Lz)
∗)− 1)

−ψ+ − ψ−

Expanding this yields:
1− ψ+ − ψ− − 1

−ψ+ − ψ−
= 1

Let ϕα, be a basis for Euler theory of X. The inputs to the fake Euler theory of
X × BZM can be expressed as

∑
ζ,α tα,ζϕ

αhζ , and let pα,ζ0 be the Darboux coordinate
dual to tα,ζ , using the unscaled Poincare pairing from X.

The tensor 1 corresponds to the quadratic Hamiltonian
∑

α,β,ζ
M
2
gα,βpα,ζ0 pβ,ζ

−1

0 , the M
is to account for the difference between the sectorial pairing and the one on X (dividing
the symplectic form by a constant results in multiplying the corresponding Darboux
coordinate).

Changing to character coordinates gives: M2

2

∑
α,β,χ g

α,βpα,χ0 pβ,χ0 . The factor M2 ac-
counts for the difference between the character pairing and the one on X.

Restricting to a fixed χ, this Hamiltonian, when quantized, corresponds to the operator

e
M2ℏ
2

∑
α,β ∂tα∂tβ , which is the operator corresponding to the twisting whenM = 1, except

ℏ is scaled by M2, correctly matching the adjustment to the potential DH
X .

• A multiplication operator, the same in each sector, since T (X × BZM) has no inter-
action with the orbifold structure of X × BZM , all the El

µs are equal to TX if l = 0
and 0 otherwise. The corresponding operator, restricted to a single sector is equal
to sqrt(c(TX)) multiplied by the Euler-Maclaurin asymptotics of the infinite product∏∞

m=1 c(TX ⊗ L−m
z ). The effect is to scale the Poincare pairing in each sector from

the cohomological pairing to the Euler-theoretic one. Each operator is identical to the
multiplication operator involved in changing from the non-orbifold potential DX to
DE,fake
X (this is the same operator as above, but with M = 1).

• A change in the dilaton shift in the unit sector from −z to:

−zc(−1− L−1
z

Lz − 1
) =

−z
c(L−1

z

=
−z
1− z

in the unit sector. Changing from sector to character coordinates becomes
∑

χ
z
z−1

χ,
matching with the dilaton shift of the fake potential of X in each character.
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• A change in the polarization in each sector, given by the expansion of the symmetric
tensor

∆µ∗ (c ((1− Lz)
∗)− 1)

−ψ+ − ψ−

Expanding this yields:
1− ψ+ − ψ− − 1

−ψ+ − ψ−
= 1

Let ϕα, be a basis for Euler theory of X. The inputs to the fake Euler theory of
X × BZM can be expressed as

∑
ζ,α tα,ζϕ

αhζ , and let pα,ζ0 be the Darboux coordinate
dual to tα,ζ , using the unscaled Poincare pairing from X.

The tensor 1 corresponds to the quadratic Hamiltonian
∑

α,β,ζ
M
2
gα,βpα,ζ0 pβ,ζ

−1

0 , the M
is to account for the difference between the sectorial pairing and the one on X (dividing
the symplectic form by a constant results in multiplying the corresponding Darboux
coordinate).

Changing to character coordinates gives: M2

2

∑
α,β,χ g

α,βpα,χ0 pβ,χ0 . The factor M2 ac-
counts for the difference between the character pairing and the one on X.

Restricting to a fixed χ, this Hamiltonian, when quantized, corresponds to the operator

e
M2ℏ
2

∑
α,β ∂tα∂tβ , which is the operator corresponding to the twisting whenM = 1, except

ℏ is scaled by M2, correctly matching the adjustment to the potential DH
X .

The result is that splitting up the twisting operators into their character terms have the
effect of twisting

∏
χDH

X into
∏

χD
E,fake
X , so the Jarvis-Kimura formula remains true in this

context, at the level of quantum states.
Unfortunately, the above argument actually omits an important detail. The twistings

of type II can also potentially scale the potentials, so we must also check that these scale
factors are correct. The correction term is calculated as follows.

It is the exponential of:∫
[(X×BZM )1,1,0]vir,tw

[f(e−ψ1)− f(1))Td(L∗
1)]1C(

f(L−1)− f(1)

L− 1
)

Here the virtual class is twisted by the type I and III twistings, but not the type II one.
[A]1 denotes the degree 1 part of A. A1 is a multiple of ψ1, so the nodal twisting term does
not contribute, since all terms are killed in the product.

So the integral we are interested in computing is:∫
[(X×BZM )1,1,0]vir

ft∗ev
∗c(TX)[f(e

−ψ1)− f(1))Td(L∗
1)]1C(

f(L−1)− f(1)

L− 1
)

Since f(L−1) = L−1 − 1, and Td(L∗
1) =

−1
2
ψ1 all the terms except for the twisting class

contribute −1
2
ψ1. (Term of higher degrees do not affect the integral for dimension reasons)
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So we can rewrite the integral as:

−1

2

∫
[(X×BZM )1,1,0]vir

ft∗ev
∗c(TX)ψ

Using techniques from [18]] we can rewrite this integral as an integral on M1,1 × II(X ×
BZM). For an orbifold X , let X2 be the space of (x,H), where H is a subgroup of Aut(x)
with at most 2 generators.

We have two morphisms π1 : X1,1,0 → X2 ×M1,1, and π2 : M1,1 × IIX . These are both
etale of the same degree. The first map is given by taking monodromy of admissible covers,
the second is given by sending the two group elements g1, g2 to the subgroup they generate.
We also have

π1∗[X1,1,0]
vir = π2∗(ctop(E

∗ ⊠ TIIX ))

Thus, we can calculate integrals on our moduli space by instead working on M1,1× IIX .
By another result from [18], the twisting term ft∗ev

∗T (X ×BZM) is expressible as π∗
1((1−

E∗)⊠ T (X ×BZM)2, since the tangent bundle is invariant under the isotropy action.
Thus we can write the integral (by pushing forward by π1 and using the projection formula

to pull back by π2):

−1

2

∫
M1,1×II(X×BZM )

c(1− E∗ ⊠ TII(X ×BZM))ctop(E
∗ ⊠ TII(X ×BZM))ψ1

The only nonzero contribution to this integral is:

−1

2

∫
M1,1×II(X×BZM )

ψ1ctop(TII(X ×BZM)) = −M
48
χ(X)

This scale factor splits up as
∏M

1 e−
χ(X)
48 , so it matches with the scale factor for each

character (which is obtained by the same process but setting M = 1).

7.2 Modifying Type III Cohomological Twistings

The nodal twisting classes in K-theory are slightly more general than analogues of the ones
introduced in cohomology, they allow additional functions F (L+, L−) to modify the structure
sheaf of the locus of nodes. We need a slightly stronger version of Tonita’s theorem for
twistings of type 3.

Theorem 7.2.1. If the allowed twistings are expanded to include classes of the form:

C(iµ∗πµ∗F (L+, L−),

where F is a symmetric Laurent polynomial with coefficients in ev∗K∗(X ), then the theorem

for twistings of type III still holds in this setting, with the operator ∆̂ being the quadratic
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Hamiltonian corresponding to a change of polarization, determined in the sector µ by the
expression:

∆µ∗

(
Cµ
(
(q∗Fµ(Lz, Lz))

(0)
µ ⊗ (1− Lz)

)
− 1
)

−ψ+ − ψ−
∈ ∈ H∗(Xµ,Q)[ψ+]⊗H∗(XµI ,Q)[ψ−].

The proof of this theorem is essentially identical to the case of normal twistings of type
III, and the argument is given in [17]. It relies on understanding how the twisting classes pull
back under the forgetting map. We do not repeat the entire argument, but we include the
necessary pullback results for the modified twistings. Carrying through the proof requires
two lemmas about how the twisting classes pull back under the forgetting maps. Given some
function F as above, denote Fi to be the function with coefficients pulled back by evi rather
than by the universal marked point evn+1.

Lemma 7.2.2.
i):

ft∗n+1iµ∗ftn+1∗F (L+, L−)OZµ = ftn+2∗iµ∗(Fn+1(L+, L−)OZµ+1)−∑
marked points i of orbifold type µ

F (1, Li)σi∗Di − iµ∗(F (L+, L−)OZµ

ii):
If p1 and p2 are the projections onto each f ]component in the locus of irreducible nodes then
we have:

(π ◦ i)∗(ftn+1∗iµ∗(F (L+, L−)⊗OZµ) = p∗1(ft∗iµ∗(F (L+, L−)⊗OZµ))+

p∗2(ft∗iµ∗(F (L+, L−)⊗OZµ)) + (F (L+, L−)⊗ (1− L+L−))

We begin by proving part i). Following the notation in [17], we call the n + 1st marked
point ◦, and the n + 2nd marked point •. By forgetting both marked points in different
orders, we have the following fiber diagram:

ft−1
• (Z◦,µ)

iµ−−−→ Xg,n+◦+•,d
ft◦−−−→ Xg,n+•,d

ft•

y ft•

y ft•

y
Z◦,µ

iµ−−−→ Xg,n+◦,d
ft◦−−−→ Xg,n,d.

In this notation, the quantity we are interested in computing can be expressed as ft• ∗
ft◦∗iµ∗(F◦ ⊗ OZµ). Since the diagram commutes, we can rewrite this in a slightly more
tractable way as ft◦,∗iµ∗ft

∗
•(F◦ ⊗OZµ).

The term inside the pushforwards can be expressed as

F◦(ft
∗
•L+, ft

∗
•L−)⊗Oft−1

• (Z◦,µ)
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However ft∗•L+ is just L+, since the marked point ◦ remains the node.
Z◦,µ is a union of products of lower-dimensional moduli spaces glued together along ◦.

The preimage of such a component under ft• is a union of three components Z1,Z2,Z3,
where the pint • lands on the first factor, the contracted rational component containing the
node, and the second factor, respectively. More precisely, given a component Z◦,µ of the
form Xn1+1,g1,d1 ×ev X0,2+◦,0 ×ev Xn2+1,g2,d2 . we have:

• The corresponding component of Z1 is

Xn1+1+•,g1,d1 ×ev X0,2+◦,0 ×ev Xn2+1,g2,d2

• The corresponding component of Z2 is

Xn1+1,g1,d1 ×ev X0,2+◦+•,0 ×ev Xn2+1,g2,d2

• The corresponding component of Z3 is

Xn1+1,g1,d1 ×ev X0,2+◦,0 ×ev Xn2+1+•,g2,d2

They intersect along components Z12,Z23, where • is the only marked point on a con-
tracted component of the first or second factor respectively (i.e. the components correspond-
ing to the boundary of X2+◦+• corresponding to • colliding with a marked point that is not
◦). Using the same notation as before, components of Z12 and Z23 can be described as:

(Xn1+1,g1,d1 ×ev X0,2+•,0)×ev X0,2+◦,0 ×ev Xn2+1,g2,d2

and:
Xn1+1,g1,d1 ×ev X0,2+◦,0 ×ev (X0,2+•,0 ×ev Xn2+1,g2,d2),

respectively.
We can thus write Oft−1

• (Z◦,µ)
= OZ1 +OZ2 +OZ3 −OZ12 −OZ13.

We first process the term F◦(ft
∗
•L+, ft

∗
•L−) ⊗ (OZ1 + OZ3). Z1 ∪ Z3 is the locus of

nodes of type µ in the universal family Xg,n+◦+•,d, except the nodes corresponding to strata
Xg,n,d×evX0,3,0×evX0,3,0. These are mapped isomorphically by the forgetting map to Di, for
i a marked point of orbifold type µ.

So the pushforward of these components of F◦(ft
∗
•L+, ft

∗
•L−)⊗Oft−1

• (Z◦,µ)
is:

ft•∗iµ∗F◦(L+, L−)OZµ −
∑
i

F◦(L+, L−)σi∗ODi

Note now that on Di, L+ = Li, L− = 1 (or vice versa), so we get a final result of:

ft•∗iµ∗F◦(L+, L−)OZµ −
∑
i

F◦(Li, 1)σi∗ODi
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Now, to process the remaining terms. Each of Z12, Z13 are sent isomorphically to Z•,µ.
On these loci, the evaluation maps ◦ and • coincide, so L+ is also the normal bundle to one
branch of Z•. Z2 is a P1 bundle over Z•,µ, as the marked point ◦ can lie anywhere on the
contracted component X0,4,0. Since L+, L− are pulled back from the base (since ◦ = •), the
pushforward is just multiplication by the Euler characteristic of OP1 , which is 1. So the total
contribution of OZ2 −OZ12 −OZ23 is just iµ∗F•(L+, L−)OZµ .

Totalling the above two contributions gives the desired result.
Now to prove ii).

We first state a preliminary lemma:

Lemma 7.2.3.

i∗ftn+2∗iµ∗(Fn+1(L+, L−)OZµ+1) = p∗1ft∗i∗(Fn+1(L+, L−)⊗OZµ)+

p∗2ft∗i∗(Fn+1(L+, L−)⊗OZµ) + (2− L+ − L−)F (L+, L−)

The proof of this is identical to that of Lemma 3.8 in [17], which has the terms Fn+1

replaced with constants. The addition of L+, L− changes essentially nothing.
Using this lemma, we compute (ftn+1 ◦ i)∗iµ∗ftn+1∗OZµ . By part i) this is equal to:

i∗(ftn+2∗iµ∗(Fn+1(L+, L−)OZµ+1)−
∑
i

F (1, Li)σi∗Di − iµ∗(F (L+, L−)OZµ)

The first term is p∗1ft∗i∗(Fn+1(L+, L−)⊗OZµ)+p
∗
2ft∗i∗(Fn+1(L+, L−)⊗OZµ)+(2−L+−

L−)F (L+, L−) by the previous lemma, the terms supported on the divisors Di vanish, and
the final term is i∗iµ∗F (L+, L−) = i∗iµ∗F (L+, L−)(1− L+)(1− L−), since (1− L+)(1− L−)
is the normal bundle of Z inside the universal family.

Adding these two contributions together yields:

p∗1(ft∗iµ∗(F (L+, L−)⊗OZµ))+

p∗2(ft∗iµ∗(F (L+, L−)⊗OZµ)) + (F (L+, L−)⊗ (1− L+L−)) ,

as desired.
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[10] Sören Illman. “The Equivariant Triangulation Theorem for Actions of Compact Lie
Groups.” In: Mathematische Annalen 262 (1983), pp. 487–502. url: http://eudml.
org/doc/163720.

[11] Tyler J. Jarvis and Takashi Kimura. “The orbifold quantum cohomology of the clas-
sifying space of a finite group”. In: Orbifolds in Mathematics and Physics, Contemp.
2002.



BIBLIOGRAPHY 66

[12] M. Levine and F. Morel. Algebraic Cobordism. Springer Monographs in Mathematics.
Springer, 2007. isbn: 9783540368229.

[13] Ichiro Satake. “The Gauss-Bonnet Theorem for V-manifolds.” In: Journal of the Math-
ematical Society of Japan 9.4 (1957), pp. 464–492. doi: 10.2969/jmsj/00940464. url:
https://doi.org/10.2969/jmsj/00940464.

[14] Wolfgang Schmaltz. “The Steenrod problem for orbifolds and polyfold invariants as
intersection numbers”. In: arXiv preprint arXiv:1904.02186 (2019).

[15] A.L. Smirnov. “Riemann-Roch theorem for operations in cohomology of algebraic Vari-
eties”. In: St. Petersburg Mathematical Journal 18 (Jan. 2007). doi: 10.1090/S1061-
0022-07-00976-4.

[16] Valentin Tonita. “A virtual Kawasaki–Riemann–Roch formula”. In: Pacific Journal of
Mathematics 268 (2014), pp. 249–255. issn: 0030-8730. doi: 10.2140/pjm.2014.268.
249.

[17] Valentin Tonita. “Twisted orbifold Gromov–Witten invariants”. In: Nagoya Mathe-
matical Journal 213 (2014), pp. 141–187. doi: 10.1215/00277630-2393950.

[18] Hsian-Hua Tseng. “Chern classes of Deligne-Mumford stacks and their coarse moduli
spaces”. In: (2007). arXiv: 0709.0034 [math.AG].

[19] Hsian-Hua Tseng. “Orbifold quantum Riemann–Roch, Lefschetz and Serre”. In: Ge-
ometry & Topology 14.1 (Jan. 2010), pp. 1–81. doi: 10.2140/gt.2010.14.1.




