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EPIGRAPH

If people do not believe that mathematics is simple,

it is only because they do not realize how complicated life is.

—John von Neumann
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ABSTRACT OF THE DISSERTATION

Using metabolic network reconstructions to analyze complex data sets

by

Daniel Craig Zielinski

Doctor of Philosophy in Bioengineering

University of California, San Diego, 2015

Professor Bernhard Ø. Palsson, Chair

Understanding the behavior of complex biochemical networks is the pri-

mary goal of systems biology. This task is often addressed through the generation

of large data sets consisting of measurements of biological components like mRNA

transcripts, proteins, and metabolites. Although these methods have become in-

creasingly accurate and comprehensive at measuring the state of the system, un-

covering the function of the system then becomes a problem of analysis to extract

understanding from the data. A key challenge in analyzing biological data sets is

that determining the function of the system depends on a knowledge of the relation-

ship between the components of the system. These relationships can be captured

by grouping variables by known associations, such as pathways, or by explicitly

modeling their relationships mathematically. Metabolic networks are particularly

xvi



primed for both of these approaches, because metabolic pathways are well-defined

by network topology and the equation governing their function, the mass balance

equation, is well understood. In this thesis, the capabilities of metabolic networks

to interpret biological data are advanced through the development and application

of models of increasing levels of detail. First, pathways systematically derived from

a global human metabolic network reconstruction are used to identify metabolic

perturbations tied to drug side effects from in vitro drug-treated gene expression

data. Second, steady-state flux modeling of a core human metabolic network is

used to identify factors underlying two hallmarks of cancer metabolism: the War-

burg effect and glutamine addiction. Finally, the concept of a metabolic network

reconstruction is extended by the definition of detailed enzyme kinetic mechanisms

within E. coli central metabolism, integrating multiple data sets mechanistically

to calculate dynamic functional states of enzymes. This work furthers the use

of metabolic networks in analyzing complex biological data sets, showcasing the

utility of these networks in addressing practical questions in systems biology using

methods of increasing mechanistic resolution.

xvii



Chapter 1

Pharmacogenomic and clinical

data link non-pharmacokinetic

metabolic dysregulation to drug

side effect pathogenesis

1.1 Abstract

Drug side effects cause a significant clinical and economic burden. How-

ever, mechanisms of drug action underlying side effect pathogenesis remain largely

unknown. Here, we integrate pharmacogenomic and clinical data with a human

metabolic network and find that non-pharmacokinetic metabolic pathways dys-

regulated by drugs are linked to the development of side effects. We show such

dysregulated metabolic pathways contain genes with sequence variants affecting

side effect incidence, play established roles in pathophysiology, have significantly

altered activity in corresponding diseases, are susceptible to metabolic inhibitors,

and are effective targets for therapeutic nutrient supplementation. Our results in-

dicate that metabolic dysregulation represents a common mechanism underlying

side effect pathogenesis that is distinct from the role of metabolism in drug clear-

ance. We suggest that elucidating the relationships between the cellular response

1
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to drugs, genetic variation of patients, and cell metabolism may help managing side

effects by personalizing drug prescriptions and nutritional intervention strategies.

1.2 Introduction

Adverse drug reactions, commonly known as side effects, are thought to be

responsible for as much as 11% of hospital admissions[?, 1], a fifth of both Phase

II[2] and III[3] clinical trial failures, high-profile market withdrawals (e.g. Vioxx,

Lipobay), and a large fraction of patient therapeutic non-compliance incidentsLof-

fler2003P. Risk factors associated with side effects have been identified, including

number of drugs prescribed[4], patient age[5], and genetic variants[6]. Side effect-

linked genetic variants identified so far are predominantly associated with drug

pharmacokinetics, thereby affecting exposure of the body to a particular drug, but

these variants do not give any indication of the mechanism by which pathogenesis

is initiated. A recent study suggests that as many as half of drug side effects are re-

lated to known drug-protein binding events[7], and progress has been made toward

systematically identifying drug binding events. However, only modest progress has

been made toward elucidating specific drug-induced changes downstream of bind-

ing events for the majority of drugs (Figure 1.1a)[8]. These downstream effects in

many cases may be most directly tied to side effect pathogenesis as well as patient

genetic and environmental background.

Recent literature suggests that altered gene expression induced by drug

treatment may be one mechanism by which drugs induce systemic off-target ef-

fects[9]. Unfortunately, the lack of clinical data has impeded the determination of

causality of particular gene expression changes in side effect pathogenesis[10]. Re-

cent studies have successfully utilized in vitro drug-treated gene expression profiles

to predict clinical drug effectiveness[11], suggesting that in vitro data may contain

features that are clinically conserved. However, demonstrating the relevance of in

vitro drug response features to clinical side effect pathogenesis presents a signifi-

cant challenge, due largely to the lack of suitable validating data sets and difficulty

of clinical experimentation.
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To address this challenge, we develop a network-based data analysis work-

flow built upon the use of in vitro drug treatment data to identify candidate side

effect-linked features and a large collection of historical clinical and disease model

data as a source of validation (Figure 1.1). First, we identify in vitro gene expres-

sion changes preferentially induced by drugs with clinically-defined side effects to

identify candidate side effect-linked expression features. Then, we cross-reference

these side effect-linked features with independent legacy clinical data found in

the literature to corroborate their relevance in terms of five causal relationships.

We implement this strategy within the context of the reconstructed global hu-

man metabolic network[12], which provides a biologically coherent structure for

data integration due to the high-degree of network annotation and clear functional

connectivity between genes via metabolic pathways[13].
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Figure 1.1: Overview and workflow used in this study. a) Studies
examining side effect pathogenesis focus primarily on drug pharmacokinetics, in-
volving drug transport and clearance, and drug binding in terms of on and off
target binding events. This study examines potential pathogenic mechanisms re-
lated to transcriptional changes downstream of clearance and binding events. b)
Drug-treated gene expression profiles from the Connectivity Map database are
analyzed in the context of the metabolic network reconstruction Recon 1 using
constraint-based modeling to identify drug-induced pathway expression changes.
Drug-induced metabolic pathway expression changes are analyzed in terms of drug
side effects from the Side Effect Resource (SIDER) using a feature selection genetic
algorithm to determine metabolic pathway perturbations conserved in particular
side effects, termed DISLoDGED pathways. c) A new database, the Metabolism-
Disease Database (MDDB), was generated by manual curation of literature to es-
tablish links between altered metabolic pathway function and pathologies, and this
database was used to analyze DISLoDGED metabolic pathways. d) Five candi-
date causal mechanisms for metabolic changes in side effect pathogenesis (listed in
the MDDB panel) are assessed in a large-scale fashion by comparing these in vitro
perturbations to clinical data linking particular metabolic pathways to disease.
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1.3 Results

1.3.1 Calculation of drug-induced metabolic perturbations

from gene expression data

We first identified drug-induced metabolic gene expression changes within

6,040 gene expression profiles in the Connectivity Map (CMap) dataset, represent-

ing three human cell lines exposed to 1,221 drug compounds[14] (Figure 1.1a). We

analyzed the expression profiles using the reconstructed global human metabolic

network Recon 1[12] with a novel metabolic pathway analysis algorithm, termed

MetChange. MetChange is a constraint-based modeling[15] algorithm that com-

putes a score for each metabolite summarizing the drug-induced gene expression

changes along calculated production pathways for the metabolite (Figure 1.2). A

MetChange score for a metabolite defines how expression has changed in a path-

way containing these metabolite production reactions. Production in this case

does not necessarily indicate secretion, as the majority of metabolites produced

by one metabolic pathway are consumed in other metabolic pathways. We also

note that gene expression is not the sole determinant of pathway activity, as gene

and protein expression are imperfectly correlated and enzyme functional state may

change due to perturbation as well. However, change in metabolic gene expression

may still indicate a pathogenic metabolic functional change.

1.3.2 Validation of metabolic perturbations calculated by

the MetChange algorithm

To compare the MetChange method against existing approaches that pre-

dict a metabolic outcome based on gene expression data[16], a published gene

expression data from carbon and nitrogen starvation in S. cerevisiae was ana-

lyzed[17, 18]. A previously generated metabolic reconstruction of S. cerevisiae,

iMM904[19], was used to compute MetChange scores for each condition. Scores

were compared to metabolomics data generated for the same conditions using the

relative changes from the initial time point. A total of 60 metabolites across 5 time
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points for each carbon and nitrogen starvation were compared for both absolute

(i.e. magnitude) correlation and directional (i.e. increased or decreased) correla-

tion with MetChange scores. The MetChange algorithm compared favorably both

with other network-based expression analysis methods and with the use of gene

expression alone in predicting metabolic perturbations (Figure 1.3). Reassuringly,

k-means clustering and principle component analysis (PCA) of MetChange scores,

mapped metabolomics data, and mapped expression data suggest that MetChange

scores maintain functional relationships between time points that are present in

expression and metabolomics data (Figure 1.3).

To further validate the metabolic perturbations predicted by the

MetChange method using the CMap data set, we performed a number of high

throughput computational analyses comparing MetChange perturbations with

drug response properties. First, metabolite scores were compared to co-occurrences

of drug-metabolite text terms in the Pubmed database. A bootstrap analysis of

Z-score permutations showed that PubMed drug-metabolite associations are re-

called in a statistically significant (non-parametric perturbation p-value p<10-3

for 1000 perturbations of MetChange scores). Second, it was found that known

metabolic drug targets as found in the DrugBank database[20] are significantly

closer in reaction proximity to known highly perturbed metabolites than less per-

turbed metabolites for these drugs (median Wilcoxon rank sum p <1.65 x 10-10

for the highest scoring bin). Third, MetChange scores were found to be able to

predict drug-protein literature co-associations within the Pubmed database in a

statistically significant manner (non-parametric perturbation p <0.01).
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Figure 1.2: Description of the MetChange algorithm. 1) Using a
metabolic network reconstruction, sink (demand) reactions are added for each
metabolite. Demand reactions are irreversible with the stoichiometry. Each de-
mand reaction is maximized in turn to obtain maximal production values for each
metabolite using a linear programming problem (LP Problem 1). 2) Reaction pres-
ence/absence p-values are generated from gene expression data and mapped onto
the metabolic network. A second linear programming problem is then solved (LP
Problem 2) for each metabolite. LP Problem 2 identifies the flux solution that
minimizes the inconsistency of the gene expression data with the optimal produc-
tion of a metabolite by restricting the demand reaction for the metabolite to be
at maximal flux, and subsequently minimizing an inconsistency score of (v x p-
values). 3) An example case for metabolite 1. It is observed that the control data
has greater expression (lower presence/absence p-value) for certain production re-
actions. Greater expression of production reactions results in a lower production
inconsistency score for the control gene expression sample, compared with the
drug-treated case, in which certain production reactions are less expressed (higher
presence/absence p-value). 4) As different metabolites have different combinations
of production reactions, they cannot be compared directly within samples. Instead,
scores are compared for the same metabolite between control and treated samples
to generate differential consistency scores using a simple standard score. Once
standardized, metabolites can be compared within drugs to identify regions were
perturbation in production potential has occurred due to gene expression changes.
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Finally, we validated perturbation predictions in targeted experimental

measurements in MCF-7 cell culture under treatment by the drugs metformin,

haloperidol, and genistein. These drugs were chosen due to previous evidence

suggesting significant metabolic perturbation by these drugs. Measured metabo-

lites were chosen to have broad coverage of pathways and target highly perturbed

pathways as predicted by MetChange. Drug concentrations were chosen based on

previous in vitro studies using these drugs.

First, treatment with the antipsychotic haloperidol revealed decreased up-

take of Vitamin B6, consistent with the calculated decrease in the B6 processing

pathway (Figure 1.4a). Second, treatment with metformin, an AMPK activator,

showed significant perturbation of tricarboxylic acid cycle and fatty acid oxidation

metabolites. The observed change was consistent with the large calculated per-

turbation but was in the opposite direction of the transcriptional change, indicat-

ing substantial non-transcriptional control of the metabolite levels (Figure 1.4b).

Additional calculated metformin-induced changes supported by previous results

include: 1) a down-regulation of folate metabolism consistent with reported fo-

late deficiency in metformin-treated patients[21], 2) up-regulated oxidative stress

response consistent with reported lower reactive oxygen species levels[22], and 3)

increased polyamine synthesis and recycling pathways that may result from shared

use of OCT transporters between metformin and polyamines. Third, treatment

with genistein, an isoflavone with hypolipidemic effects[23], experimentally showed

a preferential reduction of the fraction of mono-unsaturated fatty acids synthesized

from glucose that was consistent with predictions (Figure 1.4c).
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Figure 1.3: Analysis of MetChange analysis of matched transcrip-
tomic/metabolomics data in S. cerevisiae under carbon and nitrogen
starvation conditions using the S. cerevisiae metabolic network recon-
struction iMM904. a) Comparison of the median correlations of computational
metabolite absolute magnitude perturbation predictions with experimental data
for several existing methods of integrating gene expression data with a metabolic
reconstruction. b) The same comparison as in part a), but taking into account
the direction of perturbation (the reporter metabolites method is not directional
in its predictions, so both comparisons were made). Error bars are standard de-
viations. The MetChange algorithm performs favorably on this dataset in both
absolute magnitude and directional predictions. c)-e) Principle Component Anal-
ysis (PCA) of the MetChange scores, gene expression data, and metabolite data
for the 60 metabolites that mapped to iMM904. It is seen that the functional as-
sociation of data is conserved after transformation to MetChange scores, and the
MetChange principle component clustering has topological similarity to both gene
expression and metabolite data clustering.
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1.3.3 Identification of in vitro disease-linked metabolic

pathways

Using MetChange scores generated from the Connectivity Map data set, we

then identified the drug-induced metabolic gene expression changes that are most

conserved among drugs with particular clinically-described side effects. We used

a machine learning approach to select discriminating metabolite production path-

way perturbations from the set of MetChange-calculated pathway changes based

upon side effect frequency data reported in the Side Effect Resource (SIDER)

database[24] (Figure 1.1b, Figure 1.5). A total of 357 side effects across 1417

gene expression profiles from CMap were analyzed, based on the criterion that at

least 30 expression sets per side effect were available. The cutoff in number of ex-

pressions sets was chosen rationally as a balance between the scale of the study and

the robustness of the side effect signature obtained. Overall, 2422 disease-linked

drug-changed (termed DISLoDGED) metabolic pathways were identified with this

analysis. These pathways are MetChange calculated metabolite production path-

ways that are over-represented in perturbations by drugs with particular side ef-

fects. DISLoDGED pathways are potential side effect to pathway relationships,

hypothesizing that drug-induced perturbations away from metabolic homeosta-

sis are involved in side effect pathogenesis. The calculated DISLoDGED pathways

thus comprise a large set of omics-driven hypotheses of side effect pathogenic mech-

anisms (Supplementary Data 2). These associations were initially supported by

automated co-association searches of PubMed abstracts to examine disease-linked

nutrient deficiencies across all 357 side effects. Down-regulated DISLoDGED path-

ways were found to be marginally significantly predictive of deficiencies associated

with corresponding specific diseases (permutation p= 0.055), while up-regulated

pathways were not predictive (permutation p = 0.39). We then sought to deter-

mine whether the metabolic expression changes induced by drug treatment were

involved in the pathogenesis underlying drug side effects.
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Figure 1.4: Validation in cell culture of drug-specific metabolic pertur-
bations calculated from drug-induced transcription changes. a) In the
left panel, gene expression related to vitamin B6 metabolism is down-regulated
by haloperidol, suggesting decreased utilization of vitamin B6. In the right panel,
vitamin B6 levels were measured by an enzymatic assay in media supernatant and
lysates of MCF-7 cells, showing decreased utilization of the essential nutrient. b) In
the left panel, metformin gene expression perturbations are shown on the left, and
resulting MetChange scores for related metabolites are shown on the right. The
right panel shows response of TCA metabolites and acylcarnitines to metformin
treatment. Metabolites show a large perturbation in the opposite direction of the
observed transcriptional changes, validating the presence of a perturbation but
indicating non-transcriptional control of metabolite levels in central metabolism
as well. c) In the upper panel, genistein is predicted to preferentially decrease
production of mono-unsaturated fatty acids. The lower panel shows measurement
of biosynthesis fraction of different fatty acid groups and precursors from glu-
cose following genistein treatment measured by NMR spectroscopy, which validate
modeling predictions. Error bars represent standard deviations in all cases. Each
experiment was performed in biological triplicate.
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1.3.4 Construction of a database of in vivo links between

metabolism and disease

We assessed the relevance of DISLoDGED metabolic pathways to side ef-

fect pathogenesis through the use of a large body of clinical, biochemical and

genetic literature on metabolism-disease relationships. We constructed a database

of in vivo links found within the literature between metabolic function and dis-

ease, called the Metabolism Disease Database (MDDB), that consists of curated

primary literature and existing databases (hosted at sbrg.ucsd.edu/mddb). Data

collected through manual curation of the literature included disease-linked: 1)

metabolic gene variants, 2) physiological system-specific metabolism, 3) metabolic

pathways, 4) chemical inhibitors of metabolism, and 5) nutrient deficiencies and

supplements. Data aggregated from existing databases included metabolic gene

variants affecting disease incidences from a large GWAS database[25] and drug-

metabolic enzyme target pairs from DrugBank. Studies on disease models were

treated as acceptable sources where clinical data was not available. The result-

ing database encompasses 357 side effects, over 280 non-drug inhibitors, 600 drug

molecules, 37 nutrients, and over 5000 investigated metabolic pathway-disease-link

associations. The database includes information related to both drug side effects

and non-drug-induced pathologies, and we examined predictions in terms of each

of these separately.

1.3.5 Consistency of metabolism-disease relationships in

the context of drug side effect pathogenesis

We first examined whether DISLoDGED metabolic pathways contain genes

with variants that alter clinical side effect susceptibility, according to data in

MDDB. Causal gene variants are typically considered to affect either drug phar-

macokinetics, which involves drug exposure, or drug pharmacodynamics, which

involves the interaction of the drug with the body. The majority of identified

gene variants affecting drug side effect incidence are involved in drug pharma-

cokinetics, because these genes historically have been simpler to identify as drug
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metabolism genes are largely known. However, we focused upon genes affecting

pharmacodynamics, as these genes are more directly indicative of the mechanisms

underlying pathogenesis. In MDDB, we identified nine side effect susceptibility

gene variants that overlap directly with metabolism but are not involved in drug

pharmacokinetics (Supplementary Note 1). We found that for each of the nine

side effect susceptibility genes, at least one overlapping DISLoDGED pathway for

this side effect had been identified through our analysis. This overlap between

DISLoDGED pathways and non-pharmacokinetic side effect susceptibility altering

genes was highly significant (joint hypergeometric tests, p-value 2.2 x 10-11, see

Supplementary Note 2 for calculation).

To support the relevance of this overlap, we assessed the nine overlapping

DISLoDGED pathways in the context of additional known factors related to side

effect pathogenesis. We found that, in each case, the overlapping DISLoDGED

pathway had established ties to the clinical pathogenesis of the side effect. In the

seven cases where the side effect pathology had been reported independently of

the drug, alterations in the DISLoDGED pathway have been associated with the

disease. Critically, in each of the nine cases, we found that drugs causing the side

effect had been reported to induce a perturbation in the DISLoDGED pathway in

vivo, demonstrating that the in vitro-derived DISLoDGED pathways are similarly

perturbed in vivo. Furthermore, in seven of the nine cases, nutrient supplemen-

tation targeted at the DISLoDGED pathways have been shown to be effective in

treating the drug side effect, while the remaining two cases are inconclusive due to

reports of both positive and negative results.

For example, among the 38 drugs within the CMap database reported in

SIDER as causing increased risk of cardiac arrhythmias, we identified five DIS-

LoDGED pathways (Supplementary Note 1). Three of these DISLoDGED path-

ways, which were a down-regulation of oxidative pentose phosphate pathway and

two related up-regulations in nitrogen metabolism, overlap with genetic polymor-

phisms known to cause increased susceptibility to arrhythmias[26]. These pathways

are known to have physiological ties to the pathogenesis of arrhythmias[27] and

have been shown to be perturbed in vivo by drugs causing arrhythmias[28]. Fur-
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thermore, nutrient supplementation targeted at these pathways has been found

therapeutic in drug-induced arrhythmias[29]. The remaining examples are pre-

sented in Supplementary Note 1.
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Figure 1.5: Description of the genetic algorithm used to identify
metabolic signatures of side effects (DISLoDGED pathways). 1) In-
puts to the algorithm are a set of response variables for each gene expression set
(either MetChange scores or gene expression changes), a binary presence/absence
vector for whether each sample was treated with a drug that has the side effect,
and the desired maximum number of predictor variables desired. 2) At initiation,
the genetic algorithm generates a population of random guesses at the predictor
variables, termed individuals, and assigns them either a value of -1, 0, or 1. For
each individual, all gene expression samples are scored as the response variables
(MetChange or gene expression changes) multiplied by the candidate signature. 3)
Each gene expression sample is then ranked and a receiver operator characteristic
(ROC) curve is generated and area under the curve (AUC) is calculated using the
input presence/absence vector for the side effect or indication. The sample AUCs
are the maximization objective of the genetic algorithm. 4) The genetic algorithm
sub-routines are then used to generate a new population, biasing towards higher
AUCs. Best solutions are maintained without modification, and lower scoring indi-
viduals are combined (crossed over) and modified (mutated) to search the solution
space in a heuristic fashion. The termination criteria is typically a number of
generations without improvement; however, we applied a simple maximum time
termination criteria, as obtaining a global optimum was not deemed essential to
gain biological insight. 5) The signature yielding the highest prediction AUC is
considered the best predictor set. In the example case, the resultant AUC is 1.0,
a perfect predictor for the sample set. 6) To assess over-fitting and hence the pre-
dictive potential of the metabolic signature, 10-fold cross validation is performed
by generating 10 partitions of 90% of the data to train signatures and predict the
remaining 10 partitions of 10% of the data. To find signatures that have con-
stant predictive power, the cross validation signatures were summed, and high
scoring metabolites were considered the conserved metabolic response signature
(DISLoDGED pathway) for the side effect or indication.
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1.3.6 Consistency of DISLoDGED metabolic pathways

with non-drug-induced pathogenesis

We further expanded the scope of validation beyond the nine available cases

of non-pharmacokinetic genetic variants directly affecting side effect incidence. The

MDDB database was used to determine whether the identified DISLoDGED path-

ways are conserved within in vivo data related to non-drug-induced pathologies

as well, where a significantly larger body of literature exists than for side effect

pathogenesis. This analysis hypothesizes that non-drug-induced pathogenesis and

corresponding side effect pathogenesis share a common basis. Using the data

collected, we assessed the calculated DISLoDGED pathways in terms of the five

causal relationships in MDDB. Down-regulated and up-regulated DISLoDGED

pathways were assessed independently to examine directional causal relationships.

Approximately one sixth of calculated DISLoDGED pathways were investigated

for validation, and compared to an equal number of randomized predictions as a

control. The next sections describe each causal link examined.

1.3.7 Gene variants affecting disease incidence

We first sought to determine whether DISLoDGED pathways contain known

disease-linked gene variants. To do this, we compared the metabolic subsystems

into which disease-linked gene variants and DISLoDGED pathways occur. We an-

alyzed 239 metabolic disease-linked genes from MDDB and found an enrichment of

disease-linked genetic variants among transporters (one-tailed hypergeometric p =

0.0048) and inositol metabolism (one-tailed hypergeometric p = 0.02), as well as a

depletion of variants in central carbon metabolism (one-tailed hypergeometric p =

0.035). We found that DISLoDGED pathways showed similar results, including an

enrichment of down-regulated DISLoDGED pathways in inositol metabolism (p =

0.018) mirroring the enrichment found in disease-linked genetic variants, as well as

enrichment of DISLoDGED pathways in non-central metabolism (Supplementary

Table 1). These results indicate certain metabolic pathways may be inherently less

robust to pathological perturbation.
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1.3.8 DISLoDGED pathway associations with disease

physiology

Next, we examined whether DISLoDGED pathways are known be essential

to system physiology in a manner that could result in disease when perturbed.

To compare DISLoDGED pathways to disease pathophysiology, side effects were

grouped based on affected physiological systems, such as renal diseases or autoim-

mune complications. We first grouped DISLoDED pathways by nearest nutrient

for better coverage in the literature. DISLoDGED nutrient pathways preferen-

tially altered by drugs causing side effects in specific physiological systems were

then calculated. In 17 of the 18 cases of enrichments of down-regulated DIS-

LoDGED nutrient pathways within particular physiological systems, the down-

regulated pathways had directionally consistent links to the disease pathophysi-

ology (Figure 1.6b, Supplementary Data 2). For example, inositol metabolism

down-regulation was enriched among drugs with side effects affecting the kidney,

including kidney failure. Supporting this relationship, the kidney is a primary site

of inositol synthesis, and inhibition of inositol transport has been reported to cause

renal failure.

Similarly, pathways that were up-regulated by drugs affecting particular

physiological systems also showed directionally consistent links to pathophysiol-

ogy. In nine out of 17 DISLoDGED nutrient pathways that were up-regulated

in particular physiological systems, inhibitors targeted at the up-regulated path-

way were established therapeutics within the disease class (Figure 1.6c). For

example, drugs causing cancer- or autoimmune-related side effects were enriched

in up-regulation of folate metabolism, and anti-folates are commonly used in treat-

ment of diseases in both classes. Supporting the implications of this up-regulation

in side effect pathogenesis, studies have shown that folate supplementation is tied

to increased incidence of both cancer and childhood asthma.
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Figure 1.6: Maps of interactions between DISLoDGED pathways
grouped by nutrient domain and corresponding side effects grouped by
disease class. Only nutrients and disease classes with at least one marginally
enriched nutrient-class interaction (hypergeometric p <0.1) are shown. a) Using
the metabolic network reconstruction Recon 1, side effect-specific metabolic per-
turbations (DISLoDGED pathways) are grouped into nutrient domains to enable
comparison with existing disease-related genetic, clinical, and pre-clinical data to
assess the potential causality of observed perturbations. In this figure, the number
of side effects with an up-regulation in the production pathway for a metabolite
is shown in yellow boxes, while blue boxes show the number of side effects with a
down-regulation in the production pathway for a metabolite. b) Down-regulated
DISLoDGED pathways. Nutrient-disease class interactions indicating an enrich-
ment of down-regulations in drugs causing side effects within the class are colored
according to the legend. c) Up-regulated DISLoDGED pathways. Nutrient-disease
class interactions indicating an enrichment of up-regulations in drugs causing side
effects within the class are colored according to the legend. Many of the enriched
interactions are consistent with known effects of nutrient/pathway perturbation on
the corresponding disease classes and physiological systems.
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1.3.9 Altered activity of DISLoDGED pathways in disease

We then sought to determine whether DISLoDGED pathways are signifi-

cantly over- or under-active in corresponding clinical disease and disease models,

based on several metrics in the MDDB. To perform this analysis, DISLoDGED

metabolic pathways were associated with dietary nutrients nearest in the metabolic

network. In an initial analysis of 323 DISLoDGED nutrient pathways, down-

regulated DISLoDGED pathways were found to be significantly enriched in disease-

associated nutrient deficiencies (59% enrichment, binomial p-value 0.0017), while

up-regulated DISLoDGED pathways were depleted in disease-associated nutrients

deficiencies (47% depletion, binomial p-value 0.036) (Figure 1.7a).

These results were confirmed in an independent set of 453 investigated

DISLoDGED pathways added to MDDB. Down-regulated DISLoDGED pathways

were more likely to have a causal down-regulation associated with the correspond-

ing pathology (17% enrichment of down-regulation, binomial one-tailed p = 0.045)

(Figure 1.7b), while up-regulated DISLoDGED pathways were significantly pre-

dictive of consistently over-active pathways tied to corresponding pathologies (67%

enrichment of over-activity, binomial one-tailed p = 0.003) (Figure 1.7c).

1.3.10 Effect of targeted inhibition of DISLoDGED

metabolic pathways

Next, we analyzed in vivo data on the effect of non-drug chemical inhibitors

targeted at calculated DISLoDGED pathways. A causal relationship would be

indicated by 1) inhibitors targeted at down-regulated DISLoDGED pathways re-

producing the clinical side effect, and 2) inhibitors targeted at up-regulated DIS-

LoDGED pathways treating the clinical disease. We found that metabolic in-

hibitors targeting down-regulated DISLoDGED pathways specifically were signif-

icantly more likely to cause corresponding side effects (28% enrichment, binomial

one-tailed p = 0.04) (Figure 1.7d). Also, we found that both down-regulated and

up-regulated DISLoDGED pathways were more likely to be known targets for ef-

fective metabolic inhibition to treat corresponding diseases, indicative of imperfect
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directionality of predictions (64% enrichment, binomial one-tailed p = 0.0015 and

29% enrichment, binomial one-tailed = 0.09, respectively) (Figure 1.7e).

1.3.11 Effect of supplementation targeted at DISLoDGED

pathways

Finally, we compared calculated DISLoDGED pathways grouped by near-

est nutrient with clinical therapeutic nutrient supplementation data (Figure 1.6a).

We sought to determine whether down-regulated DISLoDGED pathways might

be targets for nutrient supplementation as a disease therapy. We observed that

predicted down-regulated DISLoDGED pathways were preferentially targets of nu-

trients supplementation to alleviate corresponding pathologies (24% enrichment,

binomial one-tailed p = 0.065) (Figure 1.7e), while over-expressed pathways were

preferentially depleted as effective nutrient supplements (19% depletion, binomial

p = 0.14), although the relationships did not reach statistical significance given

sample sizes available.
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Figure 1.7: Multiple lines of clinical evidence in MDDB implicate a
causal role for drug-induced metabolic transcription changes in side ef-
fect pathogenesis. a-b) Down-regulated DISLoDGED pathways are found to
be enriched in nutrient or pathway deficiencies associated with the corresponding
pathology. c) Up-regulated DISLoDGED pathways are found to be enriched in
consistently over-active pathways associated with corresponding pathologies. d)
Inhibitors targeted at DISLoDGED metabolic pathways are more likely to effec-
tive treatments in corresponding pathologies. e) Metabolic inhibitors targeted at
down-regulated DISLoDGED pathways are significantly more likely to cause cor-
responding side effects. f) Nutrient supplementation targeted at down-regulated
DISLoDGED pathways was found to preferentially alleviate the corresponding
pathology. p-values are defined for one-tailed binomial tests based on the level of
the treated sample relative to the control (random). Sample sizes were chosen a
priori based on feasibility of data collection, without an expectation for a particu-
lar effect size. Symbols: * indicates significant or p ¡ 0.05, + indicates marginally
significant or p <0.1
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1.4 Discussion

The systems biology-based workflow developed in this study predicts side

effect-linked dysregulated metabolic pathways (termed DISLoDGED pathways)

from drug treatment of human cells in culture. We contextualize numerous in-

dependent data types that together support a key role of drug-induced non-

pharmacokinetic metabolic dysregulation in side effect pathogenesis. Through the

construction of a comprehensive resource on metabolic involvement in disease,

we corroborate the predictions made using five independent clinical, genetic and

biochemical bodies of literature. These results provide understanding of the mech-

anisms underlying side effect pathogenesis, which have remained largely opaque

despite recent progress identifying causal protein binding events and genetic sus-

ceptibility factors.

The work presented relied upon the development of a systems biology work-

flow to identify side effect-linked features and validate the relevance of these fea-

tures using historical in vivo data. The use of systems biology approaches to

study drug side effects has become an active field in recent years. Previous studies

have predicted drug-protein binding events responsible for side effects, effective

combinations of drugs to minimize side effects, and drug mechanisms of action un-

derlying side effect pathogenesis. Still, uncovering how causal binding events result

in disease is an essential and largely unanswered question, as identified pathogenic

mechanisms can potentially be used to design therapies to circumvent drug side

effects. The present work we believe is the first to validate omics-driven predictions

of post-binding mechanisms underlying side pathogenesis using clinical data at a

large-scale, which was empowered by the generation of a new database through

manual curation of the literature.

The workflow presented is highly dependent upon large amounts of gene

expression data obtained under treatment by diverse drugs to filter out perturba-

tions due to factors other than common side effects. Normalization of data across

multiple studies and platforms is a substantial issue. Thus, data generated within

a single study is ideal, but such large studies are rare. For this reason, the poten-

tial to extend the workflow to new data types, for example in vivo gene expression
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data, may be limited. Due to the use of in vitro data, corroboration against in vivo

data appears critical. Further deployment of the presented workflow may hinge

upon expansion of curated disease data necessary to corroborate the clinical rele-

vance of in vitro drug treatment features. Furthermore, the definition of pathways

used to integrate disparate data types has yet to be concretely established and

may be an area for further workflow optimization.

Due to the ubiquity of gene set enrichment analysis (GSEA) in pathway-

based analysis of gene expression, a discussion on the differences between the

MetChange algorithm and GSEA is warranted. Both methods attempt to ag-

gregate signal in gene expression data along pathway definitions to increase the

interpretability of the data and decrease the effect of noise. GSEA uses a variety

of pathways, including manually curated metabolic pathways, and results are typi-

cally p-values of a Kolmogorov-Smirnov test for the likelihood that the cumulative

distribution of expressions of genes in each pathway have not changed between

conditions. MetChange defines a different production pathway for each metabolite

in the network, based on calculation of functional states of the metabolic network,

and scores for each metabolite how gene expression along this production pathway

has changed between conditions. As a result, MetChange has the potentially to

give finer resolution results, since its results are defined at the level of individual

metabolite scores rather than pathway scores. However, the overall performance of

the methods are difficult compare due to the fundamental difference in resolution

of outputs.

In the comparison between MetChange and comparable methods (Figure

1.3), it is apparent that, on the data set used, output correlations of none of the

methods with measured metabolite perturbations in yeast were particularly high.

However, given that this analysis is possibly using these methods out of their in-

tended use cases, no presumptions should be made regarding the general usefulness

of any of these methods. Rather, this may highlight the difficulty in establishing

standards by which to compare pathway analysis algorithms with statistical rigor.

In this study, we performed the analysis primarily to provide some context for

the relative performance of the MetChange algorithm at one specific task relevant
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to predicting metabolic changes occurring within the cell. We note that a recent

method to predict metabolomics changes from gene expression has reported statis-

tically significant correlations on three other yeast data sets, including values that

exceed those reported in Figure 1.3.

There are at least two obvious potential improvements that could be made

to the workflow used in this work. First, as the cell lines within the Connectivity

Map are within the NCI60 cell line panel, and expression, growth and most recently

exometabolomic data have been measured for these lines, cell-specific metabolic

models could be used in place of a global model. Second, the human metabolic

network reconstruction has been updated with the publication of Recon 2, and

thus improvements might be made from the increased scope of the model. We

evaluated the potential for improvements using these changes by constructing cell-

specific models for the MCF-7, HL-60, and PC-3 cell lines based on Recon 2 and

running the MetChange algorithm on randomized simulated expression data drawn

from an empirical distribution of MAS5.0 normalized p-values from the Connec-

tivity Map data used in this study. Briefly, between cell-specific Recon 2 models,

error was between 10-25% across replicates when given the same metabolite uptake

constraints. The largest difference observed was by enforcing measured metabolite

uptake constraints. Differences in MetChange scores between models constrained

and unconstrained by metabolite uptakes were around 70%, indicating that signif-

icantly constraining the flux state of the model alters MetChange scores more so

than topological differences. Thus, further improvements in prediction accuracy

might be seen by accounting for the baseline metabolic differences between cell

lines.

One interesting outcome of the work was that, while previously identi-

fied genetic susceptibility factors in the literature are dominated by genes in-

volved in pharmacokinetics, we observe overlap of drug-induced metabolic changes

with nine genes that affect pharmacodynamics. This may suggest that such non-

pharmacokinetic genes may play a larger role in side effect pathogenesis than cur-

rently appreciated. We did however see some alteration of pharmacokinetic genes in

a few cases as well (Supplementary Note 3). Additionally, DISLoDGED pathways
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overlapped with clinical disease-linked pathways for both drug-treated and drug-

independent studies, suggesting a common basis in pathogenesis. Furthermore, our

results suggest that targeted nutrient supplementation may be a relatively simple

and inexpensive path to broadly reduce side effect incidence. The impact of drugs

on patient metabolic status is thought to be an underappreciated but important

aspect of drug response, and this work further suggests this interaction is worthy

of significant investigation. Patient attrition may be reduced through effective

nutrient supplement to drug pairing during the development process.

A natural question that may arise is whether certain pathways or side ef-

fect disease classes are more successfully predicted by the method used in this

work than others. A sensitivity analysis shows that the method appears to be

fairly robust in being able to predict DISLoDGED pathways in various areas of

the metabolic network and across disease classes. Restricting to at least 5 pairs

investigated for both the side effect-linked deficiencies and random pairs, 9 nutri-

ents deficiencies (polyunsaturated fatty acids, coenzyme Q10, melatonin, niacin,

riboflavin, steroids, thiamine, vitamin A, and vitamin D) had disease associations

better predicted by side effect-linked deficiencies compared with random, while

one (choline) did not. Similarly, in side effects with at least two pairs investigated

in both random and real, 7 side effect/nutrient deficiency relationships were bet-

ter predicted by side effect-linked deficiencies (dyspepsia, epilepsy, hyperlipidemia,

interstitial nephritis, tardive dyskinesia, testicular atrophy, and thrombocytope-

nia), while only 2 were better predicted by random nutrients (ecchymosis and

tendonitis). These types of sensitivity analyses on predictive capability for partic-

ular nutrients and side effects are vulnerable to error due to small sample size but

corroborate overall results that dysregulated DISLoDGED pathways are predictive

of metabolic pathways associated with corresponding pathologies.

Although challenges remain, the ability to observe perturbations important

to in vivo side effect susceptibility within in vitro data suggests that early-stage

drug screening to identify and manage side effect risk may become possible, analo-

gous to other disease in a dish efforts. Notably, high use drugs such as statins and

antipsychotics, where patient populations are large enough for statistical analysis
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of rare side effect events, dominate cases of side effects where genetic components

have been identified. However, if vulnerable pathways can be identified through

analysis of in vitro data, it may become easier to identify susceptibility factors

for more rare disease classes as well. This workflow is currently limited to cases

in which gene expression alteration underlies side effect pathogenesis, which is

an undefined subset of all side effects. The results presented show the utility of

integrating large, standardized datasets, such as the Connectivity Map, with clin-

ical data types such as side effect incidence, genetic studies, and disease-nutrient

associations, in the context of a highly-annotated network with clear functional

connections. Such integration of disparate data sources is a key challenge in many

areas of the life sciences today.

1.5 Methods

1.5.1 Overview of computational approach

As described schematically in Figure 1.1, with more detailed methods di-

agrams in Figure 1.2 and Figure 1.5, we employed a combination of constraint-

based modeling and machine learning to look for metabolic gene expression pertur-

bations that are conserved in adverse drug reactions. The first step is the analysis

of drug-specific metabolic perturbations using the constraint-based MetChange al-

gorithm described below and comparison of these perturbations to drug-specific

response properties. We then combined MetChange scores based on side effects

and used an AUC-maximizing classification genetic algorithm described below to

determine small subsets of metabolic changes highly conserved in certain side ef-

fects. We note in general that the fields of constraint-based modeling and machine

learning have developed a wide variety of methods that perform similar tasks. We

compare our method with several other constraint-based methods and with gene

expression data alone, as described in the Results. We also qualitatively contrast

our method with gene set enrichment analysis in the Discussion. In general, per-

formance of machine learning methods largely depends on the particular problem.

We note that in cases of rare events, such that only a small fraction of samples
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have a property, AUC (or rank) maximizing algorithms have been shown to per-

form particularly well. Additionally, we choose to place a hard constraint on the

number of variables rather than using a traditional SVM with an L2-norm ap-

proach, for example. This was done to maximize interpretability of the resulting

signatures, which was critical for later comparison of DISLoDGED pathways with

pathology deficiency relationships and disease-linked and side effect-linked genetic

susceptibilities. Thus, while we do not discount that other methods may exhibit

better performance by certain standards, we chose our approach to meet the spe-

cific requirements of our problem, as is typical in the field. Full description of

methods is below and a MATLAB implementation is provided (see Supplementary

Software).

1.5.2 Connectivity Map data processing and integration

Gene expression data for the AffyMetrix HT Human Genome U133A plat-

form was obtained from the Connectivity Map (CMap) database for MCF-7, PC-3,

and HL-60 cell lines. Data was MAS5.0-normalized with the BioConductor pack-

age. Human Entrez Gene identifiers associated with probes were used to map

detection p-values to their corresponding reactions based on the Boolean gene-

protein-reaction (GPR) associations as was previously described. Reactions that

were not associated with a gene were assigned a p-value of 0. Metabolic exchange

was set to an exchange value of -1 for DMEM (MCF-7) or RPMI (PC-3 and HL-

60) media metabolites. In cases where no metabolite production was possible with

open constraints, the metabolite was removed from further analysis. For the cases

of in vitro experimental validation under sodium phenylbutyrate and genistein

treatment, for which data was generated for the fraction of metabolites generated

from glucose, the MetChange algorithm was run using glucose as the sole carbon

source to enable direct comparison with the data.
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1.5.3 The MetChange algorithm

The Metabolite-Centered Hotspots of Altered Network Gene Expression

(MetChange) algorithm was used to analyze differential quantitative gene ex-

pression profiles in the context of a genome-scale metabolic network. This al-

gorithm is built upon the Gene Inactivity Moderated by Metabolism and Expres-

sion (GIMME) algorithm previously developed to build context-specific metabolic

networks based on gene expression data.

The MetChange algorithm defines a consistency metric of an expression

profile with optimally producing each metabolite in the metabolic network. For

each metabolite, a sink reaction is created and flux through the sink reaction is

maximized using flux balance analysis (FBA). This results in a set of optimal

production fluxes for each network metabolite.

Each reaction is then weighted by a detection p-value from mapped ex-

pression data to solve a second optimization problem. To obtain metabolite pro-

duction consistency scores, xi, for each ith metabolite, scores were generated by

setting the lower bound of the metabolite sink reaction to its maximal production

flux, vmax,i, and minimizing the inner product of the reaction detection p-values.

This optimization is the GIMME-like step of the MetChange algorithm. Each ith

component in cp serve as a cue for whether a reaction is detected or absent (i.e. a

lower p-value indicates a reaction is more likely to be present). Hence, this second

optimization determines: (1) a flux distribution which maximizes the production

of a metabolite, and (2) generates a weighted flux distribution score defining con-

sistency of the production of that metabolite with expression data. These scores

cannot be directly compared across metabolites due to the fact that each metabo-

lite has a different network flux state at maximal production. Thus, we compared

metabolite production consistency scores between treated and control samples with

a standardized score. A MATLAB implementation of the MetChange algorithm is

provided in the Supplementary Software file.
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1.5.4 Analysis of expression data for yeast under carbon

and nitrogen starvation

Metabolite concentration and gene expression data for S. cerevisiae were

mapped to a genome-scale yeast metabolic reconstruction, iMM904. For all meth-

ods, scores were compared to log-2 metabolite concentration changes relative to

the initial time point for carbon or nitrogen data. Spearman correlations were

calculated to avoid biases due to variable score distributions among the different

methods. K-means clustering analysis was performed using 100 replicates. In all

cases, the same clusters were obtained in repeated runs.

For the MetChange algorithm, reported expression values were used to

generate reaction presence/absence p-values. Expression values were ranked, and

based upon the apparent distribution; a value corresponding to the bottom 2nd

percentile of expression was used to define the noise level. Expression values below

this threshold were assigned a p-value of 1 as not present. The p-values below the

threshold were then inverted across the threshold to generate a symmetric distri-

bution. The mean and standard deviation of this approximated noise distribution

were used to generate significance scores for the remaining expression values using

a Z-test. These p-values were then mapped to reactions based on model-defined

gene-reaction relationships. When multiple probes were assigned the same reac-

tion, the minimum value was used. The MetChange algorithm was then applied

using these mapped reaction presence/absence p-values. As the data was longitu-

dinal in time and multiple controls were not available, log-2 scores were calculated

with respect to the initial time point, rather than taking standard scores. Re-

porter metabolite analysis was then implemented. p-values for the significance in

expression change were used as inputs to the reporter metabolite analysis. Each

expression value was first standardized across conditions and then p-values were

calculated using a standard Z test for each gene across condition. 10000 permu-

tations of the data were used to generate the background levels of perturbation.

In addition, the E-Flux method was implemented, with metabolite sinks set as

separate objective reactions similar to the MetChange algorithm for comparison.

Optimal flux through each metabolite sink reaction was then calculated using FBA
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for each gene expression data set, and log-2 scores compared with the initial time

point for each carbon and nitrogen data set were calculated.

For a direct comparison with gene expression level cues, we implemented the

following approach. First, standardized scores of expression level changes were cal-

culated with respect to all gene expression datasets for the particular perturbation

(carbon or nitrogen starvation). The scores were mapped to their respective reac-

tions according to the gene-reaction association in the metabolic network. We then

assessed whether absolute changes in expression levels are predictive of the magni-

tude of metabolite change by adding the standardized reaction scores, weighted by

the absolute stoichiometric coefficients. We then assessed whether higher gene ex-

pression for a reaction was indicative of a higher product concentration and lower

reactant concentration. The mapped reaction score was added to the score for all

metabolites in the reaction, multiplied by the signed stoichiometric coefficient for

each metabolite.

1.5.5 Analysis of metabolic response phenotypes across

drugs

The Recon 1 metabolic network was first converted into an irreversible

network, such that each reaction proceeds only forward, and reactions that can

proceed in multiple directions are split into two forward-proceeding reactions. The

MetChange algorithm was run using gene expression presence/absence MAS5.0

p-values from the Connectivity Map (CMap) database build 02. When multiple

controls were present, a standard score was generated. When a treated sample was

from a batch with a single control, the mean and standard deviation of all control

samples was used instead.

Cell line standard scores were then generated in the following manner. First,

for each cell line, the median scores of all samples for each drug were found and

used as the cell line-specific response. Then, to simplify compartment-specific

scores to a general metabolite response, cytosolic metabolite scores were taken

when available. If no cytosolic metabolite existed, the median of scores across

all compartments was taken as the metabolite score. Finally, a standard score
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across all drugs was calculated for each cell line. Consensus drug perturbations

across cell lines were calculated by averaging cell-specific MetChange scores and

standardizing across all drugs.

1.5.6 PubMed querying of drug associations

To identify drug-metabolite associations in the literature in an automated

fashion, PubMed/MEDLINE records were downloaded from the National Library

of Medicine and abstracts were parsed to raw text. Chemical entities were tagged

using Reflect. A training set of 44 abstracts describing true drug-metabolite cor-

relations (positive set) and 150 abstracts with other chemical entities (negative

set) were used to train a Bayesian network to recognize abstracts that mention

the causative relationship between an administrated drug and the presence of a

certain metabolite . A second Bayesian network was trained to recognize sentences

within the abstracts that refer to metabolites from those that refer to other chem-

ical entities. For each drug-metabolite co-occurrence the two Bayesian networks

were used to assign a posterior for abstract occurrence and a posterior for sentence

occurrence and the joint probability of the two posteriors was used as the drug

metabolite score. The evaluation of the output is provided in Supplementary Data

1. The text-mining output was evaluated using a random sample of 100 pairs. The

abstracts that describe each sampled pair were manually checked and identified as

true or false positives. The score cutoff was set to 0.33, which provides an 82% true

positive rate and 70% accuracy. Text querying on side effect-metabolite, protein-

metabolite, and drug-protein co-occurrences were performed using the Entrez Pro-

gramming Utilities (NCBI) using a simple AND specification. Side effects were

obtained from the Side effect Resource (SIDER) database. Signaling protein lists

were obtained from various publically-hosted resources including the International

Union of Basic and Clinical Pharmacology database (http://www.iuphar.org/).

Metabolite common names were obtained from the Recon 1 network reconstruc-

tion. All associations are included in Supplementary Data 1.
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1.5.7 Determining metabolite network distance from drug

perturbation

To calculate network distance from metabolites, the DrugBank database

was downloaded and cross referenced with drugs from cmap. A total of 134 drugs

present in cmap have targets in Recon 1 reported in DrugBank. Across the three

cell lines (HL60, MCF7, PC3) and multiple drug concentration ranges, there were

a total of 611 expression profiles of drug-perturbed states. The median metabolite

network distance of each metabolite was calculated for each of the 134 drugs,

ignoring metabolites with reaction connectivities greater than 30, such as cofactors,

protons, and water.

MetChange scores were compared against expression data, randomized

data, and reporter metabolite analysis results. Data and scores were pooled into

bins based on their standard scores. For each bin, the average of the median net-

work distance of metabolites to metabolites of known drug-targeted enzymes was

calculated for comparison. Metabolites predicted from the expression data set were

determined by taking the highest expression change among reactions involving the

metabolite and binning accordingly. The random dataset was generated by per-

muting the expression data set 1000 times and calculating the average bin value

across all 1000 sets. The reporter metabolite data set was generated as described

in the original publication using 10000 permutations to generate background per-

turbation levels.

1.5.8 Analysis of drug-signal protein signatures

Drug-protein and protein-metabolite literature co-associations were found

as described. Associations were binary based on the presence or absence of known

literature association. A receiver operating characteristic (ROC) curve was gener-

ated for the ability of MetChange scores to indirectly predict drug protein associ-

ation. MetChange scores for all three cell lines (not averaged) were used together.

At increasing thresholds from 0 to effectively infinity, metabolites with absolute

MetChange scores greater than the threshold were scored as significantly changed
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for each drug. Proteins associated with perturbed metabolites were then deter-

mined using the protein-metabolite literature co-associations. These proteins were

used as guesses for true drug-protein literature associations for the drug corre-

sponding to the sample, and the true positive rate (TPR) and false positive rate

(FPR) were calculated. Varying the threshold from 0 to effectively infinity then

generates the ROC curve. To assess statistical significance of the resulting area

under the curve (AUC), 1000 permutations of MetChange scores were analyzed

in the same way and a non-parametric rank test was conducted on the resulting

AUCs.

1.5.9 Determination and analysis of drug side effect signa-

tures

Drug side effects were taken from Side Effect Resource (SIDER) database

for available drugs overlapping with the CMap database. The SIDER database

contains minimum and maximum occurrence frequencies for a number of both

treated and control studies for each drug-side effect pair. Side effect frequencies

were processed in the following manner. The mean of the minimum and maximum

frequency was calculated for each study, and then the median of frequencies from

all studies was found for both treated and placebo studies. The difference be-

tween treated and placebo occurrence frequency was then calculated. If placebos

were not available, the treated frequency was used. These frequencies were then

mapped to all expression samples from CMap corresponding to the appropriate

drugs. A minimum of 30 expression sets for a side effect were required for inclu-

sion in the analysis. A total of 357 side effects were analyzed for 850 expression

sets corresponding to 334 drugs.

A genetic algorithm was then implemented, termed SiderFinder (Figure

1.5). The matrix of MetChange scores for the 850 expression sets was input as

well as the corresponding side effect frequencies for a particular side effect. A

maximum number of predictor metabolites was set to 20 metabolites. A set of 125

candidate solutions was generated, assigning values of -1, 0, or 1 to each metabolite

to indicate negative, no, or positive prediction of a high MetChange metabolite
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score on occurrence of side effect. Each expression set was then scored for the

side effect for each individual by multiplying the predictor set for the individual

by the MetChange scores for the expression set. These side effect scores were

ranked and a pseudo-ROC curve was generated by comparison of scores with the

side effect frequencies for the current side effect. At each threshold, expression

sets with a side effect score greater than the threshold were called as having the

side effect. To weight more heavily samples with higher side effect frequency, the

base 10 logarithm of each side effect frequency was taken and adjusted such that

the lowest non-zero frequency had a value of 1, each order of magnitude greater

in frequency is a unit greater, and all zero frequency side effects remain zero. An

ROC curve was then calculated with true positive hits being assigned the value

of the adjusted side effect frequency, with no effect to false positive, true negative

and false negative values. The number of true values was taken to be the sum of

the adjusted frequency vector so the AUC of the pseudo-ROC still spans 0 to 1.

The AUC of this curve was then used as the objective function to maximize in the

genetic algorithm. 10-fold cross validation was performed, and perturbations that

appeared cumulatively in at least 4 of the 10 sets we selected. Using the genetic

algorithm directly on gene expression data achieved similar classification perfor-

mance (results not shown), but metabolite scores were chosen as the variables due

to their previously established performance in predicting drug-specific metabolic

perturbations.

Genetic algorithm creation, mutation, and crossover parameters were used

as implemented in the OptGene function of the COBRA Toolbox 2.0. The ge-

netic algorithm was solved using the Global Optimization Toolbox in MATLAB

(MathWorks). A MATLAB implementation is provided.

1.5.10 Co-association analysis of drug side effect signatures

Statistical analysis of literature co-associations of side effects with side ef-

fect metabolite signatures was performed with 1) a non-parametric permutation

test on the drug side effect metabolite signatures against 1000 permutations of

the signatures for the AUC of predicting presence/absence of literature side ef-
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fect/metabolite co-association in Pubmed abstracts, and; 2) a hypergeometric test

for the enrichment of literature association among side effect/metabolite pairs in

predicted signatures.

1.5.11 Construction of Metabolism-Disease Database

(MDDB)

To enable statistical analysis of predicted DISLoDGED pathways, disease-

nutrient pairs were randomly selected from observed down-regulations, observed

up-regulations, and random associations chosen by resampling the former two lists

through bootstrapping. These disease-nutrient pairs were then evaluated for exis-

tence of established relationships using manual literature searches while blind to

the origin of the pair to prevent investigator bias. The list of collected metabolism-

disease relationships is not yet comprehensive due to the scope of the effort, but

instead relationships were investigated in a targeted manner.

Data collection for the database covered literature up to and including May

2013.

1.5.12 Pathway analysis

We curated a database of 1394 distinct GWAS publications and extracted

239 distinct disease-associated metabolic genes that overlapped with the 1496 genes

in Recon 1. We then assigned pathways to each disease-associated metabolic gene

as well as to each DISLoDGED pathway calculated in our analysis (Supplemen-

tary Data 1). Disease-associated genes were assigned pathways based on the pre-

viously assigned pathway of corresponding reaction assigned in Recon 1. DIS-

LoDGED pathways (which are metabolite-centered) were associated with disease-

linked pathways by determining the most frequent pathway among all reactions in

which a metabolite takes part. To assess enrichment, hypergeometric tests were

performed to determine whether the observed coverage of metabolites or genes

was enriched or depleted in particular pathways, controlling for multiple hypothe-

sis testing.
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1.5.13 Side effect pathophysiology classifications

To assess whether common metabolic perturbations were observed among

related diseases, we manually grouped side effects by pathophysiological disease

class. Enrichment was assessed with the hypergeometric test, at a significance

level of = 0.1. Enrichment where there was only a single disease within the class

was discarded, as were conflicting cases (in which a nutrient was down-regulated

in certain diseases in the class and up-regulated in others).

1.5.14 Side effect-linked gene polymorphism search

We attempted to identify all cases of genetic basis for side effect incidence

reported in the literature, including GWAS and targeted genetic studies. To be

eligible for comparison, we required that the side effect be a near or exact match

and the metabolic pathway of the susceptibility gene be within the scope of our

model. For example, immune-related genes were excluded due to non-specific

metabolic association, while G protein-coupled receptors known be regulated by

particular metabolic pathways were included. We generally excluded genes related

to drug pharmacokinetics, including drug metabolism and transport, as the effects

of polymorphisms on susceptibility are generally non-specific to the pathology. We

also required that the pathology be manifested in nucleated cells (i.e. excluding red

blood cell pathologies), as gene expression changes are assumed to be irrelevant

to pathologies of enucleated cells. Based on these criteria, well over 20 studies

were excluded, while 9 genetic susceptibilities spanning 6 side effects were valid for

comparison with predictions. We also mention two cases in which pharmacokinetic

genes do overlap with conserved side effect-linked gene perturbations, suggesting

possible interactions between pharmacokinetic and gene expression effects of drug

perturbation. Lists of included and excluded studies are found in Supplementary

Note 1 and Supplementary Note 4, respectively.
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1.5.15 Nutrient deficiency literature search

To populate MDDB, we searched the literature for associations between the

pathology of the side effect and deficiency relationships between the closest nutri-

ent to the metabolic perturbation and the occurrence of the pathology of the side

effect. In an automated search, PubMed abstracts were searched for a number of

side effect and nutrient synonyms along with a list of deficiency synonyms (Supple-

mentary Data 2). Statistical significance of enrichment of co-association PubMed

abstract hits (presence/absence) among down-regulated and up-regulated nutrient

pathways was assessed through a dual permutation analysis. For each perturbed

side effect-nutrient pair, 1000 permuted pairs were generated by first randomly

selecting the presence/absence result for a random nutrient with the same side

effect, and then randomly selecting the presence/absence result for a random side

effect with the same nutrient, then averaging the result. Then the number of per-

mutations with total presence calls greater than the true observation was counted

and divided by the total permutations, as is typical in permutation tests.

In the manual alteration search, a number of possible nutrient-disease re-

lationships were identified, such as an inhibitor of the metabolic pathway causing

the side effect, an inhibitor of the metabolic pathway curing the side effect, etc.

(Supplementary Data 2). Then, search terms were generated using synonyms, and

PubMed was searched. ”Results were then filtered such that each nutrient-side ef-

fect pair was assigned ”up-regulated activity associated with the disease”, ”down-

regulated activity associated with the disease”, ”no associated with the disease”,

or ”conflicting associated with the disease”. Inconsistent results were assigned as

conflicting and were excluded from further analysis.” Significance of enrichments

of particular relationships among up-regulated and down-regulated pathways were

then evaluated with the hypergeometric test.

In the manual deficiency search, deficiency relationships were defined such

that the DISLoDGED nutrient pathway could meet any of three possible criteria

to be considered a hit. First, the deficiency of the nutrient could be known to be as-

sociated with the occurrence of the side effect pathology. Second, supplementation

with the nutrient is known to alleviate the side effect pathology. Third, a physio-
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logical dysregulation of the pathway is known to be associated with the side effect

pathology. PubMed and Google Scholar were both used for this study. Patents

were not accepted as valid references, unless associated with a peer-reviewed pub-

lication.

To determine whether DISLoDGED pathways are significantly predictive

of side effect/nutrient deficiency relationships, we generated a list of random

side effect/nutrient pairs for comparison with DISLoDGED pathway-disease pairs

through resampling of the pairs. Kolmogorov-Smirnov tests were used to ensure

the distributions were not significantly different between DISLoDGED pathways

and random side effect-nutrient pairs in terms of the frequency of occurrence of

nutrients, as resampling should guarantee.

We then performed the nutrient deficiency literature search in two phases.

The first was blinded and the second was an expansion and additional curation

of the blinded study. The initial study was blinded to ensure that there was no

selection bias in the search process. Random pairs were mixed with DISLoDGED

pathways, both up-regulations and down-regulations, and information on their

origin was removed. The literature searches for deficiency relationships were then

conducted by investigators not involved in the generation of the distribution and

thus were unaware of the treatments or treatment distributions. Statistical tests

were only performed on the blinded literature results. The initial blinded list was

then expanded to examine additional DISLoDGED pathways and curated to ensure

consistent criteria between investigators. Although the curated list is unblinded,

we have a greater confidence in this list for research purposes due to the consistent

criteria and expanded list of investigated relationships.

1.5.16 Overview of experimental validation of MetChange

results

Drug-induced metabolic perturbations calculated using the MetChange al-

gorithm were validated using in vitro experiments in the MCF-7 cell line for three

drugs: metformin, genistein, and haloperidol.
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1.5.17 sample preparation

Human MCF-7 breast carcinoma cells (ATCC, HTB-22) were maintained

in supplemented DMEM media (CellGro Mediatech, 10013CV) with 10% v/v

fetal bovine serum (Hyclone, SH3039603), 1% v/v antibiotic/antimycotic so-

lution (Omega Scientific, PS-20), 1% v/v non-essential amino acids (Hyclone,

SH3023801), 1% v/v MEM vitamins (CellGro Mediatech, 25020CI), 1 mM l-

glutamine (CellGro Mediatech, 25005CI). 4 106 cells were seeded in supplemented

MEM medium (CellGro Mediatech, 15010CV) into 150 mm dishes. For label-

ing with [U-13C] glucose (Sigma-Aldrich, 389374) the medium was replaced with

supplemented MEM with 2 g/l glucose total of which 50% was [U-13C] glucose.

Approximately 2.0 109 cells were harvested by incubation with trypsin for 5 min at

37 C (Gibco, 25200-056) and adjusted for total protein amount (Thermo Scientific

Pierce, 23227). Intracellular polar metabolites were extracted by rapid quenching

with 50% methanol at -40C; total lipids were extracted using chloroform (Sigma-

Aldrich, 366919). The cell extracts were dried by vacuum evaporation. Organic

acids were derivatized to form the corresponding oximes and trimethylsilyl deriva-

tives. Acyl-carnitines were derivatized to their corresponding methyl esters. Polar

metabolites were dissolved in 99.9% 2H2O with 0.75% 3-(trimethylsilyl)propionic-

2,2,3,3-d4 acid (Sigma-Aldrich, 293040). Lipophilic metabolites were dissolved in

2H-chloroform with 1% tetramethylsilane (Sigma-Aldrich, 151831).

1.5.18 Drug treatment

Cells were exposed for a 24h period to varying drug concentrations (as

indicated in their respective citations below) while control cells were exposed to

the corresponding DMSO (CAS 67-68-5, Sigma-Aldrich, D8418) dilution: met-

formin (glucophage) (CAS 1115-70-4, 15169101, MP Biomedicals, stock 3M in

PBS), genistein (CAS 446-72-0, 10005167100 Cayman Chemicals, stock 100mM

in DMSO), haloperidol (haldol) (CAS 52-86-8, 15369690 MP Biomedicals, stock

50mM in DMSO). For acyl-carnitine measurements, the medium was supplemented

with 1mM L-carnitine (CAS 6645-46-1, Sigma-Aldrich, C0283). Each experiment

was performed in three biological repeats.
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1.5.19 NMR spectroscopy

NMR experiments were performed on a 500 MHz Bruker Avance spectrom-

eter with 5 mm TXI z-gradient probe (Bruker-BioSpin, Karlsruhe, Germany) at

298 K. 13C enrichments were determined by 1D 1H NMR difference spectroscopy

(13C-coupled spectrum minus the 13C-decoupled spectrum). 2D indirect-detected

13C, 1H J-resolved HSQC spectra were recorded over an experimental time of 1.5

d per spectrum with 5120 indirect 13C data points, at 80 ppm 13C sweep width,

40 ppm carrier position, 4096 direct 1H increments, 3s recycling delay, and 8 scans.

Before Fourier transformation, the data were multiplied with a squared sine-bell

window function, phase corrected, and zero-filled to 8192 data points, for indirect

13C sampling.

1.5.20 Mass spectrometry

Quantitation of organic acids was accomplished by GC/MS (ThermoFisher

Trace GC Ultra/DSQ II single quadrupole mass spectrometer). Calibration stan-

dards were prepared in water and spiked with stable isotope-labeled internal stan-

dards. Detecting the derivatized organic acids was achieved by single ion moni-

toring of each derivative after GC separation. Acyl-carnitines were quantitated by

LC/MS/MS (Waters Ultra Performance LC/triple quadrupole mass spectrometer)

using flow injection analysis with electrospray ionization. Calibration standards

of the acyl-carnitines were prepared in bovine serum spiked with stable isotope-

labeled internal standards. Parent ion scanning was used to detect parent, acyl-

carnitine molecular ions that produced a characteristic acyl-carnitine fragment ion,

m/z 99, formed by collision-induced dissociation.

1.5.21 Enzymatic assays

Pyridoxal 5-phosphate or Vitamin B6 was determined in an enzymatic

plasma assay (A/C Diagnostics, ACB6001, San Diego, CA), which we adapted

to quantify tissue culture supernatant or intracellular Vitamin B6 content by us-

ing PBST buffer with 0.1% Tween-20 (CAS 9005-64-5, Sigma-Aldrich P9416).
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1.5.22 Additional methods for analysis of metformin re-

sponse

Acyl-carnitine species from two to sixteen carbons and organic acids of the

TCA cycle were analyzed by liquid chromatography mass spectrometry and show

dose-dependent associations upon metformin treatment in MCF-7 cells. Acetyl-

carnitine (C2) values were determined in nmol / mg protein (scaled by factor

1/1000) and were compared with acyl-carnitine (C12-C16) levels in pmol / mg

protein. Organic acids were determined in nmol / mg protein.
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Chapter 2

Stoichiometric biomass synthetic

requirements and metabolic stress

resistance underlie hallmarks of

cancer cell metabolism

2.1 Abstract

Malignant transformation is often accompanied by significant metabolic

changes. To identify drivers underlying these changes, we calculated metabolic

flux states for the NCI60 cell line collection and correlated the variance between

metabolic states of these lines with their other properties. The analysis revealed a

remarkably consistent structure underlying high flux metabolism. The three pri-

mary uptake pathways, glucose, glutamine and serine, are each characterized by

three features: 1) metabolite uptake sufficient for the stoichiometric requirement

to sustain observed growth, 2) overflow metabolism, which scales with excess nu-

trient uptake over the basal growth requirement, and 3) redox production, which

also scales with nutrient uptake but greatly exceeds the requirement for growth.

We discovered that resistance to chemotherapeutic drugs in these lines broadly

correlates with the amount of glucose uptake. These results support an interpre-
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tation of the Warburg effect and glutamine addiction as features of a growth state

that provides resistance to metabolic stress through excess redox and energy pro-

duction. Several other proposed roles of these hallmarks, including production of

growth precursors and minimization of cellular protein, were examined and found

to be not supported by data. These results provide a greater context within which

the metabolic alterations in cancer can be understood and demonstrate the utility

of integrative data analysis using constraint-based methods of metabolic systems

biology

2.2 Introduction

Over the past decade there has been a revival of metabolic research in on-

cology[30]. In particular, two defining characteristics of cancer metabolism have

received much attention: 1) an increased glucose uptake rate accompanied by se-

cretion of lactate even in the presence of oxygen, known as the Warburg effect[31],

and 2) a high glutamine uptake rate essential for growth, known as glutamine

addiction. Despite the central role these traits play in the discussion of cancer

metabolism, the drivers underlying these traits are still debated[31, 32, 33]. Un-

derstanding these drivers will become important as cancer metabolism becomes

increasingly a target for chemotherapeutics[30].

The NCI60 cell line collection consists of 60 cancer cell lines that have been

extensively used as a model to study characteristics of cancer cells over the past

quarter of a century[34]. Notably, the metabolite uptake and secretion profiles for

these lines were recently published[35]. When coupled to growth[36] and cell size

data[37], these data provide the opportunity to study cancer metabolic functional

states at an unprecedented scale by utilizing flux balance analysis[15] (FBA). Fun-

damentally structured in the context of metabolic mass balance, FBA has been

utilized successfully over the past decade as a method of data integration[38] as

well as a number of other applications, including cancer metabolism[39]. Using

FBA, we integrated available metabolic data to calculate metabolic flux states for

the NCI60 panel. We then leveraged the differences in metabolic flux states across
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the NCI60 panel to identify drivers underlying two dominant features of cancer

metabolism: the Warburg effect and glutamine addiction.

2.3 Results

First, we calculated metabolic reaction flux states for the NCI60 collection

using flux balance analysis (FBA) constrained by measured uptake/secretion rates,

growth rates, and cell sizes (Figure 2.1a-c). The computed flux states showed an

excellent correlation with 13C data available for the A549 and MCF-7 lines (Pearson

R2 > 0.95), after correcting for differences forced by disparities between measured

uptakes in different data sets (Figure 2.1d, e). Computed flux states also showed

good agreement with measured oxygen uptake rates (average error of 17%) for a

subset of lines with available data[40] (Figure 2.1f). Principle component analysis

(PCA) revealed that the metabolic states of the NCI60 lines are structurally very

simple (Figure 2.1g), with large part of the variance explained by growth rate

(Figure 2.1h) and glucose uptake differences (Figure 2.1i). Although there is no

clear separation between distinct metabolic states apparent, examination of the

states by tissue type shows some trends. For example, leukemia-derived lines ap-

pear characteristically fast growing with high glucose uptakes, while colon-derived

lines appear characteristically fast growing with low glucose uptakes (Figure 2.1g).

We then analyzed flux states within amino acid metabolism in the con-

text of biosynthetic demands on the NCI60 lines. The amino acids histidine and

cysteine were not analyzed due to lack of uptake measurement, while methionine

was excluded due to its close relationship with cysteine. Grouping amino acids by

shared biosynthesis pathway, we first examined the essential amino acids. We found

that essential amino acids, as well as the essential amino acid-derived tyrosine, are

taken up at levels only slightly greater than is sufficient for protein synthesis. Each

essential amino acid was found to be correlated with their biosynthetic demand,

as has been reported[37].



52

Figure 2.1: Data-driven constraint-based modeling of a high confidence
core cancer metabolic network results in accurate metabolic flux state
calculations. a) The workflow utilized in this study for the constraint-based
calculation of metabolic flux states for the NCI60 panel using available data and
a core metabolic model extracted from the global human metabolic network re-
construction Recon 2[41]. b) Summary of the metabolic pathways and functions
represented by the core cancer metabolic network, consisting of 382 reactions. c)
Cumulative distribution plot of absolute metabolite uptakes from a published data
set[35]. Twenty-three of the highest flux metabolites were used as constraints on
the core model (Supplementary Data 1), representing over 99% of the absolute
metabolite exchange flux by mass. d) Comparison of flux balance analysis results
to a previously published 13C-labeled glucose tracing experiment on the A549
line. The computed flux solutions were corrected for a substantial difference in
measured lactate secretion prior to comparison. e) Comparison of flux balance
analysis results to a previously published 13C-labeled glucose tracing experiment
on the MCF-7 line. The computed flux distributions were corrected for a differ-
ence in the active form of malic enzyme, which is forced by glutamine uptake to be
the mitochondrial isozyme, consistent with other studies. Point labeled A: Citrate
shuttling to lipid synthesis is not observed in the data but is forced to be active in
the model by lipid synthesis requirements. f) Comparison of FBA-calculated and
measured oxygen uptake rate data for a subset of the NCI60 lines. The average er-
ror was 17%, indicative of accurate prediction of electron transport chain activity.
g) Principle component analysis (PCA) of the flux balance analysis (FBA) calcu-
lated flux distribution of the NCI60 cell lines. 60% of the variance is explained
by the first two principle components, indicating that the flux solutions are rela-
tively low dimensional. h) Correlation between the first principle component and
the growth rate shows that the growth rate is a dominant determinant of the flux
states. i) Correlation between the second principle component and glucose uptake,
which was the highest correlated variable found, indicating that the second pri-
mary determinant of flux state is variance in glucose uptake at a particular growth
rate.
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Next we looked at the non-essential amino acids serine and glycine (Figure

2.22b). Serine uptake is consistently greater than its biosynthetic requirements

and glycine secretion rate is highly variable. However, overall mass balance cal-

culations show that if the glycine secretion is subtracted from the serine uptake,

the difference matches the biomass synthetic requirements for these two amino

acids combined, a feature previously observed[37] (Figure 2.2c). The correlation

of the group uptake with biosynthetic demand is higher than either amino acid

alone. Furthermore, glycine secretion increases as serine uptake increases above

the protein requirement (Figure 2.2d), indicating glycine behaves as an overflow

metabolite that regulates overall availability of the amino acid group when the

glycine cleavage chain cannot sufficiently metabolize excess glycine.

The second non-essential amino acid group we examined consists of a set of

amino acids linked to glutamine, including glutamine, glutamate, alanine, aspar-

tate, asparagine, proline, and arginine (Figure 2.2e). We found that, on average,

asparagine, arginine, and aspartate are taken up about the levels of their biosyn-

thetic demand, but with a lower correlation with that demand than in the case of

the essential amino acids, indicating greater variability (Figure 2.2f). Glutamate,

alanine, and proline were all consistently secreted, in decreasing order magnitude.
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Figure 2.2: Amino acid metabolism is determined by protein synthesis
demands and coupled to overflow metabolism. a) Essential amino acid up-
take compared with protein synthesis demand. Tyrosine is not an essential amino
acid but was included in this set as it is taken up stoichiometrically with its protein
synthesis requirement as are the other essential amino acids. Listed above each
bar is the Spearman correlation R2 of the amino acid uptake with biosynthetic
requirement across lines b) Overview of serine and glycine synthesis pathway. c)
Quantile plots of the uptakes of serine and glycine relative to their demand from
protein synthesis. The sum of the uptake of the metabolites is approximately equal
to the biosynthetic demand on the group as a whole, with any glycine deficiency
provided by excess serine uptake. Listed above each bar is the Spearman correla-
tion R2 of the amino acid uptake with biosynthetic requirement across lines. d)
Glycine secretion vs excess serine uptake, calculated as serine uptake minus ser-
ine and glycine protein synthesis demand. A significant correlation is observed,
suggesting a role of glycine as an overflow metabolite when serine uptake exceeds
the requirement for protein synthesis and ability to metabolize glycine through the
glycine cleavage chain. e) Overview of the metabolism of glutamine and related
biosynthetic precursors. f) Uptakes of glutamine-related amino acids compared
to their protein synthesis requirement. It is observed that glutamine is taken up
on average 32 times more than its requirement, while glutamate, alanine, and
proline are secreted, in order of decreasing magnitude. g) Overall amine balance
due to protein synthesis requirement. Without considering glutamine, cells do not
take up enough amine to synthesis required amino acids. However, taking glu-
tamine into consideration, the cell takes up 9.7 times more amine than necessary
for growth, even after considering glutamate, alanine, and ammonia secretion. h)
Secretion of glutamate versus glutamine uptake, showing the significant role of
glutamate as an overflow metabolite coupled to glutamine. i) Secretion of glu-
tamate and alanine vs the glutamine uptake. Although alanine secretion alone
is not significantly correlated with glutamine uptake, considering glutamate and
alanine secretion simultaneously improves the correlation with glutamine uptake
over glutamate alone.
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Glutamine however was taken up on average 32 times more than its biosyn-

thetic requirement, consistent with the glutamine addiction phenotype (Figure

2.2f). To determine whether this uptake is tied to the biosynthetic requirement

for nitrogen groups, we looked at the amine balance with and without glutamine

uptake considered (Figure 2.2g). It was found that the cell is in a nitrogen defi-

cient state without considering glutamine, with a median deficient of 42% of the

demand. However, after considering glutamine uptake, nitrogen is in excess by a

median of 400% of the biosynthetic requirement for amino acids. This suggests that

glutamine uptake is a necessary feature of glutamine addiction, but is not sufficient

alone to explain the very high level of glutamine uptake in these cell lines. We

also observed overflow metabolism coupled to glutamine uptake, where glutamate

secretion is significantly correlated with glutamine uptake (Figure 2.2h). Consid-

eration of alanine secretion as well improves this correlation (Figure 2.2i), although

it is not individually correlated with glutamine uptake. We then focused on energy

metabolism in the form of ATP production and consumption (Figure 2.3a,b). We

calculated that ATP is produced in similar parts between net glycolysis (mean

44%), ATP synthase (mean 35%), and succinyl-CoA synthetase (mean 21%), the

latter of which produces GTP but is considered equivalent for this analysis (Figure

2.3a). Net glycolysis is defined as glycolytic production (phosphoglycerate kinase

and pyruvate kinase) minus glycolytic consumption (hexokinase and phosphofruc-

tokinase). This split of ATP production is consistent with previous estimates[83],

which place glycolysis at a slightly lower fraction of ATP production but agree that

oxidative metabolism provides the majority of ATP. Looking at ATP demands, it

is apparent that macromolecule and precursor synthesis only make up a minor

part of the cellular ATP demand. A larger fraction is consumed by maintenance

functions, such as the Na-K pump, or by undetermined functions that may consist

of variable additional maintenance costs or energy drains such as futile cycles.

We find that net glycolytic ATP production is set at a level that mostly

(80%) satisfies the known growth and maintenance ATP requirements of the cell,

with little apparent tissue-specific bias (Figure 2.3c). However, due to the signif-

icant contribution of oxidative metabolism to ATP production, cell lines produce
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an excess of ATP compared with known ATP demands[42] that scales with glu-

cose uptake (Figure 2.3d). Additionally, there is an excess of redox production,

both NADH and NADPH, over growth and energy demands that scales with glu-

cose uptake as well (Figure 2.3e). Thus, although glycolysis alone balances the

growth requirements for ATP, the overall energy balance is rapidly exceeded by

ATP and NADH due to the contributions from oxidative phosphorylation in a

manner scaling with glucose uptake per gram mass of cell. We hypothesize that

a partial inability to metabolically process this excess of NADH production may

be partly responsible for the overflow metabolism observed in the Warburg effect,

where metabolized glucose is secreted as lactate facilitating the regeneration of

NAD (Figure 2.3f).
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Figure 2.3: ATP production and utilization as determined by the War-
burg effect. a) Fraction of ATP production provided by glycolysis, the mito-
chondrial ATP synthase, and succinyl-CoA synthetase. It is observed that gly-
colysis provides on average 60% of total ATP production, in line with previous
measurements. b) Fraction of ATP consumption by various cellular processes. c)
Fraction of cellular ATP demand satisfied by glycolysis. On average, 80% of total
ATP demand is provided by glycolysis. d) Comparison of glucose uptake with
excess total ATP production. Although glycolysis satisfies 80% of cellular ATP
demand, it produces only 60% of total ATP production, resulting in an excess
of cellular ATP above growth and maintenance costs. e) Comparison of glucose
uptake with excess total NADH+NADPH production. As with ATP, the high rate
of glycolysis results in excess NADH+NADPH production above what is required
for biosynthesis. f) Comparison of lactate secretion with the glucose uptake rate.
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Next, we examined the role of the redox produced by the pathways associ-

ated with the high uptake metabolites glucose, glutamine, and serine. We found

that growth-associated NADPH demands are dominated by fatty acid and steroid

metabolism (Figure 2.4a), and are met by significant contributions to the cytoso-

lic NADPH pool by the pentose phosphate pathway (66%) and folate metabolism

(34%), which is in the range of previous estimates[43] (Figure 2.4b). Notably,

a large majority of this NADPH production (mean 86%) originates from glucose.

Thus, cytosolic NADPH production pathways meet the growth requirement of

NADPH for the cell and is powered by glucose uptake.

We then investigated the mitochondrial production of NADPH. We found

that glutamate dehydrogenase (GLUD) metabolizes an average 70% of glutamine

taken up (Figure 2.4c). However, alpha-ketoglutarate (AKG) produced from this

reaction greatly exceeds the requirement for TCA metabolites and cannot be fully

oxidized by the TCA cycle. To be fully catabolized, AKG produced from GLUD

must exit the TCA cycle via malic enzyme (ME) to be converted into pyruvate for

later oxidation (Figure 2.4d). This pathway produces NADPH through GLUD

and ME in a manner that scales with glutamine uptake.

Simultaneously, an alternate pathway to glutamine catabolism through ala-

nine transaminase exists that results in secretion of alanine, as observed (Figure

2.4e). These pathways can alternately be powered by glucose by producing oxaloac-

etate via pyruvate carboxylation, but this pathway is consistently measured to be

minor. Because these pathways are quantitatively significant and tied specifically

to glutamine uptake, we investigated whether the operation of these mitochon-

drial NADPH pathways might be a driving factor underlying glutamine addiction.

We hypothesized that the function of mitochondrial NADPH production may be

the mitigation of reactive oxygen species (ROS) stress. To estimate this potential

demand, we identified mitochondrial enzymes previously shown to produce ROS

through side reactions, and estimated the production of ROS as 2% of the flux

through the enzyme. This analysis showed that the estimate of mitochondrial

ROS production is on the same order of magnitude as glutamine fueled NADPH

production through malic enzyme (Figure 2.4f). Although these estimations are
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rough, this analysis provides some quantitative support that mitigation of mito-

chondrial ROS may be a driving factor underlying glutamine addiction, as has

been suggested.

Finally, we sought to further understand the excess redox production tied to

glucose uptake we identified previously. Surprisingly, we find that ATP synthase

requires almost no NADH-powered proton pumping through Complex I (Figure

2.4g) to satisfy remaining energy demands not met by glycolysis. Instead, ATP

synthase appears almost entirely powered by Complex II, due to the direct cou-

pling of succinate dehydrogenase to Q10 in the membrane. We showed previously

that O2 consumption rates are correctly predicted with primarily Complex II drive

ATP synthase. However, if all NADH produced were fully oxidized through the

electron transport chain, oxygen uptakes would greatly exceed measured values.

Thus, we hypothesize that there is another NADH sink yet identified, which does

not consume oxygen. Seeking to identify some relationship through which to un-

derstand this excess redox production, we correlated the glucose uptake with a

large set of available data on the NCI60 lines, including gene expression, drug

response, metabolomics, and proteomics. Remarkably, we found that higher glu-

cose uptake broadly correlated with resistance to chemotherapeutic compounds

in the NCI Developmental Therapeutics Program database (Figure 2.4i). This

correlation was independent of the previously identified association between drug

sensitivity and cell growth rate. Investigating the top correlated drugs, we identi-

fied a number of drugs that had previously been shown to induce apoptosis via an

oxidative stress-dependent mechanism (Supplementary Data 1). Notably, imatinib

resistance is among the highest correlated to glucose uptake, and imatinib resis-

tance has previously been shown to be associated with higher glucose uptake[44].

Thus, it appears plausible that the excess redox production by high glucose uptake

lines provides a measure of resistance to metabolic stress, such as those imposed

by chemotherapeutics.



63

Figure 2.4: NADPH balance and electron transport chain activity sug-
gest role of excess glucose and glutamine uptake in metabolic stress
resistance. a) Cytosolic NADPH utilization, showing dominance of fatty acid
and steroid synthesis. b) Cytosolic production of NADPH. The pentose phosphate
pathway and folate pathway are both significant contributors, with the pentose
phosphate pathway predicted to produce an average of 66% of cytosolic NADPH.
However, an even higher fraction of cytosolic NADPH (86%) is glucose-derived
rather than serine derived, due to additional NADPH from the glucose-driven
de novo serine synthesis pathway. c) Fraction of glutamine uptake metabolized
through glutamate dehydrogenase, with an average of 70%. d) Correlation between
glutamate dehydrogenase and the mitochondrial malic enzyme demonstrates that
glutamine is primarily converted to pyruvate through malic enzyme, producing mi-
tochondrial NADPH. e) Fraction of malic enzyme flux due to alpha-ketoglutarate
produced from alanine transaminase tied to alanine overflow, highlighting an al-
ternate glutamine catabolic route. f) Comparison of mitochondrial malic enzyme
flux to an estimation of reactive oxygen species production using a relationship of
2% of the flux of known ROS-producing reactions going to ROS-production[86].
g) Activity of mitochondrial complex I in the NCI60 cell lines. Although an ex-
cess of NADH is produced by glycolysis, ATP production and O2 consumption
rates are not consistent with NADH oxidation by the ETC. h) Complex II activity
vs ATP synthase activity shows that ATP synthase is predicted to be primarily
driven by Q10H2 produced by complex II, rather than NADH-driven complex I. i)
Correlation between resistance to chemotherapeutics and glucose uptake. Glucose
uptake correlates highly with excess energy and redox production, and simultane-
ously correlates broadly with resistance to chemotherapeutic drugs in a manner
independent of cellular growth rate.



64



65

2.4 Discussion

The results of this work suggest a fundamental structure to cancer cell

metabolism where biosynthetic demands determine much of the metabolic pheno-

type, but glucose and glutamine uptake scale above this requirement to result in

an excess of redox production over biosynthetic and energy requirements. These

results suggest an interpretation of the Warburg effect and glutamine addiction as

motivated by metabolic stress resistance. Using the data available on the NCI60,

we examined a number of other hypotheses for driving factors underlying the War-

burg effect and glutamine addiction, notably the production of biomass precursors,

the minimization of metabolic enzymes, and pH regulation (Supplementary Data

1). However, available data suggested these concepts are not quantitatively suf-

ficient to explain the Warburg effect or glutamine addiction. Moving forward,

further elucidation of the fate of the excess redox and energy produced in cancer

cell lines should provide a better fundamental understanding of cancer metabolic

hallmarks and fuel efforts at new therapeutic strategies.

2.5 Methods

2.5.1 Calculation of metabolic flux states

To calculate metabolic flux states, a stoichiometric model of central and

growth metabolism was extracted from the latest global human metabolic net-

work reconstruction, Recon 2[41]. This model was constrained by growth dataO-

connor1997CR, metabolic uptake and secretion profiles[35], and an estimate of

cell mass based on sustainable biomass that was validated against measured cell

sizes[37]. ATP costs due to cellular maintenance functions was set to be 1.07

mmol/gDW/hr based on measurements[84]. Twenty-three metabolites had up-

takes constrained by measured data, consisting of glucose, lactate, and amino acids,

which accounted for greater than 99% of observed metabolic exchange fluxes in the

NCI60 cell line data set. Furthermore, two flux splits, that between glycolysis and

the pentose phosphate pathway, and between pyruvate dehydrogenase and pyru-
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vate carboxylase, were constrained to be 90/10 each, based on previous 13C tracing

studies performed on the NCI60 lines. Metabolic flux states were then calculated

by solving a flux balance analysis problem. A number of objectives were evalu-

ated, including maximization and minimization of ATP production, maximization

and minimization of cellular redox production, and minimization of overall cellular

flux, a proxy for minimizing the proteomic cost of enzyme synthesis. We found

that maximization of mitochondrial NAD(P)H gave the best agreement with 13C

tracing data thereby verifying the solutions on a subset of the NCI60 lines.

2.5.2 Constructing a core cancer model

To construct a core model, we included reactions necessary for biomass

formation and primary metabolite catabolic pathways, while excluding anabolic

pathways not associated with core biomass precursor production as well as sec-

ondary catabolic pathways. The primary distinction to be made was thus deter-

mining which reactions belong to primary and secondary catabolic pathways. This

classification was performed algorithmically with manual justification based on 1)

literature evidence and 2) feasibility based on modeling results. The following

pathways were included: 1) pathways required for synthesis of biomass precursors,

2) core energy metabolism (glycolysis, the pentose phosphate pathway, the TCA

cycle, the electron transport chain, and the malate aspartate shuttle), 3) path-

ways previously shown to be active in cancer cell lines under normal conditions

4) cofactor transfer reactions for NTPs and redox groups, 5) pathways involved

with essential and/or high uptake/secretion metabolites, 6) pathways involved in

catabolism of essential and/or high uptake/secretion metabolites, 7) pathways in-

volved in cofactor regeneration and small metabolite processing/transport for co-

factors/small metabolites produced in pathways gathered from the previous steps.

Pathways that were excluded as a result of these criteria tend to have the following

properties: 1) pathways that have unknown activity but due to small flux can be

thought of as noise in approximations (e.g. glycosylation, EAA anabolic pathways,

beta-alanine), 2) pathways removed because not measured to be major contributor

to catabolism of high uptake metabolites (GLUDC, SERHL and methylglyoxyl), 3)
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pathways that use high uptake metabolites only as cofactors (e.g. cysteine produc-

tion from serine, where cysteine was not measured). Based on this approach, a core

metabolic network of 382 reactions (Supplementary Data 1) was extract from the

latest human metabolic network reconstruction[41]. Gene[45] and protein expres-

sion analysis[46] showed that this core set of reactions is highly conserved between

cell lines, with the majority of reactions being highly expressed in all NCI60 lines.

The core metabolic network was used to account for observed physiological func-

tions, i.e. growth and measured uptakes, and minimize the influence of pathways

with an unknown functional status on the networks flux state.

2.5.3 Cell-specific biomass determination

Cell biomass is composed of protein, lipids, DNA, RNA and small molecules,

in weight fractions determined by cell composition studies. Average protein amino

acid composition was taken from literature[47, 48]. Approximate DNA deoxyri-

bonucleotide composition was set based on genomic base frequency taking into ac-

count the karyotype of the NCI60 lines[49]. RNA ribonucleotide composition was

determined based on measured mass fractions. Lipid composition was set based on

measured lipid composition for high concentration lipids. Small molecule weight

fractions were determined for several high concentration non-essential metabolites

using literature concentrations, using a typical cell dry weight of 0.2 ng/cell and

cell volume of 2 pL/cell when unit conversions were necessary. We chose to set

the macromolecule weight fractions to be constant between lines. Previous stud-

ies show minimal variance between macromolecule weight fractions for particular

types of cells, such as hybridoma cells and Chinese hamster ovary cells. Other cell

types, such as liver cells, may have significantly different macromolecule weight

fractions, but cell lines derived from such tissues are not present in the NCI60

panel. Also, although cell composition has also been reported to change across

growth conditions[50], the NCI60 panel was subject to uniform growth conditions

in the studies generating the data used in this study. Furthermore, there is the

question of whether cell composition changes with cell size. One study showed that

doubling of cell size resulted in approximate doubling of respiration, suggesting the
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protein content scales proportionally to size[51]. Also, as volume changes, the cell

surface area (SA) to volume (V) ratio changes, and thus it is possible that the

lipid weight fraction of the cell changes as well. However, compartment size has

been shown to be approximately linearly correlated with total volume[52], and ER

membrane alone is reported to be over 10 times the fraction of the total membrane

as the cytoplasmic membrane[53], suggesting SA/V differences mean little in terms

of lipid requirements. Thus, we assumed that the macromolecule composition was

invariant across cell lines, although cell sizes differ. Protein content and cell volume

data for the NCI60 was recently published. However, this data was insufficient to

set cell-specific biomass macromolecule weight fractions, as the cell dry weight was

not measured. To determine the cell-specific dry weights, we integrated cell volume

data with the uptake rates as follows. First, the amount of biomass sustainable

by each cell was determined by maximizing the growth through each line using

FBA while constrained by measured uptakes in per cell units. Then, this sustain-

able biomass was corrected using measured protein content data as follows. If the

sustainable protein, taking protein as 0.70 of total cell dry mass, is less than the

measured protein, a value of 95% of the sustainable protein measurement was used

as the estimate of cellular protein. This was done because the measured protein

could not be sustained by the measured uptake rates, which we assumed was due

to error in the measured protein. Measured protein was assumed to be the greater

source of error because the measured uptake rates are highly correlated and there

was no general bias of sustainable protein being greater or less than measured

protein. Also the measured protein showed a relatively low agreement with cell

volumes (Pearson R2 = 0.23) and we observed certain spurious data points causing

concern. For example, the SR line was reported to have a protein content of 0.021

ng/cell, which given the reported cell volume and average protein density would

result in a dry weight fraction of protein of approximately 0.08, which is substan-

tially lower than measured values around 0.7. Volume measurements were based

in microscopy, and thus were seen as less error prone than protein content mea-

surements which require cell count estimation, which can be a significant source of

error. When sustainable protein was greater than measured protein, the measured
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value was used to correct the sustainable protein, using the formula mestimate =

mmeasured + 0.25*(msustainable-mmeasured). This formula was chosen based on

resulting agreement with cell volume data. The correlation of estimated protein

content with cell volume (Pearson R2 = 0.60) was higher than either measured

protein (Pearson R2 = 0.23) or sustainable protein (Pearson R2 = 0.52).

2.5.4 Curation of exometabolomic data

Published metabolite uptake and release (exometabolomic) data on the

NCI60 lines was re-processed in a semi-automated process. The original dataset

was processed by correcting for drift in the peak area standardization across runs by

a linear L1 regression of blank media standards. However, upon detailed inspection

of the drift for different metabolites, it was apparent that the drift was highly non-

linear for some metabolites. The effect of applying a linear approximation in these

non-linear cases was that metabolite uptakes were significantly mis-represented,

and in some cases, metabolites were actually not exchanged substantially at all,

once a non-linear drift correction was applied. We manually created non-linear

approximations of drift for each metabolite in Mathematica based on the media

standards for each metabolite. We applied these non-linear corrections to the raw

data to recalculate the metabolite uptake and release profiles. The non-linear

corrections used are available in the Supplementary Data 1.
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Chapter 3

A data driven workflow for the

construction of bottom-up kinetic

models of metabolism

3.1 Abstract

Genome-scale metabolic network reconstructions provide a context within

which omics data can be analyzed to understand phenotypic functions. Here,

we develop a workflow to mechanistically integrate three disparate data types

(metabolomic, fluxomic, and thermodynamic) within the context of a metabolic

reconstruction. First we determine that the data sets are thermodynamically con-

sistent. Then, we use the mass action stoichiometric simulation (MASS) model-

building framework to develop a kinetic model E. coli core metabolism. We ex-

panded this framework to include a database-driven semi-automated software pack-

age that enables the parameterization of mechanistic mass action modules from

available kinetic data. The results from this study demonstrate that the MASS ap-

proach can generate network-scale dynamic models in a data-driven manner. The

impending onslaught of quantitative in vivo metabolomics data can thus be con-

verted into useful dynamic models in a data-driven fashion to generate descriptions

of integrated network functions.
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3.2 Introduction

In the past several years has witnessed a rapid development of new meth-

ods for metabolomics that are providing here-to-fore unmatched resolution of data

describing the composition and dynamics of the cellular metabolome under many

physiological conditions[46, 48]. As metabolomics data-generating methods con-

tinue to progress, so too must the development of in silico methods capable of

analyzing this data and placing it in the context of what is known about cellular

metabolic functions to interpret and understand the biological significance of the

observations[49]. However, understanding the link between the concentration state

of specific metabolites and cellular function is not a simple task. Metabolites typ-

ically participate in multiple reactions that may not be classifiable into canonical

functional pathways due to the complexity of network structure. Metabolites also

serve as signaling molecules, allosteric inhibitors, osmotic regulators, and other

functions that further complicate the interpretation of metabolomic data. The

role that a particular metabolite serves may also be context-dependent and change

with environmental shifts, regulatory changes, and disease state.

It is desirable to obtain a quantitative understanding of the changes that

occur in metabolites under various conditions and perturbations. The prediction of

the dynamics of metabolite concentrations has historically been approached using

computational modeling. Kinetic modeling of metabolism has classically consisted

of defining reaction mechanisms, allosteric modifiers, and apparent constants for

particular metabolic enzymes for pre-defined reaction conditions, measuring or ap-

proximating parameter values, and subsequently linking these modules to predict

network function[54]. The applicability of these studies to in vivo processes is

confounded by variation in numerical values for kinetic constants between in vitro

and in vivo conditions, due to pH, concentration, molecular crowding, and viscos-

ity differences, among other factors[55, 56, 57, 58]. Other efforts at constructing

dynamic models focus on the reduction of networks based on quasi-equilibrium and

quasi-steady-state assumptions in order to deal with the large number of parame-

ters that can appear in kinetic models, but the application of these approximations

for large systems becomes problematic. Genome-scale kinetic models have largely
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been thought infeasible with current technology due to the large number of pa-

rameters to be defined and the difficulties in measuring such parameters.

As an alternative approach to fully defined kinetic models of metabolism,

constraint-based modeling is a paradigm that has met with considerable success

with practical applications at the genome scale. At the core of this methodology

is the definition of the biochemically feasible system state space using parameter

constraints based on mass balance and other principles[59, 60, 61, 62]. The space

of network states can then be characterized in an unbiased fashion or searched for

an optimal network state through the use of an assumed cellular objective in an

optimization problem. These methods have been attractive due to that fact that

little data beyond the network structure is required to make accurate predictions

of phenotype.

It has been previously suggested that three generations of large-scale models

will be developed with the third being the use of omics data to describe dynamic

network states[63]. Advances in the field of metabolomics are beginning to provide

the high-throughput in vivo data needed to develop network-scale dynamic models

in a context-specific manner. An approach has been developed, termed the mass

action stoichiometric simulation (MASS) approach, to construct kinetic models

upon the stoichiometric models that classically have been used for constraint-based

modeling. MASS modeling is a data-mapping approach that maps high-throughput

in vivo concentration data, thermodynamic estimates, and calculated and in vivo

flux data onto systems of mass action equations that are based off of validated

metabolic network reconstructions. As the data mapped onto the networks is

both high-throughput and specific to the measured state, MASS models allow a

condition-specific analysis of in vivo dynamics at the genome scale.

The MASS modeling procedure has been described and there are

metabolomics data sets now available that enable its meaningful deployment.

Here we present a workflow for the development of dynamic MASS models for

Escherichia coli[64]. In addition, we develop a powerful database-driven software

package for the parameterization of mechanistic enzyme modules that can correct

for a number of in vitro/in vivo differences. These goals represent an important
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step towards developing a functional understanding metabolic system dynamics at

a large scale.
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Figure 3.1: Workflow for the bottom-up construction of data-driven
kinetic models of metabolism. Input data required are growth and uptake
rates, metabolite concentrations, and equilibrium constant estimates, as well as
enzyme kinetic data used in the parameterization of enzyme modules. Fluxes are
calculated from flux balance analysis (FBA)[15] for all metabolic states for which
concentration data was measured. Concentrations and equilibrium constants are
checked for consistency with the 2nd law of thermodynamics. Rate constants for
mass action enzyme mechanisms are calculated from a specialized software pack-
age for parameterization. Concentrations, equilibrium constants, fluxes, and rate
constants are then mapped onto the mass action enzyme module network to finish
the parameterization of the kinetic model. Finally, alternate rate constant sets are
sampled to account for uncertainty in rate constants, resulting in an ensemble of
candidate kinetic models for subsequent simulation and analysis.
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3.3 Results

3.3.1 Construction of a stoichiometric model of E. coli core

metabolism

A core model of E. coli metabolism103, comprised of principally of glycol-

ysis, the pentose phosphate pathway, the TCA cycle, the fermentation pathways,

and the electron transport chain was used to analyze data generated from E. coli

K-12 strain NCM3722 grown under three different carbon sources, glucose, glyc-

erol, and acetate. The initial stoichiometric model contained 90 reaction and 71

metabolites. Flux balance analysis (FBA) was used to predict the steady-state

flux distribution for the three growth conditions mentioned. The choice of con-

straints and objectives for the FBA optimization here is important for defining

an accurate in vivo flux state, and these parameters are chosen to match the cul-

ture conditions that were used in acquiring the corresponding metabolomic data

set[65, 66, 67, 68], (see Methods for details). This effort represents the first step

of the workflow describing the process of creating data-driven MASS models of

metabolism (Fig. 3.1).

Maximization of ATP was then used as the objective for FBA, subject to

a growth constraint equal to the measured growth rate for each condition. The

flux states calculated with this optimization were compared to available flux ratio,

uptake rate, acetate secretion rate data from numerous studies and found to be in

good agreement with measured data (Fig. 3.2)[65, 66, 67, 68]. Pearson correla-

tion coefficients were calculated to provide an estimate for the difference between

the flux states and were found to be 0.88, 0.62, and 0.56 for glucose/glycerol,

glucose/acetate, and glycerol/acetate pairs, respectively. These differences are ex-

pected as acetate is the only gluconeogenic substrate of the three, eliciting the

largest change for the latter two comparisons, while network states under all three

carbon sources use the TCA cycle similarly, leading to an overall similarity in flux

state. Reactions that were predicted to carry no flux in any of the conditions were

removed from the model, and this reduced model, consisting of 75 reactions and

58 metabolites, was used for further analysis.
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Figure 3.2: Comparison of FBA calculated fluxes with 13C labeled
substrate data for glucose and acetate. Data were taken from published
studies [65, 66, 67, 68].
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3.3.2 Multi-objective optimization approach to determin-

ing a thermodynamically consistent in vivo state

Thermodynamic constraints on metabolic network function have received

much attention in the literature[69, 70, 71, 72]. We developed a constraint-based

approach that integrated metabolomic measurements and calculated fluxes without

violating thermodynamic principles. We sought to find a common set of equilib-

rium constants between the three experimental conditions, subject to the Second

Law of Thermodynamics in each condition, while restricting metabolite concen-

trations to be within measured experimental error. This problem was addressed

through formulation of a multi-objective optimization problem, simultaneously op-

timizing three objectives (Fig. 3.3a).

• The first objective is to minimize the distance between the equilibrium con-

stants for each condition.

• The second objective is to minimize the distance between the equilibrium

constants and the group contribution estimates.

• The third objective is to minimize the distance between concentration vari-

ables and the mean of their estimates from data (Panel B in Figure 3.3

illustrates this graphically).

A recent LC-MS/MS dataset provided quantitative metabolomic data for

three nutrient growth conditions, covering 43% (25/58) of metabolites in the

model[73]. The remaining metabolites largely consist of external and small metabo-

lites, the concentrations of which can be reasonably estimated from literature and

order of magnitude estimation. Equilibrium constants were back calculated from

published group contribution estimates for Gibbs free energies assuming 1 mM

concentration at pH 7.2113.

The results of the optimization (Fig. 3.3) show that the three disparate

data types mapped onto the MASS model, fluxes, concentrations, and equilibrium

constants, are largely thermodynamically consistent with each other across con-

ditions, and the results remain close to the mean input values for the data. The
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coefficient of variation of internal (non-exchange) reaction equilibrium constants

between conditions was less than 10-4 for each reaction, showing that a common

thermodynamic parameter set can be found that is consistent with the second

law of thermodynamics for all conditions and for the variable bounds given. The

agreement between the calculated consistent equilibrium concentration set and

the group contribution estimates for internal reactions was good (median error <

75%), but with a few significant outliers due to modeling assumptions (max error

∼ 106%). The main source of outliers was transport reactions, which did not take

into account electrochemical potential or pH gradient in the current mass action

formulation and thus are subject to significant error. For example, the largest error

occurred in the prediction for the ATP synthase reaction, which involves a proton

pump that would not be correctly modeled, as a proton gradient was not taken

into account.

When disregarding transport reactions, the error for the remaining reactions

is decreased by an order of magnitude (median error < 2.5%). A few notable inter-

nal, non-transport, equilibrium constants were predicted by flux and concentration

data to be required to be significantly different than group contribution methods

estimate. Reactions with calculated equilibrium constants at least an order of

magnitude away from their group contribution estimates were enolase, triose phos-

phate isomerase, fructose bisphosphate aldolase, fumarase, GAP dehydrogenase,

phosphoglucokinase, succinyl-CoA synthetase, and G3PD2, indicating that the in

vivo thermodynamics for these reactions might not be accurately predicted com-

putationally, although error in concentration estimates cannot be discounted. It is

interesting to note that several of these enzymes occur in lower glycolysis, which is

thought to be near equilibrium. The discrepancy between group contribution esti-

mates and predictions from data for these reactions gives possible indication of a

digression in the cellular microenvironment from the assumptions underlying solu-

tion thermodynamics, perhaps suggestive of substrate channeling61, which would

have the effect of increasing the local concentration of metabolites and therefore

alter the effective thermodynamics of the reaction from our calculations.
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The error between calculated concentrations and reported data means nec-

essary to create a common Keq set was also reasonable (median error < 105%

and standard deviation of error < 100% in all conditions). Taken together, these

results suggest that the condition-specific in vivo concentration data and validated

flux estimations are consistent with group contribution estimates for in vivo ther-

modynamic data. Changes in the metabolome between conditions are consistent

with the changes that flux calculations and Gibbs free energy estimates predict

to be required to satisfy the 2nd law of thermodynamics, showing how governing

constraints determine the quantitative metabolome in a way that can be compu-

tationally rationalized. Additionally, a consistent set of equilibrium constants was

found that satisfied the second law for all conditions studied.
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Figure 3.3: Non-linear optimization identifies reaction equilibrium con-
stants consistent with multiple in vivo measured metabolomics data
sets. a) Definition of the optimization problem to identify reaction equilibrium
constants that are consistent with the 2nd Law of Thermodynamics as well. The
problem is a multi-objective non-linear optimization to find concentration and
equilibrium constant sets that are as close to measured or estimated values as pos-
sible. b) A schematic of the optimization problem, in the case of the published E.
coli metabolomics data set grown aerobically on glucose, acetate, and glycerol[73].
c) Consistency of equilibrium constants found to be consistent with metabolomics
compared with the computational estimation of the equilibrium constants from
group contribution[71]. A number of outliers are apparent. ATP synthase ap-
pears due to the proton differential not being considered in the mass action ratio
for the reaction, and thus the Keq calculated can be thought of as an apparent
Keq. Several reactions in lower glycolysis appear, which suggests that metabolic
concentrations are not consistent with observed fluxes in lower glycolysis. Lower
glycolysis has been thought to be subject to metabolite channeling[74], which if
occurring would create local concentrations of the metabolites greater than those
calculated assuming homogeneous distribution within the cell, consistent with the
observed thermodynamic discrepancy.
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3.3.3 Construction of a software pipeline for the parame-

terization of mechanistic mass action kinetic modules

Thus far, we have determined that we can acquire consistent estimates of

in vivo reaction fluxes, metabolite concentrations, and equilibrium constants. The

last requirement for kinetic model specification is the rate constants of the en-

zyme mechanism. However, individual rate constants are typically not measured

directly. Instead, the enzyme kinetic parameters measured are typically lump pa-

rameters from initial rate studies, such as the catalytic constant kcat, the Michaelis

constant KM, and dissociation constants Kd. These lump parameters, other than

the relatively simple Kd, are at best complicated non-linear expressions of the reac-

tion elementary rate constants, and at worst do not have a comparable analytical

expression that can be used to constrain selected rate constants. Furthermore, the

experiments used to study enzyme kinetic parameters are often performed under

non-physiological conditions, providing further cause for concern for their direct

use in a kinetic model. Causing additional problems, these data have inherent

error associated with measurement, and thus parameters may become inconsistent

with each other, with little recourse. Finally, in practical situations the number

of independent data points will be almost always be less than the number of pa-

rameters specified. Thus, some accounting for the uncertainty in free parameters

should be done.

To address the challenges of parameterization of an elementary mass action

enzyme module, we developed a novel pipeline to identify sets of elementary rate

constants that reproduce lump enzyme kinetic parameters, accounting for uncer-

tainty and many sources of in vivo/ in vitro differences. The overall strategy is to

first calculate an algebraic expression that relates the elementary rate constants

to the measured kinetic data and then to use a constrained, pseudo-randomized,

non-linear least squares problem to find sets of rate constants that minimize the

difference between the algebraic expression value and the measured data value.

Importantly, these algebraic expressions can contain corrects for in vivo/in vitro

differences by explicitly including models that represent these differences, such

as ionic strength corrections to reaction equilibrium constants. Furthermore, by
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pseudo-randomizing starting points in the non-linear squares problem, uncertainty

and free parameters can be accounted for by repeated optimizations to generate

equivalent parameter sets.

The resulting pipeline consists of 1) a database back end to store measured

enzyme kinetic data, increasing automation and consistency, 2) powerful computer

algebra systems to calculate expressions relating elementary rate constants to lump

enzyme kinetic parameters for arbitrary enzyme reaction mechanisms, 3) a care-

fully optimized parameter fitting approach that solve a complicated constrained

non-linear least squares problem to calculate the desired elementary rate constants.

3.3.4 Construction of a database to store and retrieve ki-

netic data

We first conducted a literature search for all available kinetic data on en-

zymes in the core E. coli model. Notably, much of this data was not found in

the most popular enzyme kinetics database, the Braunschweig Enzyme Database

(BRENDA)[75], indicating that prior collection efforts have not be fully compre-

hensive, and thus the availability of kinetic data may be higher than believed, for

the model organism E. coli at least. Indeed, we found at least one kinetic data

point for 54 of the 57 isozymes in the core kinetic model of E. coli. These data are

provided in Supplementary Data 1.

3.3.5 Construction of a computer algebra pipeline to relate

elementary mass action rate constants to measured

kinetic parameters

Having collected the available data, the next challenge is to develop expres-

sions that relate the rate constants to the measure kinetic data. Due to the fact

that the vast majority of available data is derived from initial rate studies, we focus

our discussion on handling the parameters kcat, KM, Kd, and Keq. For arbitrary

enzyme mechanisms, there is not guaranteed to be an expression directly relating

kcat or KM to the elementary rate constants of the enzyme mechanism. However,
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we can take advantage of the manner in which the kcat and KM are extracted from

initial rate studies to provide these expressions. Both of these parameters first

require solving for the overall steady-state rate of the enzyme from its elementary

mass action mechanism. The overall steady-state is found by solving the mass

balance equation Sv = dx/dt = 0 for the enzyme module along with the enzyme

conservation equation Etotal = sum of Ei for the individual enzyme forms Ei. This

system of equations can be solved algorithmically using the King-Altman method,

which is rooted in calculating determinants, or through the use of a computer al-

gebra package such as provided by Mathematica. In practice, we have found the

latter to be more efficient, but the King-Altman method provides a failsafe backup

in cases where the computer algebra methods may fail. Then the expressions for

Ei are substituted into the rate equation for the catalytic step of the reaction.

The resulting expression is a function of the metabolite concentrations, the rate

constants, and the total amount of enzyme Etotal.

First, the KM for a particular metabolite and enzyme is the concentration

of the metabolite at which the enzyme operates at half of its maximal velocity.

This mathematically means that the KM value can be found by requiring that the

quotient of the rate of the reaction to its maximal rate is 0.5 when the concentration

of the metabolite equal to the KM is substituted into the rate constant. In terms of

the following non-linear least squares problem, this effectively requires a set of rate

constants that causes the relative saturation of the enzyme to follow the typical

Michaelis-Menten like saturation curve centered around the KM value. To calculate

the reaction quotient, the maximal velocity of the reaction must be found. To do

this, we take advantage of powerful computer algebra tools offered by Mathematica,

and algebraically computed the symbolic limit of the reaction rate as the metabolite

concentration reaches infinity, subject to zero product concentration and a fixed co-

substrate concentration. In practice, these limits have proven efficient to calculate.

Thus, through algebraic manipulation of the mass action reaction rate laws, we

can create a comparison equation relating elementary rate constants to measured

KM values.

In the case of the kcat, it is universally defined as the constant relating the
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vmax of the enzyme to the total enzyme concentration Etotal. Thus, we can create

a comparison equation of elementary rate constants by substituting an arbitrary

amount of enzyme into the overall steady state rate equation, and set the concen-

trations equal to the measured saturating metabolite concentrations. The resulting

equation will guarantee that the v = vmax at the saturating metabolite concentra-

tions, provided that it is coupled with KM data that enforces that these metabolite

concentrations are saturating. This equation thus relates the elementary rate con-

stants to the measured kcat values. Initially we examined the possibility of using

the limit of the reaction rate as the metabolite concentrations become infinite, as

was done in the creation of the KM comparison equation. However, we discovered

that this limit is poorly defined for multi-substrate reactions when the reaction

exhibits a random order mechanism, because the final limit depends on the ratio

of the substrates. For this reason, we decided to enforce the kcat using the steady-

state reaction rate coupled to assumed KM parameters to enforce saturation, rather

than using a limit-based approach. In practice, we did not find any cases of an

enzyme having a measured kcat without corresponding KM data, so the need for

KM parameters with this approach did not cause any complications.

More simple to relate to elementary rate constants are dissociation constants

and reaction equilibrium constants. Dissociation constants are simply defined as

inverse equilibrium constants for metabolic binding steps. Thus, the corresponding

comparison equations take the form of Kd = kr / kf for a binding reaction E+I EI,

where kr and kf are the reverse and forward elementary rate constants, respectively.

Similarly, the overall reaction equilibrium constant Keq is simply the multiplication

of the equilibrium constants of sequential steps in the enzyme mechanism. As the

individual Keqs are defined in terms of elementary rate constants, the comparison

equation is quite simple. Thus, using these methods we are able to construct

algebraic expressions relating the individual rate constants to measured kinetic

data. This will allow us to calculate sets of elementary rate constants that cause

the mass action enzyme module to reproduce the measured kinetic behavior.
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3.3.6 Sampling sets of equivalent rate constants satisfying

measured kinetic data with a non-linear least squares

approach

With the kinetic data and comparison equations now available, we then

create a scoring function that consists of a least-squares problem with the elemen-

tary rate constants as variables, and the sum of squared errors between the kinetic

data and comparison equations as the objective function to be minimized. This

problem is constrained because the rate constants cannot be arbitrarily high. The

diffusion limit on the second order rate constant kcat/KM is typically estimated

around 109 s-1, and this is the limit that we used as the upper bound on the rate

constants. The lower bound was set at an arbitrarily low value of 10-6 s-1, but it is

unknown whether any rate constants could possibly reach slower rates. However,

this wide range of rate constants creates a difficult problem for optimization al-

gorithms. Also, the optimization problem is of course non-linear and thus will be

subject to local minima, preventing a global optimum from being guaranteed to

be found. The under-determined nature of the problem also suggests that many

equivalently optimal solutions will exist. We addressed these difficulty by using a

two stage optimization approach. The first stage uses a randomized non-derivative

based particle swarm optimization with log-transformed rate constants as variables

to efficiently scan over a large order of magnitude for local minima. This random-

ized first stage does not find perfect fits in practical situations, but instead finds

decent fits that serve as starting points for the next stage optimization. The sec-

ond stage optimization is a derivative-based Levenberg-Marquadt algorithm using

linear variables that in practice quite efficiently perfects the solution based on

starting points from the particle swarm algorithm. This two-stage optimization

approach thus finds a set of equivalent rate constants with a high degree of fidelity,

such that the majority of initial points optimized reach a perfect fit, where the

sum of squared errors is very small. To minimize the number of repeated or highly

similar rate constant sets, we then clustered these rate constants and extracted

one rate constant set per cluster to serve as representative rate constant sets. The
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appropriate number of clusters can be chosen by the user or suggested by a number

of statistical methods. See Fig. 3.4 for an example fitting for adenylate kinase.

3.3.7 Estimation of enzyme concentrations and model sim-

ulation

Utilizing the collected E. coli data, we tested this workflow on a wide variety

of mechanisms and data types and found it to enable robust and rapid enzyme

module parameterization. With rate constants calculated, the only parameter is

the total enzyme, which can thus be calculated from the enzyme conservation

equation Etotal = sum of Ei, substituting the previously found solutions of steady-

state concentrations of enzyme forms as well as the calculated reaction fluxes,

metabolite levels, reaction Keqs, and rate constants. These enzyme levels can then

be compared to quantitative data for validation. An alternate workflow when

enzyme data is present and believed to be highly accurate would be to include this

concentration in the least squares problem, along with the in vivo calculated fluxes

and concentrations, to find a consistent system that satisfies all data.

With the total enzyme calculated, the kinetic model is now fully parame-

terized and can be simulated. Since multiple equivalent rate constant sets were

found for each enzyme, we can now simulate an ensemble of models to account for

uncertainty and undetermined parameters. This provides protection against the

troubles of overfitting that have plagued the field of kinetic modeling.

The workflow developed is robust in application and allows the rapid devel-

opment of thermodynamic and kinetically consistent mass action kinetic models.

This approach should become very powerful in the development of practical kinetic

models to address problems of importance in strain design and human health.
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Figure 3.4: Parameterization of enzyme module rate constants using
a non-linear least squared approach. a) The software fitting package auto-
matically generates reaction maps based on the mechanism of the enzyme, in this
case adenylate kinase. b) Best fit of the enzyme rate constants to enzyme kinetic
parameters. In this case, three KMs, for atp, adp, and amp, and two kcats, for the
forward and reverse reaction, are fitted. The kcats are printed multiple times for
additional weighting in the optimization, an approach thats roughly equivalent to
including a weighting parameter on the sum of squared error objective function.
The y axis is in data-dependent units, while the x axis is the index of the data in
the sum of squared errors term. c) Distribution plot of equivalent rate constant
sets obtained by the two stage optimization algorithm. It is observed that wide
ranges of rate constants are obtained, accounting for the fact that free variables
exist while maintaining the non-linear constraints between rate constants imposed
by data. The y axis is in units of s-1, and it is observed that constraints on overall
rate constants are obeyed to be between 109 and 10-6 seconds. d) Clustering of
rate constants further shows the non-linear relationships between rate constants
and demonstrates how characteristic rate constant sets can be chosen for later
ensemble modeling.
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3.4 Discussion

The work presented here seeks to functionally integrate quantitative

metabolomic data with multiple data sources in the context of a metabolic net-

work reconstruction. A workflow was generated that combines an optimization

approach to obtain a thermodynamically-consistent data set, steady-state analysis

to assess the value of the metabolome towards achieving a putative cellular objec-

tive, and the construction and analysis of condition-specific dynamic models using

the MASS approach. The study shows that the MASS approach can generate

network-scale dynamic models in a data-driven manner.

The MASS approach is a data mapping approach built upon the integra-

tion of multiple disparate data sets in the context of a network model. Through

solving an optimization problem, we found that the condition-specific fluxomic

and metabolomics data sets used were consistent with thermodynamic laws. The

thermodynamic consistency of the data enables the successful integration of mul-

tiple experimental and experimentally validated data types within the framework

of a stoichiometric model. It is notable that, despite the constraints given by the

data error and flux directions, a common set of equilibrium constants was found

for all conditions, and this common set was largely close to estimates from group

contribution theory. It is noteworthy that in vivo equilibrium constants are esti-

mated without a direct measurement but form high-throughput data mapping and

consistency checking. As new metabolomic data sets for E. coli are generated for

different conditions, this method can be repeatedly applied to further refine the

values of equilibrium constants in vivo.

Omics datasets are typically analyzed by statistical methods based on qual-

itative and relative principles such as overrepresentation. This work takes an im-

portant step towards fully quantitative systems biology integrating quantitative

data with functional models to make quantitative biological interpretation and

prediction. By mapping quantitative omics data against the underlying systemic,

chemical and thermodynamic structure, we are able to generate models that pro-

vide physiological insight and understanding. For example, by mapping the data

onto a mass action kinetic scaffold, in vivo enzyme concentrations necessary to sus-
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tain the observed flux can be calculated and compared to measured values. The

enzyme saturation states calculated through this approach represent the functional

state of the proteome, lending insight into systemic effects of enzyme saturation

and allosteric regulation.

The scaling of kinetic modeling to the network level traditionally has been

seen as troubled by the large number of parameters required. This study has

shown that the integration of various data measurements and parameter estima-

tion approaches in the context of a metabolic network reconstruction enables the

construction of large-scale dynamic models. MASS models, due to their founda-

tion in functional biochemistry and use of in vivo data, serve as an ideal starting

point to begin to understand the complexity of in vivo biochemical system dynam-

ics in a rigorous fashion. As the necessary quantitative data is generated, these

models will continue to be developed for other systems, such as those relevant to

disease, enabling a previously unattainable quantitative view into the physiological

functions and role of metabolic dynamics in vivo.

3.5 Methods

3.5.1 Additional notes on calculating the condition-specific

flux state

The oxygen and nutrient uptake conditions were set for each condition by

first determining the minimum nutrient value predicted by the model to sustain the

measured growth rate, then doing the same for literature data for growth on each

substrate to estimate the excess nutrient uptake, then scaling the minimum value

by this amount to estimate the actual uptake at the measured growth rate. This

process was found to yield results largely consistent with available data[65, 66].

One discrepancy with in vivo data was that, for the acetate growth condi-

tion, the minimum oxygen uptake rate to support the measured growth rate and

non-growth-associated ATP maintenance cost was calculated to be slightly higher

than the previously established enzymatic capacity for oxygen incorporation into
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the ETC. This is likely an artifact of the simplified ETC used in this stoichiometric

model, which has a P/O ratio that is constrained to be an average of the maximum

and minimum possible P/O ratio of the network as a simplifying measure and thus

is lower than the capacity of the full E. coli metabolic network.

A recent study showed that the well-known phenomenon of acetate overflow

is a result of catabolite repression, which results in a decrease of acetate intake[76].

Interestingly, the maximization of ATP for a constrained growth rate produces

accurate estimates of acetate overflow[67]. This could indicate that the catabolite

repression might act to maximize ATP production at a sub-optimal growth rate.

However, this hypothesis is complicated by the fact that many flux states not

involved in optimizing ATP could have similar acetate secretion.

Note that the inherent assumption in this model reduction is that the re-

moved reactions remain inactive during perturbations, and also that reactions

predicted to have zero flux in a particular condition but not in others remain inac-

tive for that condition (i.e. the reaction rate, discussed later, is set to zero). This

assumption is likely only valid near the steady-state studied, i.e. for small pertur-

bations. This suggests a clear boundary on the types of questions that should be

asked using such a model. For example, probing into the response of the system to

a switch to different nutrient environments or after growth evolution would require

the inclusion of additional reactions and likely regulatory mechanisms, as well as an

approximation of the dynamics of these reactions. Accurately predicting dynamics

of such complex processes is certainly an important goal of dynamic metabolic

modeling and has been addressed previously elsewhere using even more course-

grained modeling integrated with transcription regulation[77], but these types of

predictions are out of the scope of the current study. The goal of the current

study is to lay out a workflow for incorporating the necessary in vivo data into a

large-scale kinetic model, and to show how these models can be used to compare

the dynamic properties of the same network at different in vivo steady states.

Knowing a priori that the metabolomic data to be used was from non-

growth-evolved cultures, the measured growth rates for these cultures was used

as a minimal constraint, as opposed to an objective. To integrate flux data with
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concentration data, fluxes were converted from mmol/gdW/hr to M/hr by assum-

ing a cell volume 1.1 cubic microns and a cell weight of 150 pg, which were values

obtained from the Bionumbers database.

3.5.2 Multi-objective optimization

To identify a set of parameters that is both consistent with the second law

of thermodynamics and is as close as possible to the parameter estimates from

various sources of data, a multi-objective non-linear programming problem was

solved. The objective of the MONLP problem is a weighted sum of distances of

the parameters from their estimated values. Equilibrium constants for exchange

reactions were not included in the objective function as their values include the

constant external metabolite concentrations, which are allowed to vary between

conditions. The formulation of the problem is described in Figure 3.3, where 1, 2,

and 3 are the weightings on the first, second, and third parts of the optimization.

Keq,GC Estimate is the group contribution estimates for the equilibrium constants.

xGlucose,data, etc, are the means of the concentration data used. Sp and Sn are

matrices of the positive and negative stoichiometric coefficients. xpool is the total

concentration of concentrations that were indistinguishable by mass spectrometry.

The first set of constraints is the second law requirements that the PERCs

be positive. This is equivalent to the statement that the flux must be going in the

direction that is thermodynamically feasible as determined by the concentrations

and equilibrium constant for that reaction. In other words, the difference between

the mass action ratio and the equilibrium constant has to be the opposite sign

as the flux for that reaction. As the equilibrium case leads to an undetermined

PERC, the difference between the mass action ratio and the equilibrium constant

was restricted to be greater or lesser than a specific tolerance, depending on the

direction of flux. This tolerance defines the minimum distance of the reaction

from equilibrium and thus effectively defines the upper limit on the rate of any

reaction. The PERCs are potentially highly sensitive to the tolerance value, since,

as mentioned above, states very close to the equilibrium state for a reaction result

in very high PERCs, and thus slight changes in parameter values result in large
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changes in PERCs. A sample of tolerances was tested, and a value was chosen that

was large enough that the PERCs were no longer highly sensitive to the tolerance.

The second set of constraints is the requirements that the concentrations

of metabolites with the same mass, and therefore could not be distinguished with

the MS methods used, sum to the concentration of the measured corresponding

pool. The first set of parameters is non-linear with linear variables, while the

second set of parameters is linear in linear variables. As there are more constraints

associated with the second law than with pools, the variables were transformed to

log variables to make the second law constraints linear with log variables, while the

pool constraints became non-linear with log variables. Note, if the concentrations

of the metabolites within pools were measured separately, the entire problem could

be transformed to linear constraints, a desirable trait for the scaling of this problem.

For the purposes here, the presence of several non-linear constraints did not appear

to affect the results. The remaining constraints are the variable bounds.

The choice of weightings on the three objectives is a practical consideration.

The weightings were selected giving priority to the minimization of distances be-

tween equilibrium constants and the minimization of distances between the equi-

librium constants and group contribution estimates. The requirement that the

concentrations remain close to the mean is largely expected to be superficial, as

any value within experimental error is equally valid. The underlying constraint

given by the Second Law of Thermodynamics is manifested in the requirement

that the chemical potential gradient and flux for each reaction are in the same

direction116. While there may be many sets of parameters within constraints that

satisfy the Second Law of Thermodynamics, we sought to find the set closest to

the concentration data mean and group contribution estimates to try to define a

most likely in vivo state for further analysis.
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3.6 Supplementary Data

3.6.1 Enzyme module fits

Acetate kinase (ACKr)

Figure 3.5: Acetate kinase fitting results
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Aconitase A (ACONTa)

Figure 3.6: Aconitase A fitting results



96

Aconitase B (ACONTb)

Figure 3.7: Aconitase B fitting results
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ADK1 (ADK1)

Figure 3.8: Adenylate kinase fitting results
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Cytochrome bd Enzyme 1 (CYTBDpp)

Figure 3.9: Cytochrome bd 1 fitting results
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Enolase (ENO)

Figure 3.10: Enolase fitting results
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Fumarase A (FUM)

Figure 3.11: Fumarase A fitting results
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Fumarase C (FUM)

Figure 3.12: Fumarase C fitting results
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Glycerol-3-phosphate dehydrogenase (G3PD5)

Figure 3.13: Glycerol-3-phosphate dehydrogenase fitting results
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Glucose-6-phosphate dehydrogenase (G6PDH)

Figure 3.14: Glucose-6-phosphate dehydrogenase fitting results
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Glyceraldehyde-3-phosphate dehydrogenase (GAPD)

Figure 3.15: Glyceraldehyde-3-phosphate dehydrogenase fitting results



105

6-phosphogluconate dehydrogenase (GND)

Figure 3.16: 6-phosphogluconate dehydrogenase fitting results
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Ribose-5-phosphate isomerase B (RPI)

Figure 3.17: Ribose-5-phosphate isomerase fitting results
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3.6.2 Model simulation

To show the viability of the approach, we integrated the glycolysis modules

PGM, ENO, FBA, and GAPD into a kinetic model of glycolysis, where the rate

law for non-module reactions is a mass action rate law based on stoichiometry.

Steady-state concentrations and fluxes were set as described in the chapter, and

the total enzyme for module reactions was back-calculated. The resulting model

simulates stably.

Figure 3.18: Glycolysis simulation results
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Chapter 4

Conclusions

4.1 Recapitulation

In this thesis, I have shown the utility of metabolic network reconstruc-

tion in analyzing complex biological data sets. Metabolic networks provide the

functional connections between what would otherwise be treated a black box of

statistical data points. It is the opinion of the author that these functional con-

nections are absolutely necessary to uncover higher order associations that under-

lie system behavior. Although currently only primarily metabolic functions are

analyzed with these methods, the scope of applications was nevertheless broad.

In Chapter 1, I showed how metabolic pathways can be used based on topology

alone to integrate drug-treated gene expression data with known disease signa-

tures, such as altered pathway function, mutations, and nutrient associations, to

identify candidate features underlying drug side effect pathogenesis. In Chapter

2, I showed how metabolite uptake and release profiles, cell growth rates, and cell

compositions can be used in the context of the steady-state chemical mass balance

equation to accurately calculate cancer cell flux states, providing context for ob-

served metabolic function in terms of cellular growth requirements and potential

for metabolic stress resistance. Finally in Chapter 3, I showed how data on in

vitro enzyme kinetics can be integrated with in vivo flux and metabolic concentra-

tion data, correcting for many in vitro/in vivo differences, to fully parameterize a

kinetic model of metabolism with a minimum of mechanistic assumptions.
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4.2 Prospects of metabolic networks in analyzing

complex data sets

The effect of drugs on native metabolism is an underappreciated aspect of

drug response. The primary difficulty in further this type of effort is the avail-

ability of necessary data. The gene expression set used, the Connectivity Map

data set, is near unique in its size and conformity to a single platform. Further-

more, the data used to validate candidate associations, in the form of curated

disease-metabolism associations, was painstakingly extracted from the literature.

In vitro data was also used to investigate individual drug-metabolism interactions,

through targeted experiments testing three drugs on the MCF-7 cell line, but the

in vivo applicability of these types of data is often a concern. The core utility

of the metabolic network in this effort was to serve as a backbone onto which

disparate data types can be mapped. In this sense, the work performed was not

unique, as these types of pathway associations are commonly made in systems

biology analysis efforts. The most unique aspect of the work was likely the com-

bination of machine learning methods to extract candidate signatures tied to side

effect pathogenesis with carefully curated in vivo disease data that is ideal to val-

idate these types of predictions. The only better validation would be to conduct

a clinical trial seeking to measure these metabolic variations directly in patient

populations and associate them with side effect incidence. However, this scale of

validation is simply not possible in an academic setting, and it is not clear whether

the pharmaceutical industry has the incentive to conduct such studies were they

available. The resurgence of interest in cancer metabolism has been accompanied

by a number of efforts in systems biology to understand the principles underlying

its hallmarks, most notably the Warburg effect. This work takes advantage of a

recently published data set on cancer cell metabolic uptake and secretion profiles,

the first of its size, to calculate accurate metabolic flux states for the NCI60 cell

line panel and explore the Warburg effect from the perspective of the metabolic

demands of growth and stress resistance. This effort most directly mirrors those

in the constraint-based modeling field, where flux balance analysis is used in con-
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junction with growth, uptake, and cell composition data to predict flux states.

However, the work in this thesis presents by far the most accurate flux estimates

yet obtained in a human system, as determined by agreement with 13C-labeled

glucose tracing and oxygen uptake data. A number of factors were necessary to

obtain this agreement with experimental data. First, measurements on the ex-

change of metabolites were available on almost all highly exchanged metabolites,

with notable exception to carbon dioxide, ammonia, and oxygen, where the latter

was available for only 4 of the NCI60 lines. Second, growth data was available for

the entire cell line panel, although cell content was not available and was forced to

be estimated from uptake data, with good agreement with cell volume data. Third,

the model used was a core model derived from the global human metabolic recon-

struction Recon 2. This was beneficial because the global metabolic reconstruction

has the potential to exhibit a number of unrealistic behaviors in practice. For ex-

ample, NADH/NADPH transhydrogenase cycles, ATP-generating cycles, low flux

alternate fermentative pathways like methylglyoxyl metabolism, are all commonly

observed when attempting to calculate flux states with the global model. How-

ever, these types of activities are either infeasible thermodynamically or unrealistic

kinetically, and should be excluded with little reservation when attempting to esti-

mate real flux states under non-perturbed conditions. Looking forward, this work

shows a clear utility of certain types of data, specifically growth and metabolic up-

take data, that is relatively rarely generated in the modern era due in part to the

excitement around sequencing and gene and protein expression data. It is hoped

that more value will be given to obtaining this kind of data, especially in perturbed

states such as hypoxia and clinically-relevant enzyme deficiencies. Developing ki-

netic models of metabolism was one of the first manifestations of systems biology.

Originally developed as a method to enable the analysis of enzyme kinetic data, the

Michaelis-Menten, or alternately the Briggs-Haldane, rate law has formed the core

of kinetic modeling efforts as long as these efforts have existed, due to the correct

recapitulation of saturation and regulation behavior and the reduction of parame-

ters over a fully described mass action reaction system. It is particularly difficult

to use parameters derived from initial rate experiments, most notably KM and
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kcat, to parameter mass action systems because these parameters are extremely

complicated non-linear combination of rate constants, leading to an underdeter-

mined non-linear system. In this work, I showed how full mass action reaction

systems can be parameterized using any kind of kinetic data, including steady-

state rate laws, by setting up a non-linear least squares problem, dealing with the

underdetermined system by sampling sets of equivalent rate constants that cause

the enzyme reaction system to equally match measured data. The resulting kinetic

modeling effort then becomes a matter of sampling these candidate rate constant

sets and simulating or analyzing an ensemble of kinetic models. The benefits of

this approach are numerous, but perhaps the most important is that the result-

ing rate constant sets can be thought of as uncertainties on the true underlying

rate constant, and thus as more data is added, these uncertainties will inevitably

become increasingly small. In my opinion, this concept has the potential to trans-

forms the kinetic modeling field from a host of separate efforts with arbitrarily

chosen modeling approaches and rate laws with little to learn from each other, to

a concerted effort to iteratively improve our understanding of underlying kinetics

and thermodynamics. I term this concept the kinetic reconstruction, analogous to

the metabolic reconstructions discussed throughout the manuscript. These kinetic

reconstructions would also be of interest to the protein modeling community, where

the binding energies and rate constants that serve as the core of a kinetic recon-

struction are estimated from protein structural simulations. It is hoped that this

concept will prove formative in an era of kinetic modeling more focused on mecha-

nistic integrity and practical applications of these models in health and metabolic

engineering strain design applications.

4.3 Future

Looking forward, one immediate question is whether the utilization of bio-

chemical network reconstructions in understanding complex data sets ends with

metabolism, where the mass balance equation plays a central role. It has already

been demonstrated that these approaches can be extended to transcription and
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translation[76] as well as transcriptional regulation[77]. Pathway connectivity-

based methods are certainly universal, although the definition of pathways in net-

works such as protein-protein interaction networks is a much more nebulous issue.

Constraint-based steady-state flux calculation methods have already been applied

at the genome scale to predict transcriptional and translational fluxes required to

maintain a metabolic state given estimated flux per enzyme parameters[76]. Ki-

netic models of multi-scale systems exist already as well, with varying levels of

detail, but it is not clear what final form these models will take. One key point in

developing multi-scale models is that time and concentration scale differences exist

in biochemical systems that can be exploited to model sub-systems individually

without needing to consider all processes within the cell simultaneously. These

modular approaches will likely simplify multi-scale model construction and anal-

ysis efforts. In summary, there is no indication that the utility of biochemical

reconstructions in analyzing data sets will end with metabolism. It is likely that

these reconstructions will only become more important in the future as data sets

increasing in size and accuracy, and the expectations on the outcome of resulting

analysis become greater.
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