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Abstract Oncorhynchus nerka occur both as anadro-
mous sockeye salmon that spend most of their life in
the ocean, and as non-anadromous kokanee salmon
that remain in fresh water their entire lives. We
assessed whether stable isotopes of sulfur (δ34S) in
otoliths could be used to distinguish sockeye salmon
and kokanee ecotypes that are otherwise difficult to
identify when they share a common freshwater rearing
environment. We also investigated the chemical link
between salmon and their diet by measuring δ34S in
various fish tissues (eggs, muscle, scales) and zoo-
plankton. δ34S (mean±SE) in sockeye salmon eggs
(18.7±0.4‰) and marine zooplankton (20.5±0.1‰)
were enriched by 10–14‰ compared with kokanee
eggs and freshwater zooplankton. δ34S in the otolith

cores of sockeye salmon (19.2±0.7‰) and kokanee
salmon (5.3±1.1‰) were similar to δ34S in marine and
freshwater zooplankton, respectively, indicating that
the core is derived from maternal yolk tissue and
reflects the maternal diet. δ34S in the freshwater growth
zone of otoliths did not differ significantly between
sockeye (5.9±1.1‰) and kokanee salmon (4.4±
1.2‰), and was similar to freshwater zooplankton.
The mean difference between δ34S in the otolith core
and first year of growth was 13.3±1.4‰ for sockeye
and 0.65±1.3‰ for kokanee salmon. A quadratic
discriminant function developed from measurements
of δ34S in otoliths of known maternal origin provided
perfect classification rates in cross-validation tests.
Thus, sulfur isotope ratios in otoliths are effective in
discriminating between anadromous and non-
anadromous ecotypes of O. nerka.

Keywords Oncorhynchus nerka . Ecotypes . Sockeye
salmon . Kokanee . Otolith microchemistry . δ34S

Introduction

Declining populations of anadromous salmon in
western North America have prompted implemen-
tation of conservation measures including freshwa-
ter habitat restoration and hatchery supplementation
(Lackey et al. 2006). The success of these
approaches has been difficult to evaluate when
visually indistinguishable anadromous and non-
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anadromous ecotypes co-exist in freshwater. For
example, Oncorhynchus nerka commonly occurs
both as anadromous sockeye salmon (hereafter called
“sockeye”) which spend most of their life in the
ocean, typically rearing in fresh water for less than
2 years, and as non-anadromous “kokanee” which
live in fresh water for their entire lives. Although
these ecotypes are typically genetically distinct,
genetic analyses are sometimes inadequate to dis-
criminate them when differentiation is limited or
when hybridization occurs (Foote et al. 1989; Taylor
et al. 1996; Wood et al. 2008).

Chemical markers including elemental ratios from
otoliths such as Sr:Ca can be used to discriminate
sympatric populations (Kalish 1990). However,
studies that have used otolith Sr:Ca to infer maternal
origin of salmonids have had mixed success (Rieman
et al. 1994; Volk et al. 2000). On the other hand,
Zimmerman and Reeves (2000, 2002) were success-
ful at discriminating anadromous and non-anadromous
Oncorhynchus mykiss. The limitation is due to the fact
that Sr:Ca in the core of an otolith does not depend
solely on the maternal origin but also on background
concentrations in freshwater, migratory distances, and
the length of the time in freshwater prior to spawning
(Donohoe et al. 2008). δ34S offers a promising
alternative to elemental signatures since organic sulfur
in animal tissue is derived from organic sulfur in their
diet and δ34S differs between marine and freshwater
environments with little to no trophic fractionation and
temperature effect (Peterson and Fry 1987; Hesslein et
al. 1991; Barnes and Jennings 2007). δ34S in marine
prey and sea water consistently tends to be about 20‰
(Goldhaber and Kaplan 1974; Thode 1991). In
contrast, δ34S signatures in freshwater vary according
to watershed geology, anthropogenic inputs, and
atmospheric deposition (Mitchell et al. 2001) and tend
to be lower than those in the ocean.

The contribution of marine and freshwater prey in
the diet of salmonids is expected to be reflected by
the chemical composition in their tissues (DeNiro
and Epstein 1978; Hesslein et al. 1993; Doucett et al.
1999a), as well as in the protein matrix of their
otoliths (Weber et al. 2002). Although proteins for
less than 5% of an otolith’s weight, they play an
important role in the morphogenesis of the micro-
crystalline calcium carbonate of otoliths (Kang et al.
2008). Sulfur-based amino acids, such as cysteine,
are in four of the five proteins found in otoliths, and

these are important for the proper folding and
stabilization of a protein’s three-dimensional struc-
ture (R. Kollamar, SUNY Downstate Medical Cen-
ter, NY, USA, pers. comm.). Because anadromous
ecotypes accumulate the bulk of their chemical
constituents during their ocean life (Burgner 1991;
Naiman et al. 2002), their eggs, and to a lesser extent
their alevins are expected to carry a marine δ34S
signature until the start of exogenous feeding, and
then again when they migrate to sea. In contrast,
non-anadromous ecotypes are expected to carry a
freshwater δ34S signature throughout their lives.
δ34S has the additional advantage of potentially
being useful to discriminate hatchery from wild fish
(Weber et al. 2002).

The ability to determine the dietary history of
anadromous fish using otolith δ34S signatures was
demonstrated by Weber et al. (2002). However, little
is known of the variability in δ34S signatures as
Weber et al. (2002) analyzed only the otoliths of two
salmon: a wild Chinook salmon (O. tchawytsha) and
a hatchery-reared Chinook salmon. Also, when
young salmon and kokanee co-exist in ectogenic
meromictic lakes, which are not uncommon in
coastal British Columbia (Walker and Likens
1975), complications may result from the intrusion
of saltwater. In ectogenic meromictic lakes, water
below the chemocline contains marine-derived sul-
fur, which may be brought to the surface by methane
production or strong wind events and incorporated in
the food web via primary producers. Zooplankton
may thus serve as a direct vector of marine δ34S to
anadromous and non-anadromous fry and smolt
ecotypes.

The main objective of this study was to expand on
the work of Weber et al. (2002) by assessing the
usefulness of δ34S to discriminate anadromous and
non-anadromous ecotypes of O. nerka, on the basis of
their maternal origin, as either marine or freshwater.
This was accomplished by analyzing δ34S in otoliths
of adult kokanee and sockeye from several British
Columbia lakes, including a meromictic lake. In
addition, we measured the δ34S signature in fish
eggs, muscles, scales and zooplankton, the primary
prey consumed by kokanee and sockeye. To illustrate
the utility of this approach, we used δ34S to assess the
maternal origin of a sample of O. nerka collected
from a meromictic lake, where both ecotypes live in
sympatry.
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Methods

Collection

To assess the applicability of δ34S to discriminate among
ecotypes, we proceeded in four steps. First, we
collected freshwater and marine zooplankton to char-
acterize baseline δ34S. Second, we measured δ34S in
various tissues of adult sockeye and kokanee as well as
juvenile sockeye caught in the marine environment and
contrasted these values to zooplankton δ34S to assess
the trophic transfer in δ34S in aquatic food chains.
Third, we measured δ34S in the otoliths of adult
sockeye and kokanee of known maternal origin.
Finally, we contrasted the δ34S signature in otoliths of
O. nerka of unknown origin to those of adult kokanee
and sockeye to assess their origin.

Freshwater and marine zooplankton samples were
collected using 100 μm and 250 μm mesh nets,
respectively (Table 1). Marine zooplankton samples
were collected along the West Coast of Vancouver
Island, in Queen Charlotte Sound, and Dixon Entrance
(WCoastBC, Fig. 1, Table 1). Euphausiids were
collected from Barkley Sound on the West Coast of
Vancouver Island (Table 1).

Adult sockeye were caught in Sproat and Nimpk-
ish lakes in 2006, and Sakinaw Lake in 2003 (Fig. 1,
Table 1) during their spawning migration to their natal
freshwater system. Sproat and Nimpkish are large
oligotrophic dimictic lakes, while Sakinaw Lake is
meromictic. The latter is a stably stratified ex-fjord,
which became isolated from the Strait of Georgia
approximately 11,000 years ago by sills uplifted by
post-glacial isostatic rebound (Perry and Pedersen
1993). The lake consists of two basins: one relatively
shallow (49 m) and wholly fresh, and the other a deep
(~140 m) meromictic basin that contains relict
seawater below the upper 30 m. The lake is on
average 2 m above mean sea level, and a high level of
sulfate is present in the oxic part of the water column
(up to 65 μM) (Perry and Pedersen 1993). The water
level of the lake is regulated by a small dam on the
outflow near the ocean.

Nine kokanee were collected from Ruby Lake,
Alouette Reservoir, and Sakinaw Lake (Fig. 1) in the
fall of 2005, fall of 2007, and winter of 2008,
respectively (Table 1). Ruby Lake and Alouette Reser-
voir have obstructions that prevent anadromous fish
from entering. Ruby Lake is upstream of Sakinaw Lake

while Alouette Reservoir drains into the lower Fraser
River. Kokanee collected from Sakinaw Lake were
mature females, recognizable by their shape, color, and
relatively small size. Kokanee were collected using a
23 mm mesh size purse seine, except at Alouette Lake
where gillnets were used. Ten additional specimens of
unknown origin were collected in Sakinaw Lake in the
fall of 2005 and winter of 2008 (Table 1) to test the
utility of δ34S to assess the maternal origin from field
samples. We were uncertain whether these relatively
large (>18 cm) fish were sockeye or kokanee. Juvenile
salmon were collected along the coast of British
Columbia using a mid-water trawl in the fall of 2007
(Table 1).

Although preservation techniques varied, these
seem to have little impact on δ34S (Edwards et al.
2002). Fish tissues from kokanee, sockeye and
juvenile salmon from the BC coast were either from
fresh or frozen fish, except for kokanee samples from
Alouette Lake that were preserved in 95% ethanol.
Zooplankton samples were either fresh samples,
preserved in 3.7–5% formalin, or preserved in 95%
ethanol.

Sample preparation and chemical analysis

Fish scales were sonified for 5 min in 3% ultrapure
hydrogen peroxide to loosen debris, rinsed three times
with Milli-Q water, dried, and stored in tight vials. Fish
eggs, fish muscle, whole fish, and zooplankton samples
were dried in an oven at 68°C, ground to a fine powder
with a pestle and mortar, and stored in airtight vials prior
to processing. Except for the marine zooplankton and
coastal juvenile salmon, sulfur stable isotope analyses
were conducted by Iso-Analytical Limited (Sandbach,
UK). Tin capsules containing 2 mg of sample or
reference material plus 4 mg of vanadium pentoxide
were processed with an automatic sampler coupled to a
Europa Scientific 20–20 isotope ratio mass spectrometer
(Crewe, UK). Results are presented in delta notation (in
per mil‰) using V-CDT (troilite of the Canyon Diablo
meteorite) as a reference. Samples were processed with
at least 20% replication (i.e., two subsamples were
analyzed from 20% of the samples), and the mean of the
two subsamples was used in the analysis. The greatest
difference between any pair of replicates was 0.82‰
with a mean difference of 0.094±0.05‰ (1SE). Three
inorganic standards were used to set the calibration scale
and two organic standards were run routinely to check
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accuracy. The reference material used was IA-R036
(Iso-Analytical working standard barium sulfate, δ34SV-
CDT=20.74‰) calibrated and traceable to NBS-127
(barium sulfate, δ34SV-CDT=20.3‰). IAEA-S-1 (silver
sulfide, δ34SV-CDT=0.3‰), IA-R025 (Iso-Analytical
working standard barium sulfate, δ34SV-CDT=8.53‰,
calibrated and traceable to NBS-127), and IA-R036
were used for calibration and correction of the 18O
contribution to the SO+ ion signal. Organic standards,
more similar to fish samples than inorganic standards,
were also used for quality control. IA-R036 and IA-
R027 (Iso-Analytical working standard whale baleen,
δ34SV-CDT=16.3‰, calibrated and traceable to NBS-

127) showed analytical precision of 0.036‰ and
0.039‰ (1SE, n=11).

Marine zooplankton and coastal juvenile salmon
were freeze-dried, then oven-dried and homogenised.
Tin capsules were packed with 7–9 mg of sample and
2 mg of vanadium pentoxide and analyzed on a CF-
IRMS Costech EA-Thermo Delta V IRMS at Univer-
sity of Victoria. Bovine Liver from the National
Institute of Standards and Technology was run as the
standard (δ34S 6.948±0.3‰, 1SE).

Otoliths were cleaned in de-ionized water, dried,
embedded in resin (Buehler 20-8130 epoxide resin
with Buehler 20-8132 hardener), cured overnight at

Location Sample type Collection month/year (no. of samples)

Ruby Lake Z 10/08(3), 06/09(1), 09/09(1)

K eggs 11/07(3)

K otoliths 11/07(1), 11/05(3)

K muscle 11/07(4)

Sakinaw Lake Z 06/06(3), 07/06(5), 09/06(5), 07/05(2), 10/05(2)

Unk otoliths 11/05(8), 01/08(2)

K muscle 01/08(3)

K whole fish 01/08(4)

K otoliths 01/08(2)

K eggs 09/05(1), 01/08(5)

K scales 11/09(3)

S eggs 09/05(1)

S otoliths 09/03(2)

Sproat Lake Z 08/08(1), 09/08(1),10/08(1)

S otoliths 06+07/06(5)

S scales 06+07/06(2)

S eggs 06+07/06(4)

Alouette Reservoir Z 05/07(1), 06/07(1), 08/07(1), 09/07(1)

K otoliths 10/07(3)

K scales 10/09(3)

K eggs 10/09(2)

Nimpkish Lake S otoliths 07/06 (5)

Z (Woss Lake) 07/03(1), 08/03(1), 09/03(1)

S eggs 10/06(4)

WCVI & QCI Z 10/07(8), 12/07(2), 12/08(4), 12/08(2)

Barkley Sound Euphausiids 09/05(1), 05/08(1)

Table 1 Type and number
of samples analyzed by
collection site and date
(Z = zooplankton,
K = kokanee, S = sockeye,
Unk = unknown)
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62°C in a drying oven, and polished on both sides to
expose the core area and banding. The grinding axis
was through the core. Composition of sulfur isotopes
in the cores to the outer edges of otoliths was
analyzed by secondary ion mass spectrometry (SIMS)
at the University of California in Los Angeles using a
CAMECA ims 1270. Sulfur isotopic compositions
were determined by sputtering otoliths with a ~2 nA
to 3 nA cesium (Cs+) primary ion beam with a 25 μm
spot diameter. Negative secondary ions were extracted

at 10 kV, with an energy band-pass of 50 eV, and
analyzed at a mass resolving power (M/ΔM) of 4000,
sufficient to resolve hydride interferences. A pre-
sputter time of 120 s was applied, during which
centering of the secondary ions and the magnetic field
setting was performed in an automated fashion.
34S/32S ratios were determined using a single electron
multiplier detector and 30 –magnet-cycles-per-spot
analysis which gave an in-run analytical precision
between 1‰ and 2‰. Intensities were corrected for
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Fig. 1 Sampling locations
in coastal British Columbia
(west coast of Vancouver
Island, Barkley Sound,
Queen Charlotte Sound,
Dixon Entrance) for marine
zooplankton (solid circles)
and juvenile salmon (open
circles). Location of the
study lakes for sockeye
(Sakinaw, Ruby, Alouette,
Sproat and Nimpkish lakes)
and kokanee (Ruby and
Alouette lakes). Note that
sockeye and kokanee are
sympatric in Sakinaw Lake
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dead-time (27 nsec), and isotopic ratios were
expressed as δ34S (V-CDT). Usually two analysis
spots were placed in each of three zones: the core, the
first year of growth, and the last year of growth.
Identification of the zone corresponding to the core
and first year of growth was based on the hatch check
and first-feeding check (Marshall and Parker 1982).
Additional measurements were obtained in the core
area in order to monitor local heterogeneities. Instru-
mental mass fractionation was determined throughout
each analytical session from replicate analysis of the
outer edge of sockeye otolith assuming a marine
34S/32S of 0.04505, or δ34S (V-CDT)=+20‰ relative
to V-CDT 34S/32S=0.044163 (Ding et al. 2001).
Analyses of fish of unknown maternal origin were
interspersed with those of known maternal origin and
isotopic data were corrected using the average instru-
mental mass fractionation factor from each analytical
session. Instrumental mass fractionation for 34S/32S in
otoliths shows only minor variability after exchange of
samples in the analysis chamber, and reproduced well
in two individual sessions separated by 1 year (−14.8±
0.4‰ in 2007, and −15.7±0.4‰ in 2008; all errors are
1SE). It is also reasonable to apply the same
instrumental mass fractionation for different regions
of the otoliths and for different ecotypes (sockeye and
kokanee) because they show similar S ion intensities,
therefore suggesting that compositional variations (e.g.,
from different relative abundances of carbonate and
organic matter) are minor.

Statistical analysis

Estimates of δ34S in the otolith core, first year of growth
and the difference between the core and first year of
kokanee and sockeye otoliths were compared using
ANOVA (Proc GLM, SAS Institute 2008). To evaluate
the effectiveness of sulfur isotopes in identifying
ecotypes of O. nerka, we performed discriminant
function analysis (DISCRIM, SAS Institute version
9.2) using δ34S from the core of ecotypes of known
maternal origin. Before proceeding with discriminant
function analysis, we tested for homogeneity of the
within-group covariance matrices using a Bartlett’s
modification of the likelihood ratio test (Morrison
1976; Anderson 1984). The error rate was estimated
via crossvalidation, where each observation was classi-
fied using a discriminant function computed from all
observations, except for the observation being classified.

Results and discussion

δ34S in zooplankton

Mean δ34S in freshwater zooplankton ranged from
6.3‰ to 9.4‰ in the sockeye lakes, and from 6.2‰
to 8.1‰ in the kokanee lakes (Fig. 2). In contrast, the
δ34S signature in marine zooplankton off the west
coast of British Columbia and of euphausiid samples
from Barkley Sound averaged 20.5‰ and 18.5‰,
respectively (Fig. 2). Our values for both freshwater
and marine zooplankton are within the range of those
reported in the literature, providing further evidence
that δ34S signature differs substantially (>10‰)
between freshwater and marine ecosystems (Fig. 3).

Seasonal and interannual variation tended to be
higher in freshwater than in the marine environment.
Seasonal variation of δ34S in freshwater zooplankton
in Nimpkish/Woss Lake, Sproat Lake and Alouette
Lake was up to 2.8‰. In the meromictic Sakinaw
Lake, the overall mean δ34S in freshwater zooplank-
ton averaged 9.4‰ (Fig. 2). However, δ34S in
zooplankton varied among years and basins. In
2005, the mean δ34S in zooplankton in the upper
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(fresh) and main (meromictic) basin averaged 7.1±
0.2‰ (1SE) and 7.6±0.5‰ (1SE), respectively,
compared to 9.4±0.2‰ (1SE) and 11.1±0.4‰ (1SE)
in 2006. The interannual variability of δ34S in
zooplankton in Sakinaw Lake may reflect variable
contributions of sulfur originating below the chemo-
cline. Sulfur is present below the chemocline, but
δ34S values in the surface waters are much lower than
typically found in the marine environment. Marine
zooplankton samples averaged 20.5‰ in March 2007,
20.7‰ in October 2007 and 19.9‰ in March 2008.
Therefore, during that time, seasonal and interannual
variation was less than 1‰ for marine zooplankton.

δ34S in mature sockeye and kokanee tissues

As expected, δ34S varied little (0.2–1‰) between
muscles and eggs of mature specimens within a given
ecotype and ecosystem, probably because eggs are
derived from protein and lipid matrices in the
maternal muscle (Vander Zanden et al. 1998; Doucett

et al. 1999a). Mean δ34S in kokanee eggs and muscle
ranged from 4‰ in Ruby Lake to 8‰ in Sakinaw
Lake (Fig. 4). Sockeye eggs (18.7‰) or muscle
(18.5‰) were enriched on average by 10‰ to 14‰
relative to kokanee (Fig. 4). It is worth noting that for
either sockeye or kokanee, scales had the same
isotopic signature as eggs and muscle (Fig. 4).

The δ34S in fish tissues (eggs, muscle, whole fish,
and scales) pooled from sockeye and kokanee were
linearly related to δ34S in zooplankton. δ34S in fish
tissues was on average 1.6‰ lower than that found in
zooplankton (δ34S pooled fish tissues samples = −1.6 ±.
0.1‰ (1SE) + 1δ34S in zooplankton, r2=0.98, n=33)
which is within the range reported by McCutchan et
al. (2003, 2005). Barnes and Jennings (2007) reported
slightly lower fractionation values (-1‰ to 0‰)
between European sea bass muscle and their labora-
tory diet. Weber et al. (2002), also found lower
fractionation (<−0.5‰) between muscles of juvenile
Chinook salmon and their diet (either gut contents or
hatchery feed). Our slightly higher values of fraction-
ation suggest that our zooplankton samples might not
have been wholly representative of the diet.

0
20
40

 
Fresh water (n=154)

0
5

10
15

 

Freshwater Prey (n=13)

0
5
10
15

 

 

Freshwater Fish (n=39)

0
5
10
15

 

 

Marine Zooplankton (n=5)
0
5

10
15

Marine Fish (n=5)

 

-20 -15 -10 -5 0 5 10 15 20
0
5

10
15

δ34
S (‰)

C
ou

nt

Marine water (n=4)

Fig. 3 Frequency distribution of stable isotope ratios of sulfur
in freshwater sulfate, freshwater prey, freshwater fish, marine
fish, marine zoo plankton and marine water sulfate obtained
from the literature (Ault and Kulp 1959; Thode et al. 1961;
Hartmann and Nielsen 1964; Sasaki 1972; Gormly and Sackett
1977; Rees et al. 1978; Fry 1983; Nriagu and Soon 1985;
Peterson et al. 1985; Fuller et al. 1986; Fry 1988; Hesslein et al.
1988, 1991; Krouse and Herbert 1988; Nriagu et al. 1991;
Andersson et al. 1992; Caron et al. 1996; Yang et al. 1996;
MacAvoy et al. 1998; Chanton and Lewis 1999; Doucett et al.
1999a, b; Power et al. 2002; Weber et al. 2002; Spence and
Telmer 2005; Calmels et al. 2007; Hoffman et al. 2007; Ethier
et al. 2008; Wells et al. 2008; Croisetière et al. 2009; De
Brabandere et al. 2009). Vertical bars correspond to the median
value

-4

0

4

8

16

20

24

E 
S

[2] [3]

Alouette

[2]
S 

[3]

S

Juvenile
salmon

M 
BC Coastal

[20]

[4][2][5]

[4][1]

[4][3][6]

[4][2]

E 

WF 

E 

M 

Sakinaw

E 

Nimpkish Sproat

Ruby 

Kokanee Sockeye

Sakinaw

E WF 

S M E 

Fig. 4 Mean δ34S (± 1 SE) in eggs (E), whole fish (WF), muscle
(M) or fish scale (S) of kokanee and sockeye from the study lakes
as well as from juveniles salmon caught along the west coast of
British Columbia. Numbers in brackets indicate the sample size

Environ Biol Fish (2010) 89:521–532 527



δ34S in BC coastal juvenile’s salmon

δ34S of juveniles salmon caught in marine coastal
water of British Columbia averaged 16.2‰ with
values ranging from 12‰ (1 out of 20) to 17.4‰
(Fig. 4). δ34S in juvenile salmon were enriched by
8 to 12‰ relative to kokanee (Fig. 4), 6 to 34‰
relative to other freshwater fishes (Fig. 3), but were
on average 4‰ lighter than the marine zooplankton
(Fig. 2). All the juvenile salmon were caught at sea in
October–November 2007, a time when seasonal and
interannual variation was less than 1‰ for marine
zooplankton. Consequently, the 4‰ discrepancy in
δ34S between juveniles and the marine zooplankton is
either due to fractionation of S between the fish and
its diet, lack of equilibrium with the diet, or because
the sampling locations of the marine zooplankton
samples did not reflect the feeding habitats of the
juveniles. The last option is a possibility since
experimental work using European sea bass suggests
that fractionation was minimal (0‰ to −1‰) under
various ration levels and temperatures studied (Barnes
and Jennings 2007).

δ34S in sockeye and kokanee otoliths

The overall pattern of δ34S in the core, first year of
growth, and last year of growth of individual kokanee
and sockeye is related to the maternal diet and the diet
in their respective ecotypes (Fig. 5). For sockeye, a
marine signature (δ34S >17.2‰) is present in both the
core and last year of growth, whereas freshwater
values (δ34S <8‰) persist throughout the otoliths of
kokanee. Freshwater signatures are the most variable
with differences between the extreme values of 0.8‰
and 5.2‰ depending of the ecotype and ecosystem
(Fig. 5). Yet, the mean δ34S in the first year of growth
did not differ significantly between sockeye (5.9‰)
and kokanee (4.4‰) (F=1.4, p>0.20). In contrast, the
mean δ34S in the core of the sockeye otoliths was
19.2‰ and significantly different (F=122.3, p<
0.0001) than of kokanee (5.3‰). Furthermore, sock-
eye had a 13.3‰ difference of δ34S between the core
and the first year which was significantly (F=45.2,
p<0.0001) different than that for kokanee (0.6‰)
reflecting differences between marine and freshwater
zooplankton as the source of organic sulfur. Although
the δ34S in the various regions of an otolith correspond
to the diet for each period of the life history, we, like

Weber et al. (2002), found that the isotopic signature of
sulfur in the otolith tends to be slightly lower than that
found in the diet and muscle. Freshwater δ34S in the
otoliths of kokanee from Ruby and Sakinaw lakes was
on average 1.8‰ and 3.1‰ lower than that observed in
muscle. Weber et al. (2002) recorded a δ34S value near
zero (−0.4±0.65‰, 1SE) in the zone of freshwater
growth of the otolith of one wild juvenile Chinook
salmon compared to values in the muscle of a number
of wild juvenile Chinook salmon ranging from 1.0‰ to
3.8‰. Except for Sakinaw sockeye, mean δ34S differ-
ences between freshwater zooplankton and otoliths
ranged from 0.1‰ to 4.4‰ and overlapped the range
of differences observed by Weber et al. (2002).

This discrepancy between values of δ34S in the
freshwater diet and in otoliths might be due to
seasonal and interannual variation of δ34S in fresh-
water zooplankton as the dates of fish and prey
collection did not match (Table 1). Irregularity and
roughness of the otolith surface (to which SIMS is
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Fig. 5 Mean δ34S (± 1 SE) in the core (open circle), first year
of growth (hollow square), and last year of growth (solid
triangle) of otoliths from O. nerka of known maternal origin in
Ruby Lake (1 to 4), Sakinaw Lake (5 to 6 and 11 to 12),
Alouette Lake (7 to 9), Nimpkish Lake (10), and Sproat Lake
(13 to 17). The numbers 1 to 9 and 10 to 17 on the X-axis refer
to kokanee and sockeye, respectively
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sensitive) can also play a minor role, but the
consistency in the observed differences between our
results and those of Weber et al. (2002) argues against
a significant impact of surface topography. Finally,
some unknown degree of sulfur isotopic fractionation
could be potentially introduced by fish physiology. In
this case, the instrumental mass fractionation correc-
tion that assumes a marine value of 20‰ for the outer
edge of sockeye otoliths could be biased if there was
sulfur isotopic fractionation between the marine diet
and otoliths. Diverse organic components such as
protein, glucose, and triglycerides have been analyzed
in both the endolymph and blood plasma (Kalish
1991). However, comprehensive work on formation
of the organic matrix of an otolith in relation to sulfur-
based components is lacking. One possible explana-
tion for the discrepancy might be a difference
between the composition of the endolymph (which
contains the compounds involved in the acellular
growth of the otolith) and that of the blood (Payan et
al. 1998), which presumably reflects the diet. Fur-
thermore, one might expect some discrepancies
between the endolymph and the otoliths since the
organic matrix of the otolith is composed of both
preformed proteins present in the endolymph and
derived from a modification of protein precursors
during otolith formation (Borelli et al. 2001). Finally,
inorganic sulfur from the ambient water might be
incorporated into the otolith (Mugiya and Iketsu
1987), modifying the relation of the isotopic signature
of sulfur between the diet and the otolith.

Our measurements of δ34S in fish tissues, fresh-
water zooplankton from the study lakes, and marine
zooplankton from coastal British Columbia confirm
the link between diet and the chemical life history of
fish as recorded in their otoliths. However, it remains
unclear why the freshwater isotopic signature of
sulfur in otoliths tends to be somewhat lower than
that of the diet.

Classification of samples of known and unknown
origin

We built a quadratic discriminant function (QDF) to
classify known ecotypes of O. nerka because the
covariance matrix was not homogeneous between
groups (X2=15.6, p<0.005). Density estimates of the
training data set showed two well-defined groups,
sockeye and kokanee, with no significant overlap. Not

surprisingly, the error rate via crossvalidation was nil.
Posterior probability distributions of the training data
set exceeded 93% for both ecotypes with no classifi-
cation error. This indicates that δ34S in the core can be
used to accurately assess the maternal origin of O.
nerka.

To illustrate the application of δ34S as a tool for
assessing the origin of O. nerka, we applied the
discriminant function from the training set to ten
unidentified specimens collected from Sakinaw Lake
as either kokanee or sockeye according to posterior
probabilities based QDF and Bayes’ theorem with
equal prior probabilities. The δ34S in the core and the
first year of growth in these fish ranged from 0.4‰ to
8.9‰ and −0.1‰ to 8.8‰, respectively, and averaged
was 5.1±0.8‰ and 4.3±0.6‰, respectively (Fig. 6).
This pattern is similar to that described for kokanee
(Fig. 5). As such, the quadratic discriminant function
classified those as kokanee with a posterior probabil-
ity of at least 99% (Fig. 6).

Because δ34S varies over a wider range (55‰)
than other isotopes such as C and N (Barnes and
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Fig. 6 Mean δ34S (± 1 SE) in the core of the otolith is plotted
against mean δ34S in the first year of growth for specimens of
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the posterior probabilities of a specimen being sockeye or
kokanee based on a discriminant function using a δ34S in the
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probability of being sockeye whereas values in the lower part
indicate a high probability of being kokanee
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Jennings 2007), we expect that its use in otolith
microchemistry will extend beyond the simple iden-
tification of maternal origin and basic life history
pattern. δ34S signatures in combination with other
markers, in otolith and in the environment should
enable researchers to describe the environmental
history (diet and temperature) of individual fish and
hence improve the resolution of the food web
structure, habitat uses and fish migration.

In summary, stable sulfur isotope signatures as
preserved in otoliths can successfully identify the
maternal origin with high predictive power and hence
discriminate among ecotypes of O. nerka. δ34S in
muscle has a similar potential (Doucett et al. 1999a)
but the maternal signature in young-of-the-year fish is
rapidly masked by the new diet, whereas it is
faithfully recorded in otoliths. Thus, otoliths provide
a useful chronology of fish habitats, whether artificial
(hatchery) or natural (lake, stream and river). This can
be a powerful tool in the evaluation of conservation
approaches targeting anadromous Pacific salmon.
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