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System Reliability of Flood Control Levees 
 
Paolo Zimmaro, Jonathan P. Stewart, and Scott J. Brandenberg,  
Department of Civil and Environmental Engineering – University of 
California, Los Angeles, California, USA 
Dong Youp Kwak 
RMS, Inc., Newark, California, USA 
Ruben Jongejan 
Jongejan RMC, The Netherlands 
 
ABSTRACT 

Systems of levees are present in many locations world-wide to provide flood protection for urban, industrial, and 
agricultural resources. In risk assessment of levee systems, the probability of demand (e.g., high water events, 
earthquakes, waves) exceeding capacity (e.g., freeboard, erodibility, liquefaction susceptibility) is evaluated across the 
system. We describe and compare two levee system reliability analysis frameworks for cases of seismic and high-water 
demand types. The first approach considers spatial correlations and distributions of demand and capacity between 
“segments” (i.e., elemental levee lengths, nominally 50 m in scale) through Monte-Carlo simulation. The capacity 
correlation model considered in this approach is empirically derived from seismic case histories in Japan. The seismic 
demand correlation model is also empirical and based on global ground motion data, whereas the high-water correlation 
is taken as unity. The second approach, which was developed and previously applied in the Netherlands, examines the 
distribution and correlation of capacities and demands between physics-based “reaches” (i.e., length of levee having 
uniform statistical distributions of capacity and demand, potentially hundreds of m in length). Statistics and spatial 
correlation of the limit state function, defined as capacity minus demand, are computed using a first-order reliability 
method (FORM) procedure based on the distribution functions and spatial correlation functions for capacity and demand. 
Having computed the distribution function and spatial correlation function for the limit state, the probability of failure of the 
reach is then computed using level-crossing statistics. We identify a hurdle in the implementation of the level-crossing 
statistics approach that is related to Markov-type correlation functions for levee capacity – this is overcome by 
developing a similar-performing Gaussian correlation function. We compute system failure probabilities from reach 
statistics by assuming statistical independence among reaches. We illustrate application of both methods for an example 
levee system subjected to realistic demand and capacity distributions. Our results show that characteristic lengths 
(defined as lengths of levee that can be considered as statistically independent) are comparable for high-water and 
seismic demands; our interpretation is that this result is driven by the use of similar capacity correlation models, whereas 
the differences in demand correlation models for the two hazards are not impactful.  
 
 
1 INTRODUCTION 

 
Levees are defined as man-made or natural 
embankments along rivers or water bodies. Their primary 
purpose is to provide protection against flood events. The 
performance of levees when subjected to natural and/or 
anthropogenic events (such as floods or earthquakes) is 
essential for the resilience of surrounding communities. 
Despite their critical function, many levees were not 
properly engineered at the time of their construction and 
are often founded on soft and weak soils. As a result, 
levees are frequently damaged during high-water events 
(e.g., Larson, 1996; Sills et al., 2008; Briaud et al., 2008) 
and following major earthquakes (Miller and Roycroft, 
2004; Sasaki, 2009; Sasaki et al., 2012; Green et al., 
2011; Kwak et al., 2016a).  

For levees that continuously impound water, a single 
failure anywhere along their length will produce flooding, 
and hence comprises system failure. For levees that 
intermittently impound water, the seismic failure 
probability is related to the combination of seismic 
deformation risk and probability of high water during or 
shortly following the event, whereas the high-water failure 
probability is simply the single-segment failure probability 
during a high-water event. In either case (continuously or 
intermittently loaded), levees constitute a spatially 

distributed series system, which present particular 
challenges for risk assessment. This paper describes two 
conceptually similar approaches for analysis of levee risk, 
with an emphasis on the system probability of failure 
given knowledge of capacity and demand on a more local 
level. We defer to other documents for recommended 
analysis procedures for computing capacity at the 
segment, or cross-section, level (Zimmaro et al. 2017 for 
seismic, URS Corporation, Jack R. Benjamin & 
Associates Inc., 2008 for high-water).  

Demands imposed on levee systems (e.g. high water 
related to flood events, earthquake shaking) are spatially 
correlated in a manner that reflects attributes of the event 
initiating the demand. Moreover, the available capacities 
of a portion of the levee to resist demands (e.g., 
erodibility, liquefaction susceptibility, etc.) are also 
spatially correlated due to the geologic depositional 
processes and the manner in which levee fills were 
constructed.  

Several approaches can be used to consider spatial 
correlation of demand and capacity in levee systems. We 
take spatial demand correlation for high water events as 
unity (Vrouwenvelder, 2006). For seismic demands, 
models for spatial correlation of ground motions are 
applied (Jayaram and Baker, 2009). The correlation of 
capacity may be calculated based on spatial correlation of 



 

 

the soil properties that give rise to the levee capacity 
(e.g., Vrouwenvelder, 2006; Jongejan and Maaskant, 
2015), or by back-calculation of the capacity distribution 
based on observed damage and demand distributions 
(Kwak et al., 2016b). We adopt the latter approach for the 
present work.  

We present here a levee system reliability analysis 
framework applied at two levels of resolution. The first 
(Monte Carlo simulation) is computationally demanding, 
but flexible with respect to assumptions regarding the 
statistics of the limit state function. This approach 
generates random realizations of demand and capacity of 
levee segments compatible with spatial correlation 
models, and then numerically calculates the probability of 
failure. The second is less computationally demanding, 
but makes assumptions about the statistics of the limit 
state function. This approach is based on the First Order 
Reliability Method (FORM) and level-crossing statistics. 

We present both approaches using consistent 
terminology, which is provided next. We describe the 
development of capacity distributions and correlation 
functions, which are required elements of both the Monte 
Carlo and FORM methods. For a hypothetical levee 
system subject to specified scenario demands, we then 
compare results of risk analysis for seismic and high 
water events using the two methods. This paper builds 
upon a previous paper (Kwak et al. 2017) that used a less 
developed version of the capacity correlation model, 
different levee configurations, and which considered only 
earthquake demands.  
 
2 LEVEE SYSTEM RISK ASSESSMENT 

PROCEDURES 

 
We apply the following terms for use in the engineering 
evaluation of levee risk (Kwak et al. 2017): 
 

System: A length of levee that protects a 

particular region from flooding. A breach 
anywhere within the system constitutes system 
failure if the levee impounds water.  
Reach (Physics-Based): A length of levee that 

exhibits uniformity in the statistical distributions 
of levee capacity (soil properties, geometry), and 
demand (flood level, earthquake shaking, etc.). 
Capacity and demand vary randomly within a 
reach, but their statistical distributions are 
uniform. A two-dimensional cross-section 
analysis must be interpreted in a manner that 
considers the out-of-plane variation in capacity 
and demand to draw meaningful conclusions 
about the probability of failure of a reach.  
Reach (Legal/Jurisdictional): Levee systems 

are sometimes divided into "reaches" based on 
specific legal or jurisdictional boundaries, or 
other considerations that are unrelated to the 
physics that drive risk analysis. It is important to 
distinguish this definition from the physics-based 
definition, and to use the physics-based 
definition in risk analysis. 
Characteristic length: A characteristic length is 

a specific length of levee for which the probability 

of system failure computed based on the 
assumption of statistical independence of each 
characteristic length is equal to the probability of 
system failure based on a more robust risk 
analysis that considers spatial correlation of 
capacity and demand within the system. The 
probability of system failure using the 
characteristic length method is computed based 
on a computationally simple product sum. 
However, the characteristic length can strictly 
only be defined by first computing the probability 
of system failure using a robust risk analysis 
framework, and subsequently calculating the 
characteristic length. The characteristic length 
depends on the spatial variations of capacity and 
demand within the system, and is different for 
different loading conditions as demonstrated 
subsequently in this paper. In practice, a specific 
characteristic length has been assumed from the 
outset to facilitate relatively simple analysis. 
Errors in the selection of characteristic length 
directly affect the computed probability of system 
failure. 
Segment: A segment is a length of levee with 

uniform capacity, and can be considered as an 
elemental length. A segment may be 
represented as a two-dimensional cross-section 
in engineering analysis. Soil properties may vary 
within a segment due to stratigraphy and 
depositional variability, but the capacity of the 
segment is constant because the size of the 
failure mass is large enough to average out the 
spatial variations in soil properties. Segments 
are shorter than reaches, and reaches may be 
analyzed as a collection of segments. The 
capacity among various segments is spatially 
correlated due to similarities in the depositional 
environment of the foundation soils and levee 
construction practices.  
 
Note that different definitions may be found in 
literature for similar concepts (e.g., ‘reach’ as 
‘section’, Jongejan and Maaskant, 2015). 
 

Figure 1 shows a schematic of a levee system that is 
divided into multiple reaches. Each reach can be 
subdivided into segments, and a characteristic length may 
be computed from a risk analysis. In this case, we 
assume that a reach > characteristic length > segment, 
though reaches are not necessarily longer than 
characteristic lengths by definition.  

 
 

 
 



 

 

 

 
Figure 1. Definition of (a) levee system and reach; (b) levee segment and characteristic length within a reach. Adapted 

from Kwak et al. (2017). 
 

 
 

Figure 2. Illustration of procedure for system risk analysis using Monte-Carlo simulation (adapted from Kwak et al., 

2017). 

(a)

(b)

 



 

 

3 LEVEE SYSTEM RISK ASSESSMENT 
PROCEDURES 

 
System risk analysis consists of calculating the probability 
that one or more segments within the system experience 
failure due to a stressing event. In this paper, we focus on 
failure probabilities conditioned on the stressing event 
(denoted E), not the failure probability itself. Important 
aspects of this calculation are the distribution functions of 
capacity and demand for the segments, and spatial 
correlation of capacity and demand among segments. To 
illustrate the importance of spatial correlation on system 
risk analysis, consider two extreme cases: the capacity 
and demand distributions of two different segments are 
either perfectly correlated or statistically independent. For 
the case of perfect correlation, the capacity of each 
segment is a uniform number of standard deviations 
above or below the mean value, as is the demand. 
Hence, the conditional probability of system failure [i.e, 
P(Fsys|E)] is equal to the maximum of the conditional 
probabilities of failure of the individual segments in the 
system. In the case of statistical independence, P(Fsys|E) 

is equal to the complement of system survival, which in 
turn is the product of each individual reach surviving. The 
conditional probability of failure associated with these 
scenarios lies between the two extremes, which are 
known as uni-modal bounds for a series system (Ang and 
Tang, 2007): 
 

max[P(𝐹𝑆𝑒𝑔,𝑖|E)] ≤ P(𝐹𝑠𝑦𝑠|E) ≤ 1 − ∏ (1 − P(𝐹𝑆𝑒𝑔,𝑖|E))

𝑛

𝑖=1

 (1) 

 

where arguments Fsys and FSeg,i indicate failure of the system and segment i, respectively, and n is the total number of segments. When segment capacity and/or demand are spatially correlated, the system failure probability lies between these bounds.  
The range of failure probabilities provided by Eq. (1) 

is often wide. For example, a system composed of 10 
segments each with P(FSeg|E) = 0.05 will have P(Fsys|E) = 
0.05 for perfect correlation and P(Fsys|E) = 0.40 for 
statistical independence. In general, P(FSeg|E) will vary 
within the system, but is selected to be constant for this 
simple illustration. Where the actual value of P(Fsys|E) 

falls between these uni-modal bounds depends strongly 
on capacity and demand correlations among segments. 
The following sections describe two approaches for 
analysis of this probability. Both approaches 
fundamentally consider segment fragility and correlations, 
but in different ways.  
 
3.1 Monte-Carlo Simulation-Based Approach 

 
The approach begins with the definition of limit state 
function, Z: 
 

𝑍 = 𝐶 − 𝐷 (2) 
 
Where C is capacity and D is demand. Note that C and D 
are spatially correlated random variables assumed to be 
log-normally distributed. Moments of the log normal 
distributions are constant within a reach, but there are 
between-segment variations in capacity and demand, 
which are driven by the respective correlation functions. 
The system failure probability is evaluated as follows: 

1. Populate two sets of uncorrelated normal 
random variables, which will be used later for 
capacities and demands, with a sufficient 
number of realizations (here: 50,000) for each 
segment. 

2. Construct symmetric matrices of correlation 
coefficient for demand and capacity, as given in 
Eq. 16 of Kwak et al. (2016b).  

3. Use Cholesky decomposition (e.g., Baecher and 
Christian, 2003) to modify the realizations 
generated in (1) to exhibit the desired spatial 
correlation structure. 

4. Transform the random variables from (3) to 
demands and capacities with appropriate units. 
This can be expressed in terms of a generic 
variable (Y) that both represents demands (e.g., 
ground shaking level for earthquakes, water 
elevation for high-water events) and the output of 
capacity functions.  

5. Compute the limit state Z (Eq. 2) for each 
segment for each realization. 

6. Compute the damage state of the system for 
each realization, which is 1 if any segment has 
capacity lower than demand (Z < 0) within the 
system.  

7. Calculate the fraction of realizations for which 
Z < 0, which is an estimate of the system 
probability of failure. 

Figure 2 illustrates the procedure for evaluating the 
system failure probability using the Monte-Carlo 
simulation-based approach. 
 
3.2 Level-Crossing Statistics Method  

 
The Monte Carlo simulations presented in the previous 
section are computationally demanding for large systems. 
A conceptually similar alternative that is less 
computationally demanding is described here. It involves 
computing the statistics of the limit state function (i.e., the 
distribution function and spatial correlation function) for 
segments within a reach using the first-order reliability 
method (FORM; Rackwitz, 2001) and then computing the 
reach failure probability using level-crossing statistics. 
Reach failure probabilities can then be extended to uni-
modal bounds on system failure probabilities. The steps 
involved in this method are outlined below (see 
Vrouwenvelder, 2006 or Jongejan and Maaskant, 2016 for 
further details). 



 

 

1. For each reach, define a representative segment 
having defined probability density functions (PDFs) for 
capacity and demand. Limit state function, Z, is the 
difference between capacity and demand (Eq. 2), and 
is assumed to follow a normal distribution (and is 
therefore formulated for C and D in natural log space). 

2. Given the demand and capacity PDFs from (1), 
calculate the conditional failure probability [P(Fseg|E)], 

reliability index (𝛽𝑆𝑒𝑔), and influence coefficients of the 

segment using FORM. Reliability index and failure 
probability are related as:  
 

P(𝐹𝑆𝑒𝑔|𝐸) = P(𝑍 < 0) = Φ(−𝛽𝑆𝑒𝑔) (3) 

where  is the standard normal cumulative distribution 
function. The influence coefficients (Hasofer and Lind, 
1974) describe the relative weight of the demand (𝛼𝐷) 

and capacity (𝛼𝐶) distributions on the limit state 

function. This can be expressed by a linearized 
version of the limit state function at the design point

1
 

as follows: 
 

𝑍 = 𝛽𝑆𝑒𝑔 + 𝛼𝐷𝜀𝐷 + 𝛼𝐶𝜀𝐶 (4) 

 
where 𝜀𝐶 and 𝜀𝐷 are independent, standard normal 

variables. The squared sum of 𝛼𝐶 and 𝛼𝐷 is unity (i.e. 

𝛼𝐷
2 + 𝛼𝐶

2 = 1).   

3. Calculate the failure probability of the reach on the 
basis of level-crossing statistics. In this step an 
approximate version of the correlation function

2
 of the 

limit state function is taken as the weighted sum of the 
correlation functions for capacity and demand, as 
follows: 

 

𝜌𝑍(𝑥) = 𝛼𝐶
2𝜌𝐶(𝑥) + 𝛼𝐷

2 𝜌𝐷(𝑥) (5) 

where x is distance between two points. The failure 
probability of a reach can now be approximated by: 

 

P(𝐹𝑅|𝐸) = 1 − (1 − P(𝐹𝑆𝑒𝑔|𝐸)) × 

exp (−
𝐿

2𝜋
√−

𝑑2𝜌𝑍(0)

𝑑𝑥2 × 𝑒𝑥𝑝 (−
𝛽𝑆𝑒𝑔

2

2
))     (6) 

 

                                                           
1
 the point having the shortest distance from the limit state 

function to the origin in the standard normal space (Rackwitz, 
2001) 
2 As used here, correlation functions describe correlation of a 
variable as a function of separation distance.  

where L is the reach length. Eq. (6) indicates a reach 

may be thought of, approximately, as a series system 
of independent, characteristics lengths, with a length 
(LChar) given by: 

 

𝐿𝐶ℎ𝑎𝑟 = P(𝐹𝑆𝑒𝑔) ×
2𝜋

√−
𝑑2𝜌𝑍(0)

𝑑𝑥2

× exp (
𝛽𝑆𝑒𝑔

2

2
) 

(7) 

 
 
4. Calculate the conditional failure probability of the 

system combining reach conditional failure 
probabilities. Uni-modal bounds of system failure 
probability can be computed from reach failure 
probabilities using Eq. (1). When characteristic lengths 
are appreciably shorter than reach lengths, we 
consider it acceptable to assume zero correlation 
between reaches, as discussed further in Section 5.4.   

 
4 INPUT MODELS 
 
4.1 Capacity Distributions 

 
As illustrated in Figure 3, the capacity distribution for a 
segment with deterministic demand can be taken as the 
derivative of its fragility curve (Baker, 2008), which has 
demand parameter Y on its abscissa. We take the seismic 
levee fragility (and hence capacity distribution) from the 
empirical models of Kwak et al. (2016a), which use the 
demand parameter of peak ground velocity, PGV in units 
of cm/s. These empirical models inherently consider 
failure modes contributing to observed levee 
deformations. For the considered data set, these include 
liquefaction of foundation soils, seismic slope instability, 
and seismic compression. Figure 3 shows two example 
capacity distributions derived from these models. The 
distributions shown in Figure 3 are applicable for stiff soil 
(GN=1 model) and for soft soil, high water, respectively.  

For high-water conditions, possible failure 
mechanisms include underseepage (internal erosion), 
slope instability, and overtopping. In the application 
considered subsequently in this paper, we consider the 
internal erosion mechanism. We use the fragility relation 
shown in Figure 4 relating failure probability to vertical exit 
flow gradient, i (URS Corporation, Jack R. Benjamin & 
Associates Inc., 2008). Seepage analyses are used to 
relate water level (which comprises demand parameter Y 
in this case) to i, for the geometry and soil condition 
present in a particular levee reach. Analyses of this sort 
are illustrated for an example problem in Section 5.  
 
4.2 Correlation Models 

 
Demand correlation for ground motion is taken from an 
empirical model by Jayaram and Baker (2009):  
 

𝜌𝐷(𝑥) = exp (
−3𝑥

𝛼𝐷𝐷
) (8) 

 

where 𝛼𝐷𝐷is a range parameter taken as 17.1 km for 

widely varying geologic conditions and 33 km for similar 
geologic conditions, and x is separation distance, as 

before. This form is referred to as a Markov correlation 



 

 

function. Figure 5 shows these two demand correlation 
models.  

Demand correlation for high-water hazard is taken as 
unity, 𝜌𝐷(𝑥) = 1 (Vrouwenvelder, 2006). This is used 

because flood events are considered to raise the water 
level in a rather uniform manner in the water bodies 
bounded by levees.  

Capacity correlation, ρC, was estimated by Kwak et 
al. (2016b) using observations of the spatial correlations 
of damage states combined with correlations of seismic 
demand. This analysis resulted in Markov-type correlation 
model:  

𝜌𝐶(𝑥) = exp (
−3𝑥

𝛼𝐶𝐶
) (9) 

 

where 𝛼𝐶𝐶  is the range parameter, which is 8.1 km for 

level ≥ 1 damage (effectively any perceptible damage 
level) and 3.2 km for level > 2 damage (severe damage).  



 

 

 

 
 

Figure 3. Example capacity distributions derived from empirical model of Kwak et al. (2016a). 1 and 2 represent 

natural log mean capacities (the exponent is taken to convert to arithmetic units) and ln1 and ln2 represent standard 

deviations of capacity distributions.  
 
 

 
 

Figure 4. Fragility curve relating failure probability to vertical exit flow gradient, i (adapted from URS Corporation, Jack 

R. Benjamin & Associates Inc., 2008). 
 

 
 

Figure 5. Demand correlation functions for both, seismic and high-water conditions.



 

 

Markov correlation functions are not mean square 
differentiable (e.g., Fenton and Griffiths, 2008), which is 
undesirable because the second derivative of the function 
at zero separation distance is required in the level-
crossing statistics method. The Gaussian correlation 
function provided in Eq. 10 is mean square differentiable, 
therefore finding a Gaussian correlation function that is 
"equivalent" to the Markov correlation function developed 
by Kwak et al. (2016b) is desirable. Ultimately, it would be 
desirable to re-derive demand and capacity correlation 
functions using the Gaussian function. In the meantime, 
an "equivalent" function is obtained by computing the 
probability of reach failure using the Markov function with 
the Monte Carlo method, then selecting a value of 𝛽𝐶𝐶  

such that the same probability of reach failure is obtained 
using level-crossing statistics with the Gaussian function.  
 

𝜌𝐶(𝑥) = exp [− (
3𝑥

𝛽𝐶𝐶
)

2

] (10) 

 
As an example, consider Figure 6, which shows two limit 
state functions versus horizontal position along a 25 km 
linear levee system; one with a Markov correlation 
function and the other with a Gaussian function. The limit 
state function is selected to have a mean value of 0.5 and 
standard deviation of 0.2, and is assumed to be normally 
distributed. Failure is assumed to occur when the limit 
state function is lower than zero. The Markov type 
correlation function gives rise to high frequency variations 
in the limit state function, whereas the Gaussian limit state 
function is much smoother. The value of 𝛼𝐶𝐶  for the 

Markov function was set to 8.1 km following Kwak et al. 
(2016b), and the probability of failure was computed to be 
Pf = 0.23 using 1000 Monte Carlo simulations. The value 

of 𝛽𝐶𝐶  was then iteratively adjusted, and 𝛽𝐶𝐶  = 1.0 km was 
found to provide Pf = 0.23. These two correlation 
functions are therefore considered to be "equivalent". This 
approach is used to define appropriate equivalent 
Gaussian correlation structures for the capacity of each 
reach analyzed in Section 5 (Section 5.3). 
 
5 EXAMPLE APPLICATION 
 
5.1 Problem Description 

 
We consider the levee system shown in Figure 7, which 
protects the town from flooding during high-water river 
flows. The river and levee are adjacent to the town 
through ‘highland’ (relatively firm soil conditions) and 
‘lowland’ (soft soil) areas. The levee is 5 m in height and 
has a mean water level on the river side of 1 m above the 
levee base elevation – hence, the levee is assumed to be 
effectively continuously loaded. Due to the different 
foundation conditions, the highland and lowland levees 
have different side slopes of 1.5H:1V and 2H:1V, 
respectively, as shown in Figure 8. The time-averaged 30-
m shear wave velocities in the two regions are 450 m/s 
and 200 m/s, respectively.  

The study region is in an active seismic area, 45 km 
from a strike-slip fault having a scenario M6.5 earthquake. 

The area is also subject to water level rise in the river 

channel during storm events. Further details on the 
earthquake and high water demands are provided next.  
 
5.2 Scenario Demands 

 
In this paper, we consider log-normally distributed 
scenario-based high water level and seismic demands. 
Our failure probabilities are conditioned on those demand 
levels. We recognize that a more complete risk analysis 
would convolve uncertain demands with levee fragilities 
(described here) to evaluate return periods on levee 
failure, but our work has not evolved yet to that point.  

The scenario high-water event is assumed to result 
from a severe storm in the river watershed. The median 

water level rise (DW) for both reaches in the river near 

the subject town from this event is assumed to be 1.2 m 
(Figure 8a), with a natural log standard deviation of 0.2.  

We take the scenario ground motion as the within-
event PGV distribution along the levee alignment. There 
is some change with coordinate x due to varying site-
source distance (taken as distance to surface projection 
of fault, RJB) and site condition. Figure 9 shows the 
variation of 16

th
, 50

th
, and 84

th
 percentile demands (using 

the Boore et al. 2014 ground motion model) with location 
along the levee. The origin of coordinate x is shown in 
Figure 7.  
 
5.3 Monte Carlo Approach 

 
We apply the Monte Carlo approach (Section 3.1) using 
the following inputs:  

 Seismic and high water demand distributions are 
as described in Section 5.2. 

 Seismic capacity distributions for highland and 
lowland areas are taken from the models of 
Kwak et al. (2016a) shown in Figure 3 as the 
GN=1 model and the soft soil, high water model, 
respectively.  

 High-water capacity distributions are described 
below.  

 Spatial correlation models for demand and 
capacity are as described in Section 4.2.   

We develop fragility for high water level by combining the 
hydraulic gradient-based fragility (Figure 4) with reach-
specific seepage analyses performed for both reaches (in 
lowland and highland areas). The steady-state seepage 
analyses were performed using the computer program 
Slide 7.0 (Rocscience, 2015) using the section geometry 
and hydraulic conductivities shown in Figure 10. These 
seepage analysis results may be conservative for short-
term flooding events, for which transient analyses would 
be more appropriate. Figure 10 also shows the resulting 
flow velocities for the mean high water level of 2.2 m 
above levee base. Figure 11 shows the resulting internal 
erosion simulation-based data points along with fragility 
curves as a function of high water elevation relative to 

levee base (DW+DW). Both fragility curves are obtained 

fitting the data with a log-normal functional form, using the 
maximum likelihood estimation method (Baker, 2015).   

Monte Carlo simulations (50,000 in total) applied to 
the seismic and high water scenario events produce 



 

 

system failure probabilities of P(Fsys) = 0.12 and 0.11, 

respectively.  



 

 

 
 

Figure 6. Capacity correlation functions (left) and their effect on the lateral distribution of limit state function Z. 

 

 
Figure 7. Schematic view of town protected by river-bounding levee passing over two geologic conditions and near an 

active fault.  
 
  



 

 

 
Figure 8. Cross sections of levees in: (a) highland area with mean water level plus mean water level rise, and (b) 

lowland area with mean water level. 
 

 
 

Figure 9. Variation of demand along the levee system.  is within-event standard deviation (Boore et al. 2014).  

 
 



 

 

 
Figure 10. Computed fields of flow velocity beneath (a) highland and (b) lowland levees. Vector lengths are scaled 

relative to the maximum flow velocity (vmax).   
 
 

 
 

Figure 11. Internal erosion fragilities as a function of high water elevation relative to levee base. Dots represent data 

points obtained from seepage analyses, solid lines represent fitting curves obtained with a log-normal functional form, 
using the maximum likelihood estimation method. 



 

 

5.4 Level-Crossing Statistics Approach and 
Characteristic Lengths 

 
Recall that the level-crossing statistics approach is based 
on the assumption of constant limit state distributions 
within reaches. In the example problem, capacity 
distributions are constant within reaches, but demand 
distributions are variable with distance (x) as shown in 
Figure 9 (black solid lines). Accordingly, we assign 
constant (spatially invariant) distributions to the two 
reaches as shown in Figure 9 (red dashed lines).  

Based on the demand and capacity distributions, 
results of the FORM analyses within the two reaches are 
given in Table 1. The higher failure probability for the 
highland, high water case results from the shorter flow 
path and faster flow velocities (Figure 10).  
 
Table 1. FORM analysis results for segment-level 

performance in scenario events 
 

Reach & demand P(Fseg|E) seg D C 

Highland, seismic 0.0044 2.63 0.26 -0.96 

Highland, high water 0.011 2.28 0.52 -0.85 

Lowland, seismic 0.009 2.36 0.45 -0.89 

Lowland, high water 0.0025 2.80 0.52 -0.85 

 
Application of level-crossing statistics to the segment-

level FORM results produces the reach conditional failure 
probabilities and characteristic lengths in Table 2.  

 
Table 2. Results of level-crossing statistics for reach-level 

performance in scenario events.   
 

Reach & demand P(FR|E) Lchar (km) 

Highland, seismic 0.05 0.21 

Highland, high water 0.09 0.33 

Lowland, seismic 0.08 0.27 

Lowland, high water 0.03 0.26 

 
 

Having established the probability of failure for a 
single reach, we now turn our attention to computing the 
probability of failure of the multi-reach system. For 
simplicity, we assume that the limit state function for 
segments within one reach are uncorrelated with the limit 
state function for segments within an adjacent reach. 
Based on this assumption, the probability of system 
failure can be computed as:  
 

𝑃(𝐹𝑠𝑦𝑠|E) = 1 − ∏[1 − 𝑃(𝐹𝑠𝑒𝑔,𝑖|E)]
𝐿𝑖/𝐿𝑐ℎ𝑎𝑟

𝑁𝑅

𝑖=1

 (11) 

 
where NR is the number of reaches. NR is equal to two in 
the present application (Figure 9).  

The assumption of statistical independence of the 
limit state function among reaches is justified when either 
of the following conditions is met: 

1. The levee system exhibits an abrupt transition 
between reaches that occurs, for example, at the 
transition between two geologic units. This 
condition provides a physical justification for 

assuming that the limit state function is 
uncorrelated among reaches. 

2. The characteristic lengths are significantly 
shorter than the reach length. In this case, any 
spatial correlation that exists at the contact 
between two reaches will not significantly 
influence the system failure probability. 

For cases in which neither of these conditions are 
met, P(Fsys|E) will be lower than computed using Eq. 11, 

which therefore provides a conservative estimate.  Eq. 11 
constitutes one of two unimodal bounds given in Eq. 1. 
The other unimodal bound assumes that the limit state 
function is perfectly correlated among reaches. We 
believe the solution will generally lie closer to that 
provided by Eq. 11 because the limit state function is 
likely closer to being statistically independent than 
perfectly correlated among reaches for typical levee 
systems. 

Based on the use of Eq. 11, the conditional system 
failure probabilities for the two demand scenarios are:  
 

 Seismic, P(Fsys|E) = 0.13 

 High-water, P(Fsys|E) = 0.10  
 
These failure probabilities compare favorably to results of 
Monte Carlo analysis (0.12 and 0.11 for seismic and high-
water, respectively).  
 
6 CONCLUSIONS 

 
We describe two methods for risk analysis of spatially 
distributed systems subjected to spatially variable and 
uncertain demands. The intended application is levee 
systems used for flood protection, and the risk analyses 
are for high-water events (storm surge) and ground failure 
from earthquake shaking. The two methods are 
conceptually similar in that both utilize a limit state 
function defined as the difference between capacity and 
demand, which is described by its distribution and spatial 
correlation models.  

One method randomly samples demands and 
capacities according to their respective distribution and 
correlation functions, computes limit states for levee 
segments, and computes failure probabilities on the basis 
of the number of realizations in which at least one 
segment fails divided by the total number of realizations 
(thousands). This method can consider spatially varying 
demands and capacities, but is computationally intensive.   

The other method (referred to as the level crossing 
statistics method) discretizes a system into multiple 
reaches, calculates the probability of failure for each 
reach, and combines reach probabilities of failure to 
evaluate system probability of failure. The reach failure 
probability is calculated by estimating the limit state 
function for a representative segment (using the First 
Order Reliability Method), and then extending that result 
to the reach level using level-crossing statistics. We 
postulate that reach failure probabilities can be combined 
to evaluate system risk by assuming statistical 
independence between reaches, provided reach lengths 
exceed characteristic lengths. The FORM method is 
efficient and effective when the limit state function may 



 

 

reasonably be approximated as constant over fairly long 
reach lengths. However, the Monte Carlo method may be 
needed when demand and/or capacity varies significantly 
along the system length and the limit state function is non-
stationary over short lengths.  

Application of the two methods is illustrated using a 
two-reach levee system providing continuous flood 
protection to a town, and subject to high water and 
earthquake hazards. The high-water risk is assumed to 
result from internal erosion from underseepage. The 
seismic risk is driven by liquefaction and/or cyclic 
softening of levee and foundation soils.  

Our example calculations show several attributes that 
reflect the characteristics of the input demand, capacity 
models, and correlation models:  
 

1. The spatial correlation of the limit state function 
is much more strongly influenced by the capacity 
spatial distribution than the demand distribution. 
This reflects shorter correlation lengths for 
capacity.  

2. Despite much stronger spatial demand 
correlations applied for the high-water scenario 
vs that for the seismic scenario, characteristic 
lengths for the two hazards are comparable.  

3. For the example considered, results of the Monte 
Carlo and level-crossing statistics methods are 
generally comparable. It is unknown at this time 
how general this finding may be.  

 
Two important aspects of the level crossing statistics 

method introduced in this paper are (1) the conversion of 
Markov-type spatial correlation models for demand to 
Gaussian functions, and (2) considerations in the analysis 
of system risk given failure probabilities for individual 
reaches.  
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